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Abstract

A problem that appears in a vast number of signal processing applications is the es-
timation of an unknown parameter, observed through a linear model. The inference of
this parameter is commonly based on a linear transformation of the available data, i.e. on
a linear �ltering. E.g. the aim of beamforming in array signal processing is to steer the
beampattern of the antenna array towards a given direction to obtain the signal associated
to a desired source. This is accomplished by means of a linear spatial �ltering. In array
processing another application is Direction of Arrival (DOA) estimation. Which usually
implies exploring a range of directions and estimating the power or signal amplitude asso-
ciated to each of them. Clearly to attain this aim a linear spatial �ltering is needed as well.
The design of the linear �lters is based on the optimization of a measure of performance
that in signal processing and in general in statistical inference is widely accepted to be
the Mean Square Error (MSE). Thus, the optimal estimator is obtained by means of the
optimization of the MSE and constrained to the available statistical information about
the parameter of interest. This leads to obtain two notable estimators that will serve as
a reference throughout this master thesis. On the one hand, when there is information
about the �rst two moments of the parameter of interest one obtains the Linear Minimum
Mean Square Error (LMMSE). On the other hand, when such statistcal information is not
available one obtains the Capon or Minimum Variance Distortionless Response (MVDR)
method, which obviously obtains worse performance than the LMMSE due to this lack of
statistical information.
Altough the LMMSE and MVDR are the optimal methods, they are not realizable

in general since they depend on the inverse of the correlation of the observations, which
is not known. The common approach to circumvent this problem is to substitute it for
the inverse of the sample correlation matrix (SCM), leading to the sample LMMSE and
sample MVDR. This approach is optimal whenever the number of available realizations
of the observed signal tends to in�nity for a �xed observation dimension or at least when
the number of samples is much greater than the observation dimension. Nonetheless, in
a practical setting this large sample size regime scenario hardly holds and the sample
methods undergo large performance degradation as the sample covariance is not a well
conditioned estimator. The small sample size regime may be due to short stationarity
constraints or due to a system with high observation dimension. These situations have
appeared traditionally in applications such as radar or adaptive beamforming. Moreover,
they will be also more and more met in the future generations of wireless communications
such as beyond LTE systems where an increasing number of users demand to transmit
and receive more and more information with hard timing constraints. Indeed, this demand
will exceed the capacity of the current wireless systems and among the possible solutions
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the research community is thinking of increasing the number of antenna array elements.
Another scenario where one may �nd a small sample size regime is in green technologies,
where one would desire to have estimators that require less and less number of available
observations while maintaining a good performance.
Therefore, the aim of this master thesis is to propose corrections of the sample LMMSE

and MVDR methods that allow to circumvent their performance degradation in small sam-
ple size regime and take pro�t of their optimality in the large sample size regime. To this
end we are equipped with two powerful tools shrinkage estimation and random matrix the-
ory. With shrinkage estimation we are de�ning the linear corrections of the sample LMMSE
and MVDR methods and guarantee the robustness to the small sample size regime. As
direct optimization of these shrinkage methods leads to unrealizable estimators then we
propose to obtain a consistent estimate of these optimal shrinkage estimators within the
general asymptotics regime where both the observation dimension and the sample size
may grow, but at a �xed rate. I.e. we use random matrix theory to deal with either small,
intermedium or large sample size regimes and to obtain a consistent estimate. Moreover,
another advantage is that this approach based on shrinkage estimation and random ma-
trix theory does not rely on any assumptions about the distribution of the observations.
Furthermore, the numerical simulations highlight that the proposed methods outperform
the sample LMMSE and MVDR methods in any of the sample size regimes considered
herein and that the improvement in the small sample size situation is huge. Finally, for a
particular case of shrinkage estimation of the sample LMMSE, we propose an alternative
to random matrix theory based on multivariate analysis. Namely, based on the knowledge
of the moments of an inverse Wishart distribution we obtain a shrinkage �lter that opti-
mizes the average MSE for Gaussian observations. The proposed approach dramatically
outperforms the sample LMMSE in the small sample size regime. Indeed, it outperforms
the sample LMMSE in any of the sample size regimes considered in this master thesis.
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Notation
In general, uppercase boldface letters, A, denote matrices, lowercase boldface letters, a,
denote column vectors and italics, a, denote scalars and generic random variables.

AT ;A�;AH Transpose, complex conjugate and Hermitian of a matrix
A; respectively.

A�1 Inverse of A.

A1=2 Positive de�nite Hermitian square-root of A, i.e. A1=2A1=2 = A.

Tr [A] Trace of a matrix A.

kAkF Frobenius norm of a matrix A, kAkF =
�
Tr
�
AHA

��1=2
.

kak, kak2 Euclidean norm of a vector a, kak , kak2 =
�
aHa

�1=2
:

[a]i ; ai i-th entry of a vector a:

[A]i;j
i; j-th entry of a matrix A, corresponding to the i-th row
and the j-th column.

[A]i;: i-th row of a matrix A:

[A]:;j j-th column of a matrix A:

R;C;C+ Denote, respectively, the set of real numbers, complex numbers
and fz 2 C : Im [z] > 0g .

RM ;CM The set of M -dimensional vectors with entries in R and
C, respectively.

RM�N ;CM�N The set of M �N matrices with real and complex valued entries,
respectively.
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IM The M �M identity matrix.

E [A] Expectation of a random matrix A.

j Imaginary unit, j =
p
�1:

# f�g Cardinality of a set.

a / b a is proportional to b, i.e. a =�b being � a given scalar.

! Convergence.

iid A set of random variables are independent and identically distributed.

N (�;�) Multivariate gaussian distribution with mean � and covariance �.

CN (�;�) Multivariate complex gaussian distribution with mean � and
covariance �.

jaj Modulus of a complex number a:

I	(!)
Indicator function. Suppose that 
 is a set with typical element !
and let 	 be a subset of 
. Then the indicator function of 	,
denoted by I	(!), is de�ned as 1 if ! 2 	 and 0 otherwise.

CWM(N;�)
Complex Wishart distribution with N degrees of freedom
and scale parameter � 2CM�M .

CW�1
M (N;�)

Inverse complex Wishart distribution with N degrees of freedom
and scale parameter � 2CM�M .

a � b a and b are asymptotically equivalent, i.e. ja� bj ! 0 almost surely.
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Acronyms
AWGN Additive White Gaussian Noise

BLUE Best Linear Unbiased Estimator

DL Diagonal Loading

DOA Direction of Arrival

ESD Empirical Spectrum Distribution

GSA General Statistical Analysis

LASSO Least Absolute Shrinkage and Selection Operator

LMMSE Linear Minimum Mean Square Error

LS Least Squares

MIMO Multiple Input Multiple Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MSE Mean Square Error

MUSIC MUltiple SIgnal Classi�cation

MVDR Minimum Variance Distortionless Response

RMT Random Matrix Theory

SCM Sample Correlation Matrix

SIR Signal to Interference Ratio

SMI Sample Matrix Inversion

SNR Signal to Noise Ratio

ULA Uniform Linear Array
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Chapter 1

Introduction

1.1 Research Motivation and Contribution

The problem of linear estimation of an unknown parameter observed through a linear model
is ubiquitous in signal processing. E.g. beamforming and Direction of Arrival (DOA) esti-
mation in array signal processing [1] or spectral analysis [2]. Indeed this problem appears
in many other �elds of science and it can be traced back to the least-squares approach
proposed by Gauss. In order to assess the performance of the designed estimator, the
mean square error (MSE) is usually accepted as the common measure of performance [3].
As a consequence a myriad of estimators have been designed in the literature with the
common aim of obtaining a good MSE performance. In this regard, assume that the �rst
two moments of the parameter to estimate are available. Then, among the linear estima-
tors, the one achieving the lowest MSE is the so-called Linear Minimum Mean Squared
Error (LMMSE) estimator, [3]. Indeed, it is the minimum mean square error (MMSE)
estimator when the joint distribution between the parameter to estimate and the obser-
vations is gaussian. When there is not a priori information about the �rst two moments
of the parameter to estimate the conventional approach is as follows. As in this case
the parameter to estimate is modeled as deterministic, direct optimization of the MSE
leads to unrealizable methods, as they depend on the parameter to estimate. Then, the
conventional approach is to impose an unbiasedness constraint on the MSE to avoid the
dependence on the parameter of interest. This is equivalent to optimize the variance of the
method and leads to the well known Best Linear Unbiassed Estimator (BLUE) [3], which
in the signal processing literature coincides with the Capon method, also known as Min-
imum Variance Distortionless Response (MVDR) estimator [1]. Nonetheless, the price to
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pay for the lack of knowledge about the a priori information of the parameter to estimate,
is that the performance of the MVDR is worse than the one of the LMMSE in terms of
MSE. In order to improve the BLUE, attemps have been made to design methods that
are biased but closer to the MSE than the BLUE. E.g. the Tikhonov regularizer [4] [5],
the shrunken estimator [6], the covariance shaping least-squares estimator [7] and minimax
MSE estimators [8�13].

According to the discussion in the last paragraph, LMMSE and MVDR are the optimal
methods in linear estimation, depending on the available information about the parameter
to be estimated. Unfortunately, they are not realizable in general, as they depend on the
correlation of the noise plus interference terms, through the correlation of the observa-
tions, which is not known in most of practical applications. In order to circumvent this
problem, the standard approach is based on a two stage procedure. First, the correlation
of the observations R is estimated by means of the sample correlation matrix (SCM) R̂.
Second, the true unknown correlation of the observations is substituted for the SCM in
the expressions of the LMMSE or the MVDR methods. In the literature dealing with
the MVDR implementation this technique is also known as sample matrix inversion (SMI)
technique [1]. The underlying rationale is based on the optimal properties of the SCM.
Namely, for Gaussian observations it is the maximum likelihood (ML) estimator of the
true correlation matrix, see [14, Theorem 4.1] and as a consequence the MVUE of R for a
su¢ ciently large number of samples N compared to the observation dimension M .

Nevertheless, in practical scenario conditions the assumption that the sample size is
large compared to the observation dimension, i.e. N >> M , does hardly hold. In fact
N may be comparable to M or even lower, leading to the so-called small sample size
regime. E.g., in adaptive beamforming and DOA estimation [15] [16], where the dimension
of an antenna array may be comparable to the number of available snapshots or even
larger; this is due to short stationarity properties of the observed signal or due to a large
array of antennas. This paradigm is also found within the context of beyond 4G wireless
communications networks. E.g. in [17] a large array of antennas is considered in the
context of multiuser MIMO scenarios. Also in [18], in the context of cognitive wireless
networks, the authors consider that the number of available samples may be comparable
to the number of receiving antennas when estimating the energy of multiple sources. One
of the reasons is that the processing of dynamic information in secondary networks must
be as fast as possible to avoid disruption in the primary networks.

Unfortunately, when the sample size is comparable to the observation dimension, the
traditional implementation of the optimal estimators based on the sample estimate of R
leads to a severe performance degradation, see [1], [15], [19], [20] and references therein.
In fact, they may display worse performance than the Bartlett or phased array estimator
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which is a naive strategy based on directly replacing the theoretical covariance matrix by
a scaled identity matrix, i.e. w _ s. The reason for this performance degradation may be
explained as follows. The sample LMMSE and MVDR rely on directly substituting R�1

for the inverse of the SCM in the expressions of the LMMSE and MVDR, respectively.
Nonetheless, the SCM is not a well conditioned estimator, i.e. in the small sample size
regime inverting the SCM severely ampli�es the estimation error. Thus, in small sample
size situations the sample methods are no longer optimal and require a calibration that
counteract their severe performance degradation.

In order to circumvent this problem several approaches have been suggested in the liter-
ature to improve the estimation of R. Those methods are mainly based on a regularization
technique called diagonal loading (DL), consisting on adding a positive real number � to
the diagonal entries of the SCM, i.e. �R = R̂+�I, see [15], [21], [22] and [23]. However, the
correct choice of the loading factor � is controversial and usually rather ad hoc methods
depending on the practical setting of the application are used. An exception is the work
of Mestre [19], that based on random matrix theory (RMT) founds a DL factor for the
MVDR beamformer that optimizes the SNR. In fact, DL based techniques can be regarded
as a particular case of linear shrinkage estimators that aim to reduce the estimation error
based on shrinking the SCM towards a constant estimator R0. Namely, the shrinkage esti-
mator, �R, of the correlation of the observations, R, reads �R =�1R̂+�2R0, see [24] or [25],
and R0 may be obtained from a priori knowledge stemming from the problem at hand.
The idea of those estimators is to blend the SCM, whose estimation error mostly comes
from an estimation variance, with an estimator diplaying certain amount of bias but zero
variance, that is a constant estimator related to a priori information about the parameter
to estimate. This yields to a gain in estimation variance that more than compensates the
increase in bias and thus the overall error is diminished. However, those methods aim
to improve directly the estimation of the covariance matrix of the observations, which is
not the �nal target herein. Moreover, there is another important drawback related to
the sample estimators. Namely, considering the practical more relevant assumption where
M;N ! 1 at a constant rate M=N ! c 2 (0; 1), they lead in general to estimators that
are not consistent as it can be derived from results in [15, Chapter4], [26], [20] or [19] and
also as it is shown herein.

Therefore, the aim throughout all this master thesis is to design new estimators that
overcome the limitations of the conventional sample LMMSE and MVDR methods. These
are the performance degradation in the small sample size regime, and in the case of the
former method, the lack of consistency within the doubly asymptotic regime whereM;N !
1 at a constant rate M=N ! c 2 (0; 1). As it will be seen in numerical simulations of the
upcoming chapters, the proposed estimators not only achieve this aim but also dominate
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the conventional sample LMMSE and MVDR methods. Where by de�nition, an estimator
x̂, of a parameter x, is said to dominate another estimator �x on a set S if its MSE is smaller
at least for some values of x in S and it is never larger for any value of x in S [27], [28].
The design of the proposed estimators will be based in three tools shrinkage estimation,
recent results from random matrix theory and some results within the �eld of multivariate
statistical analysis.

Shrinkage estimation is considered herein to de�ne the structure of the estimators to be
designed, as they are known to be robust to the small sample size regime and they achieve
in general a lower estimation error than the sample estimators, see [28]. The inception of
those methods can be traced back to the works of Stein [29], [30] and later on of Brown [31],
see [28] for a thorough discussion on this topic. The rationale behind shrinkage estimation
can be summarized as follows. In general in estimation theory, a large amount of methods
rely on a function of the sample moments, e.g. on a function of the sample mean or the
sample covariance. The foundations of that approach are based on the Glivenko-Cantelli
theorem that states that for a set of iid random variables, the empirical distribution tends
to the true distribution for a large number of observations [32]. Thus, as the sample
estimators are moments of the empirical distribution, when the sample size is large they
tend to the moments of the true unknown distribution and as a consequence they are
optimal. Therefore, when the number of samples is low, a large degradation of the sample
based estimators may be expected. Namely the error comes from the estimation variance
as these methods are unbiased in general. Therefore, the idea of shrinkage estimation is
to diminish the estimation variance by introducing a bias such that the overall estimation
error is lower than that of the sample estimators. This can be accomplished by a linear
scaling of the sample methods. Or more in general by blending by means of a weighted
average the sample estimators, i.e. wt_ R̂

�1
s, that display large variance but no bias,

with constant estimators, obtained from a priori knowledge stemming from the problem
at hand, which display zero variance but large bias, e.g. the Bartlett �lter wb= s. I.e. the
general class of shrinkage estimators x̂ = wHy such that w =�1R̂�1s+�2s is considered in
this master thesis. This approach, leads to a gain in variance that more than compensates
for the increase in bias an as a consequence the overall MSE decreases.

Nonetheless, direct optimization of the MSE, when plugging the shrinkage estimators
into it, leads to optimal weigths �1; �2 dependent on the true but unknown correlation
R, i.e. to unrealizable methods. In [33] in an analogous problem, within the context of
portfolio optimization in �nance, they propose to substitute R for its sample estimate
in the optimal weigths �1; �2, but this approach is suboptimal as an estimation risk is
implicit. Indeed, this approach leads to obtain the sample MVDR and LMMSE methods
again and the positive e¤ects of shrinkage estimation vanish.
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This gives rise to the second and most important tool considered in this thesis to
design the estimators, Random Matrix Theory (RMT), namely large dimensional random
matrix theory. This �eld originated from the works of Wigner [34] and subsequently
by Marµcenko and Pastur [35]. In this context it is also worth mentioning the general
statistical analysis introduced by Girko in [36] and [37]. More recently, RMT has been
successfully applied in signal processing and information theory emerging as a promising
new paradigm, see [38], [39], [40] and references therein. Herein, some recent results from
RMT, derived in [19], [15, Chapter 4], [38] and [20, Theorem 1], are considered. They
pave the way to obtain consistent estimates of the optimal weigths �1; �2 of the shrinkage
estimators, under the general and more practical asymptotics where M ;N ! 1 at a
constant rate M=N ! c 2 (0; 1) . I.e. the RMT based approach introduced herein
leads to obtain shrinkage estimators that are realizable, consistent, robust to the small
sample size regime and that outperform the traditional implementations of the LMMSE
and MVDR. Moreover, another advantage of this RMT approach is that it does not rely
on any assumption about the distribution of the observations.

Finally, for the particular case where the observations are Gaussian distributed and the
LMMSE shrinkage estimator is of the form w =�R̂�1s, an alternative to RMT, based on
multivariate statistical analysis, is presented. Namely, as w depends on R̂, the MSE is a
conditional expectation, relying on the knowledge of R̂, and as a consequence a random
quantity. I.e. for each possible value of R̂ a given MSE is obtained. Thus, in this case
the proposed approach is based on obtaining the shrinkage factor � which minimizes the
average MSE. Provided that the observed data be Gaussian, the solution is obtained by
using the knowledge of the summary statistics of a complex inverse Wishart distribution.
Unlike the RMT approach, which obtains an asymptotically optimal solution, this design
not only obtains a consistent estimator, but also an optimal solution for the �nite regime.

1.2 Signal Model

Next, we present the general model of the observed data that will be considered throughout
all the master thesis to design the proposed estimators of the unknown parameter x(n)2 C.
Namely, let x(n) be observed through the stochastic process y(n)2 CM by means of the
next a¢ ne transformation,

y(n) =x(n)s+ n(n); 1 � n � N (1.1)

Where s 2 CM is a known deterministic vector, n(n)2 CM is a stochastic process and N
is the number of available measures. E.g. in the context of array signal processing y(n) is
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the output of an antenna array, s is the steering vector and n(n) contains the noise plus
interference signals [1]. The next model assumptions are supposed to hold for any of the
designed estimators throughout all this master thesis,

(a) x(n) and n(n) are uncorrelated. Moreover, E [n(n)] = 0 and E
�
n(n)n(n)H

�
= Rn.

(b) As a consequence of (a) R , E
�
y(n)y(n)H

�
= ssH + Rn;  , E

�
jx(n)j2

�
and

ksk2=1.
(c) The set of observations fy(n)gNn=1 are iid.
(d) The number of samples is higher than the observation dimension, i.e. N > M or in

other words the ratio between the observation dimension and the sample size ful�lls
M=N 2 (0; 1).

Moreover, for the estimators in chapters 3 and 5 the next assumption is also needed,

(e)  , E
�
jx(n)j2

�
is known.

Finally, a part from assumptions (a)-(e) the next assumption is also assumed to hold for
the estimator designed in chapter 5,

(f) The set of observations fy(n)gNn=1 is distributed according to a complex gaussian
distribution. Namely, y(n) � CN (0;R):

1.3 Optimal Linear Estimators

In this master thesis, the family of estimators of x(n) based on a linear transformation or
linear �ltering of y(n) is considered. Namely, denoting by x̂(n) the estimation of x(n) and
w the linear �lter, these estimators read,

x̂(n) = wHy(n) (1.2)

Moreover, throughout this thesis, in order to establish a criterion of optimality among the
estimators, the MSE is considered as a measure of performance. In this regard, consider
the optimization of the MSE for the family of linear estimators in (1.2), i.e.,

wopt = argmin
w

MSE (w) , argmin
w

E
h��x(n)�wHy(n)

��2i (1.3)
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furthermore, let assume the data model in (1.1) with assumptions (a)-(e) for the observed
signal y(n). Then one obtains the well known LMMSE method [3],

x̂l(n) = w
H
l y(n); wl=R

�1s (1.4)

Being  , E
�
jx(n)j2

�
the second raw moment of the signal to be estimated and R ,

E
�
y(n)y(n)H

�
the correlation of the observed signal y(n). LMMSE possesses important

optimality features. Namely, �rst it is the method that achieves the lowest MSE among
the set of linear estimators. Second, it is the minimum MSE estimator when the joint
distribution between x(n) and y(n) is gaussian. Nevertheless, expression (1.4) highlights
that LMMSE assumes implicitly some a priori knowledge about the second moment of
x(n). Therefore, in the applications where such an information is not available the LMMSE
estimator is not realizable.

In order to circumvent the lack of knowledge about  the most popular approach is the
Capon method, also known as MVDR in the array signal processing literature, see e.g. [1]
or [41]. The rationale behind this methods is as follows. After some manipulations, the
expression of the MSE in (1.3) reads

MSE (w) = wHRnw+
��1�wHs

��2 (1.5)

Therefore, imposing the constraint wHs =1 avoids the dependence of the cost function
on the unknown quantity . Indeed, when x(n) is modeled as a deterministic parameter
wHs =1 is actually an unbiasedness constraint in the MSE optimization. Thus, the MVDR
estimator arises from the next optimization problem

wc = argmin
w

wHRnw

s:t: wHs =1
(1.6)

Now, observe that under assumptions (a)-(e) exposed in (1.1) the optimization in (1.6) is
equivalent to the one where Rn is replaced by R. Thus, applying the method of Lagrange
multipliers to (1.6), it is easy to obtain the well known expression for the MVDR estimator,
see [1],

x̂c(n) = w
H
c y(n); wc=

R�1s

sHR�1s
(1.7)

At this point, it is worth mentioning that when x(n) is modeled as a deterministic pa-
rameter, the MVDR method is the Best Linear Unbiased Estimator (BLUE) and if the
noise is Gaussian distributed it is the Minimum Variance Unbiased Estimator (MVUE),
see e.g. [3].
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Therefore, MVDR and LMMSE methods are the optimal linear estimators in terms of
MSE depending on whether the unbiasedness constraint wHs =1 is applied or not, respec-
tively. Nonetheless, in practice they are not realizable since they depend on the correlation
of the observations R which on its turn depends on the unknown noise covariance Rn. In
order to circumvent this problem, the traditional approach is based on a two step strategy.
First, given the set of N available observations fy(n)gNn=1, the unknown R is estimated by
means of the SCM, R̂.

R̂ , 1

N

N�1X
n=0

y(n)yH(n) (1.8)

Second, the SCM is substituted in the theoretical expressions of the LMMSE and Capon
methods, (1.4) and (1.7) respectively. This yields the traditional sample implementations
of the LMMSE and MVDR estimators,

x̂l;t(n) = ŵ
H
l y(n); ŵl=R̂

�1s

x̂c;t(n) = ŵ
H
c y(n); ŵc=

R̂�1s
sHR̂�1s

(1.9)

This strategy relies on the optimal properties of the SCM. Namely, for Gaussian ob-
servations, R̂ is the ML estimator of R and also its MVUE for a su¢ ciently large number
of samples N compared to the observation dimension M , [14, Theorem 4.1]. Indeed, con-
sidering the asymptotic regime where M is �xed and N ! 1 the sample estimators
are consistent, i.e. ŵl=R̂

�1s! wl=R
�1s and ŵc=

R̂�1s
sHR̂�1s

! wc=
R�1s
sHR�1s . Unfortu-

nately, in practice N may be comparable to M . In these situations, the SCM is no longer
a good estimate. This problem is exacerbated by the inverse involved in the LMMSE
and Capon methods and leads to a large performance degradation of the sample based
implementations. Indeed, in the lower sample size regime where M � N the traditional
implementations may display worse performance than a naive strategy such as the Bartlett
�lter w = s that does not take pro�t of the available measured information, as it is based
on substituting the unknown R for the identity matrix in the optimal �lters. Moreover,
considering the more practical general asymptotics where M;N ! 1 at a constant rate
M=N ! c 2 (0; 1), the sample LMMSE is not consistent. This is shown below in chapter 3,
alternatively it can be derived from the results in [19, Appendix I], (cf. [15, Chapter4], [20]
and [26]).
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1.4 Problem Statement

The aim throughout all this master thesis is to design estimators that take as a reference
the sample LMMSE and MVDR estimators but that overcome their drawbacks. Namely
their performance degradation in the small sample size regime and the lack of consistency
in the case of the sample LMMSE, as it was commented in the previous subsection. The
rationale to take the sample estimators as a reference is that for large sample size regimes,
N � M , they are optimal as they tend to the theoretical expressions in (1.4), (1.7).
In order to deal with the performance degradation in the small sample size regime, the
use of shrinkage estimators is proposed herein, as they are known to be robust to those
situations [28] and they permit to preserve the optimal properties of the sample LMMSE
and MVDR for large sample size. I.e. a possible choice for the structure of the proposed
estimators is x̂(n) = wHy(n); w =�R̂�1s. Note that the shrinkage factor � introduces
a bias in the estimation with the aim of reducing the overall estimation error. Moreover,
intuitively for large sample size regime � would lead to obtain the sample LMMSE and
MVDR and for small sample size regime would produce a linear correction of these sample
methods. Indeed, a generalization of these shrinkage estimators arises considering the fact
that for M � N , the sample LMMSE and MVDR display in general worse performance
than a naive Bartlett �lter, i.e. w = s, see [1]. Therefore, in this master thesis we will
consider the next general class of shrinkage estimators that combine the sample estimators
given by w _ R̂�1

s, which are known to be optimal for N � M with a Bartlett �lter
w = s, which gives better performance than the sample methods when M � N:

x̂s(n) = w
H
s y(n); ws=�1R̂

�1s+�2s (1.10)

Being �1 and �2 the shrinkage weights to be determined. It is worth remarking that the
proposed estimator incorporates the bene�ts of shrinkage estimation. On the one hand,
when using the sample based implementations of the optimal methods, i.e. w _ R̂�1

s, the
estimation error of the �lters mostly comes from the estimation variance. On the other
hand, the Bartlett �lter has zero variance but a large bias in the estimation of the optimal
w. Therefore, by blending the sample based LMMSE or MVDR with the Bartlett �lter, by
means of weighted averages, we are introducing some bias in the estimation of the optimal
�lters, but the gain in variance more than compensates for the increase in bias an as a
consequence the overall MSE decreases.

At this point, recall that the performance criterion of the designed estimators is the
MSE. Therefore, herein we propose to design the shrinkage estimators in (1.10) by mini-
mizing the MSE or more in general a functional of the MSE, f(MSE (w)). This leads to
the problem formulation that will be tackled in this thesis.
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Problem statement:

Assume that a set of observations fy(n)gNn=1 ful�lling the model in (1.1) is available.
Then, obtain an estimation of the unknown parameter x(n) in (1.1) that minimize a func-
tional f(MSE (w)) of the MSE in (1.5) when the estimation is based on the shrinkage
�ltering in (1.10) and subject to a set of constraints C on w. This problem is mathemati-
cally formulated as follows,

x̂s(n) = w
H
s y(n); ws = argmin

w
f(MSE (w))

s:t: w 2 C;w =�1R̂�1s+�2s
(1.11)

Where, according to (1.5), MSE (w) = wHRnw+
��1�wHs

��2 :
Remark 1: This problem formulation embraces both the case where knowledge about

the second moment of x(n) is available, i.e. a shrinkage of the sample LMMSE �lter, and
the case where it is not, i.e. a shrinkage of the sample MVDR �lter. In the former case
there are not constraints C, whereas in the latter w 2 C , wHs =1.

Remark 2: With regard to f(MSE (w)), in chapters 3 and 4 f(MSE (w)) = MSE (w).
Moreover, in these chapters, as the optimization of MSE (w) yields unrealizable methods,
subsequently RMT tools are used to obtain (M;N)-consistent estimates of the optimal
methods. On the other hand, in chapter 5 an alternative to the RMT approach is proposed.
Namely, for the particular case wherew =�1R̂�1s, provided that there are not constraints C
and provided that the observations be gaussian, we consider the average MSE to design the
proposed method, i.e. f(MSE (w)) = ER̂

h
Ex;n

h��x(n)�wHy(n)
��2 j R̂ii , ER̂ [MSE (w)].

1.5 Organization of the Master Thesis

The organization of the master thesis is as follows. In chapter 2, a brief introduction to
the main tools used herein, i.e. RMT and shrinkage estimation, is presented. Moreover
in this chapter certain RMT results are presented, they are the cornerstone to derive the
proposed shrinkage LMMSE and MVDR �lters. Chapter 3 proposes optimal shrinkage
corrections for large sample LMMSE �lters, based on RMT. The work of this chapter is in
part available in the next conference and journal papers,

� J. Serra and F. Rubio, �Bias Corrections in Linear MMSE Estimation with Large Fil-
ters,�in Proceedings of the European Signal Processing Conference (EUSIPCO 2010),
23-27 August 2010, Aalborg (Denmark).
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� J. Serra and M. Nájar,�Optimal Linear Shrinkage of large sample LMMSE and
MVDR �lters,�(submitted to) IEEE Transactions on Signal Processing.

Chapter 4 proposes an optimal shrinkage correction for large sample MVDR �lters,
which is based on RMT. The material of this chapter has been included in the next journal
paper, which is now under review,

� J. Serra and M. Nájar,�Optimal Linear Shrinkage of large sample LMMSE and
MVDR �lters,�(submitted to) IEEE Transactions on Signal Processing.

Next, in chapter 5 an alternative to the RMT approach is presented. Namely, for the
particular case where the observed data is Gaussian distributed, we present a shrinkage of
the sample LMMSE that optimizes the average MSE by using summary statistics of the
complex inverse Wishart distribution. The method proposed in this chapter appears in the
next conference paper,

� J. Serra and M. Nájar,�Optimal Linear Correction in LMMSE Estimation Using
Moments of the Complex Inverse Wishart Distribution,� in Proc. IEEE Statistical
Signal Processing Conference (SSP 2012), 5-8 August 2012, Ann Arbor, MI, (USA).

Finally, chapter 6 presents the concluding remarks and future topics of research.
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Chapter 2

Technical Background

2.1 Introduction

In this chapter, a review of the techniques used to design the proposed estimators in
the upcoming chapters is exposed. Namely, these are shrinkage estimation and random
matrix theory. Both tools cover extensive topics and not only have been applied to signal
processing and wireless communications, but also to other �elds of science, as it will be
commented below in this chapter. Therefore, herein the focus will be put on exposing the
most important features of these techniques in the context of this master thesis. Namely, a
historical background will be given and certain de�nitions and propositions motivating the
use of these tools for the design of the proposed estimators will be dealt with. Moreover,
several results that are the cornerstone for design of the proposed estimators are presented.
The organization of this chapter is as follows. Section 2.2 deals with the RMT tool and
section 2.3 exposes the theory of shrinkage estimation.

2.2 Random Matrix Theory

2.2.1 Historical Background

The theory of random matrices is a vast �eld that studies the properties of matrices whose
entries follow a given joint probability distribution. Namely, within this �eld di¤erent topics
are addressed or have been addressed. These are the study of small size matrices with joint
Gaussian entries, e.g. see [42], [43] and [44]; the study of small and large random matrices
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with invariance properties (e.g. free probability theory [45] [46], combinatronics [47] [48]
and Gaussian methods); And �nally the study of large random matrices with independent
entries [35], [49] and [50].

The study of random matrices may be traced back within the mathematical �eld of
multivariate statistical analysis. Namely, due to the work that J. Wishart conducted on
�xed-size matrices with Gaussian entries in [42]. Nonetheless, the seed that subsequently
produced a plethora of research in random matrix theory stems from problems that ap-
peared within the �eld of nuclear physics in 1950s. Namely, in quantum mechanics, the
quantum energy levels are not observable, but may be characterized through the eigenvalues
of a matrix of observations. It turns out that the empirical distribution of the eigenvalues
(ESD) has a very complicated form when the dimension of the matrix is high. Nonetheless,
it was observed, by means of numerical simulations that the ESD tends to a non-random
limit when the dimensions of the matrix increase without bound. Anyway these were con-
jectures, based on given observations, and it was not until 1958 that E. Wigner, with his
pathbreaking publication [34], showed that the empirical distribution of the eigenvalues
of a large random matrix, called Wigner matrix nowadays, tends to a semi-circle. With
this work he founded the �eld of random matrix theory, which deals with the asymptotic
study of eigenvalues of random matrices. Subsequently, another publication that was of
paramount importance for the development of the theory of large dimensional random
matrices, was presented by Marµcenko and Pastur in 1967, [35]. Since then, a plethora
of research have been conducted by researchers such as Bai or Silverstein, see [51] and
references therein. For this master thesis purposes, it is also worth mentioning the work
of Girko, as he developed a new statistical inference framework, known as G-estimation,
which is based on random matrix theory and complex integration, see e.g. [36] or [37].

Randommatrix theory has found applications in �elds as diverse as nuclear physics [52],
mathematical �nance [53] or computational biology [54]. In wireless communications and
information theory, random matrix theory has found several applications, see [40], [55] and
references therein for a thorough description. E.g. it has been used in the analysis of the
capacity of MIMO systems, see [39], [56] and also in the energy estimation of multiple
sources in cognitive wireless networks [18]. In signal processing, RMT has been applied to
study the performance of subspace based methods and to propose new subspace algorithms
such as the G-MUSIC, see [16]. Also to analyze the performance of the sample estimates
of eigenvalues and eigenvectors of covariance matrices [38], and to propose new estimators
of them that cope with the performance degradation in the small sample size regime,
see [50], [19].
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2.2.2 Large Dimensional Random Matrix Theory

The Stieljes Transform

In this master thesis, recent results from large dimensional random matrix theory will be
used to derive the proposed estimators. This discipline is devoted to study the asymptotic
distribution of eigenvalues and eigenvectors of random matrices, whose dimensions grow
without bound. Namely, let de�ne the empirical distribution function of the eigenvalues �
of a given random matrix X 2 CM�M as,

FX(�) =
1

M
#f�m � �;m = 1; : : : ;Mg = 1

M

MX
m=1

I�m��(�) (2.1)

Where # denotes the cardinality of a set and I denotes the indicator function. Then
random matrix theory studies the convergence of FX(�) towards a limiting probability
distribution function, when the dimensions of X increase without bound. In this regard, a
tool of paramount importance is the Stieljes transform, which is de�ned as follows,

De�nition 2.1 Let F be a real probability distribution function and z 2 C be taken outside
the support of F . Then the Stieljes transform of F at point z, denoted by mF (z), is de�ned
as,

mF (z) ,
Z

1

t� zdF (t) (2.2)

�
Even more interesting for our purposes is the expression of the Stieljes transform for

the eigenvalue distribution of hermitian matrices, which is shown in the next de�nition.

De�nition 2.2 Let X 2 CM�M be an hermitian matrix with eigenvalues �1; : : : ; �M .
Moreover, let FX be an eigenvalue distribution function of X as de�ned in (2.1). Then,
the Stieljes transform of FX, denoted by mX is given by,

mX ,
1

M

MX
k=1

1

�k � z
=
1

M
Tr
�
(X�zI)�1

�
(2.3)
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�
The Stieljes transform allows to simplify the asymptotic analysis of the eigenvalue

distribution. I.e. it plays an analogous role to the Fourier transform, which simpli�es
the study of signals in the frequency domain instead of the temporal domain. Namely, in
order to study the convergence of the eigenvalue distribution, say FB, towards a limiting
eigenvalue distribution, say FL, a possible procedure is as follows. First, the Stieljes
transform of FB, say mB, is found. Then, one founds that mB converges to the Stieljes
transform of FL, i.e .mL. Finally, one obtains the limiting distribution FL from mL. This
last step can be based on applying the inverse Stieljes transform and the next property of
the Stieljes transform, where ! denotes weakly convergence,

FB ! FL , mB ! mL (2.4)

This procedure is applied for instance to obtain the Marµcenko-Pastur law, which is
exposed next.

Proposition 2.1 (Marµcenko Pastur Law) [57, Theorem 1.1] Let B be a random matrix
ful�lling the next structure B , 1

N
XXH 2 CM�M with X 2 CM�N . Moreover, let [X]i;j be

a random matrix such that the real and imaginary parts of the entries are i.i.d according
to a gaussian with zero mean, variance 1/2, i.e. [X]i;j � CN (0; 1), i.e. B is distributed
according to a complex Wishart with N degrees of freedom and scale parameter IM , namely
N�1B � CWM(N; IM). Then, as M ;N ! 1 with M =N ! c < +1, the Stieljes
transform of the eigenvalue distribution function FB associated to B, denoted by mB,
converges weakly to the next Stieljes transform mL,

mL(z) =
1� c� z +

p
(z � 1� c)2 � 4c
2cz

;8z 2 C+ (2.5)

With an associated eigenvalue pdf given by,

fL(x) =

�
1

2�cx

p
(b� x)(x� a) if a � x � b

0; otherwise
(2.6)

Where a = (1�
p
c)2 and b = (1 +

p
c)2.

�
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Indeed, the Marµcenko-Pastur law its a particular case of [57, Theorem 1.1] that predicts
a limiting eigenvalue distribution of random matrices of the form B = 1

N
R1=2XXHR1=2,

provided that R be a hermitian square positive-de�nite matrix and that the entries of X
be iid with zero mean, variance 1/2 and with bounded moments. Nonetheless, in general
one may not obtain a close analytical form for the limiting pdf of the eigenvalues fL(x)
and has to resort to numerical methods such as the �xed-point to solve a transcendental
equation.

In �gure 2.1 the Marµcenko-Pastur law is exempli�ed by displaying the eigenvalue pdf
in (2.6) for di¤erent values of c, namely c =0.1, 0.2 and 0.5. One can see that when
M=N ! c ! 0 the support of the limiting pdf tends to concentrate in a single mass in
1. This case corresponds to classical asymptotic analysis where the observation dimension
M is �xed, whereas the sample size N !1, and by the law of large numbers in this case
B ! IM , i.e. the eigenvalues are all equal to 1 with multiplicity M . On the other hand,
when bothM and N grow large and their limiting ratio c increases, the eigenvalue density
no longer concentrates in a single mass, namely it tends to spread.
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Figure 2.1: Marcenko-Pastur Law: Limiting eigenvalue pdf in (2.6) for di¤erent values of
c =M=N .

Following with the illustration of the Marµcenko-Pastur law, in �gure 2.2 we represent
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the histogram of the eigenvalues of N�1B, de�ned in proposition 2.1, and the associated
limiting pdf predicted by the Marµcenko-Pastur law (2.6), when M = 500, N = 5000 and
c = 0:1. One can observe that the limiting pdf envisaged by the Marµcenko-Pastur law is a
good match of the empirical histogram as both M and N grow large at a �xed rate c, and
that no eigenvalue is outside that pdf.
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Figure 2.2: Comparison between eigenvalue pdf of N�1B and its limiting pdf given by
Marcenko Pastur law in (2.6), when M = 500, N = 5000 and c = 0:1:

The Stieljes transform presented in (2.3) is appropiate to study the asymptotic behavior
of eigenvalues. Nonetheless, for the purposes of this master thesis it is more convenient to
study both the asymptotic properties of the eigenvalues and the eigenvectors associated
to a given random matrix. To this end, let de�ne the next spectral function associated
to the random matrix X 2 CM�M , which is a generalization of the empirical eigenvalue
distribution function in (2.1),

GX(�) =

MX
m=1

aHeme
H
mbI�m��(�) (2.7)
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Where em and �m are them-th eigenvector and eigenvalue ofX, respectively. Moreover,
a 2 CM and b 2 CM are two generic deterministic vectors. Interestingly enough, this
spectral function has an associated Stieljes transform given by the next expression, that
was introduced by Girko in e.g. [58],

aH(X�zIM)�1b =
MX
m=1

aHeme
H
mb

�m � z
(2.8)

Now we can see the importance of (2.8). It resembles the quadratic forms that usually
appear in statistical signal processing and that depend on the sample correlation matrix
R̂, e.g. sHR̂�1s. Therefore, (2.8) paves the way to study the asymptotic properties of
quadratic forms depending on R̂.

G-estimation

G-analysis, also known as G-estimation or general statistical analysis (GSA) is an statistical
inference framework that builds on randommatrix theory and complex integration methods
and was introduced by Girko in e.g. [36]. It provides a framework to derive estimators that
are consistent in the doubly asymptotic regime where both the observation dimension M
and the sample sizeN grow large at the same rate, i.e. M;N !1 andM=N ! c 2 (0;1).
E.g. in array signal processing M may be the number of antennas and N the number of
available snapshots to design a given estimation algorithm. This new statistical inference
framework di¤ers from classical estimation that considers M �xed and N ! 1 to derive
a consistent estimator. Therefore, the estimators derived under the GSA framework are
usually called (M;N)-consistent. Moreover, GSA naturally deals with the small sample
size regime, i.e. situations whereM and N are comparable, and where classical estimators
tend to perform poorly. Also due to this reason GSA paves the way to obtain estimators
that converge much faster when M grows large than classical estimators.

A great deal of results in G-estimation build upon the so-called "G25-estimator" pro-
posed by Girko in e.g. [37]. Namely, let consider a given covariance matrix R 2 CM�M and
its sample estimate, i.e. the sample covariance matrix R̂. Moreover, let de�ne the next
function, which is a real Stieljes transform of a certain spectral function, analogous to its
complex counterpart in (2.8),

TR(x) = aH(IM + xR)�1b =
1

M

MX
m=1

aHeme
H
mb

1 + x�m
; x � 0 (2.9)
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With a;b 2 CM two generic deterministic vectors and em; �m the m-th eigenvector and
eigenvalue of R 2 CMxM , respectively. Then, an (M;N)-consistent estimator of (2.9)
when M;N !1 and M=N ! c 2 (0;1) reads as follows [37],

T̂R(x) = aH(IM + �(x)R̂)�1b (2.10)

Where �(x) is the positive solution of the next equation,

�(x)
h
1� c+ c

M
Tr
h
(IM + �(x)R̂)

�1
ii
= x

The importance of the G25-estimator in our framework is that a lot of signal processing
and communications expressions can be expressed in terms of (2.9). As a consequence, the
G25-estimator paves the way to obtain the (M;N)-consistent estimators of those quantities.
E.g. the inverse correlation matrix R�1 or quadratic forms of Rk; k > 0, see [19],

�
R�1�

i;j
= lim

x!1
xuHi (IM + xR)

�1uj (2.11)

aHRkb =
(�1)k
k!

�
dk

dxk
aH(IM + xR)

�1b

�
jx=0

(2.12)

Where uj is an all zeros column vector with a 1 in the j-th position. In general,
the common procedure in G-estimation to obtain (M;N)-consistent estimators of a given
random quantity is as follows. First, one expresses the parameter to estimate, say �, as a
function of the Stieljes transform of a deterministic matrix T hidden in the signal model,
i.e. � = f(mT). Second, one �nds that mT is asymptotically equivalent to the Stieljes
Transform of the available matrix of observations Y, i.e. mT � g(mY). Finally, one
estimates � as �̂ = f((g(mY)).

2.2.3 Fundamental Results for the Master Thesis

In this section asymptotic equivalences that pave the way to obtain (M;N)-consistent esti-
mators in the subsequent chapters of this master thesis are presented. Namely, they build
upon large dimensional random matrix theory and are based on �nding the convergence
of certain random quantities depending on the sample estimate of the correlation matrix,
under the doubly asymptotic regime where both M and N grow large at a given rate.
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Lemma 2.1 Let a � b mean that ja� bj ! 0 almost surely, let s 2 CM be a generic
deterministic vector, R 2 CM�M denote a generic correlation matrix and R̂ 2 CM�M its
sample estimate as de�ned in (1.8). Moreover, let assume that sHs =1. Then, within the
framework of general asymptotics, i.e. M;N ! 1 at a constant rate M=N ! c 2 (0; 1),
the next equivalences hold,

sHR̂�1s � (1� c)�1sHR�1s (2.13)

sHR̂�1RR̂
�1
s � (1� c)�3sHR�1s (2.14)

sHR̂�1Rs � sHRR̂�1
s � (1� c)�1 (2.15)

sHR̂s � sHRs (2.16)

Proof: The proofs are presented in the Appendix of this chapter.

�

2.3 Shrinkage Estimation

2.3.1 Introduction: the James-Stein method

Among the methods that estimate the moments of a given distribution, the sample estima-
tors are one of the most widely used. The rationale behind is that the sample estimates are
moments of the empirical distribution, which converges almost surely to the true distribu-
tion when the number of iid observations tends to in�nity and the observation dimension
is �xed, according to the Glivenko-Cantelli theorem. Indeed, it is well known that, when
the data is Gaussian, the sample mean and the sample covariance are the ML estimators
of the mean and the covariance of the true distribution, respectively.

Nonetheless, in a pathbreaking and astonishing publication [29], Stein proved that
the sample mean is not an admissible estimator of the mean of a multivariate gaussian
distribution, when the observation dimension is larger than one. Namely, he proposed an
estimator, which is called nowadays James-Stein estimator, which displays lower MSE than
the sample mean. This seminal work of Stein was so-called Stein�s phenomenon and it was
the foundation of shrinkage estimation. Notable contributions to the understanding of this
phenomenon were [30], [31] and [59�63]. See also [28] for a thorough discussion about this
topic and in general about shrinkage estimation.

23



The main idea behind shrinkage estimation may be summarized as follows. The bulk of
error (MSE) of the sample estimators comes from their estimation variance, i.e. their bias
is quite limited. Therefore, if one intends to outperform the sample estimators, a possible
approach is to design methods that have larger bias than them but a lower variance such
that the overall MSE is lower than the one of the sample estimators. Stein gave expression
to this idea by means of an estimator consisting of a linear scaling of the sample mean.
Subsequently, Stein and James generalized this concept conceiving the so-called James-
Stein estimator. It is based on blending, by means of a weighted average, the sample mean,
which displays much higher estimation variance than bias, with a constant estimator of the
mean, which displays high bias but no variance. Thus, by optimally combining the bias
variance tradeo¤, the James-Stein estimator obtains a lower MSE than the sample mean.
This concept may be generalized to the estimation of any parameter and it is the basis of
shrinkage estimation. Next, we provide the expression of the James-Stein estimator, by
means of the next proposition. Namely it is the expression exposed in [28], which is more
general than the original method proposed by James and Stein.

Proposition 2.2 (James-Stein estimator) Let x 2 RM be a multivariate Gaussian random
variable x � N (�;�) and M > 1. Moreover, let N realizations of x be available, i.e.

fxngNn=1, and let denote by �̂ the sample estimator of �, namely �̂ = 1
N

NP
n=1

xn. Then, the

James-Stein estimator of � reads as follows,

�̂s=(1� �)�̂+�b (2.17)

Where � is the shrinkage factor and it depends on the largest eigenvalue and the average
of the eigenvalues of � denoted by �1 and ��, respectively,

� =
1

N

M��� 2�1
(�̂� b)T (�̂� b)

And b is a constant estimator of �. Namely, it can be any M-dimensional �xed vector
stemming from a priori information of the problem at hand. Moreover, the James-Stein
estimator dominates the sample mean for any choice of b.

Proof: For a proof of the dominance of the James-Stein estimator on the sample mean
we refer the reader to [64, Appendix 4.5]. The de�nition of stochastic dominance was given
in Chapter 1.

24



�
Indeed, there are other possible choices for b other than a constant vector. E.g. Jorion

in [65] proposed to use an estimator based on the grand mean, namely b =1T �̂�1�̂
1T �̂�11

1, where

1 is an M-dimensional vector of all ones and �̂ is an estimator of �, e.g. the sample
covariance matrix. Moreover, although for a generic constant vector b, the James-Stein
method dominates the sample mean, its choice is important. Namey, the smaller kb� �k
the better the performance. Regarding this method, another important remark is that
other authors have shown that shrinkage type estimators dominate the sample mean for a
broader class of distributions other than the Gaussian, see e.g. Evans and Stark [66].

In order to get more insights on shrinkage estimation it is worth analyzing the shrinkage
factor �. Usually the constraint that � 2 (0; 1) is imposed. Thus, on the one hand when
� ! 0, the James-Stein method tends to the sample mean �̂s ! �̂. On the other hand,
�! 1 implies that �̂s ! b, i.e. the estimator is shrunken toward "the target" b. This is
a phenomenon that happens in general in these type of estimators and this is the reason
of calling them shrinkage estimators. Indeed, � controls the amount of shrinkage. Namely,
according to (2.17), when the sample sizeN tends to in�nity and the observation dimension
M remains �xed, the shrinkage factor tends to vanish, i.e. � ! 0 and the James-Stein
tends to the sample mean �̂s ! �̂. Which is logic as in this situation the sample mean
is the optimal estimator. On the other hand, when M tends to be comparable or even
higher than N , the shrinking factor � tends to increase and �̂s is shrunken towards b. This
supports the intuition that in the small sample size regime the performance of sample mean
method is considerably degraded. Or in other words, �̂s is shrunken towards b because
the information obtained from the measured samples is worse than the a priori information
embedded in b. This behavior also highlights the robustness of shrinkage estimators to
the small sample size regime. Indeed, as the interpretation of the shrinkage factor has
glimpsed, the James-Stein estimator and in general shrinkage estimation can be explained
within the context of Bayesian estimation, e.g. Efron in [67] showed the empirical Bayes
derivation of the James-Stein method.

The paradigm initiaded by the James-Stein estimator has been applied in several works
among the community of signal processing. Poor in [68] applied it to adaptive �ltering,
other authors applied the Stein�s Unbiased Risk Estimator (SURE) principle, which stems
from James-Stein estimation, to obtain methods having lower MSE than the ML, see [69]
and references therein. Moreover, James-Stein estimation has been applied to other �elds
of science such as quantitative �nance [65].
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2.3.2 Shrinkage estimators of the sample covariance

Although shrinkage estimation arose in the context of estimating the mean of a Gaussian
distribution, it has been applied to the estimation of other parameters, e.g. to the estima-
tion of the covariance of a given distribution. Originally it was also Stein who studied the
shrinkage of the SCM in [30]. More recently, Ledoit and Wolf proposed in [25] a shrinkage
estimator of the SCM R̂, consisting of shrinking R̂ towards the identity matrix by means of
a linear combination. The contribution of that method is that it deals with the case where
the sample size N may be lower than the observation dimension M and that does not
require any assumption about the distribution of the data used for the estimation. Consid-
ering as a reference the work of Ledoit and Wolf, recently the signal processing community
has proposed other shrinkage estimators of the SCM. E.g., Stoica, Guerci et al. [24], in the
context of radar, extended the work of Ledoit and Wolf to complex data and to a shrinkage
target consisting of a general matrix which expresses a priori information about the SCM,
which is obtained from the problem at hand. In this regard, another contribution was
proposed by Eldar, Hero et al. in [70], where assuming a Gaussian distribution of the data,
the authors proposed two shrinkage estimators of the SCM that outperform the Ledoit and
Wolf method. In order to get more insights, the Ledoit and Wolf estimator is exempli�ed
in the next proposition.

Proposition 2.3 (Ledoit and Wolf Shrinkage estimator of the covariance) Let X 2 RM�N

be a matrix of N iid observations of M random variables with mean zero and covariance
�. Let denote by �̂ = XX

T
=N the SCM. Consider the problem of estimating � based on

a shrinkage estimator of the SCM towards a scaling of the identity matrix, �0 =
Tr[�̂]
M
IM ,

which minimize the MSE, namely,

min
�
E
h����2

F

i
s:t:�� =(1� �)�̂+��0

(2.18)

Where k�kF denotes the Frobenius norm. Then, an (M,N)-consistent estimator of
the optimal, though unrealizable, solution to (2.18) within the general asymptotics where
M;N ! 1 at a constant rate M=N ! c 2 (0;1), is given by the Ledoit and Wolf
estimator,

��LW=(1� �̂LW )�̂+�̂LW�0

�̂LW =

NP
n=1
kxnxTn��̂k2F

N2 Tr[�̂2]�
Tr2[�̂]
M

(2.19)
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Where xn is the n-th column of X.

Proof: For a proof of this proposition the reader is referred to [25].

�

Appendix Proof of Fundamental Results

Proof of (2.13) and (2.14)

This proof is mainly based on the proof provided in [19, Appendix I], (cf. [15, Chapter4],
[20] and [26]). First, let de�ne the next random quantities,

�n(�) = s
H(R̂+�IM)

�1R(R̂+�IM)
�1s (2.20)

�d(�) = s
H(R̂+�IM)

�1s (2.21)

Hence, we can express the quantities of interest sHR̂�1RR̂
�1
s and sHR̂�1s as a function

of �n and �d, respectively,

sHR̂�1RR̂
�1
s =lim

�!0
�n(�) (2.22)

sHR̂�1s =lim
�!0

�d(�) (2.23)

Now, note that R̂ may be decomposed as a function of the true hermitian matrix R and
a random matrix � 2 CM�N with iid entries and whose real and imaginary parts are
independent, have zero mean and 1=2N variance,

R̂ = R
1=2
��HR1=2 (2.24)

With the decomposition in (2.24), expressions �n(�) in (2.20) and �d(�) in (2.21) may be
written in terms of another function m(z),

�d(�) = m(z)jz=0 (2.25)
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�n(�) =
dm(z)

dz
jz=0 (2.26)

Where m(z) is de�ned as follows,

m(z) = sHR�1=2(��H+�R�1 � zIM)�1R�1=2s (2.27)

With this de�nition at hand, observe that indeed m(z) has the form aH(M�zIM)�1a,
which as it was commented in (2.8) is the Stieljes transform of a spectral function of

the type GM(�) =
MP
m=1

aHeme
H
maI�m��(�) associated to the random matrix M, see (2.7).

Therefore, the proof of the asymptotic equivalences (2.13) and (2.14) is based on studying
the asymptotic convergence of spectral functions of matrices of the typeM = ��H+�R�1.
This is provided by [19, Lemma 1 in Appendix I] and leads to obtain that m(z) converges
almost surely to the function �m(z) when both M;N !1 at a constant rate c, namely,

m(z) � �m(z)

�m(z) =
MX
m=1

sHR�1=2eme
H
mR

�1=2s(1 + cb(z))

1 + (���1m � z)(1 + cb(z))
(2.28)

With em and �m being the m-th eigenvector and eigenvalue of R, respectively, and b(z)
being the positive solution to the next transcendental equation,

b(z) =
1

M

MX
m=1

(1 + cb(z))

1 + (�m � z)(1 + cb(z))

Now, recalling that according to (2.25) �d(�) = m(z)jz=0 and that according to (2.28)
m(z) � �m(z) , we readily obtain that �d(�) converges in probability to ��d(�),

�d(�) � ��d(�)

��d(�) =
MX
m=1

��sHem��2 (1 + cb)
�m + �(1 + cb)

(2.29)

With b = b(0) the positive solution to the next equation,
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b =
1

M

MX
m=1

�m(1 + cb)

�m + �(1 + cb)
(2.30)

Moreover, recalling that according to (2.26) �n(�) =
dm(z)
dz
jz=0 and again bearing in mind

that according to (2.28) m(z) � �m(z), we readily obtain the next asymptotic equivalence
for �n(�),

�n(�) � ��n(�)

��n(�) =
MX
m=1

��sHem��2 �m(1 + cb)2 + cb0
(�m + �(1 + cb))

2 (2.31)

With b0 = db(z)
dz
jz=0 having the next expression,

b0 =
db(z)

dz
jz=0 =

"
1� 1

M

MX
m=1

c�2m
(�m + �(1 + cb))

2

#�1 "
1

M

MX
m=1

�2m(1 + cb)
2

(�m + �(1 + cb))
2

#
(2.32)

At this point, recalling the relation between sHR̂�1s and �d(�) shown in (2.23) and con-
sidering the asymptotic equivalent of �d(�) in (2.29),

sHR̂�1s � lim
�!0

��d(�) (2.33)

Now, as according to (2.30) b �!0�! (1 � c)�1 and after operating the limit � ! 0, we can
rewrite (2.33) as follows,

sHR̂�1s � 1

(1� c)

MX
m=1

��sHem��2
�m

Finally, noting that the right hand of this expression is a Stieljes transform and recalling
the equivalence in (2.8), we obtain the next asymptotic equivalence, which concludes the
proof for (2.13),

sHR̂�1s � (1� c)�1sHR�1s

�
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Moreover, recalling the relation between sHR̂�1RR̂
�1
s and �n(�) shown in (2.22) and

considering the asymptotic equivalent of �n(�) in (2.31),

sHR̂�1RR̂
�1
s � lim

�!0
��n(�) (2.34)

According to (2.30) and (2.32) b �!0�! (1 � c)�1 and b0 �!0�! (1 � c)�3, respectively.
Therefore, after operating the limit �! 0, we can rewrite (2.34) as follows,

sHR̂�1RR̂
�1
s � 1

(1� c)3
MX
m=1

��sHem��2
�m

Finally, noting that the right hand of this expression is a Stieljes transform and recalling
the equivalence in (2.8), we obtain the next asymptotic equivalence, which concludes the
proof for (2.14),

sHR̂�1RR̂
�1
s � (1� c)�3sHR�1s

�
Proof of (2.15)

The proof of this asymptotic equivalence is analogous to the one for (2.13), though it is

based on [38, Theorem 1]. First, note that both sHR̂�1Rs and sHRR̂
�1
s can be expressed

in terms of a Stieljes transform m̂(z) as follows,

m̂(z) = aH(R̂�zIM)�1b =
MX
m=1

aH êmê
H
mb

�̂m � z

sHR̂�1Rs = lim
z!0

m̂(z)

m̂(z) s.t. a = s; b = Rs
(2.35)

sHRR̂
�1
s = lim

z!0
m̂(z)

m̂(z) s.t. a = Rs; b = s
(2.36)

Therefore, in order to proof (2.15), the asymptotics of m̂(z) must be studied. This is
provided by means of [38, Theorem 1], which states that m̂(z) converges almost surely to
a function �m(z) when M;N !1 and M=N ! c with 0 < c <1,
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m̂(z) � �m(z)

�m(z) =
MX
m=1

aHeme
H
mb

�m(1� c� cz�b(z))� z
(2.37)

Being �b(z) the positive solution to the next transcendental equation,

�b(z) =
1

M

MX
m=1

1

�m(1� c� cz�b(z))� z
(2.38)

Now, recalling the relations in (2.35) and (2.36), applying the limit z ! 0 in the expres-
sion of �m(z) and assuming sHs =1, we obtain the convergence of the desired quantities

sHR̂�1Rs and sHRR̂
�1
s which concludes the proof,

sHR̂�1Rs � lim
z!0

�m(z) = 1
1�c

�m(z) s.t. a = s; b = Rs

sHRR̂
�1
s � lim

z!0
�m(z) = 1

1�c

�m(z) s.t. a = Rs; b = s

�
Proof of (2.16)

The proof is based on [19], cf. also [71, Proposition 1]. First, note that according to
(2.12), sHRs can be expressed as,

sHRs =�
�
d

dx
sH(IM + xR)

�1s

�
jx=0

(2.39)

Now, the key in the proof is to recall the G-25 estimator of the real Stieljes transform
of R stated in (2.9) and (2.10),

sH(IM + xR)
�1s � sH(IM + �(x)R̂)�1s (2.40)

Where �(x) is the positive solution of the next equation,
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�(x)
h
1� c+ c

M
Tr
h
(IM + �(x)R̂)

�1
ii
= x

Now considering the asymptotic equivalence (2.40) in (2.39) we obtain the next relation,

sHRs � �
�
d

dx
sH(IM + �(x)R̂)

�1s

�
jx=0

= sH(IM + �(x)R̂)
�2d�(x)

dx
R̂sjx=0

Finally, after easy manipultaions it is easy to check that �(0) = 0 and that d�(x)
dx
jx=0 = 1

and as a consequence we obtain the next relation, which concludes the proof,

sHRs � sHR̂s

�
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Chapter 3

Optimal shrinkage for large sample
LMMSE

3.1 Introduction

In this chapter shrinkage corrections of the sample LMMSE estimators are dealt with. The
proposed methods overcome the main drawbacks of the sample LMMSE (1.9), as they
are robust to the small sample size regime and consistent under the doubly asymptotic
regime where both the sample size M and the observation dimension N grow towards
in�nity at a �xed rate c. Two type of estimators are considered, a shrinkage of the sample
LMMSE ws=�R̂

�1s and a more general case w =�1R̂�1s+�2s, where the sample LMMSE
is shrunk towards a Bartlett �lter, which is known to give better results for small sample size
regimes. The design of the shrinkage factors, which characterize the estimators, is based on
the minimization of the MSE, as it was stated in (1.11). Moreover, as direct minimization
of the MSE leads to unrealizable estimators, we propose to use RMT. This mathematical
tool leads to obtain consistent estimates which are asymptotically optimal, in an MSE
sense. Moreover, the numerical simulations will highlight that the proposed methods not
only are consitent and robust to the small sample size regimes, but also outperform the
sample LMMSE in any of the sample sizes considered herein, i.e. M

N
2 (0; 1).
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3.2 Optimal shrinkage of the sample LMMSE estima-
tor

We begin this chapter by introducing which are the optimal, though unrealizable �lters for
direct shrinkage of the sample LMMSE �lter and shrinkage of the sample LMMSE towards
a Bartlett �lter. They are presented in the next two lemmas and they serve as a benchmark
to develop the proposed estimators in the upcoming sections.

Lemma 3.1 Assume that a set of observations fy(n)gNn=1 ful�lling the model in (1.1), with
assumptions (a)-(e) is available. Given fy(n)gNn=1, consider the problem of estimating
the unknown x(n) in (1.1), based on minimizing the MSE in (1.5), when the estimator
x̂lb;s(n) = w

H
lb;sy(n) is a linear shrinkage of the sample LMMSE towards a Bartlett �lter,

i.e. w =�1R̂�1s+�2s. This problem is mathematically formulated as follows,

x̂lb;s(n) = w
H
lb;sy(n); wlb;s = argmin

w
MSE (w)

s:t:w =�1R̂
�1s+�2s

(3.1)

Then, de�ning �lb , (�1 ; �2)T , the optimal solution for this problem is given by the
next shrinkage factors,

�lb =



 
sHRssHR̂�1s� sHR̂�1Rs

sHR̂�1RR̂
�1
s� sHR̂�1ssHRR̂

�1
s

!
sHR̂�1RR̂

�1
ssHRs� sHR̂�1RssHRR̂

�1
s

(3.2)

Proof: See section 3.4.

�
Next we present which is the optimal shrinkage factor when a direct shrinkage of the

LMMSE method is considered. Indeed, this is a particular case of the �lter presented in
Lemma 3.1.

Lemma 3.2 Assume that a set of observations fy(n)gNn=1 ful�lling the model in (1.1), with
assumptions (a)-(e) is available. Given fy(n)gNn=1, consider the problem of estimating
the unknown x(n) in (1.1), based on minimizing the MSE in (1.5), when the estimator
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x̂l;s(n) = wH
l;sy(n) is a linear shrinkage of the sample LMMSE, i.e. w =�R̂

�1s. This
problem is mathematically formulated as follows,

x̂l;s(n) = w
H
l;sy(n); wl;s = argmin

w
MSE (w)

s:t:w =�R̂�1s
(3.3)

Then, the optimal solution for this problem is given by the next shrinkage factor,

�l =
sHR̂�1s

sHR̂�1RR̂
�1
s

(3.4)

Proof: See section 3.4.

�
Interesting enough (3.4) highlights that the sample LMMSE is not in general an optimal

estimator in the MSE sense. Indeed, it is obtained when substituting R for the SCM
in the optimal shrinkage factor (3.4) and as a consequence is only optimal in the large
sample size regime. Indeed, the sample LMMSE neither is in general a consistent estimate
of the LMMSE estimator within the general asymptotics framework considered herein.
Namely, as it can be easily derived from [19, Section V.A] R�1s � (1 � c)R̂�1s, where
� denotes almost surely convergence. I.e. the consistent estimator of R�1s within the
general asymptotics where M;N !1 with M=N ! c 2 (0; 1) is (1� c)R̂�1s.

The expressions of the optimal shrinkage LMMSE estimators in (3.2) and (3.4) highlight
the dependance on the unknown R. As a consequence they are not realizable. A possible
approach to circumvent this problem is to substitute the unknown R for its sample esti-
mate. This point of view is proposed by some authors dealing with analogous shrinkage
estimation problems, e.g. [33] in the context of optimal portfolio allocation in quantitative
�nance. Nonetheless, that approach entails an estimation risk that may lead to a per-
formance degradation. Indeed, applying this strategy to any of the proposed shrinkage
estimators of the sample LMMSE, i.e. (3.2) and (3.4), leads to the conventional sample
LMMSE method (1.9), as �ljR=R̂ =  and �lbjR=R̂ = (; 0)T , and as a consequence the
potencial bene�ts of the shrinkage approach are lost.

In the next section, in order to tackle this problem another strategy based on RMT is
proposed. This strategy, not only leads to counteract the small sample size degradation
and to obtain a realizable estimator, but also yields consistent estimates of the optimal,
though unrealizable, shrinkage estimators.
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3.3 Optimal shrinkage for large sample LMMSE

Next, let introduce by means of two theorems the main contributions of this chapter.
Namely, we propose methods which are consistent estimates of the optimal, though unre-
alizable, shrinkage methods introduced in the last section by means of expressions (3.1) to
(3.4). The tool enabling these results is RMT, as it provides a suitable framework to study
the stochastic convergence of the involved random matrices, under the general asymptotic
regime where both the observation dimension M and the sample size N tend to in�nity at
a �xed rate M=N ! c 2 (0; 1).

Theorem 3.1 Let de�ne ��lb , (��lb;1 ; ��lb;2)
T , then a realizable and consistent estimate

of the optimal shrinkage of the sample LMMSE towards a Bartlett �lter (3.1), within the
general asymptotics where M;N !1, M=N ! c 2 (0; 1), reads as follows,

�xlb;s(n) = �wH
lb;sy(n); �wlb;s=��lb;1R̂

�1s+��lb;2s

��lb =



 
(1�c)2sHR̂ssHR̂�1s�(1� c)

csHR̂�1s

!
sHR̂ss

H
R̂�1s�1

(3.5)

Proof: See section 3.4.

�
Remark: The proposed estimator in (3.5) incorporates implicitly the robustness to small
sample size regimes, i.e. M � N , as it is a shrinkage estimator and it is based on the RMT
approach, that implicitly considers this scenario through M=N ! 1. In the numerical
results section, more insights about the robustness to the small sample size regime will
be given. Moreover, in that section, it will be demonstrated that (3.5) outperforms the
traditional sample LMMSE estimator (1.9) in all the sample size regimes dealt with herein,
i.e. M=N 2 (0; 1). This makes sense as the design of the proposed estimator, based on
minimizing the MSE, embraces both the large and small sample size regimes, i.e. N >> M
and M t N , respectively. More speci�cally it is valid for any ratio M=N 2 (0; 1). On
the contrary, the conventional sample LMMSE is a rather ad hoc method, as it does
not consider the minimization of the MSE when having the SCM instead of the true
correlation R in the expression of the LMMSE method. Indeed, the presence of the SCM
entails an estimation risk, which leads to a performance degradation in any sample size
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regime. Obviously, this performance degradation is more evident when we approach the
small sample size regime.

In order to gain more insights about how the shrinkage estimation framework a¤ects
the method proposed in Theorem 3.1 it is interesting to study the asymptotic values of
the shrinkage �lter when c tends to its extreme values, i.e. c! 1 and c! 0 which denote
a small and large sample size regime, respectively. Thus, when the sample dimension is
much larger than the observation dimension, i.e. c ! 0, the shrinkage �lter tends to the
traditional LMMSE implementation.

c! 0) �wlb;s ! R̂�1s (3.6)

This behavior makes sense as in this situation, R̂ is the optimal estimator of R and as
a consequence R̂�1s! R�1s, i.e. the traditional implementation of the LMMSE tends
to the optimal LMMSE �lter in (1.4). With regard to the case where c ! 1 , i.e. in the
small sample size regime, it is easy to check the following relation for the shrinkage �lter
holds,

c! 1) �wlb;s !
 

sHR̂�1s

sHR̂ss
H
R̂�1s�1

!
s (3.7)

I.e. in the small sample size regime, the shrinkage �lter tends to a scaling of a Bartlett
type �lter an it disregards the contribution of the sample LMMSE, as it has in general
worse performance than a Bartlett type �lter. The expressions (3.6) and (3.7) highlight the
rationale behind the shrinkage estimation paradigm, which optimally combines, by means
of a weighted average, a sample based estimator with an estimator based on available a
priori information. Thus, on the one hand, in the large sample size regime, as the sample
LMMSE is optimal, the proposed shrinkage method tends to it. On the other hand, as
in the small sample size regime an estimator based on a Bartlett type �lter may behave
better than the sample LMMSE, the proposed shrinkage �lter tends to a scaling of a
Bartlett type �lter. Another interpretation is in terms of bias variance tradeo¤. I.e. the
proposed shrinkage estimator aims to optimize the bias variance tradeo¤ to approach to
the minimum MSE. In this regard, the bias is mainly coming from the Bartlett type �lter,
whereas the variance is coming from the sample based method.

Next, by means of a new theorem, we present the consistent estimate for the optimal
shrinkage of the sample LMMSE method in (3.3).
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Theorem 3.2 A realizable and consistent estimate of the optimal shrinkage of the sample
LMMSE �lter (3.3), within the general asymptotics where M;N !1, M=N ! c 2 (0; 1),
reads as follows,

�xl;s(n) = �wH
l;sy(n); �wl;s=��lR̂

�1s

��l = (1�c)2
(3.8)

Proof: See section 3.4.

�
As it was reasoned out for the more general case exposed in Theorem 3.1, the proposed

estimator in Theorem 3.2 not only is realizable and consistent, but also robust to the small
sample size regime. This is due to its shrinkage structure and to rely on the RMT approach,
as it was discussed previously. Moreover, the numerical simulations section, will highlight
that is outperforms the conventional sample LMMSE in any of the sample size regimes
considered herein, i.e. M=N 2 (0; 1). It is also worth observing that the method proposed
in Theorem 3.2 is likely to behave worse than the one in Theorem 3.1, especially in the
small sample size regime. This will be con�rmed in the numerical simulations section. The
reason for that behavior is that the method in Theorem 3.1 incorporates more a priori
information in the structure of the estimator, through the presence of the Bartlett �lter
w = s, which is known to behave better than the sample LMMSE in the small sample size
regime.

3.4 Proofs

In this section, the main results of this chapter will be proven. Namely, the statements in
question are Lemma 3.1, Lemma 3.2, Theorem 3.1 and Theorem 3.2.

Proof of Lemma 3.1

Let de�ne � , (�1 ; �2)T , 
 ,
�
R̂�1s ; s

�
and �o the optimal shrinkage factors, then

the MSE optimization problem in (3.1) may be reformulated as,

�o=argmin
�

MSE (w = 
�)
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Bearing in mind the expression of the MSE in (1.5) and recalling that according to
assumption (b) in our data model (1.1), R =ssH +Rn, this problem can be rewritten as
follows,

�o=argmin
�

�H
HR
�+(1��H
Hs� sH
�) (3.9)

Notice that in (3.9) a real scalar function is optimized with respect to a complex vector.
Therefore, in order to �nd the optimal solution @MSE(�)

@�H
= 0must be solved, [1]. Indeed, the

optimization problem in (3.9) is analogous to the one involved in the theoretical LMMSE
method, see (1.3), (1.5) and recall that R =ssH +Rn. Therefore, bearing in mind these
statements and after easy manipulations, it is easy to check that the optimal shrinkage
factors read,

�o =
�

HR


��1

Hs (3.10)

Now, recalling that 
 ,
�
R̂�1s ; s

�
and taking into account the property of multipli-

cation of partitioned matrices [1], the expression (3.10) yields,

�o = 

 
sHR̂�1RR̂

�1
s sHR̂�1Rs

sHRR̂
�1
s sHRs

!�1�
sHR̂�1s
1

�
At this point, applying the de�nition of the inverse of a matrix and again applying the

property of multiplication of partitioned matrices we obtain that the optimal shrinkage
factors read,

�o =



 
sHRssHR̂�1s� sHR̂�1Rs

sHR̂�1RR̂
�1
s� sHR̂�1ssHRR̂

�1
s

!
sHR̂�1RR̂

�1
ssHRs� sHR̂�1RssHRR̂

�1
s

(3.11)

Which concludes the proof as (3.11) coincides with (3.2).

Proof of Lemma 3.2

The proof of this lemma is analogous to the one in Lemma 3.1, as the shrinkage �lter
w =�R̂�1s in (3.3) is a particular case of the shrinkage �lter w =�1R̂�1s+�2s in Lemma
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3.1. Namely, let de�ne  = R̂
�1
s, then the MSE optimization problem in (3.3) may be

reformulated as,

�o=argmin
�

MSE (w =  �)

Bearing in mind the expression of the MSE in (1.5) and recalling that according to
assumption (b) in our data model (1.1), R =ssH +Rn, this problem can be rewritten as,

�o=argmin
�

�H HR �+(1� �H Hs� sH �) (3.12)

At this point, the optimal solution is found as in (3.9), i.e. it is the solution to @MSE(�)
@�� =

0, which yields,

�o =
�
 HR 

��1
 Hs (3.13)

Now, recalling that  = R̂
�1
s, (3.13) leads to the next expression,

�o =
sHR̂�1s

sHR̂�1RR̂
�1
s

(3.14)

Which concludes the proof as (3.14) coincides with (3.4).

Proof of Theorem 3.1

The proof for Theorem 3.1 is readily obtained from Lemma 3.1 and Lemma 2.1. Namely,
the claim that the estimator is realizable is evident from the expression of its shrinkage
factors, (3.5). With regard to the consistency of the estimator it su¢ ces to proof that the
shrinkage factor ��lb in (3.5) is a consistent estimate of the optimal shrinkage vector �lb
in (3.2), i.e. ��lb � �lb within the general asymptotics framework where M;N ! 1 at a
constant rate M=N ! c 2 (0; 1).
In order to proof that ��lb � �lb, let use the asymptotic equivalences presented in Lemma

2.1, in the theoretical LMMSE shrinkage vector (3.2). This yields the next asymptotic
equivalent expression for ��lb,
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�lb �


 
sHR̂ss

H
R̂�1s�(1� c)�1

(1� c)�2sHR̂�1s� sHR̂�1s(1� c)�1

!
(1� c)�2sHR̂ssHR̂�1s�(1� c)�2

(3.15)

And, after straightforward manipulations, expression (3.15) may be rewritten as follows,

�lb �


 
(1�c)2sHR̂ssHR̂�1s�(1� c)

csHR̂�1s

!
sHR̂ss

H
R̂�1s�1

= ��lb (3.16)

Which concludes the proof, as it highlights that the shrinkage factor in (3.5) is a consis-
tent estimate of the optimal shrinkage factor in (3.2) within the general asymptotics where
M;N !1 and M=N ! c 2 (0; 1).

Proof of Theorem 3.2

The proof of this theorem follows the same guideline than the one for Theorem 3.1.
Namely, the statement that the estimator is realizable is clear from the expression of
its shrinkage factors (3.8), as they do not depend on any unknown parameter. With
regard to the consistency, it su¢ ces to proof that the shrinkage factor ��l in (3.8) is a
consistent estimate of the theoretical factors �l in (3.4), i.e. we have to demonstrate that
��l � �l within the general asymptotics framework where M;N ! 1 at a constant rate
M=N ! c 2 (0; 1). To this end, let use the asymptotic equivalences presented in Lemma
2.1, in the theoretical LMMSE shrinkage vector (3.4). This yields the next asymptotic
deterministic equivalent expression for �l,

�l � (1�c)2 (3.17)

Which concludes the proof as according to (3.8) ��l = (1�c)2 and as a consequence �l � ��l.
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3.5 Numerical simulations

This section is devoted to study the performance of the consistent shrinkage estimators
proposed in (3.5) and (3.8) by means of numerical simulations. Namely, the performance
of the proposed estimators, in terms of MSE, is compared to that of the optimal LMMSE
and its traditional sample implementation in (1.4) and (1.9), respectively. According to
the expressions of the estimators and the MSE in (1.5), the parameters controlling the
simulations are c, M

N
, R̂, R,  and s. In order to specify the models for these parameters

an array signal processing application is considered. Nonetheless, they are �exible enough
to be applied to other �elds of signal processing, e.g. in spectrum analysis. According to
(1.1),

R =ssH +Rn (3.18)

Without loss of generality  , E
�
jx(n)j2

�
is set to 1 in all the simulations. Regarding

the steering vector s associated to the parameter of interest x(n), a uniform linear array
(ULA) is assumed, i.e.,

[s]m =
ej� sin �0mp

M
(3.19)

Where �0 is the Direction of Arrival (DOA) of the signal of interest and
p
M is just a

normalization factor yielding ksk2 = 1, see [1]. Moreover, for the simulation purposes �0 is
set to 0. With regard to Rn, a model that has been extensively used in signal processing,
e.g. in spectrum estimation and array signal processing see [1] and [2], is,

Rn = SPS
H + �2I (3.20)

Where, [S]m;k =
ej� sin �kmp

M
, m = 0; : : : ;M � 1 is the antenna index, k = 1; : : : ; K de�nes

a set of interferers and �k is the DOA of the k-th interferer. P is the covariance matrix
of the interferers and �2 is the power of an AWGN. For the simulations we consider,
�k = (2 + 10(k � 1)) �180 with k = 1; : : : ; K; K = M � 1. P is considered to be diagonal
and the elements of the diagonal are set according to �2k = 10�SIRk=10 8k = 1; : : : ; K.
Where SIRk is the ratio, in dB, between the power of the signal of interest and the power
of the k-th interferer. The value for SIRk depends on the simulation and will be speci�ed
below. With regard to �2 it is set to �2 = 10�SNR=10, where SNR is the signal to noise
ratio in dB and it will be speci�ed below depending on the simulation. The parameter c
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is set to c = M
N
. Moreover, di¤erent values of M are considered herein M = 6, M = 10

and M = 50 corresponding to low, intermediate and high M . With regard to N it varies
ful�lling that M=N 2 (0; 1). Finally, the sample correlation is

R̂ =
1

N

N�1X
n=0

y(n)yH(n) (3.21)

And y(n) is generated according to the data model in (1.1) and taking into account
the comments of the last paragraph, i.e.,

y(n) = x(n)s+
KX
k=1

xk(n)sk+�(n); 1 � n � N (3.22)

Where sk is the k-th column of S, xk(n) is the signal associated to the k� th interferer
and �(n) is the noise vector. Moreover, y(n) is assumed to be iid among samples and
distributed according to a multivariate complex gaussian, namely,

y(n) � CN (0;R)
x(n) � CN (0; ); xk(n) � CN (0; �2k);�(n) � CN (0; �2I):

(3.23)

Next, with the simulation conditions at hand, the performance of the estimators pro-
posed in this chapter is assessed. Thus, the MSE of the proposed shrinkage LMMSE
estimators in (3.5) and (3.8) is compared to the MSE of the theoretical LMMSE estimator
(1.4) and its sample implementation (1.9), when N varies to simulate di¤erent sample size
regimes, i.e. within the range where M

N
2 (0; 1). Namely, the MSE of the estimators is

computed by substituting the expression of the �lter of each estimator in (1.5). In �gure
3.1 this simulation is carried out for a high observation dimension, namely M is set to 50.
In this situation the proposed shrinkage methods in (3.5) and (3.8) tend to be the optimal
shrinkage estimators, i.e. they are (M;N)-consistent estimates of the optimal though un-
realizable methods in (3.2) and (3.4), respectively. Moreover the SNR is set to 5 dB and
the SIRk to 10 dB. Observing the plot one can see that the performance of the shrinkage
of the sample LMMSE towards the Bartlett �tler is extraordinary. Indeed it is almost the
same than the performance of the theoretical LMMSE, which is the lower bound. More-
over, this �gure highlights that the proposed methods outperform the sample LMMSE for
any of the sample sizes considered herein i.e. M

N
2 (0; 1), specially in the small sample size

regime where the improvement is huge. Moreover, they proof to be robust to small sample
size situations, i.e. when M

N
! 1. It is also interesting to observe that for M

N
! 0 the

shrinkage, the theoretical and the sample LMMSE estimators tend to converge. This is
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Figure 3.1: Performance comparison between proposed Shrinkage LMMSE estimators in (3.5)
and (3.8), theoretical LMMSE estimator (1.4) and its sample based implementation (1.9), when
SNR= 5 dB, M=50 and SIRi=10 dB.

because in this case the SCM is the MVUE of R and it is well conditioned and as con-
sequence the sample LMMSE tends to the optimal LMMSE estimator. The shrinkage
estimators are aware of this situation and re�ect it by means of the shrinkage factors,
which lead to obtain the sample LMMSE, as it was noted in (3.7) and as it can be readily
inferred from (3.8). Moreover observe that among the proposed shrinkage estimators, the
shrinkage of the sample LMMSE towards the Bartlett �lter behaves better than direct
shrinking the sample LMMSE. This is because the former incorporates more information
about the problem. Namely, as in (3.8), it incorporates through the sample LMMSE infor-
mation obtained from the measures and also a priori information consisting of the power
and the DOA of the parameter of interest. Nonetheless, it also incorporates more a priori
information consisting of the knowledge that for small sample size regime the Bartlett �lter
may give better performance than the sample LMMSE. I.e. (3.5) optimally combines the
sample LMMSE and the Bartlett �lter by giving more weight to the sample LMMSE in
large sample size situations and more weight to the Bartlett �lter in small sample size
regimes. This behavior will be further investigated in �gure 3.6.
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Next in �gure 3.2 the same type of simulation than for �gure 3.1 is carried out, but for
an intermediate observation dimension. Namely,M is set to 10, the SNR is set to 5 dB and
the SIRk to 0 dB. The aim is to assess the impact in the performance of the methods of
loweringM to an intermediate value, this study is completed in the upcoming �gures, where
M is further reduced. One can see that the proposed methods are still robust to the small
sample size regime and that outperform the sample LMMSE in any sample size regime,
specially in the small sample size situation. Moreover, one can see that the proposed
shrinkage of the sample LMMSE towards the Bartlett �lter still clearly outpeforms the
other proposed method, consisting of a direct shrinkage of the sample LMMSE, though the
di¤erence is reduced in the small sample size regime. The reason for this behavior is that
the latter shrinks the sample LMMSE towards zero and as a consequence its performance
for M

N
! 1 is almost the same whatever the value of M is. On the other hand, the other

proposed method shrinks the sample LMMSE towards the Bartlett �lter, cf. see (3.7), and
therefore its performance for M

N
! 1 depends on the value of M , and also SIRk as it will

be shown in the upcoming �gures.
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Proposed Shrinkage sample LMMSE towards Bartlett filter
Traditional sample implementation LMMSE filter
Theoretical LMMSE filter
Proposed Shrinkage sample LMMSE

Figure 3.2: Performance comparison between proposed Shrinkage LMMSE estimators in (3.5)
and (3.8), theoretical LMMSE estimator (1.4) and its sample based implementation (1.9), when
SNR= 5 dB, M=10 and SIRi=10 dB.
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In �gure 3.3 the in�uence of the power of the interferers on the performance of the
estimators is studied. Thus, the same simulation than for �gure 3.2 is carried out, but
now for a stronger interference power, namely now SIRk is set to 0 dB. Observe that
in this situation, the improvement in performance when considering the shrinkage of the
sample LMMSE towards the Bartlett �lter (3.5) instead of only the shrinkage of the sample
LMMSE (3.8) is reduced. This is because in the previous �gure the additional a priori
information incorporated in the former, by means of the Bartlett �lter, was more valuable.
Namely, the Bartlett �lter is optimum when considering that only the signal of interest
and additive white noise are present in the scenario, which is equivalent to say that SIRk
is large. And the previous �gure was closer to that situation as the SIRk was set to 10 dB
and now to 0 dB. Moreover, regarding the performance comparison between the proposed
shrinkage estimators, the sample and the theoretical LMMSE the same comments than for
�gure 3.2 can be extracted.
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Proposed Shrinkage sam ple LMMSE

Figure 3.3: Performance comparison between proposed Shrinkage LMMSE estimators in (3.5)
and (3.8), theoretical LMMSE estimator (1.4) and its sample based implementation (1.9), when
SNR= 5 dB, M=10 and SIRi=0 dB.
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Next, in �gures 3.4 and 3.5 the e¤ect of a low observation dimension, i.e. lowM , on the
performance of the proposed shrinkage methods is studied, namelyM is set to 6. This study
is important because these estimators were obtained based on the asymptotic equivalences
in Lemma 2.1, that are obtained within the asymptotic regime were M;N ! 1 at a
constant rate c. The rest of simulation parameters for �gures 3.4 and 3.5 are the same than
for �gures 3.2 and 3.3, respectively. The simulations results highlight that the proposed
shrinkage estimators are still robust to the small sample size regime and that outperform the
sample LMMSE in all the sample size regimes, specially for M

N
! 1 where the improvement

is huge. Moreover, one can see that the proposed method based on shrinking the sample
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Figure 3.4: Performance comparison between proposed Shrinkage LMMSE estimators in (3.5)
and (3.8), theoretical LMMSE estimator (1.4) and its sample based implementation (1.9), when
SNR= 5 dB, M=6 and SIRi=10 dB.
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LMMSE towards the Bartlett �lter slightly outperforms the other proposed method, based
on direct shrinking the sample LMMSE, though the gain in performance is reduced com-
pared to previous �gures. The rationale for this behavior is the same than for �gures
3.3.and 3.2. I.e. the latter shrinks the sample LMMSE towards zero and thus its perfor-
mance for M

N
! 1 is almost the same whatever the value ofM is, whereas the former shrinks

the sample LMMSE towards the Bartlett �lter and as a consequence its performance for
M
N
! 1 depends on the value of M and SIRk.
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Figure 3.5: Performance comparison between proposed Shrinkage LMMSE estimators in (3.5)
and (3.8), theoretical LMMSE estimator (1.4) and its sample based implementation (1.9), when
SNR= 5 dB, M=6 and SIRi=0 dB.

Finally, in �gure 3.6, the shrinkage e¤ect is exempli�ed. Namely, we run a montecarlo
simulation to plot j��lb;1j2 and j��lb;2j2 of the proposed method in (3.5), consisting of shrinking
the sample LMMSE towards the Bartlett �lter. In this case the simulation conditions are
the same than for �gure 3.3, i.e. SNR= 5 dB, M = 10 and SIRi = 0 dB and N varies
ful�lling M

N
2 (0; 1). Recall that the proposed shrinkage �lter reads �wlb;s=��lb;1R̂

�1s+��lb;2s.
Moreover, recall that the behavior of this �lter is as follows. On the one hand when the
sample size increases, i.e. M

N
decreases, �wlb;s tends to give more weight to the sample

LMMSE than to the Bartlett �lter. Indeed when M
N
! 0 the proposed �lter �wlb;s tends
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Figure 3.6: Shrinkage Factors of the proposed shrinkage method in (3.5) when M = 10, SNR=
5 dB and SIRi=0 dB.

to disregard the Bartlett �lter and give most of the weight to the sample LMMSE. This is
because the sample LMMSE is the optimal �lter for the large sample size regime, see also
(3.6). And e¤ectively, �gure 3.6 highlights this behavior, as M

N
decreases j��lb;1j2 tends to

increase whereas j��lb;2j2 tends to decrease. On the other hand, as in general in the small
sample size regime the Bartlett �lter yields better performance than the sample LMMSE,
�wlb;s has the next behavior. As MN increases, �wlb;s tends to give more weight to the Bartlett
�lter than to the sample LMMSE. Indeed in the extreme case where M

N
! 1, the proposed

�lter �wlb;s tends to disregard the sample LMMSE and give most of the weight to the
Bartlett �lter. And e¤ectively �gure 3.6 highlights this behavior as well. Namely, As M

N

increases, j��lb;2j2 tends to increase whereas j��lb;1j2 tends to decrease.
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Chapter 4

Optimal shrinkage for large sample
MVDR

4.1 Introduction

The aim of this chapter is to design an estimator that overcomes the drawbacks of the
sample MVDR method exposed in (1.9). Namely, the aim is to obtain an estimator which
is robust to the small sample size regime and that preserves the optimality of the sample
MVDR in the large sample size. To this end, we have at our disposal two powerfool tools,
shrinkage estimation and random matrix theory, namely G-estimation. More speci�cally,
the approach is analogous to the design of the estimators proposed in chapter 3 to overcome
the drawbacks of the sample LMMSE, and can be summarized as follows. First, in section
4.2 we propose to use a shrinkage of the sample MVDR estimator towards a Bartlett �lter.
This structure permits to combine the optimality of the sample MVDR for large sample
size and avoid its performance degradation in the small sample size as in this situation
the estimator is shrunk towards the Bartlett �lter w = s. Moreover, the optimal shrinkage
factor is obtained as the result of optimizing the MSE subject to the common MVDR
constraint, i.e. wHs = 1. Unfortunately, this optimal shrinkage factor depends on the
unknown correlation matrix. In order to circumvent this problem, in section 4.3, we propose
to apply random matrix theory to obtain a consistent estimate of that shrinkage factor in
the doubly asymptotic regime where both the sample size N and the observation dimension
M grow at a �xed rate. Thus, by means of the use of random matrix theory not only we
are obtaining a consistent and realizable estimator, but also we are implicitly tackling the
situation whereM andN may be comparable. I.e. the robustness of the designed estimator
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to the small sample size regime is due to both the shrinkage and the RMT tools. Indeed,
random matrix theory permits to obtain an optimal shrinkage factor when both M and
N tend to in�nity at a �xed rate. Moreover, the numerical simulations highlight that the
proposed shrinkage method outperforms the conventional sample MVDR method in any
of the sample sizes considered herein, namely M=N ! c 2 (0; 1), being the improvement
dramatic when we approach the small sample size regime, i.e. when M=N ! 1.

4.2 Optimal shrinkage of the sample MVDR estima-
tor

As it was pointed out in chapter 1, the performance of the sample MVDR (1.9) is rapidly
degraded when the sample size N is compared to the observation dimension M . This is
due to its strategy of replacing R�1 by its sample estimate R̂�1 relying on the fact that
the sample correlation is the ML estimator of the correlation. Nonetheless, when N is
comparable to M , the sample estimate R̂�1is no longer a good estimate. Indeed, it is
an ill conditioned estimator, see e.g. [25], this means that when N t M and M > N
inverting R̂ dramatically ampli�es the estimation error. In fact, when M < N the sample
correlation matrix is not even invertible. On the other hand, when M � N the sample
MVDR is optimal as R̂ is the MVUE estimator of R. Therefore in order to overcome the
small sample size degradation of the sample MVDR and mantain its optimality in the large
sample size we propose a shrinkage of the sample MVDR �lter towards a Bartlett �lter,

w =�1R̂
�1s+�2s

Note that the original expression of the sample MVDR is w = R̂�1s
sHR̂�1s

, but the denomi-
nator is just a normalization quantity. Therefore for the shrinkage structure purposes, we
can consider �1R̂�1s or � R̂�1s

sHR̂�1s
and we prefer to use the former to avoid cumbersome

calculations. According to the shrinkage estimation theory, in order to improve a sample
estimator, whose estimation error mostly comes from the estimation variance, we may in-
troduce a bias such that the overall estimation error is diminished. Note that this role
is played by the term �2s. I.e. we are shrinking the sample MVDR �lter w = R̂�1s

sHR̂�1s
to-

wards w = s. Indeed, this latter �lter is obtained by substituting in the theoretical MVDR
the correlation matrix by an estimate consisting of the identity matrix, which is a biased
estimation of the theoretical MVDR, w = R�1s

sHR�1s , but which has not estimation variance.

With the �lter structure at hand, w =�1R̂�1s+�2s, we may formulate the problem
that permits the design of the optimal linear estimator of x(n) in (1.1), when there is not
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knowledge about its second moment. I.e. the aim is to solve the problem stated in (1.11),
when we impose the constraint w 2 C , wHs =1 in the �lter to avoid the dependence
on the second moment of the parameter to estimate, when f(MSE (w)) = MSE (w) and
when the assumptions about the linear model of the observed signal (1.1) are (a)-(d). This
problem and its solution are formalized in the next lemma.

Lemma 4.1 Assume that a set of observations fy(n)gNn=1 ful�lling the model in (1.1), with
assumptions (a)-(d) is available. Given fy(n)gNn=1, consider the problem of estimating
the unknown x(n) in (1.1), based on minimizing the MSE in (1.5), when the estimator
x̂c;s(n) = wH

c;sy(n) is a linear shrinkage of the sample MVDR towards a Bartlett �lter,
i.e. w =�1R̂�1s+�2s, and when the constraint wHs =1 is imposed in the �lter to avoid
the lack of knowledge about the second moment of x(n). This problem is mathematically
formulated as follows,

x̂c;s(n) = w
H
c;sy(n); wc;s = argmin

w
MSE (w)

s:t:wHs =1;w =�1R̂
�1s+�2s

(4.1)

Then, de�ning �c , (�1 ; �2)
T , the optimal solution for this problem is given by the

next shrinkage factors,

�c =

 
sHRssHR̂�1s� sHR̂�1Rs

sHR̂�1RR̂
�1
s� sHR̂�1ssHRR̂

�1
s

!
G

(4.2)

Where, G , sHR̂�1s(sHRssHR̂�1s� sHR̂�1Rs)�sHRR̂�1
ssHR̂�1s+ sHR̂�1RR̂

�1
s

Proof: See section 4.4.

�
As it was carried out for the shrinkage of the sample LMMSE, it is interesting to study

the particular case of direct shrinkage of the sample MVDR. I.e. w =�1R̂�1s in lemma
4.1. Following the same procedure than for the proof of lemma 4.1, this leads to obtain
the next optimal shrinkage factor, in an MSE sense,

�c;p =
1

sHR̂�1s
(4.3)
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Thus, the optimal shrinkage �lter reads w = R̂�1s
sHR̂�1s

, i.e. coincides with the sample
MVDR. Therefore, direct shrinkage of the sample MVDR does not help to improve its
performance. Moving on to something else, the expression for the optimal shrinkage MVDR
estimator in (4.2) highlights the dependance on the unknown R and as a consequence that
it is not realizable. At this point, in other contexts dealing with shrinkage estimation
and facing an analogous problem the authors propose to substitute the unknown R for its
sample estimate [33]. Nonetheless, that approach entails an estimation risk that may lead
to a performance degradation. Indeed, if one applies this strategy to (4.2), it turns out

that obtains the sample MVDR, i.e. �cjR=R̂ =
�

1
sHR̂�1s

; 0
�T
, and as a consequence the

potential bene�ts of shrinkage estimation disappear. Herein, in order to tackle this problem
and obtain a realizable method, another strategy is proposed. We propose to use random
matrix theory, or more speci�cally G-estimation, to obtain an (M,N)-consistent estimate
of the optimal shrinkage factor in (4.2). Namely, the general asymptotics framework where
M ;N ! 1 at a constant rate M=N ! c 2 (0; 1) is adopted as it is enough general to
study the consistency for di¤erent sample sizes. E.g. it deals with the situations where M
may be comparable to N , i.e. small sample size and it embraces the classical large sample
size assumption for obtaining consistent estimators, where the observation dimension M
is �xed and the sample size N is assumed to tend to in�nity. This powerful approach is
presented in the next section.

4.3 Optimal shrinkage for large sample MVDR

In this section an (M,N)-consistent estimate of the optimal, though unrealizable, shrinkage
factors of the method proposed in (4.2) is exposed and relevant comments are discussed.
This method, based on recent results from random matrix theory, is presented in the next
theorem,

Theorem 4.1 Let de�ne ��c , (��c;1 ; ��c;2)T , and let assume the normalization ksk2 = 1,
then a realizable and (M,N)-consistent estimate of the optimal shrinkage MVDR estimator
(4.2), within the general asymptotics framework where M;N ! 1 at a constant rate
M=N ! c 2 (0; 1), reads as follows,

�xc;s(n) = �wH
c;sy(n); �wc;s=��c;1R̂

�1s+��c;2s
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��c =

 
(1� c)(sHR̂ssHR̂�1s(1� c)� 1)

csHR̂�1s

!
sHR̂�1s(sHR̂ss

H
R̂�1s(1�c)2 � 2(1� c) + 1)

(4.4)

Proof: See section 4.4.

�
This (M,N)-consistent estimator, shows implicitly the robustness to the small sample

size regime. On the one hand, its underlying structure corresponds to a shrinkage estimator,
which are known to be robust to the small sample size, see chapter 2. On the other hand,
as we will see in the proof of this theorem, it relies on random matrix theory, i.e. the
consistency is obtained within the framework of general asymptotics, that embraces the
scenario M=N ! 1. Moreover, in the numerical results section, the robustness to the
small sample size will be studied in more detail. Furthermore, in that section it will be
demonstrated that (4.4) outperforms the conventional sample MVDR estimator (1.9) in
all the sample size regimes dealt with herein, i.e M=N 2 (0; 1) and that the improvement
in performance is dramatic when M=N ! 1.

At this point, it is interesting to study the asymptotic expression of the consistent
shrinkage MVDR �lter in Theorem 4.1 when c ! 1 and c ! 0, as it gives more insights
about the designed estimator. In the former case, after straightfordward manipulations
the next asymptotic expression is obtained,

c! 1) �wc;s ! s (4.5)

This is a meaningful result as in the small sample size regime the sample implementation
of the MVDR is no longer a good estimate and in general may display worse performance
than an estimator based on a Bartlett �lter, which does not use any information about the
available samples. On the other hand, in the large sample size regime, i.e. when c! 0, it
is easy to obtain that the consistent shrinkage MVDR �lter tends to the traditional sample
implementation,

c! 0) �wc;s !
R̂�1s

sHR̂�1s
(4.6)

This is a meaningful result as in this case we are in the framework of classical asymptotics
that is commonly assumed to obtain the sample MVDR, i.e. M �xed and N tending to
in�nity. I.e in this situation R̂ is the MVUE of R, it is well conditioned and it is consistent
and as a consequence the sample implementation of the MVDR tends to the theoretical

54



�lter (1.7). Another interesting approach is the bayesian point of view, that usuallly is
given in shrinkage estimation. As c ! 1 the amount of information obtained from the
measured samples is lower and it is more convenient that the shrinkage �lter tend to the
"a priori" information about the �lter represented by w / s. On the other hand, as c! 0,
the amount of information obtained from the measured samples is much more relevant
than the a priori information and therefore it is logic that the shrinkage �lter tend to
w / R̂�1s

sHR̂�1s
.

4.4 Proofs

In this section we provide the proofs of the main results of this chapter, namely Lemma
4.1 and Theorem 4.1.

Proof of Lemma 4.1

First, let substitute the expression (1.5) of the MSE in the optimization problem (4.1)
of Lemma 4.1. This leads to obtain the next expression,

wo = argmin
w

wHRnw+
��1�wHs

��2
s:t:wHs =1;w =�1R̂

�1s+�2s
(4.7)

Now, let apply the constraint wHs =1 to the objective function, which reduces it to
wHRnw. After this, observe that as R =ssH + Rn, the resulting problem is not af-
fected if the considered objective function is wHRw. Therefore, (4.7) can be reformulated
as,

wo = argmin
w

wHRw

s:t:wHs =1;w =�1R̂
�1s+�2s

(4.8)

At this point, let de�ne � , (�1 ; �2), 
 ,
�
R̂�1s ; s

�
and let �o denote the optimal

shrinkage factors. Then, the optimization problem (4.8) can be rewritten as a function of
�,

�o = argmin
�

�H
HR
�

s:t:�H
Hs =1
(4.9)
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Observe that this optimization problem is analogous to the one involved in the MVDR
estimator (1.6). Therefore, following the same procedure, i.e. using the method of Lagrange
multipliers [72], we readily obtain that the optimum shrinkage factors are,

�o =

�

HR


��1

Hs

(
Hs)H (
HR
)�1
Hs
(4.10)

At this point, applying to (4.10) the property of multiplication of partitioned matrices

[1], bearing in mind that 
 ,
�
R̂�1s ; s

�
and after straightforward manipulations, the

next expression is obtained for the optimal shrinkage factors,

�o =

 
sHRssHR̂�1s� sHR̂�1Rs

sHR̂�1RR̂
�1
s� sHR̂�1ssHRR̂

�1
s

!
G

(4.11)

BeingG = sHR̂�1s(sHRssHR̂�1s� sHR̂�1Rs)�sHRR̂�1
ssHR̂�1s+ sHR̂�1RR̂

�1
s. Which

concludes the proof, as (4.11) is equal to expression (4.2) in Lemma 4.1.

Proof of Theorem 4.1

The claim that (4.4) is a realizable estimator follows from its expression. With regard to
the consistency, the proof is readily obtained from Lemma 4.1, which provides the optimal
shrinkage of the sample MVDR towards a Bartlett �lter, and Lemma 2.1, which are a
set of results from random matrix theory that pave the way to study the consistency of
that optimal �lter within the general asymptotics framework. Namely, in order to prove
Theorem 4.1 it must be shown that ��c in (4.4) is a consistent estimate of the theoretical
shrinkage factor �c in (4.2). In order to attain this aim let use the RMT results in
Lemma 2.1 in the theoretical MVDR shrinkage vector (4.2). This leads to obtain the next
asymptotic equivalence for �c,

�c �

 
sHR̂ss

H
R̂�1s�(1� c)�1

(1� c)�2sHR̂�1s� sHR̂�1s(1� c)�1

!
sHR̂�1s(sHR̂ss

H
R̂�1s�2(1� c)�1 + (1� c)�2)

(4.12)

Now, after straightforwards manipulations, one obtains that the quantitiy in (4.12) is
asymptotically equivalent to the next expression, within the general asymptotics where
M;N !1 and M=N ! c 2 (0; 1),
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�c �

 
(1� c)(sHR̂ssHR̂�1s(1� c)� 1)

csHR̂�1s

!
sHR̂�1s(sHR̂ss

H
R̂�1s(1�c)2 � 2(1� c) + 1)

= ��c (4.13)

This highlights that ��c is asymptotically equivalent to �c. I.e. ��c in Theorem 4.1 is
an (M,N)-consistent estimator of �c in Lemma 2.1, within the general asymptotics where
M;N ! 1 at a constant rate M=N ! c 2 (0; 1), and as a consequence the proof is
concluded.

4.5 Numerical simulations

In this section the performance of the estimator proposed in this chapter, based on shrink-
ing the sample MVDR (4.4), is compared to the conventional sample MVDR estimator
(1.9) and the theoretical MVDR method (1.7) by means of numerical simulations. More
speci�cally, the performance is analyzed in terms of the MSE of each method. The aim is to
gain more insights about the performance of the proposed shrinkage method for any of the
sample size situations considered herein, i.e. M=N 2 (0; 1). Namely, it will be interesting
to observe its robustness to the small sample size regime, whether it dominates the sample
MVDR within the set M=N 2 (0; 1), the shrinkage e¤ect and whether it remains close to
the performance of the theoretical MVDR for any sample size regime. In order to conduct
the simulations the same simulation environment than in chapter 3 is considered. I.e. an
array signal processing is considered to specify the value of the simulation parameters.
These are c, M

N
, R̂, R, and s. The model for R̂, R, and s is speci�ed in equations (3.18)

to (3.23). Moreover, M is considered to be �xed and the sample size N to be variable to
emulate any of the sample size regimes considered herein, i.e. M=N 2 (0; 1). Three values
of M are considered herein 50, 10 and 6, correponding to a high, intermediate and low
observation dimension, respectively. Next the performance comparison of the proposed
shrinkage of the sample MVDR, the sample MVDR and the theoretical MVDR is exposed.
To this end, the expressions of their �lters (4.4), (1.9) and (1.7), respectively, have been
substituted in the expression of the MSE (1.5).

In �gure 4.1 the performance of the proposed shrinkage MVDR method is compared to
the theoretical and the sample MVDR for a high observation dimension, namely M is set
to 50. This simulation is interesting because it paves the way to get more insights about
the performance upper bound of the proposed method compared to the theoretical and the
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Figure 4.1: Performance comparison between proposed Shrinkage MVDR estimator in (4.4) ,
theoretical MVDR estimator (1.7) and its sample based implementation (1.9), when SNR= 5
dB, M=50 and SIRi=10 dB.

sample MVDR. The reason is that for a high observation dimension M , the proposed
method tends to be the optimal shrinkage estimator as it is an (M;N)-consistent estimate
of the optimal though unrealizable method in (4.2). Moreover the SNR is set to 5 dB and
the SIRk to 10 dB. Observing this �gure one can see the overwhelming superiority of the
proposed shrinkage MVDR method compared to the sample MVDR. The improvement in
performance is huge for small and intermediate sample size regimes. Indeed the proposed
method outperforms the sample MVDR in any of the sample size regimes considered herein,
i.e. M=N 2 (0; 1). Moreover, in �gure 4.1 one can see that the proposed method remains
very close to the theoretical MVDR method for any sample size situation and that it is
robust to the small sample regime. Figure 4.1 also suggests that for M

N
! 0 the shrinkage,

the theoretical and the sample LMMSE estimators tend to converge, this behavior will be
even more clearer in the upcoming �gures. This behavior is due to the optimality of the
sample MVDR for large sample size regimes. Namely, in this situation the SCM is the
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MVUE of R and it is a well conditioned estimator of R and as consequence the sample
MVDR tends to the theoretical MVDR estimator. The shrinkage estimators are aware of
this situation and re�ect it by means of the shrinkage factors, which lead to obtain the
sample MVDR, as it was noted in (4.6).

In �gure 4.2, the observation dimension is �xed to an intermediate value, namely M =
10 antennas. The e¤ect of reducing M respect to �gure 4.1 is important, as the proposed
method was envisaged for a large M , i.e. it is an (M;N)-consistent estimate of (4.2) and
as a consequence is optimal for large M . Therefore, it is important to get more insights
about whether the proposed method is robust to reduce M . This study will be completed
with �gures 4.4 and 4.5, where M is even lower. Moreover, in the current �gure rather
strong interferences are considered to be present in the scenario. Namely the ratio between
the power of the signal of interest and the power of the i-th interferer is set to SIRi=0 dB
for any i. Furthermore, the SNR is �xed to 5 dB. This �gure highlights that although M
is reduced until an intermediate value of 10, respect to the previous �gure, the proposed
method still outperforms clearly the sample MVDR, specially in the small sample size
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Figure 4.2: Performance comparison between proposed Shrinkage MVDR estimator in (4.4) ,
theoretical MVDR estimator (1.7) and its sample based implementation (1.9), when SNR= 5
dB, M=10 and SIRi=0 dB.
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regime and it remains close to the theoretical MVDR. Moreover, it is interesting to observe
how as N increases, all the methods tend to converge. Recall that on the one hand this is
due to the optimality of the sample MVDR, in this situation. On the other hand, when N
is large compared to M , the proposed method is shrunk towards the sample MVDR, see
(4.6). More insights about the shrinkage e¤ect will be given in �gure 4.6.

In �gure 4.3 the same type of simulation than in �gure 4.2 is carried out. The only
di¤erence is that now a weaker interterference is considered, namely SIRi=10 dB for any i
to assess the in�uence of the interferers power on the performance of the estimators. Figure
4.3 highlights that the improvement in performance of the proposed shrinkage method with
respect to the sample MVDR is even more clear for any sample size regime. Namely, the
convergence of the proposed method to the theoretical MVDR is faster than in the sample
MVDR. Moreover, the improvement in the small sample size regime of the proposed method
with respect to the sample MVDR is even higher. The reason for this behavior is that in
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Figure 4.3: Performance comparison between proposed Shrinkage MVDR estimator in (4.4) ,
theoretical MVDR estimator (1.7) and its sample based implementation (1.9), when SNR= 5
dB, M=10 and SIRi=10 dB.
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the proposed method we are shrinking the sample MVDR towards the Bartlett �lter and
it is well known that the Bartlett �lter is optimal when only the signal of interest and
additive white noise are present in the scenario. This is equivalent to say that SIRk is
large and in the current �gure we are closer to this situation than in the previous one.
Moreover, the rest of the comments inferred from �gure 4.2 apply for 4.3 as well. I.e.
the robustness of the proposed shrinkage method to the small sample size situation, the
statistical dominance of it compared to the sample MVDR and the convergence of all the
methods for large sample size regimes.

Next, in �gures 4.4 and 4.5 the same type of simulation than in �gures 4.2 and 4.3
is carried out, respectively. The di¤erence is that now M is reduced to a relatively low
observation dimension, namely M is set to 6 antennas. This simulation completes the
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Figure 4.4: Performance comparison between proposed Shrinkage MVDR estimator in (4.4) ,
theoretical MVDR estimator (1.7) and its sample based implementation (1.9), when SNR= 5
dB, M=6 and SIRi=0 dB.

study of the e¤ect of decreasing M in the performance of the proposed estimator, which
was started in �gures 4.1 to 4.3. Interestingly enough, �gures 4.4 and 4.5 highlight that
the performance of the proposed method is robust to this situation. Altough it is not so
close to the theoretical MVDR as in the previous �gures, it still outperforms the sample
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MVDR in any of the sample size regimes considered herein, i.e. M=N 2 (0; 1). Indeed, the
improvement of performance is still huge in the small sample size regime.
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Figure 4.5: Performance comparison between proposed Shrinkage MVDR estimator in (4.4) ,
theoretical MVDR estimator (1.7) and its sample based implementation (1.9), when SNR= 5
dB, M=6 and SIRi=10 dB.

In �gure 4.6 more insights about the shrinkage e¤ect are given. Namely, we run a
montecarlo simulation to plot j��c;1j2 and j��c;2j2 of the proposed method in (4.4), consisting
of shrinking the sample MVDR towards the Bartlett �lter. Moreover, the simulation
conditions are the same than for �gure 4.2, i.e. SNR= 5 dB, M = 10 and SIRi = 0
dB and N varies ful�lling M

N
2 (0; 1). Recall that the proposed shrinkage �lter reads

�wc;s=��c;1R̂
�1s+��c;2s and that its behavior is as follows. On the one hand when the sample

size increases, i.e. M
N
decreases, �wc;s tends to give more weight to the sample MVDR than

to the Bartlett �lter. Indeed when M
N
! 0 the proposed �lter �wc;s tends to disregard the

Bartlett �lter and give most of the weight to the sample MVDR. This is because the sample
MVDR is the optimal �lter for the large sample size regime, see also (4.6). And e¤ectively,
�gure 4.6 highlights this behavior, as M

N
decreases j��c;1j2 tends to increase whereas j��c;2j2

tends to decrease. On the other hand, as in general in the small sample size regime the
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Figure 4.6: Shrinkage Factors of the proposed shrinkage method in (4.4) when M = 10, SNR=
5 dB and SIRi=0 dB.

Bartlett �lter yields better performance than the sample MVDR, �wc;s has the next be-
havior. As M

N
increases, �wc;s tends to give more weight to the Bartlett �lter than to the

sample MVDR. Indeed in the extreme case where M
N
! 1, the proposed �lter �wc;s tends

to disregard the sample MVDR and give most of the weight to the Bartlett �lter. And
e¤ectively �gure 4.6 highlights this behavior as well. Namely, As M

N
increases, j��c;2j2 tends

to increase whereas j��c;1j2 tends to decrease.
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Chapter 5

Optimal shrinkage of the sample
LMMSE using summary statistics

5.1 Introduction

In this chapter, we present a method that overcomes the drawbacks of the conventional
sample LMMSE that were discussed in section 1.3. Moreover, it is an alternative to the
shrinkage method, based on a random matrix theory approach, exposed in (3.8). Namely,
the method proposed in this chapter is also based on shrinking the sample LMMSE as in
(3.8). Nonetheless, in order to obtain the optimal shrinking factor a di¤erent approach is
proposed. Namely, instead of direct minimization of the MSE, we suggest to minimize the
average MSE. Then, assuming that the observed data is Gaussian distributed, it turns out
that the optimal shrinkage factor depends on the summary statistics of a complex inverse
Wishart distribution, namely on the �rst two moments. Therefore, as this information
is known we come up with a shrinkage estimator of the sample LMMSE that is optimal
when considering that the observed data is Gaussian and the average of the MSE as a cost
function.
This chapter is organized as follows, in section 5.2 the design criterion for the shrinkage

LMMSE estimator to be designed is presented. Then, in section 5.3 the derivation of the
optimal shrinkage LMMSE is exposed. Finally, in section 5.4 numerical simulations that
assess the performance of the proposed estimator are presented.
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5.2 Optimal Shrinkage based on minimizing the aver-
age MSE

Let begin this section by recalling that the MSE in the estimation of x(n), when considering
the linear model in (1.1) for the observed signal y(n) and a linear estimator x̂(n) = wHy(n)
of x(n), reads as follows for the generic �lter w,

MSE (w) , E
h��x(n)�wHy(n)

��2i =
wHRw+(1�wHs� sHw)

The approach followed in Chapters 3 and 4 to design the estimators is based on a
constrained optimization of this MSE with respect to w, when considering a shrinkage
�lter of the form w =�1R̂

�1s+�2s, and then applying RMT results to obtain a realizable
and consistent estimate of the optimal �lter. In this chapter we consider also a shrinkage
�lter, namely a shrinkage of the sample LMMSE, i.e. w =�R̂�1s as in (3.8). Nevertheless,
herein we propose a di¤erent approach, instead of the design based on direct optimization
of the MSE and the application of RMT results to obtain a realizable and asymptotically
optimum estimator. First, observe that when considering a �lter based on shrinking the
sample LMMSE the MSE is indeed a conditional expectation,

MSE
�
w =�R̂�1s

�
, E

h��x(n)�wHy(n)
��2 j R̂i (5.1)

As a consequence, the MSE in this case is a random quantity. Thus, by taking the
expectation of (5.1) over R̂, we obtain a statistical average of the outcomes of the MSE,
which arise from the values of the support of the random matrix R̂. I.e. we obtain an
average MSE. Therefore, we propose, in the next statement, to design a shrinkage �lter
w =�R̂�1s, which optimizes the average MSE.

Problem statement:
Consider that a set of N observations fy(n)gNn=1 are available and that are modeled ac-
cording to (1.1) when assumptions (a)-(f) hold. Then, obtain an estimate of x(n) in (1.1)
by solving the next optimization problem,

x̂ls;s(n) = ŵ
H
ls;sy(n)

ŵls;s = argmin
w

ER̂
h
Ex;n

h��x(n)�wHy(n)
��2 j R̂ii

s:t: w =�̂ls;sR̂
�1s

(5.2)
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Observe that this problem formulation is a particular case of the general problem posed
in (1.11) which aims to summarize all the problems dealt with in this master thesis. Namely,
the functional f(�) corresponds to the expectation operator E [�], which is taken over R̂.

5.3 Optimal shrinkage of the sample LMMSE based
on summary statistics

In this section we propose an estimator, based on shrinking the sample LMMSE, which
solves the problem stated in (5.2). I.e. a method relying on a �lter w =�R̂�1s which
optimizes the average MSE. To this end, �rst we expose the result in the next theorem and
then the derivation and the corresponding comments are exposed.

Theorem 5.1 Let consider that a set of N observations fy(n)gNn=1, modeled according to
(1.1) with assumptions (a)-(f), are available. Moreover, let consider a linear estimator
of the parameter x(n) in (1.1), based on shrinking the sample LMMSE and let de�ne
cf = M=N . Then, the estimator that optimizes the average MSE, i.e. that solves the
problem stated in (5.2), reads as follows,

x̂ls;s(n) = ŵ
H
ls;sy(n); ŵls;s=�̂ls;sR̂

�1s

�̂ls;s = ((1�cf )2 � 1
N2 )

(5.3)

Proof: The proof is provided below in this section.

�
Remark: As the estimator proposed in Chapter 3 in (3.8), the method proposed herein in
(5.3) relies on a shrinkage of the sample LMMSE, i.e. on a �lter of the type w =�R̂�1s.
Nonetheless, the shrinkage factor � is obtained following a di¤erent procedure. On the one
hand, the method in (3.8) was obtained by direct optimization of the MSE and then using
an asymptotic approximation, relying on RMT results, of the optimal though unrealizable
shrinkage factor (3.4). On the other hand, the method proposed in this chapter in (5.3),
optimizes the average MSE and does not require any asymptotic approximation. Never-
theless, the price to pay is that the observed data is assumed to be Gaussian distributed,
as assumption (f) in (1.1) is presumed to hold. On the contrary, the method (3.8), based
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on RMT, does not require any assumption about the distribution of the observations.

Proof of Theorem 5.1

Next, we prove that the proposed shrinkage LMMSE method in (5.3) solves the problem
stated in (5.2). To this end, observe that (5.2) may be rewritten as follows, after introducing
the signal model for y(n) in (1.1) into (5.2), after solving the inner conditional expectation,
which is operated upon the joint pdf of x(n) and n(n) and bearing in mind the model of
R in assumption (b) of (1.1),

�̂ls;s = argmin
�s

j�sj2 E
h
sHR̂�1RR̂

�1
s
i
+

 � (��s + �s)E
h
sHR̂�1s

i (5.4)

Where with some abuse of notation, the subindex in the expectation, indicating that it is
operated upon R̂ has been dropped. The solution to (5.4) is found after setting the �rst
derivate of the cost function equal to zero and after straigthforward manipulations,

�̂ls;s =
E
h
sHR̂�1s

i
E
h
sHR̂�1RR̂

�1
s
i (5.5)

Therefore, in order to obtain the proposed shrinkage LMMSE estimator (5.2), the sum-

mary statistics, namely the �rst moment, of the random quantities sHR̂�1s and sHR̂�1RR̂
�1
s

must be speci�ed. To this end, let de�neY as the juxtaposition of the available realizations
of y(n) in (1.1), i.e. y(n) is the n-th column of Y. Moreover, let X 2 CM�N be a random
matrix, whose columns are iid according to a standard complex Gaussian distribution,
namely [X]:;k � CN (0; IM) 8k. Then, we can write the available data as a function of X,
indeed Y d

= R1=2X, where d
= denotes equality in distribution. Moreover, as R̂ =1=NYYH

we can rewritte the SCM as a function of X. Namely, applying the property of the inverse
of a multiplication of matrices we obtain,

R̂�1 d
= NR�1=2(XXH)�1R�1=2 (5.6)

Substituting (5.6) in (5.5) the next equalities can be readily veri�ed,

E
h
sHR̂�1s

i
= NsHR�1=2E

h
(XXH)�1

i
R�1=2s (5.7)

67



E
h
sHR̂�1RR̂

�1
s
i
=

N2sHR�1=2E
h
(XXH)�1(XXH)�1

i
R�1=2s

(5.8)

Now, let 
 , XXH , then as [X]:;k � CN (0; IM) 8k, 
�1 is distributed according to
a complex inverse Wishart distributions with N degrees of freedom and scale parameter
IM , see [73], i.e. 
�1 � CW�1

M (N; IM). Therefore, it turns out that in order to obtain the
optimal shrinkage factor (5.5) the �rst and second moments of a complex inverse Wishart
distribution must be found. Namely, in (5.7) the �rst moment is needed, which according
to [73, eq. 39] reads component-wise E[ [
�1]i;j] = 1=(N �M) if i = j 8i 2 f1; : : : ;Mg
and 0 otherwise. I.e. E[
�1] = 1=(N �M)IM , which substituted in (5.7) yields,

E
h
sHR̂�1s

i
=

N

N �M sHR�1s (5.9)

In order to obtain the proposed estimator it remains to obtain an expression for (5.8),
namely for E[
�1
�1]. To this end, the second moment of the complex inverse Wishart is
needed, which according to ( [73, eq. 41]) reads component-wise as follows,

E[[
�1]i;j[
�1]l;k] =
[IM ]i;j [IM ]l;k +

1
N�M [IM ]l;j [IM ]i;k

(N �M)2 � 1 (5.10)

Now, observe that the p-th element of the main diagonal of E[
�1
�1] reads
MP
i=1

E[[
�1]p;i[

�1]i;p]

8p. Moreover, according to (5.10),

E[[
�1]p;i[

�1]i;p] =

(
1

(N�M)((N�M)2�1) ; p 6= i
N�M+1

(N�M)((N�M)2�1) ; p = i

Therefore the elements of the main diagonal of E[
�1
�1] read 8p 2 f1; : : : ;Mg,

MX
i=1

E[[
�1]p;i[

�1]i;p] =

N

(N �M)((N �M)2 � 1) (5.11)

With regard to the elements of E[
�1
�1] out of the main diagonal, they are charac-

terized by the expression
MP
j=1

E[[
�1]i;j[

�1]j;k] with i 6= k 8i; k 2 f1; : : : ;Mg. Therefore
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according to (5.10) we can conclude that 8i; k 2 f1; : : : ;Mg with i 6= k the next equality
holds,

MX
j=1

E[[
�1]i;j[

�1]j;k] = 0 (5.12)

As a consequence, considering (5.11) and (5.12), E[
�1
�1] is given by,

E[
�1
�1] =
N

(N �M)((N �M)2 � 1)IM (5.13)

Recalling that 
 , XXH and inserting (5.13) in (5.8) we obtain the desired expression for
the denominator of the optimal shrinkage factor (5.5),

E
h
sHR̂�1RR̂

�1
s
i
=

N3

(N �M)((N �M)2 � 1)s
HR�1s (5.14)

Finally, substituting (5.9) and (5.14) in the expression of the optimal shrinkage factor
in (5.5) and after straightforward manipulations we obtain the optimal shrinkage LMMSE
estimator for our problem statement in (5.2).

x̂l;s(n) = w
H
l;sy(n)

wl;s=
�
(1� cf )2 � 1

N2

�
R̂�1s

(5.15)

This concludes the proof as (5.15) coincides with the proposed shrinkage estimator in (5.3).

�
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5.4 Numerical simulations

In this section the performance of the proposed estimator in this chapter in (5.3), based
on a shrinkage of the sample LMMSE, which optimizes the average MSE and which uses
summary statistics of the complex inverse Wishart, is assessed by means of numerical
simulations. As this method intends to overcome the performance degradation of the
sample LMMSE in the small sample size regime, we compare its performance with that of
the sample and the theoretical LMMSE methods in (1.9) and (1.4), respectively. Moreover,
we compare it also with the shrinkage of the sample LMMSE based on optimizing the MSE
and using RMT tools, i.e. with (3.8), as it intends to be an alternative to that method.
The performance comparison is conducted in terms of the MSE.

According to the expressions of the estimators and the MSE in (1.5), the parameters
controlling the simulations are c, M

N
, R̂, R,  and s. As in chapter 3, in order to specify the

models for these parameters an array signal processing application is considered, though
the models are �exible enough to be applied to other �elds of signal processing, e.g. in
spectrum analysis. The models for these simulation parameters are the same than the ones
in chapter 3, namely we consider the models speci�ed in equations (3.18) to (3.23). The
only di¤erence is that the parameter M will be speci�ed depending on the simulations.
Moreover in all the �gures the SNR is set to 5 dB and the SIRi to 10 dB for all the
interferers and N varies ful�lling that M

N
2 (0; 1) for a �xed M .

The �rst simulation, exposed in �gure 5.1, compares the sample LMMSE method,
the theoretical LMMSE and the proposed Shrinkage LMMSE method in this chapter when
M = 5. It can be observed that the proposed method dramatically outperforms the sample
LMMSE in the small sample size regime, i.e. when M

N
! 1. This behavior is due to the

robustness of the shrinkage methods to the small sample size regimes. Moreover, �gure 5.1
shows that the proposed method outperforms the conventional sample LMMSE for any of
the sample sizes considered herein, i.e. M

N
2 (0; 1) and remains closer to the theoretical

LMMSE estimator. Another comment worth mentioning is the evolution as the sample
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size tends to be large, i.e. as M
N
! 0. It can be observed that in this situation all the

estimators tend to converge to the optimal method, i.e. the theoretical LMMSE. The
rationale for that behavior in the case of the sample LMMSE is that in this situation
the SCM is the MVUE of R and it is well conditioned. That is to say in that case
R̂�1s ! R�1s. With regard to the proposed method based on shrinking the sample
LMMSE, when cf = M

N
! 0 implies that N is large compared to M and that R̂�1 ! R�1,

and as a consequence the proposed shrinkage LMMSE in (5.3) tends to the theoretical
LMMSE in (1.4),

ŵls;s=((1� cf )2 �
1

N2
)R̂�1s

cf!0�! wl = R
�1s

6 8 10 12 14 16 18 20 22 24
101

100

101

102

103

M
S

E

N

Sample LMMSE
Theoretical LMMSE
Proposed Shrinkage LMMSE
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Figure 5.1: Performance comparison between proposed Shrinkage LMMSE based on summary
statistics (5.3), theoretical LMMSE estimator (1.4) and sample LMMSE (1.9) when M = 5,
SNR = 5 dB and SIRi = 10 dB.
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The next set of simulations is presented in �gures 5.2 to 5.4. They compare, forM = 3,
M = 5 and M = 10 respectively, the performance of the two proposed methods based on
shrinking the sample LMMSE. The one proposed in this chapter in (5.3) and the one,
based on RMT, which was proposed in chapter 3 in (3.8). For the simulation purposes, the
theoretical LMMSE is also considered and all the simulation parameters, except M , are
the same than in �gure 5.1. This set of simulations highlights that both shrinkage methods
are robust to the small sample size regime, i.e. M

N
! 0, though the method proposed in

this chapter in (5.3), is slightly better. This behavior is due to the fact that the shrinkage
method based on RMT is optimum when M;N ! 1 at a constant rate c, see Theorem
3.2. That is to say, that method is obtained by �nding an asymptotic equivalent of the

4 6 8 10 12 14

100.2

100.1

100

100.1

M
SE

N

Theoretical LMMSE
Proposed Shrinkage LMMSE based on
summary statistics
Shrinkage LMMSE based on RMT

Figure 5.2: Performance comparison between proposed Shrinkage LMMSE based on summary
statistics (5.3), theoretical LMMSE estimator (1.4) and Shrinkage LMMSE based on RMT
(3.8) when M=3 , SNR = 5 dB and SIRi = 10 dB.

72



optimal though unrealizable method (3.4) by means of RMT tools. As a consequence as in
these �guresM and N are �nite, a degradation in performance may arise. On the contrary,
the shrinkage method (5.3), based on averaging the MSE and using the summary statistics
of the Complex Inverse Wishart, does not need any asymptotic approximation. Therefore,
it makes sense that it behaves better than the one based on RMT. The same rationale
explains why as M becomes larger both methods tend to have the same performance,
e.g. see �gure 5.4. Anyway, it is important to observe that the performance degradation
of the method based on RMT, due to the fact of having a �nite M and N , is rather
small, compared to an alternative shrinkage estimator as (5.3) that does not assume any
asymptotic approximation.

6 7 8 9 10 11 12 13 14 15

100.2

100.1

100

100.1

M
SE

N

Shrinkage LMMSE based on RMT
Theoretical LMMSE
Proposed Shrinkage LMMSE based on
 summary statistics

Figure 5.3: Performance comparison between proposed Shrinkage LMMSE based on summary
statistics (5.3), theoretical LMMSE estimator (1.4) and Shrinkage LMMSE based on RMT
(3.8) when M=5.when SNR = 5 dB and SIRi = 10 dB.
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Figure 5.4: Performance comparison between proposed Shrinkage LMMSE based on summary
statistics (5.3), theoretical LMMSE estimator (1.4) and Shrinkage LMMSE based on RMT
(3.8) when M=10, SNR = 5 dB and SIRi = 10 dB.
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Chapter 6

Conclusions and Future Research
Topics

This master thesis has dealt with the performance degradation, in the small sample size
regime, of the sample LMMSE and sample MVDR. These are the reference methods in
linear estimation of a parameter as they are optimal, in an MSE sense, provided that the
number of available realizations of the observed data is large compared to its dimension.
Thus, these sample methods are used in a wide range of applications in signal processing
such as beamforming in array signal processing or spectrum analysis. In order to counteract
the peformance degradation of the sample LMMSE and the sample MVDR methods, in
the small sample size regime, corrections based on a¢ ne transformations of these methods
have been considered.

This approach, stemming from shrinkage estimation theory, permits to combine the
optimal properties of the sample methods for large sample size regimes and to counteract
the performance degradation in small sample size situations. The idea is that the a¢ ne
transformation is introducing a bias in the original sample estimators with the aim that the
overall estimation error is reduced. I.e. a bias variance tradeo¤ is trying to be optimized.
Thus, the shrinkage �lters proposed herein consist of a scaling of the sample LMMSE and
the more general case where both the sample LMMSE and the sample MVDR are combined,
by means of a weighted average, with a Bartlett �lter. The rationale behind this more
general method is that the Bartlett �lter is a constant estimator of the theoretical LMMSE
or MVDR �lters, as it is obtained when substituting the unknown correlation matrix by
the identity matrix. As a consequence, the Bartlett �lter displays certain bias but zero
variance in the estimation of the theoretical �lter, as it has a deterministic expression.
In terms of shrinkage estimation this is called to shrink the sample methods towards the
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Bartlett �lter and it is introducing a bias in the estimation with the aim of diminishing
the overall estimation error when combining it with the sample LMMSE or MVDR. Worth
mentioning is also the fact that for small sample size regime the shrinkage �lter tends
to be a weighted version of the Bartlett �lter and tends to disregard the contribution of
the sample methods. This is a desirable behavior as the Bartlett �lter perform in general
better than the sample estimators in the small sample size regime. Thus, we obtain a
robust estimator to the small sample size regime. On the other hand, for a large sample
size situation, the shrinkage methods tend to the sample methods, which is a desirable
property as in this situation they are optimal.

As direct optimization of the MSE leads to unrealizable shrinkage methods, random
matrix theory or more speci�cally G-estimation has been considered to obtain consistent
estimators of the optimal shrinkage LMMSE and MVDR methods in chapters 3 and 4,
respectively. Namely, the consistency is studied within the general asymptotic analysis
where both the observation dimension and the sample size tend to in�nity but at a �xed
rate. This generalizes the classical concept of consistency where only the sample size tends
to in�nity while the observation dimension remains �xed. Indeed, general asymptotic
analysis naturally deals with both the small, intermedium and large sample size regimes.
Thus, the random matrix based approach leads to obtain shrinkage methods that are
realizable, consistent and robust to the small sample size regime.

Numerical simulations have shown a huge improvement of the proposed shrinkage meth-
ods compared to their conventional counterparts, i.e. the sample LMMSE and MVDR, in
the small sample size regimes. Indeed, the statistical dominance of the proposed methods
with respect to their sample couterparts has been highlighted in any of the sample size
regimes considered herein. I.e. recalling that M denotes the observation dimension and N
the sample size, the shrinkage methods outperform both the sample LMMSE and MVDR
whenever M=N ! c 2 (0; 1). Moreover, another advantage of this RMT based approach
is that it does not rely on any assumption about the distribution of the observations.

In this regard, future research should extend the proposed estimators to the general
case where M may be even lower than N , i.e. to M=N ! c 2 (0;1). It would be
also interesting to extend these shrinkage methods, based on RMT, to the more general
case where one aims to estimate a vector of parameters observed through a linear model.
Moreover, as the strategy based on using shrinkage estimation and random matrix theory
has shown to be so powerful, we could try to apply it to other classical methods such as
Maximum Likelihood (ML) or Least Squares (LS). In this regard other shrinkage estimation
techniques such as the LASSO and ridge regression could be further explored.
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In chapter 5, an alternative to RMT based on multivariate analysis has been proposed.
Namely, this is an alternative for the particular case of gaussian observations and for a
shrinkage of the sample LMMSE based on a weighted version of it. The proposed approach
is based on minimizing the average MSE. This leads to an optimal shrinkage �lter that
depends on the moments of an inverse complex Wishart distribution. Therefore, as this
statistical information is known we can obtain an optimal shrinkage estimator that mini-
mizes the average MSE. Numerical simulations have shown that this approach dramatically
outperforms the sample LMMSE and slightly outperforms the shrinkage LMMSE based on
RMT for a low observations dimension as it does not rely on any asymptotic approximation.
Related to this approach, a future topic of research could be to study the applicability of
this multivariate analysis based method to other type of distributions. Namely, a possible
candidate is the elliptical distribution, which generalizes several distributons such as the
Gaussian, the Cauchy or the Student-t.
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