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Resumen

El presente proyecto de final de carrera se centra en el diseño, análisis e implementación

en silicio de una metodoloǵıa de test/diagnosis basada en la comparación de firmas digitales

generadas a partir de curvas de Lissajous. Se muestra su aplicación para testar la etapa

de filtro de un circuito de bucle de enganche de fase (phase lock loop, PLL), aśı como los

resultados experimentales de su implementación en tecnoloǵıa CMOS de 65 nm.

La obtención de las firmas digitales se consigue mediante el uso de un circuito monitor,

el cual, a partir de la composición de dos señales periódicas del circuito a analizar, genera,

para cada punto de la curva de Lissajous, un valor digital. La utilización de varios monitores

configurados de la manera adecuada permite una completa teselación del plano en diferentes

zonas y por tanto, la generación de distintos códigos digitales (firma) a medida que la curva

de Lissajous evoluciona en el tiempo.

El test del circuito y/o diagnosis del posible defecto se realiza mediante la comparación

de la signatura golden o sin defecto y la signatura generada por el circuito testado. Para

la comparación de firmas se emplea el concepto de distancia de Hamming entre códigos a

modo de métrica de discrepancia. A partir de los valores precalculados de la métrica para

cada posible valor del defecto se consigue realizar la diagnosis de este para el parámetro en

estudio.

El trabajo se enmarca en el diseño de circuitos integrados de muy alta escala de inte-

gración usando una tecnoloǵıa CMOS de actualidad (65 nm). Es por ello que se requieren

técnicas de diseño analógico espećıficas, como lo son las estrategias centroidales para la elab-

oración de layouts o el correcto modelado de transistores nanométricos. Para esto último

se hace uso del modelo Berkeley, el cual, debidamente ajustado a la tecnoloǵıa empleada,

proporciona aproximaciones muy aceptables y con relativa facilidad de uso.
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Con el objetivo de verificar la metodoloǵıa de test/diagnosis propuesta, se hace uso

de una aplicación Matlab que permite simular el comportamiento del circuito a testar

en diferentes situaciones. Es posible excitar el circuito con distintas entradas, cambiar los

parámetros de este, introducir defectos, o emplear distintos conjuntos de curvas para teselar el

plano. La aplicación resulta fundamental para efectuar el proceso de diagnosis pues relaciona

la cantidad de defecto con los valores de discrepancia obtenidos con la métrica definida.

Finalmente, se presentan los resultados experimentales obtenidos con el chip fabricado.

Se constata el correcto comportamiento de este y la validez de la metodoloǵıa de test/diagnosis

propuesta.
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Chapter 1

Introduction

1.1. Objectives and Scope

Current thesis is framed in the design and test of VLSI (very large scale of integration)

circuits. The pursued objective is to develop a low cost and simple BIST (built-in self-

test) technique that could be directly applied to analog and mixed-signals integrated circuits

testing. The developed methodology is aimed to be used beyond test and apply it to defective

circuit parameter diagnosis.

Project’s starting point arises from a circuit studied by Ricard Sanahuja in his PhD

thesis [1]. Sanahuja’s circuit is a monitor circuit capable of composing two periodic signals

and provide a differential output accordingly to a predefined monitor configuration. The

presented testing method divides the plane into two zones using a straight line and checks

whether the CUT remains in the specified zone or not. The differential output of the circuit

should be transformed into a single ended digital signal.

The high end target of current project is, as said, to develop a reliable and low cost

test/diagnosis methodology to be applied as a BIST technique. The objective is aimed to be

achieved by analysing, designing and fabricating a CMOS version of the monitor circuit and

use it to tesselate the XY plane into different zones. The composed signals generate a digital

sequence (signature) which sould be compared to the free-defect one. This way, the study

and definition of a suitable indicator of discrepancy between signatures is pursued too.
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The nature of the project makes unavoidable the use of software tools (electrical or

not) allowing the designer to check whether the proposed circuits/methodologies behave

as expected or not. This drives to the importance of correct nanometric transistors mod-

els and accurate software simulation tools. A Matlab application capable to emulate the

tests/diagnosis methodology is also haunted.

The designed circuit is expected to be fabricated in a 65 nm CMOS technology and

verified against a CUT with different levels of defects in order to show the final reliability of

the proposed method on the fabricated chip.

1.2. Structure of the Project

The structure of project’s memory has been organised accordingly to the chronological

development of the project it describes. Several chapters recall specific and detailed infor-

mation contained in the appendices. This way, the reader can go through the thesis in a

straightforward way without delaying on demonstrations and detailed procedures.

Chapter 2 is devoted to transistor modeling. The classic quadratic Shichman-Hodges

model is presented and discussed against current nanometric technologies for which it is not

valid. The Unified MOSFET Model is introduced and fitted for ST-Microelectronics 65 nm

transistors providing quite precise and manageable model for hand calculations.

In chapter 3, the monitor circuit that allows the composition of the Lissajous curves and

generates the XY zonification is presented and analysed. Different analysis approaches are

shown: overall operation, large signal, small signal,. . . Also, monitor’s layout implementation

is shown as well as the resulting switching curves from layout extraction simulations.

Chapter 4 presents the proposed metric definition in order to quantify signatures dif-

ferences which allows the pass/fail test and parameter diagnosis (from the functional point

of view). Also, its software implementation using a general purpose engineering oriented

language like Matlab is explained. The derived application capabilities are shown on a few

examples of circuits with parameters out of tolerance ranges.

The test bench and circuit under test designs are detailed in chapter 5. Circuit design

and layout of both PCBs are shown as well as a little theoretical approach to design of state
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variable Biquad filters. Photographs of the obtained printed circuit boards are also displayed.

Chapter 6 is devoted to show the experimental results achieved once the monitor circuit

has been fabricated and the developed methodology has been applied to a Biquad CUT

(circuit under test). The results assert the reliability of the method and the correct monitor

operaration as expected. The amount of defect of a CUT is succesfully diagnosed as the

experimental results evidence.

Finally, in chapter 7 a recapitulation of the work is performed and some conclusions are

drawn. Also, several future research paths are pointed out in order to improve the features

of the presented circuits and methods.

In the appendices, different extra information can be found. This way, in appendices

A and B the economic evaluation of the project and environmental impact assessment are

described. In appendices C and D the theory behind the generalised leasts squares method

is reviewed. Appendices E and F contain statistical related stuff. The former shows an

evaluation of the number of simulations to be done when using Monte Carlo methods and

the latter depicts the Anderson-Darling normality test method. In appendix G, the transfer

function of the passive filter used by default on the PLL evaluation board is derived. Appendix

H contains the code (mainly Matlab) that has been used un the thesis. It also contains the

datasheet of some used components.
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Chapter 2

Transistor Modeling

Current integrated electronic technologies would not be as laboured as they are today

without the aid of software tools. Advanced EDA (electronic design automation) computer

programs aid electronic engineers to efficiently design, verify and fabricate high performace

circuits, simulate them and make conclusions about what is the best technique or methodology

to meet the project goals.

The use of EDA tools allow engineers to obtain accurate simulation results without the

need of fabricating the circuit. They are even able to simulate process and temperature vari-

ations via technology statistical characterization and therefore give off results about system

performance under several realistic scenarios.

Although all the benefits mentioned above, there are several things which can not be

made by a computer. The hand of the electronic engineer must be present along the whole

design process in order to assure quality. Many times, experience, intuition and the hability

to successfully catch up simulation results are the best aptitudes to obtain a good design.

This is why dealing with equations and performing hand made calculations is the proper way

to cope with design specificacions.

In the field of integrated analog and mixed-signal electronics1, the transistor is the

most used device, so a model relating its electrical magnitudes is required to accomplish the

design and analysis of any circuit. Of course, final calculations and design decisions will be

1The term digital electronics is just a level of abstraction, so do not exist itself, they are just well designed
analog electronics.
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made using simulated and experimental prototype results, but is extremely commendable to

perform hand calculations in order to get the appropiate perspective of the overall bahaviour

of the circuit.

2.1. The Shichman-Hodges Model

2.1.1. MOSFET Modeling Equations

In 1968 Shichman and Hodges proposed a large signal model for field effect transistors

[2]. This model is considered as the classical MOSFET model. It delivers a great intuitive

idea of what is happening inside the transistor and is extremely simple and usefull. Its

derivation can be seen in [3,4] as well as in the original article and almost in every textbook

presenting analog electronic devices.

For an N-channel MOSFET transistor, the Shichman-Hodges model is,

ID = 0, VGS ≤ VTH

ID = kWL

(
(VGS − VTH)VDS −

V 2
DS
2

)
, VGS > VTH, VDS < VGS − VTH

ID = k
2
W
L (VGS − VTH)2 , VGS > VTH, VDS ≥ VGS − VTH

(2.1)

The three equations describe the behaviour of the device in the three possible working

regions of the transistor: cut-off, ohmic (or linear) and saturation (or active). The magnitude

ID is the drain-source current, VTH is the threshold voltage from which the transistor turns

on and VGS and VDS are the voltages applied to gate and drain terminals. The quotient
W
L is the aspect ratio of the transistor (width/length) and the k parameter is the so called

transistor process transconductance, k = µCox. Many times, the product kWL is defined2 as

K, being simply called MOSFET transconductance. For a P-channel device the modeling

equations are valid but inverting the side of the inequalities.

The classical MOSFET model is implemented in SPICE-like simulators under the name

of SPICE Level 1 [5]. It means it is the most simple mathematical approach to the bahaviour

2Depending on the author, parameters k and K can be seen written as β� and β respectively.
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of MOSFET transistors. Of course, more accurate models are available involving dozens of

parameters in order to precisely model the real behaviour. These models are usually provided

by the technology manufacturer [6], including extensive documentation and PVT variations

charaterization.

2.1.2. Schicman-Hodges Model for Hand Analysis

In order to show the usage of the Shicman-Hodges model, a simple NMOS inverter

circuit will be analised (its transfer characteristic). Consider the active loaded inverter of

Figure 2.1 with single supply of VDD = 5 V and parameters of Table 2.1 for each device.
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Figure 2.1: NMOS inverter schematic (left) and NMOS transistor DC characteristics with
loading curve plotted (right).

The PMOS transistor has the drain and gate terminals shorted (diode configuration),

so in inequality VDS ≤ VGS − VTH from equations (2.1) for a PMOS, the terms VDS and VGS

cancell to yield 0 ≤ −VTH, that is VTH ≤ 0, which allways states for a P-channel transistor.

This way, the PMOS transistor works in saturation and acts as a current source. The delivered

current is, therefore,

I =
Kp

2
(Vo − VDD − VTHp)

2 (2.2)

Depending on the working region of the NMOS transistor (which is function of its input
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voltage Vi) and applying KCL at the output node, the input-output transfer curve can be

computed and traced.

1. For Vi ≤ VTHn, the driver transistor will be in cut-off, so I = 0, that is Kp
2 (Vo − VDD −

VTHp)2 = 0, from which Vo = VDD+VTHp is obtained. Numerically, Vo = 5+(−1) = 4 V.

2. For subsequent input voltages greater than VTHn, the NMOS transistor will work in

saturation (we will check that later on seeing Vo ≥ Vi − VTHn). The KCL equation

is now,Kp2 (Vo − (VDD + VTHp))2 = I = Kn
2 (Vi − VTHn)2. Rooting this expression and

solving for Vo yields,

Vo = VDD + VTHp −

√
Kn

Kp
(Vi − VTHn) (2.3)

This equation is a straight line with a negative slope value of
√

Kn
Kp

. In our case example,

the equation is Vo = 4 +
√

6(1− Vi).

The previous equation stands until the ohmic region is achieved. The boundary condi-

tion for this zone is Vo = Vi − VTHn, so VDD + VTHp −
√

Kn
Kp

(Vi − VTHn) = Vi − VTHn,

from which easily can be obtained the limit input voltage to keep the NMOS transistor

working in saturation region,

Vlim = VTHn +
VDD + VTHp

1 +
√

Kn
Kp

(2.4)

The limit input voltage for the example we are studying is Vlim = 2.15 V. Check

Figure 2.2 for details on the transfer characteristic.

3. For input voltages greater than Vlim, the driver transistor achieves ohmic region, so

accordingly to Schicman-Hodges model the following equality states,

Kp

2
(Vo − VDD − VTHp)

2 = Kn

(
(Vi − VTHn)Vo −

V 2
o

2

)
(2.5)

Which is a second order polynomial equation that can rearrenged as follows,

[
1 +

Kn

Kp

]
V 2
o +

[
−2
(

(VDD − VTHp) +
Kn

Kp
(Vi − VTHn)

)]
Vo +

[
(VDD − VTHp)

2
]

= 0

(2.6)
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Its solution is computed via the well known quadratic formula. The resulting expression

is of the form A + B
√
CVi, where A, B and C are constant values. Check Figure 2.2

to see the resulting rational function on the ohmic region of operation.

k
(
µA
V2

)
W
L K

(
µA
V2

)
VTH (V)

PMOS 50 1 50 −1

NMOS 100 3 300 1

Table 2.1: MOSFET parameters for Figure 2.1 NMOS inverter.

In order to compare the Schicman-Hodges model and the performed analysis with real-

life transistors, a simulation of the circuit in Figure 2.1 has been made. It has been achieved

using HSPICE simulator with an ST-Microelectronics 65 nm technology.
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Figure 2.2: NMOS inverter transfer function determined via hand calculations and the
Schicman-Hodges large signal MOSFET model.

As can be seen in Figure 2.2 and Figure 2.3, the two transfer characteristics highly differ.

This fact strengths the need of obtaining a new model to be applied in hand calculations.
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Figure 2.3: NMOS inverter simulated transfer function using ST 65 nm technology. For this
technology, VDD voltage is 1 V. The aspect ratio of the transistors have been kept identical
to those considered in hand analysis.

2.2. The Unified MOSFET Model

Despite of its simplicity, the Shichman-Hodges Model does not match current transistors

characteristic curves. This is due to second order effects, like velocity saturation or channel

length modulation effects. For this reason, the following Berkeley model [7] is proposed and

fitted using the generalised leasts squares method presented in appendix D.

Berkeley model equations are:

ID = 0 VGS ≤ VTH

ID = kWL

(
(VGS − VTH)Vmin − Vmin

2

2

)
(1 + λVDS) VGS > VTH

(2.7)
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2.2.1. MOSFET Modeling Equations

As seen, Schichman-Hodges model is not suitable for modeling small transistors such as

ST-65nm because it does not take in consideration second order effects like the channel length

modulation or velocity saturation. Instead, the unified MOS model will be used. Accordingly

to it, the drain current can be expressed as follows,

id = k
W

L

(
VgtVmin −

V 2
min

2

)
(1 + λVds)

Where Vmin = min{Vgt, Vds, Vdsat} and Vgt = Vgs − VTH. The min function should be

turned into a max function if a PMOS transitor is beeing modeled. The working region

depends on the value of Vmin as shown in the following table (for NMOS),

Region Vmin Expanded model for id

Cut-off (Vgs < VTH) 0

Linear Vds kWL

(
(Vgs − VTH)Vds −

V 2
ds
2

)
(1 + λVds)

Vel. Sat. Vdsat kWL

(
(Vgs − VTH)Vdsat −

V 2
dsat
2

)
(1 + λVds)

Sat. Vgt
k
2
W
L (Vgs − VTH)2 (1 + λVds)

2.2.2. Model Fitting to CMOS 65 nm

As can be seen, the unified MOS model depends on four parameters which have to be

properly calibrated to approach the simulated curves (Spectre),

id = f(VTH, k, Vdsat, λ)

The direct analytical application of the leasts squares method is not suitable because

of the nonderivability of the drain current function and the nonlinearity relations among the

unknown parameters. It will be easier to find relations between the calibration parameters

and then adjust de model empiricaly. These two criterion will be used:
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criterion 1: The separation of curves id = f(|Vds| = VDD) at velocity saturation

region must be constant since they grow linearly.

criterion 2: The maximum current for |Vds| = |Vgs| = VDD will be fixed and equaled

to the obtained simulation current.

Note that the criterions have been taken in the velocity saturation region because it is

the most important and is usually assumed to be the working region for hand analysis.

The first criterion stands,

id1 = k
W

L

(
(Vgs1 − VTH)Vdsat −

V 2
dsat

2

)
(1 + λVds)

id2 = k
W

L

(
(Vgs2 − VTH)Vdsat −

V 2
dsat

2

)
(1 + λVds)

Just for convenience let define S = id2 − id1, so their difference stablishes,

S = k
W

L
Vdsat(Vgs2 − Vgs1)(1 + λVds)

From which Vdsat can be easily computed,

Vdsat =
S

kWL (Vgs2 − Vgs1)(1 + λVds)

The second criterion stands that,

idMAX = k
W

L

(
(Vgs − VTH)Vdsat −

V 2
dsat

2

)
(1 + λVds)

where idMAX will be defined as M . This way, λ parameter is written as,



Design, Fabrication and Verification of a Mixed-Signal XY Zone
Monitoring Circuit and its Application to a Phase Lock Loop Circuit 23

λ =
1
Vds

 M

kWL

(
(Vgs − VTH)Vdsat −

V 2
dsat
2

) − 1


substituting Vdsat by the value finded previously and after a bit of algebra, the λ

parameter yields,

λ =
1
Vds

{
S2

2kWL (Vgs2 − Vgs1)2

(
S(Vgs − VTH)
Vgs2 − Vgs1

−M
)−1

− 1

}

The calibration algorithm is listed below,

1. Compute from the simulated data the separation current at velocity saturation region

and |Vds| = VDD, S and the maximum current given by the mosfet, M , when |Vgs| =

|Vds| = VDD (VDD = 1 V in this technology).

2. Plot id = f(Vgs) in order to estimate the threshold voltage VTH. This can be done by

polynomial adjustment as well.

3. Define the value of the k parameter randomly so it will be adjusted empiricaly.

4. Compute the λ parameter using the derived expression.

5. Compute the Vdsat parameter using the derived expression.

6. Adjust the k parameter to meet the minimum error between the model and the simu-

lated data.

After the process of calibration depicted above, and the proper application of the

generalisex leasts squares fitting method (with a good initial guess), the following adjusted

curves are achieved for NMOS,
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Where the first plot is the one that has been used to calibrate de model and the other

two show the model adjusted to transistors with different aspect ratios.

The curves for PMOS transistors are,
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As can be seen, in all the cases, a good current adjustment is achieved. The model is
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suitable to be used in any hand analysis calculation, thus its simplicity and easy of use. Of

course, the model does not present an outstanding precision3, but delivers a quite reasonable

and intuitive values.

3Simulation results have to be used for that.
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Chapter 3

Proposed Monitor Circuit

In this chapter, the monitor circuit used for the XY zone monitoring method is pre-

sented and analysed. The results shown are obtained from hand calculation analysis and

layout software simulations. The monitor circuit is formed of two circuits:

1. The circuit which composes the two signals intended to be used for testing. Here after

will be called the first stage or input stage circuit.

2. The circuit of a high gain output stage analog comparator. Here after will be called as

the second stage or output stage.

The firsts studies, designs and analysis of the input stage circuit were presented by

Ricard Sanahuja in [1].

3.1. The XY Zoning Method

The XY zoning method is based on the composition of two relevant signals of the

circuit, x(t) and y(t) in the same way an oscilloscope represents the trace configured in XY

mode. For many simple circuits, the most suitable signals to compose are the input excitation

and the output response of the CUT.
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If the input signal x(t) is formed by a finite spectrum of frequencies assuring rational

reations among them and the signal is applied to a linear circuit, the input and response of

the CUT, and therefore the composition, will be periodic. In such case, the resulting trace is

called a Lissajous composition.

Of course, if the Lissajous compisition depends on the output of the CUT, a varied

curve will be obtained if the circuit being tested is not operating inside the tolerance ranges.

The discrepance of the golden and observed Lissajous curve is the fact that will allow to

design a test and diagnosis method using such concepts.
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Figure 3.1: Golden and defective Lissajous.

In Figure 3.1 can be seen the response of a Biquad filter to a multitone input. On the

left, the golden Lissajous is plotted. On the right, the characteristic filter frequency has been

shifted 10% yielding therefore a slighly different Lissajous.

The main objective of the XY Zoning method is to test whether a circuit is ok or not

by the comparison of a sequence of digital signatures generated by Lissajous composition

analysis. In fact, the observed and defective Lissajous curves can be considered as the analog

signature of the CUT, but these signature’s comparison is hard to be accomplished in the

analog world, so a digitalization of the information of each trace is required.

The dititalization of curve data is done by tesselating the XY plane in different regions

and assigning a code to each zone. This way, the test procedure can be made just by checking

whether the observed sequence of signatures are equal to those expected for a golden CUT

or not. Figure 3.2 shows a possible tesselation of the XY plane using straight lines. Each line

is a comparator that delivers a digital zero for one half of the plane and a digital one for the

other half side.
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Figure 3.2: Lissajous curves and straight switching curves.

The chosen codification criteria has been the green control line for the MSB bit, then

the magenta, and then the black line for the LSB bit. In this case, the golden sequence

signature is,

G = {100, 101, 001, 101, 001, 000} (3.1)

and for the observed Lissajous which comes from a defective Biquad filter is,

O = {100, 101, 111, 101, 001, 000, 100, 101, 001, 000} (3.2)

As can be checked, the signatures are very different (even in length), so the method

yields a simple and reliable way to discriminate circuits which are out of tolerances ranges.
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A great amount of catastrophic defects can be detected just by checking the golden and

defective sequences.

3.2. Circuit Analysis

In this section, the proposed monitor circuit is presented and analysed. Mainly, the

objective is to show how does the circuit behaves in large signal conditions and explain an

overview of its operation.

3.2.1. Input Stage

The previously explained XY zone monitoring method requires a simple and config-

urable nonlinear comparator to compose the pair of signals and provide a digital output.

The first stage monitor circuit can be shown in Figure 3.3 [1, 8]. It follows the structure of

a CMOS pseudo-differential comparator whose driver transistors have been split into two in

order to obtain multiple inputs. The structure can be generalized as needed by adding more

transistors in parallel. The active loading with positive feedback helps to improve the gain1

of the comparator.

The operation of the first stage of the monitor circuit of Figure 3.3 is easy. Two of

the four voltages are used as the inputs x(t) and y(t) of the Lissajous trace (x(t) signal is,

in general, a multitone function and y(t) is the transient response of the CUT to the input

excitation) and the other two voltages are set to a DC voltage level in order to change the

shape and parameters of the switching curve. The usage of several monitors with different

setup allows a suitable tesselation of the plane for the expected traces.

The active PMOS loading of the monitor input stage is absolutely symmetrical, so in

order to simplify the analysis, pure resistive loading will be considered as shown in Figure 3.4.

As the circuit being analysed is a comparator, the desired analysis will be performed arround

the commutation point. As said, the active loading is symmetrical, son the commutation

point (when the differential outputs crosses in the large signal analysis) takes place when

1The structure allows to add hysteresis to the comparator but in this application is not suitable thus has
been disabled by adequately sizing the feedback transistors aspect ratio.
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Figure 3.3: First stage model.

output nodes voltages are equal, or what is the same, when the left and right currents in

both branches are the same value.
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RL RLILEFT IRIGHT

Figure 3.4: First stage resistive loading model.

Using the Unified MOSFET model in saturation (not velocity saturation) region and

applying KCL at the output nodes, the following equation state,

k
W1

L1
(V1 − VTH)2(1 + λVo1) + k

W2

L2
(V2 − VTH)2(1 + λVo1) =

k
W3

L3
(V3 − VTH)2(1 + λVo2) + k

W4

L4
(V4 − VTH)2(1 + λVo2) (3.3)

And because of the fact the analysis is being done at the commutation point, Vo1 = Vo2,

so the term 1+λVDS cancells out in both hand sides, as well as the process transconductance,
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which can be constant for the same transistors. Just for convenience, the aspect ratio of the

transistors will be indicated as Si = Wi
Li

. Therefore, the resulting equation is,

S1(V1 − VTH)2 + S2(V2 − VTH)2 = S3(V3 − VTH)2 + S4(V4 − VTH)2 (3.4)

As stated, both of the Vi, k = 1, . . . , 4, voltages will be acting as the x(y) and y(t)

variables, so is evident that the resulting curves will be quite different whether the signals x

and y are applied to the same side of the monitor or not. Each case will be discussed in the

following two subsections.

For both situations, note that the stated equation is not valid for x, y < VTH, because

in subthreshold the transistor does not deliver current to the addition. The behaviour in

such region is a straight line parallel to the axis whose variable makes the NMOS transistor

operates in subthreshold.

Inputs at the Same Side

Suppose the input signals are applied at the same side of the monitor as V1 = x and

V2 = y, and voltages V3 and V4 are set to a DC voltage level, then,

S1(x− VTH)2 + S2(y − VTH)2 = S3(V3 − VTH)2 + S4(V4 − VTH)2︸ ︷︷ ︸
α

(3.5)

The right hand side term has been recalled as a constant α just for convenience. This

way, dividing by α (which can not be zero as is the sum of positive and nonzero quantities)

the whole equation yields,

(x− VTH)2

α
S1

+
(y − VTH)2

α
S2

= 1 (3.6)

just the equation of an ellipse centered at (VTH, VTH) ∈ R2 and with semi axis lengths

a =
√

α
S1

and b =
√

α
S2

. In Figure 3.5 can be shown different ellipses generated with different

transistors aspect ratios and DC voltages.
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Ellipse S1 S2 S3 S4 V3 (V) V4 (V)

Red 1 1 1 1 0.5 0.6

Blue 2 4 1 2 0.7 0.9

Green 1 5 1 1 0.6 0.9

Table 3.1: Ellipses parameters for curves in Figure 3.5. V1 and V2 are the x(t) and y(t)
variables.

Figure 3.5: Different ellipses with parameters of Table 3.1.

Inputs at Different Sides

Suppose now the input signals are connected to V1 = x and V4 = y which lay at different

sides of the monitor input stage circuit. This fact forces some minor changes to the KCL

equation as follows,
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S1(x− VTH)2 − S4(y − VTH)2 = S3(V3 − VTH)2 − S2(V2 − VTH)2︸ ︷︷ ︸
α

(3.7)

Again, the constant term of the right hand side has been recalled as α, but now α is

written as a difference and therefore can be positive or negative. Under the assumption of

being positive, the equation can be written as,

(x− VTH)2

α
S1

− (y − VTH)2

α
S4

= 1 (3.8)

Which is the normalized equation of a hyperbola centered in (VTH, VTH) ∈ R2 with

parameters a =
√

α
S1

and b =
√

α
S4

. Note that due to the sign of α, the equation can yield

different parametrizations (t ≥ 0),

x = VTH + a cosh t

y = VTH + b sinh t

 or
x = VTH + a sinh t

y = VTH + b cosh t

 (3.9)

which are symmetrical having as symmetry axis the identity function y = x. Similarly

as shown for same side inputs, several hyperbolas are plotted in Figure 3.6 with parameters

in Table 3.2.

Hyperbola S1 S2 S3 S4 V2 (V) V3 (V)

Red 1 1 1 1 0.5 0.6

Blue 2 4 1 2 0.7 0.9

Green 1 5 1 3 0.6 0.9

Black 1 1 1 1 0.5 0.5

Table 3.2: Hyperbolas parameters for curves in Figure 3.6. V1 and V4 are the x(t) and y(t)
variables.

Special attention requires the degenerated black hyperbola. Note that due to the

absolutely equilibrated monitor (equal aspect ratios and voltages of the transistors connected

to DC levels), the resulting equation yields to,
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Figure 3.6: Different hyperbolas.

S1(x− VTH)2 − S4(y − VTH)2 = 0 (3.10)

Rooting the equation, one finds the well known degenerated crossing straight lines

centered at (VTH, VTH) ∈ R2,

y = VTH ±
√
S1

S4
(x− VTH) (3.11)

3.2.2. Output Stage

The output stage of the monitor circuit is a plain comparator stage in order to dititalize

the diferential output from the first stage [8,9]. Second stage comparator is formed by a three



36
Design, Fabrication and Verification of a Mixed-Signal XY Zone

Monitoring Circuit and its Application to a Phase Lock Loop Circuit

CMOS comparator structure as can be checked in Figure 3.7. Each of these stages is described

by the schematic in Figure 3.8.

Vo

V1

V2

Figure 3.7: Second stage.

The aim of this structure is to increase the gain and therefore improve the digital output

to be interpreted by the pad circuitry. The comparator is pretty simple to analyse due to the

usage of a NMOS inverter in the left branch and the current mirror formed by M3 and M4

in order to equilibrate the branches.

VDD

GND

M2M1

M3 M4

Vo1 Vo2

V2V1

V1

V2

Vo2

Figure 3.8: Second stage.

3.3. The small signal model general theory

If a transistor is supposed to work in the surroundings of a fixed point (the quiscent

point or simply the Q-point, also the biasing point) a linear aproximation can be taken as

a good approach to the current function. That is, the first order Taylor polynomial for

Id = f(Vgs, Vds) at Q = (VGS, VDS),
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Id = ID +
(

∂Id
∂Vgs

∂Id
∂Vds

)∣∣∣∣
Q

 vgs

vds



So the small signal amount of current is,

id =
∂Id
∂Vgs

· vgs +
∂Id
∂Vds

· vds

And defining, as usual, gm = ∂Id
∂Vgs

and go = ∂Id
∂Vds

, the small signal current can be

rewritten as,

id = gmvgs + govds

Accordingly to the previous calculations the folowing circuit is achieved,

d

ss

g

Cgs gm vgs go

3.3.1. The small signal model applied to the first stage

In order to get a delay model of the circuit being studied, a small signal analysis will

be performed. The model that will be used is the previously presented. Capacitance loading

will be also considered to model the gate capacitance of the next stage.

Using the usual notation and refering to circuit components of presented first stage

circuit, the nodal analysis yields the following system of equations,
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2664 go1 + go2 + go5 + go7 + s(Cgs5 + Cgs6 + CL1) 0

0 go3 + go4 + go8 + go6 + s(Cgs7 + Cgs8 + CL2)

3775
2664 Vo1

Vo2

3775 =

2664 −gm1V1 − gm2V2 − gm5Vo1 − gm7Vo2

−gm3V3 − gm4V4 − gm6Vo1 − gm8Vo2

3775 (3.12)

Or what is the same,

2664 go1 + go2 + go5 + go7 + gm5 + s(Cgs5 + Cgs6 + CL1) gm7

gm6 go3 + go4 + go8 + go6 + gm8 + s(Cgs7 + Cgs8 + CL2)

3775
2664 Vo1

Vo2

3775 =

2664 −gm1V1 − gm2V2

−gm3V3 − gm4V4

3775 (3.13)

Let us define,

G17 = go1 + go2 + go5 + go7 + gm5

G38 = go3 + go4 + go6 + go8 + gm8

C56 = Cgs5 + Cgs6 + CL1

C78 = Cgs7 + Cgs8 + CL2

So, under the above definitions, the problem is,

 G17 + sC56 gm7

gm6 G38 + sC78


 Vo1

Vo2

 =

 −gm1V1 − gm2V2

−gm3V3 − gm4V4


Which is a linear system of equations of the form Ax = b and its solution is given by
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x = A−1b.

Le us define, just for convenience, ∆ = detA,

∆ = (G17 + sC56)(G38 + sC78)− gm6gm7

And A−1 and b are,

A−1 =

 G38 + sC78 −gm7

−gm6 G17 + sC56

 b =

 −gm1V1 − gm2V2

−gm3V3 − gm4V4



This way, the solution is,

 Vo1

Vo2

 =
1
∆

 −gm1(G38 + sC78)V1 − gm2(G38 + sC78)V2 + gm3gm7V3 + gm4gm7V4

gm1gm6V1 + gm2gm6V2 − gm3(G17 + sC56)V3 − gm4(G17 + sC56)V4



In order to simplify the analysis, let us suppose that all the gmi, goi and Cgsi are

equal. This assumption is valid because the analysis is taken place in the surroundings of

the commutation point. This fact makes all the circuit balanced so currents are equal at the

cross point of the outputs. The loading capacitances will be considered equal as well.

Under these conditions, the solution can be written as,

Vo1 =
−gm(G+ sC)

∆
(V1 + V2) +

g2
m

∆
(V3 + V4)

Vo2 =
g2
m

∆
(V1 + V2) +

−gm(G+ sC)
∆

(V3 + V4)

Beeing ∆ = (G+ sC)2 − g2
m and G = Gm + 4go, C = 2Cgs + CL.
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We note that there are two transfer functions to consider,

H1 =
−gm(G+ sC)

∆
H2 =

g2
m

∆

The denominator ∆ can be expanded and studied,

∆ = G2 − g2
m︸ ︷︷ ︸

∆0

+ 2GC︸ ︷︷ ︸
∆1

s+ C2︸︷︷︸
∆2

s2

∆0 = (gm + 4go)2 − g2
m = 8go(gm + 2go) ≈ 8gmgo

∆1 = 2(gm + 4go)(2Cgs + CL) ≈ 2gm(2Cgs + CL)

∆2 = C2 ≈ 0

So,

∆ ≈ 8gmgo︸ ︷︷ ︸
a0

+s(2gm(2Cgs + CL)︸ ︷︷ ︸
a1

)

The simplifications made above, can be perfectly justified if the orders of magnitude

are known. Gate capacitances are in the order of tenths of fF (10−14), the transconductance

of the MOSFET is in the order of hundreds of µS (10−4) and the output conductance is about

two orders of magnitude less than gm, that is, µS (10−6).

The numerator of H1 is a first order polynomial in s, but it will be approximated by a

first order one neglecting the term C in its transfer function.

Then, the system is governed by the following transfer functions,

H1 =
−gmG
a0 + a1s

H2 =
g2
m

a0 + a1s
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And under the same assumptions considered for G (G ≈ gm), H1 and H2 become,

H1 =
−g2

m

a0 + a1s
H2 =

g2
m

a0 + a1s

Which are identical unless its sign. These results match to the fact that the circuit

beeing analyzed is a differential amplifier with splitted inputs,

Vo1 =
g2
m

ao + a1s
(−(V1 + V2) + (V3 + V4))

Vo2 =
g2
m

ao + a1s
(+(V1 + V2)− (V3 + V4))

The transfer function of the system, can be written in its canonical form as,

H =
±ADC

1 + s
ω0

With,

ADC =
g2
m

ao
=
gm
8go

ω0 =
a0

a1
=

4go
2Cgs + CL

In order to estimate the delay of the whole monitor, only one input will be considered

as variable, then

Vo1 = − ADC

1 + s
ω0

Vi

Vo2 =
ADC

1 + s
ω0

Vi
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Which its transient step response will be the typical of a first order system,

y(t) = ADC(1− e−ω0t)

The delay time will be defined as the time the switching (crossed outputs) takes place.

Because of the two outputs are symmetrical, it will be at the time the half DC gain is achieved,

so,

ADC

2
= ADC(1− e−ω0tδ)

From where,

tδ =
ln 2
ω0

=
(2Cgs + CL) ln 2

4go

Note the independence of gm from the delay expression.

3.3.2. The small signal model applied to the second stage

The comparison stage is implimented using three CMOS differential amplifiers. The

analysis will be performed the same way and also loading capacitances will be considered.

The nodal analysis yields the following set of linear equations,

 go1 + go3 + s(Cgs3 + Cgs4 + CL1) 0

0 go2 + go4 + sCL1


 Vo1

Vo2

 =

 −gm1V1 − gm3Vo1

−gm2V2 − gm4Vo1



That is,
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 go1 + go3 + gm3 + s(Cgs3 + Cgs4 + CL1) 0

gm4 go2 + go4 + sCL1


 Vo1

Vo2

 =

 −gm1V1

−gm2V2



Beeing the solution,

Vo1 =
−gm1

go1 + go3 + gm3 + s(Cgs3 + Cgs4 + CL1)︸ ︷︷ ︸
H̃

V1

Vo2 =
−gm4

go2 + go4 + sCL2
H̃︸ ︷︷ ︸

H1

V1 +
−gm4

go2 + go4 + sCL2︸ ︷︷ ︸
H2

V2

Note that only the output Vo2 is used to load the following stage, so we are inter-

ested in its transfer functions H1 and H2 only. The previous statement stablishes that the

consideration CL1 = 0 is fasible.

Under the assumptions that the commutation takes place when the circuit is perfectly

balanced, it is legal to suppose, as we did in the monitor circuit analysis, that all the transcon-

ductances and output conductances are equal as well as the gate capacitances.

This yields the following transfer functions,

H1 =
−gm

2go + sCL2

−gm
2go + gm + 2Cgss

=
g2
m

D(s)
H2 =

−gm
2go + sCL2

The denominator D(s) of H1 is aimed to be studied concisely,

D(s) = [2go(2go + gm)]︸ ︷︷ ︸
a0

+ [4goCgs + (2go + gm)CL2]︸ ︷︷ ︸
a1

s+ [2CgsCL2]︸ ︷︷ ︸
a2

s2
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a0 = 2go(2go + gm) ≈ 2gmgo

a1 = 4goCgs + (2go + gm)CL2 ≈ 4goCgs + gmCL2 ≈ gmCL2

a2 = 2CgsCL2 ≈ 0

And then,

H1 =
g2
m

2gmgo + gmCL2s
H2 =

−gm
2go + sCL2

So, with the exception of sign, they are identical, fact that matches with the assumption

that the circuit beeing analyzed was a differential amplifier. So the transfer function of the

circuit is,

H =
gm

2go + sCL2

And the output is,

Vo2 = H(V1 − V2)

Let us write the transfer function as is usual for a first order system,

H =
ADC

1 + s
ω0

With ADC = gm
2go

and ω0 = 2go
CL2

.

To estimate the delay time, the same methodology which has been applied to the first

stage circuit will be considered here. The time to achieve the half of the DC gain is,
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tδ =
ln 2
ω0

=
CL2 ln 2

2go

Again, note the independence of gm in the delay expression.

3.4. Layout Implementation

In analog electronics, and specially if using a small technolgy (65 nm), layout design

is critical to meet circuit specifications. The studied monitor circuit layout has been carried

out taking in consideration common centroid strategies [10] in order to minimize mismatch

effects.

In Figure 3.9 can be appreciated the final layout design. It uses 5 metal layers, standard

VTH and general purpose ST-Microelectronics transistors.

In order to achieve the final centroidal structure, any transistor has been splitted into

four assuring this way a well-balanced structure.
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Figure 3.9: Layout implementation in CMOS ST-Microelectronics 65 nm technology. The
total area used per monitor is 116.1 µm2.
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Chapter 4

Metric Definition

4.0.1. Definition

In order to be able to compare the digital signatures generated by the circuit, an

indicator of difference is required. Taking in consideration the zone codification, a possible

choice is the following definition of a Normalized Discrepancy Factor,

NDF =
1
T

∫ T

0
dist(f, g) dt (4.1)

where the functions f(t) and g(t) respectively represent the defective and golden sig-

natures defined within the period T of the Lissajous curves. Operator dist() is the Hamming

distance of the codes at each time instant. The NDF parameter indicates the discrepancy of

the defective and golden instantaneous codes weighted by the duration of interval in which

the Lissajous curve remains in the same zone.

The previous definition matches the average value of the Hamming distance chronogram

over the interval [0, T ]. For the example of Figure 4.2, a NDF of 0.102102 is obtained.

Because of the the zone codification criterion, neighbouring zones only vary in one

bit. This is why Hamming distance is suitable, as can be observed in the lower chronogram

of Figure 4.2, where the Hamming golden-defect distance is plotted during a period. Note

the achievement of 2 (in the sense of Hamming distance) in the interval [48, 50]µs. This is
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Figure 4.1: Control lines with zone codification and Lissajous compositions: golden and
+10% shift in f0.

because, in Figure 4.1, the faulty trace reaches zone 1111102 (6210) instead of the sequence

0111102 (3010), 0111002 (2810), 1111002 (6010), which will define a free-defect Lissajous.

4.0.2. Parameter Verification Process

The NDF is used to evaluate the amount of deviation of the parameters under verifi-

cation. Circuits with parameters satisfying specifications are expected to present small NDF

values. To evaluate the NDF effectiveness, extensive software simulations have been per-

formed on a Biquad filter circuit with different degrees of deviation in the natural frequency
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Figure 4.2: Chronogram of digital signatures and Hamming distances for +10% shift in f0.
NDF = 0.102102.

of the filter. The discrepancy factor increases almost linearly with the amount of deviation

and quite symmetrically with positive and negative parameter deviations, as can be seen in

Figure 4.4.

This metric detects discrepancies exceeding an absolute value over the nominal (golden)

circuit parameter. In cases where the sign of the parameter deviation is required a data

clustering procedure is used. To this purpose, distances between pairs of signatures are shown

in Figure 4.5. This two-by-two comparison indicates that positive and negative defects lay

separately in the N -dimensional space. Distances between same types of defects are also

smaller than those mixing different types of defects.

A simple method to scatter the two groups of defects consists in computing a separation

hyperplane. This data clustering method is performed by the calculation of the centre of

gravity of every set and use it to define the hyperplane parameters. Let us respectively



50
Design, Fabrication and Verification of a Mixed-Signal XY Zone

Monitoring Circuit and its Application to a Phase Lock Loop Circuit

M1 D S1

M2 D S2

Mn D Sn

C
U
T

x(t)

y(t)

Transition
Detector

Master
Clock

Time �i

Time 
Register

  Counter
m

RST

Zi

�

Figure 4.3: Asynchronous capturing module in order to generate the sigatures: the zone code
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Figure 4.4: Normalized discrepancy factor for defects in f0.

define z+ and z− as the centre of gravity of the positive and negative set of defects. In an

N -dimensional vector space, a hyperplane takes the form,
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Figure 4.5: Distance between pairs of Hamming signatures.

π ≡
N∑
i=1

ni(zi − pi) = 0 (4.2)

where n = (n1, . . . , nN ) is a vector normal to π and p = (p1, . . . , pN ) is any point within

π. In this way, the following definitions become natural (see Figure 4.6),

n = z+ − z−, p =
z+ + z−

2
(4.3)

With the calculated π-hyperplane, parameter identification is easy because we only

have to evaluate the resulting Hamming signature in the π equation. If the evaluation yields

a positive number, the defect is positive whereas if it yields a negative value, the defect is

negative. The amount of defect is determined with the graphical data of Figure 4.4.
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Figure 4.6: Sketch of the separation plane in a three-dimensional vector space.
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Chapter 5

Test Bench and Circuit Under Test

In order to check the designed monitor circuit and the developed test/diagnosis method-

ology, a test bench and a CUT are required. Both have been designed in single sided copper

PCB with the aim to provide easy access to signals and components. This chapter shows the

results on the fabrication and points out the objectives being pursued.

Originally, the goal was to use a PLL board at 55 MHz to test the fabricated monitor,

but due to the results on frequency response of the monitor circuit, the decision to test only

the filter part has been taken. In order to see details of the purchased PLL board and the

associated VCO chip see appendix I.

5.1. Test Bench Design

The fabricated monitor circuit has the following available signal connections:

1. Independent power supply for core and pads.

2. Four input voltages.

3. Two differential analog outputs from first stage (for each monitor).

4. One digital output from first stage (for each monitor).

5. One digital output from second stage (for each monitor).
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Note that some of them are repeated for the balanced and unbalanced layouts that

have been implemented.

The designed test bench has been designed in order to gain easy access to each signal and

allow extra components connections as decoupling capacitors, wiring, probes, buffer outputs,

filtering, CUT connections,. . . A rough design of the layout can be seen in Figure 5.1.

VDDE VDD V1 V2 V3 V4

GNDE GND

ANAEQUI1 ANAEQUI2 ANADES1 ANADES2 DIGIEQUI DIGIDES

ANACOMP3 ANACOMP1

GND

Figure 5.1: Test bench schematized layout.

The fabricated chip packaging requires IC51-0644-807 socket (see appendix I for socket

details). This is not a common socket that can be found in OrCAD Layout footprint libraries,

so it has been to be hand designed accordingly to socket datasheet dimensions. In order to

create footprint pins, a small script has been coded in Visual Basic to automate the process.

Test bench has been designed with OrCAD Layout and has been fabricated by CNC

routing to Taller Mecànic ETSEIB. The final PCB layout can be seen in Figure 5.2. The

PCB has been provided with an array of prototyping pins in order to use them to connect

different auxiliary circuits.

Tracks widths of the design have been set to 12 mils and have been hand routed in order

to optimize the design and avoid extra line capacitances and induced antenna behaviour.

The designed test bench PCB has been sent for fabrication to Taller Mecànic ETSEIB.

The final product can be seen in Figure 5.3. In the photograph also appears the chip socket,

CUT circuit and connections.
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Figure 5.2: Test bench layout designed with OrCAD Layout. The design has been sent to
CNC fabrication at Taller Mecànic ETSEIB.

5.2. Circuit Under Test Design

As the low-pass filter of the PLL implementation can be of any kind [11] (the PLL

board provides input and output pins in case of future connections intentions) a second order

biquad filter implementation has been selected to test the fabricated monitor. In the following

lines, a brief introduction theory of biquad filters and the fabricated filter itself will be shown.

5.2.1. Low-Pass Biquad Filter Theroy

A second order low-pass Biquad filter [12] is a state variable filter which transfer func-

tion (relation between the input and the output signals) is described by the following expres-

sion (note that a cononical unity gain has been chosen for theoretical explanation),
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Figure 5.3: Photograph of the machined PCB to lodge the IC socket, CUT circuit and
connections between the modules and the oscilloscope and function generator. Power supply
wires and signal probes can be seen too.

Vo
Vi

=
1

s2

ω2
0

+ 1
Q

1
ω0

+ 1
(5.1)

From the above expression, s2

ω2
0
Vo+ 1

Q
s
ω0
Vo+Vo = Vi and multiplying by ω0

s and solving

for s
ω0
Vo yields,

s

ω0︸︷︷︸
A

=
ω0

s
Vi−

1
Q
Vo︸ ︷︷ ︸

B

−ω0

s
V0︸ ︷︷ ︸

C

(5.2)

From the above equation, the block diagram of Figure 5.4 is obtained. Note that

because the filter will be implemented using operationa amplifiers, it is easy to multiply by

a negative constant.
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C

B

Figure 5.4: Block diagram.

It is immediate to draw the corresponding schematic from the block diagrams shown

in Figure 5.4 using opertational amplifiers in inverting configuration. As can be checked in

Figure 5.5, summing inverter/integrating amplifiers has been used.

R6

R5

R4

R2

R1

R3

C2

C1

– Vi

Vo

Figure 5.5: Biquad filter schematic.

Accordingly to the summing and integrating weights, the following equations state,

ω0 =
1

R1C1
,

ω0

Q
=

1
R2C1

, ω0 =
1

R3C1
, ω0 =

1
R4C2

, R5 = R6 (5.3)

Any circuit with the same structure of Figure 5.5 and acoomplishing the previous set

of equations will be Biquad filter.

5.2.2. Circuit Under Test Design

In order to generalize the results and understand the influence of each component on

the different Biquad filter parameters, the structure of Figure 5.5 has been analysed without

any restrictions on the components.
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With a bit of algebra can be shown that the transfer function that steers the behaviour

of Figure 5.5 circuit in the frequency domain is,

H(s) =
−R3
R1

1 + s(1 + sR2C1)R4C2
R3R5
R2R6

(5.4)

The denominator of the previous equation can be written in the form of as2 +bs+1 and

identifying the polynomial coefficients, yield a = R3R4R5
R6

C1C2 and b = R3R4R5
R2R6

C2. For a filter

with a denominator in the polynomial form presented earlier, its characteristic parameters

are ω0 = 1√
a

and Q =
√
a
b . In the case of the filter being studied, these parameters are,

ADC = −R3

R1
, ω0 =

√
R6

R3R4R5C1C2
, Q = R2

√
R6C1

R3R4R5C2
(5.5)

With the aim of high performance and low distorsion and low noise in the signal levels,

good quality operational amplifiers have been chosed. The Texas Instruments TLC2272 is

a CMOS opamp with a typical offset voltage of 300 mV, input bias current as low as 1 pA,

input impedance of about 1012 Ω, a high slew rate of 3.6 V
µs and a CMRR and PSRR arround

75 and 90 dB respectively is the chosen solution.

In order to construct the filter, two dual TLC2272 have been used. Because of the

dispose of four operational amplifiers, and extra one has been added at the end stage of the

design as can be seen in the schematic in appendix I.

Accordingly to the previously presented equations, the components have been set to

those presented in Table 5.1. All resistors (and potentiometers) values are in kΩ and capacitor

values in nF.

R1 R2 P2 R3 R4 R5 R6 P6 R7 R8 P8 C1 C2

22 4.7 5 22 22 22 22 50 22 20 5 1 1

Table 5.1: Components values. Resistors in kΩ and capacitors in nF.

The components have been calculated to allow the proper adejustment of the CUT

parameters and to allow the inclusion of defects in the natural frequency of the filter. The

potentiometers allow to achieve a ±20% of variation in the characteristic frequency of the

filter from its nominal value of 10 kHz.
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There is one experimental operation handicap in the use of such Biquad filter. Filter

parameters values are function of different components, so by varying one potentiometer, not

only the center frequancy os varied but also the quality factor, so it is mandatory for each

defect to setup the filter properly.

The filter has been implemented in one sided copper PCB using OrCAD Layout soft-

ware. The resulting layout can be checked in Figure 5.6. The routed process has been

automatically in 12 mils tracks in width. The layout design includes a 5 V regulator as a

power supply and connectors for input and output signals. Also, has been included a con-

nector for allowing the user to use diodes at the output in order to provent over voltages to

be applied directly to the chip.

Figure 5.6: Biquad filter layout designed with OrCAD Layout.

In Figure 5.7 can be appreciated the resulting PCB. The fabrication technique has not

been as laboured as test bench board since it has been homemade manufactured. The process

consists on applying toner in order to define tracks and pads. Then an acid solution is applied
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and after rinsing and removing the sticked toner, the PCB is finished. The method is only

suitable for simple PCB (single sided and a few components).

Figure 5.7: Photograph of the fabricated PCB for the circuit under test. It is a tunable
low-pass Biquad filter. Input and output signal wires can be checked at the picture.
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Chapter 6

Experimental Results

Once the chip has arrived from foundry (run S65C8 6), it has been tested in order to

check its behaviour and performance. In Figure 6.1 can be seen an augmented photograph

of the fabricated die using a bulk CMOS process. It has 1 × 1 mm2 of area and lodges many

research projects from the different Department interests areas.

The first test that has been applied to the circuit consists in checking if it is behaving

like a nonlinear comparator. For this purpose, different input signals has been considered

and different control DC voltages have been tuned. This allows a good coverage of the XY

plane tesselation. In Figure 6.3 can be appreciated the transient response of the comparator

to an input sinusoid and a constant reference.

Once the functional behaviour of the second stage circuit is tested, the switching curve

generation in the XY plane is studied. In order to obtain such results, a quasi-static transient

analysis has been applied considering a ramp input for one of the axis while maintaining the

other to a constant DC level. The trip point of the digital output determines uniquely each

point and shape of the switching curves. With the aid of a voltmeter and a function generator,

the observed switching curves can be seen in Figure 6.4. The shape of the lines match the

theoretically and simulated predicted, within the technology variability specifications. The

configuration parameters for each considered curve are those appearing in Table 6.1

A complete check of the proposed method with the case example of the Biquad filter

has been performed. The CUT circuit has been properly tuned for different f0 shifts, which
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Figure 6.1: Photograph of the die of the fabricated chip. The photograph marks the area
occupied by a single monitor.

Figure 6.2: Detail of the IC socket (right) and the encapsulated chip (left).

response has been composed with the monitor circuit. This way, different signatures, for

each switching curve, have been obtained. In Figure 6.5, the multitone input signal and its

low-pass filter response can be seen, as well as the monitor circuit periodic digital code. In

Figure 6.6, the resulting Lissajous composition of the input multitone excitation and the

CUT response can be appreciated.
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Figure 6.3: Experimental transient switching assuring the corrent performance of the com-
parator module. Can be appreciated the one stage output and the one corresponding to the
trimodular architecture.

Transistor widths
(nm)

(L = 180 nm)
Applied input voltages (V)

M1 M2 M3 M4 V1 V2 V3 V4

1 3000 600 600 3000 Y axis 0.2 X axis 0.6

2 3000 600 600 3000 0.6 Y axis 0.2 X axis

3 1800 1800 1800 1800 Y axis X axis 0.55 0.55

4 1800 1800 1800 1800 Y axis X axis 0.3 0.3

5 1800 1800 1800 1800 Y axis X axis 0.75 0.75

6 1800 1800 1800 1800 Y axis 0 X axis 0

Table 6.1: Input transistor dimensions and applied voltages for the curves depicted in Fig-
ure 6.4.

With the aid of the developed software tool, the difference with the golden signature

has been computed for all the applied f0 deviations. The obtained metric values are shown
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Figure 6.4: Experimental switching curves.

in Figure 6.7. With this mapping, any defective (only f0 shifts) circuit can be diagnosed with

the unique information of the resulting NDF factor.

As a case examples, three random fo shifts (within the studied range of −20% to +20%)

have been applied to the CUT in order to compute their digital signature. With the aid of the

metric and the mapping, the results of Table 6.2 are obtained. As can be seen, the predicted

f0 shifts are quite similar to the real ones, what validates the proposed method.

CUT defect (%) NDF Predicted defect (%)

Example 1 -12 0.096 -11.9

Example 2 +1 0.010 0.89

Example 3 +18 0.88 +18.4

Table 6.2: CUT experimental results on the diagnosis procedure.
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Figure 6.5: Transient response of the monitor circuit to a multitone input. Fundamental
frequency is 10 kHz.

Figure 6.6: Shot of the oscilloscope screen composing the multitone input signal and the
resulting from the Biquad low-pass filter. The resulting shape matches with the previously
calculated one.
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Figure 6.7: Mapping between the amount of defect in the Biquad filter characteristic fre-
quency and the NDF factor resulting from golden-defective metric comparison.
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Chapter 7

Conclusions and Future Work

Outlines

A CMOS 65 nm monitor circuit has been presented and analysed. The monitor circuit

is a two stage design. The former stage compares the signals and provides the switching

curve tessellation. The latter is a high gain stage that digitises the differential output from

the first stage in order to perform the codification for each XY plane zone. Both stages

analysis include DC large signal and small signal study. For the last, a delay model has been

developed and checked against simulation and experimental results.

The theoretical switching curves generated by the first stage have been achieved by

the use of the fitted Unified MOSFET Model to ST-Microelectronics 65 nm technology. The

fitting methodology is the well known linear least squares method generalized to nonlinear

functions via first order Taylor approximation. DC and transient simulations results, PVT

variations have been also studied using Monte Carlo simulations and the developed model

considering Gaussian parameter distribution. Both studies (simulation and theoretical) yield

similar results of an average of 60 mV of 6σ spread on switching curves.

The CMOS monitor circuit has been designed in ST-Microelectronics 65 nm technology

by the use of common centroid analog design techniques in order to avoid (or at least mini-

mize) mismatch effects. The layout has been included in a multiproject chip for fabrication.

A novel digital signature comparison and diagnosis method has been also presented.
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The method takes advantage of the zone codification criteria which makes that neighbour-

ing zones to be at Hamming-1. The discrepancy criterion is performed via the so defined

Normalized Discrepancy Factor (NDF) as the average Hamming distance between the golden

and the observed signatures over a period. Software simulations allow to determine the NDF

factor as a function of the amount of defect allowing this way the diagnosis of a CUT. The

mapping between NDF and the percentage of defect is a non one-to-one relation what makes

necessary a statistical data clustering process using the fact that differences vectors lay in

separately regions of the hyperspace.

In order to avoid the tedious statistical scattering process a new metric has been intro-

duced. Its definition is similar to he former but uses two NDF, one for positive differences and

one for negative differences. With the latter metric definition, the mapping of the amount of

defect and the two NDF factors is performed in a straight forward way if the set of possible

defects has been simulated.

The CUT diagnosis method shows high reliability and simple software implementation

allowing to be directly applicable to any pair of signatures comparison in which Hamming

distance makes sense of discrepancy. Experimental results have been presented showing that

the developed method works as expected.

As a future work, a quantification of performance with noisy signal would be desirable.

The method should consider switching bands and not thin curves. Under this assumption,

the mapping between the NDF factor and the amount of defect will become into a statistical

distribution function.

Also, a complete implementation of the method would be desirable, that is, not only the

monitor circuit but also the CUT and the digital processing of signatures. This would require

more silicon area but would be adequate in order to assess the reliability of the method under

real circumstances.

More research in the method of generating the digital signatures would be a good

starting point in order to go further in XY zoning methods. In the current project, two

different methods have been presented: one for generating the digital signatures (XY plane

tessellation) and one to perform the digital processing of the generated sequences. Both

methods could be improved and tested experimentaly over many fabricated circuits.
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Appendix A

Costs Evaluation

Project costs evaluation is nearly as important as the correctness of the experimental

results because the overall reliability of the proposed testing method will be judged by both

outcomes. In this appendix, the costs attributed to the project development are depicted.

They have been broken down into the following categories:

Human resources costs

Chip fabrication costs

Materials costs

Equipment and software costs

Other costs

A.1. Human Resources Costs

Those costs concerning the people working on the project are attributed as human

resources. In current thesis, three people have been considered and the involved costs are

directly related to their professional categories and the time devoted to the project. The

description of human resources costs can be seen in Table A.1.
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Resource Function Time (h) Cost (e/h) Total (e)

Professor Project manager 120 75 9000

Associate Professors Consultants 120 70 8400

Junior Engineer Project developer 2000 25 50000

TOTAL (e) 67400

Table A.1: Human resources costs.

A.2. Chip Fabrication Costs

The fabrication of the chip has been carried out by CMP1 on the firsts months of 2009.

As explained, the multiproject chip has been fabricated using ST-Microelectronics 65 nm

CMOS technology. The circuit die area is 1× 1 mm2 what makes the fabrication cost rise up

to 9500 e accordingly to CMP fees.

A.3. Material Costs

In order to verify the correct operation of the fabricated circuit and the developed

test/diagnosis methodology, different hardware is required besides the chip. In the following

three subsections, the detailed costs for the test bench and CUT fabrication, as well as the

PLL evaluation board, are listed.

A.3.1. Test Bench

The test bench consists in a single sided CNC machined PCB with routed traces from

the chip socket to female header pins. The costs concerning the construction of the tests

bench setup are displayed in Table A.2.

1Circuits Multi-Projets, http://cmp.imag.fr.
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Item Unit cost (e/u) Units Cost (e)

CNC machined single sided copper PCB 110.00 1 110.00

IC51-0644-807 socket 42.03 1 42.03

Female header 0.25 5 1.25

Decoupling capacitors 0.35 4 1.40

M4 screws 0.02 4 0.08

Tin soldering wire 2.30 1 2.30

TOTAL (e) 157.06

Table A.2: Test bench costs.

A.3.2. Circuit Under Test

The circuit under test being used in the thesis is an active Biquad low-pass filter. In

order to achieve a comfortable working setup, the CUT has been mounted on single sided

copper PCB and then attached to the test bench board. The CUT components’ costs are

listed in Table A.3.

A.3.3. PLL Evaluation Board

As exposed in the thesis, the initial CUT circuit was intended to be a fully working PLL

system, so an evaluation board for a phase lock loop circuit was purchased. It is composed

by the PLL board itself, the synthesiser and the VCO circuits. The costs can be checked in

Table A.4.

A.4. Equipment and Software Costs

Research and experimental work require instrumentation and laboratory equipment

as well as engineering software tools to obtain the appropiate results. During the project,

software tools have played an important role due to the nature of the research: circuit sim-

ulation, data fitting, data clustering, computer algebra calculations,. . . The same occurs

with electronic instrumentation such as power supplies, oscilloscopes, function generators,



76
Design, Fabrication and Verification of a Mixed-Signal XY Zone

Monitoring Circuit and its Application to a Phase Lock Loop Circuit

Item Unit cost (e/u) Units Cost (e)

Single sided copper PCB 5.21 1 5.21

TLC2272 precision dual opamp 1.26 2 2.52

WR7808 5 V voltage regulator 0.47 1 0.47

3 mm red LED 0.18 1 0.18

Resistor 22k (1%) 0.05 6 0.30

Resistor 20k (5%) 0.01 1 0.01

Resistor 4k7 (5%) 0.01 1 0.01

Resistor 1k (5%) 0.01 1 0.01

Potentiometer 5k 0.37 2 0.74

Potentiometer 10k 0.35 1 0.35

Potentiometer 50k 0.35 1 0.35

Electrolytic capacitor 10u (16 V) 0.13 3 0.39

Plastic capacitor 100n (16 V) 0.05 5 0.25

Plastic capacitor 1n (16 V) 0.05 2 0.10

Female header 0.25 1 0.25

Lever switch 1.23 1 1.23

Tin soldering wire 2.30 1 2.30

0.8 mm drill bit 2.79 1 2.79

TOTAL (e) 12.00

Table A.3: Circuit under test costs.

voltmeters,. . . All these equipment amortization costs can be checked in Table A.5.

For the calculations, a 10% increment over the price has been considered as a mainte-

nance cost for equipment and as an aging cost for software tools.

The software appearing in Table A.5 is not the unique software that have been used.

Many resources come from free software tools such as Linux, Spice, Perl, Maxima, Octave,

Bash, LATEX,. . .
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Item Unit cost (e/u) Units Cost (e)

PLL board EVAL-ADF411XEB1 130.55 1 130.55

Synthesiser ADF4112 for PLL board 5.24 1 5.24

Voltage controlled oscillator VCO1901960T 27.63 1 27.63

Shipping costs 66.24 – 66.24

Tin soldering wire 2.30 1 2.30

TOTAL (e) 231.96

Table A.4: PLL evaluation board costs.

Item Price (e) Life (h) Amort (e/h) Time (h) Cost (e)

TDS744A scope 4795 10000 0.53 80 42.20

AFG3102 funcgen 5110 10000 0.56 80 44.97

HP4284A supply 8982 10000 0.99 80 79.04

Multimeter 30 10000 0.00 80 0.26

Soldering iron 50 8000 0.01 5 0.03

PC 700 30000 0.03 3000 77.00

Laptop PC 900 20000 0.05 150 7.43

MS Windows XP 150 15000 0.01 3000 33.00

Cadence IC Design 2000 10000 0.22 1000 220.00

OrCAD 1495 15000 0.11 100 10.96

Matlab 515 15000 0.04 2000 75.53

Maple 1895 15000 0.14 200 27.79

TOTAL (e) 618.22

Table A.5: Equipment and software amortization costs.

A.5. Other Costs

During the development of the project, papers on the topic have published in different

test and circuit design conferences such as European Tests Symposium (ETS) and Design of

Circuits and Integrated Systems Conference (DCIS). In Table A.6 can be seen an overview
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of the generated costs. They include the travel, the lodging and the conference fees.

Item Cost per person (e) No. of people Cost (e)

ETS09 Symposium 589 2 1178

DCIS09 Conference 415 3 1245

TOTAL (e) 2423

Table A.6: Other project related costs.

A.6. Overall Project Costs

In the previous sections, the breakdown of the costs related to the project have been

exposed. The overall project economic evaluation yields from the summation of the partial

costs found in each table. Table A.7 summarises the total costs of carrying out the presented

project. The final cost rise up to 80342.24 e.

Item Cost (e)

Human resources 67400.00

Chip fabrication 9500.00

Test bench 157.06

Circuit under test 12.00

PLL evaluation board 231.96

Equipment and software 618.22

Other 2423.00

TOTAL PROJECT COST (e) 80342.24

Table A.7: Overall project costs.
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Appendix B

Environmental Impact Assessment

The proposed test and diagnosis methodology has been possible due the fabrication of

a 65 nm multiproject chip using a bulk CMOS process. CMOS circuits fabrication demands

many different chemical products utilisation in each process stage. The foundry cares about

the recycling of the products and their correct usage in order to avoid extreme environmental

damage.

The designed circuit is aimed to be used in buit-in testing techniques, what simplifies

the test procedure in area, power and time consuming aspects. The overall advantage is seen

in a considerably smaller price of the test. BIST techniques are considered DFT (design for

testability) offering a great bunch of benefits as mentioned. DFT designs assure quality at a

low price level due to the easier way the test is performed.

From the power consumption point of view, the fabricated monitor circuit draws only

a few milliamps. For the first stage, which is basically analog, considering an average voltage

of VGS = 0.7 V and VDS = 0.5 V for the input transistors, the total first stage current, IFIRST,

can be roughly computed by,

IFIRST = 4 · 199.03 · 10−6 1800
180

(0.7− 0.315)2(1 + 0.176 · 0.5) ≈ 1.3 mA (B.1)

The core voltage supply is 1 V, what yields a total power consumption of about 1.3 mW.

The second stage consumption can be attributed to the branches that operate in saturation
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(trimodular second stage), so ISECOND = 3
4IFIRST. Then, the resulting total power consump-

tion is about PTOT ≈ 2.3 mW, what is a quite small value compared to those consumed by

an AATE (analog automatic test equipment).

On the hand of final physical assemble and verification, the developed test bench and

CUT circuits have been made using discrete electronic components being compliant with

the RoHS1 (restriction of hazardous substances) policies. This fact guarantees that any

component is totally free of hazardous stuff like lead, mercury, cadmium, chromium,. . .

1RoHS directives must be accomplished in Europe since july 2006.
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Appendix C

Orthogonal Projection

C.1. Matrix of the Orthogonal Projection

In the following lines, the method for computing the matrix of the orthogonal projection

of a given vector over a vectorial subspace will be demonstrated. The method makes extensive

usage of linear algebra concepts and, although its apparent complexity, is the most suitable

method for computer implementation and high amounts of data. The orthogonal projection

computation is used in the leasts squares fitting method.

Let us consider F a vector subspace of a R-vector space E = Rn (dimE = n). Let

{v1, . . . , vr} be a base of F (dimF = r).

We note the orthogonal projection of a vector ω ∈ Rn over the subspace F as ΠF (ω).

Of course, ΠF (ω) ∈ F and therefore can be written as a linear combination of the vectors of

any base of E this way,

ΠF (ω) = α1v1 + · · ·+ αrvr (C.1)

The vector ΠF (ω)− ω is orthogonal to subspace F , that is ΠF (ω)− ω ∈ F⊥ as can be

seen in Figure C.1 and therefore, it will be for any vector within F . In particular, this will

occur with the vectors of the base v1, . . . , vn, so,
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Figure C.1: Sketch of the decomposition of vector ω as the sum of the vector ΠF (ω) ∈ F and
ω −ΠF (ω) ∈ F⊥.

ΠF (ω)− ω ⊥ v1

ΠF (ω)− ω ⊥ v2

...

ΠF (ω)− ω ⊥ vr


(C.2)

Because of the orthogonal relations written above, the dot product 〈·, ·〉 will yield a

zero value,

〈v1, α1v1 + · · ·+ αrvr − ω〉 = 0 (C.3)

〈v2, α1v1 + · · ·+ αrvr − ω〉 = 0
...

〈vr, α1v1 + · · ·+ αrvr − ω〉 = 0

Now, using the bilinearity of the dot product, we get,
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〈v1, v1〉α1 + 〈v1, v2〉α2 + · · ·+ 〈v1, vr〉αr = 〈v1, ω〉 (C.4)

〈v2, v1〉α1 + 〈v2, v2〉α2 + · · ·+ 〈v2, vr〉αr = 〈v2, ω〉
...

〈vr, v1〉α1 + 〈vr, v2〉α2 + · · ·+ 〈vr, vr〉αr = 〈vr, ω〉

The above system can be written as Λα = 〈v, ω〉 being Λ the matrix of the dot product.

Defining A as the matrix formed by appending the vectors of the base of F in columns, the

system is,

ATAα = ATω (C.5)

So now, we solve for unknowns α as α = [ATA]−1Aω and because of the previous

definition of ΠF (ω) = α1v1 + · · ·+ αrvr, the solution to ΠF (ω) is,

ΠF (ω) = A[ATA]−1Aω (C.6)

Where the matrix A[ATA]−1A is the so called projection matrix over subspace F ,

ΠF = A[ATA]−1A. In fact it is the matrix of the linear application orthogonal projection.
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Appendix D

Leasts Squares Fitting Method

The leasts squares method (LSM) is widely used for curve fitting. It takes special in-

terest when trying to numerically compute parameters for a given fitting function commiting

the smallest quadratic error. Mainly, the aim of the LSM is to give a solution to a overde-

termined system of equations. In this thesis, has been used for transistor DC curves fitting

accordingly to the Unified MOSFET model.

The subsequent lines show the derivation of the equations for the LSM in both cases:

Classical linear leasts squares

Generalised leasts squares

D.1. Linear Leasts Squares Method

Suppose we have an overdetermined linear system of equations, with no redundant

equations, An×rxr = br, that is, the number of rows is greater than the number of columns

(n > r). We will be also assuming that the columns of A = (v1 | · · · | vr), are linearly

independent, so they are the base for a subvectorial space F ∈ Rn (dimF = r). The original

system can be rewritten as,
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x1v1 + · · ·+ xrvr = b (D.1)

So, if the previous equation has no solution, means that do not exist scalar values

{x1, . . . , xr} such make the writting of vector b as a linear combination of vectors {v1, . . . , vr}.

Now, we can substitute vector b by another b′ which lays in the subspace generated by

v1, . . . , vr. The most reasonable vector to use is that which is the nearest from b. So b′ should

be the orthogonal projection of b over the generated subspace v1, . . . , vr.

Ax = A(ATA)−1AT b (D.2)

Left multiplying by AT and then by (ATA)−1 immediately yields the solution to the

original system of equations by the linear leasts squares method,

x = (ATA)−1AT b (D.3)

D.2. Generalised Leasts Squares Method

The generalised LSM is a generalization of the linear leasts squares method to non-linear

systems of equations. MOSFET drain current behaviour is governed by a quadratic law, what

difficults the use of linear LSM. The generalised method using first order approximation suits

perfectly to the needs of the fitting.

Suppose we have an overdetermined system of r non-redundant and non-linear equa-

tions of n variables (r > n),

F1(x1, . . . , xn) = 0

...

Fr(x1, . . . , xn) = 0


(D.4)
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Abbreviately, this system can be rewritten as a function of n variables mapping to an

r dimension vector, F : Rn −→ Rr. This function can be approximated in the surroundings

of a given point X0 ∈ Rn with a first order multi-variate Taylor polynomial,

F (X0) + J (X −X0)︸ ︷︷ ︸
∆X

= 0 (D.5)

Where J is the Jacobian matrix or first derivative matrix, defined as,

J =


∂F1
∂x1

· · · ∂F1
∂xn

...
. . .

...

∂Fr
∂x1

· · · ∂Fr
∂xn

 (D.6)

The approximation can be rewritten as J∆X = −F (X0), which has the form of the

previously studied linear system and LSM can be applied as demonstrated before. The

system to solve, having projected the term −F (X0) over the subvectorial space generated by

the columns of J is J ∆X = J
[
JTJ

]−1
JT , and therefore, the solution,

X = X0 −
[
JTJ

]−1
JT F (X0) (D.7)

Applying the method iteratively, the following recursion relation gives the solution to

the system using the leasts squares fitting method,

Xk+1 = Xk −
[
JTJ

]−1
JT F (Xk) (D.8)

So the solution for the fitting parameters can be obtained by just evaluating the func-

tions and its first derivative matrix and performing some simple matrix algebra. The method

has been implemented in Matlab.
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Appendix E

Estimation of Population Standard

Deviation using Sample Data

Once an integrated circuit has been designed, it is usual to check its behaviour against

PVT variations through the use of statistical technology characterization methods. The

number of Monte Carlo simulations to perform is critical. It has to be sufficiently large to

ensure a good coverage of the process variations and should not be that large to unnecessary

delay the simulations.

Many of the parameter variations in integrated circuits behave as a normal distribution

N(µ, σ). This fact implies that the distribution itself is totally defined by two parameters:

the population mean (µ) and the population standard deviation (σ). Although this simple

approach, it is not easy to obtain these values from the technology files provided by the

manufacturer because of their inherit complexity. They involve large sets of parameters and

even many times, the user has no documentation available on them.

In order to estimate the population mean and standard deviation, the user performs

Monte Carlo simulations. The first of these parameters is relatively easy to extrapolate from

the sample obtained by simulation since the sample mean (x̄) is an unbiased estimator of

population mean1.

1Moreover, almost always, the population mean corresponds to the nominal value set by the user or the
value given by a simulation run without enabling process variations.
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The estimation of σ is not that easy, so we ask ourselves what is the ideal number

of simulations in order to obtain a representative sample of our real circuit behaviour. In

other words, accepting a given amount of discrepancy, what is the number of simulations to

perform to assure the preestablished confidence levels.

Under the hypothesis of data normality2, is shown that the statistic ν s
2

σ2 follows a χ2
ν

distribution. Being ν the number of degrees of freedom (ν = n−1) and s2 and σ2 the sample

and population variances respectively. That is,

ν
s2

σ2
∼ χ2

ν , σ2 ∼ ν s
2

χ2
ν

(E.1)

So just with that information on the parameter σ2, confidence intervals can be computed

considering a significance α (or confidence 1 − α). Accordingly to Figure E.1 which shows

an example χ2 distribution, the X-coordinates of the left and right tail areas have to be

computed.
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Figure E.1: Example χ2 distribution with ν = 15 and α = 0.05.

The values χ2
ν,α

2
and χ2

ν,1−α
2

can be easily calculated with the aid of statistical tables

or software3 tools which provide the inverse cumulative distribution function (CDF) of the

χ2 distribution. In consequence, the 1− α confidence interval for the population variance is,

2Normality tests should be applied, i.e., Anderson-Darling normality test.
3In Matlab and Octave is available the function chi2inv.
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CI1−α(σ2) =

[
νs2

χ2
ν,1−α

2

,
νs2

χ2
ν,α

2

]
(E.2)

Rooting the previous expression yields the confidence interval for the population stan-

dard deviation, which is more intuitive,

CI1−α(σ) =

 √
νs√

χ2
ν,1−α

2

,

√
νs√
χ2
ν,α

2

 (E.3)

As the limits of the confidence interval CI1−α(σ) are proportional to s, the following

definition involving the lower and upper limits make sense,

LL =
√

ν

χ2
ν,1−α

2

, UL =
√

ν

χ2
ν,α

2

(E.4)

And therefore, for any set of simulations with sample standard deviation s, the 1 − α
confidence interval for the population standard deviation is,

CI1−α(σ) = s [LL,UL] (E.5)

In Figure E.2, several plots for the most common confidences has been plotted as a

function of the number of Monte Carlo simulations. Using this graphical data or any other

tabulated of software computed, confidence intervals can be generated.

As an example, let us suppose we have performed a set of 70 Monte Carlo Simulations

over a circuit and we are interested in the voltage of certain node. Suppose a standard

deviation of s = 12.1 mV calculated with the data from the 70 simulations and a confidence

level of 99% in our decisions. Checking the LL and UL factors in the charts of Figure E.2 we

read,

LL = 0.8185, UL = 1.2743 (E.6)
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What allows to determine a confidence interval for the population standard deviation.

So we can assert with a confidence of 99% that σ ∈ [9.9037, 15.4187]. The designer will decide

if this interval (mainly its upper bound) is conservative enough for the circuit being simulated

and therefore fabricated.
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Figure E.2: Plots for LL and UL factors for different number of simulations and confidence
intervals of 95%, 99%, 99.9% and 99.99%.
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Appendix F

Anderson-Darling Normality Test

The check for normal data is a must in many situations involving statistical analysis.

Integrated electronic circuits is a high demanding statistical techniques field and therefore

a good exploratory data analysis should contain a normality test among others1. Here, the

methodology for Anderson-Darling normality test will be exposed.

Let X be a sorted set of n data scalars,

X ≡ x1 ≤ x2 ≤ · · · ≤ xn, n ≥ 7 (F.1)

Then, the Anderson-Darling statistic is computed in the following way,

AD2 = −n−
n∑
k=1

2k − 1
n

ln [F (xk)(1− F (xN+1−k))] (F.2)

Where the function F (t) is the normal cumulative distribution function (CDF), defined

as,

F (t) =
∫ t

−∞

1
s
√

2π
e−

1
2( τ−x̄s )2

dτ (F.3)

1In this work, a Matlab version of the Anderson-Darling normality test has been implemented.
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With x̄ and s, the well known sample mean and sample standard deviation,

x̄ =
1
n

n∑
k=1

xk, s =

√√√√ n∑
k=1

(xk − x̄)2

n− 1
(F.4)

The following step is to correct the Anderson-Darling statistic, mainly if the data set

is small. The empirical formula is,

ADC2 = AD2

(
1 +

0.75
n

+
2.25
n2

)
(F.5)

Using the corrected ADC factor, the p-value can be checked at Table F.1. Given a level

of significance α, the p-value reveals the acceptance/rejection of the normality assumption.

It is defined as the probability of being wrong if the null hypothesis (H0: The data is normal,

for our significance test) is rejected. So if p > α, we will assume the data is drawn from a

Gaussian distribution.

ADC interval p-value

0 ≤ ADC2 < 0.2 p = 1− exp
[
−223.73(ADC2)2 + 101.14(ADC2)− 13.436

]
0.2 ≤ ADC2 < 0.34 p = 1− exp

[
−59.938(ADC2)2 + 42.796(ADC2)− 8.318

]
0.34 ≤ ADC2 < 0.6 p = exp

[
−1.38(ADC2)2 − 4.279(ADC2) + 0.9177

]
0.6 ≤ ADC2 ≤ 13 p = exp

[
0.0186(ADC2)2 − 5.709(ADC2) + 1.2937

]
Table F.1: p-value for Anderson-Darling statistic.
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Appendix G

PLL Board Passive Filter

The purchased PLL evaluation board comes with no pre-soldered filter. This fact

allows the user to design his own by varying the components on a given filter topology (see

Figure G.1). The components (SMD package) can also be calculated with the aid of Analog

Devices PLL simulation tool, ADIsimPLL.

In order to determine the type of the filter topology, its transfer function has been

derived considering as input variables voltage and current. In both cases, the output variable

is voltage.

VoVi

R1 R3

R2
C1

C2

C3

Z

Figure G.1: Default passive filter implementation for PLL evaluation board. The components
can be rapidly computed by ADIsimPLL software.
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G.1. Voltage-Voltage Transfer Function

In Figure G.1, the C1 and R2, C2 branches can be simplified to a single impedance

Z =
(

1
sC1

)
‖
(
R2 + 1

sC2

)
. The resulting value, after rearranging terms, is,

Z =
1 + sR2C2

s(C1 + C2 + sR2C1C2)
(G.1)

Now, by substituting the two branches by their equivalent impedance, schematic of

Figure G.2 is obtained. The analysis of this circuit is pretty simple if Thévenin’s theorem is

applied to simplify resistor R1 and the newly computed Z as Figure G.3 shows.

VoVi

R1 R3

Z C3

Figure G.2: Passive filter schematic with equivalent impedance Z.

VoV i

R1 R3

Z C3

THÉVENIN

Vo

R3

C3

ZTH

UTH

Figure G.3: Passive filter simplification using Thévenin’s theorem.

Thévenin’s voltage source matches the voltage between R1 and Z, which form a voltage

divider, UTH = Z
R1+Z Vi. Thévenin’s equivalent impedance is the impedance seen once the

input source has been shorted to ground, that is the parallel association of R1 and Z, ZTH =
R1Z
R1+Z .

Schematic on the right of Figure G.3 shows that the relation of Vo and Vi is again

determined by a voltage divider, so recalling H = Vo
Vi

and taking into account the previous

Thévenin parameters, one can write,
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H(s) =
1
sC3

R3 + ZTH + 1
sC3

Z

R1 + Z
(G.2)

From where the transfer function characteristic of the filter can be derived in terms of

the original components. Substituting Z with its value, as well as ZTH and doing some easy

but tedious math, yields,

H(s) =
1 + sR2C2

sR1C2(1 + sR3C3) + sR1C3(1 + sR2C2) + (1 + sR1C1)(1 + sR2C2)(1 + sR3C3)
(G.3)

G.2. Current-Voltage Transfer Function

The PLL evaluation board operates with a current pump which injects it into the filter.

Because of this, an alternate transfer function study is required considering current as the

input variable.

Now, the situation is similar to the previously presented case. In Figure G.4 can be

checked that branches containing capacitor C1 and the series R2 and C2 can be simplified as

done before. The resulting equivalent impedance is Z (see Equation (G.1)).

Vo

Ii R3

R2
C1

C2

C3

Z

Figure G.4: Default passive filter implementation for PLL evaluation board considering input
current as the input variable.

Substituting the three components by Z, the left schematic on Figure G.5 is achieved.

The current source in parallel with impedance Z is in Norton’s form, so can be redrawn in

Thénenin’s form as in the right hand side of the same figure.
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Vo

Ii

R3

Z C3

Vo

R3

C3

Z
Z Ii

NORTON

Figure G.5: Passive filter simplification using the equivalence of Thévenin and Norton’s
theorem parameters, Z = ZTH = ZN, UTH = ZIN.

Once again, the output voltage is just the result of a voltage divider with input ZIi.

Now, recalling H = Vo
Ii

, the transfer function is,

H(s) =
1
sC3

Z +R3 + 1
sC3

(G.4)

After the substitution of Z by its value and some arrangements on the denominator of

H(s), the following current-voltage transfer function is achieved,

H(s) =
1 + sR2C2

s (C2(1 + sR3C3) + C3(1 + sR2C2) + C1(1 + sR2C2)(1 + sR3C3))
(G.5)
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Appendix H

Matlab Codes

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% main matlab code in order to generate %%%%%%%%%%%%%%%

%%%%% the lissajous compositions and signatures %%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;

clc;

path(path,’../scripts’);

path(path,’../datos’);

% entradas

Ai=[.3 .2];

fi=[5e3 10e3];

% para dcis 2010

Ai=[.2];

fi=[12753.19];

% fi=[15e3 10e3]; % enteros!!!

% Ai=[.22 .15]; % .2 primero

% fi=[5e3 10e3];

% una q varia mucho en longitud

% Ai=[.2 .1 .15 .1];

% fi=[20e3 10e3 15e3 5e3];
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% dan una Lissajous bastante larga

% Ai=[.2 .3];

% fi=[25e3 10e3];

% interesante

% Ai=[.1 .25 .15];

% fi=[20e3 10e3 5e3];

% caracteristicas filtro

tipo_filtro=’LP’;

GAIN=1;

f0=10e3;

Q=.4;

Npuntos=1000;

Voffset=[.5 .5];

ruido=0.15/3;

ruido=0;

% curvas a utilizar

curvas=[10 20 31 41 51 61];

% curvas=[10 20 30 40 50 60 11 21 31 41 51 61];

% curvas=[10 20 31];

% curvas=[10 20];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

defecto=1.1;

% nom=’minus10’;

[Ao1 phi1 T1 t1 xlis1 ylis1 signaturas1 instantes1 codificado1]= ...

calcular_info(Ai,fi,tipo_filtro,f0,GAIN,Q,Npuntos,Voffset,curvas,ruido*0);

[Ao2 phi2 T2 t2 xlis2 ylis2 signaturas2 instantes2 codificado2]= ...

calcular_info(Ai,fi,tipo_filtro,f0*defecto,GAIN,Q,Npuntos,Voffset,curvas,ruido);

yy1=[codificado1 codificado1(end)];

yy2=[codificado2 codificado2(end)];

[t resu1 resu2 hamm]= ...

calcular_diferencias(instantes1,yy1,instantes2,yy2);

if length(hamm)==1
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hamm=hamm*ones(1,length(t)-1);

end

discrepancia=sum(diff(t).*hamm);

discrepanciaN=discrepancia/mean([T1 T2]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(1); clf;

axis([0 1 0 1]);

axis square;

hold on;

grid on;

box on;

plot(10,10,’b-’,’LineWidth’,2);

plot(10,10,’r--’,’LineWidth’,2);

legend(’Golden’,’f_0 10% shift’,’Location’,’NorthWest’);

numeros=floor(curvas/10);

tipos=curvas-numeros*10;

for k=1:length(curvas)

numero=numeros(k);

if tipos(k)

tipo=’e’;

else

tipo=’d’;

end

[x y]=leer_contorno([’c’ num2str(numero) tipo ’_0’ ’.dat’]);

plot(x,y,’k’);

end

plot(xlis1,ylis1,’b-’,’LineWidth’,2);

plot(xlis2,ylis2,’r--’,’LineWidth’,2);

tam=.05;

px=[xlis1(1) xlis1(1)+(xlis1(2)-xlis1(1))/sqrt((xlis1(2)-xlis1(1))^2+(ylis1(2)-ylis1(1))^2)*tam];

py=[ylis1(1) ylis1(1)+(ylis1(2)-ylis1(1))/sqrt((xlis1(2)-xlis1(1))^2+(ylis1(2)-ylis1(1))^2)*tam];

line(px,py,’Color’,’g’,’LineWidth’,2);

plot(xlis1(1),ylis1(1),’sg’);
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title(’Lissajous Curves and Control Lines’);

xlabel(’Vin (V)’);

ylabel(’Vout (V)’);

% codificar(curvas,0);

adecuar_texto;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(2); clf;

subplot(2,1,1);

hold on;

grid on;

box on;

stairs(instantes1*1e6,[codificado1 codificado1(end)],’b’,’LineWidth’,2);

stairs(instantes2*1e6,[codificado2 codificado2(end)],’r’);

legend(’Golden’,’Defect’);

title(’Coded Signatures’);

xlabel(’Time (us)’);

ylabel(’Decimal coded value’);

adecuar_texto;

subplot(2,1,2);

hold on;

grid on;

box on;

stairs(t*1e6,[hamm hamm(end)],’k’);

% filtrando...

% nn=4;

% hammfil=filter(ones(1,nn)/nn,1,hamm);

hammfil=hamm;

for kk=3:length(hamm)

if hamm(kk-2)==hamm(kk)

hammfil(kk-1)=hamm(kk);

else

hammfil(kk-1)=hamm(kk-1);
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end

end

% la hamming filtrada

% stairs(t*1e6,[hammfil hammfil(end)],’m’);

hamm=hammfil;

discrepancia=sum(diff(t).*hamm);

discrepanciaN=discrepancia/mean([T1 T2])

% end filtrando...

a=axis;

if a(4)==1

a(4)=2;

axis(a);

end

title(’Hamming Distance’);

xlabel(’Time (us)’);

ylabel(’Hamming distance’);

adecuar_texto;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp([’Filter type: ’ tipo_filtro ’ (2nd order)’]);

disp([’Filter characteristic frequency (kHz): ’ num2str(f0*1e-3)]);

disp([’Filter gain: ’ num2str(GAIN)]);

disp([’Filter quality factor: ’ num2str(Q)]);

disp([’Input amplitudes (V): ’ num2str(Ai)]);

disp([’Input frequencies (kHz): ’ num2str(fi*1e-3)]);

disp([’Periods (us): ’ num2str([T1 T2]*1e6)]);

disp([’Num. of control lines: ’ num2str(length(curvas))]);

disp([’Signatures set length: ’ num2str([size(signaturas1,1)-1 size(signaturas2,1)-1])]);

disp([’Discrepancy factor: ’ num2str(discrepancia)]);

disp([’Discrepancy factor normalized with period: ’ num2str(discrepanciaN)]);

disp([’Maximum Hamming distance: ’ num2str(max(hamm))]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% figure(1);

% print(’-dpng’,[’liss_’ nom ’.png’]);

% figure(2);

% print(’-dpng’,[’chron_’ nom ’.png’]);

figure(1);

grid on;

% for k=[1 2 3 4 5]

% disp(k);

% h=gtext(num2str(k));

% set(h,’FontName’,’Times’,’FontSize’,16,’FontWeight’,’Bold’);

% end

length(signaturas1)

length(signaturas2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fid=fopen(’salida.dat’,’w’);

fprintf(fid,’LA SIGNATURA GOLDEN (bin y dec), LONG=%d\n’,size(signaturas1,1)-1);

for k=1:length(signaturas1)

s=sprintf(’%d’,signaturas1(k,:));

r=sprintf(’%s (%d)’,s,bin2dec(s));

fprintf(fid,’%s\n’,r);

end

fprintf(fid,’\n’);

fprintf(fid,’LA SIGNATURA DEFECTO (bin y dec), LONG=%d\n’,size(signaturas2,1)-1);

for k=1:length(signaturas2)

s=sprintf(’%d’,signaturas2(k,:));

r=sprintf(’%s (%d)’,s,bin2dec(s));

fprintf(fid,’%s\n’,r);

end

fclose(fid);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% function to compute different info %%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [Ao phi T tlis xlis ylis signaturas instantes codificado]=

calcular_info(Ai,fi,tipo_filtro,f0,GAIN,Q,Npuntos,Voffset,curvas,ruido)

[Ao phi]=calcular_respuesta(tipo_filtro,GAIN,f0,Q,Ai,fi);

T=calcular_periodo(fi);

tlis=linspace(0,T,Npuntos);

[xlis ylis]=calcular_lissajous(Ai,fi,Ao,phi,tlis,Voffset);

% noise

ylis=ylis+ruido*randn(size(ylis));

ylis=ylis+ruido*sin(2*pi*1e6*tlis);

m=calcular_matriz(curvas,xlis,ylis);

[signaturas filtro]=reducir_matriz(m);

instantes=[tlis(filtro) T];

codificado=(signaturas*2.^(length(curvas)-1:-1:0)’)’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% function to compute the differences between %%%%%%%%%

%%%%% the signatures %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [t resu1 resu2 hamm]=calcular_diferencias(x1,y1,x2,y2)

t=unique([x1 x2]);

resu1=[];

resu2=[];

for k=1:length(t)-1

tc=mean(t(k:k+1));

z1=find(x1<tc);

resu1=[resu1 y1(z1(end))];

z2=find(x2<tc);

resu2=[resu2 y2(z2(end))];

end
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tt=bitxor(resu1,resu2);

hamm=sum((dec2bin(tt)==’1’)’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% function to adequate the text of the plots %%%%%%%%%%

%%%%% and get it ready for pretty printing %%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function adecuar_texto

tamanofuente=12;

% para los valores de los ejes

set(gca,’FontSize’,tamanofuente);

set(gca,’FontName’,’Times’);

% para las etiquetas de los ejes

for conta=1:3

switch conta

case 1

eti=’xlabel’;

case 2

eti=’ylabel’;

case 3

eti=’zlabel’;

end

hand=get(gca,eti);

set(hand,’FontSize’,tamanofuente);

set(hand,’FontName’,’Times’);

end

% para el titulo

hand=get(gca,’title’);

set(hand,’FontSize’,tamanofuente+2);

set(hand,’FontName’,’Times’);

set(hand,’FontWeight’,’Bold’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% function to obtain the frequency response %%%%%%%%%%%

%%%%% of the CUT (biquad filter) %%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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function [Ao phi]=calcular_respuesta(tipo,GAIN,f0,Q,Ai,fi)

denominador=(1-fi.^2/f0^2)+1/Q*fi/f0*j;

switch tipo

case ’LP’

numerador=GAIN;

case ’BP’

numerador=GAIN*1/Q*fi/f0*j;

case ’SB’

numerador=GAIN*(1-fi.^2/f0^2);

case ’HP’

numerador=-GAIN*fi.^2/f0^2;

end

H=numerador./denominador

Ao=abs(H);

phi=angle(H);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% function to compute the period of the %%%%%%%%%%%%%%%

%%%%% multitone lissajous curve %%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function resu=calcular_periodo(f)

f=floor(f);

D=mcm(f);

resu=mcm(D./f)/D;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% function to compute the x and y components %%%%%%%%%%

%%%%% of the lissajous curve %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [x y]=calcular_lissajous(Ai,fi,Ao,phi,t,Voff)

x=zeros(1,length(t))+Voff(1);

y=zeros(1,length(t))+Voff(2);

for k=1:length(Ai)

x=x+Ai(k)*sin(2*pi*fi(k)*t);

y=y+Ai(k)*Ao(k)*sin(2*pi*fi(k)*t+phi(k));



108
Design, Fabrication and Verification of a Mixed-Signal XY Zone

Monitoring Circuit and its Application to a Phase Lock Loop Circuit

end

if max(x)>1 || max(y)>1 || min(x)<0 || min(y)<0

disp(’ATENCION: Datos fuera de rango 0-1’);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% function to compute the lcm of a given vector %%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function resu=mcm(x)

N=length(x);

resu=1;

for k=1:N

resu=lcm(resu,x(k));

end
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Appendix I

Extra Stuff

I.1. Datasheets

I.2. Published Papers
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FEATURES 
ADF4110: 550 MHz; ADF4111: 1.2 GHz; ADF4112: 3.0 GHz; 

ADF4113: 4.0 GHz 
2.7 V to 5.5 V power supply 
Separate charge pump supply (VP) allows extended tuning 
 voltage in 3 V systems 
Programmable dual-modulus prescaler 8/9, 16/17, 32/33, 
 64/65 
Programmable charge pump currents 
Programmable antibacklash pulse width 
3-wire serial interface 
Analog and digital lock detect 
Hardware and software power-down mode 
 

APPLICATIONS 
Base stations for wireless radio (GSM, PCS, DCS, CDMA, 
 WCDMA) 
Wireless handsets (GSM, PCS, DCS, CDMA, WCDMA) 
Wireless LANS 
Communications test equipment 
CATV equipment 

GENERAL DESCRIPTION 

The ADF4110 family of frequency synthesizers can be used to 
implement local oscillators in the upconversion and downcon-
version sections of wireless receivers and transmitters. They 
consist of a low noise digital PFD (phase frequency detector), a 
precision charge pump, a programmable reference divider, 
programmable A and B counters, and a dual-modulus prescaler 
(P/P + 1). The A (6-bit) and B (13-bit) counters, in conjunction 
with the dual-modulus prescaler (P/P + 1), implement an N 
divider (N = BP + A). In addition, the 14-bit reference counter 
(R counter) allows selectable REFIN frequencies at the PFD 
input. A complete phase-locked loop (PLL) can be implemented 
if the synthesizer is used with an external loop filter and voltage 
controlled oscillator (VCO). 

Control of all the on-chip registers is via a simple 3-wire 
interface. The devices operate with a power supply ranging from 
2.7 V to 5.5 V and can be powered down when not in use. 
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Figure 1. Functional Block Diagram 
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SPECIFICATIONS 
AVDD = DVDD = 3 V ± 10%, 5 V ± 10%; AVDD ≤VP ≤ 6.0 V; AGND = DGND = CPGND = 0 V; RSET = 4.7 kΩ; dBm referred to 50 Ω; TA = 
TMIN to TMAX, unless otherwise noted. Operating temperature range is as follows: B Version: −40°C to +85°C. 

Table 1.  
Parameter  B Version B Chips1 Unit  Test Conditions/Comments  
RF CHARACTERISTICS (3 V)     See Figure 29 for input circuit.  

RF Input Sensitivity  −15/0 −15/0 dBm min/max  
RF Input Frequency      

ADF4110  80/550 80/550 MHz min/max For lower frequencies, ensure slew rate  
(SR) > 30 V/µs. 

ADF4110  50/550 50/550 MHz min/max Input level = −10 dBm. 
ADF4111  0.08/1.2 0.08/1.2 GHz min/max For lower frequencies, ensure SR > 30 V/µs. 
ADF4112  0.2/3.0 0.2/3.0 GHz min/max For lower frequencies, ensure SR > 75 V/µs. 
ADF4112 0.1/3.0 0.1/3.0 GHz min/max Input level = −10 dBm. 
ADF4113  0.2/3.7 0.2/3.7 GHz min/max Input level = −10 dBm. For lower frequencies,  

ensure SR > 130 V/µs. 
Maximum Allowable Prescaler Output 
Frequency2  165 165 MHz max 

 

RF CHARACTERISTICS (5 V)      
RF Input Sensitivity  −10/0 −10/0 dBm min/max  
RF Input Frequency      

ADF4110  80/550 80/550 MHz min/max For lower frequencies, ensure SR > 50 V/µs. 
ADF4111  0.08/1.4 0.08/1.4 GHz min/max For lower frequencies, ensure SR > 50 V/µs. 
ADF4112  0.1/3.0 0.1/3.0 GHz min/max For lower frequencies, ensure SR > 75 V/µs. 
ADF4113  0.2/3.7 0.2/3.7 GHz min/max For lower frequencies, ensure SR > 130 V/µs. 
ADF4113 0.2/4.0 0.2/4.0 GHz min/max Input level = −5 dBm  

Maximum Allowable Prescaler Output 
Frequency2  200 200 MHz max 

 

REFIN CHARACTERISTICS      
REFIN Input Frequency  5/104 5/104 MHz min/max For f < 5 MHz, ensure SR > 100 V/µs. 
Reference Input Sensitivity 0.4/AVDD 0.4/AVDD V p-p min/max AVDD = 3.3 V, biased at AVDD/2. See Note 3. 

 3.0/AVDD 3.0/AVDD V p-p min/max AVDD = 5 V, biased at AVDD/2. See Note 3. 
REFIN Input Capacitance  10 10 pF max  
REFIN Input Current  ±100 ±100 µA max  

PHASE DETECTOR FREQUENCY4 55 55 MHz max  

CHARGE PUMP      
ICP Sink/Source     Programmable (see Table 9). 

High Value  5 5 mA typ With RSET = 4.7 kΩ 
Low Value  625 625 µA typ  
Absolute Accuracy  2.5 2.5 % typ With RSET = 4.7 kΩ 
RSET Range  2.7/10 2.7/10 kΩ typ See Table 9. 

ICP 3-State Leakage Current  1 1 nA typ  
Sink and Source Current Matching  2 2 % typ 0.5 V ≤ VCP ≤ VP – 0.5 V. 
ICP vs. VCP  1.5 1.5 % typ 0.5 V ≤ VCP ≤ VP – 0.5 V. 
ICP vs. Temperature  2 2 % typ VCP = VP/2. 

LOGIC INPUTS      
VINH, Input High Voltage  0.8 × DVDD 0.8 × DVDD V min  
VINL, Input Low Voltage  0.2 × DVDD 0.2 × DVDD V max  
IINH/IINL, Input Current  ±1 ±1 µA max  
CIN, Input Capacitance  10  10  pF max   

LOGIC OUTPUTS      
VOH, Output High Voltage  DVDD – 0.4 DVDD – 0.4  V min  IOH = 500 µA. 
VOL, Output Low Voltage  0.4  0.4  V max  IOL = 500 µA. 
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Parameter  B Version B Chips1 Unit  Test Conditions/Comments  
POWER SUPPLIES      

AVDD  2.7/5.5  2.7/5.5  V min/V max   
DVDD  AVDD  AVDD    
VP  AVDD/6.0 AVDD/6.0  V min/V max  AVDD ≤ VP ≤ 6.0 V. See Figure 25 and Figure 26. 
IDD

5 (AIDD + DIDD)     
ADF4110  5.5  4.5  mA max  4.5 mA typical 
ADF4111  5.5  4.5  mA max  4.5 mA typical 
ADF4112  7.5  6.5  mA max  6.5 mA typical 
ADF4113  11  8.5  mA max  8.5 mA typical 
IP  0.5  0.5  mA max  TA = 25°C 

Low Power Sleep Mode  1  1  µA typ   

NOISE CHARACTERISTICS      
ADF4113 Normalized Phase Noise Floor6  −215 −215 dBc/Hz typ   
Phase Noise Performance7     @ VCO output 

ADF4110: 540 MHz Output8  −91  −91  dBc/Hz typ  @ 1 kHz offset and 200 kHz PFD frequency 
ADF4111: 900 MHz Output9  −87  −87 dBc/Hz typ  @ 1 kHz offset and 200 kHz PFD frequency 
ADF4112: 900 MHz Output9  −90  −90 dBc/Hz typ  @ 1 kHz offset and 200 kHz PFD frequency 
ADF4113: 900 MHz Output9  −91  −91 dBc/Hz typ  @ 1 kHz offset and 200 kHz PFD frequency 
ADF4111: 836 MHz Output10  −78  −78 dBc/Hz typ  @ 300 Hz offset and 30 kHz PFD frequency 
ADF4112: 1750 MHz Output11  −86  −86 dBc/Hz typ  @ 1 kHz offset and 200 kHz PFD frequency 
ADF4112: 1750 MHz Output12  −66  −66 dBc/Hz typ  @ 200 Hz offset and 10 kHz PFD frequency 
ADF4112: 1960 MHz Output13  −84  −84 dBc/Hz typ  @ 1 kHz offset and 200 kHz PFD frequency 
ADF4113: 1960 MHz Output13  −85  −85 dBc/Hz typ  @ 1 kHz offset and 200 kHz PFD frequency 
ADF4113: 3100 MHz Output14  −86  −86 dBc/Hz typ  @ 1 kHz offset and 1 MHz PFD frequency 

Spurious Signals      
ADF4110: 540 MHz Output9 −97/−106  −97/−106 dBc typ  @ 200 kHz/400 kHz and 200 kHz PFD frequency  
ADF4111: 900 MHz Output9  −98/−110  −98/−110 dBc typ  @ 200 kHz/400 kHz and 200 kHz PFD frequency  
ADF4112: 900 MHz Output9  −91/−100  −91/−100 dBc typ  @ 200 kHz/400 kHz and 200 kHz PFD frequency  
ADF4113: 900 MHz Output9  −100/−110 −100/−110 dBc typ  @ 200 kHz/400 kHz and 200 kHz PFD frequency  
ADF4111: 836 MHz Output10  −81/−84  −81/−84 dBc typ  @ 30 kHz/60 kHz and 30 kHz PFD frequency  
ADF4112: 1750 MHz Output11  −88/−90  −88/−90 dBc typ  @ 200 kHz/400 kHz and 200 kHz PFD frequency  
ADF4112: 1750 MHz Output12  −65/−73  −65/−73 dBc typ  @ 10 kHz/20 kHz and 10 kHz PFD frequency  
ADF4112: 1960 MHz Output13  −80/−84  −80/−84 dBc typ  @ 200 kHz/400 kHz and 200 kHz PFD frequency  
ADF4113: 1960 MHz Output13  −80/−84  −80/−84 dBc typ  @ 200 kHz/400 kHz and 200 kHz PFD frequency  
ADF4113: 3100 MHz Output14  −80/−82  −82/−82 dBc typ  @ 1 MHz/2 MHz and 1 MHz PFD frequency  

                                                                    
1The B chip specifications are given as typical values. 
2This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency that 

is less than this value. 
3AC coupling ensures AVDD/2 bias. See Figure 33 for a typical circuit.  
4Guaranteed by design. 
5 TA = 25°C; AVDD = DVDD = 3 V; P = 16; SYNC = 0; DLY = 0; RFIN for ADF4110 = 540 MHz; RFIN for ADF4111, ADF4112, ADF4113 = 900 MHz. 
6 The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO, PNTOT, and subtracting 20logN (where N is the N divider 

value) and 10logFPFD: PNSYNTH = PNTOT – 10logFPFD – 20logN. 
7 The phase noise is measured with the EVAL-ADF411xEB1 evaluation board and the HP8562E spectrum analyzer. The spectrum analyzer provides the REFIN for the 

synthesizer (fREFOUT = 10 MHz @ 0 dBm). SYNC = 0; DLY = 0 (Ta ). ble 7
8 fREFIN = 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 540 MHz; N = 2700; loop B/W = 20 kHz. 
9 fREFIN = 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 900 MHz; N = 4500; loop B/W = 20 kHz. 
10 fREFIN = 10 MHz; fPFD = 30 kHz; offset frequency = 300 Hz; fRF = 836 MHz; N = 27867; loop B/W = 3 kHz. 
11 fREFIN = 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 1750 MHz; N = 8750; loop B/W = 20 kHz 
12 fREFIN = 10 MHz; fPFD = 10 kHz; offset frequency = 200 Hz; fRF = 1750 MHz; N = 175000; loop B/W = 1 kHz. 
13 fREFIN = 10 MHz; fPFD = 200 kHz; offset frequency = 1 kHz; fRF = 1960 MHz; N = 9800; loop B/W = 20 kHz. 
14 fREFIN = 10 MHz; fPFD = 1 MHz; offset frequency = 1 kHz; fRF = 3100 MHz; N = 3100; loop B/W = 20 kHz. 
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TIMING CHARACTERISTICS 
Guaranteed by design but not production tested. AVDD = DVDD = 3 V ± 10%, 5 V ± 10%; AVDD ≤ VP ≤ 6 V;  
AGND = DGND = CPGND = 0 V; RSET = 4.7 kΩ; TA = TMIN to TMAX, unless otherwise noted. 

Table 2.  
Parameter  Limit at TMIN to TMAX (B Version)  Unit  Test Conditions/Comments  
t1  10  ns min  DATA to CLOCK setup time  
t2  10  ns min  DATA to CLOCK hold time  
t3  25  ns min  CLOCK high duration  
t4  25  ns min  CLOCK low duration  
t5  10  ns min  CLOCK to LE setup time  
t6  20  ns min  LE pulse width  

 

 

CLOCK

DATA

LE

LE

DB20 (MSB) DB19 DB2 DB1
(CONTROL BIT C2)

DB0 (LSB)
(CONTROL BIT C1)

t1 t2

t3 t4

t5

t6

03
49

6-
0-

00
2

 

Figure 2. Timing Diagram 
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ABSOLUTE MAXIMUM RATINGS 
TA = 25°C, unless otherwise noted 

Table 3.  
Parameter Rating 
AVDD to GND1 −0.3 V to +7 V 
AVDD to DVDD −0.3 V to +0.3 V 
VP to GND −0.3 V to +7 V 
VP to AVDD −0.3 V to +5.5 V 
Digital I/O Voltage to GND −0.3 V to VDD + 0.3 V 
Analog I/O Voltage to GND −0.3 V to VP + 0.3 V 
REFIN, RFINA, RFINB to GND −0.3 V to VDD + 0.3 V 
RFINA to RFINB ±320 mV 
Operating Temperature Range  

Industrial (B Version) −40°C to +85°C 
Storage Temperature Range −65°C to +150°C 
Maximum Junction Temperature 150°C 
TSSOP θJA Thermal Impedance 150.4°C/W 
LFCSP θJA Thermal Impedance 

(Paddle Soldered) 
122°C/W 

LFCSP θJA Thermal Impedance 
(Paddle Not Soldered) 

216°C/W 

Lead Temperature, Soldering  
Vapor Phase (60 sec) 215°C 
Infrared (15 sec) 220°C 

                                                                    
1 GND = AGND = DGND = 0 V. 
 

Stresses above those listed under Absolute Maximum Ratings 
may cause permanent damage to the device. This is a stress 
rating only; functional operation of the device at these or any 
other conditions above those listed in the operational sections 
of this specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 

This device is a high performance RF integrated circuit with an 
ESD rating of <2 kV, and it is ESD sensitive. Proper precautions 
should be taken for handling and assembly. 

TRANSISTOR COUNT 
6425 (CMOS) and 303 (Bipolar). 

 

 

ESD CAUTION 
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the 
human body and test equipment and can discharge without detection. Although this product features 
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy 
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance 
degradation or loss of functionality.  
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PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS 
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Figure 3. TSSOP Pin Configuration Figure 4. LFCSP Pin Configuration 

 

Table 4. Pin Function Descriptions 
TSSOP 
Pin No.  

LFCSP 
Pin No.  Mnemonic Function  

1  19  RSET  Connecting a resistor between this pin and CPGND sets the maximum charge pump output current. 
The nominal voltage potential at the RSET pin is 0.56 V. The relationship between ICP and RSET is 

SET
maxCP R

I 5.23
=   

So, with RSET = 4.7 kΩ, ICPmax = 5 mA. 
2  20  CP  Charge Pump Output. When enabled, this provides ±ICP to the external loop filter, which in turn 

drives the external VCO.  
3  1  CPGND  Charge Pump Ground. This is the ground return path for the charge pump.  
4  2, 3  AGND  Analog Ground. This is the ground return path of the prescaler.  
5  4  RFINB  Complementary Input to the RF Prescaler. This point should be decoupled to the ground plane with 

a small bypass capacitor, typically 100 pF. See Figure 29.  
6  5  RFINA  Input to the RF Prescaler. This small-signal input is ac-coupled from the VCO.  
7  6, 7  AVDD  Analog Power Supply. This may range from 2.7 V to 5.5 V. Decoupling capacitors to the analog 

ground plane should be placed as close as possible to this pin. AVDD must be the same value  
as DVDD. 

8  8  REFIN  Reference Input. This is a CMOS input with a nominal threshold of VDD/2, and an equivalent input 
resistance of 100 kΩ. See Figure 28. This input can be driven from a TTL or CMOS crystal oscillator, 
or can be ac-coupled.  

9  9, 10  DGND  Digital Ground.  
10  11  CE  Chip Enable. A logic low on this pin powers down the device and puts the charge pump output into 

three-state mode. Taking the pin high powers up the device depending on the status of the power-
down Bit F2.  

11  12  CLK  Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is 
latched into the 24-bit shift register on the CLK rising edge. This input is a high impedance CMOS 
input. 

12  13  DATA  Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This 
input is a high impedance CMOS input.  

13  14  LE  Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into 
one of the four latches; the latch is selected using the control bits.  

14  15  MUXOUT  This multiplexer output allows either the lock detect, the scaled RF, or the scaled reference 
frequency to be accessed externally. 

15  16, 17  DVDD  Digital Power Supply. This may range from 2.7 V to 5.5 V. Decoupling capacitors to the digital 
ground plane should be placed as close as possible to this pin. DVDD must be the same value  
as AVDD. 

16  18  VP  Charge Pump Power Supply. This should be greater than or equal to VDD. In systems where VDD is 
3 V, VP can be set to 6  V and used to drive a VCO with a tuning range of up to 6  V.  
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TYPICAL PERFORMANCE CHARACTERISTICS 
 

FREQ PARAM DATA KEYWORD IMPEDANCE
–UNIT –TYPE –FORMAT –OHMS
GHz S MA R 50

FREQ MAGS11 ANGS11
1.05 0.9512 –40.134
1.10 0.93458 –43.747
1.15 0.94782 –44.393
1.20 0.96875 –46.937
1.25 0.92216 –49.6
1.30 0.93755 –51.884
1.35 0.96178 –51.21
1.40 0.94354 –53.55
1.45 0.95189 –56.786
1.50 0.97647 –58.781
1.55 0.98619 –60.545
1.60 0.95459 –61.43
1.65 0.97945 –61.241
1.70 0.98864 –64.051
1.75 0.97399 –66.19
1.80 0.97216 –63.775

FREQ MAGS11 ANGS11
0.05 0.89207 –2.0571
0.10 0.8886 –4.4427
0.15 0.89022 –6.3212
0.20 0.96323 –2.1393
0.25 0.90566 –12.13
0.30 0.90307 –13.52
0.35 0.89318 –15.746
0.40 0.89806 –18.056
0.45 0.89565 –19.693
0.50 0.88538 –22.246
0.55 0.89699 –24.336
0.60 0.89927 –25.948
0.65 0.87797 –28.457
0.70 0.90765 –29.735
0.75 0.88526 –31.879
0.80 0.81267 –32.681
0.85 0.90357 –31.522
0.90 0.92954 –34.222
0.95 0.92087 –36.961
1.00 0.93788 –39.343
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Figure 5. S-Parameter Data for the ADF4113 RF Input (up to 1.8 GHz) 
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Figure 6. Input Sensitivity (ADF4113) 
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Figure 7 ADF4113 Phase Noise (900 MHz, 200 kHz, 20 kHz) 
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Figure 8. ADF4113 Phase Noise 
(900 MHz, 200kHz, 20 kHz) with DLY and SYNC Enabled 
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Figure 9. ADF4113 Integrated Phase Noise 
(900 MHz, 200 kHz, 20 kHz, Typical Lock Time: 400 µs) 
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Figure 10. ADF4113 Integrated Phase Noise 
(900 MHz, 200 kHz, 35 kHz, Typical Lock Time: 200 µs)  
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Figure 11. ADF4113 Reference Spurs (900 MHz, 200 kHz, 20 kHz) 
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Figure 12. ADF4113 (900 MHz, 200 kHz, 35 kHz) 
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Figure 13. ADF4113 Phase Noise (1750 MHz, 30 kHz, 3 kHz) 
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Figure 14. ADF4113 Integrated Phase Noise 
(1750 MHz, 30 kHz, 3 kHz) 
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Figure 15. ADF4113 Reference Spurs (1750 MHz, 30 kHz, 3 kHz) 
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Figure 16. ADF4113 Phase Noise (3100 MHz, 1 MHz, 100 kHz) 
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Figure 17. ADF4113 Integrated Phase Noise 
(3100 MHz, 1 MHz, 100 kHz) 
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Figure 18. Reference Spurs (3100 MHz, 1 MHz, 100 kHz) 
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Figure 19. ADF4113 Phase Noise (Referred to CP Output)  
vs. Phase Detector Frequency 
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Figure 20. ADF4113 Phase Noise vs. Temperature 
(900 MHz, 200 kHz, 20 kHz) 
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Figure 21. ADF4113 Reference Spurs vs. Temperature 
(900 MHz, 200 kHz, 20 kHz) 
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Figure 22. ADF4113 Reference Spurs (200 kHz) vs. VTUNE 
(900 MHz, 200 kHz, 20 kHz) 
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Figure 23. ADF4113 Phase Noise vs. Temperature 
(836 MHz, 30 kHz, 3 kHz) 
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Figure 24. ADF4113 Reference Spurs vs. Temperature  
(836 MHz, 30 kHz, 3 kHz) 
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Figure 25. AIDD vs. Prescaler Value 
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Figure 26. DIDD vs. Prescaler Output Frequency  
(ADF4110, ADF4111, ADF4112, ADF4113) 
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Figure 27. Charge Pump Output Characteristics for ADF4110 Family 
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CIRCUIT DESCRIPTION 
REFERENCE INPUT SECTION 
The reference input stage is shown in Figure 28. SW1 and SW2 
are normally closed switches. SW3 is normally open. When 
power-down is initiated, SW3 is closed and SW1 and SW2 are 
opened. This ensures that there is no loading of the REFIN pin 
on power-down. 

 

BUFFER
TO R COUNTERREFIN

100kΩNC

SW2

SW3
NO

NC
SW1

POWER-DOWN
CONTROL

03
49

6-
0-

02
8

 

Figure 28. Reference Input Stage 

 

RF INPUT STAGE 
The RF input stage is shown in Figure 29. It is followed by a 
two-stage limiting amplifier to generate the current mode logic 
(CML) clock levels needed for the prescaler. 
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Figure 29. RF Input Stage 

 

PRESCALER (P/P + 1) 
Along with the A and B counters, the dual-modulus prescaler 
(P/P + 1) enables the large division ratio, N, to be realized (N = 
BP + A). The dual-modulus prescaler, operating at CML levels, 
takes the clock from the RF input stage and divides it down to a 
manageable frequency for the CMOS A and B counters. The 
prescaler is programmable; it can be set in software to 8/9, 
16/17, 32/33, or 64/65. It is based on a synchronous 4/5 core. 

 

 

 

 

A AND B COUNTERS 
The A and B CMOS counters combine with the dual-modulus 
prescaler to allow a wide ranging division ratio in the PLL 
feedback counter. The counters are specified to work when the 
prescaler output is 200 MHz or less. Thus, with an RF input 
frequency of 2.5 GHz, a prescaler value of 16/17 is valid but a 
value of 8/9 is not. 

Pulse Swallow Function 

The A and B counters, in conjunction with the dual-modulus 
prescaler, make it possible to generate output frequencies that 
are spaced only by the reference frequency divided by R. The 
equation for the VCO frequency is 

fVCO = [(P × B) + A]fREFIN/R 

where: 

fVCO = output frequency of external voltage controlled oscillator 
(VCO) 
P = preset modulus of dual-modulus prescaler 
B = preset divide ratio of binary 13-bit counter(3 to 8191) 
A = preset divide ratio of binary 6-bit swallow counter (0 to 63) 
fREFIN = output frequency of the external reference frequency 
oscillator 
R = preset divide ratio of binary 14-bit programmable reference 
counter (1 to 16383) 

R COUNTER 
The 14-bit R counter allows the input reference frequency to be 
divided down to produce the reference clock to the phase 
frequency detector (PFD). Division ratios from 1 to 16,383 are 
allowed. 
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Figure 30. A and B Counters 
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Lock Detect PHASE FREQUENCY DETECTOR (PFD) AND 
CHARGE PUMP MUXOUT can be programmed for two types of lock detect: 

digital lock detect and analog lock detect.  The PFD takes inputs from the R counter and N counter (N = 
BP + A) and produces an output proportional to the phase and 
frequency difference between them. Figure 31 is a simplified 
schematic. The PFD includes a programmable delay element 
that controls the width of the antibacklash pulse. This pulse 
ensures that there is no dead zone in the PFD transfer function 
and minimizes phase noise and reference spurs. Two bits in the 
reference counter latch, ABP2 and ABP1, control the width of 
the pulse. See Table 7. 

Digital lock detect is active high. When LDP in the R counter 
latch is set to 0, digital lock detect is set high when the phase 
error on three consecutive phase detector (PD) cycles is less 
than 15 ns. With LDP set to 1, five consecutive cycles of less 
than 15 ns are required to set the lock detect. It stays high until 
a phase error greater than 25 ns is detected on any subsequent 
PD cycle.  

The N-channel open-drain analog lock detect should be 
operated with a 10 kΩ nominal external pull-up resistor. When 
lock has been detected, this output is high with narrow low-
going pulses. 
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Figure 32. MUXOUT Circuit 

 

INPUT SHIFT REGISTER 
The ADF4110 family digital section includes a 24-bit input shift 
register, a 14-bit R counter, and a 19-bit N counter comprised of 
a 6-bit A counter and a 13-bit B counter. Data is clocked into the 
24-bit shift register on each rising edge of CLK MSB first. Data 
is transferred from the shift register to one of four latches on 
the rising edge of LE. The destination latch is determined by the 
state of the two control bits (C2, C1) in the shift register. These 
are the two LSBs, DB1 and DB0, as shown in Figure 2. The truth 
table for these bits is shown in Table 5.  

Figure 31. PFD Simplified Schematic and Timing (In Lock) 

 

MUXOUT AND LOCK DETECT 
The output multiplexer on the ADF4110 family allows the user 
to access various internal points on the chip. The state of 
MUXOUT is controlled by M3, M2, and M1 in the function 
latch. Table 9 shows the full truth table. Figure 32 shows the 
MUXOUT section in block diagram form. 

Table 6 shows a summary of how the latches are programmed. 

 

Table 5. C2, C1 Truth Table 
Control Bits  

C2 C1 Data Latch 
0  0  R Counter  
0  1  N Counter (A and B)  
1  0  Function Latch (Including Prescaler)  
1  1  Initialization Latch  
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Table 6. ADF4110 Family Latch Summary 

N COUNTER LATCH

DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3DB13

B13 B12 B11 B8 B7 B6 B5 B4 B2 B1 A6 A5 A4 A3 A2 A1 C2 (0) C1 (1)B3

13-BIT B COUNTER
CONTROL

BITSRESERVED

DB2 DB1 DB0

G1 B10 B9

6-BIT A COUNTER

NIA
G

P
C

FUNCTION LATCH

DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3DB13

CPI6 CPI5 CPI4 CPI1 TC4 TC3 TC2 TC1 F4 F3 F2 M3 M2 M1 PD1 F1 C2 (1) C1 (0)F5
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CONTROL

CONTROL
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Table 7. Reference Counter Latch Map 

OPERATIONLDP

THREE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.

FIVE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.

0

1

TEST MODE BITS SHOULD
BE SET TO 00 FOR NORMAL
OPERATION

R14
0

0

0

0

•

•

•

1

1

1

1

R13
0

0

0

0

•

•

•

1

1

1

1

R12
0

0

0

0

•

•

•

1

1

1

1

R3
0

0

0

1

•

•

•

1

1

1

1

R2
0

1

1

0

•

•

•

0

0

1

1

R1
1

0

1

0

•

•

•

0

1

0

1

DIVIDE RATIO
1

2

3

4

•

•

•

16380

16381

16382

16383

••••••••••
••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

TEST
MODE BITS

DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3DB13

LDP T2 T1 R14 R13 R12 R11 R10 R8 R7 R6 R5 R4 R3 R2 R1 C2 (0) C1 (0)R9

14-BIT REFERENCE COUNTER
CONTROL

BITS

DEV
RESE

R

DB2 DB1 DB0

SYNCDLY ABP2 ABP1

ANTI-
BACKLASH

WIDTHSYNCDLY
K

C
OL

T
CETE

D
N

OISI
CE

RP

ABP1ABP2

0

0

1

1

0

1

0

1

3.0ns

1.5ns

6.0ns

3.0ns

ANTIBACKLASH PULSE WIDTH

SYNCDLY

0

0

1

1

0

1

0

1

NORMAL OPERATION

OUTPUT OF PRESCALER IS RESYNCHRONIZED
WITH NONDELAYED VERSION OF RF INPUT

NORMAL OPERATION

OUTPUT OF PRESCALER IS RESYNCHRONIZED
WITH DELAYED VERSION OF RF INPUT

OPERATION

X

X = DON'T
CARE

03
49

6-
0-

03
4
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Table 8. AB Counter Latch Map 

THESE BITS ARE NOT USED
BY THE DEVICE AND ARE
DON'T CARE BITS

A6

0

0

0

0

•

•

•

1

1

1

1

A5

0

0

0

0

•

•

•

1

1

1

1

A2

0

0

1

1

•

•

•

0

0

1

1

A1

0

1

0

1

•

•

•

0

1

0

1

A COUNTER
DIVIDE RATIO

0

1

2

3

•

•

•

60

61

62

63

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

B13
0

0

0

0

0

•

•

•

1

1

1

1

B12
0

0

0

0

0

•

•

•

1

1

1

1

B11
0

0

0

0

0

•

•

•

1

1

1

1

B3 B2 B1 B COUNTER DIVIDE RATIO••••••••• •
••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

••••••••• •

0

0

0

0

1

•

•

•

1

1

1

1

0

0

1

1

0

•

•

•

0

0

1

1

0

1

0

1

0

•

•

•

0

1

0

1

NOT ALLOWED

NOT ALLOWED

NOT ALLOWED

3

4

•

•

•

8188

8189

8190

8191

13-BIT B COUNTER

DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3DB13

B13 B12 B11 B8 B7 B6 B5 B4 B2 B1 A6 A5 A4 A3 A2 A1B3

6-BIT A COUNTERRESERVED

DB2

G1 B10 B9

NIA
G

P
C

*SEE TABLE 9

F4 (FUNCTION LATCH)
FASTLOCK ENABLE* CP GAIN OPERATION

0

0

1

1

0

1

0

1

CHARGE PUMP CURRENT SETTING 1
IS PERMANENTLY USED.

CHARGE PUMP CURRENT SETTING 2
IS PERMANENTLY USED.

CHARGE PUMP CURRENT SETTING 1
IS USED.

CHARGE PUMP CURRENT IS SWITCHED
TO SETTING 2. THE TIME SPENT IN
SETTING 2 IS DEPENDENT UPON WHICH
FASTLOCK MODE IS USED. SEE FUNCTION
LATCH DESCRIPTION. N = BP + A, P IS PRESCALER VALUE SET IN THE

FUNCTION LATCH, B MUST BE GREATER THAN OR
EQUAL TO A. FOR CONTINUOUSLY ADJACENT VALUES
OF (NX FREF), AT THE OUTPUT, NMIN  IS (P2–P).

X

X = DON'T CARE

X C2 (0) C1 (1)

CONTROL
BITS

DB1 DB0

03
49

6-
0-

03
5
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Table 9. Function Latch Map 

M3

0

0

0

0

1

1

1

1

M2

0

0

1

1

0

0

1

1

M1

0

1

 0

1

0

1

0

1

OUTPUT

THREE-STATE OUTPUT

DIGITAL LOCK DETECT
(ACTIVE HIGH)

N DIVIDER OUTPUT

DVDD

R DIVIDER OUTPUT

ANALOG LOCK DETECT
(N-CHANNEL OPEN-DRAIN)

SERIAL DATA OUTPUT

DGND

F1

0

1

COUNTER
OPERATION

NORMAL

R, A, B COUNTERS
HELD IN RESET

F2

0

1

PHASE DETECTOR
POLARITY
NEGATIVE

POSITIVE

F3

0

1

CHARGE PUMP OUTPUT

NORMAL

THREE-STATE

0

1

1

1

CE PIN PD2 PD1 MODE

ASYNCHRONOUS POWER-DOWN

NORMAL OPERATION

ASYNCHRONOUS POWER-DOWN

SYNCHRONOUS POWER-DOWN

X

X

0

1

X

0

1

1

F5

X

0

1

FASTLOCK MODE

FASTLOCK DISABLED

FASTLOCK MODE 1

FASTLOCK MODE 2

F4

0

1

1

P1

0

1

0

1

PRESCALER VALUE

8/9

16/17

32/33

64/65

P2

0

0

1

1

CPI6

CPI3

CPI5

CPI2

CPI4

CPI1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

ICP (mA)

2.7kΩ 4.7kΩ 10kΩ

1.09

2.18

3.26

4.35

5.44

6.53

7.62

8.70

0.63

1.25

1.88

2.50

3.13

3.75

4.38

5.00

0.29

0.59

0.88

1.76

1.47

1.76

2.06

2.35

CURRENT
SETTING

2

DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3DB13

CPI6 CPI5 CPI4 CPI1 TC4 TC3 TC2 TC1 F4 F3 F2 M3 M2 M1 PD1 F1 C2(1) C1(0)F5

CONTROL
BITS

PRESCALER
VALUE

DB2 DB1 DB0

PD2P1 CPI3 CPI2

-
RE

W
OP

2
N

W
O

D

CURRENT
SETTING

1
TIMER COUNTER

CONTROL

K
C

OLTSAF
E

D
O

M

K
C

OLTSAF
ELBA

NE

P
C

ETATS-EE
R

HT

DP
YTI

RAL
OP

MUXOUT
CONTROL

-
RE

W
OP

1
N

W
O

D

RET
N

U
O

C
TESE

R

P2

TC4

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

TC3

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

TC2

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

TC1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

TIMEOUT
(PFD CYCLES)

3

7

11

15

19

23

27

31

35

39

43

47

51

55

59

63

SEE FUNCTION LATCH,
TIMER COUNTER CONTROL
SECTION

03
49

6-
0-

03
6
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Table 10. Initialization Latch Map 

M3

0

0

0

0

1

1

1

1

M2

0

0

1

1

0

0

1

1

M1

0

1

 0

1

0

1

0

1

OUTPUT

THREE-STATE OUTPUT

DIGITAL LOCK DETECT
(ACTIVE HIGH)

N DIVIDER OUTPUT

DVDD

R DIVIDER OUTPUT

ANALOG LOCK DETECT
(N-CHANNEL OPEN-DRAIN)

SERIAL DATA OUTPUT

DGND

TC4

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

TC3

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

TC2

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

TC1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

TIMEOUT
(PFD CYCLES)

3

7

11

15

19

23

27

31

35

39

43

47

51

55

59

63

F1

0

1

COUNTER
OPERATION

NORMAL

R, A, B COUNTERS
HELD IN RESET

F2

0

1

PHASE DETECTOR
POLARITY

NEGATIVE

POSITIVE

F3

0

1

CHARGE PUMP

OUTPUT NORMAL

THREE-STATE

0

1

1

1

CE PIN PD2 PD1 MODE

ASYNCHRONOUS POWER-DOWN

NORMAL OPERATION

ASYNCHRONOUS POWER-DOWN

SYNCHRONOUS POWER-DOWN

X

X

0

1

X

0

1

1

F5

X

0

1

FASTLOCK MODE

FASTLOCK DISABLED

FASTLOCK MODE 1

FASTLOCK MODE 2

F4

0

1

1

P1

0

1

0

1

PRESCALER VALUE

8/9

16/17

32/33

64/65

P2

0

0

1

1

CPI6

CPI3

CPI5

CPI2

CPI4

CPI1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

ICP (mA)

2.7kΩ 4.7kΩ 10kΩ

1.09

2.18

3.27

4.35

5.44

6.53

7.62

8.70

0.63

1.25

1.88

2.50

3.13

3.75

4.38

5.00

0.29

0.59

0.88

1.76

1.47

1.76

2.06

2.35

CURRENT
SETTING

2

DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3DB13

CPI6 CPI5 CPI4 CPI1 TC4 TC3 TC2 TC1 F4 F3 F2 M3 M2 M1 PD1 F1 C2 (1) C1 (1)F5

CONTROL
BITS

PRESCALER
VALUE

DB2 DB1 DB0

PD2P1 CPI3 CPI2

-RE
W

OP
2

N
W

OD

CURRENT
SETTING

1
TIMER COUNTER

CONTROL

KC
OLTSAF
ED

O
M

KC
OLTSAF

ELBANE

PC
ETATS-EERHT

DP
YTIRAL

OP

MUXOUT
CONTROL

-RE
W

OP
1

N
W

OD

RETNU
OC

TESER

P2

SEE FUNCTION LATCH,
TIMER COUNTER CONTROL
SECTION

03
49

6-
0-

03
7
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FUNCTION LATCH 
The on-chip function latch is programmed with C2, C1 set to 1. 
Table 9 shows the input data format for programming the 
function latch. 

Counter Reset 

DB2 (F1) is the counter reset bit. When DB2 is 1, the R counter 
and the AB counters are reset. For normal operation, this bit 
should be 0. Upon powering up, the F1 bit must be disabled, and 
the N counter resumes counting in “close” alignment with the R 
counter. (The maximum error is one prescaler cycle.) 

Power-Down 

DB3 (PD1) and DB21 (PD2) on the ADF411x provide program-
mable power-down modes. They are enabled by the CE pin. 

When the CE pin is low, the device is immediately disabled 
regardless of the states of PD2, PD1. 

In the programmed asynchronous power-down, the device 
powers down immediately after latching a 1 into Bit PD1, 
provided PD2 has been loaded with a 0. 

In the programmed synchronous power-down, the device 
power-down is gated by the charge pump to prevent unwanted 
frequency jumps. Once power-down is enabled by writing a 1 
into Bit PD1 (provided a 1 has also been loaded to PD2), the 
device goes into power-down on the next charge pump event. 

When a power-down is activated (either synchronous or 
asynchronous mode including CE pin activated power-down), 
the following events occur: 

• All active dc current paths are removed. 

• The R, N, and timeout counters are forced to their load 
state conditions. 

• The charge pump is forced into three-state mode. 

• The digital clock detect circuitry is reset. 

• The RFIN input is debiased. 

• The reference input buffer circuitry is disabled. 

• The input register remains active and capable of loading 
and latching data.  

MUXOUT Control 

The on-chip multiplexer is controlled by M3, M2, and M1 on 
the ADF4110 family. Table 9 shows the truth table. 

Fastlock Enable Bit 

DB9 of the function latch is the fastlock enable bit. Fastlock is 
enables only when this is 1. 

Fastlock Mode Bit 

DB10 of the function latch is the fastlock enable bit. When 
fastlock is enabled, this bit determines which fastlock mode is 
used. If the fastlock mode bit is 0, fastlock mode 1 is selected; if 
the fastlock mode bit is 1, fastlock mode 2 is selected. 

Fastlock Mode 1 

The charge pump current is switched to the contents of Current 
Setting 2. 

The device enters fastlock by having a 1 written to the CP gain 
bit in the AB counter latch. The device exits fastlock by having a 
0 written to the CP gain bit in the AB counter latch. 

Fastlock Mode 2 

The charge pump current is switched to the contents of Current 
Setting 2. The device enters fastlock by having a 1 written to the 
CP gain bit in the AB counter latch. The device exits fastlock 
under the control of the timer counter. After the timeout period 
determined by the value in TC4 through TC1, the CP gain bit in 
the AB counter latch is automatically reset to 0 and the device 
reverts to normal mode instead of fastlock. See Table 9 for the 
timeout periods. 

Timer Counter Control 

The user has the option of programming two charge pump cur-
rents. Current Setting 1 is meant to be used when the RF output 
is stable and the system is in a static state. Current Setting 2 is 
meant to be used when the system is dynamic and in a state of 
change (i.e., when a new output frequency is programmed).  

The normal sequence of events is as follows: 

The user initially decides what the preferred charge pump 
currents are going to be. For example, they may choose 2.5 mA 
as Current Setting 1 and 5 mA as Current Setting 2. 

At the same time, they must also decide how long they want the 
secondary current to stay active before reverting to the primary 
current. This is controlled by the timer counter control bits, 
DB14 through DB11 (TC4 through TC1) in the function latch. 
The truth table is given in Table 10. 

A user can program a new output frequency simply by pro-
gramming the AB counter latch with new values for A and B. At 
the same time, the CP gain bit can be set to 1, which sets the 
charge pump with the value in CPI6–CPI4 for a period deter-
mined by TC4 through TC1. When this time is up, the charge 
pump current reverts to the value set by CPI3–CPI1. At the 
same time, the CP gain bit in the AB counter latch is reset to 0 
and is ready for the next time the user wishes to change the 
frequency. 
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Note that there is an enable feature on the timer counter. It is 
enabled when Fastlock Mode 2 is chosen by setting the fastlock 
mode bit (DB10) in the function latch to 1. 

Charge Pump Currents 

CPI3, CPI2, and CPI1 program Current Setting 1 for the charge 
pump. CPI6, CPI5, and CPI4 program Current Setting 2 for the 
charge pump. The truth table is given in Table 10. 

Prescaler Value 

P2 and P1 in the function latch set the prescaler values. The 
prescaler value should be chosen so that the prescaler output 
frequency is always less than or equal to 200 MHz. Thus, with 
an RF frequency of 2 GHz, a prescaler value of 16/17 is valid but 
a value of 8/9 is not. 

PD Polarity 

This bit sets the phase detector polarity bit. See Table 10. 

CP Three-State 

This bit controls the CP output pin. With the bit set high, the CP 
output is put into three-state. With the bit set low, the CP output 
is enabled. 

INITIALIZATION LATCH 
When C2, C1 = 1, 1, the initialization latch is programmed. This 
is essentially the same as the function latch (programmed when 
C2, C1 = 1, 0). 

However, when the initialization latch is programmed, an addi-
tional internal reset pulse is applied to the R and AB counters. 
This pulse ensures that the AB counter is at load point when the 
AB counter data is latched, and the device begins counting in 
close phase alignment. 

If the latch is programmed for synchronous power-down (CE 
pin high; PD1 bit high; PD2 bit low), the internal pulse also 
triggers this power-down. The prescaler reference and the 
oscillator input buffer are unaffected by the internal reset pulse, 
so close phase alignment is maintained when counting resumes.  

When the first AB counter data is latched after initialization, the 
internal reset pulse is again activated. However, successive AB 
counter loads after this will not trigger the internal reset pulse. 

DEVICE PROGRAMMING AFTER INITIAL  
POWER-UP 

After initial power-up of the device, there are three ways to 
program the device. 

Initialization Latch Method 

Apply VDD. Program the initialization latch (11 in 2 LSBs of 
input word). Make sure the F1 bit is programmed to 0. Then, do 
an R load (00 in 2 LSBs). Then do an AB load (01 in 2 LSBs). 

When the initialization latch is loaded, the following occurs: 

1. The function latch contents are loaded. 

2. An internal pulse resets the R, A, B, and timeout counters 
to load state conditions and three-states the charge pump. 
Note that the prescaler band gap reference and the oscil-
lator input buffer are unaffected by the internal reset pulse, 
allowing close phase alignment when counting resumes. 

3. Latching the first AB counter data after the initialization 
word activates the same internal reset pulse. Successive AB 
loads do not trigger the internal reset pulse unless there is 
another initialization. 

CE Pin Method 

1. Apply VDD. 

2. Bring CE low to put the device into power-down. This is an 
asynchronous power-down in that it happens immediately. 

3. Program the function latch (10). Program the R counter 
latch (00). Program the AB counter latch (01). 

4. Bring CE high to take the device out of power-down. The R 
and AB counters now resume counting in close alignment. 

After CE goes high, a duration of 1 µs may be required for the 
prescaler band gap voltage and oscillator input buffer bias to 
reach steady state. 

CE can be used to power the device up and down in order to 
check for channel activity. The input register does not need to 
be reprogrammed each time the device is disabled and enabled 
as long as it has been programmed at least once after VDD was 
initially applied. 

Counter Reset Method 

1. Apply VDD. 

2. Do a function latch load (10 in 2 LSBs). As part of this, load 
1 to the F1 bit. This enables the counter reset. 

3. Do an R counter load (00 in 2 LSBs). Do an AB counter 
load (01 in 2 LSBs). Do a function latch load (10 in 2 LSBs). 
As part of this, load 0 to the F1 bit. This disables the 
counter reset. 

This sequence provides the same close alignment as the initiali-
zation method. It offers direct control over the internal reset. 
Note that counter reset holds the counters at load point and 
three states the charge pump but does not trigger synchronous 
power-down. The counter reset method requires an extra 
function latch load compared to the initialization latch method. 
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RESYNCHRONIZING THE PRESCALER OUTPUT 

Table 7 (the Reference Counter Latch Map) shows two bits, 
DB22 and DB21, which are labeled DLY and SYNC, respectively. 
These bits affect the operation of the prescaler. 

With SYNC = 1, the prescaler output is resynchronized with the 
RF input. This has the effect of reducing jitter due to the 
prescaler and can lead to an overall improvement in synthesizer 
phase noise performance. Typically, a 1 dB to 2 dB improvement 
is seen in the ADF4113. The lower bandwidth devices can show 
an even greater improvement. For example, the ADF4110 phase 
noise is typically improved by 3 dB when SYNC is enabled. 

With DLY = 1, the prescaler output is resynchronized with a 
delayed version of the RF input. 

 

If the SYNC feature is used on the synthesizer, some care must 
be taken. At some point, (at certain temperatures and output 
frequencies), the delay through the prescaler coincides with the 
active edge on RF input; this causes the SYNC feature to break 
down. It is important to be aware of this when using the SYNC 
feature. Adding a delay to the RF signal, by programming  
DLY = 1, extends the operating frequency and temperature 
somewhat. Using the SYNC feature also increases the value of 
the AIDD for the device. With a 900 MHz output, the ADF4113 
AIDD increases by about 1.3 mA when SYNC is enabled and by 
an additional 0.3 mA if DLY is enabled. 

All the typical performance plots in this data sheet, except for 
Figure 8, apply for DLY and SYNC = 0, i.e., no resynchroniza-
tion or delay enabled. 
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APPLICATIONS 
LOCAL OSCILLATOR FOR GSM BASE STATION TRANSMITTER 
Figure 33 shows the ADF4111/ADF4112/ADF4113 being used 
with a VCO to produce the LO for a GSM base station 
transmitter. 

The reference input signal is applied to the circuit at FREFIN 
and, in this case, is terminated in 50 Ω. A typical GSM system 
would have a 13 MHz TCXO driving the reference input with-
out any 50 Ω termination. In order to have channel spacing of 
200 kHz (GSM standard), the reference input must be divided 
by 65, using the on-chip reference divider of the ADF4111/ 
ADF4112/ADF4113. 

The charge pump output of the ADF4111/ADF4112/ADF4113 
(Pin 2) drives the loop filter. In calculating the loop filter 
component values, a number of items need to be considered. In 
this example, the loop filter was designed so that the overall 
phase margin for the system would be 45 degrees. Other PLL 
system specifications are 

KD = 5 mA 
KV = 12 MHz/V 
Loop Bandwidth = 20 kHz 
FREF = 200 kHz 
N = 4500 
Extra Reference Spur Attenuation = 10 dB 

All of these specifications are needed and used to come up with 
the loop filter component values shown in Figure 33. 

The loop filter output drives the VCO, which in turn is fed back 
to the RF input of the PLL synthesizer. It also drives the RF out-
put terminal. A T-circuit configuration provides 50 Ω matching 
between the VCO output, the RF output, and the RFIN terminal 
of the synthesizer. 

In a PLL system, it is important to know when the system is in 
lock. In Figure 33, this is accomplished by using the MUXOUT 
signal from the synthesizer. The MUXOUT pin can be pro-
grammed to monitor various internal signals in the synthesizer. 
One of these is the LD or lock-detect signal. 

 

ADF4111
ADF4112
ADF4113

CE
CLK
DATA
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Figure 33. Local Oscillator for GSM Base Station 
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Figure 34. Driving the RSET Pin with a D/A Converter 

 

USING A D/A CONVERTER TO DRIVE THE RSET PIN 
A D/A converter can be used to drive the RSET pin of the 
ADF4110 family, thus increasing the level of control over the 
charge pump current, ICP. This can be advantageous in wide-
band applications where the sensitivity of the VCO varies over 
the tuning range. To compensate for this, the ICP may be varied 
to maintain good phase margin and ensure loop stability. See 
Figure 34. 

SHUTDOWN CIRCUIT 
The attached circuit in Figure 35 shows how to shut down both 
the ADF4110 family and the accompanying VCO. The ADG701 
switch goes closed circuit when a Logic 1 is applied to the IN 
input. The low cost switch is available in both SOT-23 and 
MSOP packages. 

WIDEBAND PLL 
Many of the wireless applications for synthesizers and VCOs in 
PLLs are narrow band in nature. These applications include the 
various wireless standards like GSM, DSC1800, CDMA, and 
WCDMA. In each of these cases, the total tuning range for the 
local oscillator is less than 100 MHz. However, there are also 
wideband applications for which the local oscillator could have 

a tuning range as wide as an octave. For example, cable TV 
tuners have a total range of about 400 MHz. Figure 36 shows an 
application where the ADF4113 is used to control and program 
the Micronetics M3500-2235. The loop filter was designed for 
an RF output of 2900 MHz, a loop bandwidth of 40 kHz, a PFD 
frequency of 1 MHz, ICP of 10 mA (2.5 mA synthesizer ICP 
multiplied by the gain factor of 4), VCO KD of 90 MHz/V 
(sensitivity of the M3500-2235 at an output of 2900 MHz), and 
a phase margin of 45°C. 

In narrow-band applications, there is generally a small variation 
in output frequency (generally less than 10%) and a small 
variation in VCO sensitivity over the range (typically 10% to 
15%). However, in wideband applications, both of these 
parameters have a much greater variation. In Figure 36, for 
example, there is a −25% and +17% variation in the RF output 
from the nominal 2.9 GHz. The sensitivity of the VCO can vary 
from 120 MHz/V at 2750 MHz to 75 MHz/V at 3400 MHz 
(+33%, −17%). Variations in these parameters change the loop 
bandwidth. This in turn can affect stability and lock time. By 
changing the programmable ICP, it is possible to get compensa-
tion for these varying loop conditions and ensure that the loop 
is always operating close to optimal conditions. 
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Figure 35. Local Oscillator Shutdown Circuit 
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Figure 36. Wideband Phase-Locked Loop 
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DIRECT CONVERSION MODULATOR 
In some applications, a direct conversion architecture can be 
used in base station transmitters. Figure 37 shows the combina-
tion available from ADI to implement this solution. 

The circuit diagram shows the AD9761 being used with the 
AD8346. The use of dual integrated DACs such as the AD9761 
with specified ±0.02 dB and ±0.004 dB gain and offset matching 
characteristics ensures minimum error contribution (over 
temperature) from this portion of the signal chain. 

The local oscillator (LO) is implemented using the ADF4113. In 
this case, the OSC 3B1-13M0 provides the stable 13 MHz 
reference frequency. The system is designed for a 200 kHz 
channel spacing and an output center frequency of 1960 MHz. 
The target application is a WCDMA base station transmitter. 

Typical phase noise performance from this LO is −85 dBc/Hz at 
a 1 kHz offset. 

The LO port of the AD8346 is driven in single-ended fashion. 
LOIN is ac-coupled to ground with the 100 pF capacitor; LOIP 
is driven through the ac coupling capacitor from a 50 Ω source. 
An LO drive level of between −6 dBm and −12 dBm is required. 
The circuit of Figure 37 gives a typical level of −8 dBm. 

The RF output is designed to drive a 50 Ω load but must be ac-
coupled as shown in Figure 37. If the I and Q inputs are driven 
in quadrature by 2 V p-p signals, the resulting output power is 
around −10 dBm. 
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Figure 37. Direct Conversion Transmitter Solution 
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INTERFACING 
The ADF4110 family has a simple SPI® compatible serial inter-
face for writing to the device. SCLK, SDATA, and LE control the 
data transfer. When latch enable (LE) goes high, the 24 bits that 
have been clocked into the input register on each rising edge of 
SCLK get transferred to the appropriate latch. See Figure 2 for 
the timing diagram and Table 5 for the latch truth table. 

The maximum allowable serial clock rate is 20 MHz. This 
means that the maximum update rate possible for the device is 
833 kHz, or one update every 1.2 µs. This is certainly more than 
adequate for systems that have typical lock times in the 
hundreds of microseconds. 

ADuC812 Interface 

Figure 38 shows the interface between the ADF4110 family and 
the ADuC812 MicroConverter®. Since the ADuC812 is based on 
an 8051 core, this interface can be used with any 8051 based 
microcontroller. The MicroConverter is set up for SPI master 
mode with CPHA = 0. To initiate the operation, the I/O port 
driving LE is brought low. Each latch of the ADF4110 family 
needs a 24-bit word. This is accomplished by writing three 8-bit 
bytes from the MicroConverter to the device. When the third 
byte has been written, the LE input should be brought high to 
complete the transfer. 

When power is first applied to the ADF4110 family, three writes 
are needed (one each to the R counter latch, N counter latch, 
and initialization latch) for the output to become active. 

I/O port lines on the ADuC812 are also used to control power-
down (CE input), and to detect lock (MUXOUT configured as 
lock detect and polled by the port input). 

When the ADuC812 is operating in the mode described above, 
the maximum SCLOCK rate of the ADuC812 is 4 MHz. This 
means that the maximum rate at which the output frequency 
can be changed is 166 kHz. 

 

SCLOCK

MOSI

I/O PORTS

ADuC812

SCLK

SDATA

LE

CE

MUXOUT
(LOCK DETECT)

ADF4110
ADF4111
ADF4112
ADF4113

03
49

6-
0-

04
3

 

Figure 38. ADuC812 to ADF4110 Family Interface 

 

 

ADSP-2181 Interface 

Figure 39 shows the interface between the ADF4110 family and 
the ADSP-21xx digital signal processor. The ADF4110 family 
needs a 24-bit serial word for each latch write. The easiest way 
to accomplish this using the ADSP-21xx family is to use the 
auto buffered transmit mode of operation with alternate 
framing. This provides a means for transmitting an entire block 
of serial data before an interrupt is generated. 
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Figure 39. ADSP-21xx to ADF4110 Family Interface 

 

Set up the word length for 8 bits and use three memory 
locations for each 24-bit word. To program each 24-bit latch, 
store the three 8-bit bytes, enable the auto buffered mode, and 
then write to the transmit register of the DSP. This last opera-
tion initiates the autobuffer transfer. 

PCB DESIGN GUIDELINES FOR CHIP SCALE 
PACKAGE 
The lands on the chip scale package (CP-20) are rectangular. 
The printed circuit board pad for these should be 0.1 mm 
longer than the package land length and 0.05 mm wider than 
the package land width. The land should be centered on the pad. 
This ensures that the solder joint size is maximized. 

The bottom of the chip scale package has a central thermal pad. 
The thermal pad on the printed circuit board should be at least 
as large as this exposed pad. On the printed circuit board, there 
should be a clearance of at least 0.25 mm between the thermal 
pad and the inner edges of the pad pattern. This ensures that 
shorting is avoided. 

Thermal vias may be used on the printed circuit board thermal 
pad to improve thermal performance of the package. If vias are 
used, they should be incorporated in the thermal pad at 1.2 mm 
pitch grid. The via diameter should be between 0.3 mm and 
0.33 mm, and the via barrel should be plated with 1 oz. copper 
to plug the via. 

The user should connect the printed circuit board thermal pad 
to AGND. 
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OUTLINE DIMENSIONS 
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Figure 40. 20-Lead Lead Frame Chip Scale Package [LFCSP]  
(CP-20-1) 

Dimensions shown in millimeters 
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Figure 41. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16) 

Dimensions shown in millimeters 
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ORDERING GUIDE 
Model  Temperature Range  Package Description  Package Option 
ADF4110BRU  –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4110BRU-REEL –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4110BRU-REEL7 -40°C to +85°C Thin Shrink Small Outline Package RU-16  
ADF4110BCP  –40°C to +85°C  Lead Frame Chip Scale Package CP-20  
ADF4110BCP -REEL –40°C to +85°C  Lead Frame Chip Scale Package  CP-20  
ADF4110BCP-REEL7  –40°C to +85°C  Lead Frame Chip Scale Package  CP-20  
ADF4111BRU  –40°C to +85°C  Thin Shrink Small Outline Package  RU-16  
ADF4111BRU-REEL –40°C to +85°C  Thin Shrink Small Outline Package  RU-16  
ADF4111BRU-REEL7  –40°C to +85°C  Thin Shrink Small Outline Package  RU-16  
ADF4111BCP  –40°C to +85°C  Lead Frame Chip Scale Package CP-20  
ADF4111BCP-REEL –40°C to +85°C  Lead Frame Chip Scale Package CP-20  
ADF4111BCP-REEL7  –40°C to +85°C  Lead Frame Chip Scale Package CP-20  
ADF4112BRU  –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4112BRU-REEL  –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4112BRU-REEL7  –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4112BRUZ1 –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4112BRUZ1-REEL –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4112BRUZ1-REEL7 –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4112BCP  –40°C to +85°C  Lead Frame Chip Scale Package CP-20  
ADF4112BCP-REEL  –40°C to +85°C  Lead Frame Chip Scale Package CP-20  
ADF4112BCP-REEL7  –40°C to +85°C  Lead Frame Chip Scale Package CP-20  
ADF4113BRU  –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4113BRU-REEL  –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4113BRU-REEL7  –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4113BRUZ1 –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4113BRUZ1-REEL –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4113BRUZ1-REEL7 –40°C to +85°C  Thin Shrink Small Outline Package RU-16  
ADF4113BCP –40°C to +85°C  Lead Frame Chip Scale Package CP-20  
ADF4113BCP-REEL –40°C to +85°C  Lead Frame Chip Scale Package CP-20  
ADF4113BCP-REEL7 –40°C to +85°C  Lead Frame Chip Scale Package CP-20  
ADF4113BCHIPS  –40°C to +85°C  DIE   
EVAL-ADF4112EB1  Evaluation Board  
EVAL-ADF4113EB1  Evaluation Board  
EVAL-ADF4113EB2  Evaluation Board  
EVAL-ADF411XEB1  Evaluation Board  

 

                                                                    
1 Z = Pb-free part. 
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Abstract—A novel Digital Signature Generator to monitor two 

analog signals is proposed. The X-Y plane is divided by non 

linear boundaries into zones in order to generate the digital 

output for each analog (x,y) location. The circuit is based on a 

differential amplifier input stage modified by splitting the input 

MOSFETs. In this way two input signals are provided on each 

side of the differential stage. The output stage is based on a 

differential comparator with digital single ended output. The 

location and slope of the zone boundary depend on the relative 

sizes of the input transistors. The proposed signature generator is 

designed to be integrated in Built-In M-S testing and diagnosis 

circuits.  Each monitor only requires 8 transistors for the input 

stage and 12 transistors for the digital output generator. The 

CUT intrusion on each monitored signal is reduced to the 

capacitive load of a single MOSFET. A STM 65 nm technology 

implementation is presented to demonstrate the viability of the 

proposal. 

 

Index Terms— M-S Test, Digital signature generation, X-Y 

zoning, Multi-input comparator.  

I. INTRODUCTION 

onitoring internal signals of digital and mixed-signal 

circuits is becoming a widely used strategy in 

production testing and verification to increase the 

observability of the internal performance. 

 

Built-in techniques for testing, signal integrity analysis and 

correlation of noisy signals are direct areas of application for 

such monitors. Internal monitors are widely used to increase 

the observability of signals embedded in large ICs, not easily 

accessed by primary I/Os. 

 

Oscillation-test method [1], [2] current monitoring [3], [4] and 

Zoning [5], [6], have been used in the past for these purposes 

with good results in digital and mixed-signal applications. For 

testing purposes, X-Y Zoning, using straight lines to cut the 

plane into zones to monitor signal compositions (Lissajous 

curves), has been proposed [7], [8]. In the X-Y zone testing 

method, the monitoring of signals is based on the composition 

of two signals of the circuit, x(t) and y(t), in a similar way that 

an oscilloscope in X-Y mode represents the evolution of two 

signals on the screen. If the composed signals are periodic 

with rational ratio of periods, the resultant curves are also 

periodic becoming the well-known Lissajous curves. The 

implementation of a straight line in the X-Y plane can be 

accomplished with the use of weighted adders and 

comparators. Several monitors have been proposed in the past 

for this purpose [10], [11], [12]. In these techniques, the 

Lissajous shape was used to select X-Y partitions delimited 

with straight lines. Recently, a generalization of the 

monitoring method for multiple variables using several 

hyperplanes has been proposed based on Lissajous 

compositions on a CUT with multitone excitation [9]. The 

method has been applied to verify parameter shifts in a 

physically programmable band-pass filter with selectable 

natural frequency. The experimental results showed a good 

prediction of the actual natural frequency with 0.34% error in 

the range of ±10% frequency shifts. 

 

In this paper we investigate the possibilities of partitioning the 

X-Y plane using non-straight lines by taking advantage of the 

non-linear dependence of the nMOS transistor drain current ID 

as a function of its gate-source voltage VGS. The benefits of 

the proposal are the monitor small size and its low loading 

impact on monitored signals. 

 

The paper is organized as follows. Section II is devoted to 

present the X-Y zoning method and the possible partition of 

the plane for testing purposes. A simplified mathematical 

model to analyze the possible lines, their shape and position 

are presented. Section III introduces the new structure of the 

signature generator, its on-chip implementation and 

performance evaluation using extensive electrical simulations. 

In section IV a summary of the work and conclusions about 

the results are presented. 

II. CURRENT COMPARISON APPROACH. 

 

Previous work on monitoring signals in the X-Y plane is 

based on dividing the X-Y plane by straight control lines that 

delimit the zones where the curve have points and the zones 

where the curve points are not expected. In this way, a large 

set of parametric and catastrophic defects can be detected by 

just checking whether the Lissajous curve remains in the 

specified zone or not. Figure 1 shows a Lissajous composition 

of a multitone input signal and the Low-Pass output of a 

Biquad filter. The the nominal shape is presented in Fig.1 a 

and the modified shape for 10% shift in the natural frequency 

of the filter is shown in Fig.1 b.. Monitoring is implemented 

using several control lines which divide the X-Y plane in 

multiple zones. The digital codes of the zones traversed by the 

Lissajous curve become the digital signature of the circuit. 

Digital signatures are efficiently accessed and 
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internally/externally processed. In this way the Mixed-Signal 

CUT test and parameter verification are facilitated. 

 

Current comparison is a straightforward way to implement 

control lines composing two or more voltage signals. In 

contrast with voltage comparison, the easy way to add and 

subtract currents on nodes (Kirchorff’s law) imply very simple 

structures. Furthermore, in CMOS applications, the quasi-

quadratic current-voltage characteristic of MOS transistors, in 

saturation, enables the implementation of non linear curves to 

delimit zones in the X-Y plane. These characteristics facilitate 

the generation of efficient zone boundaries with low area 

overhead. 

 

In following paragraphs, we present a simplified model 

showing the principle of functionality of the proposed 

monitor. 

 

A. Current Comparison Model 

 

In order to illustrate the principle of operation of the monitor 

we will consider four voltage input signals V1, V2, V3 and V4, 

without loss of generality. As it will be discussed later, the 

number of monitored signals can be modified using the same 

principle of operation.  

 

The basic architecture is similar to a source grounded 

differential pair or pseudo differential pair with two input 

transistors in each side [15], [16]. The input stage of the 

monitor is a differential-input differential-output stage with 

four input signals obtained splitting the input transistors in 

each side as indicated in Figure 2. The four-input monitor 

compares two currents generated by four voltages through the 

gate of nMOS transistors (transistors M1, M2, M3 and M4) 

which deliver the current to be added at each branch of the 

differential input stage. Since the circuit is balanced, the 

output voltage will compare the currents of both branches of 

the monitor. Assuming equal transistor sizes, M5 and M8, the 

switching point (Vout1 = Vout2) will occur when: 

   

 
85 II =  (1) 

 

where Ii denotes the current of transistor Mi, in Figure 2.  

 

Using Kirchorff’s law in the output nodes: 
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due to the current mirroring of transistors  (M6, M5) and (M7, 

M8) with a β ratio of their widths (0.9 in this design): 
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Combining (1) with expressions (2) and (3): 

  

   0)II()II()II()II( 58854321 =+−+=+−+ ββ  (4) 

 

From where we get, 

 

 
4321 IIII +=+  (5) 

 

 

In order to perform the current comparison analysis between 

both branches, the unified MOSFET model is used [13]. 
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Where K is the product of the process transconductance and 

the MOS aspect ratio, VGT stands for the difference, (VGS – 

VTH) being VTH the threshold voltage. VMIN is defined as: 

 

 },,min{ DSATDSGTMIN VVVV =  (7)  

 

In the condition (5) and assuming all transistors working in 

saturation, the previous model takes the form, 
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The gate-source voltage VGS, is related with the input signal Vi 

in the way, VGS = Vi, then 
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Combining (5) and (9) we obtain the commutation points that 

define the control line. Now, we consider four different 

transistor sizes, K1≠ K2≠ K3≠ K4 , identical threshold voltage 

VTH1= VTH2= VTH3= VTH4=VTHn, and constant parameter λ. As 
a result, we obtain a theoretical simplified expression for the 

current comparator as a function of the four input voltages: 
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Figure 1. Lissajous composition of a multitone input signal and 

the Low-Pass output of a Biquad filter: a) Nominal shape, b) 

shape for 10% shift in the natural frequency of the filter.  

a) b) 



 

The combination of transistor sizes with an adequate selection 

of input voltages allows controlling the position and shape of 

the control lines on the X-Y plane.  

 

B. Curvature and position Control 

 

To implement curves with different slopes and curvature in 

different positions of the X-Y plane two input voltages can act 

as the composed X-Y signals while the other two inputs act as 

positioning control signals. If the two composed signals are at 

the same side in (10) (V1, V2 or V3, V4), and the other two 

inputs are constant DC voltages, the curve has the general 

form: 

 

 0)()( 22 =−−+− chybhxa  (11) 

 

which is the equation of an ellipse centered in (h, h); in our 

case (VTHn, VTHn).  

 

If the two composed signals are in opposite sides of the 

equality in (10) (V1, V3 / V1, V4 / V2, V3 or V2, V4 pairs), a 

hyperbola centered in (h, h) is obtained: 

 

 0)()( 22 =−−−− chybhxa  (12) 

 

In Figure 3 several theoretical ellipse and hyperbola segments 

are presented in the X-Y plane.  

III. SIGNATURE GENERATOR IMPLEMENTATION  

 

In order to implement the current comparison based monitor, 

with single ended digital output, we propose a circuit with the 

input stage shown in Figure 2 followed by the output stage 

circuit of Figure 4.  

 

A. Monitor input stage 

 

Based on the structure and analysis previously presented, this 

section is devoted to the generation of non linear control lines 

implemented in a 65nm CMOS technology. The position and 

shape of the control line is selected by choosing the input 

transistors and adequately sizing the input transistor 

dimensions (W/L). To maintain the balance of the active load, 

PMOS transistors, M5 and M8, are equal sized transistors as 

well as M6 and M7. In our design WM6 = β WM5 and WM7 = β 

WM8 with a width ratio of β =0.9. This feedback will improve 

the gain of the stage with no disturbance in the expected 

curves.  

 

Table I summarizes the specific monitor configuration which 

defines de curves: transistor dimensions, applied (x, y) input 

signals and constant voltages at each comparator input. The 

sequence of digital outputs of the monitor generates the digital 

signature of the CUT. 

 

B. Monitor Output stage 

 

The output stage of the Monitor is a differential amplifier with 

single-ended output that digitalizes the differential output of 

the input stage. The main desired characteristics are 

simplicity, speed and wide common mode input range, thus, a 

simple sense amplifier structure has been chosen for the 

design. Three identical stages perform the final comparator 

function [14] as shown in Figure 4b.  

 

The crossed inputs at the two first stages unbalance the 

voltage seen by the third stage which properly performs the 

comparison. The three modules are identical. Aspect ratio is 

2000nm/180nm for the PMOS transistors and 1800nm/180nm 

for the NMOS ones. 

 

The layout of the proposed signature generator implemented 

in STMicroelectronics 65nm-CMOS technology is depicted in 

Figure 5. In order to minimize mismatch effects, everyone 

transistor in Figure 2 has been split in four to balance the 

structure following two-dimension common-centroide design 

strategies [17]. According to the layout of Figure 5, 

distributions of NMOS and PMOS transistors are: 
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Figure 2. Four input current addition stage 

I1 I2 I3 I4 

Figure 3. Mathematical model control lines for different 

parameters  
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The area for the input stage is 53.54 µm
2
 (11.64 µm × 4.6 

µm) and for the output stage, 62.57 µm
2
 (8.32 µm × 7.52 

µm), summing a total of 116.1 µm
2
 per monitor.  

. 

C. Simulation results 

  

As can be observed in Table I, changing the positions of the 

four input voltages, modifies curve shape and position. Figure 

6 shows the layout simulation results of curves in Table I. 

 

Comparing V1 and V3 voltages (one signal in each side of the 

differential pair) and setting V2 and V4 to a DC level, the 

resulting curves are segments of hyperboles (curves 1 and 2 of 

Figure 6). If both sides are symmetrical (transistor aspect ratio 

and constant voltages) we obtain a degenerated hyperbole that 

becomes a straight line cutting the plane at 45 degrees (curve 

6 in Figure 6).  

On the other hand, we use both voltages in one branch of the 

differential pair (V3, V4), to control the line position, 

connecting two DC levels. With this configuration the 

quadratic addition of V1 and V2 happens and segments of 

ellipses are obtained as can be seen in curves 3 to 5, for 

different DC input voltages. Ellipses become a straight line 

for V1 voltages below threshold voltage because M1 transistor 

does not deliver current to the addition. Symmetrical straight 

line appears when V2 voltage is below VTH, then the ellipsis 

(curves 3 to 5) end with a straight line when reaching each 

axis. 

 

Simulation results agree with the expected curves obtained 

through the mathematical model presented in Section II, 

considering the transistors working in saturation for the entire 

common mode range. Actual common mode input range is 

reduced by the VTH of the input transistors. Below this 

voltage, Mi transistors enter the subthreshold region and, even 

though subthreshold currents are properly compared with the 

expected DC results, transient analysis reflects reduced timing 

parameters.  

 

In the case study presented in Figure 6 with the monitor 

configurations in Table I we need six monitors one for each 

control line. Only two types of monitor circuit sizes are 

needed in order to cover the X-Y plane: One monitor with all 

four input transistor dimensions set to 1800nm/180nm (W/L); 

the second monitor with two transistors set to 600nm/180nm 

while the rest are 3000nm/180nm. Because the relation 

600+3000 equals 1800+1800 the same load transistors (M5, 

M6, M7 and M8) are required.  

Figure 5. Digital Signature Generator Layout  

 
Transistor dimensions W/L 

(nm/180nm) 
Applied input voltages (V) 

CURVE M1 M2 M3 M4 V1 V2 V3 V4 

1 3000 600 600 3000 Y axis 0.2 X axis 0.6 

2 3000 600 600 3000 0.6 Y axis 0.2 X axis 

3 1800 1800 1800 1800 Y axis X axis 0.55 0.55 

4 1800 1800 1800 1800 Y axis X axis 0.3 0.3 

5 1800 1800 1800 1800 Y axis X axis 0.75 0.75 

6 1800 1800 1800 1800 Y axis 0.5 X axis 0.5 

 

TABLE. 1. Input stage transistor dimensions W (nm) and applied 

voltages (V) for the curves depicted in Figure 6. All transistors with 

L=180 nm 

Figure.4 Output stage (a) One stage schematic and symbol (b) 

wiring of the three stages 



 

 

D.  Signature generation 

 

The use of the proposed method for testing or parameter 

validation requires the use of several monitors, one for each 

curve cutting the X-Y plane. Depending on the Lissajous 

curve to be monitored the designer develops the adequate 

zones in the X-Y plane and then the specific monitors. The 

output of the monitors, sampled asynchronously during the 

evolution of the Lissajous cycle, represent the digital 

signature of the circuit. Using as example the control curves 

of Figure 6 combined with the nominal and the 10% 

parameter shift Lissajous curves of Figure 1 we obtain the 

composition represented graphically in Figure 7. The zones 

are codified in such a way that every monitor codifies a digital 

"1" when Lissajous curve is above the control line, or digital 

"0" when Lissajous curve is bellow the boundary. The outputs 

of the monitors processed by an asynchronous sampler, as 

indicated in Figure 8, deliver the periodic signatures shown in 

Table 2.  

 

Due to the shape change of the Lissajous curve, and its 

position in the X-Y plane, in this example, there is a 

difference in the sequence length of the periodic output, as 

well as the zone codes reflecting different zone crossings.   

 

The use of regression techniques as used in [9] will solve, in a 

general case, the mapping between measured signal (digital 

signature) and circuit parameter sets. 

 

 
 

IV.  CONCLUSIONS 

 

A low cost X-Y zoning Digital Signature generator has been 

proposed, based on a current comparator input stage followed 

by a differential voltage comparator output stage. The 

proposal converts the output differences of the input stage into 

binary signals used as digital signature of the monitor.  

 

With a simple design, splitting the transistors of the input 

stage, only two different circuits are needed to cover 

adequately the X-Y plane. Zone boundaries are set by 

changing the input DC biasing voltages and/or the aspect ratio 

of the input transistors. Every monitor requires only 8 

transistors for the input stage and 12 transistors for the digital 

output stage. The monitor area overhead is limited to 116,1 

µm
2
 which is an important reduction over voltage comparison 

alternatives. The loading on each monitored signals is limited 

to the capacitive load of the NMOS input transistors. With 

these monitors and fixed input biasing voltages the X-Y plane 

is partitioned into zones with non linear boundaries allowing 

effective monitoring of the Lissajous curves. The sequence of 

digital outputs of the monitor during one period of the 

Lissajous curve constitutes the digital signature of the CUT. 
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Figure 8. Asynchronous sampling of  
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Abstract—Verification of analog circuit specifications is a
challenging task requiring expensive test equipment and time
consuming procedures. This paper presents a method for low
cost parameter verification based on statistical analysis of
a digital signature. A CMOS on-chip monitor and sampler
circuit generates the digital signature of the CUT. The monitor
composes two signals (x(t), y(t)) and divides the X-Y plane
with nonlinear boundaries in order to generate a digital code for
every analog (x, y) location. A metric to be used to discriminate
the golden and defective signatures is also proposed. The metric
is based on the definition of a discrepancy factor performing
circuit parameter identification via statistical and pre-training
procedures. The proposed method is applied to verify possible
deviations on the natural frequency of a Biquad filter. Simulation
results show the possibilities of the proposal.

Index Terms—Mixed-Signal Test, Specification Verification,
Monitoring, Nonlinear Zone Boundary.

I. INTRODUCTION

AS circuits increase in complexity, internal signals be-
come deeper embedded into the structure what makes

difficult their tracking from IC’s primary inputs/outputs.

Analog and mixed-signal test, in parameter validation pro-
cedures, highlights the divorce between new technologies
and available test methods. Manual test procedures and the
high costs of analog automatic test equipments (AATEs)
used for traditional specification based test require increasing
resources. In order to assure quality, different methods have
been proposed.

Oscillation based test (OBT) has been highly accepted
and lately expanded by many authors [1]–[3]. The method
consists on making some changes in the CUT which drive the
system into a characteristic oscillation. Studying the resulting
waveform many defects are detected. Yet, changes should be
of minimum impact in the CUT’s normal operation what may
be a drawback of the method.

Otherwise, transient testing compares fault-free patterns
with some characteristics of the CUT response to simple
stimulus (step response or similar). Comparing responses, it is
possible to discriminate between defective and non-defective
circuits [4]–[6]. On the other hand, structural fault based tests
look for the best stimuli to excite the fault. However, in many

situations, fault-free does not mean specifications compliant
[7], [8].

Alternate test methods [9], [10] try to overcome this analog
test scenario using regression models as a technique to predict
circuit specifications. Monitoring the power supply current
has been used to detect faulty behavioural activity in the
CUT [11]. Trying to improve the current resolution, some
techniques use multiple chip supply paths [12] or study
some interesting points of the circuit [13]. The impact of
the monitor insertion into the supply lines and the increment
of leakage currents in nanotechnologies limit the viability of
these strategies.

In this paper we focus on built-in monitoring of analog
signals combined with the on-chip digital signature generation
in order to overcome AATE costs. Monitoring can be applied
in production testing, diagnosis, parameter validation and
signal integrity as well as in field and on-line test. Oscillation
test method [2], [3], current monitoring [12], [13], and zoning
[14], [15], have been used in the past for these purposes with
promising results in digital and mixed-signal applications.

For test purposes, X-Y zoning uses straight lines to cut
the plane into zones in order to monitor signal compositions
(Lissajous curves) [16], [17]. Recently, a generalization of the
monitoring method for multiple variables using several hyper-
planes has been proposed. The study is based on Lissajous
compositions in a CUT with multitone excitation [18].

In this context, we present: (a) A CMOS digital signature
generator and (b) a metric to validate the circuit specifications.
The latter is based on the definition of a discrepancy factor
and its possibility to verify specifications via statistical and
circuit pre-training methods.

The paper is organized as follows. Section II is devoted to
present the X-Y zoning method, its possibilities and benefits
in circuit testing. Section III introduces the new structure of
the nonlinear boundary based signature generator. An on-
chip implementation in a 65 nm technology is presented.
Section IV is devoted to signature comparison through the
defined discrepancy factor and its direct application to validate
the natural frequency of a Biquad filter. In section V a
summary of the work and conclusions are presented.
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II. X-Y ZONING METHOD DESCRIPTION

In the X-Y zone testing method, signal monitoring is based
on the composition of two signals of the circuit, x(t) and
y(t), in a similar way an oscilloscope in X-Y mode represents
the trace on the screen. If the ratio of the frequencies of the
composed periodic signals is rational, the resultant curve is
also periodic becoming the well-known Lissajous curves.
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Fig. 1. Lissajous composition of a multitone input signal and the low pass
output of a Biquad filter. Nominal shape (left) and 10% shift in the natural
frequency of the filter (right).

Previous work on monitoring signals in the X-Y plane,
is based on dividing the plane by straight lines that delimit
the zones where the curve is allowed to have points and the
zones where the points are not expected. As an example of
application, the output of a low pass filter is represented as
a function of its multitone input, generating the Lissajous
curve of the CUT. The nominal fault-free curve is represented
in the left side in Fig. 1. On the right, the figure shows
the Lissajous curve with parameters of the filter out of
specification tolerance. In this way, a large set of parametric
and catastrophic defects can be detected by just checking
whether or not the Lissajous curve remains in the specified
zones. Using multiple partitions, the digital code of the zones
traversed by the Lissajous curve becomes the digital signature
of the circuit. Digital signatures are efficiently processed
thereby reducing the overall mixed-signal test costs.

M1 M2 M3 M4

M5 M6 M7 M8

Vout1 Vout2

V1 V2 V3 V4

I1 I2 I4I3

VDD

GND

Fig. 2. Monitor schematic.

The implementation of a straight line in the X-Y plane
has been accomplished with the use of weighted adders and
comparators. Several monitors have been proposed in the
past for this purpose [15], [17], [19]. In these approaches,
the defective Lissajous was previously studied to select the

best X-Y partitions delimited with straight lines. In [20] we
proposed cutting the X-Y plane with non-straight boundaries.
The method takes advantage of the nonlinear dependence of
the NMOS transistor drain current ID as a function of its
gate-source voltage VGS. The benefit is the simplification and
the size reduction of the monitor.

In this work we go further presenting an efficient method
for digital signature comparison and a metric for analog
parameter validation.

III. MONITOR FOR DIGITAL SIGNATURE GENERATION

Current comparison is a straightforward way to implement
control lines composing two or more voltage signals. In con-
trast with voltage comparison, the easy way to add and sub-
tract currents (Kirchhorff’s law) allows very simple structures
to be used. Furthermore, in CMOS applications, the quasi-
quadratic current-voltage characteristic of MOS transistors in
saturation, enables the implementation of nonlinear curves to
delimit zones in the X-Y plane. These characteristics make
easier the generation of efficient zone boundaries and the
reduction of area overhead.

Fig. 3. Monitor layout.

A. Circuit Design

In order to implement the current comparison we propose
the differential input stage of Fig. 2 [21], [22]. In the proposal,
four input signals are used, even though the structure can be
generalized by simply adding transistors in parallel.

This circuit with only two NMOS input transistors is the
well-known “Source grounded differential pair” or “Pseudo
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differential pair”. For the PMOS, we use equal sized transis-
tors M5 and M8 as active loads while equal sized transistors
M6 and M7 perform the required feedback in order to improve
the gain of the stage.

As shown in Fig. 2, input signals (V1 to V4) are directly
connected to the gate of NMOS transistors (M1 to M4
respectively), which deliver the current to be added at each
side of the differential input stage. Every transistor current
is selected according to the needed curve parameters by
adequately sizing the input transistor dimensions (W/L).

The layout of the proposed monitor, implemented in
STMicroelectronics 65 nm CMOS technology, is depicted in
Fig. 3. It also includes a high gain output stage. In the design,
the transistors have been split in four to balance the structure
in order to satisfy two-dimension common-centroid strategies
[23] and thus minimize mismatch effects.

B. Commutation Curves

As can be observed in TABLE I, by interchanging positions
of the four input voltages, curve shape and location are
controlled. Fig. 4 shows the layout simulation results of the
curves corresponding to circuits with the sizes and voltages
specified in TABLE I.
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Fig. 4. Layout simulated control lines of TABLE I.

Comparing V1 and V3 voltages (one signal at each side of
the differential pair) and setting V2 and V4 to a DC level, the
resulting curves are segments of hyperbolae (curves 1 and 2
in Fig. 4). If both sides are symmetrical (transistor aspect ratio
and constant voltages) we obtain a degenerated hyperbola that
becomes a straight line cutting the plane at 45 degrees (curve
6 in Fig. 4).

On the other hand, we use both voltages in one branch of

the differential pair (V3, V4), to control the line position, con-
necting two DC levels. With this configuration the quadratic
addition of V1 and V2 happens and segments of ellipses are
obtained as can be seen in curves 3 to 5. Ellipses become
a straight line for input voltages below the threshold voltage
because input transistors do not deliver current to the addition.
Similar effect affects hyperbolae when reaching the axis.

TABLE I
INPUT TRANSISTOR DIMENSIONS AND APPLIED VOLTAGES FOR THE

CURVES DEPICTED IN FIG. 4

Transistor widths (nm)
(L = 180 nm) Applied input voltages (V)

M1 M2 M3 M4 V1 V2 V3 V4

1 300 600 600 300 Y axis 0.2 X axis 0.6

2 300 600 600 300 0.6 Y axis 0.2 X axis

3 1800 1800 1800 1800 Y axis X axis 0.55 0.55

4 1800 1800 1800 1800 Y axis X axis 0.3 0.3

5 1800 1800 1800 1800 Y axis X axis 0.75 0.75

6 1800 1800 1800 1800 Y axis 0.5 X axis 0.5

IV. DIGITAL SIGNATURE PROCESSING

A. Basic Approach

In [20] a generalized test method using two observable
signals was proposed. Test monitors the Lissajous trace across
the nonlinearly divided X-Y plane comparing the resulting set
of codes against the golden sequence. In the present work,
in order to improve the resolution of the method for small
parametric deviations, a new methodology and specification
verifying process are proposed.

The zones in Fig. 4 are codified in such a way that every
monitor delivers a digital “0” for the region that contains the
origin, and a digital “1” for the complementary. Outputs from
the monitors are processed by an asynchronous sampler which
generates the periodic digital signature.

The signature of a CUT is defined as the sequence of pairs
of zone code and time interval of permanence of the CUT’s
signals in a zone. This way, the signature registers the zone
codes and the duration of the Lissajous curve in the same
zone.

Formally, if the periodic Lissajous curve crosses k zones,
Z1, Z2, . . . , Zk, and the time duration in each zone is denoted
as ∆i, ∀i = 1, . . . , k, the CUT’s signature is defined as,

SIGNATURE = {(Z1,∆1), (Z2,∆2), . . . , (Zk,∆k)} (1)

where Zi represents the code of the ith zone traversed and
∆i represents the time duration in the ith zone.

The implementation is schematized in Fig. 5, where an m-
bit counter holds the time between code samples. Besides, in
Fig. 6, the golden and +10% f0 shift Lissajous curves can
be observed when crossing the X-Y plane. The faulty trace
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Fig. 5. Asynchronous sampling of digital signatures of the example depicted
in Fig. 6 and Fig. 7.

draws on different zones at different instants which generates
a different piecewise function.

The upper chronogram in Fig. 7 shows the zone code (in
decimal) for any time t within the period of the Lissajous
curves. This procedure in turn leads to a more precise
and easier signature comparison when using an appropriate
difference between function pairs. Due to the zone cod-
ification criterion, neighbour zones only vary in one bit.
Furthermore, Hamming distance is suitable as can be ob-
served in Fig. 7 lower chronogram, where the Hamming
golden-defect distance is plotted during a period. Note the
achievement of 2 (in Hamming distance sense) in the interval
[48, 50]µs. This is because, in Fig. 6, the faulty trace reaches
zone 1111102 (6210) instead of the sequence 0111102 (3010),
0111002 (2810), 1111002 (6010) what will define a free-defect
Lissajous.

An indicator of signature difference is required. To achieve
this goal we define the discrepancy factor as,

DF =
∫ T

0

dist(f, g) dt (2)

where the functions f(t) and g(t) respectively represent the
defective and golden zones defined within the period T of the
Lissajous curves. Operator dist() is the Hamming distance of
the codes at each time instant. It indicates the discrepancy
of the defective and golden instantaneous codes weighted by

the duration of interval in which the Lissajous curve remains
in the same zone. This discrepancy factor is sensitive to the
length of the curve. To avoid this handicap, a normalized
version of the discrepancy factor will be used,

NDF =
1
T

∫ T

0

dist(f, g) dt (3)

The previous definition matches with the average value of
the Hamming distance chronogram over the interval [0, T ].
For the example of Fig. 7, a NDF of 0.102102 is obtained.

In order to investigate the reliability of the normalized
discrepancy factor, extensive software simulation has been
performed. It explores different degrees of deviation in the
parameter under validation. Results are as expected: The
discrepancy factor increases almost linearly with the amount
of deviation and symmetrically with positive and negative
defects, as can be seen in Fig. 8. Simulations on a Biquad
filter with added white noise have been performed. In it, we
use a 3σ spread of 1.5% of the supply voltage. Simulations
show that deviations as low as 1% in the natural frequency
of the filter are easily detected.

B. Parameter Verification Process

First, it is necessary to study if there is a difference be-
tween Hamming signatures of positive and negative defective
circuits. To achieve this, a set of training defects have been
considered: -10%, -9%,. . . , +9%, +10%. After computation,
signatures are entirely equalized in time, as to obtain unique
sized vectors. For instance, in our low pass filter, the resulting
dimension of the previous set of defects is 136. Then, a set of
20 vectors of R136 have to be compared in order to identify
significant difference between positive and negative defects.
To this purpose, Euclidean distance has been used. Fig. 9
shows, in a 3D plot, the two-by-two comparison results. As
can be seen, positive and negative defects respectively lay
together in a R136 space. Distances between same types of
defects are also smaller over those mixing different types of
defects.

A simple method to scatter the two groups of defects is to
compute a separation hyperplane. This data clustering method
is performed by the calculation of the centre of gravity of
every set and use it to define the hyperplane parameters. Let
us respectively define z+ and z− as the centre of gravity of
the positive and negative set of defects. In a N -dimensional
vector space, a hyperplane takes the form,

π ≡
N∑

i=1

ni(zi − pi) = 0 (4)

where n = (n1, . . . , nN ) is a vector normal to π and p =
(p1, . . . , pN ) is any point within π. In this way, the following
definitions become natural (see Fig. 10),
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n = z+ − z−, p =
z+ + z−

2
(5)

With the calculated π-hyperplane, parameter identification
is easy because we only have to evaluate the resulting
Hamming signature in the π equation. If the evaluation yields
a positive number, the defect is positive and if it yields
a negative value, the defect is negative. Defect quantity is
determined by the use of the graphical data of Fig. 8.
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V. CONCLUSIONS

A low cost X-Y zoning monitor circuit has been proposed
based on a four input current comparator and followed by
a high gain stage. The monitor divides the X-Y plane with

nonlinear boundaries into zones in order to generate a digital
output for each analog (x, y) location. Zone boundaries can
be adjusted by changing the biasing voltages and/or the aspect
ratio of the input transistors.
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Fig. 8. Normalized discrepancy factor for defects in f0.

In order to verify analog circuits with two observable
signals, we define a metric to compare golden-defective digital
signatures. Comparison is performed using the concept of
Hamming distance and defines a discrepancy factor which
extracts the amount of defect deviation. A normalized dis-
crepancy factor (NDF) has been defined as the average value
of the Hamming distance of the digital zone codes weighted
by the time duration of each code.

Verification process is divided in two stages. The former
is a data clustering method to compute a separation plane
using a training set of defects which lay in opposite space
regions. The latter verifies the circuit parameter deviation.
This is performed using the mapping of the discrepancy factor
and the quantity of deviation within the same sign group.

The method targets the verification of analog parameter
specifications in analog and mixed-signal circuits.
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Fig. 9. Distance between pairs of Hamming signatures.

Results, based on the case example of a Biquad CUT, reflect
the viability of the method. Accuracy is extremely dependant
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Fig. 10. Sketch of the separation plane in a three-dimensional vector space.

on the timing precision (counter size) and the signal quality.
Simulations in a noisy environment, with a 3σ spread of 1.5%
of the supply voltage, show encouraging results in detecting
deviations as low as 1% in the natural frequency of the filter.
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Av. Diagonal 647, planta 9, E-08028 Barcelona (Spain)

emails: algopau@gmail.com, {ricard,balado,figueras}@eel.upc.edu

Abstract—Production verification of analog circuit specifica-
tions is a challenging task requiring expensive test equipment
and time consuming procedures. This paper presents a method
for low cost on-chip parameter verification based on the analysis
of a digital signature. A 65 nm CMOS on-chip monitor is
proposed and validated in practice. The monitor composes two
signals (x(t), y(t)) and divides the X-Y plane with nonlinear
boundaries in order to generate a digital code for every analog
(x, y) location. A digital signature is obtained using the digital
code and its time duration. A metric defining a discrepancy factor
is used to verify circuit parameters. The method is applied to
detect possible deviations in the natural frequency of a Biquad
filter. Simulated and experimental results show the possibilities
of the proposal.

Index Terms—Mixed-Signal Test, Specification Verification,
Monitoring, Nonlinear Zone Boundary.

I. INTRODUCTION

A
S circuit complexity increases, internal signals become

more embedded into the structure, making their tracking

from IC’s primary inputs/outputs difficult [1], [2].

Analog and mixed-signal parameter validation procedures

highlight the divorce between current technologies and avail-

able test methods. The conditions attached to traditional speci-

fication based tests are manual, expensive and time consuming

procedures which are applied to costly analog automatic test

equipment (AATE). Built-in monitoring of analog signals,

together with on-chip digital signature generation, aims to

meet these challenges [3], [4].

A number of test techniques have been proposed. Oscil-

lation based test (OBT) is widely accepted and has been

lately expanded by several authors [5], [6]. Transient testing

compares fault-free patterns with some characteristics of the

CUT response to a simple stimulus [7], [8]. Some catastrophic

structural fault based tests look for the best stimuli to excite

the fault, typically shorts and opens. However, in many sit-

uations, fault-free does not mean specifications compliant, in

particular with process variations in nanometric technologies

[9]. Alternate test methods [10], [11] try to meet these analog

test challenges by mapping easy-to-measure circuit parameters

to circuit specifications by regression techniques. For test

purposes, X-Y zoning uses straight lines to divide the plane

into zones in order to monitor signal compositions (Lissajous

curves) [12], [13]. Recently, a generalization of the monitoring

method for multiple variables has been proposed. The study

is based on Lissajous compositions in a CUT with multitone

excitation [14].

Several approaches using oscillation test method [6], al-

ternate test [11], and zoning [13], [14], have been used in

combination with BIST techniques, yielding promising results

in analog and mixed-signal applications.

The paper describes: (a) a CMOS digital signature generator

based on X-Y zoning and (b) a test method based on the def-

inition of a discrepancy factor which quantifies the difference

between golden digital signatures and the monitor-generated

signatures.

The paper is organized as follows. Section II presents the

X-Y zoning method, its possibilities and benefits in circuit

testing. Section III introduces the proposed signature generator

structure and provides an on-chip nanometric implementation

and some preliminary experimental results. Section IV is de-

voted to signature comparison through the discrepancy factor

and its direct application to testing a Biquad filter. Section V

summarizes the work and draws some conclusions.

II. X-Y ZONING METHOD DESCRIPTION

In the X-Y zone testing method, signal monitoring is based

on the composition of two circuit signals, x(t) and y(t), in a

similar way as an oscilloscope in X-Y mode represents the

trace on the screen. If the frequency ratio of the periodic

signals is rational, the resultant curve is also periodic, thus

becoming the well-known Lissajous curve.
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Fig. 1. Lissajous composition of a multitone input signal and the low pass
output of a Biquad filter. Nominal shape (left) and 10% shift in the natural
frequency of the filter (right).

In previous work on monitoring signals in the X-Y plane

[12], [15], the plane is devided by straight lines that delimit

the zones. As an example of application, the output of a

low pass filter is plotted as a function of its multitone input,

generating the Lissajous curve of the CUT. The nominal fault-

free curve is represented on the left side of Fig. 1. On the

right, the Lissajous curve with parameters of the filter out of

specification tolerance is shown. In this way, a large set of

parametric and catastrophic defects can be detected just by

checking whether the Lissajous curve remains in the specified

zones. Using multiple partitions, the digital code of the zones

traversed by the Lissajous curve with the time interval spent

by the Lissajous curve to traverse the zone becomes the digital

signature of the circuit.



Straight lines are implemented in the X-Y plane using

weighted adders and comparators. Several monitors have been

proposed in the past for this purpose [13], [14]. In these

approaches, Lissajous curves were previously studied to select

the best X-Y partitions delimited by such lines. In order to

simplify the monitors, non-straight boundaries have recently

been proposed for the X-Y zones [15]. This method takes

advantage of the nonlinear dependence of the nMOS transistor

drain current ID as a function of its gate-source voltage VGS.

The benefits are circuit simplification and significant reduction

in monitor size.

In this work we present an efficient method for digital signa-

ture generation and a metric for analog parameter verification.

M1 M2 M3 M4

M5 M6 M7 M8

Vout1 Vout2

V1 V2 V3 V4

VDD

GND

Fig. 2. Monitor circuit based on current comparison.

III. MONITOR FOR DIGITAL SIGNATURE GENERATION

Current comparison is a straightforward way to implement

control curves by composing two or more voltage signals. In

contrast with voltage comparison, addition and substraction

of currents (Kirchhoff’s law) allows the use of very simple

structures. Furthermore, in CMOS applications, the quasi-

quadratic current-voltage characteristic of MOS transistors in

saturation enables the implementation of nonlinear curves to

delimit zones in the X-Y plane.

Fig. 3. Layout of the monitor in Fig. 2. It is implemented in STMicroelec-
tronics 65 nm CMOS technology. The occupied area is 53.54 µm

2.

A. Circuit Design

In order to compare currents, we propose the differential

input stage of Fig. 2. In this implementation, four input signals

are used, even though the structure can be generalized by

simply adding transistors in parallel.

This circuit with only two nMOS input transistors is the

well-known “Source grounded differential pair” or “Pseudo

differential pair” [16]. For the pMOS, equal sized transistors

M5 and M8 are used as active loads, while equal sized

transistors M6 and M7 perform the required feedback to

improve the gain of the stage.

As can be seen in Fig. 2, the input signals (V1 to V4)

are directly connected to the gate of nMOS transistors (M1

to M4 respectively), which deliver the current to be added

at each side of the differential input stage. Every transistor

current is selected according to the required curve parameters

by adequately sizing the input transistor dimensions (W/L).

The layout of the proposed monitor, implemented in STMi-

croelectronics 65 nm CMOS technology, is shown in Fig. 3.

In this design, the transistors are split into four to balance

the structure and thus satisfy two-dimension common-centroid

strategies [17]. The area overhead is 53.54 µm2 (11.64 µm ×
4.6 µm). The design also includes a high gain output stage to

digitalize the differential output of the monitor. The total area

used per monitor is 116.1 µm2.

B. Control Curves

As can be observed in TABLE I, by interchanging posi-

tions of the four input voltages, curve shape and location

are controlled. Fig. 4 shows the experimental curves for the

configurations in TABLE I. Results lie in the predicted range

for Monte Carlo simulations using the foundry technology

statistical characterization.

TABLE I
INPUT CONFIGURATION FOR THE CURVES IN FIG. 4

Transistor widths (nm)

(L = 180 nm)
Applied input voltages (V)

M1 M2 M3 M4 V1 V2 V3 V4

1 3000 600 600 3000 Y axis 0.2 X axis 0.6

2 3000 600 600 3000 0.6 Y axis 0.2 X axis

3 1800 1800 1800 1800 Y axis X axis 0.55 0.55

4 1800 1800 1800 1800 Y axis X axis 0.3 0.3

5 1800 1800 1800 1800 Y axis X axis 0.75 0.75

6 1800 1800 1800 1800 Y axis 0 X axis 0

Comparing voltages V1 and V3 (one signal at each side of

the differential pair) and setting V2 and V4 to a DC level, the

resulting curves are segments of positive slope (curves 1 and

2 in Fig. 4). If both sides are symmetrical (transistor aspect

ratio and constant voltages) we obtain a straight line cutting

the plane at 45 degrees (curve 6). The distortion of curve 6 for

small input voltages is caused by the subthreshold operation

of the nMOS transistors.

When both voltages in one branch of the differential pair

(V3, V4) are connected to DC levels, V1 and V2 are nonlinearly

added, generating segments of negative slope as shown in

curves 3 to 5. Boundary curves become a straight line for

input voltages below the threshold voltage because the input

transistors do not deliver current to the addition.

IV. DIGITAL SIGNATURE

A. Signature Definition

The zones in the X-Y plane are codified so that every

monitor delivers a digital “0” for the region containing the



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X (V)

Y
 (

V
)

1

2

3

4

5

6

Fig. 4. Experimental control lines of TABLE I obtained for the monitor
fabricated using STMicroelectronics 65 nm CMOS technology.

origin, and a digital “1” otherwise. The resulting zones and

codes are shown in Fig. 4 and Fig. 6.

The signature of a CUT is defined as the sequence of pairs of

zone code (Zi) and time interval of permanence of the CUT’s

signals in the zone (∆i).

Formally, if the periodic Lissajous curve crosses k zones,

Z1, Z2, . . . , Zk, and the time duration in each zone is denoted

as ∆i, ∀i = 1, . . . , k, the CUT’s signature is defined as,

SIGNATURE ≡ {(Z1,∆1), (Z2,∆2), . . . , (Zk,∆k)} . (1)

Monitor outputs are processed by an asynchronous capture

which generates the digital signature. The implementation is

illustrated in Fig. 5, where an m-bit counter holds the time

between code captures.
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Fig. 5. Block diagram for asynchronous capture of digital signatures
generating n-bit zone codes and m-bit time intervals.

In Fig. 6, the golden and +10% f0 shift Lissajous curves

evolve across the X-Y plane traversing different zones, delim-

ited by nonlinear control curves, at different instants and thus

generating different signatures.

Using the capture circuit of Fig. 5, the signatures of Fig. 7

are obtained for the defective and the defect-free curves. The

chronogram in Fig. 7 shows the zone code for any time t
within the period of the Lissajous curves.

B. Metric Definition

An indicator of signature discrepancies is required. We

obtain it by defining the so-called normalized discrepancy

factor as

NDF =
1

T

∫ T

0

dH(SO, SG) dt, (2)

where functions SO(t) and SG(t) respectively represent

the observed defective and golden signatures defined within

the period T of the Lissajous curves. Operator dH() is the

Hamming distance of the zone codes at each time instant.

The NDF parameter indicates the discrepancy of the defective

and golden instantaneous codes weighted by the duration of

the time interval in which the Lissajous curve remains in the

same zone.

The previous definition matches the average value of the

Hamming distance chronogram over the interval [0, T ]. For

the example of Fig. 7, an NDF of 0.1021 is obtained.
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Fig. 6. Control curves with zone codification and Lissajous compositions:
golden and +10% shift in f0.

According to the zone codification criterion, neighbouring

zones only differ in one bit. This is why the Hamming distance

is suitable, as can be observed in the lower chronogram

of Fig. 7, where the Hamming golden-defect distance is

plotted over a period. Note a Hamming distance of 2 in the

interval [48, 50]µs (see Fig. 6) resulting from the faulty trace

which reaches zone 1111102 (6210) instead of the sequence

0111102 (3010), 0111002 (2810), 1111002 (6010), which de-

fines a defect-free Lissajous.

C. Parameter Verification Process

The NDF is used to evaluate the amount of deviation of

the parameters under verification. Circuits with parameters

meeting specifications are expected to have small NDF val-

ues. To evaluate the NDF effectiveness, extensive software

simulations were performed on a Biquad filter circuit with
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Fig. 7. Chronogram of digital signatures and Hamming distances for +10%
shift in the f0 parameter of a Biquad filter. NDF = 0.1021.

different degrees of deviation in the natural frequency of the

filter. The discrepancy factor increases almost linearly with the

amount of deviation and quite symmetrically with positive and

negative f0 parameter deviations, as can be seen in Fig. 8. The

test decision is made by previously setting the desired level of

tolerance and checking whether the NDF lies in the acceptance

or rejection bands. Simulations conducted with high frequency

white noise on the signals with null mean and a 3σ spread

of 0.015 V show that deviations as low as 1% in the natural

frequency of the filter are detected.
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Fig. 8. Normalized discrepancy factor for defects in f0.

V. CONCLUSIONS

In order to test analog circuits with two observable signals,

we define a metric to compare digital signatures using the

Hamming distance between the golden and CUT zone codes.

A normalized discrepancy factor (NDF) characterizing the

amount of parameter deviation is defined as the average value

of the Hamming distance of the digital zone codes weighted

by the time duration of each code. The test decision is made by

mapping the discrepancy factor and the amount of deviation

related to the acceptable band, as indicated in Fig. 8.

A low cost X-Y zoning monitor was designed and fabricated

in STMicroelectronics 65 nm technology. The monitor is based

on a four input current comparator followed by a high gain

stage. The monitor divides the X-Y plane with nonlinear

boundaries into zones to generate a digital output for each

analog (x, y) location. Zone boundaries can be adjusted by

changing the biasing voltages and/or the aspect ratio of the

input transistors. Experimental measurements of the monitor

zone boundaries were performed, yielding results in the range

of the predicted Monte Carlo simulations values (process and

mismatch) for STMicroelectronics 65 nm technology variabil-

ity.

The method was applied on a Biquad Filter circuit to test

the natural frequency parameter.
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