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Abstract 

This  projects  aims  at  researching  and  implementing  a  neural  network  architecture  system  for  the  NARX 
( Nonlinear AutoRegressive with eXogenous inputs ) model, used in sequence processing tasks and particularly in 
time series prediction. The model can fallback to different types of architectures including time-delay neural 
networks and multi layer perceptron. The NARX simulator tests and compares the different architectures for 
both synthetic and real data, including the time series of BSE30 index, inflation rate and lake Huron water level.  
A guideline  it's  provided  for any specialist  in  the  fields  of  finance,  weather forecasting,  demography,  sales, 
physics, etc. in order for him to be able to predict and analyze the forecast for any numerical based statistic.
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1. Introduction

Sequence  processing  tasks  and  especially  time  series  prediction  have  been  a  challenging 
subject for researchers, and especially for the ones using neural networks architectures. Usually a 
neural network can be used effectively for pattern classifying, but mainly for unstructured static data 
(not related by time constraint). However it is interesting to see how a neural network behaves on 
"temporal pattern recognition". The difference between the two types is that in the second case the 
patterns evolve in time, which makes recognition harder[1]. In consequence, the neural network has 
to adapt for these changes or at least consider them in the learning process. 

Time series prediction is a perfect example of a temporal changing pattern. The time series is a 
sequence of discrete data taken every specific time interval, e.g. daily time series, or monthly, etc. 
Compared to a normal pattern that needs to be recognized, time series depend heavily  on past 
values. A normal feed-forward network with a small number of inputs compared to the length of the 
time  series  can  estimate  the next  value counting  on  little  factors.  In  order  to  achieve  a  higher 
performance, like detecting long term dependencies, a new model has to be devised. 

In order to be able to predict changing patterns,  the neural network has to find a way to 
incorporate all previous values or at least sample them.

The Nonlinear AutoRegressive with eXogenous inputs model ( NARX ) is based on recurrent 
neural networks and aims to provide better long term dependencies detection in predicting tasks.

Time  series  are  used  in  various  domains  like  economy  –  exchange  rates,  or  weather 
forecasting, or signal processing. Predicting such patterns is useful for everyone working in those 
fields:  avoiding money loss in unexpected exchange rates changes,  better weather prediction, or 
even better signal processing, by estimating what to expect on signal input.

This  project  aims to present and implement the NARX model,  using neural  networks,  in  a 
simulator and run experimental tests for measuring the performance of this model for time series 
prediction using both real world data and artificially generated data. The simulator is very flexible 
and allows fallback to both TDNN ( time delay neural networks ) and MLP ( multilayer perceptron ), 
both trained with standard backpropagation algorithm, in addition to NARX trained by BPTT ( back 
propagation through time ).

Although this work can be applied to any kind of sequence processing, it is focusing on time 
series prediction. One can use the simulator for a more general purpose, but the design is thought 
for time series, as they are the best example on which the sequence processing can be illustrated.

Section 2  presents  some theory regarding  time series and sequence processing  task for  a 
prediction system, along with a few functions and tests that can evaluate the quality of a prediction 
system. Section 3 presents the NARX model and how it can be implemented using neural networks. 
Further, Section 4 contains the architecture and implementation of the simulator, and Section 5 the 
results of the experiments and tests with the simulator. Finally Section 6 draws the conclusions and 
highlights the tracks for future development.



                                                                  EUGEN HRISTEV                                                                   2  

2. Time series prediction task

2.1. Time series concepts

Possible  approaches  in  time  series  processing  include  autocorrelation,  autoregression  or 
residual  research.  Scientists  have  observed[2] that  studying  time  series,  some  specific  notions 
appear: 

– stationarity – the property of a time series that the global joint distribution does not change 
over time – in consequence neither mean or variance;

–  nonstationarity – the property of a time series that it's not stationary, usually it has a certain 
level of trend : linear, quadratic, etc.; 

–  time series differencing – the process of computing differences between pairs in order to try 
to make the series stationary; 

–  trend terms – the terms from the series that make it nonstationary, depending on the trend 
level, the series has to be differenced once or twice or more to become stationary; 

–  random shock – the random component of a time series, the shocks are reflected by the 
residuals; 

–  residuals –  the  errors  that  are  visible  after  identifying  the  series  model  and  trend  if 
applicable; 

–  lag – the interval between two time steps, e.g. Yt and Yt-1; 
–  moving average terms – the number of terms that describe the persistence of a random 

shock from one observation to the next, e.g. if it's 2, then every observation depends on 2 previous 
random shocks; 

–  auto-regressive terms  - the number of terms in the model that describe the dependency 
among successive observations, e.g. a model with two auto-regressive terms  is one in which an 
observation depends on two previous observations; 

–  autocorrelation –  correlations  between  terms  at  different  lags,  values  are  repeating 
themselves in the series; 

–  autocorrelation function – the pattern of autocorrelation in numerous lags.
In order to correctly analyse the behaviour of the time series, one has to compute the mean, 

the variance, and see if the series is stationary. Further, if it's not stationary, it has to be differenced 
in order to find a stationary series, or logarithmed. After creating a model for the differenced series, 
the model can be generalised to the original series.

Subsequently, a neural network can be used to estimate the next values of the time series. 
Figure 1 presents a general predictor basic architecture[1]. 

In this architecture, one can notice that the observations of the time series are given as inputs, 
and the first step is the memory. The network has to memorize the input values for a sequence of 
last inputs, or with a different lag than the one from the original series, one with a lower granularity. 
Next, the system needs a predictor, that can base itself on both inputs and predicted values , but also 
on training data : correct outputs. In this case we denote x(t) as the input at time t, and y(t) the 
output. The memory usually has recurrent connections, while the predictor is a feedforward usual 
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network.

Fig. 1. A basic predictor architecture.

The design of such a system involves more steps[1]:
1) Decide  the  structure  of  the  memory  and  predictor  system:  what  type  of  neurons, 

activation functions, connections between them, number of neurons per layer.
2) Decide how the weights are adjusted. Usually given the inputs as a set of observations 

x(t) to x(t-τ), predictions are made, y(t) to y(t-τ), and the weights are adjusted such that the error to 
targets d(t) to d(t-τ) are minimised, usually in least squares sense.

3) Representation in memory : what should be kept and in what format. Memory should be 
domain dependant.
      Memory representation has been studied in recent years and a number of models have been 
devised. 

Tapped delay line memory is formed of n buffers containing most recent inputs. This memory 
is called tapped delay because every oldest input is replaced by a new one, and each input takes part 
in  the  learning  process  per  turn.  This  model  is  the  base  for  autoregressive  methods.  Figure  2 
presents a simple tapped delay line architecture.

Fig. 2. A tapped delay line memory system

In order to comprehense more memory modules, we can denote the past values of the input 
with x~

i (t)= x(t – i) ; where i is the lag, and then treat x~ as a convolution of the input sequence using 
a kernel function ci. 

Therefore, 

x~
i (t)= ∑

=1

t

ci t−x  (1)

For the tapped delay line, ci will be 
                    1  if t = i
ci (t) =        (2)

                    0 otherwise

x(t) y(t)
memory predictor

x(t)

x(t)

x(t-1)

x(t-2)

...

predictor

y(t)



                                                                  EUGEN HRISTEV                                                                   4  

Other kernel functions can imply different models of memory systems. For example, one can 
use a gaussian to sample values from the inputs,  polynomial or exponential.

Consider two variables for a memory distribution, depth and resolution. Depth means how far 
away back in time the samples are taken from. Resolution will  mean the lag value for which the 
samples  are  taken.  Considering  these,  the  linear  distribution  is  low  depth  but  high  resolution. 
Opposed to that we have the exponential distribution, with a high depth but low resolution. 

The exponential kernel function is 
ci(t) = (1 − µi) µt

i where µ is an arbitrary constant in range [-1, 1]. 
One can observe that the samples with this distribution are more concentrated on the values 

close  to  the  current  input,  and  the  lag  increases  with  older  and  older  entries.  The  exponential 
function does have the advantage of having theoretical values from all the inputs, even if the ones 
very far away are sampled at a very high lag.

One can combine the two variants into the gamma memory[3]  and use advantages from both 
modules, with tweakable parameters. One can obtain a full family of gamma memories by varying 
the parameters from a tapped linear delay to a full exponential one.

The  content  of  a  memory  is  also  very  important.  In  previous  examples,  a  linear  memory 
mapping was done. Let's denote x' the new inputs, the ones after some mapping function is applied. 
In  previous  cases  x'(t)  is  x(t).  We  can  use  a  different  mapping,  such  that  the  input  values  are 
differenced or any other preprocessing that would help us maintain data and extract the essential, 
like trends for example.

One can classify the memory content by the function that it's applied to the original inputs in 
order  to  obtain  the  mapped  values.  In  some  cases  this  function  is  the  hidden  layer  neuron's 
activation function.

Sometimes  in  order  to  get  the  best  out  of  the  prediction  system,  the  data  needs  to  be 
preprocessed.  This  may  include  outlier  removal  or  differentiation  for  example.  Outlier  removal 
means that the values that are very different from the pattern get removed : values that are probably 
caused by measurement errors or human errors, and may influence the prediction system.

Normalization has a very important  role  in preparing  the data for using in  a  value-limited 
system, for example in a neural network using a sigmoid function : all the output values are in the 
range [0, 1].

By normalization for a series we understand creating a mapping to x'(t) in the following way: 
first  compute  the  average  of  the  input  series  E x =x  t  ,  then  compute  the  variance     

           
Var x =

∑
i=0

n

 x i−E x 2

n
;

 (3)

In this situation, the new series, the mapped ones will be:

x ' t = x t −E x 
Var x 

; (4)

The new mapping will consist of both positive and negative values and it will be relative to the 
variance of the entire series. For the test data, one can use the same values for average and variance, 
the ones computed for the training data.

The memory can keep both the original data and the normalized ( mapped ) values. Further, 
the  prediction  system  can  work  with  both  or  only  with  the  mapped  values,  having  a 
mapping/demapping operation each time it has to interact with the user.

A memory is called adaptive if the memorised values are influenced by the learning process. 
This way, the hidden layer for example can connect back to the memory in order to recompute the 
stored values. The x' values will not be static as in a single function applied, but dynamic and will be 
influenced by the neurons in the network.
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Types of neural networks algorithms for time series learning in recurrent networks include Back 
Propagation Through Time[4] or Real  Time Recurrent Learning[5].  Both use adaptive memory as 
described above.

Having the three possible memory types ( linear, exponential, gamma ) and the two memory 
content classification, one can then split the memory into a taxonomy, and analyse which fits the 
best the sequence processing task. 

The main goal for a network would be to adequately determine the function that converts the 
inputs x to the remapped x' inputs. Having weights on the inputs, denoted by w, the memory would 
have to try to determine w such that all the necessary information is kept. This includes any short 
term or long term dependencies between data, mostly the trend of the series and possible random 
shock. 

A  good approach would  be gradient  descent  procedure.  However in  time series,  gradient-
descent has poor scalability, and it experiences the "forgetness" problem or the vanishing gradient 
problem[6]. This problem appears because expanding the Jacobian of the learning function over  τ 
time steps tends towards zero when τ tends towards the beginning of the series. This means that the 
gradient descent learning procedure will value more the inputs closer to the current time rather than 
the  old  ones.  In  conclusion,  the  algorithm cannot  discover  and  predict  the  so  called  long-term 
dependencies, that appear after a long time. 

This  projects  aims to  provide a  solution to  the problem of  time series forecasting using a 
nonlinear model with neural networks that can detect long term dependencies. The purpose is also 
to experiment using generated data but also with real data, and determine which type of system is 
best suited for a specific time series prediction application. 

2.2. Prediction evaluations

In  order to evaluate the quality  of  a prediction,  one can define a set  of  functions that  can 
quantify the quality. Let's assume we have a time series  d(t) and the prediction y(t)  for a series of 
length n. The most simple function would be:

f 1=∑
t=1

n

 y t −d t 2 ;  (5)

In this case f1 is the sum of the squared deviations (SSE) of the predicted values compared to the 
target values.  However f1 is highly dependant on the series size: more terms to the series implies a 
bigger error, and this stops the possibility of comparing the quality of the prediction of two different 
series.

f2 solves this problem by computing the mean:

f 2=∑t=1

n

 y t −d t 2

n
;

(6)

f2 is the root-mean-square-error (RMSE). This function solves the problem of error cumulating, 
but it still has the problem of relative error. The computed mean error is only absolute, and highly 
depend on the series values. For example if we try to predict the values of the exchange rate and we 
have an f2 value of 2.0, the prediction is very bad ( ranging 30 % to 100 % for close value rates), but if 
we predict the stock markets values that range over one million per unit, an error of 2.0 per million is 
very small.

In order to solve this problem, f3 will also divide the value by the average time series absolute 
values:
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f 3=
∑t=1

n

 y t −d t 2

n⋅∑
i=1

n

∣d i ∣

n

=
n⋅∑

t=1

n

 y t −d t 2

∑
i=1

n

∣d i ∣
= RMSE

∣d∣
;

(7)

f3 is called the coefficient of variation of the RMSE, being RMSE divided by the mean ∣d∣ . 
Although f3 seems to cover the most problems, it only shows the mean error of the predicted values. 
If our prediction is off the scale for some certain values, then maybe the average itself will not be 
influenced a lot, but stay in a certain margin of error. The root mean squared based error calculations 
don't cover such cases when more penalties have to be included in the evaluation.

Further, we define f4 as the normalized (by the target variance) RMSE.

f 4=∑t=1

n

 y t −d t 2

∑
t=1

n

d t −d 2
; (8)

f4 has an interesting property : if the predicted values are the exact average, the value of f4 is 1. 
A better prediction than the average must have f4 value below 1, and a worse prediction will have 
greater values.

Another interesting test would be a variant of  Random Walk:  compute the values of the test 
functions by using as prediction the previous value of the series. This would give us more insight 
about comparing the results: if the random walk tests results are similar with our prediction, then 
the prediction is no better than the random walk. For this purpose we define yRW as the random walk 
prediction:

yRW t =d t – 1 ;  (9)
Another problem is that the test functions if applied only on the training data do not cover the 

underfitting and overfitting problems. A good test should reveal if our model is too complicated for 
our data or contrary, too simple for our complex data pattern.

In order to evaluate a model, the Akaike Information Criteria[7] can be used, which is a simple 
and easy  way to  evaluate  the fitness.  However the AIC  requires  a  precise  determination of  the 
degrees of freedom for a statistical model. Unfortunately neural networks create a model for the 
data but without an exact identification of the parameters. This would also mean that the degrees of 
freedom would be very hard to determine. There have been attempts to compute the degrees of 
freedom  for  the  MLP[8],  starting  from  the  matrix  of  inputs  and  weights,  by  computing  the 
eigenvalues, but this theory can only be used for a part of the NARX architecture, more less for the 
feedback loop. It has been proved though that neural networks can present a likelihood function by 
reduction  to  a  conic  model[9].  In  this  situation  we  can  use  the  statistic  tests  that  require  the 
probability distribution and compare the prediction with the distribution of the real data.

We will use two important tests for "goodness of fit" : Kolmogorov – Smirnov[10] and Anderson 
– Darling[11], which require the distribution function of the data. Although these tests apply for 
continuous distributions  of  data,  we will  make some adaptation in  order  to  apply  for  our  case: 
consider the targets as part of a continuous distribution as well and compute the values for both the 
targets and predicted values. The comparison of the two can give an insight about whether they are 
part of the same distribution. These tests however do not tell us if a prediction is good or not,  but  
they provide with a necessary condition: the points must be part of the same distribution. In order to 
have a good prediction, the ordering of the points is also important, and this is one point that the 
statistical tests for distribution match do not cover. We can say though that if the prediction and the 
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data is not from the same distribution, then the prediction is bad.
The common empirical cummulative data distribution function can be defined like the following:

F t =1
n∑i=1

n

1{d i t}; (10) 

where n is the number of data samples and d are the samples (the targets).  1 is the function that 
returns 1 is the condition is true or 0 otherwise. We can observe F is a probability so it will be in the 
range [0, 1].

F can then be used in the tests.
For the both tests, the result of the test has to be compared with a critical value specific to the 

target distribution. If the computed statistic is greater then the critical value, then we can reject the 
null hypothesis that the samples are from the same distribution, and accept the alternative, that 
they are from a different distribution. The critical values are standard for certain distributions like the 
normal distribution. Because the distribution of the targets – time series is unknown, this value has 
to be determined empirically.

The Kolmogorov – Smirnov test ( abbreviated KS ) has the advantage of being independent of 
the actual values of the series and distribution, so the statistic itself is absolute. Another important 
advantage is being exact: compared to root mean square tests or chi-squared tests, KS does not 
require an adequate size of data, it  can be computed with decent results for any size of data. A 
disadvantage for KS is that it favours mostly the center of the data and leaves the edges with less 
influence on the result. 

The KS statistic is defined as:
f KS=max

i
∣F1i −F 2i ∣; (11)

where F1 and F2 are the empirical distribution functions for the two series.
The formula looks pretty simple and it basically finds the largest difference in absolute value 

between the cummulated distribution functions: the point where the cummulated error reaches the 
maximum.

The Anderson – Darling test ( abbreviated AD ) starts from KS but it has a better coverage of the 
data outside the center : the head and the tail of the series.

f AD=−N−∑
i=1

N 2⋅i−1
N

[ ln F  y iln F 1− yN1−i] ; (12)

In this case the y are the predictions and F is the distribution of the targets. This adaptation is 
required because the original  distribution is  unknown, but we have it's  cummulated distribution 
function.  Another point that has to be taken into consideration: it is possible that the distribution 
function of the targets may return a value of zero if the predicted value is below any target value. 
This is not possible for the original formula because for every value there is at least one that matches 
( the actual value we want to compute for ) so the probability never reaches zero. To avoid logarithm 
from zero, we must ignore the specific cases when the cummulative distribution function returns 0.

In conclusion, the analysis of a distribution match would require the computation of the above 
functions and tests and compare them. 

The statistics test together with RMS functions and their variants can give us a certain amount 
of information that we would require in order to say if a prediction is better or worse than another.

The next section presents the NARX model, which starts from the gradient descent problem, 
with a nonlinear memory and tries to discover long-term dependencies in input data.
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3. The NARX model

3.1. Theoretical NARX and neural networks

Nonlinear  AutoRegressive  with  eXogenous  inputs[12] model  is  a  type  of  recurrent  neural 
network defined by the following:

y t= f  x t  , ... , x t – a  , y t –1 , ... , y t – b , d t – 1 , ... , d t – b ; (13)
where d are the targets for the time series that we want to predict,  y are the past predicted 

values by the model,  a, b are the input and output order, x are the exogenous variables and f is a 
nonlinear function. 

The model purpose is to predict the next value of the time series taking into account other 
time series that influence our own, but also past values of the series or past predictions.

In the model we can observe the exogenous variables: variables that influence the value of our 
time  series,  the  one we want  to  predict.  The  input  order  gives  the number  of  past  exogenous 
variables  that  are  fed into the system.  We can also note  that  the  exogenous variables  have an 
arbitrary number ( can be none, one, or more ). In general, the exogenous variables are time series 
as well. We can use the exogenous variables values starting from current time t until t – a, where a is 
the input order. The input variables among with their order are called the input regressor.

The y are the past predicted values. Because we want to predict the value at the current time 
t, we can use values starting from t – 1 to t – b, where b is the output order – the number of past 
predictions fed into the model. These output values among with their order are called the output  
regressor. 

The targets d represent the real values of the time series that we want to predict, which are 
also fed into the system. The same order as for past predicted values is used. In case these values are 
missing, the system will try to predict the next values of the time series only from the exogenous 
variables or using the feedback from past predicted values.

The first system parameter is the number of inputs ( exogenous ) M. This means that the NARX 
can fall back to a prediction system without exogenous inputs if needed, in which case M is 0. The 
input order ( how many previous values are given to the system) is denoted by a. Another parameter 
is the actual order of delayed outputs or delayed targets.  This  is  denoted by  b.  The parameter  i 
represents a certain exogenous variable taken into account. In this way, x(t) actually represents a 
vector of exogenous variables at the time t, with i varying from 1 to M.

The outputs  y actually represent a vector of outputs, so we denote the number of output 
variables as N.

The system parameters can be resumed in the following:
Inputs (exogenous) : M ;
Outputs (predicted): N ;
Input delays order : a ; can be > 0 only if M > 0
Output delays order: b ;
Varying the system parameters can result into different types of architecture, with or without 

exogenous inputs, with or without delayed outputs ( feedback ), etc., resulting into simpler models 
for specific purposes.
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With the above notations, the output of the network for the time t, the prediction, is y(t), and 
because we have the targets d(t) we can compute the error e(t) as d(t) – y(t).

In Figure 3, one can observe the complete architecture.

Fig. 3. NARX model

NARX  model  can  then  be  built  on  a  recurrent  neural  network,  trained  by  BPTT 
( backpropagation through time ) algorithm or simple BP ( back propagation ) if  the feedback is 
removed, in this case resulting an MLP ( multilayer perceptron ).

In Figure 4, the NARX model using neural networks is presented.

Fig. 4. NARX with neural network architecture.

The neural network holds for the nonlinear function  f, modelled this way[13]. The learning 
algorithm for  the  neural  network can be gradient descent,  with the addition from BPTT for  the 
feedback into the output regressor.

The neural network adds new parameters to the architecture:  H the number of hidden units. 
Because we may have a multiple output, the number of output units is N.

Another  option  that  has  to  be  considered  for  the  neural  network  is  the  selection  of  the 
activation functions. The hidden units can have a nonlinear limited function like the logistic sigmoid : 

sigmoid x= 1
1e−x ; (14) 

with derivative :
sigmoid ' x =sigmoid x[1−sigmoid x]; (15)

which is good in general if the inputs are in a range that is not affected by the limits: the sigmoid falls 
to 1 for large values and to 0 for large negative values. This problem can affect the performance for 
these type of numbers, if  not taken into consideration. To avoid this problem, one can use data 
preprocessing like normalizing , or modifying the respective activation function.

The B sigmoid tries to solve this problem by adding an extra parameter which will alter the slope 
of the function:

Delayed inputs 
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sigmoid x ,= 1
1e− x ;      (16)  

with derivative:
sigmoid ' x ,= sigmoid x ,[1−sigmoid x ,]; (17)

This  function  however  does  not  solve  the  initial  problem  of  the  sigmoid.  We  can  use  the 
antisymmetric logarithm function, which is similar with sigmoid but does not have the ∞ and 
−∞ asymptots:

antisymlog x=sgn x log 1∣x∣ ; (18)
with derivative:

         antisymlog ' x = 1
1∣x∣

; (19)

For the output layer units, the linear identity function is applied:
  f x =x ; (20)
because the output units must produce the output by summing the output from all the hidden 

units,  if  this  activation  function  is  different,  some  outputs  cannot  happen  (  e.g.  above  1.0  for 
sigmoid ).

We denote the neural network weights in the following way:
wjip

hx – the weights for the exogenous inputs x, connecting the j hidden unit (h) with the p 
input delay for the ith exogenous variable. 

wjkq
hd   –  the weights for the targets d, connecting the j hidden unit (h) with the qth delayed 

target for the kth target variable.
wjkq

hy –  the weights for the feedback outputs y, connecting the j hidden unit (h) with the qth 

delayed output for the kth output variable.
wkj

oh –  the weights for connections between the  kth output unit  and the  jth hidden unit 
respectively.

wj0
h  – the bias for the j hidden unit (h).

wk0
o  – the bias for the k output unit (o).

In addition to the parameters defined above, we use the following indexes to address a specific 
variable or unit:

Outputs k : 1kN ;
Hidden units j : 1 jH ;
Inputs (exogenous) i : 1iM ;
Input delay p: 0pa ;
Output delay q: 1qb;

Having the NARX specified in this way, one can ask if the vanishing gradient problem still exists, 
because we have a similar learning algorithm with the Multi-Layer Perceptron ( MLP ), and a very 
similar  network architecture.  The answer is  yes,  the  vanishing  gradient  still  exists,  however,  the 
model behaves much better then the other types, because of the output memories represent jump-
ahead connections in the time folded network[8]. What this means is that if we take the network and 
represent multiple instances of it, basically each instance at a moment of time connects to another 
one far in the future. This improves the long term dependency detection and somehow softens the 
vanishing gradient problem that the other type of networks have. Such behavior is also seen in BPTT.

The NARX network can use the regressors with different lags[8], this time they no longer have 
the same lag as the series, but having  τ now. This means that the input regressor is actually a  τ-
separated selection of inputs from the original time series. This allows the network to cover more 
space in order to determine long term dependencies, but with bigger granularity. In conclusion the 
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regressors will adjust for the trend of the series, in long term. However one can keep the same lag as 
the original series to the output regressor for example, and it will adjust to smaller changes in the 
time series, included in the random shock.

This type of  NARX network has proven to be a successful  alternative to TDNN for a lot  of 
practical examples, including chaotic laser pulsations or video traffic time series[8], where it behaved 
significantly better.

One can observe that the regressors actually provide the memory for the network, either a 
linear tapped-delay as explained in previous section, or an adaptive memory if the lag changes from 
1 to τ for better series coverage.

It has been proved that a NARX network behaves better on long term dependencies by using a 
single neuron network compared to a recurrent network trained by BPTT[6]. In the case of NARX, the 
Jacobian component of the gradient is emphasized from terms farther in the past. This means that 
the fraction of the Jacobian value given by older values is higher for this type of network. In a regular 
network case, the Jacobian would decay faster, so the old values are practically insignificant to the 
later steps of the prediction. 

NARX networks  have  been  tested for  finite  automata prediction[6].  In  this  scenario,  input 
strings were given to the network, and in a specific case where a certain character was found in a 
position or not, the string was accepted or rejected. 500 random strings were created and tests have 
been done with both Elman and NARX networks. NARX behaved much better, with around 12 input 
delays, the rate of correct prediction was nearly 100 %, which was nearly the same for Elman with 6 
input delays, but the performance rapidly degraded for Elman as the input delays number increased, 
while for NARX the performance degraded softer.

An interesting fact is that NARX networks have been proved to be Turing equivalent[7]. This 
means that any problem can be modeled and solved using a NARX network.  In theory,  a NARX 
network can replace any recurrent network that is currently being used for a problem, without any 
computational power loss. 

NARX model has proved to be effective for other types of chaotic series as well[14], including 
the chaotic Mackey-Glass series, and Fractal Weierstrass series. For these series, a good prediction 
has been found with an average input order and low output order. The model has predicted values 
with 99 % accuracy, comparing them with the original values.

For the BET-stock market ( Bucharest stock market ),  NARX has proven again to have good 
results, with the Levenberg – Marquardt optimization and Bayesian regularization. In this scenario, 
the accuracy was 96 %.

3.2. NARX variants

Having the system parameters, one can find older models that are covered by NARX, but also 
subsystems of NARX.

1) MLP ( multi-layer perceptron with exogenous variables). NARX model can fall back to 
MLP if the parameters are M > 0, a = 0, b = 0. Having a zero means no delayed exogenous inputs are 
given to the system, but because M > 0, we have exogenous variables at the current time index. 
Having  b zero means no feedback loop nor delayed targets. In this scenario the prediction is done 
using only exogenous values. This architecture is in fact the multi-layer perceptron.

2) TDNN – X ( with exogenous variables only ). Parameters are M > 0, a > 0, b = 0. This time 
the exogenous variables are present with delay as well,  but no feedback. This architecture is the 
Time-Delay Neural Network X (from eXogenous ). In this scenario only one block is present – the 
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exogenous variables.
3) TDNN – D = NAR – D (without exogenous variables but with delayed targets ). Parameters 

are M = 0, a = 0, b > 0. In this case there are no exogenous variables but we have the delayed targets. 
That is why the model has the D suffix ( from the targets d). Even though b is > 0, only the targets are 
present: there is no connection between the y block and the system: ∃ wjkq

hd but ∃ wjkq
hy .

4) NARX – D (with exogenous variables and delayed targets). Parameters are M > 0, a > 0,
b > 0. In this case both exogenous variables and the delayed targets are present. The only block 
missing is the feedback. ∃ wjkq

hy , ∃ wjkq
hd , ∃ wjip

hx .
5) NARX – Y (with exogenous variables and delayed feedback outputs ).  Parameters are 

again M > 0, a > 0, b > 0. This time there are both exogenous variables and delayed feedback outputs, 
but no delayed targets. ∃ wjkq

hy , ∃ wjkq
hd , ∃ wjip

hx .
6) NARX – DY ( with all inputs ). M > 0 , a > 0, b > 0, ∃ wjkq

hy , ∃ wjkq
hd , ∃ wjip

hx .
7) NAR – Y ( no exogenous and no delayed targets,  just prediction feedback).  M = 0,  

a = 0, b > 0, ∃ wjkq
hy , ∃ wjkq

hd , ∃ wjip
hx .

8) NAR – DY ( no exogenous but delayed targets and prediction feedback ). M = 0, a = 0, 
b > 0, ∃ wjkq

hy , ∃ wjkq
hd , ∃ wjip

hx .
Out of all the possible variants, MLP, TDNN – X, TDNN – D (NAR – D)  and NARX – D can be 

trained with simple backpropagation. NARX – Y , NARX – DY, NAR – Y and NAR – DY must be trained 
with BPTT.

We can observe that the models that don't have the X in their name ( TDNN – D , NAR – Y  and 
NAR – DY ) don't use exogenous variables, so the time series forecasting is simple. The other models 
include exogenous variables.

3.3. Backpropagation through time

In the NARX model we can observe that we have a feedback loop from the output of the 
network back to the input. This special connection is part of recurrent neural networks, and cannot 
be trained with simple backpropagation algorithm. For this,  the BPTT (  backpropagation through 
time ) algorithm needs to be used.

The BPTT algorithm for processing a training sequence of length t  is presented next:

01: Unfold the network in time for t necessary steps.
02: For each i instance of the network:

021: Add the output of output units of the network instance i-1 to the input 
of network instance i and the i input values from the inputs

022: Compute the output for current instance
023: Propagate the output further

03: For the final instance t, compute the error as e(t) = d(t) – y(t)
04: For each instance i of the network in reverse order:

041: Propagate the error back using backpropagation.
042: Aggregate the propagated error with the current error e(i) = d(i) – y(i)  

at time step i.
043: Adjust weights (and biases).

05: Fold the network back by averaging all the t weight instances (and biases) into a 
single instance of weights (and bias).

06: End.
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We can observe that the algorithm for each training sequence ( at each epoch ) unfolds the 
network in time as much as the length of the input series is. This can bring a penalty of space, but 
there are  some enhancements that  can be done:  don't  keep separate  copies,  but  just  keep the 
weights; or recompute using a single instance because every instance is the same.

Fig. 5. A recurrent neural network.

The unfolding in time is depicted in Figure 5 and Figure 6. In Figure 5 we can see the original 
recurrent neural network, and in Figure 6 the network unfolded through time for 3 time steps.

Fig. 6. The network in Figure 5 unfolded through time.

We can observe that a single past output of the network is being sent to the next instance of 
the network. If more are being sent ( e.g. for 2, each network will send the output to the next and 
the following instances ), then the order will be 2. This is the significance of the output regressor in 
the NARX model. The unfolding needs to be done for n instances, if the input series has the size n.

An important difference is the behaviour of the output units. In normal backpropagation, the 
output units only compute their error by calculating a difference from the targets, while in BPTT, 
besides this computation, every output unit receives a delta from the hidden units of the following 
instance, so that the error can be reduced not only with respect to outputs, but also to the derivative 
of the error coming from the following instances.

The  time  complexity  for  the  algorithm  is  O(N2) per  time  step,  and  the  space  complexity
O(N2 + n  .  {N+M}) where  N is the number of units in one instance,  M the number of exogenous 
variables (x) and n the length of the time series.

BPTT must be applied to the learning steps of all NARX variants with output regressor (Y).
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4. Application architecture and implementation details

The  application  is  a  NARX  simulator,  that  can  also  fall  back  to  any  of  the  described 
architectures in Section 3.2. The simulator is written in C++ and uses the Qt1 graphical library for the 
interface. The tests can be run on both generated series and on real data. Figure 7 presents the 
architecture. Requirements to run the application are: 32-bit Windows based system with MS VC++ 
redistributables installed and .NET framework 3.5.

Fig. 7. The simulation engine architecture.

4.1. Input module

The input module consists in generating a time series or loading an existing one from file. The 
series generator has the following parameters:

–  start value : a real number representing the first value of the exogenous variable used for 
generating the series;

–  end value : a real number representing the end value for the exogenous variable;
–  series length : an integer number representing the number of values in the series;
–  base function : the basic function that will be applied to the exogenous value in order to 

1 http://qt.nokia.com
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generate  the  series  value;  can  be  one  of  sinus,  normal  logarithm,  normal  exponential,  square, 
hiperbolic ( 1/x ), linear ( f(x) = x );

–  noise factor : representing a percent of the final value that is added or substracted from the 
value in order to artificially create a noise: a random value between  - noise % and + noise % is 
generated and then added to the series value.

After generating the series, the user can select whether to use the exogenous variable into the 
model or not.

This generator does not support usage of multiple exogenous variables or having a recurrent 
dependency  (  of  previous  values  of  the  series  ).  However  another  option is  available  – using  a 
predefined function for a series: the generator has a few built-in series with formulas that can be 
used for testing.

The second part of the input module is represented by the series loader. The series must be in 
a plain text file having the following format: an integer number representing the series length:  n, 
then the number of exogenous values used:  M, then the number of targets  N, and then for each 
exogenous variable, n real numbers representing the exogenous values for this variable for each time 
step. In the end the file must contain another n values for each actual N time series values. This part 
of  the  input  module  allows  the  simulator  to  train  and  predict  real  life  values  (  not  artificially 
generated ones ).

For  all  the  data,  real  or  artificial,  the  user  can select  whether  to  normalize  the values  as 
described in Section 2.1.

4.2. System setup module

After the series have been generated, the user can pick which variables will be used further in 
the model for the training and prediction. 

The parameter selection module allows the user to pick the alpha coefficient of learning : the 
number that balance between exploration and exploitation. If alpha is too low, then the network will 
be inclined more towards exploitation, because the error will be propagated less towards adjusting 
the weights, thus the learning process can be slow ( many epochs required ), but it's not so sensitive 
to major changes in patterns. In this way if some patterns are completely different from the previous 
ones, the network will not adjust very fast to them but keep in memory what it learned previously. 
Opposite to that is the exploration: if  alpha is set too high, the network will respond very fast to 
changes, and may "forget" previous learned patterns. Learning may be faster with a higher alpha but 
with less precision and it can become sensitive to outliers. An usual value for alpha is 0.2.

Another parameter that can be set is the number of epochs : the number of iterations through 
all the series that the network will perform in the training process. An usual epoch number is 500 – 
1000.

Next step is the selection of activation functions for hidden and output units. Possible choises 
are sigmoid, β-sigmoid, antisymmetric logarithm and linear.

The architecture select module represents the actual pick of the type of NARX used: user can 
choose whether to use exogenous variables, delayed outputs or targets. Depending on these choices, 
the system will identify one of the architectures presented in Section 3.2. Also in this module the 
user can select the number of hidden units that the neural network will have. More hidden units will 
imply a longer time for training, but may provide better results. However a too large number of 
hidden units will lead to overfitting, in which case the model will not have a good prediction due to 
too high complexity. Having a too small number for the hidden units can cause underfitting, a model 
too simple for the function that we want to predict. The number of hidden units has to be tested and 
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adjusted  for  each  prediction,  for  each  time  series,  according  to  evaluation  (  either  by  tests  or 
manually ).

Further, according to the type of architecture selected, the user is pointed to input the desired 
input and output orders.

4.3. Training module

The  training  module  is  the  most  important  in  the  architecture,  as  it  implements  all  the 
required learning algorithms: backpropagation and backpropagation through time, and it holds the 
architecture of the entire NARX system. In Figure 8 we can observe a detailed architecture for this 
specific module.

Fig. 8. Training module architecture.

We  can  see  how  the  module  interacts  with  the  other  different  modules.  The  NARX 
configuration influences what types of units will be active during the training and prediction of the 
system.  The  input  module  will  feed  the  data  for  the  input  units  and  for  the  targets  for  error 
computing.

The training module is  composed in a similar way with the NARX theoretical  architecture: 
input units, which consist of exogenous units, delayed target units and feedback units. The activation 
of each depends on the selected architecture. Further, the hidden units are present, a single layer, 
and the output units. One of the two algorithms is used for training: for non feedback types, simple 
backpropagation,  while  for  feedback  types,  the  backpropagation  through  time.  In  the  end,  the 
output units feed the values to the evaluation module or back to feedback units.

For the simple BP, after each value from the time series, the weights are adjusted: the errors 
are computed for output units and hidden units, and after that the weights are adjusted accordingly. 
A slight difference is for the BPTT: in order to avoid too much memory usage, the simulator does not 
make a separate copy of the architecture for each element of the time series, but only three copies 
are used. 

Initially a first copy computes the forward way, and all the outputs are computed. For example, 
at time step t, into the architecture are fed the b previous computed values for output, along with 
the  a exogenous values and the b delayed targets if necesarry. The inputs are saved in a specific 
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feedback info structure.
For the back way, the previous saved outputs and inputs are reapplied into the network and 

the errors are computed. Weights are adjusted and a separate copy of the whole NARX cummulates 
all the weights ( for later averaging when the network collapses back ).

The output units provide the prediction results necesarry for evaluation. In consequence the 
values are being sent to the evaluation module.

Figure 9 presents the C++ class scheme for this  module,  generated using Microsoft  Visual 
Studio 2010.

Fig. 9. Class inheritance diagram

We can see that a basic class for unit is the class Unit, which is superseeded by InputUnit and 
OutputUnit.  Basic Unit class stands for hidden units only.  The NARX class is in fact a QThread, a 
specific  implementation  of  threads  offered  by  Qt  library,  it's  purpose  is  to  do  the  training  in  a 
different thread, behind the GUI so the application does not freeze during the process. Training can 
happen in a very short time or in a very long time, depending on the size of the series but also on the 
complexity of the architecture.

More deep, the interconnections between the classes are put together so that the engine 
works: every Unit has an Activation function, the NARX class has an architecture of type ARCH, etc.

4.4. Evaluation module

The  evaluation  module  consists  of  two  big  parts:  the  synthetic  tests,  which  are  the 
implementation of the test functions described in Section 2.2,  and the prediction module which 
allows the user to input new values for the exogenous variables ( that were not used in the training )  
in order to see how the network predicts new values for the next time steps.

The synthetic tests consist in the implementation of the functions f1 to f4, together with the 
distribution tests ( Kolmogorov – Smirnov and Darlington – Anderson ). Also the Random Walk tests 
are computed : the same functions , but the previous value is used as prediction.

The prediction module interacts with the user for getting new inputs for the exogenous series 
used in the training, and the predicted values are presented, for as many time steps as necesarry.

The  evaluation  module's  purpose  is  to  compare  and  realize  how  good  the  prediction  is, 
according to all the indicators that have been presented in Section 2. In consequence the desired 
targets must be supplied as well. The user can then compare different architectures and tweak the 
parameters in order to obtain a better prediction for a specific problem.
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4.5. Logging module

The logging module offers two types of log from inside the application code: either show the 
log to the log window in the GUI, or to file. The GUI shows minimal information about the system: 
how many targets were found, how many exogenous variables loaded, or how the normalization of 
the series was performed: what is the average and variance of the specific series that was treated.

Because the GUI updates are done asynchronously ( using the signal and slot mechanism from 
Qt ) and the update is very time consuming, the file logging comes in to solve this problem: more 
detailed information like every epoch result are printed to file.

4.6. Qt graphics module

The graphic module is created for direct interaction with the user: loading series, performing 
architecture select, training and prediction. The GUI is intuitive and easy to use, using a tab format 
for each step of the program. The Annexes presents several screenshots of the application during it's 
run.
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5. Experimental results and performance evaluation

5.1. Basic functions

The most basic  test for the predictor system is  a basic  function. The basic functions are 
generated artificially using the generator module. Tests were realized using a series of 500 elements 
with sinus function and a noise factor of 5 %. Out of the 500, 10 % were used for test and 90 % for 
training. The average of the series is E = 0.459094 and variance Var = 0.0634804.

Table 1 presents a sample of the data.

Table 1
Basic sinus test function

Index Exogenous value (X) Series value (D)

1 0.000 0

2 0.002 0.00204

3 0.004 0.0040399

... ... ...

52 0.102 0.0967321

... ... ...

447 0.890 0.784842

... ... ...

500 0.998 0.840389

Table 2
MLP training results

Epoch no f1 SSE f2 RMSE f3 COEF_VAR f4 NRMSE KS DA

1 2.55166 0.0753017 0.180364 0.329309 0.04 -29.6103

2 1.42454 0.056264 0.134764 0.246053 0.0377778 -25.109

3 1.41628 0.0561007 0.134373 0.245339 0.0377778 -25.0759

4 1.40729 0.0559224 0.133946 0.244559 0.0377778 -25.0534

... ... ... ... ... ... ...

99 0.0961644 0.0146184 0.0146184 0.0639292 0.0155556 -8.0822

100 0.0961567 0.0146178 0.0350129 0.0639266 0.0155556 -8.0822
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Table  2  presents  basic  results  from the training  period,  using  the MLP  architecture.  The 
learning rate was 0.2 and the number of epochs 100. The number of hidden units was 3. Activation 
functions were sigmoid for hidden units and linear for output units.

We can observe that the absolute squared errors drop in time, for each epoch. Values for the 
RMSE (f2) drop significantly. Also we can see that the coefficient of variation of the RMSE (f3) is small. 
NRMSE (f4) indicates that the prediction given by the system is significantly better than the average 
prediction ( predicting the average value of the series all the time ). The distribution match tests (KS 
and DA)  also suggest  that  the  values  are more and more close to the same distribution as  the 
learning process advances.

In Table 3 we can see the values for test of  the MLP – after each training epoch, a run 
through the test values was performed in order to see how the results change with the training.

Table 3
MLP test results

Epoch no f1 SSE f2 RMSE f3 COEF_VAR f4 NRMSE KS DA

1 0.0547032 0.0330767 0.0408861 1.39083 0.8 37.1533

2 0.0543738 0.0329769 0.0407628 1.38663 0.8 37.1533

... ... ... ... ... ... ...

99 0.0261344 0.0228624 0.0284041 0.78307 0.14 -10.3138

100 0.0261331 0.0228618 0.0284034 0.783051 0.14 -10.3138

We can see that the MLP behaves fairly well on the test set, with  very low sum of squares 
errors and with a better than average prediction as indicated by the NRMSE. 

The results on the training set are better, indicating that the network has learned the training 
sequence. 

The distribution tests indicate that the points are from the same distribution, with about the 
same values for both KS and DA tests , for training and for test sets.

The MLP is a simple network, capable of learning a simple function, but it has no sense of 
order. If the values in the training set are put in a random order, the learning procedure and the 
results would be the same.

In order to see if the order makes any difference for the prediction, the NARX-D architecture 
will add the delayed targets that can make the network learn the order. Table 4 presents the results 
of the same function, applied on a NARX-D architecture, with input regressor 0 ( only exogenous 
variables at the current time ) and with output regressor 2 ( previous two target values ).

Table 4
NARX-D training and test results

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

198 0.173298 0.0857101 0.0260221 0.751744

199 0.172608 0.0855394 0.02598 0.751136

200 0.171929 0.0853708 0.0259384 0.750534
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We can see that adding the delayed targets to the architecture, the performance improves. 
Having the two previous target values added as inputs to the architecture makes the system aware of 
previous values, this will make the network learn about the trend of the function, and makes the 
order of the values important. Compared to the MLP, if we reorder the values, the prediction would 
change significantly.

However, the exogenous values are very important for the prediction, if we remove them 
and we only use the NAR-D architecture, the results are worse. We can see the results in table 5.

Table 5
NAR-D training and test results

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

99 0.14033 0.0771006 0.0370714 1.04475

100 0.140404 0.077119 0.037071 1.04474

Even though the NAR-D learns quickly enough, and the sum of squares errors are low, the 
normalized RMSE shows us that the prediction is worse than the average. The results indicate that 
the exogenous variable play a very important role in prediction. The training results are poorer as 
well, which suggests that the network did not fit on the training set as good as the previous two 
architectures.

Next, it is interesting to see if the network is capable of learning in a better or worse way the 
same series, but with delayed exogenous variables. The input regressor would give important order 
information to the network,   not directly  through targets,  but from the exogenous variable that 
generate the series. Table 6 presents the results of the TDNN-X architecture, applied with a learning 
rate of 0.1 over 400 epochs, and with an input regressor of order 2.

Table 6
TDNN-X training and test results

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

98 0.092943 0.063301 0.0238061 0.793357

99 0.092936 0.0632986 0.0238068 0.793369

100 0.092929 0.0632962 0.0238074 0.79338

The results indicate that there is no improvement over the regular MLP. This is due to the 
cause that the function that generates the time series does not take into account previous values of 
the exogenous variable ( is not recurrent with respect to this variable ), so the network cannot find 
any longer dependency except the one with the current exogenous time index.

An interesting fact  happens on TDNN-X test.  Even though the errors  for the training set 
decrease in time , the errors for the test set increase. This suggest that an overfitting has happened: 
the network tries too much to adjust on the training set, overfitting on it, while the test set errors 
grow in time.

In  conclusion,  the  basic  function  is  approximated  best  by  a  simple  MLP,  with  small 
improvement if we take into account the previous target values for the order. A more complicated 
variant, using TDNN, does not bring any performance, while taking into account only previous targets 
makes the network unable to achieve the same result.
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5.2. Recurrent functions

A more advanced type of function, with a sequence (temporal) dependency is required in 
order to see the difference that the regressors bring to the architecture. The simple functions do not 
behave too much different ( better ) for other types of architectures from the model.

The first proposed predefined series that is artificially generated is the following:
d 1t =sin x t  y t ⋅d 1t−1⋅z t  tan d 1t−2−d 1t−3 ; (21)

This series has the property that it uses previous generated values. We can see that the 
previous three values are used, for time t-1, t-2 and t-3.

The series average and variance are the following E = 6.07627, Var = 6046.59. Table 7 shows 
a sample of the series before normalization.

Table 7
Recurrent test function d1

Index Exogenous value (X) Exogenous value (Y) Exogenous value (Z) Series value (D)

1 0.000 3 1.1 0.175878

2 0.002 3.05 1.07 0.526734

3 0.004 3.1 1.04 1.23975

... ... ... ... ...

52 0.102 5.5 -0.4 0.408732

... ... ... ... ...

447 0.890 25.25 -12.25 -13.9306

... ... ... ... ...

500 0.998 27.95 -13.87 -13.6639

The first test is applying the MLP on this series. Table 8 shows the results for the MLP training 
and test.

Table 8
MLP training and test results for d1

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

98 1.22152 1.01913 0.081585 0.844187

99 1.22149 1.01911 0.08159 0.844198

100 1.22146 1.0191 0.081595 0.844208

We  can  see  that  the  MLP  behaves  decent  on  this  series,  with  a  better  than  average 
prediction and a small total error. However a small overfitting occurs because the errors for the test 
slightly increase after more training.

Table 9, 10 and 11 show the results for the NAR-D architecture with an output regressor of 1, 
2 and 3 respectively.
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Table 9
NAR-D with b=1 training and test results for d1

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

98 4.35932 0.926783 0.928081 0.869217

99 4.35939 0.92679 0.928063 0.869208

100 4.35945 0.926797 0.928045 0.8692

Table 10
NAR-D with b=2 training and test results for d1

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

158 3.54816 0.896925 0.9006348 0.846096

159 3.5476 0.896853 0.9006226 0.84603

160 3.54733 0.896817 0.9006599 0.845997

Table 11
NAR-D with b=3 training and test results for d1

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

158 3.02847 0.87418 0.8812488 0.822748

159 3.02847 0.874179 0.8812484 0.82274

160 3.02847 0.874179 0.8812479 0.822732

By using the output regressor, through the delayed targets, we can see that the performance 
of the system improves. Because the series has a recursive dependency of order 3, we can use a 
regressor  of  the  same  size  for  best  results.  In  these  scenarios,  the  network  will  use  the  extra 
information it needs in order to provide the best result. This kind of adaptive memory can be used 
for unknown series, but the user has to experiment in order to find the best result. In our case, 
because we know the dependency equation, we can apply and notice the difference in results.

The higher order tests require more epochs to converge because of lower learning rate.
To get a better idea about the quality of the prediction given by our predictor system, we can 

compare it with the random walk. Table 12 shows the test results for the random walk.

Table 12
Random Walk for d1

f1 RW training f1 RW test f4RW training f4RW test

7.34196 1.50122 1.20275 1.1055

  We can see that the random walk, which is by definition a test that considers the previous 
value of the series, has less performance compared to the tested architectures above. The NAR-D 
prediction is much better, below average. We can also see that in the training the predictor estimates 
better, and in the test more previous values fed into the architecture improves the performance even 



                                                                  EUGEN HRISTEV                                                                   24  

more.
Another type of architecture that we can test on this series is the NAR-Y. This type will only 

learn from it's own experience, using BPTT, without exogenous variables or delayed targets.  The 
BPTT requires a smaller learning rate, so more epochs were necessary for convergence. Table 13 
shows the results of NAR-Y with a feedback regressor of 1. Learning rate was 0.05.

Table 13
NAR-Y with b=1 training and test results for d1

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

398 3.93048 0.880019 0.949667 0.879267

399 3.93048 0.880019 0.949667 0.879267

400 3.93048 0.880019 0.949667 0.879267

By changing the regressor size to 3, hidden units to 4 and learning rate to 0.04, we can see 
that the results for a b = 3 NAR-Y do not have a significant change. Table 14 shows the results.

Table 14
NAR-Y with b=3 training and test results for d1

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

224 3.93888 0.880958 0.903192 0.857482

225 3.93838 0.880902 0.903171 0.857472

226 3.93792 0.880851 0.903152 0.857464

We can see that even though the training errors are around the same, the test errors are 
smaller. The extra variables added by the two previous targets improve the performance.

Next test begins from the NAR-Y but also adds the delayed targets. This architecture is called 
NAR-DY and has no exogenous variables as well.  The regressor order for feedbacks and delayed 
targets it's the same, b. In table 15 we can see the results with b = 1, 4 hidden units and a learning 
coefficient of 0.03.

Table 15
NAR-DY with b=1 training and test results for d1

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

250 3.83782 0.870839 0.8397379 0.79954

251 3.83443 0.870455 0.8397377 0.799538

252 3.83223 0.870335 0.8397375 0.799536

We can see that adding the delayed targets improves the performance. The total errors are 
lower, and also the NRMSE. An interesting fact is that the errors are about the same for the training 
set, but better for the test set. Table 16 shows the results for the same architecture but with an 
output regressor of order 3.
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Table 16
NAR-DY with b=3 training and test results for d1

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

250 3.49907 0.855744 0.842327 0.809832

251 3.49907 0.855744 0.842327 0.809833

252 3.49907 0.855744 0.842327 0.809833

The results with a regressor of 3 do not improve. The squared error decreases a little for the 
training set, but for the test set it's virtually the same. 

If we add the exogenous variables for the current time index, with the feedback, we obtain 
the NARX-Y architecture. The best results are obtained for a NARX-Y with 4 hidden units, a learning 
rate of 0.1 and a feedback regressor of 1. Table 17 shows the results for both training and test sets.

Table 17
NARX-Y with b=1 training and test results for d1

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

250 4.65317 0.895499 0.716798 0.756675

251 4.65314 0.895497 0.716777 0.756664

252 4.65311 0.895494 0.716756 0.756653

We can see that by adding the exogenous variables, the performance increased. Once again, 
the exogenous variables show to be very important in obtaining a good prediction.

The same kind of experiment can be done with the other type of output regressor, for the 
delayed targets. This architecture is NARX-D. The results for the system with output order of 1, 3 
hidden units and a learning rate of 0.2 are shown in table 18.

Table 18
NARX-D with b=1 training and test results for d1

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

250 4.55408 0.88726 0.6661296 0.721043

251 4.55171 0.88513 0.6661416 0.721312

252 4.54815 0.88376 0.6661538 0.721586

The results for the architecture with delayed targets show to be much better than the ones 
with feedback. Table 19 shows the result with an output regressor of order 3.

We can see that the performance improves even more, which shows that previous targets 
assist in network training. 

By comparing the two types of  architecture,  one can say that for this  test  function, the 
delayed targets are better than the feedback trained with BPTT, and better than the random walk. 
Also, the exogenous variables play a very important role in achieveing the results.
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Table 19
NARX-D with b=3 training and test results for d1

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

198 5.01653 0.981324 0.575028 0.662002

199 5.01699 0.98142 0.5750915 0.66225

200 5.01747 0.981629 0.575223 0.662761

There is  no point  in making any tests  with TDNN-X because the function does not have 
recurrence in exogenous variables, or trying to use an input regressor. 

A final interesting test is with the full NARX-DY architecture. The best results are obtained 
using a NARX-DY network with an output regressor of 3, with learning rate 0.06 and 11 hidden units. 
Table 20 shows the results.

Table 20
NARX-DY with b=3 training and test results for d1

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

298 4.289213 0.914314 1.02334 0.914428

299 4.289212 0.914313 1.02334 0.914426

300 4.289212 0.914313 1.02333 0.914424

The prediction is not bad, is better than average for both training and test sets. The errors 
are also similar to the other architectures for the training set, but the prediction is worse than for 
NARX-D.

To summarize the results for the recurrent function d1, we obtained best results using a 
NARX-D architecture, with an output regressor of 3. This was expected as the function is depending 
on three previous values of the series, and has 3 exogenous variables. All this information fed into 
the system led to a better prediction than a normal MLP, which does not take into account order 
information. BPTT trained networks and combined architectures show good results, but not as good 
as the NARX-D.

5.3. Exogenous recurrent functions

In order to test TDNN-X performance compared to the other solutions, one needs a function 
that takes into account also previous values of the exogenous series, except the previous values of 
the series ( targets ). The function d2 is an example of such a function:

d 2t =sin x t − y t−2⋅log  y t−11
log ∣d 2t−1∣1−sin x t − y t−1⋅y t ; (22)

From the formula of d2 we can see that the series recurrence is 1 with respect to the targets 
d, and 2 with respect to the exogenous series y. There is no recurrence for the exogenous variable x.

The series average is E = 2.13767, variance = 112.326.
We can see in table 21 a sample of the series values, and in table 22 the random walk for the 
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training sequence (90%) and test sequence (10%).

Table 21
Recurrent exogenous function d2

Index Exogenous value (X) Exogenous value (Y) Series value (D)

1 0.000 3 0

2 0.002 3.05 0.439227

3 0.004 3.1 0.457068

... ... ... ...

52 0.102 5.5 -1.81446

... ... ... ...

447 0.890 25.25 -13.3032

... ... ... ...

500 0.998 27.95 27.4278

Table 22
Random Walk for d2

f1 RW training f1 RW test f4RW training f4RW test

0.0107479 0.00445453 0.0363901 0.0666476

Table 23
MLP training and test results for d2

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

98 0.136959 0.147439 3.45377 2.23898

99 0.136923 0.14742 3.45494 2.23936

100 0.13689 0.147402 3.45612 2.23974

We can see that the MLP does a worse than average prediction, with a small  overfitting 
because the errors for the test increase when the training errors decrease.

Now we can try the TDNN-X architecture, by adding the input regressor of size 2, in order to 
feed to the network the previous values of the exogenous variables. The results of the test with 3 
hidden units can be seen in table 24.

Table 24
TDNN-X training and test results for d2

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

98 0.564564 0.299295 2.44211 1.88272

99 0.565909 0.299652 2.44195 1.88266

100 0.567212 0.299996 2.44177 1.88259
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The TDNN-X performes much better than the simple MLP. The exogenous variables improve 
significantly the results.  We can also see that the NRMSE for this architecture is better than the 
random walk.

A surprise happens with the NAR-D architecture. A simple test of 3 hidden units, with a 
target regressor of 2 obtains a very good performance, much better than the average and closer to 
the random walk. Table 25 shows the results.

Table 25
NAR-D training and test results for d2

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

298 0.0146229 0.0481764 0.118668 0.415022

299 0.0146025 0.0481429 0.118491 0.414711

300 0.0145827 0.0481102 0.118317 0.414408

By looking and the d2 formula, we can see that the second term depends exclusively on 
previous series value. The results from NAR-D test indicate that this term is very important for the 
series, and the performance improves very much if we take this into consideration.

By  combining  the  two  types  of  architecture  we  will  obtain  NARX-D.  A  test  with  this 
architecture with learning coefficient 0.1, an output regressor of order 2 and an input regressor of 
order 2 is presented in table 26.

Table 26
NARX-D training and test results for d2

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

298 0.0488415 0.0880436 1.97064 1.69125

299 0.0487325 0.0879454 1.96711 1.68973

300 0.0486239 0.0878473 1.96359 1.68822

The results show better performance than the TDNN-X but worse than the NAR-D. Adding 
the exogenous variables to the NAR-D did not improve it,  but adding the targets to the TDNN-X 
improved. This indicates that the most important part in this function's prediction are the delayed 
targets.

Table 27
NAR-Y training and test results for d2

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

25 4.62097 0.856416 0.829027 1.09695

26 4.37506 0.833317 0.859268 1.11678

27 4.17633 0.81417 0.888199 1.13543
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Table 27 shows the results for the NAR-Y architecture with an output feedback regressor of 
1. The results after 25 epochs show that the learning process is good, better than the MLP or random 
walk but worse than average prediction or the NAR-D. This indicates that the targets play a more 
important role than the feedback when predicting this series.

Table 28
NARX-Y training and test results for d2

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

152 3.41212 0.735919 1.82292 1.62663

153 3.4116 0.735862 1.82222 1.62631

154 3.4111 0.735809 1.82155 1.62601

Table 28 shows the results by adding the exogenous variables to NAR-Y. The tested NARX-Y 
architecture  performes  better,  showing  that  the  exogenous  variables  improved  the  feedback. 
However the results are not as good as the NAR-D.

Table 29
NAR-DY training and test results for d2

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

152 3.52675 0.915799 1.32235 1.13995

153 3.52674 0.915797 1.32235 1.13995

154 3.52672 0.915796 1.32235 1.13995

A hybrid combination between feedback and targets is the NAR-DY. By combining the targets 
and the feedbacks with a regressor of 2 we obtained the results shown in table 29. The overall  
performance is better than the NAR-Y with feedbacks alone, but it does not reach the level of the 
NAR-D.

Final test is the full NARX architecture, the NARX-DY. The results are shown in table 30.

Table 30
NARX-DY training and test results for d2

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

58 39.819 2.51399 0.965195 1.18362

59 38.9743 2.4871 0.928564 1.16094

60 38.181 2.46173 0.899563 1.14267

The full NARX with an input regressor of 2 and an output regressor of 1, with learning rate 
0.02 and 3 hidden units does not perform better than the more simple architectures. We can see 
that after 60 epochs the NARX-DY reaches the best performance which is closest to average but far 
away from the prediction given by NAR-D.

In the case of the function d2, the targets play the most important role, while the feedback 
and exogenous variables degrade at some point the performance. 

The synthetic tests of recurrency for both d1 and d2 show that the NARX architecture has the 
potential to obtain a good prediction but the user has to test all the different types with a training 
and test set and then decide which one is the best suited for the specific problem at hand.
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5.4. Real data tests – Indian stock market

The first real data set that we are going to test is the Indian stock market for the index BSE30 
for 1246 consecutive days. For each day ( session ), we have 4 values: the opening value of the index, 
the maximum value, the minimum value and the closing value. The fourth value is the target value 
that we want to predict, considering the other 3 as exogenous: the fourth value depends more or 
less to the opening , maximum and minimum values of the day.

The same rule for training and test applies: 90 % of the 1246 values will be used for training 
and  the  remaining  10  %  for  testing  the  performance  of  the  predictor.  The  series  average  is 
E=11063.1, and variance Var = 1.74523e+07. Table 31 shows a sample of the data.

Table 31
BSE30 sample data

Index Exogenous value (1) Exogenous value (2) Exogenous value (3) Series value (D)

1 5868.39 5903.13 5843.77 5862.82

2 5878.17 5881.48 5852.13 5861.63

3 5875.53 5895.17 5782.37 5800.54

... ... ... ... ...

52 4717.83 4775.66 4680.42 4756.39

... ... ... ... ...

447 9293.8 9302.78 9158.44 9237.53

... ... ... ... ...

1246 11358.1 11367.2 10900.5 10947.4

Table 32
Random Walk for BSE30

f1 RW training f1 RW test f4RW training f4RW test

1.46953e-07 3.53354e-08 0.037638 0.0917239

Table 32 presents the random walk values for the BSE30 index. 
Different types of tests on this series have resulted in not so good results because the BSE30 

is a very hard to predict index. For example, the NAR-Y architecture results are shown in Table 33. 
The feedback regressor was 2, the number of hidden units was 3 and the learning rate 0.1.

We can see that the training itself does not manage to get a very good error and NRMSE. The 
results for the test are worse. Because we don't know any equation or have any knowledge about the 
recurrence behind the numbers, it is very hard to pick the right architecture. All has to be tested by 
guess and see what kind of regressors or parameter values perform best.
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Table 33
NAR-Y training and test results for BSE30

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

58 0.0134866 11.4022 0.446738 326.14

59 0.0115612 10.5569 0.446678 326.118

60 0.00991248 9.77526 0.446635 326.092

By adding the exogenous variables to the system, we obtain the NARX-Y. The results are 
better then the feedback only, but still unsatisfactory. The input regressor is 2, the output regressor is 
1 and there are 3 hidden units. Table 34 shows the results.

Table 34
NARX-Y training and test results for BSE30

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

198 0.000118648 1.06947 0.225625 231.778

199 0.000118648 1.06947 0.225625 231.778

200 0.000118648 1.06947 0.225625 231.778

The training errors are much better and the prediction quality indicated by the NRMSE is 
almost as good as average. However the test results are far from that performance.

The best result from the performed tests is achieved by the NARX-D, with an input regressor 
of 2 and an output regressor of 1. Table 35 shows these results.

Table 35
NARX-D training and test results for BSE30

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

98 1.1263e-06 0.104466 6.2282e-06 1.21775

99 1.1263e-06 0.104466 6.2282e-06 1.21775

100 1.1263e-06 0.104466 6.2282e-06 1.21775

This time the errors in training set are very small, near to the random walk test. The test set 
performance is also much better, getting close to the average prediction.

Overall performance for the network is not very good, but the network learns and improves 
better  than  simple  machine  learning  techniques,  with  possibility  of  future  enhancement  by 
performing more tests.



                                                                  EUGEN HRISTEV                                                                   32  

5.5. Real data tests – Inflation

Another series that the architecture is being tested upon is the US inflation in the period 
1999 – 2012. The inflation is highly dependant on the unemployment rate and the exchange rate 
between US dollar and euro. For this reason, the two variables are exogenous, if we want to predict 
the inflation. The data consists of 161 monthly values, of which 90 % will be used for training and 10 
% for test. All data is from Eurostat2. Table 36 shows a sample of the data.

Table 36
Inflation sample data

Index Exchange rate US dollar 
to Euro (1)

Unemployment rate in 
percent (2)

Inflation rate in percent for 
previous 12 months (D)

1     1.1608 4.8 1.2

2     1.1208 4.7 1.3

3     1.0883 4.4 1.3

... ... ... ...

22     0.8721 3.8 3.4

... ... ... ...

83     1.2015 4.6 5.7

... ... ... ...

161     1.2789 7.5 2.3

Table 37
Random Walk for inflation

f1 RW training f1 RW test f4RW training f4RW test

8.42935 0.302525 0.329362 0.481856

After testing the series in the simulator, a few interesting results are worth to mention. The 
NAR-D performes very good, with a regressor of 2 , with 3 hidden units and a 0.2 learning coefficient. 
The results are shown in Table 38.

Table 38
NAR-D training and test results for inflation

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

141 8.03675 0.3216 0.609282 0.683826

142 8.03606 0.321586 0.609329 0.683852

143 8.03537 0.321572 0.609378 0.68388

2 http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/
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We can see that the NAR-D does a good prediction, better than average but not as good as 
the random walk. By adding the exogenous variables, the architecture NARX-D improves significantly. 
Table 39 shows the results of the test with an output regressor of 2, an input regressor of 1.

Table 39
NARX-D with a = 1 training and test results for inflation

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

141 8.69904 0.336162 0.247738 0.436046

142 8.69774 0.336137 0.24857 0.436778

143 8.69642 0.336111 0.249447 0.437548

Even though a small  overfitting occurs,  the results  are much better,  and better than the 
random walk test. In order to find out if the series has a more deep recurrence, another test is made 
with an input regressor of order 3. Table 40 shows the results.

Table 40
NARX-D with a = 3 training and test results for inflation

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

141 7.66278 0.318153 0.277358 0.461378

142 7.65916 0.318078 0.276452 0.460624

143 7.65543 0.318 0.275728 0.46002

The results show no significant change for the performance. This indicates that the extra 
exogenous variables that are being fed into the system ( the older than 2 time steps ) are not actually 
useful for the current time step and they have no significant role in the inflation. Only the first two 
older values improve the prediction.

In order to see if the exogenous variables play a more important role in the prediction, we 
can try the TDNN-X achitecture, with exogenous variables only. Table 41 shows the result of such 
architecture, with an input regressor of size 2, applied over our set of data.

Table 41
TDNN-X training and test results for inflation

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

141 18.6962 0.494875 6.9059 2.30222

142 18.6989 0.494911 6.9059 2.30222

143 18.7015 0.494946 6.90589 2.30222

From what we can see, the exogenous variables are not very important, but they play a good 
role in improving the NAR-D. Thus, the previous values of the inflation have a more significant impact 
rather then the previous values of unemployment and exchange rate.

The prediction given by NARX-D is the best from the tested architectures and it provides a 
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good forecast for the problem.

5.6. Real data tests – Hidrology

An interesting  application  for  the  simulator  is  the  following series:  the  level  of  the  lake 
Huron, one of the 5 great lakes of North America. We will use another series, which is the measured 
annual precipitation rate in inches, from 1900 to 1986. The level of the lake water is measured as 
mean  of  the  month  July,  annual,  on  the  Harbor  beach,  in  feet.  All  data  is  retrieved  from Rob 
Hyndman website3.

Intuitively, the rain should affect in a great measure the level of the lake. However this is the 
total annual precipitation level, so if we measure the lake level in july, some precipitations after this 
month will not affect current year, but maybe the next year measurement.

Table 42 shows a sample of the data, which consists of 87 values, of which 90 % are going to 
be used for training and 10 % for test.

Table 42
Huron lake series

Index Precipitation level, 
inches(X)

Lake level, feet 
(D)

1      31.42     578.82

2      30.28     579.32

3      33.21     579.01

... ... ...

12      30.05     578.69

... ... ...

34      35.11    576.9

... ... ...

87      36.36     581.27

Table 43
Random Walk for lake Huron

f1 RW training f1 RW test f4RW training f4RW test

23.2091 1.45008 0.505614 0.924954

The MLP results for the Huron series are shown in table 44. We can see that the prediction is 
fair, and around the performance of the series average. The random walk itself it's not very far away 
from the average. This suggest that the rainfall has some importance, but further tests will give us 
more insight.

3 http://robjhyndman.com/TSDL/
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Table 44
MLP training and test results for Huron series

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

28 47.375 0.724246 1.79749 1.02981

29 47.389 0.724353 1.79275 1.02845

30 47.4002 0.724438 1.78909 1.0274

If we take into consideration the rainfall from the previous 2 years as well, by adding an input 
regressor of value 2, we obtain the TDNN-X, and the results after 200 epochs are presented in table 
45.

Table 45
TDNN-X training and test results for Huron series

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

198 35.6102 0.625225 0.324416 0.437498

199 35.6084 0.625209 0.324717 0.4377

200 35.6065 0.625192 0.325016 0.437902

The results are very impressive, the precipitations in the previous years influence very much 
the level of the lake, we can see that the prediction is much better than the average and much better 
than the random walk.

If  we  take  into  consideration  just  past  values  of  the  lake  level,  we  obtain  the  NAR-D 
architecture. The results for an output regressor of 2 are available in table 46.

Table 46
NAR-D training and test results for Huron series

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

98 20.1132 0.471902 1.63752 0.982921

99 20.1109 0.471875 1.63791 0.983036

100 20.1087 0.471849 1.6383 0.983154

Even though the errors and prediction quality for the training set is much better, the system 
performes worse on the test set. This indicates that the previous lake levels are important for the 
next year, but not as important as the rainfall. By combining the two types of regressors we obtain 
the NARX-D architecture.  The results  of  a  NARX-D test  with an input regressor of  2  and output 
regressor of 2 are shown in table 47.

We can see that the performance is better than simple NAR-D, but not as good as the TDNN-
X. We conclude by saying that the lake levels depend greatly on the rainfalls of the previous 2-3 years 
but also on the level of the lake in the previous years but not in such a great order. The prediction 
offered by the system is very good and better than the random walk tests or average.
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Table 47
NARX-D training and test results for Huron series

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

22 13.6438 0.387004 0.833285 0.701167

23 13.5864 0.38619 0.830057 0.699807

24 13.5402 0.385533 0.828709 0.699239

5.7. Real data tests – Temperature

This test consists of two series, the outdoor temperature measured in Celsius degrees , and 
the indoor temperature of a house, also in Celsius degrees. The data is measured for 168 consecutive 
days. Source of the data is  Rob Hyndman website4.  In this scenario we can consider the outdoor 
temperature as an exogenous variable for the indoor temperature. The purpose is to check how 
many  days  in  the  past  influence  the  current  indoor  temperature.  If,  for  example,  the  outdoor 
temperature rise, we should see the effect later, because of walls being warmed up slowly. Viceversa, 
if the outside temperature would drop, we could see the inside temperature drop after a period of 
time. The target series average is E = 24.1975, and variance Var = 2.01865, while for the exogenous 
series, E = 17.1571, Var = 36.4426. Table 48 shows a sample of the data.

Table 48
Temperature  series

Index Outdoor temperature, 
Celsius (X)

Indoor temperature, 
Celsius (D)

1         15.5667        25.2778

2         14.8611        25.0889

3         14.2222        24.9444

... ... ...

12         23.2055       24.75

... ... ...

34         12.4556      22.8722

... ... ...

168         19.9167        26.7944

Table 49
Random Walk for temperature

f1 RW training f1 RW test f4RW training f4RW test

7.92325 0.612006 0.251651 0.251221

4 http://robjhyndman.com/TSDL/
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The MLP in this case will only take into consideration the outdoor temperature in the current 
day. The results are in table 50.

Table 50
MLP training and test results for temperature

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

98 56.5164 0.672101 8.44408 0.933156

99 56.5108 0.672068 8.43882 0.932866

100 56.5054 0.672035 8.43363 0.932578

We can see that the MLP prediction is better than average but worse than the random walk, 
which is just predicting that the same temperature for the previous day will happen.

Table 51
TDNN-X with a = 2 training and test results for temperature

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

14 33.4156 0.516428 4.30022 0.665922

15 32.1907 0.506874 4.25548 0.662449

16 30.9982 0.497397 4.24311 0.661485

By using the TDNN-X architecture with an input regressor of size 2, we obtain much better 
results, that get closer to the random walk performance. This indicates that indeed the 2 previous 
days outdoor temperatures influence highly the indoor temperature of the current day.

Table 52
TDNN-X with a = 7 training and test results for temperature

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

38 14.766 0.34154 4.67084 0.694026

39 14.7663 0.341544 4.66141 0.693325

40 14.7668 0.341549 4.65247 0.692659

We can see that if we increase the input regressor to 7, the TDNN-X performance does not 
improve. This suggest that the outdoor temperatures older than 3 days do not influence the current 
indoor temperature.

However, the previous indoor temperatures may have an effect as well. By adding previous 
target values we will test the NARX-D architecture. Results are shown in table 53.

We can see that the previous indoor temperatures have a very high influence of the current 
day. The test has been performed with an input regressor of 2 and an output regressor of 2. The 
values of the previous 2 days for both series have high influence, while the older values have little or 
no influence at all.

The results are much better than the average and better than the random walk prediction.
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Table 53
NARX-D training and test results for temperature

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

148 4.43168 0.18807 0.310921 0.179062

149 4.43154 0.188067 0.310927 0.179064

150 4.43141 0.188064 0.310934 0.179066

If we try to use the full NARX architecture, NARX-DY, with input and output regressors of 2, 
trained by BPTT, we obtain good results, almost as good as random walk, but worse than the NARX-
D. We can see the results in table 54.

Table 54
NARX-DY training and test results for temperature

Epoch no f1 SSE f4 NRMSE f1 SSE test f4 NRMSE test

998 5.28118 0.205453 2.76245 0.533734

999 5.28016 0.205433 2.76243 0.533733

1000 5.27914 0.205413 2.76242 0.533732

To conclude, for the temperature series, the simulator offers a very good prediction, given 
especially by the NARX-D architecture.
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6. Conclusions and future work

The project provides a thorough research in the sequence task processing focusing on time 
series prediction using the NARX model. The different types of NARX architectures are being studied 
and tested, starting from the basic MLP and ending with the most complex NARX having feedback 
trained with BPTT , delayed target regressors and delayed exogenous input regressors.

Several types of tests of performance are being proposed, beginning with a basic root mean 
square but also having normalized errors and distribution fitness tests. This tests allows the user to 
have a  simple  measurement  of  how good is  the  prediction  given  by  the  system,  and  to  tweak 
different parameters in order to improve his work.

The application is a NARX simulator that can generate artificial time series using a generator or 
predefined series, or load real data series from files. The simulator then allows the user to select the 
desired type of architecture and parameters, and train a model specific for the problem at hand, or 
test the simulator using the predefined ones.

Further, the user can see the tests results for each epoch both for training and test sets, and 
also for random walk tests. The user can also use a manual prediction module for tests.

The performance of the simulator is analyzed using basic test functions, that are most suited 
for  the  MLP,  but  also  with  recurrent  functions  that  make  use  of  the  output  regressors,  for  the 
recurrency of the targets, and recurrent functions with respect to the exogenous variables that use 
the input regressor. For each type of functions, the different type of architectures are tested with 
varying the most important parameters.

The simulator is also tested for various real data series, from finance, hidrology or temperature 
measurement. The performance and the tests indicate that the simulator performes well, with the 
necessary tweaking for the specific  problem. Every  problem needs to  be tested in  the different 
architectures offered, and a best fit needs to be found. Tests for the indian BSE30 have been made, 
for US inflation, precipitation and lake Huron levels, and for indoor/outdoor temperatures.

Overall the performance of the simulator is good and the results are better than an average 
prediction or a random walk. 

The application provided is a useful tool for any specialist in the field who uses sequences and 
wants  to  predict  further  values.  The  applicability  of  the  program  includes  finance,  economy, 
agriculture, weather forecasting, chemistry of physics.

A possible approach for the future work would be to make the NARX network adaptive, by 
trying to add or remove the certain inputs that cause the errors to increase. Varying the parameters 
dynamically is also possible, so that the user does not have to manually adjust for finding the best 
model for the problem, but let the program test and learn by experimenting. A meta-neural network 
or some other type of learning mechanism can be used for this process.

Another  possible  future  work  is  trying  to  avoid  saturation  and  overfitting  by  using 
regularization, by using penalization terms[9].

The simulator itself can also be improved by adding more options, more activation functions, 
or more options to the logging or evaluation module, different functions for performance evaluation, 
etc.
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Annex 1 – Simulator screenshots

Fig. 10. First page of the simulator: train source



                                                                  EUGEN HRISTEV                                                                   42  

Fig. 11. The series screen
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Fig. 12. NARX architecture select page



                                                                  EUGEN HRISTEV                                                                   44  

Fig. 13. NARX parameter customization page
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Fig. 14. Training phase



                                                                  EUGEN HRISTEV                                                                   46  

Fig. 15. Prediction phase
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