
Facultat d’Informàtica de Barcelona
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Preface

In recent years, energy consumption is taking a lot of importance in the field of

electronics. Nowadays, this is becoming even a critical issue because of the grow-

ing smartphone market or low-voltage solutions, for example. Accordingly, every

time more efforts are devoted to reduce energy consumption in electronic devices to

make them more efficient or to prolong their battery life, among others. This im-

plies that the natural improvements given by the technology are not enough: more

overwhelming solutions are needed.

Reduction of energy consumption can be achieved in so many ways. Sometimes

it comes from an improvement in the technology used for manufacturing semicon-

ductors and others from using a better and more efficient design. Nevertheless, it

has not been carried out any really important change in this field.

Different solutions have been presented but, rather than specific design modi-

fications, they usually imply a change on the design paradigm and on the design

techniques. Note that this is a huge industry and needs a strong argument and big

improvements before even thinking on changing the whole industry methodology.

Thereby, it is reluctant to change its working paradigms and methods and it prefers

to keep using more conservative solutions, partly because of the leak of automated

tools for new design paradigms but also partly because of just habit.

This project presents an implementation of the elastic clocks [9], which is a

method for implementing asynchronous circuits [4], that tries to get the best of the

synchronous paradigm but taking advantage of the benefits of asynchronous circuits.

This is used for reducing energy consumption while variability, enemy number one

in synchronous circuits, is mitigated as far as possible. This means that a reduction

on power consumption is achieved at the time some problems of the synchronous

circuits are being solved.

Moreover, the idea of a closed-feedback loop is used in combination with the

asynchronous circuits to take full advantage of both techniques. A closed-feedback

loop in which the output is monitorized and feeds the data to a controller which

adjusts some parameters as necessary to maintain the desired system output. This is

used for the workload and control the frequency in order to adjust it at its optimum

value, thus, it will be just as fast as needed at any time. This is done reducing
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voltage and, hence, reducing the power consumption.

Organization

The document is divided in three parts. The first part exposes what is called the

state of the art. In this part all the theoretical background needed to understand the

project is explained. First of all, in Chapter 1 the circuit design flow is explained

in order to have a global understanding on how a chip is made - from high-level

language until a valid layout -. Then, a brief explanation about how chips are man-

ufactured is presented in Chapter 2 with the purpose of knowing what can provoke

variability, which is one of the main reasons to use asynchronous circuits. Finally,

in Chapter 3 different approaches and methods of implementing asynchronous cir-

cuits are analyzed and the reasons of choosing elastic circuits to be implemented are

exposed.

During the second part introduces, in Chapter 4 the elastic clocks implementation

is presented along with the closed-feedback loop. During Chapter 5 the elastic clock

is tested, using a test CPU, introducing noise and scaling the voltage in order to see

how it supports a more aggressive environment than its synchronous counterpart

while reducing the power consumption. Finally, in Chapter 6 a real case of use of

the closed-feedback loop is presented. it comprises an Infinite Impulse Response

system, which works with the data provided by an Analog to Digital Conversor.

Within the third part, in Chapter 7 the schedule of the project and the economic

feasibility of the project are presented and described. To conclude, Chapter 8 ana-

lyzes the final state of the project and the achieved aims that have been proposed

earlier in this chapter and some possible improvements are commented in form of

future work.

As an appendix, the development tools are briefly explained and the RS-232

protocol, needed for data transmission between the board and the power supply and

the computer, is explained along with some implementation explanations without

introducing implementation details.



Chapter 1

Circuit design flow: from

specification to layout

During this chapter will be presented the different steps that comprises the devel-

opment of an integrated circuit, , from the initial idea until it is ready to be sent to

the factories. Manufacturing process will be presented in Chapter 2.

The process of designing a chip is very complex and requires up to several months

– even years in more complex designs – from the initial idea to a completely func-

tional device. With the purpose of putting some order in the process there are some

stages defined.

Figure 1.1 shows the standard design flow, which comprises from the initial

specification to the chip manufacturing or FPGA programming in case of working

in an FPGA environment. Figure 1.1 also shows how some stages are iterative once

is completed, a timing analysis and other constraint analysis need to be done in

order to know at each stage that no constraints are violated.

1.1 Specification

The first thing to do is the specification. Before start programming or designing we

need to define several properties.

Specification defines not only the main operations and functionalities of the chip

but also other design factors like chip area, power consumption, speed or cost. It

is vital to keep all this factors in mind in every step of the design flow because any

17
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Figure 1.1: IC Design flow.
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change could mean months of delay in the release date.

Different groups usually carry out each step of the design flow. For example,

one group implements in HDL while another one enforces the timing constraints

and if the second group finds out the first did not implement the design properly

the project has to go backwards and has to be redone whilst the second waits. The

circuit design flow is very dependent between stages even being encapsulated.

1.2 Hardware Description Language

HDL stands for Hardware Description Language. In electronics is any language for

formal description and design of electronic circuits. HDL syntax and semantics has

notation for expressing concurrency.

HDLs, such as Verilog, differ from software programming languages because

they include the notion of time and ways of describing the propagation of time and

signal dependencies (sensitivity). Time is used for simulation or timing analysis, for

example.

The most commonly used languages are Verilog and VHDL (VHSIC Hardware

Description Language). Our project is developed using Verilog even though there

are some parts in VHDL. The differences between them are mainly syntactical.

1.2.1 Verilog

Verilog1 is a hardware description language used to model electronic systems. Used

in the design, verification and implementation of digital logic chips.

A Verilog design consists of a hierarchy of modules. These modules perform op-

erations and are connected with other modules through a set of input and output

ports. Verilog is used at the register-transfer level of abstraction (RTL).

Histoy Verilog was the first modern hardware description language to be invented

(1984). Verilog represented a tremendous productivity improvement for circuit de-

signers and it allowed the emergence of EDA software, which made possible the great

1For more information and tutorials on Verilog than is provided in this section refer to [1]
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silicon industry that exists today. Cadence Design System - EDA and engineering

services company - purchased Verilog in 1990.

Verilog quickly became very popular but arose VHDL as a strong competitor. Ca-

dence decided to make the language available for open standardization. Verilog was

submitted to IEEE and became IEEE Standard 1364-1995, more known as Verilog-

95.

Verilog was the first modern hardware description language to be invented (1984).

Verilog represented a tremendous productivity improvement for circuit designers

and it allowed the emergence of EDA software, which made possible the great sil-

icon industry that exists today. Cadence Design System - EDA and engineering

services company - purchased Verilog in 1990.

Verilog quickly became very popular but arose VHDL as a strong competitor. Ca-

dence decided to make the language available for open standardization. Verilog was

submitted to IEEE and became IEEE Standard 1364-1995, more known as Verilog-

95.

Syntax There are a few important things to know about the Verilog syntax in

order to understand how it works.

Verilog allows defining combinational logic and sequential logic. Combinational

logic can be defined using typical Boolean expressions. The portion of Verilog code

shown in table 1.1 is an example of a combinational block:

1 module combinat iona l ( a , b , c , y ) ;

2 input a , b , c ;

3 output y ;

4

5 wire y ;

6

7 assign y = ( a & b) ˆ (b & ˜c ) ;

Table 1.1: Verilog combinational block.

The evaluation priority is first parenthesis and then logic operations. The code

above would be translated to the circuit shown in Figure 1.2:



1.2. HARDWARE DESCRIPTION LANGUAGE 21

Figure 1.2: Combinational circuit.

Combinational variables are declared as wires while sequential as regs. Declaring

a register does not mean that in the final circuit it will still be a register. Since

optimizations are done, a variable declared as a register can be implemented with a

single wire if necessary.

Also, there is more than one way of working with sequential logic.

Blocking and nonblocking statements There are two assignment operator,

a blocking assignment ‘=’ and a non-blocking assignment ‘<=’. The non-blocking

assignment is one of the aspects that differ HDLs to normal procedural languages.

The following code shows an example of its usage:

While we are using a non-blocking assignment, the order is irrelevant and flop1

and flop2 will swap values every clock. In the other hand, when using the = as-

signment the value is updated immediately. If we use the blocking assignment =

then flop1 <= flop2 will be executed in first place because flop1 and values would

not have been swapped. Actually, as in traditional programming, flop1 would sim-

ply take the value of flop2 and the second statement would be removed for being

redundant.

Always clause The always clause defines a block that is executed, as its name

indicates, always. The execution will enter the always block depending on the

sensitivity list which indicates the signals that will be monitored. For example code

in table 1.3:

It will be executed whenever signal a or b changes. The always clause also

allows to define trigger options like posedge or negedge which will make the clause

to be executed at a positive edge of the signal or the negative edge of the signal,

respectively.
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1 module t o p l e v e l ( c lock , r e s e t ) ;

2 input c l o ck ;

3 input r e s e t ;

4

5 reg f l o p1 ;

6 reg f l o p2 ;

7

8 always @ (posedge r e s e t or posedge c l o ck )

9 i f ( r e s e t )

10 begin

11 f l o p1 <= 0 ;

12 f l o p2 <= 1 ;

13 end

14 else

15 begin

16 f l o p1 <= f l op2 ;

17 f l o p2 <= f l op1 ;

18 end

19 endmodule

Table 1.2: Example of nonblocking statement.

1 always @(a or b)

Table 1.3: Verilog always clause example.

Signal types Signals that are driven from within a process (an initial or always

block) must be type reg and signals that are driven from outside a process must be

of type wire. Defining a signal as reg does not necessarily imply a hardware register,

this is decided by the synthesizer.

It is important to notice that FPGA tools allow initial blocks where reg values

are established instead of using a ‘reset” signal for the same purpose. This is possible

because an FPGA’ initial state is downloaded into the memory tables of the FPGA.

For this reason, ASIC synthesis tools do not allow this, because an ASIC is an actual

hardware implementation.
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Four-valued logic The standard defines a four-valued logic with four states:

0, 1, Z (high impedance) and X (unknown logic value).

Constants definition The syntax for defining constants is: <Width in bits>’<base

letter><value> Base letter can be h (Hexadecimal), d (Decimal), o (Octal) or b (Bi-

nary). When width is smaller than value, then leftmost bits of value are truncated.

When width is larger than value, then leftmost bits are filled, based on the value of

the leftmost bit in value ‘0’ or ‘1’ are filled with ‘0’, ‘Z’ are filled with ‘Z’ and ‘X’

are filled with ‘X’.

1.3 Synthesis

Verilog makes the programmer work easier. However, not all Verilog statements have

a direct translation to hardware. For example, an AND can be directly translated

to an AND gate in hardware but there is no CASE gate and if a case statement

is used, it will need to be translated first to what is called synthesizable Verilog.

Synthesizable Verilog is a subset of statements that have direct translation to real

hardware. The process of translating abstract Verilog to synthesizable Verilog is

called synthesis.

Synthesis software algorithmically transforms the Verilog source into a netlist, a

logically equivalent description consisting only of elementary logic primitives (AND,

OR, NOT, flip-flops, etc.) that are available in a specific FPGA or VLSI technology.

A netlist describes the connectivity of an electronic design. It provides information

of how modules are related between them and which pins and ports are connected.

With all of this, we can say that logic synthesis is a process by which an abstract

form of circuit behaviour (typically specified in RTL) is turned into a design imple-

mentation in terms of logic gates. This process is analogous to a software compiler

converting a high-level C program into a processor-dependent assembly language

code. The synthesizer ensures mathematical equivalency between the synthesized

netlist and original RTL description.
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1.3.1 Logic minimization

One of the most important things a synthesizer does is to minimize the logic. Logic

minimization is directly correlated to area minimization and is one of the optimiza-

tion steps. Boolean logic minimization started with Karnaugh maps but it was

not until the Quine-McCluskey algorithm was introduced that logic minimization

became fully automated. However, although Quine-McCluskey algorithm became

very important during the first ages of EDA, since it is a two-level minimization

its importance in very-large-scale integration (VLSI) is quite reduced because most

designs use multiple levels of logic. Also it is far from efficient in terms of processing

time and memory because the truth table length increases exponentially with the

number of variables.

In the 2-level minimization field the Espresso heuristic logic minimizer (Robert

K. Brayton, Berkeley) has become the standard for this operation. It has been

incorporated as a standard logic function minimization step into almost any con-

temporary logic synthesis tool even though it is used mainly for academic purposes.

The Espresso algorithm is a heuristic method, thus the minimization result is

not guaranteed to be the global minimum but in practice it is very approximated

and the solution is always free from redundancy.

Multi-level logic minimization The synthesis tool starts from the RTL descrip-

tion of the desired design and constructs a multilevel Boolean network.

Then, several optimizations are made to this network. First of all are applied

the technology-independent techniques, like applying a given minimizer algorithm

in order to reduce the number of literals.

Finally, the result of applying the technology-independent optimizations is taken

and are applied the technology-dependent optimizations, which transforms the cir-

cuit into a network of gates – netlist – in a given technology.

1.4 Timing analysis

After the synthesis is finished it is very important to perform a timing analysis

in order to know that the timing constraints are not being violated. After the
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synthesis there are still a lot of unknown information about how the circuit is going to

finally behave: different placements, routings or mappings can make vary widely the

behaviour of the final circuitry. Hence, the timing analysis will be incomplete at this

point but it would give an approximation and, at least, would give the information

of violated constraints which is enough reason to stop the process and try again with

more aggressive optimizations or scarifying other parameters with more margin – for

example, if it is still possible taking into account initial specification, consume more

in order to reduce critical path – . Sometimes it becomes impossible to satisfy all

the timing constraints due to inefficient RTL or very restrictive initial specification.

In this case, the design flow needs to go backwards at some point where these things

can be rewrite.

Timing analysis is not a unique step and every time new decisions are made and

new information is obtained a new timing analysis needs to be performed in order

to ensure decisions were correct.

The result of a timing analysis is a critical path and, hence, the maximum speed

of the circuit. The speed determined by the timing analysis is always a safe speed

at which the circuit can run without failures working in a normal environment–the

working environment is defined before the timing analysis is performed in terms of

input voltage range or temperature range –.

1.5 Mapping

Technology mapping is the phase of logic synthesis when gates are selected from a

technology library to implement the circuit. The gates contained in a technology

library are called standard cells.

1.5.1 Standard Cells

Standard cell methodology is an abstraction method in the design flow. The layout

is all encapsulated into an abstract logic representation (such as AND gates). This

allows the designer to focus in high-level implementation while another focuses on

the hardware implementation.
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A standard cell usually provide the most basic boolean logic functions – like

AND, OR, XOR, XNOR, inverters – and storage elements – flipflop or latch –.

Even though, sometimes more complex cells can be provided.

A standard cell performs a logic function and knowing it is enough information

for the high-level designer at the abstraction level – it is called the logical view of

the cell – but more information is needed when running further steps in the design

flow. At the manufacturing step, there will be needed what is called the physical

view which determines how the cell is made.

1.5.2 Technology libraries

A standard cell library is a collection of standard cells descriptions. Standard cells

are designed with a fixed height but variable width. This enables them to be placed

in a row making easier the automated process.

In addition, even though a 2-input NAND or NOR function is sufficient to form

any boolean function set, a standard cell library usually contains multiple imple-

mentations of the same logic function.

This variety allows trade-offs in terms of area, speed and power consumption

during synthesis, placement and routing. For example, if the final circuit appears

to be smaller than expected some cells can be changed for bigger and faster cells in

order to reduce critical path – if power constrains allow it –.

Thus, the automated tools need information to decide which standard cell to

choose. This information is contained in the libraries. A standard cell library

contains mainly two types of information:

1. Library Database: Contains reduced information about layout or schematics

but enough for the Placement and Route tools.

2. Timing abstract: provides functional definitions, timing, power and noise in-

formation for each cell.

Technology libraries are developed and provided by the foundry operator be-

cause the resulting library depends on the technology available in the foundry – for

example, the size of the transistors –.
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After the mapping, delays and power consumption of the cells that will be in the

final design are known. For this reason, a new timing analysis is performed with

new data. If it fails, the mapping needs to be redone.

1.6 Placement and Routing

Place and route is the final step in the design flow where, as implied by the name,

the components are finally placed in the board and then interconnected but first,

there is an intermediate step: floorplanning.

A floorplan of an integrated circuit is a schematic representation of tentative

placement of its major functional blocks. Usually chip area is therefore in some

cases given a minimum area in order to fit in the required number of pads, which

can give an approximation of the final chip area. After this step, there is a new

timing analysis and then, placement and routing can be performed.

Placing and routing is done in two steps. Placing the components first, then

routing the connections between the recently placed components. Typical placement

objectives are:

• Minimizing total wire length. This helps minimize chip size, cost and also

power and delay, which are proportional to wire length.

• Timing: The placer must ensure that no path exists with a delay over the

maximum specified.

• Congestion: A congestion region may result in an impossible route.

• Power minimization: distribute the locations of cell components to reduce

overall consumption and mitigate hot spots.

The placer takes the netlist and produces a valid layout. Then, the router takes

the result layout of the placer and adds wires needed to properly connect the placed

components. The routing problem is NP-complete. Therefore, routers do not at-

tempt to find an optimum result but a good enough solution through heuristics.

The placement is not absolute and if the router finds out the resulting placement

is impossible to be routed without violating any restriction the flow can go backwards

and the placement repeated.
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After the Placement and Routing step we obtain a valid layout. At this point,

once we know information about the layout, there is a new and final timing veri-

fication in order to know if the final design satisfies all the timing constraints. If

it does not satisfy them all, again, the last step needs to be redone but if it does

satisfy them, no more steps are needed and the design is completed. At this point,

the design can be sent to manufacturing in case of being an IC. If it belongs to an

FPGA design, the last step is generate a bitstream, which carries all the information

to program the board. However, even the FPGA board, as IC that is, had to pass

through all this stages once in order to be what it is. For this reason, the FPGA

suffers the same variability problems of variability as others ICs.



Chapter 2

Manufacturing process

During this section, the manufacturing process is briefly presented in order to under-

stand how it can make vary the final result because not every chip achieves the same

throughput even coming from the same design and even the same wafer. This is

produced by variability, sometimes provoked by errors in the manufacturing process,

which is explained later in this chapter.

Once the design is finished and exhaustively verified is time to send it to the

fabs, the semiconductor fabrication plants. The fabrication process of integrated

circuits is a very complex and multi-step process. Each manufacturer has its own

techniques even though they are very similar.

Integrated devices are usually made of silicon even though in some specialized ap-

plications can be used various compound semiconductors. The entire manufacturing

process, from sand to packaged chips, takes up to several months.

2.1 Silicon wafers

The first step in the manufacturing process is to create the silicon wafers where ICs

will be printed.

A typical wafer is made out of extremely pure silicon (99.9999999% purity) and

measured by mass, silicon makes up 27.7% of the Earth’ crust and is the second

most abundant element in the crust, with only oxygen having a greater abundance.

However, the way silicon is found in the nature is not suitable for manufacturing

uses. Silicon is found in a compound known as silicate (SiO44-), which contains

29
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always silicon and oxygen and, sometimes, is found along with other elements like

aluminium, magnesium or calcium.

Figure 2.1: Silicon wafer.

Years ago, when transistor’ size was of the order of micrometres, silicon purity

was not the issue that is today. Impurities can produce undesirable changes in silicon

properties such as conductivity.

As most of the elements found in the nature, silicon is not found 100% pure. In

order to achieve an acceptable purity, silicon is purged in an argon atmosphere at

over 2500 ◦F to remove oxygen or nitrogen, which produce impurities.

One process for forming crystalline wafers is known as Czachralski growth. In

this process, a cylindrical ingot of high purity monocrystalline silicon is obtained of

over 200Kg with a diameter up to 30cm, which will be cut in wafers of 400um to

600um thick.

Monocrystalline silicon consists of silicon in which the crystal lattice of the en-

tire solid is continuous and unbroken, with no grain boundaries. Having no grain

boundaries provides monocrystals with unique properties, particularly electrical.

Wafers are grown from crystal having a regular crystal structure, with silicon

having a diamond cubic structure. The structure is anisotropic, which means that

some properties like mechanical, optical or electrical depend on the crystal orienta-

tion. Ion implantation depths in later steps depend on the wafer’ crystal orientation,

for example.

This and next steps are performed in dust free cleanrooms to avoid the appearance
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of any kind of impurities. Cleaning is essential for the wafers as particles lurk at

every stage in the manufacturing process.

2.2 Processing

After the wafer is created, from three hundred to four hundred steps are required to

obtain a final chip. Following, some of the most important are described.

2.2.1 Oxidation

First, the silicon wafer is oxidized through thermal oxidation in order to obtain

silicon dioxide, used as an electrical insulator. Thermal oxidation can be performed

through wet or dry oxidation. Wet oxidation is preferred because is faster – slowness

of dry oxidation makes it impractical – but yields a lower-density oxide, with lower

dielectric strength. Usually a mixed technique is used. The silicon oxide lands over

the wafer as a new dielectric layer.

2.2.2 Photoresist

Once we have the new dielectric layer over the wafer, another a layer is created.

Wafer is spin coated with a photoresist. A photoresist is a light-sensitive material

and can positive or negative, which determines the response to the light. For ex-

ample, if the layer is formed of positive photoresist, the portion of the photoresist

that is exposed to the light becomes soluble to the photoresist developer, a chemical

fluid that removes the photoresist, and the unexposed portion remains insoluble to

the photoresist developer.

2.2.3 Photolithography and etching

After the photoresist is over the wafer, it is time to use etch the. Photolithographic

techniques are used to etch the circuit structure in the wafer. Masks with the

opposite structure of the circuit are placed in front of the wafer and UV light is
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emitted towards the wafer. This makes photoresist soluble in the portions where

the transistors will be placed and they are removed.

2.2.4 Ion implantation or doping

Once the circuit is etched on the wafer, it takes place the ion implantation step,

where the electrical properties of the silicon will be established. Dopant atoms are

shot into the silicon structures. Dopant impurity atoms such as boron or phosphorus

can be added to the molten intrinsic silicon in precise amounts in order to dope the

silicon, thus changing it into n-type or p-type extrinsic silicon.

Initially, these dopants are distributed unevenly in the silicon lattice. At high

temperatures, the dopant atoms become flexible and take over a fixed position in

the atomic structure. Now, the photoresist layer is no longer needed and is removed.

2.2.5 Iterating the process

A new layer of silicon is applied over the oxide layer and, once again, a layer of

photoresist is applied, exposed and develop.

The process is repeated until the whole pattern is complete in all its layers.

From three hundred to four hundred steps are required along with fifteen to twenty

different masks with microscopically small patterns.

Figure 2.2 shows the different layers of a transistor.

Figure 2.2: Different layers of a transistor.
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2.3 Wiring

Copper dominates the next process. Before copper is poured into the trenches for

interconnects, a barrier layer is applied. It helps to prevent short-circuits and guar-

antees reliability. The trenches are then filled with copper. Finally, the excess copper

is ground down to the edges of the trenches. This insulates each interconnection

from the others.

2.4 Packaging

The final stage in manufacturing process is packaging. With the finest saw blades,

the microprocessors are cut from the wafers, bonded to the frames and sealed with

a cover. Then, the microchip is ready to be shipped and sold.

2.5 Technology limits

A circuit is manufactured using a given technology and it always has limits, given by

the foundry, economical costs or even physical limitations. Moore’ law is sometimes

used for predict the scalability of the technology and circuits. The most common

technology used for constructing circuits is CMOS while the technology used for the

transistors is called MOSFET.

2.5.1 Moore’ Law

The Moore’ law is a rule of thumb in the history of computing hardware made in

1965 by the Intel co-founder Gordon E. Moore. Moore’ Law states that the number

of transistors that can be placed inexpensively on an integrated circuit doubles

approximately every two years. Figure 2.3 shows the CPU transistors count against

its market release dates. Note the logarithmic vertical scale; the line corresponds to

exponential growth with transistor count doubling every two years.

Over time, different technologies have been used for combining huge number of

transistors into a single chip. During the first years of ICs there was the small-scale



34 CHAPTER 2. MANUFACTURING PROCESS

Figure 2.3: Plot of CPU transistors count against dates of introduction. source:

en.wikipedia.org/Moore’ law.

integration – SSI – with tens of transistors on a chip and was used in the Apollo

guidance computer.

The next step, in late 60’, was the medium-scale integration – MSI – with hun-

dreds of transistors on a single chip. This started to allow more complex systems.

Further development drove, in the mid 70’, to the large-scale integration – LSI –

with tens of thousands of transistors per chip. First microprocessors began to be

manufactured.

The final step, starting in the 80’ and continuing through the present, was very

large-scale integration – VLSI –. VLSI started with hundreds of thousands in the

early 80’ and continues with several billion transistors nowadays.

This level of integrations has been possible due to the shrink of the transistors

size. In 1971 the size was 10 µm and 2011 has achieved the mark of 22nm. Table 2.1



2.5. TECHNOLOGY LIMITS 35

shows this progression of the semiconductor’s size through years.

Size Release date

10 µm 1971

3 µm 1975

1,5 µm 1982

1 µm 1985

800 nm (.80 µm) 1989

600 µ (.60 µm) 1994

350 nm (.35 µm) 1995

250 nm (.25 µm) 1998

180 nm (.18 µm) 1999

130 nm (.13 µm) 2000

90 nm 2002

65 nm 2006

45 nm 2008

32 nm 2010

22 nm 2011

16 nm approx. 2013

11 nm approx. 2015

6 nm approx. 2020

4 nm approx. 2022

Table 2.1: Semiconductor’s size through years.

Smaller size implies less area, hence less cost, less power consumption and other

benefits. But smaller size also adds more complexity to the manufacturing pro-

cess because the transistor is made of just a few atoms – 22nm approximately 100

atoms – and impurities become more dangerous to the performance. Moreover, the

lithography process becomes more difficult to perform accurately because the UV

wavelength exceeds the length of the semiconductor. As we can see in the Figure 2.4,

the UV was perfect for lithography until after the year 2000 approximately because

it is when the UV wavelength was larger than the transistor’s size. This problem
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is becoming more and more difficult to treat and it is a source of errors in the fi-

nal result. When the result is not exact or the silicon gets impurities, variability

appears.

Figure 2.4: Lithography wavelength progression over semiconductor’ size.

However, a new technology using EUV – Extreme UltraViolet – is expected to

be used in the next years, which as a smaller wavelength and it will provide a new

way of shrinking the circuits even more without sacrificing reliability.

2.5.2 MOSFET Technology

Metal-oxide-semiconductor field-effect transistor – MOSFET–is a type of transistor

used in integrated circuits and a four-terminal device with source (S), gate (G),

drain (D) and body (B) terminals. However, the body and the source are often

connected.

A voltage drop across the oxide induces a conducting channel between the source

and the drain contacts thanks to the field effect. The channel can contain electrons –

nMOS – or holes – pMOS –, opposite in type to the substrate – nMOS is made with

p-type substrate and pMOS with n-type –. Figure 2.5 shows a MOSFET transistor

and its parts.

2.5.3 CMOS Technology

Complementary metal-oxide-semiconductor refers to a technology for constructing

integrated circuits. The typical CMOS design uses complementary and symmetrical

pairs of p-type and n-type MOSFETs.
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Figure 2.5: MOSFET Transistor.

Thereby, there is only significant power consumption when the transistors are

switching between on and off states, hence, in static mode the power consumption

is only due to leakage.

Main benefits in CMOS technology are low static power consumption and high

noise immunity. Figure 2.6 shows an example of a gate implemented using CMOS

technology. In this case it is a NAND gate.

Figure 2.6: NAND CMOS gate.

2.6 Variability

Once we know the theory of how circuits are manufactured, we can understand what

can go wrong. Sometimes the etching is not perfect or maybe the amount dopants
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are not the same at every single point of the wafer. These differences produce what

is known as circuit variability, but they are not the only cause of variability.

Variability in circuits comes in different ways and some times in a totally random

way. Main cause of variability is what is called PVT. PVT stands for Process-

Voltage-Temperature.

2.6.1 Process Variation

This kind of variation is due to deviations during the semiconductor fabrication pro-

cess. Rather than random, process variation is extremely difficult to determine. This

is why usually is treated as a percentage variation in the performance calculation.

Variations can be impurity concentration densities, oxide thicknesses or diffusion

depths caused by non-uniform deposition of dopants but mainly because of the

limited resolution of the photolithographic process. Lately, with the reduction of the

transistor’ size, this has become even smaller than the wavelength of the ultraviolet

light used in the photolithographic process. The way a transistor works, the width

of the gate determines how much current crosses it and the greater the current the

greater the speed of the signal to cross and vice versa. Thus, a thinner gate implies

a slower gate and the transistors have different transistor lengths throughout the

chip – which means different propagation delays throughout the chip –.

Process variations are due to variations in the manufacture conditions such as

temperature, pressure and dopant concentrations. ICs are mass-produced, in wafers

with dozens of dices in every wafer. Process variations are not only present within a

chip but also in different chips in the SoC, in different dices of a wafer and in different

wafers. Process variations are very difficult to determine and this is why after the

ICs are manufactured, they are tested to prove that even with all variations, the

conservative margin added is enough for them to work properly.

After the tests are performed, manufacturers determine if the IC can run at the

frequency it is supposed to run. Some ICs does not pass the test; among all of these

some are underclocked, some are thrown away.
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2.6.2 Supply Voltage Variation

A power supply is designed to work at a given voltage, but far from ideal, they suffer

from fluctuations in the supplied voltage. The nonzero resistance in the supply wires

and the self-inductance of a supply line causes voltage drops. For example, when a

transistor is switching to high it takes current to charge the gate and if there is a

sudden large switching activity it can produce a considerable voltage drop.

The potential difference between the source and the drain is one factor that

determines the speed of the current to cross through the transistor. With more

potential difference the transistor will charge up the parasitic and load capacitances

faster. Hence, with less potential difference, the transistor will do it slower.

2.6.3 Operating Temperature Variation

The electron mobility depends on the temperature. The mobility in silicon decreases

when increasing temperature while it is over the critic temperature, below which

silicon becomes superconductive and it depends on the doping concentration.

When a chip is operating, due to power dissipation in the MOS-transistors, the

temperature can vary throughout the chip. Power consumption – hence, power

dissipation – increases with transistor switching activity. This produces what is

known as hot spots: regions of the chip where the activity is being very intense and

the power dissipation is increasing the temperature of the region over other areas

with less activity. This effect implies different delays throughout the chip because

hot spots will have larger delays than colder areas due to lower electron mobility.

Temperature not only reduces electron mobility but also increases the threshold

voltage of transistors, which also increases the delay. A lower threshold means a

higher current and, therefore, less delay.

Mainly, power dissipation is due to MOS-transistors switching activity but, in

this technology, there is always present a leakage power consumption and, sometime,

short-circuits.

Figure 2.7 shows how delay varies due to PVT variations.

Hence, best case is when we have low process variations, the highest voltage and

the lowest temperature. On the other hand, worst case is when we have high process

variations, the lowest voltage and the highest temperature.
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Figure 2.7: PVT over path delay variations.



Chapter 3

Asynchronous circuits

During this chapter will be presented different techniques or methods for imple-

menting asynchronous circuits to further discuss pros and cons of each. But before

presenting the asynchronous paradigm it would be useful to explain some concepts

about synchronous circuits for a better understanding of the needs of a change in

this field.

3.1 Synchronous designs

A synchronous circuit is a digital circuit, which is all synchronized by a global clock

signal. The idea is that every change in the sequential elements occurs simultaneous.

Having a global clock makes designing circuits much easier. Everything occurs at an

exact known time, concurrency can be easily controlled and the performance easily

measured. Figure 3.1 shows the block diagram of a common synchronous circuit. It

also shows how the sequential logic is governed by a global clock.

Synchronous seemed to be the ideal paradigm in circuit design. So, why do we

need to remove the global clock? The answer is Process-Voltage-Temperature vari-

ations, which have been explained in section 2.8. With the decreasing size of the

transistors, nowadays a few nanometres, the variability in circuits is becoming more

and more important as an issue to be taken into account. These performance varia-

tions are translated into variable critical paths during execution but in synchronous

41
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Figure 3.1: Block diagram of a common synchronous circuit.

circuits the clock period remains fixed no matter what. This can became a problem

if the critical path exceeds the clock period. If this happens, the stored value in

sequential elements would be unpredictable due to timing violations.

Nowadays, this problem is being solved with the addition of conservative margins

in the clock period. These margins become a difference on performance up to a

generation [9], which makes the circuit run slower than existing technology allows.

To decide the clock period in synchronous circuits the timing analysis is done

in the worst-case scenario of the entire circuit’ lifetime. For example, if a circuit

is intended to work at a 1.2V nominal voltage, the timing analysis has to take

into account a case in which the power supply is giving only 1.1V due to power

fluctuations and the temperature of the chip is 100 ◦C. The timing analysis of this

scenario will determine the clock period and any scenario worst than this will not

be guaranteed to work properly. Furthermore, aging has to be included as another

variability cause through time.

3.2 Asynchronous designs

The synchronous paradigm is useful from a specification perspective since it allows

the designer to separate timing and functionality. However, implementing an entire

design with a global clock has all the problems mentioned above and every day is

becoming a bigger problem.

The problem of timing is becoming more and more complex at the time that

circuits need more accurate timing analysis. Variability is not the only problem

timing has to take into account. The primary source of delay propagation in CMOS
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ICs is not the logic but wires – exceeding gate delays by a factor of three or more [11]

– and these make difficult to distribute the clock with sharp edges and low skew

needed for high-frequency operations.

Then it is when appears the asynchronous paradigm. Asynchronous circuits try

to solve most of the problems synchronous circuits have.

An asynchronous circuit is a digital circuit, which is not governed by a global

clock signal. There are a lot of approaches on how implement asynchronous circuits

the best way, each one with its pros and cons. Figure 3.2 shows an example of an

asynchronous circuit design. Note that the sequential logic is not governed by a

global clock but by some control logic.

Figure 3.2: Example of an asynchronous circuit design. source: [9].

Sometimes this kind of circuits are called Delay-Insensitive because not being

ruled by a single signal makes them support different levels of variability without

failure. The asynchronous paradigm’s main problem is to change too many things

to support it. For example, EDA software does not support asynchronous design

and without these tools it is almost impossible to design anything significantly big.

Furthermore, designers have been decades working with synchronous paradigm and

they are used to control their designs with exact timing.

Thereupon, some approaches will be discussed.
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3.2.1 Delay-insensitive circuits: Phased Logic

The first type of asynchronous circuits is the Delay Insensitive, which is the most

robust of all the asynchronous circuit models. It makes no assumptions on the

delay of wires or gates. In this model all transitions on gates or wires must be

acknowledged before transitioning again. This condition stops unseen transitions

from occurring. In DI circuits any transition on an input to a gate must be seen

on the output of the gate before a subsequent transition on that input is allowed

to happen. An example of this model is the following approach, which uses phased

logic.

This method [12] uses a two-phased Level-Encoded Dual-Rail (LEDR) scheme.

Uses the timing signal and a value signal to encode them into one. This new signal

can be even (“00”, “11”) or odd (“01”, “10”); these phases are the source of the

name “phased logic”.

The method is based on associating a phase with the gate, i.e., a gate can be in

the even or odd phase just like a signal. Then, if a gate’s phase is even, the gate

will recalculate its outputs, or fire, when all of its inputs become even. The term

enable is used for a gate that all its inputs match the gate’s state. When an enabled

gate fires, the gate’s phase and the phases of the gate’s output signals toggle to the

opposite phase.

Figure 3.3a shows how the encoding works and the Figure 3.3b shows how the

waveform of the new LEDR signal changes. Phased logic replaces the periodic clock

signal with a predictable, rhythmic changing of signal. This provides the same cyclic,

deterministic logical behaviour the designer expects from a clocked system.

(a) LEDR code word relationships (b) LEDR waveform

Figure 3.3
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Benefits

• Its support of the synchronous paradigm. The designer can still consider

a system governed by a global clock signal and can target a phased logic

implementation.

• EDAs tools can be used in the same way except for the synthesis.

Disadvantages

• The synthesis algorithm has to be modified.

• Uses LEDR, which typically leads to significant area overhead – roughly double

the area of single-rail designs [6] – and a high power consumption.

3.2.2 Quasi delay-insensitive: Four-phase handshake proto-

col

Quasi delay-insensitive are a class of asynchronous circuits in which there is no as-

sumption about the delays of any of the circuit’s wires or elements but it assumes

other properties like some fan-outs – number of gate inputs to which a gate is con-

nected –. An example of quasi delay-insensitive design using the classical handshake

protocol as synchronization method is explained as follows.

The implementation of the ARM996HS [4], a clockless 32-bit processor core, uses

four-phase handshake and single-rail encode – in order to reduce area and, hence,

costs –. Single-rail encoding, as shown in the Figure 3.4a, has the valid/ack signal

aside. This makes the design more difficult than the previous approach because

there is no implicit handshake, like in double-rail shown in Figure 3.4b. In contrast,

the area is reduced considerably by requiring only one wire.

However, ARM designed this processor automatically using a high-level language

called Haste. Using a high-level design language the programmer does not have to

deal with asynchronous implementation details such as rail encoding or handshake.

The Haste program is synthesized into a Verilog netlist based on standard cells.

Then, third-party EDA tools can perform their optimizations.

The ARM996HS was tested along with other ARM equivalent synchronous pro-

cessor, the ARM968E-S. The synchronous processor was clocked at such a speed
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(a) (b)

Figure 3.4: Double-rail vs single-rail encoding.

that both processors computed the benchmark in the same amount of time. Un-

der identical benchmark conditions the clockless processor consumes 2.8 times less

dynamic power than the clock-gated processor.

(a) ARM068ES (b) ARM996HS

Figure 3.5: Cumulative energy and peak currents for ARM068E-S and ARM996HS.

Under typical conditions (1.2V, 25 ◦C), the asynchronous design achieves 77

equivalent MHz1 and under worst conditions (1.08V, 125 ◦C) it achieves 50 equiva-

lent MHz. The power consumption overt time under typical conditions (and equiv-

alent performance) of both processors can be seen in Figure 3.5. Figures does not

represent static power, or leakage, because is similar in both processors. The area

achieved is almost the same (89Kgates for the asynchronous and 88Kgates for the

synchronous processor).

Benefits

1Because of the lack of clock, the term of equivalent MHz is used instead of MHz.
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• Proven considerable power reduction. Standby power is zero because it needs

no clock to wake up.

• Delay-insensitive.

• No area overhead.

• Transparent to the designer.

Disadvantages

• Haste project has been discontinued.

• It is still difficult to make equivalency with a synchronous circuit and control

its performance.

3.2.3 Elastic clocks

Elastic clocks approach [9] presents a method in which an asynchronous design can

be performed with synchronous design tools with minor and localized changes in the

clock tree generation step.

Figure 3.6: Elastic circuit
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Elastic circuits are easily generated from an existing synchronous design applying

few transformations:

• Circuit is divided into clusters in which there will be a local clock in each.

• Latches are inserted in the boundaries of each cluster in order to synchronize

them.

• A local clock and its controller for each cluster substitute the global clock.

• Finally, the circuit is synthesized to meet the timing constraints.

Figure 3.6 shows an example of an elastic circuit that has been adapted from a

synchronous design.

Figure 3.7: Rigid and elastic clock periods. Source: [9]

Figure 3.7 shows the correlation between the critical path and the rigid and elas-

tic clock. As shown, rigid clock does not vary through time while critical path does

and this can cause a critical path larger than the rigid clock period, which is totally

undesirable. However, the elastic clock, even though it is not delay-insensitive, it

varies the same way the critical path does. There is always a margin, but very small

compared to the conservative margins added to rigid clock.

Varying the clock the same way the critical path does implies that the elastic

circuit can run faster at equal conditions or can run at same speed with worst

condition, i.e., reducing the input voltage and, hence, the power consumption.

Benefits

• The design flow remains intact.
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• Even though being an asynchronous circuit – and having its benefits – the

design is conceptually synchronous.

Disadvantages

• Elastic circuits still need a safety margin added to the critical path to deter-

mine the clock period.
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Chapter 4

Proof of concept: Closed-feedback

loop

The project has two distinct parts and different tools and libraries have been used in

each one. One is the design of the circuit for the FPGA, including the ring oscillator

and the test circuits. The other one is the Linux application, which shows informa-

tion about what is happening inside the FPGA. The software shows performance or

workload charts among others and can control some parameters like the reference

clock.

In this chapter is presented our implementation of a closed-feedback loop using

elastic clocks method for implementing an asynchronous circuit.

At Figure 4.1 can be seen the aspect of the final platform. It includes the closed-

feedback loop and the computer, which controls some parameters and shows in a

graphical mode the information obtained from the closed-feedback loop.

During this chapter the FPGA used as development platform is presented along

with a brief introduction to the power supply used. Also, it is presented and ex-

plained the techniques used, like the elastic clock and adaptive voltage scaling.

Later, some the details of the hardware implementation are given in order to un-

derstand how everything works. Finally, the software application is presented and

briefly explained.

51
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Figure 4.1: Block diagram of the closed-feedback loop system developed.

4.1 Xilinx FPGA

FPGA stands for Field-Programmable Gate Array and it is an integrated circuit

designed to be reconfigured after manufacturing. FGPAs contain programmable

logic components called logic blocks and a hierarchy of reconfigurable interconnects

that allow the blocks to be wired together. Logic blocks can be configured to perform

complex logic functions in form of a truth table inside a Lookup Table (LUT) in the

logic block, which can contain also simple logic gates – most common are AND or

XOR – and some contain memory elements, such as flip-flops.

The project has been developed and tested using Xilinx FPGAs. Actually, two

different models have been used: Xilinx Spartan-3E and Xilinx Virtex-5 (XUPV5);

each one with different specifications. However, the Spartan-3E has been used dur-

ing the whole project and it is the test and develop device, the XUPV5 has been

restricted to test more complex and bigger designs.

The Spartan-3E board, manufactured by Digilent Inc., has 500k gates. From
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all the components it has, the most important and the used for the development

of the project are: two RS-232 connectors – DCE and DTE – and an Analog-to-

digital converter (ADC). Also has a JTAG USB interface, which allows debugging

and programming the FPGA through USB.

4.2 Asynchronous design

Among all the approaches discussed in the Chapter 3 about asynchronous circuits

we have decided to implement the elastic clocks. The main reason of choosing this

methods is the possibility of working as if it was a synchronous design.

In this method, a ring oscillator substitutes the global clock in order to reduce

the safety margins added to the period over the critical path and thus reduce power

consumption. Also, it is used to perform a technique for reducing energy consump-

tion called Adaptive voltage scaling. Using this technique, the input voltage to the

circuit is managed – increased or decreased – taking into account the workload in

order to be as efficient as possible.

4.2.1 Ring Oscillator

A ring oscillator is a circuit composed of an odd number of NOT gates whose output

oscillates between low and high levels. The feedback to the last output to the input

causes oscillation.

Each gate of the oscillator has a certain delay under certain conditions. This

implies that the period of the oscillator is at least twice the sum of the individual

delays of the gates – delay of the wires has to be taken into account –. Also, if

conditions like temperature or voltage change – variability – with the corresponding

change of delay of the logic, then the gates of the oscillator will experiment the same

or similar delay variation than the rest of the logic. The variation is not always the

same because temperature or voltage fluctuations are not uniform throughout the

whole circuit.

Thanks to the ring oscillator’s adaptability to variability it is possible to reduce

the conservative margins added to guarantee the reliability and to ensure that the

clock period will be always larger than the critical path. These margins can be highly
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reduced but not completely removed due to slightly different conditions throughout

the same chip. The reduction of the margins leads to a reduction of the power

consumption.

Figure 4.2: Ring oscillator implemented with AND gates.

Figure 4.2 shows the aspect of the ring oscillator’s implementation.

4.2.2 Clock domaing crossing

Even though a ring oscillator is intended to govern the vast part of the circuit, some

applications cannot be used with an elastic clock. There are functions or protocols

that need an exact timing. For instance, the RS-232 protocol implemented in this

project needs a fixed clock to generate the exact baud rate that will determine the

bit time and if it varies considerably the reception could fail.

Each clock of a circuit determines what is called a clock-domain because that

single clock governs all the logic within the boundaries of its domain. When data

needs to cross a domain it cannot be done straightforward because glitches and

metastability can appear and corrupt the data. Clock-domain cross elements are

needed by the data to cross error free.

In our case, the cross element has been an asynchronous FIFO with a clock to read

and a different clock to write in it.

Glitch A glitch is an undesired transition that occurs before the signal settles to

its intended value. It is dangerous when occurs between sequential elements because

these are triggered by a transition and a glitch can trigger a flip-flop at an undesired

moment and it would store wrong data.

Metastability Metastability describes the extended duration of a change of state.

In electronics it is a problem because the time needed for a signal to switch from

one state to another is uncertain and can be prolonged indefinitely. If the circuit is

vulnerable to metastability, it can get stuck in an undesirable state.
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4.3 Adaptive voltage scaling

The main purpose of the project is to reduce the power consumption with asyn-

chronous circuits. Using a ring oscillator as clock, there are two main ways to do

it. The first one is reducing the margins added to the clock period, which gives a

constant saving, in terms of percentage. The other way is varying the input voltage.

A reduction of the input voltage would lead to a reduction of the power consumption

but also an increase of the gate delay – hence the clock period –, which is easily and

robustly managed by the ring oscillator, guaranteeing reliability.

This is a common technique in synchronous circuits for reducing power consump-

tion. However, it has to be managed in a slightly different way. With a rigid clock,

an input power reduction needs to be preceded by a reduction of the frequency and

an increase in frequency needs to be preceded by an increase of the input voltage,

otherwise it could lead to a timing violation due to an increment of the critical path,

which could overcome the clock period. This process has to be strictly managed and

it is not instant because only changing the frequency on a PLL – Phase-Locked Loop

– is not a trivial operation and it may take a significant amount of time. Elastic

clocks take even more benefits from this technique.

The Spartan-3E does not have a variable power supply, which means that an

external one is needed. To be able to use an external power supply, the board has to

have a way to cut the internal supply and pin the new one. Looking at the schematic

view of the board, Figure 4.3 and found in the datasheet, we see how the board has

different input voltages for different internal devices. The interesting one is the one

at 1.2V and luckily for us, there is a jumper between the 1.2V input and the board.

This means that if we remove the jumper J7, opening the connection, we would be

able to pin the voltage from an external power supply.

4.3.1 Agilent E3649A

The jumper give us the possibility to connect an external power supply but we

need a variable power supply. The chosen power supply is the Agilent E3649A,

manufactured by Agilent, is a power supply with the capability of modify the output

voltage through a RS-232 interface, which has been use to control the voltage.
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Figure 4.3: Schematics view of the FPGA Spartan 3E Board.

The power supply can provide from 0 to +36.05V. The variations of the voltage

are done in steps of 10mV minimum and it takes less than 10ms to complete the

request. However, according to the datasheet, the time between requests has to be

greater than 180ms, which corresponds to a lot of clock cycles. Thus, this constraint

cannot be ignored during the design.

The control of the power supply is done easily sending through the RS-232 inter-

face simple commands. The syntax is very easy; it consists in a string in uppercase

and always ended with a new line character. Some of the most important are:

“STEP: 0.1” – to define the step length –, “STEP UP” – to increase voltage one

step – or “STEP DOWN” – to decrease voltage one step –.
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4.4 Closed-feedback loop

Once we have an FPGA with the possibility to connect an external power supply and

a programmable power supply we have everything we need in order to implement

and test the closed-feedback loop. Closed-feedback loop is the cornerstone of the

project. It consists in any circuit governed by an elastic clock, implemented with

a ring oscillator, and a frequency comparator in order to control the input voltage

taking into account some parameters. This is technique is called Adaptive Voltage

Scaling using a closed-feedback loop. There are to parameters that can be used by

the control unit to determine the way power will be scaled:

• Workload: the circuit calculates the amount of work it has to do and powers

up or down depending on it. When the workload exceeds a given threshold,

the power input is increased. On the other hand, if the workload falls below

another threshold means that the circuit is going too fast, hence, consuming

more than necessary. If this occurs, analogously to the other case, the power

input is decreased in order to make the oscillator run slower.

• Reference clock: A reference clock is defined and its frequency is used to com-

pare it with the oscillator’s frequency. If the comparator finds out the oscillator

is going slower than the reference clock, the input voltage is increased. On the

other hand, if the oscillator is going faster, the input voltage is decreased.

Note that the adjustment of the input power is not suitable for resolving metasta-

bility problems because of the huge latency of the power supply. The adjustment is

only for power consumption and performance purposes.

The circuit is divided in two parts:

• The circuit that does real work and produces the control data for the other

circuit. It is called working subsystem.

• The circuit that monitors the first one – sending information to the PC – and

also adapts the power supply at its optimum state. It is called monitoring

subsystem.

Figure 4.4 shows the circuit that uses the ring oscillator as a clock. In this design,

there is a circuit that produces data, which in this case is governed by the fixed clock
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Figure 4.4: Conceptual block diagram of the working subsystem.

of the FPGA and another circuit, governed by the ring oscillator, consumes the data

and operates with it.

This is the general conceptual design. It can vary depending on the characteris-

tics of the circuit. The two subsystems – producer and consumer – can be balanced

in any way. For example, in the design used for testing the approach – discussed

later – the producer only reads the memory and the consumer does all the work.

On the other hand, in the real case proposed with the IIR, an ADC produces the

data and stores it in the FIFO and the IIR consumes it.

There is an asynchronous FIFO between the producer and the consumer used as

a cross-domain element. On one side, there is the logic for writing a value into it and

is governed by the fixed clock – clk signal – and on the other side, there is the logic for

reading the stored values. The ring oscillator – clk osc signal – governs the reading

logic. Therefore, the FIFO has two clocks. A new value is stored with one-cycle

latency and a new value is also read with one-cycle latency – measured with their

corresponding clocks –. The width is variable depending on the application but the
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depth has been fixed to 256 elements. One of the most important information that

outputs the FIFO is the number of elements inside it, which is the actual workload.

The ring oscillator works as previously said but it has a new element to monitor

its performance. In order to know the exact frequency of the oscillator at any time

the following method is followed:

• A number fixed clock ticks is defined, from now max ticks value.

• Two counters are added to the design. One increments its value with each

FPGA clock and the other with each ring oscillator clock.

• When the max ticks is reached, the value in the ring oscillator counter is saved.

Figure 4.5: Conceptual block diagram of the frequency comparator circuit.

This value obtained from the circuit does not represent the frequency of the

ring oscillator but the relation between the two clocks and gives enough information

to calculate the exact frequency. Since the number clock ticks is known, the next

equations can be used to determine the exact frequency:

Tosc =
max ticks ∗ Tclk

osc ticks

fosc =
1

Tosc

However, in order to avoid complex logic to work with floating point and to avoid

dividers, the FPGA works with the number of ticks of the oscillator, which is an
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integer. Thereby, it has to be defined an upper and lower threshold from max ticks

and they will determine if the oscillator is going too fast, too slow or at its optimum

speed.

Finally, the workload and the number of ticks of the oscillator are driven to

the next part of the closed-feedback: the monitoring subsystem. The monitoring

subsystem is responsible for using the information obtained by the work subsystem.

The subsystem has mainly three elements: the control unit and two RS-232

interfaces to send and receive information from the computer – DCE connector –

and the power supply – DTE connector –. The RS-232 works at 9600 bauds for

transmitting and receiving data from the computer and from the power supply. For

further details of the RS-232 implementation refer to the Appendix B.

There are three types of information: the workload, the frequency and the in-

formation about the power consumption. All of them are sent to the computer but

they are also used to make decisions. Figure 4.6 shows the conceptual aspect of the

monitoring subsystem along with all its blocks.

Figure 4.6: Conceptual block diagram of the monitoring subsystem.
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There are two operating modes: workload or reference frequency:

• Workload: the power supply is controlled taking into account the workload of

the work subsystem.

• Frequency: the power supply is controlled taking into account the reference

frequency, which is obtained from the computer through the serial port.

Depending on which mode is the circuit in a given moment, the control unit

will take into account one or another. The information retrieved from the power

supply is used from the control unit mainly to know if the maximum or minimum

voltage levels have been reached, i.e. if it needs to decrease the input power but the

minimum voltage level have been reached, the control unit cannot allow it and vice

versa.

The control unit controls the multiplexer with all the information to be send

to the computer with the select signal that changes every time a transmission to

the computer finishes. From the computer, the only data retrieved is the reference

frequency, which is directly driven to the frequency comparator. In a similar way,

the port connected to the power supply is controlled.

As already stated above, the power supply has timing constraints because it can-

not accept requests in gaps smaller than 180ms. The control unit has to guarantee

that this constraint will not be violated. Thus, it has a counter used as a time,

which is reset every time a transmission to the power supply finishes. When the

control unit decides to vary the input power, it sends a new command if enough

time has passed.

4.5 Linux applicationn

The FPGA design has been implemented using the elastic clocks approach. However,

there is no way to know how is it working, if it is working better or worse than the

original implementation using a fixed clock. For this reason, it was needed something

else to help to what is happening inside the board and, also, adjust some parameters.

Figure 4.7 shows the actual aspect of the application. It has been implemented

in C++ using Qt, a cross-platform application framework. However, the applica-

tion does not run in windows directly because it uses system calls to communicate
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Figure 4.7: Graphical interface of the FPGA Monitor software.

through the serial port. These calls are O.S. dependent and they may have to be

translated in order to use the application in environments others than GNU/Linux.

The interface is divided in three distinct parts: plots, information panel and

selection of the operating mode.

4.5.1 Plots

The plots part is a widget inside the interface. It has been implemented using a

library called Qwt [3], which is intended to help to develop Qt widgets for technical

purposes, like 2D plot widgets. The widget helps to view more easily the information

retrieved from t he FPGA. It contains two plots: the red one shows the power

consumption and the blue one shows the workload. Clicking on their names in the

plot legend each one can be enabled/disabled individually.

The information is updated every second with the last data obtained from the

FPGA. The X-axis represents the time (seconds) while the Y-axis is the value nor-

malized in %. It can be shown easily in percentage because the maximum and

minimum of power and workload are known value. For example, the minimum

workload is 0 while the maximum is 255. The maximum and minimum power can

vary depending on the application, after doing some timing analysis and testing

them, the margins are established. For instance, it could be 0.70V as the minimum

and 1.2V as the maximum. Notice that the monitoring subsystem of the circuit uses
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a fixed clock. That subsystem should be small and should not increase margins con-

siderable but it has to be taken into account during establishing the lower threshold

of the downscaling voltage.

4.5.2 Information panel

The information panel is used to show all the information obtained from the FPGA

or the information calculated from the data obtained. The aspect of the information

panel is shown in the Figure 4.8.

Figure 4.8: Information panel.

The information known about the FPGA are basically the frequency, the work-

load, the voltage and the current. Since the workload is better understood with a

plot, there is no need to show it again in a numerical form.

The frequency is not obtained directly because it would imply working with real

numbers for the FPGA and it is desirable to not to do so, since it would need

complex logic and it would lead to a larger overhead. Besides, the computer can

do the operation extremely easily once it has the number of ticks of the oscillator

because the number ticks of the fixed clock and the frequency of the clock are known

values.

The computer knows the initial voltage of the FPGA and from here the FPGA

sends a relative number of steps done. For example, if the minimum voltage is 0.70V,

the maximum 1.2V and the steps are 0.01V there are 50 steps from the minimum

to the maximum. If the initial voltage is 1V, the initial relative number would be

30 and then the FPGA increases and decreases that number each time a step up or

a step down has been performed. This method avoids asking to the power supply

each time what is the actual voltage, which is slow and expensive.
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Once, the voltage is known, the FPGA should only ask for the current. The

equation of the dynamic power dissipation of a chip is the next:

Pdynamic = a ∗ fclk ∗ V 2
dd

Being a the switching activity, fclk the frequency of the clock, CL, the capacitance

of the circuit and VDD the supply voltage. However, most of this parameters are

very difficult to know in a FPGA, this is why the more simple P = V * I equation

has been used. Then, a simple operation gives us the power consumption of the

FPGA and it is shown in the information panel.

4.5.3 Operating modes

The application allows putting the FPGA in two different operating modes:

• Work mode: In this mode the FPGA tries to achieve an optimum power

consumption taking into account the workload at each moment. During this

mode, it is shown the energy saved in percentage respect to the solution with

the fixed clock.

• Reference clock mode: A reference frequency is introduced, it is sent to the

FPGA and it tries to equal that frequency varying the voltage. Similar to the

frequency received from the FPGA, the reference frequency cannot be sent

directly and it has to pass through the inverse operation to obtain the number

of ticks that would represent the reference frequency.

(a) Workload mode (b) Reference mode

Figure 4.9

The selection of the operating mode is done clicking on the corresponding tab.

The Figure 4.9a shows the view of the work mode and the Figure 4.9b, the view of

the reference clock mode.
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Testing the asynchronous

approach

In this section our asynchronous approach is tested in order to know the improve-

ments achieved over the synchronous homologue.

The project consists in showing the benefits of asynchronous circuits over the

synchronous circuits. Also, the project is intended to implement a proof of concept

of a closed-loop feedback system trying to reduce energy consumption with voltage

scaling and asynchronous circuits along with a monitoring platform that has been

developed. However, before testing the whole platform we need to proof the benefits

of the elastic clocks and to show why they have been chosen.

For this reason, during this test have been used a test circuit without all the

subsystems for monitoring in order to reduce overhead – power and area overhead

–. Even though a small subsystem for knowing the working frequency is still in the

design.

5.1 Test circuit: 16-bit RISC

The project needed a simple and versatile test circuit. During the course of the

project, some test circuits were developed and used. However, some were way too

complicated or too rigid. We needed a circuit easy to analyse and even better if it

could be versatile, to test it in different ways. All these things and the interest of

the author for the architecture drove to the development of a tiny microprocessor,

65
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which can be programmed via machine code (ASM).

Figure 5.1: Pipeline of the 16-bit processor used for testing.

The microprocessor is a 16-bits RISC (Reduced Instruction Set Computing).

The ISA (Instruction Set Architecture) has 16 instructions, including arithmetic,

comparisons and conditional and unconditional jumps.

The pipeline is not segmented and is the standard pipeline in RISC machines

without superscalar nor multi-cycle operations: Fetch, Decode, Register File, ALU

and again Register File in order to write back the results.

The tests has been performed using a simple piece of code, which is basically an

infinite loop:

1 MOV 10 , R0 ; //1111000010100000

2 MOV 1 , R1 ; //1111000010100000

3 ADD R1 , R1 , R1 ; //0000000100010001

4 SUB R0 , 1 , R0 ; //0101000000010000

5 BNZ −8 ; //1110111111000000

6 JMP @0 ; //1100000000001111

Table 5.1: Machine code loaded in the RISC processor used for the tests.

Table 5.1 shows the piece of code used during the tests. Since no compiler was

developed the software had to be coded directly using machine language at its lowest

level, which is the binary code. The table also shows code in its assembler equivalent

form. Basically it initializes R0 as index of the loop – initialized to ten because the

loop will be performed backwards – and R1 is used as a counter. Actually, the loop
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only counts in R1, adding one each time. Then, the index is decreased and BZ is a

conditional branch and branches if the result of the previous operation was different

to zero. If it was zero, i.e. the loop finished, the JMP instruction, an unconditional

jump, is responsible to jump to the start of the memory and, hence, start again the

loop.

The error detection is done checking each cycle the register file and the result

outputted from the microprocessor to higher-level hierarchy. Since the microproces-

sor performs an infinite loop, results and processor state in each cycle are previously

known. Once the circuit has been presented, tests will be presented.

5.2 Tests

Tests try to cover all the aspects that can be measured within an FPGA and that

are significant in circuits design.

This section has been divided according to the different tests performed. The

circuit has been tested introducing noise to the input voltage to measure its robust-

ness and using power scaling to prove what will be used for the closed-loop feedback

in order to reduce energy consumption.

The results are finally compared to the results with the same tests but with the

synchronous implementation. As said before, the frequency monitoring subsystem

will be left in the testing design in order to know at which speed is the elastic clock

working, which will give a better perspective of the results obtained.

5.2.1 Overheads

The asynchronous design has a small overhead in terms of area because it has to

add the oscillator, which is a variable number of NAND gates, 64 in this case, but

since it is who produces the clock no timing overhead is added with it.

For these tests has been added the frequency monitoring subsystem and, with

it, the RS-232 DCE subsystem in order to send this information to the computer

and catch up the data. These elements add overhead in terms of area and, more

important, in terms of critical path because they include synchronous elements,

which are very susceptible to variability. However, it has been considered that with
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such a small inclusion the overhead would be relatively small over the benefits of

knowing the clock frequency at any moment.

5.2.2 Timing analysis

Before starting the tests, a timing analysis is needed in order to know how are

the two designs to be compared. The analysis of the synchronous design is very

important since it is the design that is supposed to fail first and we need to know

when is that supposed to happen. Unfortunately for us, the timing analysis that

allows the available tools, Project ISE from Xilinx in this case, are only performed

in the voltage range of 1.04V – 1.3V, which is insufficient for what we need.

The timing analysis has been done taking 1.2V as the input voltage and 50 ◦C

as the temperature of the circuit. With these parameters the analysis predicts 9

nanoseconds of critical path, but this is always a very pessimistic value.

5.2.3 Power scaling

Power scaling is the base of what will be the project. The closed-loop feedback pre-

sented uses the power scaling as its cornerstone for reducing the energy consumption.

Within this test, the test circuit is subjected to the power scaling technique in its

asynchronous form and its synchronous form. The results should show how the

synchronous form does not support the same reduction of its input voltage and it

fails sooner. Actually, if the initial oscillator period is enough for the critical path it

should not fail at any case only with power scaling. However, it still needs margins

if noise is introduced – not in this test –.

First of all it would be interesting to know the correlation of the input voltage

the frequency of the circuit. Figure 5.2 shows the frequency of the elastic clock and

the fixed clock while scaling the input voltage.

As we can see in the chart of Figure 5.2, the fixed clock remains at the same

frequency no matter how much voltage gets at the input. On the other hand,

the elastic clock frequency – fixed at approximately 50MHz at 1.2V – has a lineal

correlation with the input voltage. Since the ring oscillator is composed by the

same circuitry than logic circuit, we can deduce the same correlation but inverted

for the critical path, i.e., less input voltage implies a larger critical path and they
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Figure 5.2: Frequency / Voltage correlation chart.

are inversely proportional in a lineal way. After 0.69V frequency plummets because

this is the point the circuitry used for sending the information through RS-232 fails

– it uses the fixed clock –.

We also know at which point the synchronous circuit fails and the period of the

elastic clock at every moment. With all this information, and the critical path at

1.2V, the next chart has been done.

Figure 5.3: Evolution of logic delay over voltage variation chart.
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In the chart of the Figure 5.3 we can see the period of the elastic and the fixed

clock and the critical path, which is a total estimation, not the real value because

the only known value is where the critical path overcomes the fixed clock period,

i.e., critical path is larger than 20 nanoseconds and from here, it has been taken the

same behaviour for the logic of the circuit and the logic of the ring oscillator, which

composes the elastic clock. Taking this into account, we can see how the period

of the elastic clock grows the same way the critical path of the circuit does. This

implies that no error can occur if there is no noise because the period and the critical

path lines will never cross. However, we can see how the critical path overcomes the

period of the 50MHz fixed clock and that is the point where the circuit fails.

The difference between the period of the elastic clock and the critical path is

quite large and it could have been shrunk choosing a lower period at 1.2V. It was

chosen in order to compare the two clocks at the same starting point. However,

choosing a lower period, always with a safety margin, would produce similar results:

no failures and the same form of the period line.

Once we have this information we can proceed to test the circuit. The method

followed has been simply downscaling the input voltage – manually, because there

is no circuitry for it in order to reduce overhead – from the same starting point –

1.2V at 50MHz –. The downscale step is 0.01V and at each step power consumption

– in the form of current and voltage – has been registered.

Figure 5.4: Power consumption over voltage variation chart.
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Figure 5.4 shows the power consumption of the asynchronous circuit and its

synchronous counterpart. Below 0,86V the synchronous circuit fails but the asyn-

chronous continues working. Once the synchronous fails and the asynchronous still

accepts downscaling is obvious that the asynchronous will achieve lower consump-

tion but why is it lower at the same voltage? It is because of the frequency. CMOS

technology only dissipates and consumes power while switching – in addition to

leakage power – and all the sequential logic switches at every cycle, which means

that lower frequency, lower switches and, hence, lower power consumption. As seen

before, downscaling voltage leads to a lower frequency of the elastic clock and this

is what makes the asynchronous to consume less.

5.2.4 Noise

Noise is an important factor that makes the performance of a circuit changes when

suffers from it. Noise can be suffered in form of EMI (Electromagnetic interference)

or in form of voltage variations because of drop voltages throughout the circuit or

because of a supply voltage that becomes overcome by sudden necessities of the

circuit. The tests are performed using a signal generator that can produce signals of

different forms within the range of 20Hz – 20MHz. The signal of the signal generator

is introduced in the supply circuit of the board the same way through the jumper

J7 – the same used for using the external supply voltage –.

The initial voltage is set to the minimum at which the synchronous design still

works without failure. For this test the critical path has been artificially enlarged

to make it fail sooner. Under this conditions, the initial input voltage selected has

been 1,13V. Initially, the noise is 0 and from here, the noise is being incremented

until the circuit fails and the noise level registered. Then, the voltage is increased

with the accuracy the supply voltage allows and the noise is again incremented until

the another failure is reached. This has been done successively roughly forty times,

reaching a voltage level of 1,55V and a noise of 1,170V peak to peak.

The induced noise is being generated with the signal generator Agilent 33220A.

The waveform is a sinus and oscillates at a fixed frequency. In the next cases the

frequency chosen has been 1KHz and during the test the amplitude (voltage peak

to peak) is being changed, which is equivalent to introducing noise.
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The test has been performed using the synchronous circuit, running at 50MHz,

and using the elastic clock running also at 50MHz when working at 1,13V. As the

noise is periodic, it makes the mean frequency to remain at 50MHz.

Figure 5.5 the results of the test:

Figure 5.5: Tolerance over noise using elastic clocks vs a fixed clock. Both running

at 50MHz.

As expected, the failure line progression of the fixed clock is lineal over the noise

induced to the input. This is what it was expected to happened since the noise

increases the critical path while the clock speed remains the same. Actually, this

depends on the frequency of the noise: a frequency larger than the clock frequency

will produce different result because within the same cycle peak to peak voltages are

experienced which means the critical path is balanced to its noise free value, even

though a very high frequency can produce failures too. These errors are produced

due to the clock distribution tree delays but this is beyond the scope of this project.

These last two phenomena could not be proven because the signal generator allows

a 20MHz maximum frequency.

Elastic clocks has behaved as expected. Its tolerance to the noise is higher.

Actually, the circuit does not even fail until the noise is increased to 1,130V peak to

peak. At this point, the circuit is near the technology threshold, which is 0,6V and

to be under it will make the board to be deprogrammed, and near the threshold the

circuit becomes more sensitive to the noise. Nevertheless, at this point the to lines,

fixed and elastic clocks, become parallel because the elastic will need to increase the
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voltage to support higher levels of noise.

The chart in Figure 5.5 shows exactly what is the problem of the synchronous

circuits. In order to support a given level of noise it needs a safety margin in order

to avoid failures due to timing violations because. The chart also shows how the

elastic clock does not need this margin which could yield a diminution of the power

consumption if this advantage is exploited.

As stated in previous chapters, the main reason of this high tolerance to noise of

elastic clocks is that variability is very similar throughout the chip. Accordingly, the

elastic clock and the logic suffers the same variations in throughput and the period

is enlarged at the same time and same proportion than the critical path.

Now imagine that we need to design the circuit used for tests in order to support

noise levels up to 1,080V peak to peak. If we decide to use the synchronous imple-

mentation using a fixed clock of 50MHz it would need to work at 1,468V in order

to avoid failures. However, with the elastic clock implementation the circuit could

still work at 1,13V which will lead in a reduction of the power consumption. Since

the fixed clock works at 50MHz and the elastic clock works at 50MHz on average,

reduction in power consumption can be directly translated to a reduction in energy

consumption. The exact power reduction would be:

• Power consumption of the synchronous design, working at 1.468V with a cur-

rent of 41mA:

Psync = 1, 468 ∗ 0, 041 = 0, 064592W = 60, 188mW

• Power consumption of the elastic clock design, working at 1,13V with a current

of 30mA:

Pelastic = 1, 13 ∗ 0, 030 = 0, 0339 = 33, 9mW

This leads to a reduction of consumption of 43,7% in terms of power and energy.

5.2.5 Immeasurable parameters

There are other parameters where asynchronous circuits have advantage over their

synchronous counterparts. However, not everything is measurable within an FPGA

and there are even parameters difficult to measure in ASICs, like manufacturing
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variability, which is measured in terms of percentage testing a large number of chips

of the same type and wafer, which is impossible to do in the context of this project.

It would have been desirable to measure the temperature variability but the

FPGA have no temperature sensors, which would make possible to monitor the

temperature in order to do its corresponding analysis.



Chapter 6

Infinite Impulse Response system

through A/D converter

Until now, the whole project has been tested with a dummy circuit with testing as

its only purpose. In this chapter, a real case of use is presented: an IIR – Infinite

Impulse Response – system, which takes data from an analog to digital converter.

The closed-loop feedback presented in this section is the same as the one pre-

sented in Chapter 4 where the generic closed-loop is presented but in this case the

data producer circuit has been substituted by an ADC and the data consumer cir-

cuit by the IIR. The actual aspect is shown in Figure 6.1. A signal generator is used

in order to induce different amounts of works to the IIR circuit.

During this section, an introduction to the IIR system is firstly done and later

the ADC and its protocol are briefly explained. Finally, the closed-loop feedback is

tested the same way the RISC processor was tested in section 6 but since the whole

system is working the voltage scaling is done automatically to obtain the reference

clock or the optimum voltage for a given workload.

6.1 Infinite Impulse Response system

Infinite Impulse Response is a property of signal processing systems and systems

with this property are known as IIR systems. IIR systems have an impulse response

function that is non-zero over an infinite length of time.

The function time of a single input depends on how it varies over the previous.
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Figure 6.1: Block diagram of the closed-loop feedback implementing the ADC and

the IIR.

In digital IIR filters, the output is immediately apparent in the equations defining

the output, i.e., there is a feedback between the output and the input.

Figure 6.2 shows the block diagram of a simple IIR filter.

The IIR system used performs a low-pass filter. A low-pass filter is an electronic

filter that passes low-frequency signals but attenuates signals with frequencies higher

than the cut-off frequency.

The aim of the project was not to develop a DSP – Digital Signal Processor

– system like the IIR filter. For this reason, the module has been obtained from

the project opencores.org [2], the world’s largest open source hardware community.

The module is developed in VHDL instead of Verilog like the rest of the project.

However, a wrapper was needed to make as interface between the VHDL subsystem

and the rest of the Verilog design along with some minor changes to adapt it to the

needs of the project.
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Figure 6.2: Block diagram of a simple IIR filter system. source:

http://en.wikipedia.org/wiki/Infinite impulse response.

6.2 Digital outputs from analog inputs

The IIR filter is one example of a DSP system and this kind of applications need

of signals in order to work as they are intended to work. For this reason, there was

needed to input data from signals. Observing the Spartan 3E board specifications

the only way to do that was using the analog to digital converter that is installed

inside the board.

Before presenting the devices used for the conversion of analog signals to digital

data, SPI bus has to be presented since it is the bus used for the communication

between the FPGA and peripheral devices such as the ADC or the amplifier, which

has been also used.

6.2.1 Serial Peripheral Interface Bus

The SPI bus is a synchronous serial data link standard, named by Motorola, that

operates in full duplex mode. Devices using SPI communicate in master/slave mode.

Multiple slave devices are allowed with individual slave select lines. Figure 6.3 shows

the common connection between master and slaves.

The SPI bus specifies four logic signals:

• SCLK: serial clock – output from the master –.

• MOSI: master output, slave input – output from master –.

• MISO: master input, slave output – output from slave –.
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Figure 6.3: SPI Bus: master and three slaves. source:

http://en.wikipedia.org/wiki/Serial Peripheral Interface Bus.

• SS: slave select – active low, output from master –.

To begin a communication, the master first configures the clock, using a fre-

quency that is supported by the slave.

Then, the master switches the appropriate chip select bit for the desired chip to

a logic 0 – because the chip select work with active low, i.e. its on state is asserted

with a 0 –. Then, transmission can begin. During each SPI clock cycle: the master

sends a bit through the MOSI line and the slave reads it from the same line and

the slave sends a bit through the MISO line and the master reads it from the same

line. Not the two transmissions are mandatory at each cycle, but since the protocol

is full duplex, they can occur at the same cycle.

Note that the FPGA works always as the master and, hence, it is who generates

the clock and all the control signals needed for transmitting.

6.3 Analog to Digital Converter

The board includes the LTC1407A-1 [14]. The LTC1407A-1 is a 14-bit, 3Msps –

millions of samples per second – ADC with two 1.5Msps simultaneously sampled

differential inputs. The devices draw only 4.7mA from a single 3V supply, which

means the device is a low-power device, perfect for our purpose.



6.3. ANALOG TO DIGITAL CONVERTER 79

Figure 6.4: ADC block diagram.

Figure 6.4 shows the block diagram of the ADC. It shows the internal design.

Two channels with their respective inputs, which pass through a MUX in order to

select the correct input each time. The two channels works all the time but first the

channel 0 is sampled and then the channel 1. The ADC outputs a 14-bits result,

which is sent through the SPI bus.

Figure 6.5: Analog to digital conversion interface and timing.

Figure 6.5 shows detailed transaction timing. The AD CONV signal is not a

traditional SPI slave select enable. It is used to start the conversion and after it

is set to low the ADC needs two SCK cycles to finish the conversion and start
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transmitting. After that it uses 14 cycles to send the conversion data of the channel

0 and 14 more for the channel 1 with two cycles between transmissions and two

more at the end. With all, it takes 34 cycles to finish the communication sequence.

6.4 Programmable Pre-Amplifier

The board also includes a programmable pre-amplifier LTC6912-1 [15], which pro-

vides two independent inverting amplifiers with programmable gain. The purpose of

the amplifier is to scale the incoming voltage on the two inputs so that it maximizes

the conversion range of the ADC, namely 1.65 ± 1.25V.

Figure 6.6: SPI Serial Interface to the amplifier.

Figure 6.6 shows the interface of the SPI to the amplifier. The gain is sent

through the SPI MOSI line from the FPGA and it is coded in 4-bits for each channel,

which is a total of 8-bits. AMP CS is used as chip select. AMP OUT echoes the

SPI MOSI and it can be ignored in most applications.

Figure 6.7: SPI Timing when communicating with the amplifier.
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Figure 6.7 shows the timing of the communication with the amplifier. Once the

AMP CS is set to low, the amplifier starts to listen what goes trough the MISO line.

Each SCK cycle a new bit is sent with LSB sent first.

The gain selected with the design is -1, which corresponds to the byte “00010001”

and it gives a range of voltage between 0.4V and 2.9V.

6.5 Testing the real case

As has been done before while testing the elastic clock, in this section the whole

closed-loop feedback will be tested. The design includes all the parts mentioned in

the Proof of Concept section, which are the working subsystem and the monitoring

subsystem.

The monitoring subsystem includes all the logic that communicates with the

computer. The board sends to the computer information about workload, frequency

and power consumption and it receives request from the computer in order to change

its operating mode, which can be based on workload or a reference clock – also set

by the computer –. The working subsystem includes the data generator, which is the

ADC, governed by the fixed clock and the data consumer, which is the IIR, governed

by the elastic clock. Between these two elements there is a crossing-domain element,

which is the asynchronous FIFO previously mentioned.

In this case, it is not possible to reproduce the exact same tests as in Chapter 5

in which the processor was tested only including the elastic clock and varying the

voltage manually. Now, the circuit includes the closed-feedback loop governs part

of the circuit and the power scaling is done automatically by the control unit trying

to adapt the input voltage and the oscillator to satisfy the needs of the circuit.

6.5.1 Workload mode

The closed-feedback loop, along with the elastic clock, provides a reduction of the

power consumption and, hence, energy consumption. However, this reduction can

be led by the simple fact of exploiting the properties of the elastic clock – smaller

safety margins for the period – or it can be also led by the adaptive voltage scaling

that provides the closed-feedback loop.
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As stated before, the more the variation of the input signal, the more the job –

clock cycles – has to do the IIR system. This is a perfect environment to test the

closed-feedback loop and it has been exploited using the signal generator Agilent

33220A capable of generate sinusoidal waveform signals from 1Hz to 20MHz.

For the first test, we have tested the operating mode in which the adjustment is

done to achieve the lowest power consumption given the workload at every moment

– called work operating mode – while the input signal is being varied.

The chart on Figure 6.8 shows how the voltage auto adjusts with different input

signal frequencies1. The maximum allowable value is 1.30V and the minimum is

0.75V. The maximum has been chosen for strictly safety reasons because it is not

good for the board to work at a very high voltage. The minimum was chosen in

order to let the monitoring subsystem work without failures – remember that it is

working in synchronous mode with the 50MHz clock – and thus, be able to see all

the information. However, the minimum voltage could be lower but always giving a

safety margin to accept noise without reaching the transistor threshold, which would

make the board to be deprogrammed – and it is 0.6V –.

Figure 6.8: Adapting voltage depending on the workload.

1Note that more frequency does not mean more work. This is because the ADC converter

cannot sample at the needed speed given by the Nyquist-Shannon sampling theorem, which states

that the sample speed has to be at least the double of the signal frequency in order to reproduce

without loss the waveform. Since the amplitude of the signal is always the same, higher frequency

does not directly imply higher variations because it depends on how the ADC is sampling.
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Figure 6.9: Adapting frequency depending on the workload.

Chart in Figure 6.9 shows the reason why it is interesting to scale the voltage

with an elastic clock: the adjustment of the clock speed. A voltage scaling leads to

a frequency scaling in a similar way. Comparing the two charts we can see how they

are correlated at any time.

Chart in Figure 6.10 shows the results of the ultimate goal of the closed-feedback

loop, which is power reduction. The reduction is calculated taking the consumption

of the synchronous circuit and then comparing it with the consumption of the closed-

feedback loop at any moment. As we can see, it has the same shape that the two

previous charts but it is inverted because less voltage and less frequency imply more

power savings.

Figure 6.11 shows an example of the interface when trying to adapt to the opti-

mum voltage and frequency.

In the example shown in the Figure 6.11, the circuit was in a state of minimum

power consumption because the workload was at its minimum level. Then, a 100KHz

signal is induced and the workload gets maximum levels and the circuit increases its

speed until a stable state is achieved again. As the figure shows, the circuit finds in

0.96V the optimum voltage level and it corresponds to 39.35MHz of clock frequency.
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Figure 6.10: Closed-feedback loop savings over its asynchronous counterpart.

6.5.2 Reference clock mode

The circuit can also work at a mode in which there is a reference clock defined with

the software interface and the closed-feedback loop tries to run at that speed varying

voltage and adapting it to the variability.

The Figure 6.12 shows how the circuit tries to reach the speed of 50MHz. How-

ever, the precision of the supply voltage is too low for what the circuit needs and

it gets a frequency of 49.72MHz instead of the 50MHz of the reference clock. This

frequency is got by working at 1.12V, which corresponds to 17.92mW of power dis-

sipation.

Even in this mode there the circuit is saving energy because it tries to achieve the

speed with the minimum amount of power possible. In this case, comparing the syn-

chronous at 50MHz and the asynchronous at roughly 50MHz, the closed-feedback

loop is achieving a savings of the 35%. Since they running at same speed we can

directly translate the savings in power to savings in energy.

6.6 Energy savings

Energy consumption is related to power consumption but a circuit consuming the

half of the power of another taking the double of time to perform a task are con-
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Figure 6.11: Interface of the monitoring software running in workload mode.

suming the same amount of energy. The idea of this project is to reduce energy

consumption but there is no mention about it in the charts of the tests. Even

though it is not important to compare instant information energy consumption will

be discussed now.

Every time the circuit decides that it needs to vary the voltage it has to send

a command to the power supply and the gap between commands needs to be of at

least 180 milliseconds. Hence, for each command it takes the following amount of

time, calculated in table 6.1:

1 Transmiss ion speed = 9600 bauds = 9600 b i t s / s

2

3 Bit s per byte = 8 b i t s + 1 stop b i t = 9 b i t s

4

5 Length o f a command :

6 VOLT UP\n = 6 charac t e r + 1 space + 1 new l i n e = 8B

7 VOLT DOWN\n = 8 cha ra c t e r s + 1 space + 1 new l i n e = 10B

8

9 GAP = 180 m i l l i s e c ond s .

Table 6.1: Time between voltage’s scalings.

With all of this we can calculate the exact amount of time the circuit needs
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Figure 6.12: Interface of the monitoring software running in reference clock mode.

to vary its voltage to achieve the optimum value. Now we take a test in which

there is a signal input at 100KHz. Initially, the circuit is running at 1.2V and

given the results it needs to downscale until 1.03V to achieve a frequency of 43MHz

that seems optimum for the current workload. Hence, the board will need to send

seventeen commands to the power supply in order to reduce the input voltage and

this corresponds to:

Time = 17commands ∗ (10
bytes

command
∗ 9

bits

byte
∗ 1s

9600bits
+ 180ms ∗ 1s

1000ms
)

Time = 17 ∗ 0, 189375s = 3, 219375s

The system takes 3,22s to achieve its optimum state and it is 0,19s at each

step. With this information and knowing the consumption of the circuit at each

voltage level – previously analysed –, if we make the circuit run during 5s the energy

consumption will be:

• Synchronous circuit consumes 138mJ (milijoules).

• Asynchronous circuit with closed-loop feedback consumes 95,96mJ.

Hence, the energy reduction will be a 30,5%. In this case there is a reduction

but we can assure the closed-feedback loop will never consume more than the syn-

chronous if not necessary. The speed at 1.2V is fixed at 50MHz, which means that
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at same speed they consume the exact same amount of power. However, the closed-

feedback loop is able to run at a higher frequency – and voltage –, which will imply

higher power consumption, but since the power consumption – and voltage – is lin-

eally related to the frequency – as seen in previous tests –, an increment on power

consumption does not lead onto the same increment of energy consumption because

the time to perform the same task will be reduced.

However, the maximum voltage can be limited in order to always consume less

energy – same consumption at maximum speed but less consumption otherwise –.
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Chapter 7

Project schedule and economic

feasibility

7.1 Project schedule

For the development of the project some steps have been followed and they are

briefly explained below.

• Project definition: at the start we did not know exactly what the project was

about and we needed to define some general aspects.

• Study of existing approaches: once we knew the project was about to imple-

ment and test a proof of concept using asynchronous circuits was time to read

bibliography for a better understanding of the field and also, to know more

about some different approaches that could be implemented.

• Study of the development tools: The whole Xilinx suite and the FPGA world

was something totally new and it was needed some time to get used to it.

• Implementing the elastic clock: after implementing some circuits for learning

purposes was time to implement the cornerstone of the project and test it in

some way.

• Implementing test circuits: once the elastic clock was running we needed some-

thing to test its benefits. We tried OpenRisc, MicroBlaze and some other until

the final custom RISC processor was developed.

89



90 CHAPTER 7. PROJECT SCHEDULE AND ECONOMIC FEASIBILITY

• Implementing closed-feedback loop: With the elastic clock running and com-

pletely tested was time to implement the closed-feedback loop, which is the

biggest design in the project and included not only the elastic clock but also a

whole communication system in order to transmit information to the computer

and control the power supply through the serial port.

• Implementing the Linux monitoring application: The closed-feedback loop is

synchronized with the computer and also controlled by it. This application

works as the interface to show the information obtained from the board and

to control some parameters of the board.

• Implementing ADC + IIR: Once everything was correctly working we needed

a circuit with a real use to show and prove the improvement achieved by our

approach in a real world case of use.

• Results evaluation: Thanks to the data obtained by the computer it was pos-

sible to obtain a lot of information about the behaviour of the circuit in many

different environments. Once the data was collected was time to process it

and take conclusions.

• Documentation: The writing of this document.

The planning through time is shown on Figure 7.1.
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Figure 7.1: Schedule of the project.
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7.2 Economic feasibility analysis

In this section is analyzed the economical costs around the project. There is an

estimation of 1200 hours of work behind the project and they have been spread as

follows:

• Architect: 300 hours

• Programmer: 500 hours

• Testers: 400 hours.

The estimation about the wages per hour is the following:

• Architect: 18e/hour

• Programmer: 12e/hour

• Testers: 8e/hour

Which give us a final personnel cost of:

Cost = 300h ∗ 18
e

h
+ 500h ∗ 12

e

h
+ 400h ∗ 8

e

h
= 14600e

To this cost, we have to add the cost of the Xilinx license and the equipment

used:

• Xilinx Design Suite Node-locked license: 2,995$ - 2400e

• Spartan 3E Starter Board: 189$ - 150e

• Programmable power supply Agilent E3646A: 840e

The total cost of the equipment and license is:

Cost = 2400e+ 150e+ 840e = 3390e

Hence, the total cost of the project is:

Totalcost = 14600e+ 3390e = 17990e
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Conclusions

To conclude, the realization of the project has helped me to know and learn a field

of informatics that was never, or very slightly, touched during the degree. It also

showed how different are the software and hardware worlds basically because of the

difficult of debugging, which has implied a lot of time during the realization of the

project, but also because of the available information, very scarce.

On the other hand, the election of asynchronous circuits and, more specifically,

elastic clocks was not the reduction of energy consumption per se but the reduction

using more reliable circuits. The aims of the project were to use asynchronous

design paradigm in order to reduce the energy consumption while making more

reliable circuits. We have successfully proved the reliability of the elastic clocks

Nevertheless, the election of asynchronous circuits and, more specifically, elastic

clocks was not the reduction of energy consumption per se but the reduction us-

ing more reliable circuits, i.e., in order to make synchronous circuits more reliable

they usually consume more power and reliability and power consumption becomes

a trade off. However, we have presented more reliable circuits with even less power

consumption.

The main purpose of the project was to reduce the power consumption of circuits.

This was done using asynchronous circuits because not only provide improvements

in energy consumption but also help to increase the reliability of the circuit.

With the tests has been demonstrated how elastic clocks provide greater tol-

erance to noise and variability. This is so since variability is similar throughout

the chip and thus, as stated in previous chapters, the critical path and the circuit

93



94 CHAPTER 8. CONCLUSIONS

logic are increased in virtually the same proportion as the clock period. Thanks to

this phenomenon, the safety margins added to the clock period in a synchronous

design are not needed and the voltage can be decreased and accordingly the energy

consumption would decrease.

Taking advantage of the benefits of elastic clocks, which adapts its frequency

with the circuit variability, a closed-feedback loop have been developed where the

speed is automatically controlled only varying the input voltage. Thus, the system

is reducing even more energy consumption because decreases speed, voltage and the

margins for supporting noise without failure. Finally, we could say that the project

has successfully achieved its purpose.

8.1 Future work

There are still a lot of possible improvements to do. One of the problems of the

implemented system is the need of using an external power supply, which is very

slow and not very precise. An improvement could be selecting an FPGA with a

variable power supply on board or to print the system into silicon along with the

needed power supply. This would make the closed-feedback loop be more accurate

and optimum.

Not having the way to know the internal temperature has been a lack on the tests

of the project, which implied not having analysis of the behaviour with temperature

variability. An improvement could be to find an FPGA with a temperature monitor,

not so uncommon, and use it to complement the actual tests.
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Appendix A

Development tools

For this project, several development tools have been used. For the first part – the

hardware design –, a Xilinx FPGA and the Xilinx ISE – design suite – have been

used.

A.1 Xilinx

Xilinx is an American technology company founded in 1984. It is known for inventing

the Field Programmable Gate Array (FGPA) and as the first semiconductor company

with a fabless manufacturing model.

Along with FPGAs, Xilinx provides a full suite for developing and designing

ASIC solutions. This suite provides tools for the entire design flow – synthesis,

P&R, etc. –. Since the FPGA used is a Spartan-3E from Xilinx, their tools have

been used.

Figure A.1: Xilinx logo.

A.2 Xilinx ISE

Xilinx ISE is a software tool developed and provided by Xilinx for synthesis and

analysis of HDL. The tool allows the designer to get a bit stream from the initial

RTL performing all the steps automatically: synthesis, mapping, place & route and
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the generation of the programming file. Each one is an individual step and provides

different information about the design.

ISE can perform every step with Verilog or VHDL indistinctly. Both can be

mixed in a single design. The only requisite is that each module has to be written in

only one language. Then, if a module needs to be instantiated within another one

written in a different language, the second has to instantiate it with an equivalent

interface, i.e., if the instantiated module is in VHDL and has two inputs of one-bit

width and an output of one-bit, the other module has to instantiate the module with

the same name and same inputs and outputs but in Verilog. This is not an standard

– each tool has its way to wrap the languages –, so more complex structures may

not be well wrapped and some errors might appear. As for the code, ISE has similar

features to other IDEs like syntax highlighting.

Figure A.2: Xilinx ISE logo.

A.2.1 Design flow

ISE can perform any step on the FPGA design flow. Every step generates different

reports and gives different information. Errors are detected while performing the

corresponding step, e.g. if a signal is not declared is detected in the synthesis step

but when an input pin is unconnected, the mapping step is who will trigger the

error.

To execute a step is enough with double-clicking its name, Figure A.3 shows the

look and the names. Then, the step and every previous step will be executed. When

the execution is finished a symbol beside the step’s name will indicate the result: a

cross in a red background means that an error occurred; an exclamation mark in a

yellow background means that the execution finished with some warnings; a check

in a green background means that the execution finished perfectly.

Each step has other substeps that can help adjusting or analysing some aspects of

the design. For example, after the synthesis it is possible to view the RTL Schematic;
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Figure A.3: Design flow of a project in Xilinx ISE.

after the mapping it is possible to generate a post-map static timing analysis; after

the routing it is possible to view and edit the routed design.

A.2.2 Detailed reports

As stated before, reports are generated while the design advances. There is a report

with general information with utilization of the FPGA resources but there are others

with synthesis information – signals or modules trimmed during optimizations –,

clock reports – information about the clock signals like fan-outs or skew – and also

the timing analysis.

The timing analysis allows knowing exact information about the timing of the

circuit like skew, slack or critical path within a clock domain. The analysis can

be configured to be done at a given environment with parameters such as voltage,

temperature or noise.

FIgure A.4 shows the look of the report of the utilization of the FPGA.

A.3 Simulation

Once a module is completed is time to test it. In hardware design this is done by

simulation. ISE includes its own version of ModelSim Simulator. Figure A.5 shows

the look of the simulator’s interface.

The simulator allows the designer to test the circuit’s signal response to different

stimulus. Usually, a new and synthetic module is created. This module has no
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Figure A.4: Device utilization summary.

inputs nor outputs and it instantiates the module under test. If necessary, the new

module creates and initializes a clock signal, along with other signals needed by the

unit under test.

Simulation is performed during a certain amount of time, usually a few microsec-

onds or milliseconds.

However, simulation has several problems. The first one is performance. When

the circuit gets complex simulation takes a long time to perform just several mi-

croseconds. The other problem is generating the input signals for the module under

test. When it is a clock, a reset or any other predictable signal it is easy to generate

it but when the design involve outer elements it is difficult to emulate these signals.

A.4 PlanAhead

This is a standalone program, even though usually launched from the Xilinx ISE. It

gives information about mapping and placement. It shows the netlists and allows

the designer to manually place elements throughout the board.

Figure A.6 shows the usual aspect of the main view of the program, which

shows the board and the physical placement of its elements. When an element is

selected, the software shows the netlists between it and the rest of the elements of
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Figure A.5: ModelSim interface.

the circuit. The software also allows to drag and drop an individual primitive in

order to manually place it and then a physical constraint is created, which means

that the element will be locked to the chosen place.

Within the board, elements are divided into slices and each slice contains the

same primitives. The Figure A.7 shows the aspect of four slices. The green elements

are the elements that belong to the final circuit placement and the others do not

contain any logic and are available.

A.5 Core Generator

The Core Generator is a software that allows the designer to use different IP –

Intellectual Property – modules, which can be very helpful not having to implement

design that are already available. For example, the Core Generator can provide a

personalized FIFO, selecting parameters such as width or depth.

Figure A.8 shows the actual aspect of the software while generating a FIFO. Note

the multiple possible signals that can be selected. Thanks to the Core Generator, the
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Figure A.6: PlanAhead showing connections between the output of the ring oscillator

and the rest of the circuit.

personalization of the asynchronous FIFO used during this project for the closed-

feedback loop has saved a lot of development time.
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Figure A.7: Four slices of the FPGA and its occupancy.

Figure A.8: Four slices of the FPGA and its occupancy.



104 APPENDIX A. DEVELOPMENT TOOLS



Appendix B

RS-232 Protocol implementation

The Spartan 3E includes two RS-232 ports but since it is an FPGA, it does not

include the necessary logic to make the ports work. For this reason, it was necessary

to study, understand and implement the protocol in Verilog in order to transmit

through it.

RS-232 is a serial protocol used to transmit parallel data through a serial line

between a DTE (Data Terminal Equipment) and a DCE (Data Circuit-terminating

Equipment). The serial port signals are unidirectional and when connecting two

devices, the input of one is connected to the output of the other. A line that is an

output in a DTE is an input in a DCE device and vice-versa.

RS-232 includes a transmitter and a receiver. The transmitter is essentially a

special shift register that loads data in parallel and then shifts it out bit by bit at

a specific rate. The receiver, on the other hand, shifts data bit by bit and then

reassembles the data.

If it is necessary to connect two DTE devices a special cable known as null-

modem cable must be used.

The Spartan-3E has two serial ports: one DTE and one DCE. The computer is

connected to the FPGA through its DCE port and the power supply through its

DTE port. Since the power supply has also a DTE port, a null-modem cable must

be used.
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B.1 Voltage levels

The RS-232 specifies the voltage levels for the logical levels one and zero for the data

transmission and the control signal lines. There are several signal levels defined in

the standard and are used depending on the power supply available in the device,

however, RS-232 transmitters or receivers must be able to withstand any voltage

level up to ±25V. The most commonly used are ±5V, ±10V, ±12V and ±15V.

For data transmission, the logic one is defined as a negative voltage and the logic

zero as a positive voltage. Figure B.1 shows the transmission of a character using

voltage levels of ±12.

Figure B.1: Rs-232 Transmission of the letter ‘J’. source: http://www.best-

microcontroller-projects.com/how-rs232-works.html
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Because the voltage level defined in RS-232 is different from the logic levels and,

hence, the typical from that of FPGA I/O, a voltage converter chip is needed between

a serial port and an FPGA’s 110 pins. The board contains the necessary voltage

converter chip and configures the various RS-232’s control signals to automatically

generate acknowledgment for the PC’s serial port.

RS-232 is an asynchronous protocol as there is no clock transmitted at all. The

standard defines some settings that are settled before transmitting; therefore, the

two end-points have to set the exact same configuration. These settings are:

• Baud rate: the speed transmission. The standard does not define an exact

speed but a serial of possible rates. The most commonly used baud rates are

2400, 4800, 9600 and 19200 bauds.

• Data bits: there will be seven or eight data bits with the LSB – Less Significant

Bit – transmitted first. The option is given because the ASCII code needs only

7 bits for representing only characters. The use of 7 bits increases transmission

speed when transmitting large blocks of data. If graphic symbols or raw data

are needed to be sent, then 8 bits will be transmitted.

• Parity bit: the parity bit is a classic and simple error detection mechanism. It

is possible to choose either odd parity or even parity or none at all, which will

not send parity bit. This mechanism counts the number of data bits settled

to 1. Then, if the odd parity is selected and the number of bits to 1 is odd,

the parity bit will be 1, 0 otherwise. The even parity works in exactly the

opposite way. However, if two bits fail, the parity mechanism fails.

• Stop bit: The stop bit is a period of time between the last data bit – or the

parity bit if it is activated – and the start bit. The stop bit returns to the idle

state before starting again. It is needed for synchronization purposes because

at this point the two end-points know the transmission is finished. The stop

bit can be set to 1, 1.5 or 2 bit periods.

The serial line is 1 when it is idle. Then, the transmission starts with the start

bit, which is 0, followed by the data bits and the optional parity bit and finally ends

with the stop bits, which are 1.
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The Figure B.2 shows the transmission of a byte with 8 data bits, no parity and

1 stop bit. Note that the LSB of the data word is transmitted first.

Figure B.2: Transmission of a byte in RS-232. source: http://www.best-

microcontroller-projects.com/how-rs232-works.html

B.2 Implementing the RS-232 subsystem

The whole RS-232 subsystem, as shown in Figure B.3, is composed by four main

components:

• RS-232 receiver: the circuit to obtain the data.

• RS-232 transmitter: the circuit to transmit the data.

• Baud rate generator: the circuit to generate the sampling ticks.

• Interface circuit: the circuit that provides a buffer and status between the

RS-232 and the system that uses it.

B.3 Receiving subsystem

Since no clock information goes through the transmitted signal, the receiver needs

to interpolate the information about the baud rate of the connection in order to

know at which point it can sample for the data information. The technique used for

this purpose is called oversampling scheme.

The oversampling scheme is used to estimate the middle point of the transmitted

bits and then sample them at that point. The middle point is intended to be the

point where the signal is more stable and also gives a margin if the two clocks are

out of phase.
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Figure B.3: Conceptual block diagram of the RS232 subsystem.

The most commonly used sampling rate is 16 times the baud rate, which means

that each serial bit is sampled 16 times. When the start bit comes, starts the

sampling tick counter. When the counter reaches 7 means that the signal is at its

middle point, then the counter is set to 0 and restart. From here, every time the

counter reaches 15, the value of the bit is retrieved and shifted into a register. The

process is repeated until the stop bit comes, and then it starts from the beginning

for a new byte.

B.4 Baud rate generator

The baud generator needs to generate a sampling signal whose frequency is exactly

16 times the RS232 baud rate. The sampling signal is used as an enable signal, so

no new clock domain is created – avoiding clock-domain crossing elements –.

In this project, the baud rate utilized has been 9600 bauds. Thus, the sampling

rate is 153600 – i.e. 9600 * 16 – ticks per second. Since, the Spartan 3E has a
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50MHz clock, the baud rate generator has to generate a one-clock-cycle sampling

tick every 326 clock cycles. This number comes from:

50 ∗ 106

153600
= 325, 52

which means the generator needs a mod-326 counter.

B.5 Transmitting subsystem

The transmitting subsystem works in a similar manner to the receiving subsystem.

Basically, the transmitting subsystem is a shit register that shifts out data bits at a

given baud rate. The same baud rate generator controls the rate of the transmission

but because there is no oversampling, the frequency is 16 times slower than that of

the receiver.

The transmitter follows the protocol and is responsible of setting the signals at

its corresponding value. For example, if it is not transmitting, the signal has to be

in the idle state, then the start bit, the data bits, the optional parity and the stop

bits. The duration of the bits is controlled by de baud rate generator but changes

in the signal are made every 16 ticks of the baud rate generator – because of a 16

times slower frequency of the transmitter –.

B.6 Interface circuit

This circuit is just an interface to make possible to encapsulate the whole RS-232

subsystem into a bigger system. It only instantiates the subsystems and connects

every signal with its correct port.
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