
Title Methods for frequent pattern mining in data streams within the MOA

system

Volume 1

Student Massimo Quadrana

Director Ricard Gavaldà Mestre

Department Llenguatges i Sistemes Informàtics

Date 27 june 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41806709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

BarcelonaTech
Facultat d’Informàtica de Barcelona (FIB)

Methods for frequent pattern mining in

data streams within the MOA system

Departament de Llenguatges i Sistemes Informàtics

Director: Ricard Gavaldà Mestre

Final project of :

Massimo Quadrana

Academic year 2011-2012

A mio papà Franco,

a mia mamma Antonella,

alle mie sorelline Ilaria e Sara,

siete sempre con me,

ovunque io sia.

To my father Franco,

to my mother Antonella,

to my little sisters Ilaria and Sara,

you are always with me,

wherever I am.

Abstract

Data stream mining has been intensively investigated in the last decades,

since researchers figure out the necessity to mine efficiently very huge quan-

tities of data coming, e.g., from Internet.

Among the its several applications, a large effort has been made to find

such way to mine efficiently Frequent Itemsets over a possibly infinite stream

of data.

In this work we provide a robust, efficient, practical, usable and extend-

able solution to perform Frequent Itemset mining over data streams. We

study the peculiar requirements of elaborating data online, we analyze dif-

ferent solutions that have been proposed so far by the scientific community,

then we implement the IncMine algorithm due to Cheng et al. with several

instructions. The solution is implemented in the Massive Online Analysis

(MOA) framework for stream mining.

We perform several testings, with both synthetic and real data streams,

to testify the quality of the proposed solution.

I

Acknowledgements

I am extremely grateful to my advisor, Ricard Gavaldà Mestre. His knowl-

edge, his motivation, and his support were fundamental in every moment.

Nothing of this work would have been done without him.

I would like thank my old and new friends, thank for being here at my

side in the good and bad times. No words can express how I am really

grateful to you. Your friendliness, words and support were essential in this

amazing experience.

Most of all, I am grateful to my family, my mother Antonella and my

sisters Ilaria and Sara. Thank for your patience and your endless support,

without you I would never have been anyone.

III

Contents

Abstract I

Acknowledgements III

1 Introduction 1

1.1 The problem . 1

1.2 Goals of the project and results obtained 3

1.3 Work planning . 3

2 Background knowledge 5

2.1 The Frequent Itemset Mining problem 5

2.1.1 The Apriori principle 7

2.1.2 Summarizing Itemsets 10

2.2 Frequent Closed Itemset mining 11

2.3 Frequent Itemset Mining applications 12

2.4 Data Stream mining . 14

2.4.1 Concept Drift . 15

2.5 Massive Online Analysis (MOA) 16

3 Previous works 19

3.1 Preliminaries . 19

3.2 A general Incremental Closed Pattern Mining solution 21

3.3 MOMENT . 22

3.4 CLOSTREAM . 23

3.5 NEWMOMENT . 23

3.6 INCMINE . 24

3.7 CLAIM . 24

3.8 Comparison of algorithms and conclusions 24

V

4 Architecture and implementation of the proposed solution 29

4.1 Overview . 30

4.2 The INCMINE algorithm . 32

4.2.1 Semi-Frequent Closed Itemsets 33

4.2.2 The incremental update algorithm 35

4.3 CHARM for Frequent Closed Itemset mining 37

4.4 Data structures in depth . 37

4.5 Efficient inverted indexing . 40

4.6 IncMine within the MOA environment 41

4.7 Example of client class . 42

5 Experimental results 45

5.1 Generating synthetic data streams 45

5.1.1 Experiments . 47

5.2 Introducing concept drift . 53

5.2.1 Reaction to sudden drift 56

5.2.2 React to sigmoidal drift 58

5.3 Experiments with real data 60

6 Conclusions and future works 67

A 73

A.1 ECLAT Algorithm . 73

A.2 FP-GROWTH Algorithm . 73

A.3 Properties of the Closure Operator 73

A.4 CHARM Properties . 74

A.5 A general Incremental Closed Pattern Mining solution 75

A.6 MOMENT . 77

A.6.1 Data structure . 77

A.6.2 The incremental update algorithm 79

A.7 CLOSTREAM . 81

A.7.1 Data structure . 81

A.7.2 The incremental update algorithm 81

A.8 NEWMOMENT . 83

A.8.1 Data structure . 84

A.8.2 The incremental update algorithm 85

A.9 CLAIM . 86

A.9.1 Data Structure . 89

A.9.2 The incremental update algorithm 90

Chapter 1

Introduction

In this section we present an overview of the entire work. We mention the

problem we have studied and goals we wanted to achieve. We provide the

intended schedule and an economic estimate of the work done.

1.1 The problem

Our work belongs to the area of Data Mining. A commonly accepted def-

inition for data mining is the discovery of models from data. As computer

scientists, we are also interested in the efficiency of the methods, their scal-

ability to large data, and their integration with other software platforms.

Machine learning, a field emerged from the computer science community, is

together with statistics one of the main supports of data mining.

There are many approaches to modeling data, but most of them can be

ascribed to one of the following characteristics:

• summarization, i.e., finding short but informative summaries of the

data.

• feature extraction, that is, finding the most extreme examples of a

phenomenon. A complex relationship among object in a model can be

expressed by finding the dependencies among this examples and using

only those in representing all the connections.

• clustering, that is, examine collections of ‘points’ and group them into

‘clusters’ accordingly to some distance measure. The goal is that points

in the same cluster have a small distance from one another, while

points in different clusters are at a large distance from one another.

1

• classification or prediction, that is, learning to predict one particular

feature of the data as a function of the others. Models such as linear

and nonlinear regression, Bayes nets, decision trees, hidden Markov

models are among those proposed for prediction.

• Finally, frequent pattern mining, that is finding patterns that occur

often (and especially, more often than one would expect by chance) in

the data.

An important kind of frequent pattern mining is Frequent Itemsets Mining.

Usually this problem is presented by introducing the market-basket model

of data. This model is used to describe a common form of many-many rela-

tionship between items and baskets (or transactions). Each basket consists

of a set of items, called itemset, and usually the number in a basket is much

smaller that the total number of items. The number of baskets is assumed

to be very large, bigger than what can fit in main memory. The data is

assumed to be represented as a sequence of baskets.

It can be applied, e.g., in real marketing applications, or in plagiarism

detection, and many others. Frequent itemset mining is also important for

many other data mining applications, such as association rules, correlations,

sequential patterns.

In more recent times, the explosion of the information coming from net-

works, such as social networks in the Internet or sensor networks, requires

the introduction of a different paradigm of mining. Since now mining al-

gorithms were studied to be applied of over static databases, that is, all

the data is available at the time of processing. But when this data is not

entirely available, or the database is to huge to be treated efficiently with

the common approaches, it becomes necessary to elaborate data online.

From this considerations comes the data stream mining paradigm. Data

arrives in one or more streams, it is processed and then deleted. No data

is stored, a part from the modeling information we are interested in. Data

stream mining requires high processing speeds, since data have to be read

and elaborated before the coming of the successive information. Differently

from static data processing, it is not possible to perform multiple scans on

data.

We examine here the problem of mining Frequent Itemsets over data

streams. We will see what are the principal solutions that are used in static

datasets mining, such as the famous Apriori principle and different others.

We discuss over the different kinds of itemsets and what advantages they

offers. Then we analyze what are the requirements of online processing, and,

2

after a deep analysis over several stream algorithms, we are able to define

the main characteristics of our solution.

1.2 Goals of the project and results obtained

We noticed that there is no really usable solution to mine frequent itemset

over data streams. So we decide to cover this hole providing a robust, effi-

cient, practical, usable and extendable solution to perform Frequent Itemset

mining over data streams. From the beginning, and as a requirement from

the advisor, we wanted to integrate our solution into the Massive Online

Analysis framework [4], a data stream mining framework developed by the

University of Waikato, New Zeland. We use its capabilities to guarantee the

generality, portability and usability of the program.

After an intense search and analysis of several proposals about frequent

itemset mining over data streams, and for reasons that we explain in Chap-

ter 3, we decided to implement the INCMINE algorithm of Cheng et al. [6].

We also added an efficient implementation of the CHARM algorithm [31, 32],

necessary for the correct working of the algorithm, and we used efficient in-

verted indexing, as we explain in Chapter 4.

We obtain very good performance in processing several synthetic data

streams. We obtain a really competitive solution, that clearly outperforms

MOMENT algorithm [13], a state-of-the-art algorithm for frequent closed

itemset mining over data streams. This is even though the MOMENT im-

plementation we tried was coded in C++, which is known to be faster that

Java.

We also study the effects of concept drift over the mining procedure. To

do this, we introduce different synthetic drifts into data streams. We study

the influence of the parameters of the algorithm over the processing. We

also test our solution over a data stream generated from real data. This

intensive testing phase is intended to verify the quality of the final system.

We explain and comment the results of the testing phase in Chapter 5.

1.3 Work planning

The project has been subdivided into the following phases:

Required knowledge acquisition Before any immersion into the real topic,

it was necessary to acquire the knowledge necessary to understand the

data stream mining problem. In this phase we also familiarized with

the MOA framework and its A.P.I.

3

Paper analysis In this phase we analyze and compare several works (about

10-15 different papers) about frequent itemset mining and frequent

closed itemsets over data streams. Doing this we became conscious

of functionalities that our proposal should have and we were able to

guide all the subsequent phases.

Design and implementation In this phase we design and code the pro-

gram, implementing all the functionalities of the selected solution.

Testing I In this phase we test the program in order to identify errors in

the implementation. It includes the successive recoding.

Testing II In this phase we perform tests over synthetic and real data

streams. We evaluate the performance of the program and we study

the effects of concept drift.

Reporting In this phase we write down the report.

The estimation of hours per stage, schedule, and cost is as follows:

Phase Deadline Hours Cost Total

Required knowledge acquisition 15/02/2012 75 15e/h 1125e

Paper analysis 15/03/2012 150 15e/h 2250e

Design/Implementation 30/04/2012 225 20e/h 4500e

Testing I 15/05/2012 75 15e/h 1125e

Testing II 31/05/2012 75 15e/h 1125e

Reporting 20/06/2012 100 15e/h 1500e

TOTAL - 600 - 10125e

Table 1.1: Time schedule and economic cost of the project.

The cost is fictitious as it has not been developed commercially. Table 1.1

intents to estimate the economic cost of each of the phases of the project.

The cost per hour is intended as an approximation of the current cost per

work hour of young analysts and developers in our environment.

4

Chapter 2

Background knowledge

In this chapter we present the background related to problem to be ad-

dressed in this work. We present the problem of Frequent Itemset Mining

and Frequent Closed Itemset Mining. We present some applications of this

branch of Data Mining in the batch case. We present the Data Stream

Mining problem and the peculiar issues that arise by mining data online.

Finally we present the MOA framework and we detail our contribution to

its functionalities. The discussion in these sections is to some extent taken

from [28, 29, 38].

2.1 The Frequent Itemset Mining problem

The discovery of frequent itemsets is one of the major families of techniques

for characterizing data. It aims to find correlations among data, and it is

often viewed as the discovery of association rules, although this is a more

complex characterization of data that can be derived from frequent itemsets

analysis.

Now we provide a formal definition of the market-basket model and of

the frequent itemset mining problem.

Let I = {x1, x2, . . . , xm} be a set of binary-valued attributes called items.

A set X ⊆ I is called an itemset. An itemset of size k is called a k-itemset.

We denote by Ik the set of all k-itemsets, i.e, subsets of I of size k.

Let T = {t1, t2, ..., tm} be a set of transaction identifiers, also called tids.

A set T ⊆ T is called tidset. We assume that itemsets and tidsets are kept

sorted in lexicographic order.

A transaction is a tuple of the form 〈t,X〉, where t ∈ T is a unique

transaction identifier, and X is an itemset. We refer to a transaction 〈t,X〉
by its identifier t.

5

A binary database D is a binary relation on the set of items and tids,

i.e., D ⊆ I × T . We say that tid t ∈ T contains item x ∈ I if and only if

(x, t) ∈ D.

For a set X, we denote by 2X the powerset of X, i.e., the set of all

subsets of X. Let i : 2T → 2I be a function, defined as follows:

i(T) = {x|∀t ∈ T, t contains x} (2.1)

That is, i(T) is the set of items that are contained in all the tids in the

tidset T . In particular, i(t) is the set of items contained in tid t ∈ T .

Let t : 2I → 2T be a function, defined as follows:

t(X) = {t|X ⊆ i(t)} (2.2)

That is, t(X) is the set of transactions that contain all the items in the

itemset X. In particular, t(x) is the set of tids that contain the single item

x ∈ I.

The support of an itemset X in a dataset D, denoted sup(X,D), is the

number of transactions in D that contain X, i.e.,

sup(X,D) = |{ti|〈ti, i(ti)〉 ∈ D and X ⊆ i(ti)}| (2.3)

That be easily defined in terms of the cardinality of its corresponding tidset

t(X):

sup(X,D) = |t(X)| (2.4)

Let us fix some user-defined minimum support threshold minsup. Then X is

said to be frequent in D if sup(X,D) ≥ minsup. When there is no confusion

about D and minsup we will drop then and simply say “X is frequent” and

write its support as sup(X).

We use the set F to denote the set of all frequent itemsets, defined as

F = {X|X ⊆ I and sup(X) ≥ minsup} (2.5)

Table 2.1 shows an example of a transactions database and the relative

frequent set F for minimum support threshold minsup = 3.

The formal definition above can be easily explained in terms of basket

case analysis. For example, consider an itemset X as a subset of products

that a department stored sells. Every receipt can be seen as a transaction,

which reports the time of the buy and the products bought by a client.

Thus, the transaction database D is the stack of all receipts of purchase of

6

Tid t i(t)

1 abde

2 bce

3 abde

4 abce

5 abcde

6 bcd

sup itemsets

6 b

5 e,be

4 a,c,d,ab,ae,bc,bd,abe

3 ad,ce,de,abd,ade,bce,bde,abde

Table 2.1: Example of a Transactions Database and Frequent Itemsets with minsup =

3

the store. Discover frequent itemsets corresponds to identify products that

clients frequently buy together.

An important property of transactional databases is their density, i.e.

of how much the transactions inside the dataset resemble one with another.

The more patterns and correlations are contained in such data, the more

resources are needed to extract them. Conversely, in sparse datasets trans-

actions differ a lot one from another. A formal definition of density of

datasets is still not available in literature, and its analysis escapes from the

scope of our work. Although, is important to consider that dataset density

has an important influence over the resources needed to extract frequent

itemsets and on their number. That is, the more dense is, the bigger will be

the number of frequent itemsets that can be mined from it. An interesting

statistical analysis over this aspect is provided by Palmerini et al. in [44].

2.1.1 The Apriori principle

One possible way to get the frequent set of a transactions database is to

enumerate all possible itemsets and then determine the frequent ones. This

brute force approach typically results in huge waste of computations since

many of the candidates may not be frequent.

The candidate itemset search space is clearly exponential, since there are

2|I| potentially frequent itemsets, which is also referred as the exponential

explosion of the number of subsets. Enumerating all itemsets thus has a

O(2|I|) computational complexity.

This search space forms a lattice structure (shown in Figure 2.1), where

two itemsets X and Y are connected by a link if and only if X is direct sub-

sets of Y . The itemsets can be enumerated using either a breadth-first (BFS)

or a depth-first (DFS) search on the prefix tree (shown in Figure 2.2). In a

prefix tree structure two itemsets X,Y are connected by a link if and only if

7

Figure 2.1: Itemset lattice and Prefix-Based search tree (in bold).

X is a direct subset and prefix of Y . We refer to this kind of representation

in different points of our work.

Then for each enumerated subset X ⊆ I, we have to check whether

X is a subset of a transaction 〈t, i(t)〉 ∈ D and consequently increase its

support, which cost at most O(|I| × |D|) with the direct implementation.

So the overall computational complexity of a brute force approach is O(|I|×
|D| × 2|I|). It is clearly unfeasible to treat with this complexity, so several

solutions have been found to reduce the effort needed to compute frequent

itemsets.

Consider any two itemsets X,Y ⊆ I. If X ⊆ Y , then sup(X) ≥ sup(Y),

which leads to the following corollaries

• If X is frequent, then any subset Y ⊆ X is also frequent.

• If X is not frequent, then any superset Y ⊇ X cannot be frequent.

By applying the above observations we can reduce the number of can-

didates we generate, and so significantly improve our mining performances.

We can prune the search space by, firstly, stop generating supersets of an un-

frequent candidate, since none of its supersets can be frequent, and secondly,

we can avoid any candidate that has an unfrequent subset.

8

Figure 2.2: Prefix search tree and effect of pruning of the Apriori algorithm.

In Algorithm 2.1 is shown a pseudo-code version of the APRIORI algo-

rithm. We denote as Ck and Fk the set of candidate and frequent k-itemsets

respectively. Once identified the set of all frequent 1-itemsets, F1, the al-

gorithm iteratively generate new candidate k-itemsets using the frequent

(k − 1)-itemsets found in the previous iteration. Candidate generation is

implemented using apriori-gen function, which uses the apriori properties

explained above to establish a policy of candidate generation and prun-

ing. Then the support of the subsets of these candidate is updated and

unfrequent candidates are pruned. The algorithm terminates once no new

frequent itemset is generated.

The worst case complexity of the APRIORI algorithm is still O(|I| ×
|D| × 2|I|), since all itemsets may be frequent. But in practices the cost is

much smaller, due to the pruning effects, but it is difficult to characterize.

Other well known proposals in frequent itemset mining algorithms are

ECLAT [30] and FP-GROWTH [3]. Both tries to index the transactions

database to perform fast support counting.

The former uses a depth-first approach to explore the prefix tree, us-

ing the tids information of each item (tidset) for doing an efficient support

counting. It achieves a computational complexity of O(|D| × 2|I|).

The latter uses an augmented prefix tree called the frequent pattern tree

(FP-tree) that stores the support information for the itemsets prefixes over

all transactions. We do not provide a detailed analysis of these algorithms,

but their pseudo-codes can be found in Appendix A.1 and A.2.

9

Algorithm 2.1 Apriori(D,I,minsup)

1: k = 1

2: Fk = {X|X ∈ I ∧ sup(X) ≥ minsup} /∗ Find all frequent 1-itemsets ∗/
3: repeat

4: k = k + 1

5: Ck = apriori-gen(Fk−1) /∗ Generate candidate itemsets ∗/
6: foreach transaction 〈t,X〉 ∈ D do

7: Ct = subset(Ck,X) /∗ Identify all candidates in 〈t,X〉 ∗/
8: foreach candidate itemset C ∈ Ct do

9: sup(C) = sup(C) + 1

10: Fk = {X|X ∈ Ck ∧ sup(X) ≥ minsup} /∗ Extract all frequent k-

itemsets ∗/
11: until Fk = ∅
12: return

⋃
Fk

2.1.2 Summarizing Itemsets

The search space for frequent itemsets is usually very large and grows expo-

nentially with the number of items. A way to reduce this cost is to determine

a representation of the frequent itemsets that summarize the characteristics

of the set of itemsets totally. By removing all redundant information in

the frequent itemsets we get a much smaller representation that the original

one, reducing the computational and storage demands, but also it eases any

further analysis on the correlations found. We examine two possible com-

pact representations for frequent itemsets over a database: maximal frequent

itemsets and frequent closed itemsets.

A frequent itemsetX ∈ F is called maximal if it has no frequent superset.

The set M of all maximal frequent itemsets is given as

M = {X|X ∈ F and @Y ⊃ X, such that Y ∈ F} (2.6)

In the example in Table 2.1, itemsets ‘abde’ and ‘bce’ are the only two

maximal frequent itemsets.

A frequent itemset X ∈ F is closed if it has no frequent superset with

the same support. The set C of all frequent closed itemsets can be defined

as

C = {X|X ∈ F and @Y ⊃ X with sup(X) = sup(Y)} (2.7)

Another definition, more abstract but algorithmically more useful, is based

on the closure operator c : 2I → 2I , which is defined as

c(X) = i ◦ t(X) = i(t(X)) (2.8)

10

Algorithm 2.2 SupportCounting(C)
1: kmax = maximum size of itemsets in C
2: Fkmax = {X|X ∈ C, |X| = kmax} /∗ All frequent itemsets of size kmax
∗/

3: for k = kmax − 1 downto 1 do

4: foreach X ∈ Fk do

5: if X /∈ C then

6: X.support = max {X ′.support|X ′ ∈ Fk+1, X ⊂ X ′}

An itemset X is called closed if c(X) = X, i.e., if X is a fixed-point of

the closure operator c. We detail the properties of this operator in Ap-

pendix A.3.

In the in Table 2.1, itemsets ‘b’, ‘bc’, ‘bd’, ‘be’, ‘abe’, ‘bce’ and ‘abde’

are the closed ones. Usually the number of frequent closed itemsets C is

much smaller than that of frequent itemsets F .

Furthermore, the most important property is that we can derive F from

C, because a frequent itemset I must be a subset of one or more frequent

closed itemsets, and its support is equal to the maximal support of those

closed itemsets that contain I. Thus, if we know the closed itemsets and their

respective supports, we are able to reconstruct the support information of

every possible subset. This assumption is still true if work only with frequent

itemsets.

In summary, the relation among F , C and M is M ⊆ C ⊆ F . Since

C is smaller than F and preserve all the information about any frequent

itemset, we focus our work on mining frequent closed itemset, because they

provide a compact representation but sufficient to maintain the information

to determine all frequent itemsets as well as their support.

If cleverly used, closed itemset mining can reduce the execution time and

the memory consumption in frequent itemset mining. We can look first for

frequent closed itemsets in a transaction database, extract and store them

efficiently. Then, the set of frequent itemsets can be quickly obtained from

the closed set.

Algorithm 2.2 is a simple procedure to get support counting of the fre-

quent itemsets set F starting from a frequent closed itemset set C.

2.2 Frequent Closed Itemset mining

In Section 2.1.1 we provide a detail explanation of the APRIORI algorithm,

since it contains the main principles used in every frequent itemset mining

11

algorithm. We now explain CHARM, a method for frequent closed itemset

mining, which is directly used in our solution, and treats with closed item-

sets, differently form APRIORI. We will not explain in this details many of

the other algorithms we studied, especially in Chapter 3.

Mining frequent closed itemsets requires that we perform closure checks,

i.e., X = c(X). Perform these checks directly can be very expansive, since

we have to verify that X is the largest itemset common to all the tids in

t(X), i.e., X =
⋂
t∈t(X) i(t).

CHARM [31] is a more efficient method which performs vertical tidset

intersections for closure checking. The Properties 1,2,3 exploited by the

algorithm, which justify its correctness, are detailed in Appendix A.4. Al-

gorithm 2.3 is a pseudo-code for CHARM. It initially takes as input the set

of all frequent single items, along with their tidsets, and the set of all closed

itemsets C is initially empty. Any IT-paid set P = {〈Xi, t(Xi)} is sorted by

increasing support (|t(Xi)|). Then we try to extend each itemset Xi with

all other items Xj in sorted order, applying these three properties to prune

the branches where possible.

2.3 Frequent Itemset Mining applications

Frequent itemset mining is fundamental to many important data mining

tasks, such as association rules, correlations, sequential patterns, classifica-

tion and clustering.

As suggested by the market-basket model, the original application was in

the analysis of true market baskets. Supermarkets stores record the contents

of every market basket brought, where each item is different product that

the store sells and the baskets are the sets of products in a single market

basket. By mining frequent itemsets, a retailer can learn what items are

commonly bought together. One can find pairs of supermarket products

that are bought frequently more than would be expected if such products

were bought independently. This can help the retailer to decide product

placement in shelves, pricing policies, offers for customers who buy several

products together, etc.

This concept can be applied to many other different contexts and mine

different kind of data. For example frequent itemset analysis can help in

finding:

• Related concepts in documents, where the items are words and baskets

are documents.

12

Algorithm 2.3 Charm(P,minsup, C)
1: C ← ∅
2: foreach 〈Xi, t(Xi)〉 ∈ P do

3: Pi ← ∅
4: foreach 〈Xj , t(Xj)〉 ∈ P , with j > i do

5: Nij = Xi ∪Xj

6: t(Nij) = t(Xi) ∩ t(Xj)

7: if sup(Nij ≥ minsup then

8: if t(Xi) = t(Xj) then

/∗ Property 1 ∗/
9: Replace Xi with Nij in P and Pi

10: Remove 〈Xj , t(Xj)〉 from P

11: else if t(Xi) ⊂ t(Xj) then

/∗ Property 2 ∗/
12: Replace Xi with Nij in P and Pi
13: else

/∗ Property 3: t(Xi) 6= t(Xj) ∗/
14: Pi ← Pi ∪ {〈Nij , t(Nij)〉}
15: if Pi 6= ∅ then

16: Charm(Pi,minsup, C)
17: if @Z ∈ C, Xi ⊆ Zandt(Xi) = t(Z) then

18: C = C ∪Xi /∗ Add Xi to closed set ∗/

• Plagiarism by considering documents as items and sentences as bas-

kets.

• Consider biomarkers, such as genes or blood proteins, and diseases as

items. Consider patients as items. Every frequent itemset containing

both biomarkers and diseases can suggest a correlation between them

and suggest a test for the disease.

A common way of representing the information extracted is in form of if-then

rules named association rules. We mention here how to extract association

rules given the collection of frequent itemsets F .

An association rule is an expression A
s,c⇒ B, where A and B are itemsets,

s and c are real numbers, s, c ∈ [0, 1], and A ∩ B = ∅. The support s of a

rule is defined as s = sup(A⇒ B) = sup(A ∪B).

The confidence of a rule is defined as c = conf(A ⇒ B) = sup(A∪B)
sup(A) .

Observe that if we take A and B as boolean predicates, the strict implication

of classical logic corresponds to the case c = 1.

13

The extraction of association rules simply requires, for a given X ∈ F ,

to look at all proper subsets A ⊂ X to compute rules of the form

A
s,c⇒ X −A (2.9)

Which is surely frequent, since s = sup(A ∪ (X −A)) = sup(X) ≥ minsup.
Its confidence is computed as c = A∪(X−A))

sup(A) = sup(X)
sup(A) .

2.4 Data Stream mining

In a digital world that is continuously incrementing the amount of informa-

tion created day by day, new ways of dealing with this huge information are

needed to extract knowledge efficiently. In machine learning, and in partic-

ular in data mining field, this quantities of data were typically processed as

large but static datasets. If data cannot fit into memory, smaller training

sets were used or algorithms may resort to temporal external storage. But

in every case the usual data mining approach does not address the problem

of a continuous supply of data.

The data stream paradigm has recently emerged in response to this prob-

lem. The core assumption of this paradigm is that training samples, that

arrives in a high speed stream, can be inspected only once and then must

be discarded. No control over the data arrival order is possible, and such

algorithm must update its model incrementally as each example is inspected.

Data stream mining leads to many new challenges, in particular in terms

of

Memory it is unrealistic to keep the entire stream in main memory or in

a secondary storage, since a data stream comes continuously and the

amount of data is unbounded.

Scans the traditional method of mining with multiple scans is unfeasible.

Stream data is processed only once and in a fixed order, determined

by the stream arrival pattern.

Speed mining requires fast, real-time processing due to the high data ar-

rival rate and mining results are expected to be available in a very

short response time.

Concept-drift online analysis also subsumes the ability to react to concept

changes that may occur during the evolution of the data stream.

These points identify which are the key parameters for query processing

over data streams, i.e., the amount of memory made available to the online

14

algorithm and the per-item processing time required. In order to respect

these constraints, we need algorithms that can summarize data streams in

a concise and accurate synopsis that can be stored in a small amount of

memory and can be used to provide approximate answers to user queries

along with some reasonable guarantees on the quality of the approximation.

As mentioned in the previous sections, frequent itemset mining has been

intensively studied on static databases an many efficient algorithms have

been proposed.

Recently several emerging application domains needs data to be pro-

cessed continuously online. Examples of continuous data streams are Call-

Detail-Records in Telecom networks, transactions in retail chains, ATM and

credit card operations in banks, sensor networks. Such critical operations

like fraud-detection, trend analysis, market analysis, require an efficient on-

line analysis to capture interesting trends, patterns and exceptions.

Some interesting examples are shown in [28]. Consider the case of Inter-

net and web traffic. A switch in the middle of the Internet receives streams

of IP packets from many inputs and routes them to its outputs. Normally,

the job of the switch is to transmit data and not to retain or query it. But

switches may be used , e.g, to detect denial-of-service attacks or to reroute

packets based on the information about congestion in the network.

Web sites receives different kinds of streams, e.g., the several millions of

queries that Google receive daily, or the billions of clicks onto Yahoo! web

sites. Many things can be learned from these streams. For example, an

increase of queries ‘over flu’ or ‘sore throat’ can help tracking the spread of

viruses. Or a sudden increase in the click rate for a link could indicate some

news connected to that page.

A detailed survey of the state of the art solutions in frequent itemset

mining over data streams is provided in Chapter 3 and in the Appendix.

2.4.1 Concept Drift

According to [45], an important problem in mining real data streams is

that the concept of interest may change in function of a hidden context.

For example, the sets of products that are frequently bought together in

a department store may change with time, depending on the current day

of the week, the seasons, the availability of alternatives, and many others.

Often the cause of the change is hidden, not known a priori.

The kinds of concept drifts that appears in the real word are commonly

classified in:

• sudden, or abrupt, concept drift.

15

• gradual concept drift.

For example, someone graduating from college might suddenly have com-

pletely different monetary concerns, whereas a slowly wearing piece of fac-

tory equipment might cause a gradual change in the quality of output

parts [46].

In Section 5.2 we study in depth the influence of concept drift in fre-

quent itemset mining over data streams, considering both the above types

of change.

2.5 Massive Online Analysis (MOA)

Massive Online Analysis (MOA) [4, 5] is a software environment for imple-

menting algorithms and running experiments for online learning from evolv-

ing data streams. MOA is related to WEKA, the Waikato Environment

for Knowledge Analysis, an open-source workbench containing implementa-

tions of a lot of batch machine learning methods [41]. MOA, like WEKA, is

written in Java, taking advantage of its portability and the strong and well

developed support libraries.

MOA is concerned with the problem of classification. Its goal is to

produce a model that can predict the class of unlabeled examples, by training

on examples whose label (class) is provided. Such functionality is obtained

by treating data as a potentially infinite stream, instead of the classical

batch setting, which operates assuming that the training data is available as

a whole set.

A classification algorithm must meet several requirements to work and

learn from data streams. In particular must fulfill the following four require-

ments:

1. Process one example at time, and inspect it only once (at most)

2. Use a limited amount of memory

3. Work in a limited amount of time

4. Be ready to predict at any point

These requirements also cover the main issues in data streams mining ex-

plained in Section 2.4. MOA provides data streams adaptations of the most

common methods already adopted in batch analysis, such as:

• Decision trees

16

• Rules extraction from decision trees

• Lazy/Nearest neighbor

• Support vector machines/neural networks

• Bayesian methods

• Meta/Ensemble methods

Currently MOA does not provide any method for Frequent Itemset Min-

ing over data streams. Our work intents to extend its functionalities over

this crucial mining task. We use the easiness to extend the MOA framework

via the MOA A.P.I. to provide a portable, usable and extendable solution

for Frequent Closed Itemset Mining.

17

18

Chapter 3

Previous works

In this chapter we present several of the state-of-the-art algorithms on min-

ing frequent closed itemsets. This analysis is a key point of our work, because

it allows us to know what are the most important approaches that have been

adopted in research until now. One of the analyzed solutions was selected

and implemented into the MOA environment. We justify our choice, by

explaining its advantages in comparison with others approaches. Each al-

gorithm is exhaustively analyzed by identifying its key characteristics, pro

and cons, in Appendix A.5, A.6, A.7, A.8 and A.9.

3.1 Preliminaries

Frequent itemset mining in data streams is a relatively new branch of study

in data mining. Several different approaches were proposed in the last

decade. Most of them can be classified accordingly to the window model

they adopt:

• Landmark window

• Sliding window

Each window model can be classified as:

• Time sensitive

• Transaction sensitive

Furthermore, accordingly to the number of transactions that are updated

each time, the algorithms can be divided into:

• Update per transaction

19

• Update per batch

Finally frequent algorithms can subdivided into:

• Exact

• Approximate

Exact mining requires to track all items in the window and their exact fre-

quencies, because any infrequent itemset may become frequent later in the

stream. However, because of the combinatorial explosion of number of item-

sets, exact mining can be computationally intractable for big windows and

data streams with a fast arrival rate. In the majority of cases approximate

mining is a more realistic option. In fact, in data mining the goal is to find

interesting patterns with reasonable accuracies and efficiency, rather than

to provide exact but costly results.

With respect to approximate algorithms, we can identify false-positive

algorithms if the returned set of itemsets includes all frequent itemsets but

also some infrequent one. On the other hand false-negative solutions return

a set of itemsets that does not include infrequent itemsets but miss some

frequent one.

We use here the same notation used to formalize the frequent itemset

mining problem in Chapter 2.

• Let I = {x1, x2, . . . , xm} be a set of items. A set X ⊆ I is an itemset.

An itemset of size k is called a k-itemset.

• Let T = {t1, t2, . . . , tm} be a set of tids. A transaction is a tuple of

the form 〈t,X〉, where t ∈ T is a unique transaction identifier, and X

is an itemset. The transaction supports an itemset Y if Y ⊇ X.

A transaction data stream is a sequence of incoming transactions and a

excerpt of this stream is called a window.

A sliding window W can be either time-sensitive or transaction-sensitive.

A time-sensitive window W consists of a sequence of fixed-length time units,

where a variable number of transactions arrive within each time unit. The

window slides forward for every time unit.

A transaction-sensitive window W consists of a sequence of batches,

where each batch is made of an equal number b ≥ 1 of transactions. The

window slides forward for every number of transactions equal to the batch

size. For example, a time-sensitive window of length 1 hour contains the

transactions arrived in the last hour, which may be one, or one million; a

20

transaction-sensitive window of length 1000 contains the last 1000 transac-

tions, which may have arrived in one second or in one hour.

If the number of transactions that is used in the update procedure is

unitary we have an update per transaction policy, otherwise we talk of an

update per batch policy.

A window W is a landmark window if W = 〈T1, T2, . . . , Tτ 〉, where each

Ti is a time unit or a batch, T1 and Tτ are the oldest and the current time

unit or batch. A window W is a sliding window if W = 〈Tτ−w+1, . . . , Tτ 〉,
where w the size of the sliding window, which slides forward each time unit

or batch.

In Chapter 2 we define the support of an itemset X with respect to a

transactions database D. The same definition can be adopted in the analysis

of a data stream, considering that the transactions database now is the set

of transactions stored within the sliding window W .

Thus we define the support of an itemset X in a sliding window W ,

denoted as sup(X,W) as the set of transactions in W that contains X, i.e.,

sup(X,D) = |{ti|〈ti, i(ti)〉 ∈W and X ⊆ i(ti)}| (3.1)

For sake for readiness, from now on we use the concise notation sup(X) to

represent sup(X,W), if do not differently stated.

Note that we always assume that there is a lexicographical order among

items. We use the notation X ≺ Y to denote that itemX is lexicographically

smaller than the item Y . For example {a, b, c} ≺ {a, b, d, e} ≺ {a, c, e} ≺
{d}.

We use the characteristics mentioned above to analyze several of the

state-of-the-art algorithms in Frequent Itemset Mining that have been pro-

posed by the scientific community since the time of writing. In particular

we focus on Frequent Closed Itemset Mining over data streams solutions.

3.2 A general Incremental Closed Pattern Mining

solution

Bifet et al. propose in [14] a general methodology to identify closed patterns

in a data stream. It uses the Galois Lattice Theory to perform the mining

process and can be applied to different kinds of patterns, such as trees,

graphs and itemsets.

It defines two procedures to add or remove a set of frequent closed pat-

terns that have been computed previously over a set of transactions that

have been added or removed from a sliding window. To do this efficiently,

21

it exploits several properties pattern datasets. It can be seen as a general

representation of every incremental algorithm for frequent closed itemset

mining that we will analyze.

A more detailed explanation of this work is presented in A.5.

This is a general framework for pattern mining, and no specialization

over itemset mining is provided. It defines a high-level solution for mining

any kind of pattern, without considering the peculiarities of any of them.

This may results in inefficient processing, since no low-level detail over data

structures or efficiency of the procedures is provided.

Since we are interested in really efficient solution for mining frequent

closed itemsets, we will not implement this solution here. But it has been

useful to consider the capabilities of updating via batches of transactions.

3.3 MOMENT

MOMENT was proposed by Chi et al. in [13]. It is the first work that

have been proposed for incremental mining of closed frequent itemset over

a data streams sliding window. It perform an exact mining of the set of

frequent closed itemsets, using an update per transaction policy to keep this

set up-to-date.

To monitor a dynamically selected set of itemsets over the sliding window,

MOMENT adopts an in-memory prefix-tree-based data structure, called

closed enumeration tree (CET). This tree stores information about infre-

quent nodes, nodes that are likely to become frequent and closed nodes.

MOMENT also uses a variant of the FP-tree, proposed by Han et al. in [3],

to store the information of all the transactions in the sliding window, with

no pruning of infrequent itemsets.

MOMENT algorithm essentially performs a depth-first search along the

CET, and updates the type of each node whether it is necessary. Concept

drifts cause variations in the type of boundary nodes, such as infrequent

nodes that become frequent and viceversa.

Since it is the first proposed work that considers mining of frequent closed

itemsets over a data stream with limited memory consumption, MOMENT

has become a reference for all the solutions have been proposed successively.

A detailed explanation of MOMENT data structures and procedures is

presented in Appendix A.6.

22

3.4 CLOSTREAM

CLOSTREAM is an algorithm for maintaining frequent closed itemsets in

data stream. It was proposed by Yen et al. in [7]. CLOSTREAM maintains

the complete set of closed itemset over a emphtransaction-sensitive sliding

window without any support information.

It uses two in-memory data structures, the Closed Table and the Cid

List, to maintain information about closed itemset into the sliding window.

CLOSTREAM uses an update per transaction policy. Update is performed

by two procedures CloStream+ and CloStream-, respectively used when a

transaction arrives and when a transaction leaves the sliding window. Both

procedures use two temp hash tables to perform an efficient update.

CLOSTREAM does not directly handle concept drift, since every closed

itemset into the current sliding window is mined. Like MOMENT, it offers

an exact solution to frequent closed itemset mining problem.

A detailed explanation of CLOSTREAM data structures and procedures

is presented in Appendix A.7.

3.5 NEWMOMENT

NEWMOMENT is method to maintain frequent closed itemsets in data

streams with a transaction-sensitive sliding window proposed by Li et al.

in [11]. It uses an effective bit-sequence representation to reduce time and

memory consumption of the MOMENT algorithm. It also define a new

closed enumeration tree (NewCET), to store only the set of frequent closed

itemsets into the sliding window.

NEWMOMENT inherits most of the characteristics of MOMENT algo-

rithm, such as the update per transaction policy and the exactness of the

mining procedures.

Although, the usage of bit-sequences results into simplified update pro-

cedures respect to MOMENT’s ones. For example, window sliding can be

performed efficiently via a left-shift of one bit of each bit-sequence stored.

The several intersection operations can be converted into efficient bitwise

AND operations.

A detailed explanation of NEWMOMENT data structures and proce-

dures is presented in Appendix A.8.

23

3.6 INCMINE

INCMINE is an algorithm for incremental update of frequent closed item-

sets(FCIs) over a high-speed data stream proposed by Cheng et al. in [6].

They propose an approximate solution to the problem, using a relaxed

minimal support threshold to keep an extra set of infrequent itemsets that

likely can become frequent later, and using an inverted index to facilitate

the update process. They also propose the novel notion of semi-FCIs, which

associate a progressively increasing minimal support threshold for an itemset

that is retained longer in the window.

It uses an update per batch policy to maintain the updated the set of

approximated frequent closed itemsets over the current sliding window. The

original proposal considers time-sensitive sliding windows, but it can be

easily adapted to transaction-sensitive contexts with fixed-length batches.

The incremental update algorithm exploits the properties of Semi-FCIs

to perform an efficient update in terms of memory and timing consumption.

Semi frequent closed itemsets are stored into several FCI-arrays, which are

efficiently addressed by an Inverted FCI Index.

Since INCMINE is the algorithm we are going to implement, we analyze

it in detail in Chapter 4.

3.7 CLAIM

CLAIM is an algorithm for Closed Approximate frequent Itemset Mining

proposed by Song et al. in [10]. It perform an approximate mining of the

set of frequent closed itemsets into a transaction-sensitive sliding window.

To do this, the authors defines the concept of relaxed interval and relaxed

closed itemset, with the intention to reduce the maintenance cost of drifted

closed itemsets in a data stream. CLAIM uses a double bound represen-

tation to manage the itemsets in each relaxed interval, which is efficiently

addressed by several bipartite graphs. Such bipartite graph is arranged using

a HR-tree (Hash based Relaxed Closed Itemset tree), which combines the

characteristics of a hash table and a prefix tree.

A detailed explanation of CLAIM data structures and procedures is pre-

sented in Appendix A.9.

3.8 Comparison of algorithms and conclusions

In the previous sections we present several of the state-of-the-art algorithms

in Frequent Closed Itemset Mining over data stream. We do not consider

24

here any solution over Frequent Itemset Mining, e.g, presented in [12, 15,

20, 19, 21, 22], and over Frequent Maximal Itemsets over data streams,

e.g, presented in [23]. This is because Frequent Closed Itemsets allows a

complete and non-redundant representation of the set of Frequent Itemsets.

The former representation is often orders of magnitude smaller that the

latter. What we obtain is a lighter representation and faster processing

times, which are crucial aspects in data streams processing.

In order to better cope with concept-drift, all the analyzed solutions use

a sliding window approach. Landmark window approaches were proposed

in [21, 24], but cannot handle concept changes into a data stream as a sliding

window approach can do, because the landmark window considers all the

data since the start of an epoch, regardless of whether drift has occurred.

In Table 3.1 are illustrated the salient characteristics of each analyzed

solution.

MOMENT was the first solution that considers Frequent Closed Itemsets

as a possible compact representation of Frequent Itemsets over data streams.

It uses a prefix tree based data structure (the Closed Enumeration Tree) to

keep updated the set of closed itemsets and the so-called border itemsets.

Beside the CET a modified FP-tree is used to maintain all transactions in

the sliding window.

The main problem of MOMENT is hidden in these data structures. The

information of all the transactions is stored in the modified FP-tree, with a

considerable overhead in memory. The nodes in the CET do not refer only

to closed itemsets, but also to non-closed and unfrequent itemsets, and also

this contributes to an higher usage of memory. MOMENT algorithm is also

written taking in account that nodes change type rarely, i.e., the concept

does not change ‘too much’ along the stream. This assumption translates

into higher execution time when the number of nodes that changes type is

high, for example in case of sudden drifts.

NEWMOMENT tries to solve some of problems of MOMENT intro-

ducing a more efficient representation of transactions and itemsets, via bit-

sequences. The window sliding can be done efficiently via left-shift, and

itemsets support counting is reduced to a bitwise AND operation. The

NewCET stores only the closed itemsets in the closed window, and no trans-

actions tracking is performed, with a consistent memory saving. The exper-

iments in [11] show improvements in performance.

CLOSTREAM uses a totally different approach from the ones above.

It develops the idea, firstly proposed in [18] for CFISTREAM algorithm,

that a frequent itemset mining algorithm does not need a minimum support

threshold. Actually MOMENT and NEWMOMENT become as more ineffi-

25

cient as the minimum support threshold decreases, because of the explosion

of the number of nodes in their prefix-trees. CLOSTREAM maintains the

set of all frequent closed itemsets within the sliding window, performing an

efficient update per transaction.

All previous algorithms provide an exact solution, but the combinatorial

explosion of itemsets can affect significatively performances in terms of mem-

ory consumption and processing efficiency. For example, CLOSTREAM

maintains the whole set of closed itemsets, that can be really huge and un-

manageable in real cases. MOMENT and NEWMOMENT are based on a

prefix-tree structure, which is not efficient for some update operations such

as the search of the smallest proper closed superset of an itemset.

It is now commonly accepted that approximate solutions can almost

completely overcome these problems. Such algorithm can provide an ap-

proximation of the set of frequent (closed) itemsets, within an error bound,

and achieve significantly better performances than exact algorithms. The

concept below is that most applications will not need precise support infor-

mation of frequent patterns, a good approximation on support count could

be more than accurate [25]. And in itemset mining over data streams this

becomes even more true, because fast, real-time processing is required in

order to keep up with the high data arrival rate and responses are expect to

be available within very short response time.

INCMINE proposes to mine a new kind of closed itemset, named semi-

Frequent Closed Itemsets, where the minimum support threshold increases

for an itemset as it is retained longer in the window. A relaxed minimum

support threshold mines extra infrequent itemsets that have a high potential

to become frequent later. An inverted index, an efficient data structure also

used in different applications such as information retrieval [26], is used to

facilitate the update process. The resulting solution is a false-negative ap-

proximation of the real set of frequent closed itemsets in the sliding window.

The update process is done for each batch of transactions, which may

significantly increase the processing speed of the algorithm. According to

Li et al. in [27], update transaction-by-transaction leads to a huge amount

of processing because update of transactions is excessively frequent. And

usually the transit of transactions in a data stream is at high speed, and

the contribution of one single transaction to the entire set of transactions is

negligible. Thus, an update per batch policy can overcome to this problem.

Finally CLAIM proposes to group frequent closed itemsets into relaxed

support intervals. The intention is to reduce the effect of small concept drift

that always appear along a data stream. In exact algorithms the support of

closed itemsets exactly equals to the absorbed itemsets, and slightly support

26

differences can lead to high costs of maintenance. They intent to reduce

these side-effects by dividing the support space into several subsets and

redefining the closure concept. The update process is done for each incoming

transaction, and drifts are managed by a bipartite graph representation

along a prefix-tree structure.

We decide to concentrate our efforts on INCMINE algorithm. It of-

fers a distinct perspective from other solutions, and is one of the few algo-

rithms that considers the update for batches of transactions. This point,

together with the possibility of personalizing the minimum support function

and the inverted index structure, which promises better performances than

tree structures, convinces us to study it in depth and implement it into the

MOA environment.

27

Algorithm Window model Update policy Solution

type

Data structures Notes

Moment Transaction-sens. Per transaction Exact CET

FP-tree+Tids

Hash table for closure check

CloStream Transaction-sens. Per transaction Exact Closed Table

CidList

Temp hash tables

No minimum support threshold

NewMoment Transaction-sens. Per transaction Exact NewCET

Bit-sequences

Hash table for closure check

IncMine Time-sens. Per batch Approximate

(false-

negative)

Inverted Index

FCI-Array

Semi-FCI

Increasing relaxed minimum support

threshold

Claim Transaction-sens. Per transaction Approximate Bipartite graph

HR-tree

Relaxed interval

Relaxed FCI

Bloom filter based hash

Table 3.1: Main characteristics of the analyzed algorithms.

28

Chapter 4

Architecture and

implementation of the

proposed solution

Until now we have discussed the principles for frequent itemset mining on

static datasets and what are the new requirements in analyzing streams of

data. Then we analyzed several algorithms dealing with frequent closed

itemset mining over data streams. We have identified the salient charac-

teristics of each one, by studying the efficiency and the impact of the data

structures and procedures used by each one.

It is commonly known that frequent itemset mining is a ‘hard’ task (in

computational perspective) and performing it over high speed data streams

is even harder, due to the really strict constrains in memory consumption

and execution time that presents such online processing.

In addition, the requirements and features of a data stream can vary a

lot from context to context, for example the data arrival rate, the amount

of memory available, the type of data that one have to manage (e.g., data

from sensors in a sensor network, click stream over a web page, films titles

from a film rental, etc.) which can affect, for example, the density of the

transactions passed to the algorithm. Therefore, it is really difficult to find

a solution that adapts to every possible environment without knowing it ‘a

priori’. A good solution may offer to an expert user the possibility to tune

correctly the algorithm, in order to obtain the best response in function of

the characteristics of the data stream.

Our intention is to provide an portable, usable and extendable solution

for frequent closed itemset mining. So we decide to use the functionalities

of the MOA framework and extend its A.P.I. by implementing a brand new

29

package for itemset mining over data streams. It is implemented in Java, as

the whole framework, to assure the portability of our solution. Its usability

is guaranteed by the A.P.I. itself and by the MOA GUI. No particular en-

vironment of work is defined, so any kind of stream of itemset that can by

passed via the MOA A.P.I. functions will work correctly.

We now show the main characteristics of our INCMINE implementation

into the MOA Framework. For sake of readability only few code snippets

will be presented, and they will focus only over the peculiar characteristics

of our solution.

4.1 Overview

We implement a Java version of the algorithm INCMINE, presented in Sec-

tion 4.2, within the MOA environment. We decide to use a transaction-

sensitive approach instead of the time-sensitive approach that is proposed

originally in [6], mainly to ease our testing, although it is not an essential

choice. In fact is easier to evaluate performances when the number of in-

stances that are elaborate each window sliding is a fixed number. This is

because currently is not possible to define in MOA a data arrival rate of

transactions in the stream, that is simply simulated passing transactions at

once into a while cycle.

Figure 4.1: Packages of our solution.

We organize our solution into several packages, that extends some of

30

ones that are already defined into the MOA A.P.I. According to Figure 4.1,

6 different packages are defined

• Package moa.task contains classes LearnModel and LearnEvaluateModel,

inherited from class MainTask of the MOA A.P.I.. These classes define

methods to compute a generic model over a data stream and evaluate

its performances.

• Package moa.streams contains class ZakiFileStream. It is a stream

reader specifically written for files generated via the Zaki’s IBM Gen-

erator software.

• Package moa.learners contains class IncMine, which inherits from

class AbstractLearner, an abstract class provided by the MOA A.P.I.

to define new learners within the framework. It is the core class of our

INCMINE version, contains the real implementation of the algorithm.

• Package moa.evaluation contains class LearningEvaluation, which

defines the functionalities needed by class LearnEvaluateModel to

evaluate performances.

• Package moa.core contains several key classes for the INCMINE algo-

rithm. Classes FCITable and InvertedFCIIndex are the implementa-

tion of the respective data structures used by the algorithm, that we

already described in Appendix 4.4.

Classes SemiFCI and SemiFCIId defines Semi-Frequent Closed Item-

sets and respective IDs.

Abstract class SlidingWindowManager defines a common interface

for managing sliding windows, either time-sensitive or transaction-

sensitive. As commented before, we decided to use a transaction-

sensitive approach. We define class FixedLengthWindowManager, which

inherits from this abstract class, that manages fixed-length batches of

transactions.

Class Segment defines a segment, i.e, a batch of transaction. It collects

all the transactions seen so far. When its size reaches its maximum

value (i.e., the fixed length of each segment), it computes the current

set of Frequent Closed Itemsets, passes it to the update procedure and,

when the update process is finished, it becomes ready to accept new

transactions.

Class FrequentItemset is an auxiliary class, not strictly needed by the

algorithm, that we use to compute the set of Frequent Itemsets from

the set of approximated Frequent Closed Itemsets that are computed.

31

Class Utilities defines several static methods that are used in dif-

ferent points of our solution, such as, compute the intersection of 2

ordered lists, to compute the cumulative sum of a vector until a speci-

fied position, to compute the minimum support vector, to compute the

memory usage in a certain point of the execution, and many others.

• Package Charm BitSet defines all classes needed to compute the set

of Frequent Closed Itemsets over a transactions database using the

CHARM algorithm [31, 32]. This is a modified version that uses bit-

sets to represent Tidsets to achieve better performances. We slightly

modified the version of this algorithm that is kindly provided under

GPL3 Licence by Philippe Fournier-Viger in [35].

A full Javadoc documentation comes along with the MOA A.P.I. extension

that we have developed.

4.2 The INCMINE algorithm

INCMINE is an algorithm for incremental update of frequent closed item-

sets(FCIs) over a high-speed data stream proposed by Cheng et al. in [6].

They propose an approximate solution to the problem, using a relaxed min-

imal support threshold to keep an extra set of infrequent itemsets that likely

can become frequent later, and using an inverted index to facilitate the

update process. They also propose the novel notion of semi-FCIs, which as-

sociate a progressively increasing minimal support threshold for an itemset

that is retained longer in the window.

The original proposal of Cheng et al. uses a time based sliding win-

dow. A window or a time interval in the stream is a set of successive time

units, denoted as T = 〈ti, . . . , tj〉, where i ≤ j, and T = ti if i = j. The

window slides forward for every time unit. Thus, the current window is

W = 〈tτ−w+1, . . . , tτ 〉, where w is the number of time units in W (the size

of W).

Define trans(T) as the set of transactions that arrive on the stream in

a time interval T and |trans(T)| as the number of transactions in T . The

support of an itemset X over T is the number of transactions in T that

support X, and its denoted as sup(X,T).

Given a Minimum Support Threshold(MST), σ(0 < σ ≤ 1), the itemset

X is a Frequent Itemset (FI) over T if sup(X,T) ≥ σ|trans(T)|. X is

a Frequent Closed Itemset (FCI) over T if X is a FI over T and there

exist no Y such that Y ⊃ X and sup(Y, T) = sup(X,T). If X ⊃ Z and

sup(X,T) = sup(Z, T), where X is a FCI over T , the relationship between

32

X and Z is denoted as X AT Z.

t1 t2 t3

abcd abc abcd

abcx abcd az

bcy abc

Table 4.1: Example of transactions in a stream of 3 time units

Table 4.1 records the transactions in the stream in two successive windows,

W1 = 〈t1, t2〉 adn W2 = 〈t2, t3〉. For a minimum support threshold of 2, the

set of FCIs in W1 and W2 is {abcd, abc, bc} and {abcd, abc, a} respectively.

Note that bc is not a FCI over W2 since bc AW2 abc.

4.2.1 Semi-Frequent Closed Itemsets

We want to keep track of infrequent itemsets that may become frequent

later in the stream. Because of the exponential explosion of subsets, its

infeasible to keep all infrequent itemsets. An usual approach is to use an

error parameter ε, 0 ≤ ε ≤ 1, to maintain itemsets in the window as long as

their support is at least ε|W |. In INCMINE is used an improved version of

this principle, by considering ε as a relaxed MST and progressively increasing

it for an itemset that is retained longer in the window.

Define the relaxed MST ε = rσ, where r(0 ≤ r ≤ 1) is the relaxation rate.

All itemsets whose support is less than rσ|trans(t)| are discarded.

The approximate support of an itemset X over a time unit t is defined

as

s̃up(X, t) =

{
0 if sup(X, t) < rσ|trans(t)|
sup(X, t) otherwise.

(4.1)

The approximate support of X over a time interval T = 〈tj , . . . , tk〉 is defined

as

s̃up(X,T) =

k∑
i=j

s̃up(X, ti) (4.2)

Let W = 〈tτ−w+1, . . . , tτ 〉 be a sliding window of size w and T k =

〈tτ−k+1, . . . , tτ be the most recent k time units in W , where 1 ≤ k ≤ w.

Lets define a progressively increasing MST function, minsup(k), as follows:

minsup(k) = dmk × rke (4.3)

33

where mk = σ|trans(T k)| and rk = (1−rw)(k − 1) + r. The term mk is the

minimum support required of a FI over T k, while the term rk progressively

increases the relaxed MST at the rate of (1−rw) for each older time unit in

the window. An itemset is kept in the window only if its support over T k

is no less than minsup(k) for some k ∈ {1, . . . , w}. Note that minsup(k) is

a non-decreasing function that always assumes values in 0 ≤ minsup(k) ≤
σ|trans(T k)|.

k 10 9 8 7 6 5 4 3 2 1

minsup(k) 182 148 117 90 66 46 30 17 8 2

Table 4.2: Example of minsup(k) function for stream with an uniform input rate of

2000 trans./time unit (σ = 0.01, r = 0.1, w = 10).

Time Unit t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

sup(ab, ti) 3 1 2 3 2 1 4 7 11 19 21

sup(cd, ti) 3 11 20 29 11 8 17 28 37 41 39

Table 4.3: Example of SemiFCIs along with their supports for 11 time units.

Finally, an itemset X is a semi-frequent itemset (semi-FI) over W if

∃k such that s̃up(X,T k) ≥ minsup(k). An semi-FI X is a semi-frequent

closed itemset if @Y ⊃ X such that s̃up(Y, T k) = s̃up(X,T k). X is called a

k-semiFCI if X is a semi-FCI and k = MAX{k : s̃up(Y, T k) ≥ minsup(k)}.
Table 4.2 and Table 4.3 shows an example of minsup(k) function and two

sample semi-FCIs with different behavior. Itemset ab has an unpromising

support over 〈t1, . . . , t6〉 and, thus, is discarded. Although the trend in the

support from t7 to t11 shows that ab may become frequent, thus ab is stored

in the window only after t7. On the other hand, the support of the itemset

cd is always greater than the corresponding minsup(k), thus cd is always

maintained in the window.

From the above definitions comes that INCMINE provides an approxi-

mate solution to the Frequent Closed Itemset mining problem. In particular,

this method is a false-negative approach. The set of false-negatives is de-

fined as {X|(s̃up(X,W) < σ|trans(W)|) ∧ (sup(X,W) ≥ σ|trans(W)|)}.
False-negatives are mostly itemsets with skewed support distribution over

the stream.

34

4.2.2 The incremental update algorithm

INCMINE incrementally updates the set of semi-FCIs over a sliding window

with an update per batch policy. Let tτ be the current time unit, WL =

〈tτ−w, . . . , tτ−1〉 and WC = 〈tτ−w+1, . . . , tτ 〉 be the last window and the

current window. Also name as F ,L and C the set of semi-FCIs over tτ , WL

and WC , respectively.

The task consist in incrementally update the set of semi-FCIs over a sliding

window by updating L with F to give C. Note that F is generated with a

relaxed MST rσ by an existing non-streaming FCI mining algorithm.

The pseudo-code of the incremental algorithm is shown in Algorithm 4.1.

It exploits different properties of semi-FCIs in order to obtain a solution

efficiently. In detail those properties are (no proof is provided here)

Lemma 1 For any semi-FI X that is not a semi-FCI over T , there exists

an unique semi-FCI Y such that X ⊂T Y and the size of Y is the

smallest among all semi-FCIs that are supersets of X. Itemset Y is

called the Smallest semi-FCI Superset(SFS) of X.

Theorem 1 Given a semi-FCI X over tτ

1. If X ∈ F , then X ∈ C.

2. If X /∈ F and X ∈ L, then X ∈ C if and only if ∃Y ∈ F such that

X @tτ Y ; ∃k ∈ {2, . . . , w} such that s̃up(X,T k) ≥ minsup(k);

and ∀X ′, where X ⊂ X ′ ⊆ Y , s̃up(X,T k) ≥ s̃up(X ′, T k).

3. If X /∈ F and X /∈ L, then X ∈ C if and only if ∃Y ∈ F\L such

that X @tτ Y ; ∃Z ∈ L such that X @WL Z and Y ∩ Z = X; and

∃k ∈ {2, . . . , w} such that s̃up(X,T k) ≥ minsup(k).

Theorem 2 Given X and Y , where X @tτ Y , X /∈ L and Y /∈ L. If ∃Z ∈ L
such that X ⊂ Z ⊂ Y , then X /∈ C. It follows that, after processing

a subset Z of Y ∈ F\L, if Z ∈ L, we can skip processing all X ⊂ Z

where X /∈ L.

From Theorem 1(1), all semi-FCIs in F are in C and, hence, they are

added to L (Line 11). L is returned as C at the end of update (Line 29).

Any subset X of Y ∈ F , where X /∈ L, is in C if and only if Y /∈ L, by

Theorem 1(3). So, when Y ∈ L, only its subsets that are in L must be

processed (Lines 2-9), while its subsets that are not in L are processed only

when Y /∈ L (Lines 11-23).

When a subset of Y has been updated previously, all its subsets do not have

to be processed (Lines 6-7, 17-18); this because the procedure processes

35

Algorithm 4.1 IncMine(F ,L)

1: foreach Y ∈ F in size-ascending order do

2: if Y ∈ L then

3: ComputeK(Y, 1)

4: foreach X ⊂ Y in size-descending order do

5: if X ∈ L then

6: if X is updated then

7: skip processing X and all its subsets

8: else

9: UpdateSubsetInL(X,Y)

10: else/∗ Y /∈ L ∗/
11: L← L ∪ {Y }
12: if ∃Z ∈ L such that Z AWL Y then

13: s̃up(Y, ti)← s̃up(Z, ti), for τ − w + 1 ≤ i ≤ τ − 1

14: ComputeK(Y, 1)

15: foreach X ⊂ Y in size-descending order do

16: if X ∈ L then

17: if X is updated then

18: skip processing X and all its subsets

19: else

20: UpdateSubsetInL(X,Y)

21: skip processing all subsets of X that are not in L

22: else/∗ X /∈ L ∗/
23: UpdateSubsetNotInL(X,Y)

24: foreach X ∈ L in size-descending order dos

25: if X is not updated then

26: k = ComputeK(X, 1)

27: if k > 0 and ∃Z ∈ L such that Z AWC X then

28: L← L− {X}
29: return C ← L

semi-FCIs in size-ascending order, and any itemset is first updated by its

SFS or itself (Lemma 2). By Theorem 2, after processing a subset X ∈ L,

all its subsets that are not in L must be skipped (Line 21), and only X’s

subsets in L are processed (Line 2-9).

36

4.3 CHARM for Frequent Closed Itemset mining

A crucial point in the INCMINE processing is the mining of frequent closed

itemsets from the current segment of transactions. This could be a very

computationally intensive phase, depending on the characteristics of the

data stream and on the minimum support threshold and relaxation rate

that have been chosen. Thus, the efficiency of the adopted procedure for

frequent closed itemset mining could have a significant influence over the

global efficiency of the algorithm.

The literature offers several algorithms for this task, from the CHARM

algorithm that we present in Section 2.3, to the DCI-Closed algorithm, pro-

posed by Lucchese et al. in [39]. A survey over different algorithms with an

interesting comparison over their performances can be found in [40].

Since neither the MOA framework nor WEKA offer any solution for

this task, it became necessary to introduce a Java implementation of such

frequent closed itemset mining to guarantee the correct working of the algo-

rithm. Thus, we decide to integrate some of the algorithms that are available

into the Sequential Frequent Pattern Mining framework [35]. This frame-

work is essentially a collection of implementations of several algorithms over

sequential pattern mining, frequent itemset mining and association rule min-

ing, and some others. Among them there is available an implementations

of the CHARM algorithm and an improved version of the same algorithm

which uses bit sets to represent transactions.

We adapt both algorithms to work within our environment. After several

testing phases, that we do not detail here, we decide to adopt the bit set

version of Charm, which guarantees significantly better performances. This

version of the Charm algorithm is included in the package Charm Bitset

that we mentioned in Section 4.1.

4.4 Data structures in depth

INCMINE uses an Inverted Index Structure to manage efficiently all the

semi-FCIs stored in the sliding window. The set L is partitioned accordingly

to the size of the semi-FCIs in the last window WL. Each partition is stored

in an array, called FCI-array, and each semi-FCI in the FCI-array is assigned

an ID, which corresponds to its position in the array, and its approximate

support. An array containing semi-FCIs of size n is named a size-n FCI-

array.

To each size-n FCI-array is associated a garbage queue. When a semiFCI is

deleted from an FCI-array, its ID is pushed into the garbage queue. When

37

a new semiFCI have to be inserted into a FCI-array, its ID (position) is

popped out from the garbage queue. If the garbage queue is empty, then

the new semiFCI is appended to the array. Table 4.4 shows an example of

FCI-arrays.

Along with the set of FCI-array, an inverted index, called Inverted FCI

Index (IFI), is used. Its components are

• An Item Array(IA), which stores all items in I in lexicographical order.

• Each item in the IA is associated with a list of variable-length arrays

called ID-arrays. Each ID-array stores the IDs of size-n semiFCIs in

ascending order of their integral values (a size-n ID-array).

For each semiFCI X = {x1, . . . , xn} in L, its ID is stored in the size-n ID-

array of each item xi in the Item Array, 0 ≤ i ≤ n. An example of Inverted

FCI Index is shown in Figure 4.2.

ID Size-1 Size-2 Size-3 Size-4

0 x xy xyz bxyz

1 y xz bxy abcd

2 b bx bxz

3 g by abd

4 bc

5 bd

Table 4.4: Table composed by 4 FCI-arrays

Figure 4.2: Example of Inverted FCI index.

38

We want to discuss here one point that we found to be crucial for the

efficiency of the final algorithm. In particular with the Inverted FCI Index

we can, given an itemset X, efficiently get its position into the corresponding

FCI-array, we can select its Smallest Semi-FCI Superset (SFS), and obvi-

ously we can insert and delete it. Algorithms 4.2, 4.3, 4.4, 4.5 show in detail

these operations.

Algorithm 4.2 Select(X = {x1, . . . , xn})
1: locate xi, for 1 ≤ i ≤ n, in the Item Array

2: perform join on the size-n ID-arrays of all xi
3: return the join result, if any, as the ID of X

Algorithm 4.3 SelectSFS(X = {x1, . . . , xn})
1: j ← 1

2: join the size-(n+ j) ID-arrays of all xi, for 1 ≤ i ≤ n
3: increment j until the join obtains a result for some size-(n+j) ID-arrays

or terminate the join when the end of the list of ID-arrays of some xi is

reached

4: return the join result, if any, as the ID of X’s SFS

Algorithm 4.4 Insert(X = {x1, . . . , xn})
1: if the size-n garbage-queue is empty then

2: store X at the end of the size-n FCI-array

3: else

4: ID ← POP (size-n garbage-queue)

5: store X in Position ID of the size-n FCI-array

6: insert ID in the size-n ID-arrays of all xi, for 1 ≤ i ≤ n

Algorithm 4.5 Delete(X = {x1, . . . , xn})
1: push X’s ID, i.e., its position in the size-n FCI-array, into the size-n

garbage-queue

2: delete X from the size-n FCI-array

3: delete X’s ID from the size-n ID-arrays of all xi, for 1 ≤ i ≤ n

We can see how the ID of each size-n FCI-array is duplicated n times, but

its memory consumption is not too large since the size of that are stored

usually is not big. The efficiency of the inverted indexing comes by the

39

joining of sorted arrays, which is simple and fast. But in case of several

selections, its overhead becomes significative, so it needs to be implemented

in such an efficient way.

4.5 Efficient inverted indexing

Another point that is not well specified in the original algorithm is how to

perform the join operation among the sorted arrays into the inverted index.

This operation has a significant influence over the processing performance,

since it have to be performed several times for each Semi-FCI that have

to be added, deleted or updated. Thus, it is necessary to implement this

procedure as much efficiently as possible.

Culpepper et al. in [26] provides a survey over algorithms for efficient

multiple sets intersection for inverted indexing. Actually there is a huge

variety of approaches that can be adopted to intersect two or more ordered

sets. One of those, which is proved to be an efficient solution in several

cases, is named Small Versus Small (svs), and it is the one we adopt in

our solution. Essentially, the intersection is computed by proceeding from

smallest to largest set. This tends to produce the smallest intermediate

results, therefore to be the most efficient processing order.

Algorithm 4.6 Small Versus Small intersection

INPUT: A set of n sets S1, . . . , Sn
OUTPUT: An ordered set of answers A

1: Reorder sets Si, 1 ≤ i ≤ n such that |S1| ≤ . . . ≤ |Sn|
2: A← S1
3: for i = 2 to n do

4: A← Intersect(A,Si)

5: return A

The function Intersect is a performed as a common sequential merge,

picking out common elements to the two sets via a loop in which a single

comparison is made at each iteration, and depending on the result of the

comparison, the successive element of one of the two lists is considered. This

implementation results in an important increase in performances respect to

the trivial solutions adopted in the early development stages.

40

(a) LearnModel configuration.

(b) IncMine configuration.

Figure 4.3: Edit settings within the MOA GUI.

4.6 IncMine within the MOA environment

Let us now see how IncMine can be used within the MOA environment.

MOA allows two run task either in command line or via its GUI. In or-

der to run MOA with our frequent itemset mining extension, the library

IncMine.jar must be included into the library path of MOA. For example,

if we want to lunch the MOA GUI with our library simply have to edit the

file moa.bat in the following way:

41

java -cp IncMine.jar;moa.jar -Javaagent:sizeofag.jar moa.gui.GUI

This command will start the graphic interface of the MOA environ-

ment. To run IncMine we have to use the Classification tab, and select

task moa.task.LearnModel, or moa.task.LearnEvaluateModel if we also

want performance evaluation.

Figure 4.3a shows an screen sample of moa.task.LearnModel configura-

tion. We can set here the type of learner, the stream in input, the maximum

number of transactions to be processed, the number of times the stream have

to be passed (usually set to 1) and the maximum amount of memory desired.

Figure 4.3b shows how the properties of IncMine algorithm can be set via

user interface.

We can configure the learner and launch MOA also via command line.

Consider the following example:

java -cp ncMine.jar;moa.jar -Javaagent:sizeofag.jar moa.DoTask ‘‘LearnModel

-m 100000 -l (IncMine -w 20 -m 5 -s 0.05 -r 0.4 -l 5000) -s (ZakiFileStream

-f T40I10D100K.ascii)’’

It runs the LearnModel procedure via a call to moa.DoTask. Each option

defined into a MOA class has a letter associated. The syntax to assign a

value to an option is ClassName [-opt value]. Table 4.5 shows the options

that are defined in the classes of our project.

4.7 Example of client class

Let us now analyze a simple Java code that shows how to use the salient

functionalities of our work (Listing 4.1). We do not use classes LearnModel

or LearnEvaluateModel in this sample code, but the way we analyze the

stream is essentially the same that these classes do.

Firstly a new ZakiStreamReader is created and instantiated. It reads

transactions from file T40I10D100K.ascii and provides an iterator-like in-

terface to get them. While the stream has more instances (condition that

can be checked via the method hasMoreInstances()), one can get the next

transaction by calling method nextInstance() of the stream object.

In line 9 we create and instantiate the IncMine learner object. Then we

configure the settings of the mining procedure (Lines 12-17). In MOA this

is done by providing a value to some public options that are defined within

the learner class, accordingly to the type of value that they are supposed to

accept. In our specific case, IncMine allows to specify a value for

• minSupportOption, i.e., the Minimum Support Threshold σ. It allows

values in (0, 1], with default value 0.1.

42

opt Option

s minSupportOption

r relaxationRateOption

l fixedSegmentLengthOption

w windowSizeOption

m maxItemsetLengthOption

(a) Class IncMine.

opt Option

f zakiFileOption

(b) Class ZakiFileStream.

opt Option

l learnerOption

s streamOption

m maxInstancesOption

p numPassesOption

b maxMemoryOption

(c) Class LearnModel.

opt Option

l learnerOption

s streamOption

e evaluatorOption

i instanceLimit

t timeLimitOption

f sampleFrequencyOption

b maxMemoryOption

q memCheckFrequencyOption

d dumpFileOption

(d) Class LearnEvaluateModel.

Table 4.5: Options of the classes defined in IncMine library.

• relaxationRateOption, i.e., the Relaxation Rate r. It allows values

in [0, 1], with default value 0.5.

• fixedSegmentLengthOption, i.e., the fixed-length of each segment.

Its default value is equal to 1000.

• windowSizeOption, i.e, the number of segments that will be kept into

the sliding window. It also corresponds to the size of the support

vector associated to each SemiFCI and to the maximum k value al-

lowed by the progressively increasing MST function minsup(). (Look

at Table 4.2 for an example). It has a default value of 10.

• maxItemsetLengthOption, i.e., the maximum length of itemsets to be

considered. It can be useful set it to speed up the mining process when

one knows the maximum size of the itemset of interest, because all

itemsets in the current segment with length greater that this limit are

discarded and do not influence the update process. It can be disabled

by setting its value to -1. In this case the algorithm will perform a full

mining of frequent closed itemset.

43

Listing 4.1: Compute FCIs over a data stream using IncMine.

1 import moa.learners.IncMine;

2 import moa.streams.ZakiFileStream;

3

4 public class Main {

5

6 public static void main(String args []){

7 //read the stream T40I10D100K.dat

8 ZakiFileStream stream = new ZakiFileStream(‘‘T40I10D100K.ascii’’);

9 IncMine learner = new IncMine (); // create the learner

10

11 // configure the learner

12 learner.minSupportOption.setValue (0.01d);

13 learner.relaxationRateOption.setValue (0.5d);

14 learner.fixedSegmentLengthOption.setValue (1000);

15 learner.windowSizeOption.setValue (20);

16 learner.maxItemsetLengthOption.setValue (-1);

17 learner.resetLearning ();

18

19 // prepare the stream for reading

20 stream.prepareForUse ();

21

22 while(stream.hasMoreInstances ()){

23 //pass the next instance to the learner

24 learner.trainOnInstance(stream.nextInstance ());

25 }

26 // output the final set of SemiFCIs

27 System.out.println(learner);

28 }

44

Chapter 5

Experimental results

During the last stages of the implementation phase, it becomes necessary

to perform a testing session to identify problems in the implementation as

well as strong and weak points. We were able to improve several aspects of

the algorithm using the results of the early testing stages. Once we got a

stable version of the software, we were able to perform an intensive testing

session to evaluate how INCMINE algorithm works with both synthetic and

real data streams.

In this Chapter first we explain how we generate these data streams.

We show how INCMINE performs under different types of input, e.g., with

drifting data streams, compared with MOMENT algorithm, which is still

the standard for (exact) frequent itemset mining in data streams. Since

INCMINE is an approximate algorithm, we detail its accuracy of the al-

gorithm in terms of two well-known accuracy measures, the precision and

recall. We provide an evaluation of the achievable throughput and of the

memory consumption of the algorithm under the MOA environment.

At the time of testing we were not able to find an efficient Java implemen-

tation of MOMENT algorithm, so we decided to use use the original C++

provided by the author. C++ is commonly accepted to be more efficient

than Java, so this difference must be taken into account when evaluating

the results.

5.1 Generating synthetic data streams

To provide a fair evaluation of a stream data mining algorithm it is necessary

to test it with different kind of inputs. Actually there is no application

available for data streams generation for frequent itemset mining. Usually

researchers decide to create static transactions databases and provide them

45

to the algorithm in a stream fashion. If the dataset is sufficiently large,

although it is not infinite as real data stream should be, it can be considered

a good test bench for evaluate the capabilities of the proposed algorithm.

One the most used synthetic data generator for itemset patterns is Zaki’s

IBM Datagen software [33]. It generates transactions databases for literal,

sequential and taxonomic itemset mining. In our case we will use the first

typology to generate different data streams. The easiness of generating

such synthetic dataset convinced us to introduce into our solution a specific

stream reader for the type of files that are outputted by this utility (i.e., the

ZakiFileStream that we presented in Chapter 4.

The IBM Datagen program allows to specify several characteristics of

the output dataset, such as

1. The number of transactions (default value: 106).

2. The average number of items per transaction (default value: 10).

3. The number of different items, which equals to the dimension |I| of

the set of items I (default value: 108).

4. The number of patterns (default value: 104).

5. The average length of the maximal pattern (default value: 4).

6. The correlation between patterns (default value: 0.25).

7. The average confidence in a rule (default value: 0.75).

In the following sections we refer to different synthetic datasets. Their name

follows the syntax:

T{avg t length}I{num diff items}D{num t}[P{avg patt length}][C{correlation}]
The number of different items is expressed in thousands. Any option

that has not an assigned value assumes its default value. For example the

datasets:

T40I10D100K refers to a dataset of 105 transactions, with an average of

40 items per transaction over a dictionary of 104 different items.

T50I10kD1MP6C05 refers to a dataset of 106 transactions, with an av-

erage of 50 items per transaction over a dictionary of 104 different

items, maximal patterns of average length 6 and correlation between

patterns of 0.5.

46

As we will see, options such as the average number of items per trans-

action and their average length, the average length of the maximal pattern

and the correlation between patterns, have great influence over the number

of itemsets that can be extracted and, in general, over the density of the

resulting data stream.

5.1.1 Experiments

The initial testing phase was intended to measure the performances of our

solution when the input is a standard data stream, with no drift or other

particularities. We used the T40I10D100K dataset, a sparse dataset also

provided by Zaki in [33], which is used as test set in several of the papers

that we have analyzed so far. We study the accuracy of the algorithm in

terms of precision and recall. We analyze its throughput and memory usage.

We provide a comparison between INCMINE and MOMENT algorithm.

Notice that the MOMENT implementation we used was coded in C++.

C++ code is compiled while Java code is interpreted by an intermediate

software, the Java Virtual Machine (JVM). This introduces a significant

overhead in executing Java applications with respect to C++ ones, since

the latter can be run without external applications. According to [43], in-

terpreted Java runs in the range of 20 times slower than C++. The factor

may vary a lot depending on the type of application, the particular Java Vir-

tual Machine used, the compiler used, but usually C++ code outperforms

Java one in the majority of applications. Consider the consequences of this

fact in the analysis of the following experiments.

Unless otherwise stated, in the following experiments the segment length

of INCMINE is fixed to 500 transactions, while its window size is fixed to

10 segments. This equals to consider a window length of 5000 transactions

for MOMENT algorithm.

With this experiments we want to evaluate the following characteristics

of our solution:

• The accuracy, in terms of precision and recall.

• The throughput, to measure the processing time of the algorithm.

• The memory consumption, to measure the space occupied in memory

by its data structures.

We will also study the dependance of the above measures on the minimum

support threshold σ and the relaxation rate r. Essentially, INCMINE mines,

for every segment of transactions S, the set of frequent closed itemsets with

47

support grater than rσ|S|, and then uses those itemsets to update the state

of the entire sliding window. We consider as frequent only closed itemsets

with support greater than σ|S|. The factor r allows to extract also infrequent

closed itemsets that potentially can become frequent in the future. Thus, the

lowest is the value of r, the bigger is the set of itemsets that is extracted from

each segment at every window slide. This influences both the processing time

and the accuracy of the results.

For example, consider segments of length |Si| = 500 transactions. If we

run INCMINE with a minimum support threshold σ = 0.1 and a relaxation

rate r = 0.5, the algorithm will extract from each segment all the frequent

closed itemsets with support greater minsupSemi−FCI = 0.5 · 0.1 · 500 = 25.

INCMINE will use those itemsets to keep updated the set of Semi-FCIs

within the sliding window, while the set of approximate frequent closed

itemset can be extracted considering only itemsets with support greater

than minsupFCI = 0.1 · 500 = 50. A detailed explanation of the role of

these variable is available in Section 4.2.

Note: We used MOA Release 2012.03 [4]. The solution was implemented

with NetBeans 7.1.1 IDE (Build 201203012225) [42], using the Sun Java

1.7.0 03 JVM. We have developed and tested the software on a system with

an Intel Core i5 M450 2.40 GHz Dual Core CPU and 4GB RAM. The

operative system used was Windows 7. We set the Maximum heap size

(-Xms) of the JVM to 1 GB for every INCMINE execution.

r Prec. Rec.

0.1 1.000 1.000

0.2 1.000 1.000

0.3 1.000 1.000

0.4 1.000 1.000

0.5 1.000 1.000

0.6 1.000 1.000

0.7 1.000 0.993

0.8 1.000 0.949

0.9 1.000 0.821

1.0 1.000 0.696

Figure 5.1: Precision and Recall of INCMINE algorithm varying r (σ = 0.1).

48

Accuracy

INCMINE provides an approximate solution to the frequent closed itemset

mining problem. As we describe in Section 4.2, INCMINE method uses a

false-negative approach. The relaxation rate r has a direct influence over

the approximation, and it is important to estimate how this approximation

affects the quality of the response. We fixed the MST σ = 0.1 and we vary

r in [0.1, 1]. Thus we evaluate the effects of the variation of the relaxation

rate on the precision and recall of the algorithm.

Precision and recall are respectively defined as (|A ∩ B|/|B|) and (|A ∩
B|/|A|), where A and B are the actual set and the approximate set of

frequent itemsets over each window, respectively. We recover the set of FIs

from the set of FCIs that are obtained by INCMINE at every entire window

slide (computed with the procedure described in Algorithm 2.2), and we

compare them to the real set of FIs computed with an implementation of

the Eclat algorithm available in [35]. Finally we average the results we

obtain for every window slide and report them.

We report the precision and recall of INCMINE in Figure 5.1. Precision

and recall of MOMENT are omitted since MOMENT is an exact algorithm.

We can see that INCMINE achieve really good accuracies for almost all

values of r, demonstrating the good impact that the progressively increasing

minsup function has. We always get a precision of 1, as any false-negative

algorithm should have, and recall drops down only for values grater than

0.9.

In order to discover any possible skewed behavior, we decided to measure

the accuracy also for different values of the minimum support threshold σ,

fixed r = 0.5. We report in Figure 5.2 the values of precision and recall

that we obtain. INCMINE always attains high quality results, even for

a relaxation rate of 0.5. We can notice that in some cases (precisely for

σ equal to 0.2 and 0.7) precision is not exactly 1 as expected. A deeper

analysis shows that these little differences are due to few itemsets that stay

in the ‘border’ between frequent and not frequent itemsets (i.e., itemsets

whose support is exactly equal to σ|S|), but this does not influence the

overall quality of the processing.

Throughput

It is also important to measure the effects of such variation in the param-

eters over the processing speed of the algorithm. We measure the average

throughput, expressed in transactions per second (trans/sec), of processing

for the entire data stream for different ranges of relaxation rate and min-

49

σ Prec. Rec.

0.02 0.995 0.972

0.03 1.000 0.991

0.04 1.000 0.999

0.05 1.000 0.999

0.06 1.000 0.999

0.07 0.994 1.000

0.08 1.000 1.000

0.09 1.000 1.000

0.10 1.000 1.000

Figure 5.2: Precision and Recall of INCMINE algorithm varying σ (r = 0.5).

imum support threshold. We report in Figure 5.3 the average throughput

values for r ∈ [0.1, 1]. The processing speed grows as the relaxation factor

increases, this because higher values of r implies a lower number of frequent

closed itemsets mined in every segment. This number has a great influence

in the overall processing time.

We test MOMENT on the same data stream, with minimum support

threshold minsup = σ|S| = 0.1 ·500 = 500. Since MOMENT is independent

from such relaxation rate, its throughput is constant for all these tests.

INCMINE clearly outperforms MOMENT for every value of r ≥ 0.2, and

only for r = 0.1 the performances of the two algorithms are comparable. For

example, for r = 0.5 the throughput of INCMINE is more than two orders

of magnitude bigger that MOMENT’s one. At the same time, INCMINE

achieves very good accuracies with this value of r, so we decide to adopt

r = 0.5 for every future experiment.

Similarly to what we have done before, we also study the behavior of the

throughput with respect to the minimum support threshold σ. We fixed r =

0.5 and we average the throughput obtained for σ ∈ [0.02, 0.10]. Figure 5.4

clearly shows that INCMINE outperforms MOMENT in every case, and the

difference between them grows as the minimum support threshold increases.

In every case, a part from σ = 0.02, INCMINE’s throughput is at least one

order of magnitude higher than MOMENT’s one.

The authors performs similar tests in [6], comparing their C++ imple-

50

r MOMENT INCMINE

0.1 265.1 100.2

0.2 265.1 3372.5

0.3 265.1 12364.8

0.4 265.1 19686.3

0.5 265.1 27232.2

0.6 265.1 34232.3

0.7 265.1 40985.9

0.8 265.1 47408.9

0.9 265.1 52426.4

1.0 265.1 53723.7

Figure 5.3: Throughput in trans/sec for different values of r (σ = 0.1). The minimum

support used for MOMENT is equal to 500. Observe the logarithmic scale in the y

axis.

mentation of INCMINE using the CHARM code provided by the author [31]

with the same MOMENT implementation we used here. Although the dif-

ferences between the two implementations, the results we obtained are com-

parable to the ones provided by the authors. At the moment we cannot

provide a quantitative comparison between them, due to the different ar-

chitecture used. However, since we obtain qualitatively a similar behavior,

we can state that our proposal is a good and correct implementation of the

original one.

Memory usage

Every data stream algorithm may run over systems with limited amount of

available memory, such as nodes in a sensor network, which cannot handle

memory loads as big as may a mainstream system can do. For this reason, in

the different proposals we analyzed in Chapter 3, researchers tries to intro-

duce data structures that can reduce as more as possible the memory con-

sumption, meanwhile they want to achieve better processing performances

(e.g., in terms of throughput).

So it becomes essential, also for our proposal, to have an idea of what

would be its average memory consumption and how the parameter of the

algorithm influences this measure. We decide to not compare INCMINE

51

σ MOMENT INCMINE

0.02 29.9 50.2

0.03 52.1 821.1

0.04 57.6 2461.6

0.05 79.5 6286.5

0.06 95.4 9582.4

0.07 130.7 13859.6

0.08 151.3 16163.0

0.09 245.0 19388.6

0.10 265.1 21181.0

Figure 5.4: Throughput in trans/sec for different values of σ (r = 0.5). The minimum

support used for MOMENT is equal to σ · 5000. Observe the logarithmic scale in the

y axis.

with MOMENT in this case, because of the great differences between the

two architectures they are based on. In particular the Java Virtual Machine

(and garbage collection) directly influences the memory measurement we

obtain for INCMINE; such systems are not available for a C++ written

program.

Note: We run the algorithm 10 times for each combination of the pa-

rameters, then we report the average results.

First we analyze the memory consumption of INCMINE in function of

the minimum support threshold σ, fixed r = 0.5. In Table 5.1 we com-

pare the overall memory consumption with the effective size in memory of

the main data structures of INCMINE. The average memory consumption

correctly decreases as the minimum support threshold increases, because a

lower number of frequent closed itemsets have to mined and stored.

In the same table we also report the average size in memory of the main

data structures used by INCMINE (the FCI-arrays and the Inverted FCI

Index). Their size is several times lower than the whole memory consump-

tion of the algorithm. This because the mining of frequent closed itemsets in

the current segment is a very memory intensive phase, while the data struc-

tures used provides a really compact notation of the set of Semi-FCIs stored

within the sliding window. For example, for a value of r = 0.05, we have an

average memory usage of 221 MB, and only 1.4 MB of these are reserved

52

σ Total Memory Usage Data Structures Size

0.02 225.2 23.1

0.03 266.5 6.3

0.04 226.6 3.1

0.05 221.1 1.4

0.06 217.8 0.9

0.07 202.6 0.6

0.08 198.3 0.5

0.09 192.3 0.4

0.10 187.2 0.3

Table 5.1: Average memory consumption for σ (r = 0.5) in MB. We report the overall

(Total) memory usage and the real size in memory of INCMINE’s data structures (FCI-

arrays + Inverted FCI Index).

to store the data structures of the algorithm. This suggests that a possible

point of optimization for the algorithm could be found in the memory usage

of the frequent closed itemset mining of each segment.

We also analyze the effects of changing window size. We fixed the min-

imum support threshold σ = 0.05 and study how the overall memory con-

sumption and the size of the data structures varies. In Figure 5.5 we can

see the behavior of the total memory consumption. For vales lower than

60 the memory consumption is almost constant. For larger windows the

average memory consumption increases. These unexpected results can be

justified by the intervention of the Garbage Collector, a mechanism imple-

mented into the JVM to delete unreferenced objects to free memory, whose

intervention skews the measurements of the memory usage.

Instead, if we look at the size in memory of the FCI-arrays and Inverted

FCI Index shown in Figure 5.6, we can see that exists a linear dependance

between the number of segments retained in the window and the size in

memory of such data structures. A bigger sliding window corresponds to

a higher number of frequent closed itemsets that have to be stored, thus a

bigger space in memory is occupied. But it remains several times lower than

the global memory consumption, proving the memory efficiency of the data

structures that have been used.

5.2 Introducing concept drift

It is really important to verify how a data stream algorithm reacts to concept

drift. A data stream is a continuously evolving source of data, and a good

53

Figure 5.5: Average overall memory consumption for different window size values (σ =

0.05, r = 0.5).

mining algorithm has to react as quick as possible to any change, whether

it is a sudden or a soft change.

There are infinite possible changes, but we are interested only in drifts

that affect the result of our algorithm, that is, the set of frequent itemsets.

This can be detected by monitoring the number of added and deleted fre-

quent itemsets in the data structures, like we use in real data processing,

presented in Section 5.3.

In many other cases detect a drift can be even easier, by simply mon-

itoring the total number of frequent itemsets. If it varies significantly, we

detect a change. If not, we may not detect a change, and we get a false

negative. We think that these cases are rare in practice, since almost every

drift produces a change in the number of frequent itemsets. In this way we

also get a computationally simpler test.

While real data streams are ‘naturally’ affected by concept drift, it is nec-

essary to find a way to introduce concept drift into synthetic data streams.

By testing our algorithm over different synthetic concept drifts, we can get

an idea on how it will work in real cases, and study what are the configura-

tions that better adapts to each possible situation.

Bifet et al. introduce in [36] a new experimental framework for concept

drift. They explain a straightforward way to introduce artificial drift to data

streams generators. Starting from two different data streams corresponding

to two different concepts, simply we need to define the probability that every

54

Figure 5.6: Average memory consumption of INCMINE’s data structures for different

window size values (σ = 0.05, r = 0.5).

new instance of the stream belongs to the new concept after the drift (i.e.,

the probability that an instance of the second stream appears in the final

stream). They use the sigmoid function

f(t) = 1/(1 + e−s(t−t0)) (5.1)

to express this probability. As shown in Figure 5.7, it has a derivative at

the point t0 of f ′(t0) = tanα = s/4. It can easily seen that, as s = 4 tanα

and tanα = 1/L, then s = 4/L. In the sigmoid model the parameter t0
specifies the point of change and L the length of change. This sigmoid-based

approach can be applied to create a data stream with multiple changes by

joining different concept changes.

We implement two scripts in python, named merge-sigmoid.py and

merge-step.py, which outputs a new stream with, respectively, a sigmoid

or a sudden drift (a.k.a. a step drift, since we pass from a stream to another

in a binary way) between the following two data streams created with the

IBM Datagen.

1. T40I10kD1MP6

2. T50I10kD1MP6C05

Since the correlation between transactions in the T50I10kD1MP6C05 stream

is higher than T40I10kD1MP6 one, the former has a higher density and more

55

Figure 5.7: The sigmoid function.

frequent itemsets can be extracted. This difference between the two streams

is sufficient to evaluate correctly the quality of the reaction to every kind of

concept drift.

In every of the following experiments INCMINE uses a minimum sup-

port threshold σ = 0.01, a relaxation rate r = 0.5 and segments of 1000

transactions.

5.2.1 Reaction to sudden drift

It is important to have an idea of how much time needs a data stream

algorithm to adapt to a concept change. The more time is needed, the less

is the adaptive power of the algorithm. In data streams mining, it means

that we have to wait longer to have a response that reflects the real state of

data that are mined. And, obviously, we want to reduce this time as more

as possible, in order to stay in line with the online processing paradigm.

We now analyze the reaction to sudden drift. A sudden drift consists in

an abrupt change from a concept to another. If we consider the two concepts

as two binary values, in a sudden drift we pass from one value to another

with no intermediate changes, like a step function. Sudden drifts allows to

compute easily the reaction time of a data stream algorithm.

The starting time tstart of the concept drift can be defined exactly (i.e.,

looking at the transaction where we pass from one concept to the other

in the synthetic drift generation); we can consider that a frequent itemset

data stream algorithm ‘reaches’ a concept when the its number of Frequent

Itemsets (or Frequent Closed Itemsets) is sufficiently close to the number of

Frequent Itemsets of this concept.

56

Figure 5.8: Step drift and number of extracted FIs for window size ∈ {10, 20, 50, 100}.

Since the number of FIs varies every transaction, we decide that a concept

is reached when the absolute difference between the number of FIs mined

and the real number of FIs is lower that the 5% of the latter value.

treach = t such that
||FImined(t)| − |FIreal(t)||

|FIreal(t)|
≤ 0.05. (5.2)

Notice that the real number of FIs is also a random variable, so we consider

as FIreal(t) as the average number of Frequent Itemset mined along the

whole stream (concept). We compute it by mining each stream 10 times

and getting the average number of FIs mined.

We define the reaction time of a frequent itemset stream mining algo-

rithm as difference between the time of reach and the starting time of the

drift, expressed in number of transactions.

reaction time = treach − tstart (5.3)

We generate a sudden drift between the two test streams, passing from one

to the other at transaction 8 · 105, which also corresponds to our tstart. We

represent in Figure 5.8 the evolution of the number of Frequent Itemsets

mined for different dimensions of the sliding window. This picture shows

clearly that increasing the window size also increases the reaction time. Have

a bigger window means reduces the influence of the last segments mined on

the overall frequent closed itemsets that are stored, and this implies longer

time to react to a sudden drift. In particular, the drift ends when almost

57

win size react time

10 9

20 18

30 27

40 36

50 46

60 55

70 64

80 73

90 82

100 91

Figure 5.9: Reaction time for window size ∈ [10, 100].

all the transactions in the window belongs to the new concept, as we can

notice from Figure 5.9.

5.2.2 React to sigmoidal drift

Once analyzed the dependance between the window size and the capability

of INCMINE to react to a sudden drift, we test it over gruadual drifts. Since,

at the best of our knowledge, there is no easy way to provide a measure to

express the reaction time of a data stream mining algorithm to soft sigmoidal

drifts, we provide only graphical results here.

We generate and test three different sigmoidal drifts, with the following

characteristics, ordered from the harder to the softer

1. point of change t0 = 8 · 105, drift length L = 5 · 103 transactions.

2. point of change t0 = 8 · 105, drift length L = 5 · 104 transactions.

3. point of change t0 = 8 · 105, drift length L = 2 · 105 transactions.

Figures 5.10, 5.11, 5.12 show the evolution of the number of Frequent Item-

sets extracted from the Frequent Closed Itemsets returned by INCMINE.

In every case, the behavior is almost the same we have noticed for abrupt

changes. That is, bigger windows corresponds to longer times of response.

But now, depending on the nature of the stream, the drift can last from

58

Figure 5.10: Sigmoid drift (t0 = 8 · 105, L = 5 · 103).

Figure 5.11: Sigmoid drift (t0 = 8 · 105, L = 5 · 104).

some hundreds of transactions to several thousands, and this amplifies the

differences between small and bigger windows.

Another interesting information can be extracted from the graphs above.

Some skewed behaviors, such as peaks in the number of FIs, are well filtered

by big windows. This fact is clearly visible in Figure 5.12, which shows the

entire stream processing. Peaks that appears for windows of size 10 almost

disappears for bigger windows, which shows a more stable processing.

Consequently, it is important to select accurately the window size to re-

59

Figure 5.12: Sigmoid drift (t0 = 8 · 105, L = 2 · 105).

act quickly in case of concept drift, but also to have a more stable processing

where no change happens.

We will discuss more in the conclusions the problem of the balance be-

tween keeping a stable, noise-tolerant computation and having a fast reac-

tion time. In particular, it is a challenge to do this automatically without

user intervention.

5.3 Experiments with real data

In parallel with testing synthetic data streams, we advised the necessity to

run our solution with some real data stream. Currently there are several data

streams available online (e.g., Yahoo news, Twitter, financial data streams),

but it is cumbersome to create a specific interface for them, and this is out

from the scope of the project. Furthermore, it is not clear if such data

streams can be used for itemset mining.

We elaborate a huge but batch dataset, and we use its timing information

to create a stream where transactions are passed in order of ascending time.

We use the MOVIELENS dataset, a free dataset provided by Group Lens

Research [37]. MOVIELENS dataset records user ratings for movies. A rat-

ing is a value between (1, . . . , 5) with half ratings, that a user provides after

seeing it. MOVIELENS is originally intended to be used in recommendation

systems, neither for online processing nor for itemset mining purposes. The

60

former point effectively was not a problem, since we have already seen how

to treat static datasets as data streams. But the latter was real issue, since

we have to convert data coming from a film recommendation system into a

transactions database ready to be passed to our algorithm.

The MOVIELENS dataset contains about 10 millions ratings applied

to 10681 movies by 71567 users of the online web service MovieLens. It

collects ratings starting from 29 Jan 1996 00:00:00 GMT to Wed, 15 Aug

2007 07:20:00 GMT. It is composed of several files, but we used only files

ratings.dat, containing the information over the ratings of each user, and

file movies.dat, the dictionary of all the movies. Data in each file are

organized as follows

ratings.dat UserID::MovieID::Rating::Timestamp, where Timestamp rep-

resents the seconds since midnight Coordinated Universal Time (UTC)

of January 1, 1970.

movies.dat MovieID::Title::Genres.

According to this representation, we create a transactions database using

MovieID as items and grouping ratings by Timestamp, then sort them for

Timestamp in ascendent order.

The principal problem in this phase was to identify a good way to group

ratings together. In fact, grouping by the simple timestamp results in a

huge dataset with small transactions, since two movies appears in the same

transaction only if they were rated in the same second.

We need to group movies with thicker granularity, and after several tries,

we decide to group into the same transaction movies that were rated into

the same 5 minutes.

We also impose a maximum of 50 items for each transaction, and we

subdivide longer transactions into several different ones of the same length.

This approximation becomes necessary to reduce the effect of some really

skewed transactions that appear after grouping. We will see that this process

does not affect the quality of the processing and the results.

We obtain a data stream of 622265 transactions with an average of 10.37

items per transaction. It represents the movies that have been rated into

the MOVIELENS recommendation system in the same 5 minutes interval,

independently from the user that have done the evaluation. Transactions

are not uniformly distributed along this time interval.

We perform several processing to find the best configuration for IN-

CMINE. Since we are treating with real data, it is not trivial to configure a

stream data mining algorithm to perform perfectly in every possible condi-

61

Figure 5.13: Number of FIs for a subset of transactions of the MOVIELENS stream. It

corresponds to transactions collected between 28 Mar 2000 23:00:00 GMT and 02 Aug

2006 01:35:00 GMT.

tion, since performances can be affected from different factors that can vary

in an unpredictable way, such as the density of data.

Considering that the number of different items is similar to what we use

in previous synthetic tests (in the order of 10K elements), we can use the

knowledge we acquired there to guide the first stages of the processing. We

aim to extract what are the movies that are used to be rated together and

to detect when a change is occurring.

To react quickly to concept drifts, the window size should be small, e.g,

10 segments per window. The dimension of each segment depends on the

level of detail we want to obtain. For example, if we consider segments of

1000 transactions each, it means that we may achieve a minimum timing

resolution of 1000trans · 5min/trans = 5000min ≈ 3.5days, in the hypoth-

esis of uniformly distributed transactions. Actually this hypothesis does not

hold, so the real timing resolution can be a greater number of days.

The minimum support threshold should be decided accordingly to the

previous two parameters, and to the depth of the mining process we want to

perform. This because the lower is minimum support threshold the longer

will be the itemsets mined. On the other hand, an excessively low threshold

can return rare and, in fact, not interesting itemsets. And also it may

slow down excessively the processing, considering the effect of the relaxation

factor.

62

Figure 5.14: Significant FIs add and remove rates for a subset of transactions of the

MOVIELENS stream. It corresponds to transactions collected between 28 Mar 2000

23:00:00 GMT and 02 Aug 2006 01:35:00 GMT.

Figure 5.13 shows the evolution on the number of Frequent Itemsets

extracted from INCMINE for a significant subset of transactions of the

MOVIELENS data stream. It has been previously configured to work with a

minimum support threshold σ = 0.02, relaxation rate r = 0.5 and a window

size of 10 segments, with 100 transactions per segment. We mine itemsets

of maximum length 5, since we are interested in groups of 2 or 3 movies that

appear frequently together.

Obviously this results are totally different on the ones we obtained from

synthetic drifts, where the differences between concepts we introduced were

clear. In this case no subdivision among concepts can be clearly identified.

The distribution of the FIs has one important peak, which can be attributed

to an important variation on the density of the data stream. There are

also other minor peaks and variations, but no sufficient information can be

extracted looking only to the total number of FIs (or, similarly, to FCIs).

Thus, it becomes necessary to track also the number of itemsets that have

been added or removed in every segment. This information can help us to

better identify changes. A sudden increase (decrease) of frequent itemsets

can testify that a change is occurring, because several of the itemsets that

were kept into the sliding window stop to be frequent (and viceversa).

For every window slide we compute the rates of frequent itemsets that

have been added or removed with respect to their total number. So, for a

63

segment S, we define the following measures:

add rate =
|FIadded(S)|
|FI(S)|

rem rate =
|FIremoved(S)|
|FI(S)|

We consider that a drift is occurring when one of the above coefficients

becomes grater than 0.1, which means that at least the 10% of the frequent

itemsets have been renewed in the last window slide.

Figure 5.14 shows the significant values of the previous rates for a subset

of transactions. Each peak corresponds to a possible drift in the concept,

thus the set of frequent itemsets is outputted to be analyzed.

Table 5.2 reports the top 3 frequent itemsets of dimension grater than

1 for some drifted transaction, along with the corresponding date. It is

really interesting to look how the set of frequent itemsets varies along years,

and how the most rated movies corresponds to some of the most famous

ones at the time. The evolution of popular movies over time would have

been unnoticed if we had used a batch algorithm that ignored the temporal

sequence of the ratings.

64

(transaction, date) Frequent Itemsets

(168000, 16 Jul 2000)

• Lord of the Rings: The Fellowship of the Ring, The

(2001); Beautiful Mind, A (2001).

• Harry Potter and the Sorcerer’s Stone (2001); Lord of

the Rings: The Fellowship of the Ring, The (2001).

• Ocean’s Eleven (2001); Lord of the Rings: The Fellow-

ship of the Ring, The (2001).

(189000, 23 Nov 2000)

• Spider-Man (2002); Star Wars: Episode II - Attack of

the Clones (2002).

• Bourne Identity, The (2002); Minority Report (2002).

(223000, 29 Jun 2001)

• Lord of the Rings: The Fellowship of the Ring, The

(2001); Lord of the Rings: The Two Towers, The

(2002).

• Minority Report (2002); Signs (2002).

• Lord of the Rings: The Two Towers, The (2002);

Catch Me If You Can (2002); .

(282000, 05 Jul 2002)

• Lord of the Rings: The Fellowship of the Ring, The

(2001); Lord of the Rings: The Two Towers, The

(2002).

• Lord of the Rings: The Two Towers, The (2002); Lord

of the Rings: The Return of the King, The (2003).

• Lord of the Rings: The Two Towers, The (2002); Pi-

rates of the Caribbean: The Curse of the Black Pearl

(2003).

Table 5.2: Example of the evolution of Frequent Itemsets extracted from the MOVIE-

LENS data stream when a drift is detected.

65

66

Chapter 6

Conclusions and future works

In this work we have presented a frequent closed itemset mining solution

based on the INCMINE algorithm. This algorithm is perfectly integrated

within the Massive Online Analysis framework, and ready to be used from

every user.

We have obtained very good accuracies in terms of precision and recall

in the experiments. We have also obtained good performances in processing

time. Experimental results shows clearly that our solution is faster than

MOMENT, taking in account the our solution is approximate, while MO-

MENT is an exact algorithm. For not so small values of the relaxation

factor we are able to get a good accuracy and, meanwhile, the algorithm

runs several orders of magnitude faster than MOMENT.

The memory consumption of the algorithm is reasonable, although we

were not able to compare it with MOMENT due to the excessive differences

between the implementations of these algorithms that we used.

The characteristics of the algorithm guarantee adaptability to concept

drift. We have verified it simulating different types of change in synthetic

data streams. We have also tested the algorithm over a data stream gener-

ated from real data, obtaining interesting results. The algorithm well adapts

also to real concept changes, providing a response that reflects the state of

stream in its temporal evolution.

The final numbers of hours per stage, schedule and costs is as in Ta-

ble 6.1. We can see that the main deviations with respect to the initial

plan are due to more time required for acquiring background knowledge and

paper analysis.

It remains an open problem how to make the algorithm to be auto-

adaptive. This is a well known problem, where the algorithm should choose

its parameters by itself, such as the minimum support threshold, the mini-

67

Phase Deadline Hours Cost Total

Required knowledge acquisition 15/02/2012 100 15e/h 1500e

Paper analysis 15/03/2012 200 15e/h 3000e

Design/Implementation 30/04/2012 250 20e/h 5000e

Testing I 15/05/2012 75 15e/h 1125e

Testing II 31/05/2012 75 15e/h 1125e

Reporting 20/06/2012 100 15e/h 1500e

TOTAL - 800 - 13250e

Table 6.1: Final time schedule and economic cost of the project.

mum support function and the window size. The ADWIN method proposed

in [34] has been used successfully in other contexts to achieve this adapta-

tion. Its main idea is to keep a window whose length varies according to the

change detected in the stream, so that when change is occurring it shrinks

to achieve faster reaction time, and when there is no change it enlarges to

achieve more stability.

Other improvements can be obtained by trying different algorithms for

frequent closed itemset mining, which may reduce the memory consumption

of the algorithm.

68

Bibliography

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.

VLDB Conference, 1994.

[2] J. Han, H. Cheng, D. Xin, X. Yan. Frequent pattern mining: current

status and future directions. Data Min. Knowl. Discov. 15(1): 55-86

(2007).

[3] J. Han, J. Pei, Y. Yin. Mining Frequent Patterns without Candidate

Generation: A Frequent-Pattern Tree Approach. Data Min. Knowl.

Discov. 8(1): 53-87 (2004).

[4] MOA Massive Online Analysis. http://moa.cs.waikato.ac.nz/

[5] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer. MOA: Massive Online

Analysis. Journal of Machine Learning Research 11: 1601-1604 (2010).

[6] J.Cheng, Y. Ke, W. Ng. Maintaining frequent closed itemsets over a

sliding window. J. Intell. Inf. Syst. 31(3): 191-215 (2008).

[7] S. Yen, C. Wu, Y. Lee, V. Tseng, C. Hsieh. A Fast Algorithm for

Mining Frequent Closed Itemsets over Stream Sliding Window. FUZZ-

IEEE Conference, 2011.

[8] M. Memar, M. Deypir, M. Sadreddini, S. Fakhrahmad. An Efficient

Frequent Itemset Mining Method over High-speed Data Streams

[9] L. Guon, H. Su, Y. Qu. Approximate mining of global closed frequent

itemsets over data streams. Journal of the Franklin institute, 2011.

[10] G. Song, D. Yang, B. Cui, B Zheng, Y. Liu, K. Xie. CLAIM: An Efficient

Method for Relaxed Frequent Closed Itemset Mining over Stream Data.

DASFAA Conference, 2007.

[11] H. Li, C. Hob, S. Lee. Incremental updates of closed frequent itemsets

over continuous data streams. Expert Syst. Appl. (2009).

69

[12] H. Li, S. Lee. Mining frequent itemsets over data streams using efficient

window sliding techniques. Expert Syst. Appl. (2009).

[13] Y. Chi, H. Wang, P.S. Yu, R.R. Muntz. Catch the moment: maintaining

closed frequent itemsets over a data stream sliding window. Knowl. Inf.

Syst. (2006).

[14] A. Bifet, R. Gavaldà. Mining Frequent Closed Trees in Evolving Data

Streams. Intell. Data Anal. (2011).

[15] T. Calders, N. Dexters, B. Goethals. Mining Frequent Itemsets in a

Stream. ICDM Conference, 2007.

[16] J. Cheng, Y. Ke, W. Ng. A Survey on Algorithms for Mining Frequent

Itemsets over Data Streams. Knowl. Inf. Syst. (2008).

[17] D. Knuth. The Art of Computer Programming, volume 3: Searching

and Sorting. Addison-Wesley, 1998.

[18] N. Jiang, L. Gruenwald. CFI-Stream: Mining Closed Frequent Itemsets

in Data Streams. KDD Conference, 2006.

[19] M. Memar, M. Deypir, M. H. Sadreddini, S. M. Fakhrahmad. An Effi-

cient Frequent Itemset Mining Method over High-speed Data Streams

[20] M. Deypir, M. H. Sadreddini. A Dynamic Layout of Sliding Window

for Frequent Itemset Mininig over Data Streams. Journal of Systems

and Software 85(3): 746-759 (2012)

[21] G. S. Manku, R. Motwani. Approximate Frequency Counts over Data

Streams. VLDB Conference, 2002.

[22] J. H. Chang, W. S. Lee. estWin : Adaptively Monitoring the Recent

Change of Frequent Itemsets over Online Data Streams. J. Information

Science (2005).

[23] D. Lee, W. Lee. Finding Maximal Frequent Itemsets over Online Data

Streams. ICDM Confernce, 2005.

[24] H. Li, S. Lee, M. Shan. An Efficient Algorithm for Mining Frequent

Itemsets over the Entire History of Data Streams

[25] J. Pei, G. Dong, W. Zou, J. Han. On Computing Condensed Frequent

Pattern Bases. ICDM Confernce, 2002.

70

[26] J. S. Culpepper, A. Moffat. Efficient Set Intersection for Inverted In-

dexing. ACM Trans. Inf. Syst. 29(1): 1 (2010).

[27] C. Li, K. Jea. An Adaptive Approximation Method to Discover Fre-

quent Itemsets over Sliding-window-based Data Streams. Expert Syst.

Appl. (2011).

[28] A. Rajaraman, J. D. Ullman. Mining of Massive Datasets. Cambridge

University Press, 2011.

[29] M. J. Zaki. Lecture notes from the Data Mining course at Rensselaer

Polytechnic Institute. www.cs.rpi.edu/~zaki/

[30] M. J. Zaki. Scalable algorithms for association mining. IEEE Trans.

Knowl. Data Eng. 12(3): 372-390 (2000).

[31] M. J. Zaki, C. J. Hsiao. CHARM: An efficient algorithm for closed

association rule mining. SDM Conference, 2002.

[32] M. J. Zaki, K. Goudaz Fast Vertical Mining Using Diffsets. KDD Con-

ference, 2003.

[33] M. J. Zaki. http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/

Software/Software

[34] A. Bifet, R. Gavaldà. Learning from time-changing data with adaptive

windowing. SDM Conference, 2007.

[35] Philippe Fournier-Viger. A Sequential Pattern Mining Framework

http://www.philippe-fournier-viger.com/spmf/index.php

[36] A. Bifet. Adaptive Learning and Mining for Data Streams and Frequent

Patterns. Ph.D. thesis, Dept. LSI, Universitat Politècnica de Catalunya,

2009.

[37] GroupLens Research, University of Minnesota http://www.

grouplens.org/

[38] P. Tan, M. Steinbach, V. Kumar. Introduction to Data Mining.

Addison-Wesley, 2005.

[39] C. Lucchese, S. Orlando, and R. Perego. Fast and memory efficient min-

ing of frequent closed itemsets. IEEE Trans. Knowl. Data Eng. 18(1):

21-36 (2006).

71

[40] S. Ben Yahia, T. Hamrouni, E. Mephu Nguifo. Frequent closed item-

set based algorithms: A thorough structural and analytical survey.

SIGKDD Explorations 8(1): 93-104 (2006).

[41] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H.

Witten. The WEKA Data Mining Software: An Update. SIGKDD Ex-

plorations 11(1): 10-18 (2009).

[42] http://netbeans.org/

[43] B. Eckel. Thinking in Java. Prentice-Hall, 2006.

[44] P. Palmerini, S. Orlando, R. Perego. Statistical Properties of Transac-

tional Databases. SAC Conference, 2004.

[45] A. Tsymbal. The problem of concept drift: definitions and related work.

Technical Report TCD-CS-2004-15, 2004.

[46] K.O. Stanley. Learning concept drift with a committee of decision trees.

Tech. Report UTAI-TR-03-302, 2003.

72

Appendix A

A.1 ECLAT Algorithm

Algorithm A.1 is a pseudo-code for the ECLAT algorithm, presented by Zaki

et al. in [30].

Algorithm A.1 Eclat(P ,minsup)

1: foreach 〈X, t(X)〉 ∈ P do

2: PX ← ∅
3: foreach 〈Y, t(X)〉 ∈ P , with Y > X do

4: NXY ← X ∪ Y
5: t(NXY)← t(X) ∩ t(Y)

6: if sup(NXY) ≥ minsup then

7: PX ← PX ∪ {〈NXY , t(NXY)〉}
8: print NXY , sup(XXY)

9: Eclat(PX ,minsup)

A.2 FP-GROWTH Algorithm

Algorithm A.2 is a pseudo-code for the FP-GROWTH algorithm, presented

by Han et al. in [3].

A.3 Properties of the Closure Operator

Define by c : 2I → 2I the closure operator as

c(X) = i ◦ t(X) = i(t(X)) (A.1)

The closure operator c maps itemsets to itemsets, an it is:

73

Algorithm A.2 FP-Growth(R,P ,minsup)

1: if IsPath(R) then

2: foreach Xi ⊆ R do

3: X ← P ∪Xi

4: sup(X)← mini ∈ X{sup(i)}
5: print X, sup(X)

6: else

7: I ← {i|i ∈ R, sup(i) ≥ minsup}
8: foreach i ∈ I in increasing order of sup(i) do

9: X ← P ∪ {i}
10: sup(X)← sup(i)

11: print X, sup(X)

12: RX ← ∅ /∗ Projected FP-tree for X ∗/
13: foreach path ∈ PathToRoot(i) do

14: pathsup(i)← support of i in path path

15: Insert p into FP-tree RX with support pathsup(i)

16: if RX 6= ∅ then Eclat(RX , X,minsup)

1. Extensive: X ⊆ c(X)

2. Monotonic: If Xi ⊆ Xj then c(Xi) ⊆ c(Xj)

3. Idempotent: c(c(X)) = c(X)

An itemset X is called closed if c(X) = X, i.e., if X is a fixed-point of

the closure operator c. If X 6= c(X), then X is not closed, but the set c(X)

is called its closure. From the properties of the closure operator, both X

and c(X) have the same tidset.

A.4 CHARM Properties

Given a collection of IT-pairs {〈Xi, t(Xi)〉}, the following properties hold:

1. If t(Xi) = t(Xj), then c(Xi) = c(Xj) = t(Xi ∪Xj)

2. If t(Xi) ⊂ t(Xj), then c(Xi) 6= c(Xj) but c(Xi) = c(Xi ∪Xj)

3. If t(Xi) 6= t(Xj), then c(Xi) 6= c(Xj) 6= t(Xi ∪Xj)

74

A.5 A general Incremental Closed Pattern Mining

solution

We present now a general methodology to identify closed patterns in a data

stream proposed by Bifet et al. in [14]. It uses intersection of patterns and

the Galois Lattice Theory to perform the mining process. It can be applied

to different kinds of patterns, such as trees, graphs and, obviously, itemsets.

It can be seen as general representation of all incremental algorithms that

we will analyze later in this Chapter.

It uses several propositions that can be extracted from Formal Concept

Analysis to provide two efficient procedures to update the set of closed pat-

terns of a first dataset D∞ with the set of closed patterns D∈.In particular

the propositions that are used by these two procedures are (no proof is pro-

vided here; note that we represent the closure of a pattern t into a dataset

of transaction D as cD(t))

Proposition 1 Adding a pattern transaction t to a dataset of patterns D

does not decrease the number of closed patterns for D.

Proposition 2 A pattern transaction t added to a dataset of patterns D

will be a closed pattern for D.

Proposition 3 Adding a transaction with pattern t ti a dataset of patterns

D where t is closed does not modify the number of closed patterns for

D.

Proposition 4 Deleting a pattern transaction from a dataset of patterns

D does not increase the number of closed patterns for D.

Proposition 5 Deleting a pattern transaction that is repeated in a dataset

of patterns D does not modify the number of closed patterns for D.

Proposition 6 Let D1 and D2 be two datasets of patterns. A pattern t is

closed for D1 ∪D2 if and only if it is in the intersection of its closures

cD1(t) and cD2(t).

From these properties the following corollary can be deduced

Corollary 1 Let D1 and D2 be two datasets of patterns. A pattern t is

closed for D1 ∪D2 if and only if

• t is a closed pattern for D1, or

• t is a closed pattern for D2, or

75

Algorithm A.3 Closed Subpattern Mining Add(T1, T2,minsup, T)

1: T ← T1
2: foreach t in T2 in size-ascending order do

3: if t is closed in T1 then

4: supT (t)← supT (t) + supT2(t)

5: foreach t′ that is a subpattern of t do

6: if t′ ∈ T1 then

7: if sup(t′) is not updated then

8: insert t′ into T

9: supT (t′)← supT (t′) + supT2(t′)

10: else

11: skip processing t′ and all its subpatterns

12: else

13: foreach t′ that is a subpattern of t do

14: if sup(t′) is not updated then

15: if t′ ∈ T1 then

16: supT (t′)← supT (t′) + supT2(t′)

17: if t′ is closed then

18: insert t′ into T

19: supT (t′)← supT (t′) + supT2(t′)

20: else

21: skip processing t′ and all its subpatterns

22: delete from T patterns with support below minsup

• t is a subpattern of closed pattern in D1 and a closed pattern in

D2 and it is in cD1∪D2(t).

Note that these propositions, considering patterns as itemsets, are also

used by a lot of algorithms that we present later.

Let’s now consider D1 as the set of transactions seen so far, whose set

of closed pattern is T1, and we want to update it with a new batch of

transactions D2, whose set of closed patterns is T2, in order to get the set

of closed patterns in D1 ∪D2. This is the principle of an update per batch

policy, and the adding procedure is described in Algorithm A.3.

In a similar way we can update D1 when a set of transactions D2 is removed.

The deletion procedure in pseudo-code is described in Algorithm A.4.

76

Algorithm A.4 Closed Subpattern Mining Delete(T1, T2,minsup, T)

1: T ← T1
2: foreach t ∈ T2 in size-ascending order do

3: foreach t′ that can be obtained deleting nodes from t do

4: if sup(t′) is not updated then

5: if t′ ∈ T1 then

6: if t′ is not closed then

7: delete t′ from T

8: else

9: supT (t′)← supT (t′)− supT2(t′)

10: delete form T patterns with support below minsup

A.6 MOMENT

MOMENT was proposed by Chi et al. in [13]. It is the first paper that

considers the problem of mining frequent closed itemsets over a data stream

sliding window using limited memory space. It has become a reference for

all the works that have been proposed after its publication.

A.6.1 Data structure

It adopts an incremental approach based on a in-memory prefix-tree-based

data structure, called closed enumeration tree (CET), to monitor a dynami-

cally selected set of itemsets over the sliding window. They includes frequent

closed itemsets, and itemsets that form a boundary between frequent closed

itemsets and the rest of itemsets. Concept drifts in a data stream are re-

flected by status changes of itemsets that are in the boundary (e.g. itemsets

that pass from non-frequent to frequent).

Similar to a prefix tree, each node in the CET represents an itemset I.

But unlike a prefix tree, which maintains all itemsets, only the subset of

closed and boundary itemsets is maintained. As long as the window size is

reasonably large and concept drifts not too dramatic, most itemsets do not

change their status, and only an update of itemsets support is needed. Four

types of nodes, and consequently itemsets, are identified

Infrequent gateway nodes A node nI is an infrequent gateway node if

(1) I is an infrequent itemset, (2) its parent nJ is frequent and (3) I

is obtained by joining its parent J with one of J ’s siblings.

Unpromising gateway nodes A node nI is an unpromising gateway node

if (1) I is a frequent itemset, and (2) there exists a frequent closed

77

itemset J such that J ≺ I, J ⊃ I and sup(I) = sup(J).

Intermediate nodes A node nI is an intermediate node if (1) I is a fre-

quent itemset, (2) nI has a child node nJ such that sup(I) = sup(J)

and (3) nI is not an unpromising gateway node.

Closed nodes A node nI is a closed node if I is a frequent closed itemset.

A closed node chan be in internal node or a leaf node.

In Figure A.1 is shown an example of CET. Infrequent gateway nodes are

represented by dashed circles, unpromising gateway nodes by dashed rect-

angles and closed nodes by solid rectangles.

Tids t i(t)

1 cd

2 ab

3 abc

4 abc

Figure A.1: Example of Closed Enumeration Tree

Each node ni of the CET stores the information over its type, the item-

sets I itself and its support, and the sum of tids of the transactions in which

I occurs (tid sum).

The latter is used to maintain an hast table which stores all the frequent

closed itemsets. The pair (support, tid sum) is used to perform the closure

check and, meanwhile, to avoid a huge number of collisions that would be

generated if only support were used as key.

To check if nI is an unpromising gateway node, we simply have to hash on

the (support, tid sum) of nI , fetch the list of frequent closed itemsets stored

at the corresponding entry of the hash table, and check if there is an itemset

J in the list such that J ≺ I, J ⊃ I and support(J) = support(I).

Transactions in the sliding window are stored in and FP-tree, which

is slightly different from the one proposed by Han et al. in [3] for mining

frequent patterns without candidate generation. In the original FP-tree each

transaction is stored along a root-path; when transactions has a common

prefix, the common part is stored only once, using a counter to record the

78

number of times the common part is repeated. An head table is used to

record the starting points of each item. An example of FP-tree is shown in

Figure A.2.

In MOMENT the FP-tree is used to store all the transactions in the

sliding window, so no pruning of infrequent items is performed. Further-

more, in addition to the head table in traditional FP-trees, another table,

the tid table, is used to point each tid in the sliding window to the tail node

of the corresponding itemset in the FP-tree. By using this table along the

FP-tree, no further storage of transaction is needed.

Figure A.2: Example of FP-tree

To build the CET, a depth-fist procedure Explore consults the FP-tree

to determine the support and tid sum of each stored itemset. The outline of

this procedure is reported in Algorithm A.5. The leftcheck(nI) procedure

looks up the hash table to see if there exists a previously discovered closed

itemset that has the same support as nI and which also subsumes I, and if

so, returns true, otherwise false.

A.6.2 The incremental update algorithm

MOMENT uses an update per transaction policy. New transactions are in-

serted in the window by calling an Addition procedure, and old transactions

are deleted by calling the Deletion procedure. Both procedures traverses the

parts of the CET that are related with the incoming/outcoming transaction

T , updates its support, tid sum and its node type if necessary.

For each incoming transaction T , MOMENT can change the type of the

related node nI if

• nI was an infrequent gateway node. If nI now becomes frequent, then

(1) for each left sibling of nI MOMENT checks if a new children should

79

Algorithm A.5 Explore (nI ,minsup)

1: if sup(nI) < minsup then

2: mark nI as an infrequent gateway node

3: else if leftcheck(nI) = true then

4: mark nI as an unpromising gateway node

5: else

6: foreach frequent right sibling nK of nI do

7: create a new child nI∪K for nI
8: compute support and tid sum for nI∪K

9: foreach child nI′ of nI do

10: Explore(nI′ ,minsup)

11: if ∃ a child nI′ such that sup(nI′) = sup(nI) then

12: mark nI as an intermediate node

13: else

14: mark nI as a closed node

15: insert nI into the hash table

be created, and (2) the original pruned branch (under nI) must be re-

explored to se if new descendants should be created.

• nI was an unpromising gateway node. Node nI may become promising,

so the original pruned branch must be explored.

• nI was an intermediate node. Node nI may become a closed node, if

T contains I but none of nI ’s children who have the same support of

nI before the addition. However, nI cannot change to an infrequent

or unpromising gateway node.

• nI was a closed node. Node nI remains closed.

In any case the Addition procedure will not decrease the number of

closed itemsets in the CET. For each outgoing transaction T , MOMENT

can change the type of the related node nI if

• nI was an infrequent gateway node. Node nI does not change type.

• nI was an unpromising gateway node. Node nI may become infre-

quent, but cannot change to promising.

• nI was an promising node. Node nI may become unpromising, then

leftcheck must be run over nI and its descendants and left-sided sib-

lings have to be updated consequently.

80

• nI was a closed node. Node nI can become non-closed and have to

be removed from the hash-table. We can check it by looking at the

supports of the children of nI after visiting them. If nI remains closed,

still need to update its entry in the hash-table.

A.7 CLOSTREAM

CLOSTREAM is an algorithm for maintaining frequent closed itemsets in

data stream. It was proposed by Yen et al. in [7]. Like CFI-STREAM,

an algorithm proposed by Jing et al. in [18], CLOSTREAM is able to

maintain the complete set of closed itemsets over a transaction-sensitive

sliding window without any support information. But unlike CFI-STREAM,

CLOSTREAM does not need a costly subset generation for each processed

transaction.

A.7.1 Data structure

CLOSTREAM uses two in-memory data structures called Closed Table and

Cid List respectively, plus an additional hash table.

The Closed Table maintains the information about closed itemsets. Each

closed itemsets CI is associated to an unique identifier Cid and its support

count SC.

Cid List is used to maintain items and their cidsets. Each item x ∈ I is

associated to a set named cidset. The cidset(x) contains all Cids of x’s

super closed itemsets.

As a new closed itemset Y is found, CLOSTREAM puts it into the Closed

Table and assigns it a cid c. Then c is added into the cidsets of all the items

y ∈ Y in the Cid List. An example of these two data structures is shown in

Table A.1.

A hash table, called TempA, is used to put those itemsets that need to

be updated as a transaction arrives. It uses a (TI, Closure Id) as a pair

(key, value). Once an itemset X ⊆ I needs to be updated, it is put in the

TI field. The cid of its closure is stored in the as its Closure id value.

A.7.2 The incremental update algorithm

CLOSTREAM uses an update per transaction policy to maintain updated

the set of closed itemsets into the current sliding window. Two procedures

called CloStream+ and CloStream- are used when a transaction arrives and

when a transaction leaves, respectively.

81

Tid t i(t)

1 cd

2 ab

3 abc

4 abc

5 acd

6 bc

(a) Sample data stream.

Cid CI SC

0 0 0

1 cd 2

2 ab 3

3 abc 2

4 c 4

5 acd 1

6 a 4

7 ac 3

(b) Original Closed Table.

Item Cidset

a {2,3,5,6,7}
b {2,3}
c {1,3,4,5,7}
d {1,5}

(c) Original Cid List.

Table A.1: Example of CLOSTREAM data structures for W = {t1, . . . , t5}.

To perform these procedures, some properties of the closure operator,

that we previously described in Equation A.1, are exploited. In particular,

given two itemsets X,Y ⊆ I (no detailed proof is provided)

Property 1 If c(X) = Y , then sup(X) = sup(Y).

Property 2 X is closed if and only if ∀Z ⊃ X, sup(X) > sup(Z).

Property 3 If X ⊆ Y , then t(Y) ⊆ t(X) and c(X) ⊆c(Y).

Property 4 i(t(X))∩i(t(Y)) =i(t(X)∪t(Y)).

From these properties and using the idempotency of the closure operator,

the following theorem can be derived (no proof is provided)

Theorem 1 For any two closed itemset X and Y , if (X ∩ Y) = S and

S = ∅, then S is a closed itemset.

When a transaction TA = 〈tA, X〉 arrives, the procedure CloStream+

is called. First of all SC(X) is increased and, from Property 2, is surely

closed. Only its subsets have to be updated to find new closed itemsets.

According to Theorem 1, they can be found by intersecting X with all the

closed itemsets in the Closed Table.

To perform this operation efficiently, CloStream+ uses the Cid List and

a SET function defined as SET (X) = cidset(x1) ∪ . . . ∪ cidset(xk), for

X = {x1, . . . , xk}, ii ∈ I. Each Cid in SET (X) represents a closed itemset

which has at least one common item with X. This allows to reduce the

number of itemset X can be intersected with.

By performing intersection operations on X and every closed itemset

whose Cids are in SET (X), closed subsets of X and respective closures

82

can be identified. CloStream+ uses a temp table, denoted as TempA, to

store the closed subsets of X and their closures. TempA is a hash structure

and consists of two fields (UItemset, Closure Id), where UItemset is the

itemset which needs to be updated and Closure Id is the identifier of its

closure. After that all closures have been identified, support counts are

increased and new closed itemsets are added.

UItemset Closure Id

bc 3

c 4

b 2

(a) Table TempA after adding transaction

t6.

DItemset Closure Id HS

cd 1 5

c 4 7

(b) Table TempD after adding transaction

t1.

Table A.2: Examples of temp table for updating the sliding window.

The deletion of a transaction is treated in as similar fashion by procedure

CloStream-. When a transaction TD = 〈tA, X〉 is deleted, only the support

counts of its subsets will be decreased by one, that is, only its subsets may

be changed from closed to non-closed.

As before, closed subsets may be found via intersection, and to perform

efficiently this operation SET function is used. CloStream- uses a temp

table, named TempD, to store information about closed subsets of X. It

consists of the the triple (DItemset, Closure Id,HS), where DItemset is a

closed subset of X, Closure Id is the identifier of its closure and HS is the

identifier of a closed superset of DItemset (it is used to check if Ditemset

is closed).

As TD is deleted from the window, X is inserted into TempD and its

closure are found with the aid of SET (X) function. At the same time

CloStream- verifies whether exists a closed superset of the itemsets int temp

table. Then, consulting TempD, the support of the itemsets that are still

closed is decreased and the others are deleted from the Closed Table. It

Table A.2 are shown two examples of temp table for a sliding window of size

5.

A.8 NEWMOMENT

NEWMOMENT is method to maintain frequent closed itemsets in data

streams with a transaction-sensitive sliding window proposed by Li et al.

in [11]. As suggested by the name, this is an improved version of the MO-

83

MENT algorithm that we describe in Section 3.3. It uses an effective bit-

sequence representation of items to reduce time and memory consumption.

Also a new prefix tree structure called NewCET.

For each item x ∈ I in the current window W , a bit-sequence Bit(x) of

w = |W | bits is constructed. The ith bit of Bit(x), 1 ≤ i ≤ w, is set to 1 if

and only if x belongs to the ith transaction of the W , otherwise it is set to

0.

tid t i(t)

1 abc

2 bcd

3 abc

4 bc

5 bd

6 cd

(a) Data stream example.

item W1 W2 W3

a 1010 0100 1000

b 1111 1111 1110

c 1111 1110 1101

d 0100 1001 0011

(b) Bit-sequences associated to each item.

Table A.3: Data stream and bit-sequence examples for a window size w = 4.

In Table A.3 is shown an example data stream and the consequent bit-

sequences that can be computed for 3 sliding windows of size w = 4. Bit-

sequence representation allows an efficient window sliding process. Trans-

action deletion can be performed simply with a left shift of one bit of each

stored sequence. After deletion, to add a new transaction T = 〈t,X〉 one

have to set to 1 the most right bit of a sequence associated to each item x

if x ∈ X, otherwise set it to 0.

A.8.1 Data structure

NEWMOMENT uses an extended prefix tree data structure, named NewCET

(New Closed Enumeration Tree), which consists of three parts

1. The bit-sequences of all 1-itemsets in the current transaction-sensitive

window W .

2. The set of frequent closed itemsets in W .

3. A hash table to perform closure check, using support as key.

Essentially the structure is really similar to the CET of MOMENT, a part

that only frequent closed itemsets are stored into the prefix tree. Each node

nI in the NewCET has the corresponding bit-sequence Bit(I) to store the

support information in W . Figure A.3 shows an example of NewCET.

84

Figure A.3: Example of NewCET.

A.8.2 The incremental update algorithm

The Build procedure to initialize the NewCET, shown in Algorithm A.6,

performs a depth-first search along the current NewCET and is really sim-

ilar to the Explore procedure of Moment, detailed in Algorithm A.5. One

difference is in child generation, which is now performed efficiently via a

bitwise AND over bit-sequences. Another important difference is that only

frequent closed itemsets are retained into the tree, and at the end all the bit-

sequences of k-itemsets, k > 1, are deleted, maintaining only their supports.

As common function leftcheck performs the closure check by consulting the

hash table.

Algorithm A.6 Build(nI ,minsup)

1: if sup(nI) ≥ minsup then

2: if leftcheck(nI) = false then

3: foreach frequent sibling nK of nI do

4: generate a new child nI∪K for nI
5: Bit(I ∪K)← BitwiseAND(I,K)

6: foreach child n′I of nI do Build(n′I ,minsup)

7: if ∃ a child n′I such that sup(n′I) = sup(nI) then

8: retain nI as frequent closed itemset

9: insert nI into the hast table

Also deletion and addition, shown in Algorithm A.7 and A.8 respec-

tively, procedures results simplified respect to MOMENT ones. As done in

MOMENT, NEWMOMENT adopts an update per transaction policy. In

deletion, first all bit-sequences of 1-itemsets are left-shifted of 1 bit, and

then Delete procedure is called to maintain the NewCET updated, includ-

85

Algorithm A.7 Delete(nI ,minsup)

1: if nI is not relevant to the deleted transaction then

2: return

3: else if sup(nI) ≥ (minsup− 1) then

4: foreach sibling nK of nI such that sup(nK) ≥ (minsup− 1) do

5: generate a new child nI∪K for nI
6: Bit(I ∪K)← BitwiseAND(I,K)

7: foreach child n′I of nI do

8: Delete(n′I ,minsup)

9: if sup(nI) ≥ minsup then

10: if leftcheck(nI) = false then

11: if nI was previously closed then

12: update sup(nI)

13: update nI in the hash table

14: else

15: retain nI as a frequent closed itemset

16: insert nI into the hash table

17: else

18: if nI was previously closed then

19: mark nI as non-closed

20: remove nI from the hash table

21: else

22: if nI was previously closed then

23: mark nI as non-closed

24: remove nI from the hash table

ing closed itemsets whose support is greater than minsup− 1.

In addition, every bit-sequence of 1-itemset sets its rightmost bit accord-

ingly to the incoming transaction. Then the procedure Append is called,

which is almost the same as Build, a part that the former checks whether a

closed itemset is already in the NewCET.

A.9 CLAIM

CLAIM is an algorithm for Closed Approximate frequent Itemset Mining

proposed by Song et al. in [10]. They propose an approximate frequent

closed itemset model, called relaxed frequent closed itemsets (RC). To accel-

erate the drifted itemsets update, all frequent relaxed closed itemsets with

86

Algorithm A.8 Append(nI ,minsup)

1: if sup(nI) ≥ minsup then

2: if leftcheck(nI) = false then

3: foreach frequent sibling nK of nI do

4: generate a new child nI∪K for nI
5: Bit(I ∪K)← BitwiseAND(I,K)

6: foreach child n′I of nI do

7: Append(n′I ,minsup)

8: if ∃ a child n′I such that sup(n′I) = sup(nI) then

9: if nI was previously closed then

10: update sup(nI)

11: update nI in the hash table

12: else

13: retain nI as a frequent closed itemset

14: insert nI into the hash table

the same support are arranged by one bipartite graph model. A Bloom fil-

ter based hash method is introduced to match drifted itemsets in bipartite

graph. Both previous mechanisms are combined in a compact tree structure,

named HR-tree.

The relaxed closed itemsets model (RC) is introduced to reduce the

maintenance cost of closed itemsets in a data stream. Because of the nature

of closed itemsets, the support of closed itemsets exact equals to the support

of absorbed itemsets, but any little concept drift can lead to changing of

closed itemsets, and thus to high cost of maintenance. Let call σ, 0 ≤ σ ≤ 1,

a minimum support threshold, and define two concepts

Relaxed Interval The support space of all itemsets can be divided into

n(= d1/εe), where ε is a user-specified relaxed factor, and each interval

can be denoted by Ii = [li, ui), where li = (n − i) ∗ ε ≥ 0, ui =

(n− i+ 1) ∗ ε ≤ 1 and i ≤ n.

Relaxed Closed Itemset An itemset X is called a relaxed closed itemset

if and only if there exists no proper superset X ′ of X such that they

belong to the same interval Ii.

For a relaxed closed itemset X with sup(X) ∈ Ii(= [li, ui)), if li ≥ σ, then

X is frequent with frequent interval Ii, otherwise X is infrequent with infre-

quent interval Ii. An interval Ii with li < σ ≤ ui is called a critical interval,

and it is divided into two intervals, an infrequent interval [li, s) and frequent

87

interval [s, ui). The set of RC in a relaxed interval is also called the upper

bound of the interval. In such case, only maintaining this upper bound can-

not track the bound drift efficiently. Thus, for each interval a lower bound is

defined. Symmetrically to the upper bound definition, an itemset X belongs

to the lower bound of a relaxed interval if and only if there exists no proper

subset X ′ of X such that they belong to the same interval Ii. This leads to

a double bound representation of frequent closed itemsets.

tid t i(t)

1 abcde

2 cde

3 abce

4 acde

5 abcde

6 bcd

7 bce

Table A.4: Stream dataset example

Ii Itemsets Lower bound Upper bound

I1 = (0.8, 1] c, d, e, cd, ce c, d, e cd, ce

I2 = (0.6, 0.8] a, b, ac, ae, bc, de, ace, cde a, b, de bc, ace, cde

Ic = [0.45, 0.6] ab, ad, be, abc, abe, acd,

ade, bce, abce, acde

ab, ad, be abce, acde

In = [0, 0.45) abd, bde, abcd, abde, bcde abd, bde abcde

Table A.5: Double bound of relaxed closed itemsets for ε = 0.2 and σ = 0.45.

Table A.5 shows an example of double bound of relaxed closed itemsets

extracted from transactions 1 to 6 of Table A.4. The traditional closed

itemset mining can be obtained by setting ε = 1\|W |, while maximal fre-

quent itemset is achieved by setting ε = 1.

To efficiently update this double bound representation, a data structure,

the bipartite graph is introduced. A bipartite graph BG = (U,L,E) has to

distinct vertex sets U and L with U ∩ L = ∅, and edge set E = {(u, l)|u ∈
U ∧ l ∈ L}. For an interval Ii, Ui(Li) is a subset of the upper bound (lower

bound). The edge e(u, l) ∈ E(u ∈ Ui, l ∈ Li) means that there exists an

including relationship between itemset u and l, u ⊃ l.

88

The usage of a bipartite graph helps the update process of RC. For example,

when an itemset l of the lower bound is deleted, it has to be substituted by

its super-pattern l′, we it should be generated by scanning each itemset u

in the upper bound satisfying l′ ⊆ u. BG edges represent this relationship,

avoiding an O(n) control over all the n elements of the upper bound for each

deleted itemset.

A.9.1 Data Structure

In CLAIM a compact prefix tree based structure, named HR-tree (Hash

based Relaxed Closed Itemset tree), is proposed. It allows to arrange bi-

partite graphs using a combination of two common data structures: a hash

table and a prefix tree.

In the hash table, each interval corresponds to a bipartite graph and each

graph has its two hash function entries: Hi(BFu, X) for the upper bound

and Hi(BFl, X) for the lower bound. Every entry corresponds to a pointer

which points to the itemset list in the upper or lower bound of BG in the

prefixed tree. As every prefix tree, each node corresponds to one itemset

with its support.

For any bipartite graph BG = (U,L,E), an itemset X, X /∈ BG, belongs

to set BFu if and only if X is contained by at least one element Y ∈ U , but

there exists no itemset X ′ /∈ BG such that X ⊂ X ′ ⊂ Y . It can be shown

that an upper bound drifted itemset X is contained by BG if and only if

X ∈ BFu.

In the same way in itemset X, X /∈ BG, belongs to set BFl if and only if

X is contained by at least one itemset Y ∈ L, but there exists no itemset

X ′ /∈ BG such that X ⊃ X ′ ⊃ Y . It can be show that a lower bound drifted

itemset is contained by BG if and only if X ∈ BFl. An example of bipartite

graph structure is shown in Figure A.4.

Hash functions directly answers whether a drifted itemset X belongs to

the BG by querying sets BFu and BFl, making unnecessary to access to all

related itemsets in the prefix tree. To ease this belonging queries, a Bloom

filters based hash method is used.

A Bloom Filter is a space-efficient probabilistic data structure that is used to

test whether an element is a member of a set [17]. In CLAIM the following

hash function is used

H(X) = {hi(X)|hi(X) = mod(F (X, I)i,m)}, 0 < i ≤ K (A.2)

where F (X, I) is a function that associate an integer value to each binary-

89

Figure A.4: Example of bipartite graph model.

valued itemset X ⊂ I in this way

F (X, I) =
∑

x ∈ X2(pos(x)−1) (A.3)

where pos(x) refers to the position of an item x in I in right first order.

A.9.2 The incremental update algorithm

Algorithm A.9 shows CLAIM algorithm in pseudo-code. It uses an update

per transaction policy, where only the upper bound drift of a bipartite graph

is cared at the insertion of a transaction, and only the lower bound drift is

cared at the deletion of a transaction.

Initially the HR-tree is null and the relaxed intervals are generated ac-

cordingly to their definition. The set of relaxed closed itemsets RC is ini-

tialized by the insertion of stream elements until the sliding window is full.

For each incoming transaction, or stream element, support counting is per-

formed scanning the HR-tree starting from the root in prefix order, and

drifted itemsets can be collected directly. But there are drifted itemsets

that do not appear directly in the double bound, named internal drifted

itemsets, since no support information is recorded. Thus, all the subsets of

a drifted itemset X is analyzed to check whether it is a drifted itemset or

not.

After that, all internal drifted itemset is deleted from the original bi-

partite graph, which can be decomposed into serval independent bipartite

graphs possibly, and then recombined using with the aid of drifted itemset

location via hash function.

90

Algorithm A.9 Claim(W ,ε,σ)

1: HR-tree ← null, I ←
⋃d1/εe−1

0 Ii, RC =initialize(W)

2: foreach incoming stream element e ∈W do

3: drifted− itemset←scan(HR− tree,e)
4: foreach X ∈ drifted− itemset belonging to interval i do

5: /∗ Find all internal drifted itemsets contained by X in BG ∗/
6: BoundSet← X

7: foreach itemset x ⊂ X in BG do

8: sup(x)←explore(x,W)

9: if (sup(x) = sup(X) ∧ ∃p ∈ BoundSet|x ∈ p) then

10: BoundSet← (BoundSet−p),BoundSet← BoundSet∪x
11: /∗ Bipartite graph decomposition ∗/
12: BG←Removed drifted itemsets in BG

13: if BGi1 ∩ . . . ∩BGim = null then

14: BG is decomposed into BGi1, . . . , BG
i
m with HR-tree ad-

justment

15: /∗ Bipartite graph combination ∗/
16: foreach x′ ∈ BoundSet do

17: /∗ Drifted itemset location ∗/
18: BGi−11 , . . . , BGi−1n ← Hi−1(BFl, x

′)

19: if n > 1 then

20: BGnew ←combination(BGi−11 , . . . , BGi−1n , x′) with

HR-tree adjustment

21: foreach outgoing stream element e ∈W do

22: /∗ Similar to previous part, details are omitted here. ∗/

91

