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Abstract

A two-player one-round cooperative refereed game is a protocol in which a referee

asks two randomly chosen questions to two uncommunicated players. The players

send their answers to the referee, and these are jointly evaluated by a known

predicate to decide if the game is won or not. The repetition of a game decreases

exponentially the winning probability of the players, but the number of rounds

is increased. Performing the questions in parallel allows us to repeat the game

without increasing the number of rounds. However, it is not obvious in this case

that the winning probability is decreased the same way, or even decreased at all.

We summarize why this problem arises and discuss some methods that have been

presented to solve it. We also present some special cases for games with the

uniqueness property.
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Chapter 1

Introduction

1.1 Interactive proof systems

Interactive proof systems were introduced by Goldwasser, Micali and Rackoff [18]

and by Babai [4], and were expanded to their multi-prover versions by Ben-Or,

Goldwasser, Kilian and Widgerson [5] by mid to late 80’s.

In these systems, several all-powerful computationally unlimited but uncommuni-

cated provers want to convince a probabilistic polynomial-time verifier of a certain

statement being true. The skeptical verifier asks questions to the provers. How-

ever, the provers are not always trustful and might lie to make the verifier accept

the statement. The goal of the verifier is to either detect inconsistencies in the

answers of the provers or otherwise be convinced of their trustfulness beyond any

reasonable doubt. When the verifier is convinced we say that the protocol accepts,

and otherwise, we say that it rejects.

As an example, we define a one-prover interactive proof system which decides

if two graphs G1 and G2 are non-isomorphic. Both the prover and the verifier

1



Chapter 1: Introduction 2

receive the two graphs as input. Remember that the prover wants to convince

the verifier that the graphs are non-isomorphic, no matter if they really are. The

protocol is the following: the verifier selects one graph randomly between G1 and

G2 and generates a third graph, H, which is a random permutation of the selected

one. Then, he sends H to the prover. The prover must answer to the verifier which

was the originally selected graph. If the answer of the prover is the correct graph,

the protocol accepts; otherwise it rejects.

Note that, if G1 and G2 are really non-isomorphic, the prover will easily know

which was the original one, just by checking which one of them is isomorphic to

H, and therefore, will always answer with the correct option. However, in the case

in which G1 and G2 are isomorphic, the prover does not have any clue about which

was the selected graph, since the random permutation H is isomorphic to both

of them. Thus, the prover has to answer with either G1 or G2, without knowing

which is the correct answer. Therefore, the probability that the prover answers

with the correct graph is only 50%.

Note that having access tomore than one prover increases the power of the verifier.

This is because finding inconsistencies in the answer of only one prover is harder

than finding them in the answers of two provers: all circumstances in which incon-

sistencies are found in the case of one prover also make sense for the two-prover

case, but, moreover, inconsistencies between the two provers can be found in this

case.

This can be pictured as a police interrogation of one or two suspects: if there

is only one suspect, we can only hope to find inconsistencies between the answers

of the suspect or between his answers and the known facts, but he can make up an
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alibi to lie to the questions to avoid being caught. However, having two uncommu-

nicated suspects allows us, also, to detect inconsistencies between the alibis that

both of them make up to answer the questions. In other words, the complexity of

the situations in which the police can catch the suspects increases when they have

access to two instead of one.

1.2 Sequential and parallel repetition

We have seen in the example of the graph non-isomorphism protocol that, in the

case in which the prover does not know the answer, there is a 50% probability of

finding out that he is lying, but also a 50% probability of being convinced of a

false statement. We call this value the error probability of the protocol. Having

such a high error probability means that the protocol is not reliable enough, since

it could accept even when the statement to prove is not true. Therefore, we are

really interested in making the error probability as small as possible. To do so, we

can sequentially repeat the protocol independently multiple times.

Now, if the original error probability of the protocol is δ and we repeat the pro-

tocol n times, we obtain an error probability of only δn, which can be arbitrarily

small for growing n’s. In the case of the example, repeating the protocol only 20

times decreases the error probability from 1
2 = 50% to 1

220 < 0′0001%, increasing

substantially the reliability of the protocol.

However, repeating the game increases the number of rounds, and therefore the

complexity of the protocol. But here is a more clever thought: since the size of

the asked questions is not relevant (as long as it remains polynomial), we can put

n questions together in a single big question, and send it to the provers. In fact,

if the questions are not adaptively decided, it makes no sense to use more than
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one round, since any number of questions can be asked at the same time, and all

other cases would be wasting resources. This kind of repetition is what is known

as parallel repetition. This is as if we find a genius in the desert who offers us the

posibility of asking him three desires that he will make true. The clever thought

is not to ask what we really want, but to ask for the concession of some thousands

of desires, spending thus one of the desires just to obtain lots of them.

Now, we know how to restrict ourselves to one-round protocols when the ques-

tions are not adaptive. However, the use of parallel repetition raises a doubt.

While it is clear that the optimal strategy for a one-prover protocol run indepen-

dently twice in parallel is to act optimally on each run, the same is not so clear

for a two-prover protocol where each prover does not see the questions that are

asked to the other. In the two-prover scenario, behaving greedily on each run of

the protocol might result in a suboptimal strategy. For example, it might be more

benefitial for the provers to agree, before the game starts, that one of the provers

will reply in some predetermined way to make the other’s life simpler. It is impor-

tant to note that the predetermined way in which the prover might reply need not

decompose into any meaningful set of local strategies. It is thus the combination

of the possibility to cooperate and the fact that all questions are seen at once that

gives the two provers more power in designing their joint strategy. It is one of the

goals of this thesis to study concrete examples where these subtle points are made

clear.

This reasoning is analogous to a classical example in game theory, The Prison-

ers Dilemma. Remember the suspects we had in the interrogation before. Now,

they are asked to either accuse the other suspect or just remain silent. In the case

in which both suspects say nothing, they will have to be only for few months in
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prison. In the case in which both of them accuse each other, they will have to be

some years in prison. And finally, if only one of them accuses the other, this one is

set free and the accused one stays in prison for many years. The greedy strategy

for both prisoners is to accuse the other, in order to be freed. However since the

suspects can cooperate with each other by having some predetermined agreement

(although they are uncommunicated once the interrogation starts), they may de-

cide to remain silent in order to minimize the total duration of the conviction.

For all these reasons, we ask ourselves the following subtle but highly important

questions. Does parallel repetition decrease the error probability of the protocol?

Is this decrease exponential as in the sequential case? It was discovered by Fort-

now [13] that in the case of two-prover interactive proof systems this was not a

trivial question, and therefore the assumption of decrease is not free, as in the case

of one prover.

In this work we study this problem in the abstract context of game theory. We

model two-prover interactive proof systems as two-player one-round cooperative

refereed games, considering the provers as the players and the verifier as the referee.

Two cooperative players, which can make agreements before the game starts, have

to answer different questions without communicating to each other, and the ref-

eree jointly evaluates their answers to decide if the game is won or not. This point

of view simplifies and abstracts away from the concept of two-prover interactive

proof systems.

1.3 Organization of the thesis

After this brief introduction, Chapter 2 contains a complete presentation of the

game theoretic concepts that are used throughout the work. We define some con-
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cepts about games, we list some special classes, and, finally, we introduce two

interesting techniques to be used in the forthcoming proofs.

Chapter 3 exposes the problem of parallel repetition, showing an interesting case

of counter-intuitiveness that exemplifies the problem. Before presenting two dif-

ferent counterexamples of the expected behaviour, the reasons for it are informally

discussed.

Chapters 4 studies two special cases of parallel repetition. First, we present a

theorem relating the bounds for the parallel repetition of general games in terms

of parallel repetition of games with uniform distribution. Second, we explain a

technique to obtain bounds for parallel repetition for games with the uniqueness

property and product distributions. These formalize two arguments of Feige [9].

Chapter 5, deals with games of all kind, proposing two parallel-repetition theo-

rems. The first one, due to Verbitsky [30], shows that parallel repetition decreases

the error, but it does not give bounds on the rate of this decrease. The second

one, due to Raz [28] and improved by Holenstein [23], gives explicit exponential

bounds. We also improve on some details for unique games.

Finally, in Chapter 6, some of the applications of parallel repetition are shown, to

understand the importance of this problem in the field of computational complex-

ity.

1.4 Goal of the thesis

The goal of this thesis is to get introduced to the concept of interactive proof

systems. We want to understand the behaviour of these protocols through its ab-
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straction in game theoretical terms. We are specifically interested in understanding

the problem in the parallel repetition of two-prover interactive proof systems, why

does this problem arise, how it has been solved and which special cases can be

solved in simpler ways.

Specifically, we formally develop several thoughts and theorems that were only

sketched or informally stated in other papers. This hepls understanding how par-

allel repetition works in a deeper and more technical way. Furthermore, we are

interested in games with the uniqueness property, and some concepts and simpli-

fications related to this special class of games are studied in detail.



Chapter 2

Games: definitions and basic

properties

2.1 Games

A one-player game G is a tuple (X,π,A, V ) where:

• X is a finite set whose elements represent questions that can be asked to the

player.

• π is a probability distribution over the set X. This is, a function π : X →

[0, 1] such that
∑

x∈X π(x) = 1. We assume that the values taken by the

function are rational numbers.

• A is a set whose elements represent the possible answers of the player.

• V is a function V : X ×A→ {0, 1} which represents the verifier (or referee)

of the game, who determines for a question x ∈ X and an answer a ∈ A

whether the game is won or lost.

A strategy for the player can be represented as a function P : X → A from

questions to answers, meaning the player would answer P (x) when asked question

8
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x. We define the value of a game as the probability of winning of a player with

an optimal strategy, this is the one that maximizes this probability. We call ω(G)

the value of the game G. This is,

ω(G) = max
P

{
Pr
x∼π

[V (x, P (x)) = 1]
}
,

where P ranges over all possible strategies. Expanding the probablity, this is the

same as

ω(G) = max
P

{∑
x∈X

π(x)V (x, P (x))

}
,

where, again, P ranges over all possible strategies.

We call a game G trivial if ω(G) = 1.

2.1.1 Multi-player and bounded rounds

Two generalizations can be made to the previously defined concept of game: first,

instead of one player, one can define a game in which k players are involved. This

implies having a question set and an answer set for each one, as well as a function

V defined over all players.

Second, the number of times the referee can ask questions to the players (and

receive their answers) can be greater than one. Every time that questions are

asked and answers are received, it is said that a round of the game has been

played. For reasons to be shown, we are interested in games with two players

which are played only for one round, which are now defined.

2.1.2 Two-player one-round games

A two-player one-round game is a tuple G = (X,Y, π,A,B, V ):
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• X and Y are finite sets that represent the questions that can be asked to the

first and second player respectively.

• π is a probability distribution over X × Y .

• A and B are finite sets that represent the possible answers of the first player

and second player respectively.

• V is a function V : X × Y ×A×B → {0, 1} which determines the result of

the game.

Strategies for the players P1 and P2 can be represented as functions P1 : X → A

and P2 : Y → B. We define the value of the game as the probability of winning of

a pair of players with an optimal strategy. This is,

ω(G) = max
P1,P2

{
Pr

(x,y)∼π
[V (x, y, P1(x), P2(y)) = 1]

}
,

where P1, P2 range over all possible pairs of strategies. Expanding the probablity,

this is the same as

ω(G) = max
P1,P2

 ∑
(x,y)∈X×Y

π(x, y)V (x, y, P1(x), P2(y))

 ,

where, again, P1 and P2 range over all possible pairs of strategies.

Typically, we will use Q to denote the support of π, this is, the set of questions

(x, y) ∈ X × Y such that π(x, y) > 0.

2.2 Repetition

The value of a game is usually also called the error of that game. We are interested

in the decrease of the error of two-player one-round games when they are played
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several times, this is, when they are repeated.

In order to model the sequential repetition of a game, we give several questions

to each player, but we force their stategies to reply each question individually.

In contrast, in order to model the parallel repetition of the game, we allow the

strategies to decide the answer to one particular question by looking at all ques-

tions simultaneously. Before we define this formally, we need some notation.

We define the product distribution π over (X × Y )n by

π(((x1, y1), . . . , (xn, yn))) =
n∏
i=1

π(xi, yi).

Note that the support of π is Qn.

We will also use

Qn = {((x1, . . . , xn), (y1, . . . , yn)) ∈ Xn × Y n : ((x1, y1), . . . , (xn, yn)) ∈ Qn},

a set with the same questions as Qn but distributed differently. We define a

separator function s : Xn × Y n → (X × Y )n as

s((x1, . . . , xn), (y1, . . . , yn)) = ((x1, y1), . . . , (xn, yn)).

Note that Qn = s−1(Qn). This is also defined as expected for probability distri-

butions. We often will use (x, y) ∼ π when we strictly mean (x, y) ∼ s−1(π). Also

we often will use (x, y) ∈ Qn when we strictly mean (x, y) ∈ Qn.

We define a sequential strategy for the first player as a sequence of functions



Chapter 2: Games: definitions and basic properties 12

P1 = (P11, . . . , P1n) where P1i : X → A and similarly for the second player.

We define the value of a game sequentially repeated n times as

ωs(G,n) = max
P1,P2

{
Pr

(x,y)∼π

[
n∏
i=1

V (xi, yi, P1i(xi), P2i(yi)) = 1

]}
,

where P1, P2 range over all sequential strategies.

If we deal with one-round games, no more than one round can be played, and

so, sequential repetition is impossible. For this reason, the concept of parallel

repetition was introduced. The parallel repetition of a G is the following process:

both players are asked n questions, each one answers with n answers. There is

a joint evaluation of the answers, and the result is given. Formally, we define a

parallel strategy for P1 as a sequence of functions P1 = (P11, . . . , P1n) such that

every P1i : Xn → A and we define P2 analogously. If G = (X,Y, π,A,B, V ), then

we define

ωp(G,n) = max
P1,P2

{
Pr

(x,y)∼π

[
n∏
i=1

V (xi, yi, P1i(x), P2i(y)) = 1

]}
,

where P1 and P2 range over all parallel strategies.

We define Gn to be the game G multiplied by itself n times. This is, if

G = (X,Y, π,A,B, V ), then Gn = (Xn, Y n, π, An, Bn, V ) where

V (x, y, P1(x), P2(y)) =
n∏
i=1

(xi, yi, P1i(x), P2i(y)).

Note that

ωp(G,n) = ω(Gn).

We are interested in comparing sequential and parallel repetition. We will now
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show that sequential repetition decreases the error of a game exponentially, this

is, if the value of a game is δ, the value of the sequential repetition will be δn,

assuming the game has been repeated n times.

Theorem 2.2.1 For every game G and every n we have,

ωs(G,n) = ω(G)n.

Proof We will show that ws(G,n) = w(G)n. Let the strategies for position i be

P1i and P2i, and let the strategies used for all them be the optimal ones. Then,

ωs(G,n) =
∑

(x,y)∈Qn
π(x, y)

n∏
i=1

(xi, yi, P1i(x), P2i(y)).

Since the probability distribution is a product distribution

ωs(G,n) =
∑

(x1,y1)∈Q

· · ·
∑

(xn,yn)∈Q

n∏
i=1

π(xi, yi)V (xi, yi, P1i(xi), P2i(yi))

and, since the games are played independently, by distributivity,

ωs(G,n) =
n∏
i=1

∑
(xi,yi)∈Q

π(xi, yi)V (xi, yi, P1i(xi), P2i(yi)).

Now, as we know that the definition of the value of a single game is

ω(G) =
∑

(x,y)∈Q

π(x, y)V (x, y, P1(x), P2(y))

and each of the sums is a particular game, we have,

ωs(G,n) =
n∏
i=1

ω(Gi).
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Since every game Gi = G,

ωs(G,n) = ω(G)n.

And this completes the proof. 2

It might look intuitively obvious that the parallel repetition of a two-player one-

round game is equivalent to the sequential one, this is, equal to ω(G)n. However,

this was proven wrong [13], and we will see the reasons for it in the next chapter.

2.3 Particular classes of games

There are some classes of games defined imposing some restrictions on some of the

parameters defined before. Some of these, interesting in our study, are:

• Uniform games: the probability distribution is uniform over the support Q.

• Free games: uniform games with full support, this is Q = X × Y .

• Games of no-information: the distribution probability over the set of pairs

of questions is a product distribution, this is, π(x, y) = πX(x)πY (y) where

πX and πY are probability distributions over X and Y respectively.

• Unique games: for every answer from the first player, exactly one answer is

winner for the second player, this is, for every x ∈ X, y ∈ Y , and a ∈ A, there

is exactly one b ∈ B such that V (x, y, a, b) = 1, and also, for every x ∈ X,

y ∈ Y , and b ∈ B, there is exactly one a ∈ A such that V (x, y, a, b) = 1.

Clearly, free games are a particular case of uniform games and also those are a

particular case of no-information games. Also, the uniqueness property can be

combined with any of the other existing games. For example, there can be games

that are unique and free.
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2.4 Randomized starategies

As defined before, a strategy is a function that goes from a set of questions to a

set of answers. For a given player, it defines his behaviour when asked specific

questions. Usually, strategies are supposed to be deterministic. However, other

types of strategies are defined. In this case, we are interested in randomized strate-

gies. Their behaviour is the following: at every question, it is randomly decided

which pair of strategies will be used according to some probability distribution and

then, the questions are answered according to the selected strategies. Formally, a

randomized strategy P̂ is a function P̂ : (Q,Ω)→ A, where Ω is the base set of a

probability distribution ρ.

In some cases, we are interested in assuring the existence of a deterministic strat-

egy with, at least, a certain value, but it is easier to define an randomized one, such

that one can show that the value of a deterministic strategy will be larger. Here

we prove that, for every randomized strategy for a game, it always exists a deter-

ministic strategy for that game whose winning probability is, at least, the value

of the randomized one. For that reason, we define ω(G,P1, P2) as the winning

probability of a game using P1 and P2 as strategies. In the case the strategies used

are randomized strategies P̂1 and P̂2 with probability distribution ρ, the winning

probability is defined as

ω(G, P̂1, P̂2) = Pr
s∼ρ

 ∑
(x,y)∈Q

π(x, y)V (x, y, P̂1(x, s), P̂2(y, s))

 .
The random seed s ∼ ρ is usually called shared randomness because it is seen by

both players at the same time.

We also define ω̂(G) to be the value of G using optimal randomized strategies,
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this is

ω̂(G) = max
P̂1,P̂2
ρ

Pr
s∼ρ

 ∑
(x,y)∈Q

π(x, y)V (x, y, P̂1(x, s), P̂2(y, s))

 ,

where ρ ranges over all probability distributions and P̂1 and P̂2 range over all

randomized strategies with distribution ρ.

We want to show the following.

Theorem 2.4.1 For every game G and every pair of randomized strategies P̂1

and P̂2 there exists a pair of deterministic strategies P ∗1 and P ∗2 such that

ω(G, P̂1, P̂2) ≤ ω(G,P ∗1 , P
∗
2 ).

Proof Let G be a game and let P̂1 and P̂2 be randomized strategies, whose prob-

ability distribution is ρ : Ω→ [0, 1], and we will define P ∗1 and P ∗2 as deterministic

strategies. The winning probability of G using the randomized strategies P̂1 and

P̂2 is

ω(G, P̂1, P̂2) = Pr
s∼ρ

 ∑
(x,y)∈Q

π(x, y)V (x, y, P̂1(x, s), P̂2(y, s))

 .
This can be developed as

ω(G, P̂1, P̂2) =
∑
s∈Ω

ρ(s)
∑

(x,y)∈Q

π(x, y)V (x, y, P̂1(x, s), P̂2(y, s)).

Now, we can argue there exists a s∗ such that

ω(G, P̂1, P̂2) ≤
∑

(x,y)∈Q

π(x, y)V (x, y, P̂1(x, s∗), P̂2(y, s∗)). (2.1)
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Otherwise, since

ω(G, P̂1, P̂2) =
∑
s

ρ(s)
∑

(x,y)∈Q

π(x, y)V (x, y, P̂1(x, s∗), P̂2(y, s∗))

and, for every s we would have that

∑
(x,y)∈Q

π(x, y)V (x, y, P̂1(x, s), P̂2(y, s)) < ω(G, P̂1, P̂2),

we could conclude that

ω(G, P̂1, P̂2) <
∑
s

ρ(s)ω(G, P̂1, P̂2).

Reformulated, this is

ω(G, P̂1, P̂2) < ω(G, P̂1, P̂2)
∑
s

ρ(s).

Since ρ is a probability distribution, this is

ω(G, P̂1, P̂2) < ω(G, P̂1, P̂2)

which is a contradiction, and, therefore our claim about the existence of s∗ is true.

We define the strategies P ∗1 and P ∗2 as

P ∗1 (x) = P̂1(x, s∗),

P ∗2 (y) = P̂2(y, s∗).

Substituting these into (2.1),

ω(G, P̂1, P̂2) ≤
∑

(x,y)∈Q

π(x, y)V (x, y, P ∗1 (x), P ∗2 (y)).
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And, since the right-hand side is ω(G,P ∗1 , P
∗
2 ) this completes the proof. 2

Since deterministic strategies are particular cases of randomized strategies in which

randomness is ignored, we get the following corollary.

Corollary 2.4.2 For every game G,

ω(G) = ω̂(G).

2.5 Application of the embedding technique

Here we present a proof which makes use of the previous theorem and is based

on the embedding technique. This technique consists in the following: suppose we

want to prove that a game concerning n questions has a value greater or equal to

another game concerning m questions, where m is greater than n. One way to

operate is to extend every input of the n-question player until it is of length m by

adding random questions. Then, using the m-question player, those questions are

answered in a winning way with the required value. Finally, only the answers to

the original questions are considered, so the n-question game is answered with the

required value. However, there are some concerns about probability distribution

which have been omitted, since the values of the strategies are related to some

determined probability distribution which must be preserved in the non-original

questions. To exemplify all this, we prove the following theorem.

Theorem 2.5.1 Let n and m be integers, and let G be a game. If n ≤ m, then

ω(Gm) ≤ ω(Gn).

Proof We have deterministic optimal strategies Pm1 and Pm2 for Gm and we want

to define deterministic strategies Pn1 and Pn2 for Gn. We consruct randomized

strategies P̂n1 and P̂n2 for Gn. The process of P̂n1 , given the sequence of questions
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(x1, . . . , xn) and a random seed s, is the following: First, use shared randomness

s to generate a sequence of questions ((xn+1, yn+1), . . . , (xm, ym)) according to

probability distribution ρ, where ρ is defined as ρ(s) = πm−n(s) for every s, where

πk(q1, . . . , qk) =
∏k
i=1 π(qi) for every k.

Then, use Pm1 to obtain answers to the sequence (x1, . . . , xn, xn+1, . . . , xm). If

Pm1 ((x1, . . . , xm)) = (a1, . . . , am), then, we set P̂n1 ((x1, . . . , xn)) = (a1, . . . , an).

The other player, P̂n2 , can be defined analogously using y’s and b’s.

Then, since Pm1 and Pm2 are optimal strategies for Gm,

ω(Gm) = ω(Gm, Pm1 , Pm2 ).

But, due to the embedding, those have been the strategies used to answer the

questions by strategies P̂n1 and P̂n2 , and so

ω(Gm) = ω(Gn, P̂n1 , P̂
n
2 ).

Now, using theorem 2.4.1, we define Pn1 and Pn2 as those deterministic strategies

such that ω(Gn, P̂n1 , P̂
n
2 ) ≤ ω(Gn, Pn1 , P

n
2 ). Therefore,

ω(Gm) ≤ ω(Gn, Pn1 , P
n
2 ).

Since all strategies have less value than the optimal one,

ω(Gm) ≤ ω(Gn).

This completes the proof. 2



Chapter 3

Paradoxes

As we stated before, Fortnow [13] proved that the parallel repetition of a two-

player one-round game does not reduce the error the same way the sequential

repetition does. For that, he created a game G that, when repeated twice, does

not reduce the error as much as quadratically. In this chapter, first we will see an

example due to [16] of a game in real world, in which the fact of having a group of

people acting together provides them of a better overall strategy than any other

they could have had acting individually. Although this is a nice example of the

counter-intuitiveness of parallel repetition, it is not clear how to formalize it di-

rectly as the parallel repetition of a cooperative refereed game.

Afterwards, we will see informally the reasons why parallel repetition in actual

games does not behave like sequential repetition, and we will present two coun-

terexamples in which repeating the game does not have the expected behaviour

on its error reduction.

20
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3.1 A hundred prisoners

A prison warden is asked by the government to empty one hundred of the cells of

its prison in order to make room for new convicts. He proposes the following deal

to some of the prisoners: they will play a game that he will referee, if all of them

win it, he will liberate them all. However, in case one of them loses the game,

then the whole group will be executed. The first hundred prisoners that accept

the deal are selected to play and are led to a big room.

There, the warden explains them the game: he has put a hundred boxes in a

row, each one labeled with a number from 1 to 100, in another room. Each one of

these boxes contains the name of one of the prisoners, and every name is in exactly

one box. Then, the players enter the room one at the time. They are allowed to

look inside half of the boxes, this is, fifty of them. If the prisoner finds his name

inside one of the boxes he has looked in, he wins the game, and the turn goes to

the next prisoner. If he does not find his name in any of the fifty boxes, then the

game is lost and the group is executed. If all players manage to win the game,

then they are all freed. The rules are strict: the players can only look inside the

boxes. They cannot move them, empty them, swap the names inside, or anything

else apart from opening them and looking inside. Also, though they can talk to

each other before the first prisoner enters the room with the boxes, they cannot

communicate to each other in any way once the game has started.

The warden, who knows something about probability, is pretty confindent on the

outcome of the game. Since every player has a chance 50% of winning the game,

and the only way for them to survive is that the whole group wins the game, then
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he thinks that the probability of them winning the game and being liberated is

(
1
2

)100

<
1

1031
.

However, a clever combinatorics expert is among the group of prisoners, and be-

lieves that their chance to live is greater if they organize themselves, and the rest

of the group is willing to follow his instructions. He assigns randomly one number

from 1 to 100 to each of the prisoners, and ask them to remember their number

and also the number assigned to everybody else. Then, he asks his comrades to

proceed with a concrete strategy which is the following: first, look inside the box

with his number. If his name is inside, he is done. If not, recall the number that

has been given to the prisoner whose name is in the box, and open the box with

this number. This is repeated until the appropiate name is found, or otherwise,

until fifty boxes have been opened. The clever prisoner claims that, if they per-

form this strategy perfectly, they have an overall probability greater than 30% to

survive.

Let us see why this is, indeed, true. Let G be the directed graph where labeled

boxes are nodes and there is an arc (u, v) the name of prisoner v is inside box

u. Since all boxes have only one name inside, and only one other box has the

name corresponding to their number, every node has in-degree 1 and out-degree

1. Therefore, the graph is a collection of disjoint cycles; in other words, a permu-

tation. Now, player n starts from vertex n. Thus, in case his name is not in that

box, it is because there is a box m with his name, and, by the definition of the

graph, there exists an arc (m,n) in G, this is, his own name in box m “points”

to the box with his number. Then, we know that box n belongs to the cycle in

which box m is, so, all we have to do is to go through this cycle (as we do in the

strategy) until we reach box m. Since we know that box m is exactly the previous
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element in the cycle than the one from which we started, we will reach box m if

our cycle is, at maximum, 50 boxes long. Note that the graph can have at most

one cycle of length greater than 50.

Therefore, if there are no cycles of length greater than 50 in the graph, then

all players will find their names following the strategy, in which case the whole

game will be won. Then, the chance of the prisoners to win is equal to the proba-

bility of a random permutation to have no cycles of length greater than 50. And

if we calculate this probability, it turns out to be greater than 30%. So, when

adequately organized, the prisoners have a good chance to survive. At least way

better than acting separately.

3.2 The paradox of parallel repetition: reasons

Fortnow, Rompel and Sipser originally assumed [14] that if the players cannot

communicate to each other during the game, then the parallel runs of the game

work independently, and thus, the error reduction is exactly exponential, like in

the sequential case. However, Fortnow proved [13] that this is not always true.

Here we try to explain the idea of why the assumption happens to be wrong.

As players, we need our strategies to be optimal. Thus, from all feasible strategies,

we will choose the ones which maximize our winning probability. Now, if we com-

pare the sequential case with the parallel one, we can see that, in the sequential

case, there are some restrictions in defining the set of feasible strategies which are

relaxed (or, simply, do not exist) when looking at the parallel case. Thus, if the

restrictions defining the feasibility of the strategies are relaxed in the parallel case,

the set of feasible strategies will be a superset of the feasible ones in the sequen-
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tial case, and one could eventually find an optimal parallel strategy which is not

feasible sequentially.

The first one of these relaxations is concerning the number of arguments that

the function which defines the strategy has as input. In a sequential mode, since

only one game is played at the time, every strategy receives only one question and

answers with one answer. However, in the parallel case, strategies can be defined

over sets of a constant number of questions. Now, it is necessary to remark that

not every function which receives k inputs and gives k outputs can be the result

of merging k single-input single-output kind of functions. To put it simpler. A

function f which receives two inputs (x, y) and returns (x, x) cannot be defined

by using two independent functions on its arguments, since the second one will

not get any information of the input value of the first one, or, in other words, the

second function would not be a function, since it has to return different answers

for equal inputs.

The second relaxation is about optimality. In any case, we are interested in obtain-

ing a maximum probability of winning the whole set of games. In the sequential

case, however, all strategies defined need to be optimal with respect to a single

question. In the parallel case there is no need for such requirement. Then, in the

parallel case, one can eventually find a strategy which is better for the whole set

of questions and which is not optimal for every single one, and so, which was not

feasible in the sequential case. For these two reasons, there are strategies which

could be optimal for the whole set of questions and that are feasible only in the

parallel case.

Remark. There is a subtlety in the whole process which is necessary to remark.



25 3.3 A counterexample: Noninteractive agreement protocol

If we say the value of a game is ω ∈ [0, 1], it is usually understood that this is

the probability of winning. However, one may be confused thinking that, when n

questions are given, ω is the fraction of those which are answered in a winning way.

This is completely erroneous. What ω represents is, when all games are played,

the probability that all of them are won. It is important to note that these to

values do not need to be the same at all.

3.3 A counterexample: Noninteractive agreement pro-

tocol

Here we describe the game proposed by Fortnow, called Noninteractive agreement

protocol, and explain why the reduction of the error when the game is repeated

twice in parallel is not quadratical. The game has the following properties:

• Q = X × Y and π is the uniform distribution

• X = Y = A = B = {0, 1}

• V (x, y, a, b) = (x ∨ a 6= y ∨ b)

For this game, ω(G) = 1/2. First, we see that ω(G) ≥ 1/2 because there exists

a strategy for the provers such that they win half of the times they play. This

strategy is, for every player, to answer with the same value of the question. We

can see that, when the questions are x = 0, y = 0 or x = 1, y = 1, the condition

is not satisfied. On the other hand, when the questions are x = 0, y = 1 and

x = 1, y = 0, the game is won. Since the probability distribution for the questions

is uniform, this strategy wins half the times it is played on average.

Now to check that ω(G) ≤ 1/2 we only have to see that no more than half of

the possible questions are solved whatever the strategy is. First, it is obvious that
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for questions x = 1, y = 1, the game is never won. Second, when the questions are

x = 0, y = 1 and x = 1, y = 0, the only way of winning is to assure that the player

which receives a 0, answers with a 0. Since this happens once for each player,

the strategies for both players have to behave this way. Finally, for questions

x = 0, y = 0, the only way to win is that the answers of the players are different.

Since this is incompatible with the previous requirement, either this one or one of

the previous cannot be fulfilled, and thus, no more than half the games can be won.

Now, we repeat this game twice in parallel. This is: every player receives two

questions, returns two answers and the whole game is won if and only if the first

questions are winningly responded with the first answers and the second questions

are winningly responded with the second answers. Formalizing a bit, P1 is given

x1 and x2 and answers with a1 and a2. The same for P2 with y’s and b’s. The

game is won if and only if

((x1 ∨ a1) 6= (y1 ∨ b1)) ∧ ((x2 ∨ a2) 6= (y2 ∨ b2)). (3.1)

If sequential and parallel case were the same, the value ωp(G, 2) would be equal

to ωs(G, 2) and would have a value of ω(G, 2) = ω(G)2 = (1/2)2 = 1/4. So, if we

show that ωp(G, 2) > 1/4, the assumption that sequential and parallel were the

same would be refused by contradiction.

And, in fact, this can be done. There is an strategy for the repeated game such

that ωp(G, 2) = 3/8. This strategy is the following: for both players, if the pair of

questions received is (0, 0), answer with (0, 0). Otherwise, answer with (1, 1). Now,

we see why this strategy wins 3/8 of the times. First, note that π is uniform and

every possible set of questions will be asked with equal probability. Then, let us

understand what the strategy is doing over the condition: when the prover receives
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(0, 0), it answers with (0, 0), making one side of (3.1) to be 0 (since 0 ∨ 0 = 0). In

any other case, it makes everything 1. From all possible 16(= 24) questions, there

are 4 in which (x1, x2) = (0, 0) and 4 in which (y1, y2) = (0, 0). Since one of them

is repeated in both sets (the case ((0, 0), (0, 0))), there is a total of 7 cases out of 16

in which at least one of the provers receives questions (0, 0). In all these cases, the

side of (3.1) relative to the prover that receives (0, 0) will be 0. And the other side

will be 1 if the other prover does not receive (0, 0) also. Since this only happens

once, the inequalities hold for the other 6 cases. Thus, in 6 out of 16 cases, the

condition holds, making ωp(G, 2) = 6/16 = 3/8 > 1/4. This is, if the game is

played twice, the error is not reduced as much as it is expected, and thus, par-

allel repetition does not decrease the error the same way sequential repetition does.

It is important to note that the improvement on the strategy of the provers is

due to the fact that it is defined over sets of constant number of questions (in

this case, two questions). As explained above, this strategy would not be allowed

in sequential mode, since we are not allowed to answer the same question with

different answers.

3.4 A multiplayer counterexample

Feige [9] suggested a multiplayer version of the previous game, in which repeating

the game the same amount of times as the number of participating players, the

value remains the same. This is interesting, because the argument for this looks

completely different that the reasoning behind the previous example.

Let t be an integer. We describe the game for k players with the following prop-

erties:
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• X1 = . . . = Xk = {0, . . . , t−1} are the question sets of the players. Consider

xi to be the question to player i.

• A1 = . . . = Ak = P ×M where P = {1, . . . , k} and M = {0, . . . , t − 1}.

Consider the pair (pi,mi) to be the answer of player i.

• The game is won if the following condotions hold:

– For every i, j ∈ {1, . . . , k}, it holds that pi = pj .

– If pi = u for every i ∈ {1, . . . , k}, then mu = xu.

– The sum of all mi’s must be a multiple of t, this is,
∑k

i=1mi = 0 (mod

t).

Now we want to show that ω(G) = ω(Gk). First, let us see the value of ω(G).

Lemma 3.4.1 If G is the previously described game, ω(G) ≤ 1/t.

Proof We have to show that the best possible strategy has value 1/t. To satisfy

the first condition, the first component of the answers of all players must be the

same. Let us assume without loss of generality that this answer is i. Then, the

second condition forces us to mi = xi. Now, having fixed all questions for the

players except for question xi, there is one and only one mi for which the last

condition holds. But mi = xi and xi is chosen randomly out of t possibilities.

Therefore, the game is won with probability at most 1/t. 2

Now, we want to see that the value of ω(Gk) is also 1/t.

Lemma 3.4.2 If G is the previously described game, ω(Gk) ≥ 1/t.

Proof Now, every player receives k questions and has to answer with k pairs.

Player i receives questions x1
i , . . . , x

k
i . The strategy for player i is to answer ques-

tion j for j ∈ {1, . . . , k} with the pair (j, xii). This is, the position of the ques-

tion as first component and a fixed value for all the second components, which
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is the value of one of the questions. Then, the players succeed if and only if∑k
i=1 x

i
i = 0 (mod t), which has probability 1/t to be true. Therefore, this strat-

egy wins with probability at least 1/t. 2

By the previous lemmas it is shown that

ω(G) ≤ ω(Gk),

but now, by Theorem 2.5.1,we can conclude the following.

Corollary 3.4.3 If G is the previously described game, ω(G) = ω(Gk).

And so, repeating in parallel the game k times does not decrease its error at all.

3.5 The parallel repetition conjecture

Feige and Lovász proposed in [11] a Parallel Repetition Conjecture. We have

seen in this chapter that parallel repetition does not decrease the error of a game

the same way sequential repetition does. However, they conjectured that it still

reduces the error exponentially. Formally, for every game G,

ω(G) < 1⇒ lim sup
k→∞

(ω(Gk))1/k < 1.

In the following chapters we will see some properties of parallel repetition, how

this conjecture has been proved for particular cases and also in the general case.
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Parallel repetition in particular

cases

In this chapter we present two particular cases of parallel repetition: first, we show

how the parallel repetition of non-uniform games can be bounded using bounds for

the parallel repetition of uniform games, and how those weaken depending on the

non-uniformity. Afterwards, we present a simple proof of the parallel repetition

theorem that holds for all no-information games with the uniqueness property.

4.1 Reduction to uniform games

When analyzing games, some of the techniques used to bound their values are

useful only when considering uniform games. Feige [9] states that, if we consider

the uniform version of a game, the bounds obtained give weaker bounds for the

original game. We are interested in making these bounds explicit.

First, let us formally define the versions of a game.

Definition 4.1.1 Let G = (X,Y, π,A,B, V ) be a game with Q being the support

30
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of π, we define Gu = (X,Y, πu, A,B, V ), with πu being the uniform distribution

over Q, to be the uniform part of G.

Recall that a game is called trivial if ω(G) = 1. Note that, if G is non-trivial, Gu

is also non-trivial, since the support of both probability distributions is the same.

Definition 4.1.2 Let G = (X,Y, π,A,B, V ) be a game with Q being the support

of π and let Gu be its uniform part with distribution probability πu as defined before.

We define Gn = (X,Y, σ,A,B, V ) with

σ(x, y) =
π(x, y)−min {π(q) : q ∈ Q}

1− p

for every (x, y) ∈ Q where p = |Q|min {π(q) : q ∈ Q}, to be the non-uniform part

of G.

Note here that now non-triviality is not guaranteed, since at least one question

becomes impossible its probability becomes zero.

The following theorem is pretty straight-forward, but its proof can help to un-

derstand some of the insights of the next theorem, so, it is presented in detail.

Theorem 4.1.3 Let G = (X,Y, π,A,B, V ) be a non-trivial game and let Gu and

Gn be its uniform and non-uniform parts respectively. Then,

ω(G) ≤ pω(Gu) + (1− p)ω(Gn)

where p = |Q|min {π(q) : q ∈ Q}.

Proof Remember, by the definition of ω(G) we have

ω(G) =
∑

(x,y)∈Q

π(x, y)V (x, y, P1(x), P2(y)).
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where P1 and P2 are the optimal strategies for G. From now on will write Vxy for

V (x, y, P1(x), P2(y)). Now, let m = min {π(q) : q ∈ Q}, we add and substract the

same to get

ω(G) =
∑
x,y

π(x, y)Vxy + (m−m)
∑
x,y

Vxy.

We get a common factor in the first two elements obtaining

ω(G) = m
∑
x,y

Vxy +
∑
x,y

(π(x, y)−m)Vxy,

and now,

ω(G) =
|Q|
|Q|

m
∑
x,y

Vxy +
1− p
1− p

∑
x,y

(π(x, y)−m)Vxy.

Entering some elements into the sums, it holds that

ω(G) = |Q|m
∑
x,y

1
|Q|

Vxy + (1− p)
∑
x,y

π(x, y)−m
1− p

Vxy,

which, since p = |Q|m, the uniform distribution is πu and σ(x, y) = π(x,y)−m
1−p , is

ω(G) = p
∑
x,y

πu(x, y)Vxy + (1− p)
∑
x,y

σ(x, y)Vxy.

Therefore,

ω(G) ≤ pω(Gu) + (1− p)ω(Gn)

And this completes the proof. 2

Before presenting the next theorem, we need to introduce a statistical concept,

namely Chernoff bounds [20]. Let x1, . . . , xn be independent random binary vari-

ables such that they take value 1 with probability p and value 0 with proba-

bility 1 − p. Note that E[xi] = 1p + 0(1 − p) = p. Let x =
∑n

i=1 xi. Then

E[x] =
∑

iE[xi] = np by linearity of the expected value. The Chernoff bounds
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give us upper and lower-bounds on the probability of X deviating from its expected

value E[x].

Theorem 4.1.4 Let X be defined as above. For every ε ∈ (0, 1),

Pr[x > (1 + ε)E[x]] ≤ e−ε2np/3

and

Pr[x < (1− ε)E[x]] ≤ e−ε2np/2.

Note that

Pr[x < (1− ε)np] =
∑
S⊆[n]

|S|≤(1−ε)np

p|S|(1− p)n−|S|.

This will be used later on.

Now, we prove the following result, concerning the upper bounds on ω(Gn) that

can be obtained by analysing its uniform version. The intuition is the same as in

the previous proof, but now, we can give useful bounds that are tighter with big

p’s, this is, when the uniform part of the game has more weight.

Theorem 4.1.5 Let ε > 0, and n > 0 be an integer. Let G = (X,Y, π,A,B, V )

be a game and let Q be the support of π. Then

ω(Gn) ≤ ω(G(1−ε)pn
u ) + e−ε

2pn/2

where Gu is the uniform part of G and p = |Q|min{π(x, y) : (x, y) ∈ Q}.

Proof First, remember the definition of the parallel repetition of a game:

ω(Gn) =
∑

(x,y)∈Q

π(x, y)V (x, y, P1(x), P2(y)),
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where P1 and P2 are the optimal strategies. Now, expanding it,

∑
(x,y)∈Q

n∏
i=1

π(xi, yi)V (xi, yi, P1i(x), P2i(y)).

We wil use Vx,y,i for V (xi, yi, P1(x)i, P2(y)i). Here, using the idea and the σ of

Theorem 4.1.3, we have,

∑
(x,y)∈Q

n∏
i=1

(
p

1
|Q|

+ (1− p)σ(xi, yi)
)
Vx,y,i.

Using the identity
n∏
i=1

(ai + bi) =
∑
S⊆[n]

∏
i∈S

ai
∏
i/∈S

bi,

this is ∑
(x,y)∈Q

∑
S⊆[n]

∏
i∈S

p
1
|Q|

Vx,y,i
∏
i/∈S

(1− p)σ(xi, yi)Vx,y,i.

Now, we can bound ω(Gn) from above by considering Vx,y,i = 1. Also, we get p

and (1− p) out of the products, and we get

∑
(x,y)∈Q

∑
S⊆[n]

p|S|(1− p)n−|S|
∏
i∈S

1
|Q|

Vx,y,i
∏
i/∈S

σ(xi, yi).

Exchanging the position of the sums, we can also take some more elements out of

the innermost sum, obtaining

∑
S⊆[n]

p|S|(1− p)n−|S|
∑

(x,y)∈Q

∏
i∈S

1
|Q|

Vx,y,i
∏
i/∈S

σ(xi, yi).

Now we divide the innermost sum into two:

∑
S⊆[n]

p|S|(1− p)n−|S|
∑

(xj,yj)∈Q
j/∈S

∑
(xj,yj)∈Q

j∈S

∏
i/∈S

σ(xi, yi)
∏
i∈S

1
|Q|

Vx,y,i.
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And then, since the product of the elements not in S is independent of the ones

in S, we take it out of the innermost sum, getting

∑
S⊆[n]

p|S|(1− p)n−|S|
∑

(xj,yj)∈Q
j/∈S

∏
i/∈S

σ(xi, yi)
∑

(xj,yj)∈Q
j∈S

∏
i∈S

1
|Q|

Vx,y,i.

We define randomized strategies P1S and P2S as follows. The process of P1S given

(xj : j ∈ S) and random seed s is: first, generate ((xj , yj) : j ∈ S) using shared

randomness s. Then, get a = P1((xi : i ∈ [n])) and reply with (aj : j ∈ S). The

same for P2S given (yj : j ∈ S) and random seed s: first, generate ((xj , yj) : j ∈ S)

using shared randomness s. Then, get b = P2((yi : i ∈ [n])) and reply with

(bj : j ∈ S).

Now, we define Ω = {((xj , yj) ∈ Q : j /∈ S)} and ρ(((xj , yj) : j /∈ S)) =∏
i/∈S σ(xi, yi). Then, substituting the latter in the equation,

∑
S⊆[n]

p|S|(1− p)n−|S|
∑
s

ρ(s)
∑

(xj,yj)∈Q
j∈S

∏
i∈S

1
|Q|

V (xi, yi, P1S(x′, s), P2S(y′, s)).

where x′ = (xj : j ∈ S) and y′ = (yj : j ∈ S).S The latter part is now the

definition of the value of a game with randomized strategies, using random seed

s. Therefore, this is at most

∑
S⊆[n]

p|S|(1− p)n−|S|ω̂(G|S|u ).

By corollary to the Theorem (2.4.1), this is

∑
S⊆[n]

p|S|(1− p)n−|S|ω(G|S|u ).
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Dividing the elements of the sum depending on the cardinality of S,

∑
S⊆[n]

|S|<(1−ε)pn

p|S|(1− p)n−|S|ω(G|S|u ) +
∑
S⊆[n]

|S|≥(1−ε)pn

p|S|(1− p)n−|S|ω(G|S|u )

Using Theorem 4.1.4 we bound the first sum, and using Theorem 2.5.1 we bound

the second sum, obtaining

e−ε
2pn/2 +

∑
S⊆[n]

|S|≥(1−ε)pn

p|S|(1− p)n−|S|ω(G(1−ε)pn
u ).

Since the value of a game is now independent of S, we can take it out of the sum,

getting

e−ε
2pn/2 + ω(G(1−ε)pn

u )
∑
S⊆[n]

|S|≥(1−ε)pn

p|S|(1− p)n−|S|.

Finally, we can bound the sum by 1, and so, it finally holds that

ω(Gn) ≤ ω(G(1−ε)pn
u ) + e−ε

2pn/2

And this completes the proof. 2

4.2 Unique games of no-information

In this section, we present a specific way to determine upper-bounds on ω(Gn)

when G is a no-information game with the uniqueness property. These method

was briefly presented by Feige [9] based on ideas of Peleg [27]. Remember that a

game has the uniqueness property if for any (x, y) ∈ Q and for any answer a from

the first player, there is only one answer b from the second player such that the

game is won, and also the other way around, for any answer b from the second

player, there is only one answer a from the first player such that the game is won.
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We can define a weaker condition, relaxing one of the sides of the constraint.

Definition 4.2.1 A game G is one-way unique with respect to the second player

if, for any (x, y) ∈ Q, for ever answer a from first player there is one and only

one possible answer b from the second which is winner.

The definition with respect to the first player is obviously analogous. We also need

to define an extension to the concept of value of a game, to express it as a function

of the kind of repetition used by each one of the players.

Definition 4.2.2 For every game G and every integer n, we define ωxy(Gn) where

x, y ∈ {s, p} as the winning probability of the optimal strategies such that P1 re-

ceives questions in mode x and P2 receives questions in mode y, meaning s the

sequential mode of operation and p the parallel one.

To prove the desired bound, we need first to prove the following lemma, which

bounds ωpp(Gn) in terms of ωps(Gn), this is, sequentilizing one of the provers. We

consider the game to be free for simplicity, and we will see later that everything

is equivalent for the no-information case.

Lemma 4.2.3 For every free one-way unique game G and every integer n,

ωpp(Gn) ≤ 2
√
ωps(Gn)

Proof Let M be a matrix in which every row corresponds to a n-tuple of questions

x ∈ Xn and every column, corresponds to a n-tuple of questions y ∈ Y n. Then,

an entry Mxy of the matrix defines the situation in which the first player receives

questions xi and the second player receives questions y. Then, given two optimal

strategies P1 : Xn → An and P2 : Y n → Bn for the players, Mxy will be 1 if the

game is won (this is, if it holds that V (x, y, P1(x), P2(y)) and 0 if this is not the case.
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Now, let r be the number of rows of M and c its number of columns. Then,

since every entry represents one of the possible questions of the repeated game,

the ratio of 1-entries in M is equal to the winning probability of that game. This

is,

ω(Gn) =
|M |1
rc

.

where |M |1 is the total number of 1-entries of the matrix.

Then, if we can bound the number of 1’s in M from above, that will be an upper-

bound of the value of the repeated game.

Definition 4.2.4 Procedure ”Column delete”: Let m be the row with the maxi-

mum number of 1 entries. Delete from M all the columns in which row m has a

1.

Claim 4.2.5 The number of 1 entries deleted by “Column delete” is at most

ωps(Gn)rc.

Proof Let x∗ be the row with the maximum number of ones in it. Let S be the

set of columns where this row has 1-entries. We will construct a sequential strat-

egy P2s that behaves exactly like P2 for all columns in S. If that strategy exists,

that would prove that the number of 1-entries deleted by the procedure “Column

delete” would be at most ωps(Gn)rc.

Procedure “Column delete” deletes all columns y in S. Then, we can consider

without loss of generality that all entries in row x∗ are 1’s. This is because all

other cases would have less columns involved, this is a lower number of potential

1’s involved, and thus, bounding the worst case scenario is enough.

Now, since all entries in x∗ are 1’s, this means that the answers from P2 succeed
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for every column in S with the answers of P1 in row x∗. That is,

V (x∗, y, P1(x∗), P2(y)) = 1

for every y in S. Since the game is one-way unique, this means that, for x∗ and

a∗, for every j, if yj ∈ S, then yj is answered with the one and only bj which is a

winning answer.

Let x∗ = (x1, . . . , xn) and a∗ = (a1, . . . , an), yj = (y1, . . . , yn), and bj =

(b1, . . . , bn). For every question yi, there is a corresponding xi with answer ai,

so, by one-way uniqueness, there is only one possible bi which is winner. Then,

if we consider the parallel strategy used to fulfill the matrix, since xi and ai are

fixed (because they belong to the maximum row), for all tuple of questions y that

have question yi in the same position (this is, corresponding to the xi and ai of

row x∗ when evaluating), then the answer of the prover for that specific question

will always be the same, independently of the other questions in the tuple. That

is, for every y = (y1, . . . , yn) and y′ = (y′1, . . . , y
′
n) in S with yi = y′i = y, we have

P2(y)i = P2(y′)i.

Now we can construct a sequential strategy P2s from P2. Given a question y

in position i, if there is any column y = (. . . , y, . . .) such that has question y in po-

sition i, then, answer with (P2(. . . , y, . . .))i. Otherwise, answer with an arbitrary

element of its answer set.

Then, using this sequential player, the result is the same as using the parallel

one, so the number of 1-entries deleted by the procedure “Column delete” will be

at most ωps(Gn)rc, completing the proof of the claim. 2
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Now, we calculate the limits on the use of this procedure. The procedure is iterated

I times, until there are no rows with more than K 1-entries. We know that at every

iteration at least K columns will be deleted (because is the minimum number of 1

entries that a row selected as maximum row in the procedure will have), then we

can bound the number I by dividing the total number of columns by the minimum

of them which will be removed in each iteration. This is

I ≤ c

K

Now, we can also bound the number of 1 entries that have been deleted during

the process. This number is at most Iωps(Gn)rc, this is, the maximum number of

iterations by the maximum number of 1-entries deleted in each one. Also, since

now we know that none of the rows left have more than K 1-entries, the maximum

number of 1-entries remaining in the whole matrix is rK, this is, the number of

rows by the maximum of 1-entries per row that are feasible. As a result of all this,

the total number of 1-entries in M is, at most, the number of deleted 1-entries by

the number of remaining ones. This is,

|M |1 ≤
c

K
ωps(Gn)rc+ rK

Now, everything is known except for K. Since we want our bound to be as tight

as possible, we want to optimize our function over K to be the mimimum possible.

Then, if

f(K) =
c

K
ωps(Gn)rc+ rK,

differentiating,

f ′(K) = − c

K2
ωps(Gn)rc+ r,
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We consider f ′(K) = 0 to find the minimum, this is

f ′(K) = 0⇒ K =
√
ωps(Gn)c.

Substituting it into f(K) we obtain

|M |1 ≤
c√

ωps(Gn)c
ωps(Gn)rc+

√
ωps(Gn)rc = 2

√
ωps(Gn)rc.

And now, considering the value of the repeated game,

ω(Gn) =
|M |1
rc
≤

2
√
ωps(Gn)rc
rc

= 2
√
ωps(Gn).

And this completes the proof of the lemma. 2

Now, using this lemma, we can bound ωpp(Gn) in terms of ωps(Gn) by sequentializ-

ing the second player. If we apply the lemma again over, we can also sequentialize

the first player, obtaining a bound in terms of ωss(Gn), which is known to be equal

to ω(G)n. Therefore, the following corollary to the lemma arises.

Corollary 4.2.6 For any free and unique game G and for any integer n, ω(Gn) ≤

2
√

2ω(G)n/4.

Using this corollary, we want to prove the following tighter bound. We will show

that the constant before ω(G)n/4 cannot be greater than 1. This proof is somehow

related to theorem (2.5.1).

Theorem 4.2.7 For any free and unique game G and for any integer n, it holds

that ω(Gn) ≤ ω(G)n/4.

Proof We want to show that the constant before ω(G)n/4 cannot be greater than

1. We assume that ω(Gn) ≥ (1 + 1
k )ω(G)n/4, and we will reach a contradiction.
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Let N = 2kn, then

ω(GN ) ≥
((

1 +
1
k

)
ω(G)n/4

)2k

> 4ω(G)N/4 > 2
√

2ω(G)N/4

which contradicts the previous corollary. Then, the constant before ω(G)n/4 is 1.

This completes the proof. 2

4.2.1 Modifying the matrix

The previous result is still valid when dealing with games of no-information. Re-

member no-information games are those in which questions to the players are

chosen independently, this is, the probability distribution π = πXnπY n where πXn

and πY n are distributions for Xn and Y n respectively. Here we show how to con-

struct a matrix M such that the probability of all entries is, like in the proof,

uniformly distributed; but that is ultimately representing a no-information game

by repeating adequately some of the entries. Since the only changes will be made

in the making of matrix M and not in other stages, this will have no effect over

the presented proof.

Let R =
(
N1
D1
, . . . , NtDt

)
be the tuple containing all the image values of the function

πXn( expressed in a rational manner. Then, let r be the minimum common mul-

tiple of {D1, . . . , Dt}. This value r will express the number of rows of the matrix

M . Now, for every x, we calculate an associated value rx. If πXn(x) = Ni
Di

,

rx =
rNi

Di
.

where i is the position of x in Xn.

The matrix will have r rows, and for every x, the number of rows representing
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x is rx. This means that all these rows have to be equal. We define everything

analogously for Y , naming c the number of columns and cy the number of columns

representing y.

The matrix is now representing the no-information game in which the probability

of the first player being asked the question sequence x is rx
r (and the same for the

second player with Y ), but since πXn(x) = rx
r (and the same holds for Y ), this is

the game that we wanted to construct.

Now, the optimal strategies are constrained to the fact that some of the rows and

some of the columns have to be equal, and the only difference is that they have to

be optimal with these constraints. Since this is only concerning the construction

of the matrix, the result holds also in this case.

4.2.2 Games with arbitrary distribution

Here we will show how to adapt this method to the general case. We will see that

the bound obtained is not useful, and so, this only shows that a direct modification

of the method does not suffice to establish a meaningful bound for the general case.

Refining the idea of the previous section, we can construct a matrix that represents

any game. A way to represent an arbitrary distribution is the following. First we

define a ∗-entry to be an entry in the matrix representing that game is neither

won nor lost, simply not played. Using the notation from the previous section, for

every question (x, y) ∈ Qn,

π(x, y) =
rxcy − sx,y
rc− s

where s is the total number of ∗-entries in the M and sx,y is the number of ∗-entries

in the entries whose row is x and whose column is y. It is obvious that a matrix
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with those requirements exists, and can be constructed following the method of

the previous section, by adding the necessary columns until the constraints are

fulfilled. Consider we use the one with minimum number of entries. Then, since

the ∗-entries are not played, Claim 4.2.5 will bound the number of 1-entries deleted

by ωps(Gn)(rc−s). Then, we can calculate the bounds of Lemma 4.2.3 accordingly.

These are,

|M |1 ≤
c

K
ωps(Gn)(rc− s) + rK

Now, everything is known except for K. Since we want our bound to be as tight

as possible, we want to optimize our function over K to be the mimimum possible.

Then, if

f(K) =
c

K
ωps(Gn)(rc− s) + rK,

differentiating,

f ′(K) = − c

K2
ωps(Gn)(rc− s) + r,

We consider f ′(K) = 0 to find the minimum, this is

f ′(K) = 0⇒ K =

√
cωps(Gn)(rc− s)

r
.

Substituting it into f(K) we obtain

|M |1 ≤ c√
cωps(Gn)(rc−s)

r

ωps(Gn)(rc− s) + r

√
cωps(Gn)(rc− s)

r

≤ 2

√
rc− s
rc

√
ωps(Gn)rc.



45 4.2 Unique games of no-information

Now, we calculate the bound, dividing by (rc− s), which is now the total number

of the played games, this is

ω(Gn) =
|M |1
rc
≤

2
√

rc−s
rc

√
ωps(Gn)rc

rc− s
= 2
√

rc

rc− s

√
ωps(Gn).

Note that, when s = 0, this is, when the arbitrary distribution is a product distri-

bution, the constant in front of the bound is 2, as proven before.

However, this bound is useless for growing n’s. It is easy to see that,

lim
n→∞

s = rc,

and then, this implies

lim
n→∞

2
√

rc

rc− s

√
ωps(Gn) =∞

making the upper-bound useless. Therefore, this bound can be useful for small

values, but not for growing values of n.



Chapter 5

Full parallel repetition

In this chapter we present two ways in which the parallel repetition conjecture was

tackled. The first one, elaborated by Verbitsky [30], uses Ramsey theory results

to establish some properties over the question set. Thus, some concepts about

Ramsey theory are first introduced. Afterwards, a recursive method, introduced

by Raz [28] and simplified later by Holenstein [23] will be briefly sketched.

5.1 Introduction to Ramsey theory

Ramsey theory studies how order arises in growing combinatorial structures. A

typical result in Ramsey Theory is that, if an object is sufficiently large and is

divided in some number of subobjects, one of these will have a specific property.

In this section we state two Ramsey theorems and show their relationship. These

theorems will be useful later. Before presenting the theorems, we need to define

some combinatorial objects.

Definition 5.1.1 Let d and n be integers. A combinatorial line L of {0, . . . , d− 1}n

is a subset of {0, . . . , d− 1}n of the form

L = {w[z/i] : i = 0, . . . , d− 1}

46
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Figure 5.1: A 3-dimensional cube with two combinatorial lines

where w is a word of the form ({1, . . . , d} ∪ {z})n with at least one z and w[z/i]

is the result of replacing every ocurrence of z by i.

For example, in the 3-dimensional cube of the figure, the red line {000, 111, 222, 333}

is a combinatorial line of the form {w[z/i] : i = 0, . . . , 3} where w = zzz.

Or, also, the green line {130, 131, 132, 133} is a combinatorial line of the form

{w[z/i] : i = 0, . . . , 3} where w = 13z. We define a c-coloring of a set S is a

function f : S → {1, . . . , c}. Once this is defined, we can also define the following.

Definition 5.1.2 Let f be a c-coloring of S and T ⊆ S. We say that T is

monochromatic with respect to f if there exists a k ∈ {1, . . . , c} such that f(t) = k

for every element t ∈ T .

We will state two well-known theorems on Ramsey Theory. First, Hales and

Jewett proved [19] that, for hypercubes of a sufficient number of dimensions, a
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monochromatic combinatorial line cannot be avoided in the hypercube whatever

it is the coloring over its vertices.

Theorem 5.1.3 (Hales-Jewett) For every integers c, d > 0 there exists an in-

teger N such that for every n ≥ N and every c-coloring f of {0, . . . , d− 1}n there

is a monochromatic combinatorial line with respect to f .

The following theorem [15] is a stronger version of the previous, concerning density

of sets. It states that, if we consider a set, in every subset of that which is

sufficiently dense, a combinatorial line is contained. The monochromatic concept

is here implicit in the fact of all the vertices being in the same subset.

Theorem 5.1.4 (Furstenberg-Katznelson) For every ε > 0, and every in-

teger d > 0 there exists an integer N such that for every n ≥ N and every

S ⊆ {0, . . . , d− 1}n such that |S|≥ εdn, there is a combinatorial line contained

in S.

We have said that [FK] is a stronger version of [HJ]. It is interesting to observe

that, indeed, [HJ] follows from [FK]. This can be proven in the following way:

Proof Let integers c and d > 0 be given. We define ε = 1
c . We choose N to be the

dimension given by [FK] for this ε and this d. Let n ≥ N be an arbitrary integer

and let also f : {0, . . . , d− 1}n → {1, . . . , c} be a c-coloring of {0, . . . , d− 1}n. We

want to see that there exists a monochromatic combinatorial line.

Claim 5.1.5 There exists an i ∈ {1, . . . , c}, such that

|f−1(i)| ≥ 1
c
dn

Proof Let us suppose the opposite and we will get to a contradiction. Suppose
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that, for every i ∈ {1, . . . , c} we have

|f−1(i)| < 1
c
dn.

Then, suming for all i we obtain

c∑
i=1

|f−1(i)| < c
1
c
dn,

which is,
c∑
i=1

|f−1(i)| < dn.

But we know, by completeness of c-colorings, that

c∑
i=1

|f−1(i)| = dn

This is a contradiction, and, therefore, this completes the proof of the claim. 2

Let i∗ be such that |f−1(i∗)| ≥ 1
cd
n. The previous claim proved there is at least

one. Let S = f−1(i∗). Since |S| ≥ εdn, [FK] proves that this set contains a com-

binatorial line. But, since all elements in S have the same color i∗, in particular,

the combinatorial line will be monochromatic. 2

5.2 The forbidden subgraph approach

Now we present a theorem first proven by Verbitsky [30], concerning the decrease

rate of parallel repetition. We are going to make use of the Furstenberg-Katznelson

Theorem. It has been shown previously that parallel repetition does not decrease

the value of a game in a pure exponential way. However, there is still some reduc-

tion. This is, the more the game is repeated, the lower its value becomes. This is

proven by taking the number of repetitions to the infinity and asking about the
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limit.

Theorem 5.2.1 For every uniform non-trivial game G,

lim
n→∞

ω(Gn) = 0

Proof Let G = (X,Y, π,A,B, V ) be a uniform non-trivial game and let Q be the

support of π. We rewrite our goal as the following. For every ε > 0 there exists

an integer N such that for every integer n > N it holds that

ω(Gn) < ε.

Now, let ε > 0 be any positive real. We define d = |Q|. We choose N to be the

dimension given by [FK] for this ε and d. Let n ≥ N . We want to see that ω(Gn) <

ε. We define s : (X × Y )n → Xn × Y n such that s(((x1, y1), . . . , (xn, yn))) =

((x1, . . . , xn), (y1, . . . , yn)). Let

Qn = s(Qn) = {(xn, yn) : ((x1, y1), . . . , (xn, yn)) ∈ Qn}.

Note that this is the support of π. Let P1 and P2 be optimal strategies for the

game Gn. Now we will see that, if ω(Gn) ≥ ε, then the game G will be trivial,

which contradicts the hypothesis.

Let us suppose that ω(Gn) ≥ ε. Let Gn = (X,Y , π,A,B, V ). Therefore,

∑
(x,y)∈X×Y

π(x, y)V (x, y, P1(x), P2(y)) ≥ ε. (5.1)

Since the game is uniform we know that π(x, y) = 1
|Q|n for every (x, y) ∈ Qn and

π(x, y) = 0 for every (x, y) ∈ X × Y −Qn.
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We define Sn = {(x, y) ∈ Qn : V (x, y, P1(x), P2(y)) = 1} and let S = s−1(Sn) =

{(x1, y1), . . . , (xn, yn) : ((x1, . . . , xn), (y1, . . . , yn)) ∈ Sn}, a set with the same ele-

ments of Sn redistributed. Note that S ⊆ Qn. Now, since both sets have the same

size,

|Sn|
1
|Q|n

= |S| 1
|Q|n

.

But, since S is the collection of all the winning cases and π is the uniform distri-

bution over Qn,

|Sn|
1
|Q|n

=
∑

(x,y)∈X×Y

π(x, y)V (x, y, P1(x), P2(y)).

By (5.1),

|Sn| ≥ ε|Q|n.

Now, by [FK], we know there exists a combinatorial line L of Qn contained in S.

We will use this line to build strategies P1 and P2 for G that are always winners,

making thus the game trivial.

L is of the form {w[z/e] : e ∈ Q} for some w ∈ (Q ∪ {z})n with at least one

z. We will call two pairs (x1, y1) and (x2, y2) left-incident if x1 = x2 and right-

incident if y1 = y2. And we will say that w[z/e1] and w[z/e2] are left-incident if

s(w[z/e1]) and s(w[z/e1]) are left-incident. The same applies for right-incidence.

Let w = (t1, . . . , tn) with ti ∈ Q ∪ {z}.

Claim 5.2.2 If e1 and e2 are left-incident, then w[z/e1] and w[z/e2] are left-

incident and if e1 and e2 are right-incident, then w[z/e1] and w[z/e2] are right-

incident.

Proof We will focus on the left-incidence. The right-incidence case is analogous

referring to second components. We define w1 = w[z/e1] and w2 = w[z/e2]. For
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every ti ∈ Q, ti will be in both w1 and w2. Furthermore, all other positions of w

will be z, this is, in some locations w1 will have e1 and w2 will have e2. Now, we

want to see that w1 and w2 are left-incident. By definition, they are incident if

the first component of s(w1) is equal to the first one of s(w2). Remember s(w1)

and s(w2) are of the form ((x1, . . . , xn), (y1, . . . , yn)). Now, for every ti ∈ Q, both

s(w1) and s(w2) are the same, and so, first components are equal in these positions.

Furthermore, for every z, we will have that w1 has e1 in that position and w2 has

e2. But now, since e1 and e2 are left-incident, they share their first component,

so, the first component of s(w1) and s(w2) will be the same, this is, they will be

left-incident. Therefore, w1 and w2 will also be left-incident.2

Now we need functions f : X → Xn and g : Y → Y n such that for every (x, y) ∈ Q,

the pair (f(x), g(y)) belongs to S. We also require the existence of an index

k ∈ {1, . . . , n} that fk(x) = x for every x ∈ X, and that gk(y) = y for every

y ∈ Y . We define f(x) as follows, g(y) can be defined analogously using y and

right-incidence.

There are two cases in the definition of f(x). First, if there is no y ∈ Y such

that (x, y) ∈ Q, then we define f(x) = (x, . . . , x). Second, we can assume there

is at least an y ∈ Y such that (x, y) ∈ Q because otherwise we would be in the

first case. Now, let y1, . . . , yr be all y ∈ Y such that (x, y) ∈ Q and e1, . . . , er all

pairs (x, y1), . . . , (x, yr). Then, for every i,j ∈ {1, . . . , r}, by definition, ei and ej

are left-incident. Then, by the previous claim, w[z/e1] and w[z/e2] are also left-

incident. Therefore, there exist x, y1, . . . , yr such that w[z/ei] = (x, yi) for every

i. Then, we define f(x) = x.

Intuitively, we are embedding x into x and y into y with xi = x and yi = y. Let

our strategies be P1(x) = (P11(x), . . . , P1n(x)) and P2(y) = (P21(y), . . . , P2n(y)).
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We define strategies P1(x) = P1i(f(x)) and P2(y) = P2i(g(y)). Then, for every

(x, y) ∈ Q we will have a (f(x), g(y)) ∈ S, which means that

V (f(x), g(x), P1(f(x)), P2(g(y))) = 1.

For component i this is

V (x, y, P1i(f(x)), P2i(f(y))) = 1,

which is

V (x, y, P1(x), P2(y)) = 1.

Since this holds for every (x, y) in the support Q of π, this means that the game

is trivial. Thus the proof is complete. 2

Later, we will see why it is important for us to know about the decreasing value

of the repeated games, whatever its rate may be.

5.3 Recursion-based analysis

The previous proof was an interesting property about parallel repetition, but it

does not prove the parallel repetition conjecture. A parallel repetition theorem

was presented in 1998 by Raz [28] based on recursion analysis. Later, in 2006,

Holenstein [23] simplified Raz’s proof using some version of the embedding argu-

ment that was shown before. Here we will give and overview of Holenstein’s proof,

and we will show how the bounds can be improved quantitavely when restricting

ourselves to games with the uniqueness property. These bounds were also proven

to be qualitatively optimal by Feige and Verbitsky [12]. Holenstein’s Theorem is

the following.
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Theorem 5.3.1 For every game G = (X,Y, π,A,B, V ) and every integer n, it

holds that

ω(Gn) ≤ f(ω(G))
n

log(|A||B|)

where f(x) = 1− (1−x)3

6000 .

The function f is defined as in the theorem and will be used throughout the whole

section. Note that f(x) < 1 if and only if x < 1. Here we sketch how the proof is

done, providing the intuitions and the main constructions but not their complete

proofs.

First, we realize that ω(Gn) can also be written as Pr[W1 ∧ · · · ∧ Wn], where

Wi is the event of winning the i-th game when the players follow their optimal

strategies P1 and P2, and that all we want is an upper-bound of that probability.

Then, we state the following lemma.

Lemma 5.3.2 For arbitrary i1, . . . , im ∈ {1, . . . , n} there exists a j ∈ {1, . . . , n}−

{i1, . . . , im} such that

Pr[Wj |Wi1 ∧ · · · ∧Wim ] ≤ ω(G) + ε

where ε depends on the parameters of the game G and on Pr[Wi1 ∧ · · · ∧Wim ].

Thus, once we have this lemma, we can proceed by induction over m to get an

upper-bound on Pr[W1 ∧ · · · ∧Wn], this is, to get an upper-bound on ω(Gn).

To do so, we start from the definition of conditional probability,

Pr[Wi ∧ · · · ∧Wn] = Pr[Wi |Wi+1 ∧ · · · ∧Wn] Pr[Wi+1 ∧ · · · ∧Wn].
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If we apply lemma 5.3.2, we get

Pr[Wi ∧ · · · ∧Wn] ≤ (ω(G) + ε) Pr[Wi+1 ∧ · · · ∧Wn],

and by inverse induction over i, this is

Pr[W1 ∧ · · · ∧Wn] ≤ (ω(G) + ε)n.

which, once ε is developed, turns out to be the statement in the theorem (with ε

modelling the behaviour of the function f).

Now, to prove lemma 5.3.2, an embedding argument is constructed. First,

π̃ : Xn × Y n → [0, 1] is defined to be the probability distribution over Xn × Y n

conditioned on the event that games i1, . . . , im are won.

Ideally, we would like to apply the following embedding argument: the first player

embeds his input x into x̃ = (x̃1, . . . , x̃n) with x̃j = x, and the second player

embeds his input y into ỹ = (ỹ1, . . . , ỹn) with ỹj = y in such a way that (x̃, ỹ) is

distributed according to π̃. Then, the first player answers with the j-th component

of P1(X̃) and the second player with the j-th component of P2(Ỹ ). By definition

of π̃, the game would be won with probability Pr[Wj |Wi1 ∧ · · · ∧Wim ], and so,

lemma 5.3.2 would follow with ε = 0.

But this is an ideal case: we don’t really know π̃. In fact, what we really can

do is to embed with respect to a probability distribution π such that its statistical

distance from π̃ is small. Let us now define statistical distance.

Definition 5.3.3 Let π1 and π2 be two probability distributions over the same set
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X. We define statistical distance as

‖π1 − π2‖ =
∑
x∈X
|π1(x)− π2(x)|

Then, what we want is

‖π̃ − π‖ ≤ ε.

To prove the lemma from this statement we reason as follows. First, we know that

Pr[Wj |Wi1 ∧ . . . ∧Wim ] =
∑
x,y

π̃(x, y)V (xj , yj , P1(x)j , P2(y)j)

by definition of π̃. Also, by definition of statistical distance,

‖π̃ − π‖ =
∑
x,y

|π̃(x, y)− π(x, y)|.

We can bound this from below by

∑
x,y

|π̃(x, y)− π(x, y)|V (xj , yj , P1(x)j , P2(y)j),

and, even more, by

∑
x,y

(π̃(x, y)− π(x, y))V (xj , yj , P1(x)j , P2(y)j).

which is equal to

Pr[Wj |Wi1 ∧ . . . ∧Wim ]−
∑
x,y

π(x, y)V (xj , yj , P1(x)j , P2(y)j).
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Thus, we obtain

∑
x,y

π(x, y)V (xj , yj , P1(x)j , P2(y)j) ≥ Pr[Wj |Wi1 ∧ . . . ∧Wim ]− ||π̃ − π||,

which implies,

ω(G) ≥ Pr[Wj |Wi1 ∧ . . . ∧Wim ]− ε.

And that is what the lemma wants to prove.

Now, the only thing left to do is to construct a probability distribution π with

the desired properties. In fact, it is enough to see how the players can construct

n-tuples with that probability distribution.

The bulk of the argument is the construction of π. To this effect Holenstein uses

two lemmas. First, a lemma which informally states that a distribution condi-

tioned to an event is very similar to the unconditioned distribution, the difference

depends logarithmically on the probability of the event. Second, a lemma which

define the conditions for a pair (X0, Y0) to be embeddable in a pair (XS,YS), giving

up some error during the process.

5.3.1 Improving the rate for unique games

It is also shown in [23] that the exponent in the theorem can be reduced to a

smaller value for some games. It states that this value depends on the answer sets,

as before, but on their exact fractional product cover. First, we define the concept

of exact fractional product cover and then we will present the improved theorem.

Definition 5.3.4 Let Q : A × B → {0, 1} be any predicate. A pair of functions

f : A×{1, . . . , α} → [0, 1] and g : B×{1, . . . , α} → [0, 1] form an exact fractional
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product cover of size α for Q if, for every a and b

Q(a, b) =
α∑
i=1

f(a, i)g(b, i).

Now, we present the improved theorem, also from [23]. If V is the verifier predicate,

we define Qx,y for every (x, y) ∈ X × Y .

Theorem 5.3.5 For any game G = (X,Y, π,A,B, V ) and any integer n

ω(Gn) ≤ f(ω(G))
n

log(α)

where α is such that there exists an exact fractional product cover of size α for

Qx,y.

Now, we show that unique games are one of the classes of games whose bounds

are improved by using this theorem. Here we prove that, for any unique game, an

exact fractional product cover of a determined size can be found.

Claim 5.3.6 Let Q : A × B → {0, 1} be a predicate such that, for every a ∈ A

there is exactly one b ∈ B such that Q(a, b) = 1, and for every b ∈ B there is

exactly one a ∈ A such that Q(a, b) = 1. Then, there exist two functions f and g

that form an exact fractional product cover of Q of size α = |A| = |B|.

Proof We will define functions f and g with the required properties α = |A| = |B|,

and thus, proving it for α = min{|A|, |B|} simply by choosing the appropiate ones.

Let I be a bijection I : {1, . . . , α} → B which exists because both sets have

the same cardinality. Then, we define

f(a, i) = Q(a, I(i))
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g(b, i) =


1 if b = I(i)

0 otherwise

for every a, b and i. Now, we have to see that for every a and b,

Q(a, b) =
α∑
i=1

f(a, i)g(b, i).

First, since i ranges through all {1, . . . , α} and I is a bijection, then I(i) ranges over

all B. Second, for all i except one, g(b, i) = 0. The only i for which g(b, i) = 1 is

the one such that I(i) = b, and then it all depends on f . But, since I(i) = b in this

case, f(a, i) = Q(a, I(i)) = Q(a, b) which is the left-hand side of the equation.2

Since the description of the predicate is equivalent to the description of the referee

function for unique games, and since for unique games we can consider |A| = |B|

it holds that

Corollary 5.3.7 Let G = (X,Y, π,A,B, V ) be a games with the uniqueness prop-

erty and let α = |A| = |B|. For every integer n,

ω(Gn) ≤ f(ω(G))
n

log(α)



Chapter 6

Applications of parallel

repetition

In this chapter we will see some applications of the parallel repetition theorem.

We introduce the concept of interactive proof systems in an informal way, being

formalized in the previous chapters by the concept of game. After presenting var-

ious results on the power of these systems, we present the class PCP, generalizing

NP by adding randomness. We show how parallel repetition is used in the PCP

theorem, and finally, we present the unique games conjecture and show why it has

become a relevant question among the field.

6.1 Interactive proof systems

In 1985, Goldwasser, Micali and Rackoff introduced in [18] the concept of interac-

tive proof system. In an interactive proof system, an all-powerful computationally

unlimited prover tries to convince a probabilistic polynomial-time verifier that

some input x belongs to a language L, independently of the truth of such a state-

ment. The verifier will follow a protocol to either find out that the prover is lying

60
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(and so, the statement is false) or get convinced of the truth of the statement.

This protocol consists in a series of questions and answers divided in rounds. In

each round, the verifier sends a randomly chosen polynomial-size question to the

pover and receives a polynomial-size answer. Then, the verifier evaluates the sent

question and the received answer and decides wheter to accept or reject. Rejecting

implies having discovered that the prover was lying and, therefore, knowing that

the statement is false. Accepting implies increasing the degree of confindence of

the verifier on the correctness of the statement. We call IP the class of languages

L such that, for all x, there is an interactive proof system to decide if x ∈ L or not.

It is easy to see that this protocol can be modelled as a one-player game. Here, the

provers act as the player and the verifier act as the referee. Thus, generalizations

made on games also apply to this model. A multi-prover interactive proof system,

introduced in [5], is a protocol in which several provers try to convince the verifier

as before. Now, the verifier sends (possibly different) questions to all the provers,

and receives all their answers, evaluating them jointly to decide wheter to accept

or reject. Also, the number of rounds of execution of the protocol can be bounded.

Thus, we can obtain a k-prover r-round protocols, but in order to become a valid

multi-prover interactive proof system MIP (k, r) for a language L, the following

requirements must be fulfilled:

• Completeness: For all x ∈ L, the verifier will be convinced of the statement

with high probability (greater than c).

• Soundness: For all x /∈ L, the verifier will be convinced of the statement

with low probability (lower than s).
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We will name MIP (k, r) the class of all languages L such that a MIP (k, r) pro-

tocol can determine if an element x belongs or not to L. As in the case of games,

we are specifically interested in MIP (2, 1) protocols, this is, 2-prover 1-round in-

teractive proof systems.

Adi Shamir proved [29] a result measuring the power of one-prover systems, this

is IP = PSPACE, establishing a relation between classical complexity classes

and interactive proof systems. However, multi-prover systems were supposed to

be more powerful. Babai, Fortnow and Lund [3] proved that MIP (2, poly(n)) =

NEXPTIME. Fortnow, Rompel and Sipser [14] focused their interest in one-

round protocols. They claimed that MIP (1, poly(n) ⊂MIP (2, 1). However, this

was contradicted by Fortnow [13], because of the wrong assumption that par-

allel repetition of MIP (2, 1) systems decrease the error as sequential repetition

does. However, a valid proof was later elaborated by Cai, Condon and Lipton [6].

Feige [8] proved that MIP (2, poly(n) has 2-prover 1-round systems with constant

error probabilty. However, since parallel repetition was not proved to reduce the

error exponentially, nothing else could be implied. Feige and Lovsz [11] proved

that MIP (2, 1) = MIP (2, poly(n)) = NEXPTIME without actually dealing

with the parallel repetition problem. And finally, as we showed in previous chap-

ters, different versions of a parallel repetition theorem for different particular cases

were proved, reducing thus everything to one-round protocols. Here we show the

most relevant: Cai, Condon and Lipton [6] showed it for games of no-information,

Feige and Lovasz used semidefinite programming [11] and other techniques [9] to

tackle no-information games with the uniqueness property, and, after proving a

non-constructive drecreasing argument [30], Verbitsky [31] proved it for games in

which the question set is a tree using the forbidden subgraph approach. Finally,

Raz [28] presented a parallel repetition theorem for the general case, showing ex-



63 6.2 Introduction to PCPs

plicit bounds depending on the size of the answer sets.

6.2 Introduction to PCPs

The class NP is one of the most well-known complexity classes. A language L

is said to be in NP if and only if there exists a deterministic polynomial-time

algorithm V , called the verifier, and a polynomial p(n) such that, for all x it

satisfies,

• if x ∈ L, then there exists a y of length at most p(|x|) such that V (x, y) = 1,

• if x /∈ L, then for all y of length at most p(|x|) it holds that V (x, y) = 0.

It was proven by Cook [7] that the satisfiability problem for Boolean formulas in

conjunctive normal form with at most 3 literals per clause (3SAT) is NP-complete.

The class of languages that have Probabilistically Checkable Proofs (PCPs) is

a robust generalization of the class NP. The main idea is that, if we consider the

y in the definition of NP to be the proof that the verifier checks, in a PCP only

some randomly chosen bits of that proof y are checked, and the verifier has to

accept or reject the proof based on that incomplete information with some degree

of confidence. We use the terminology from Harb [21]. Before defining the PCP

class, we need a previous definition.

Definition 6.2.1 A (r(n), q(n))-restricted verifier V is a probabilistic polynomial

time algorithm such that, given an input x of length n and query access to any

position of proof y, it uses r(n) random bits to list q(n) positions of y, queries y

at these positions, and acepts or rejects x based on the values received.

Note that V may be non-adaptive, this is, it decides all of the positions that it will

query before starting to query them. The parameter q(n) is also called the query
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complexity of V . Now, let us define the class PCP.

Definition 6.2.2 Let 0 ≤ s ≤ c ≤ 1, and let r(n) and q(n) be integer functions. A

language L is in PCPc,s[r(n), q(n)] if there exists a (r(n), q(n))-restricted verifier

V such that, for all x of size n it satisfies,

• if x ∈ L, then there exists a proof y such that Pr[V y(x) = 1] ≥ c,

• if x /∈ L, then for all y, Pr[V y(x) = 1] < s.

where the probabilities range over V ’s choice of random bits. Furthermore, for any

y, |y| ≤ q(n)2r(n).

This is a randomized generalization of the class NP sinceNP = PCP1,0(0, poly(n)),

according to the previous definition.

However, the PCP theorem was presented by Arora et al. [2], providing a more

intriguing characterization of NP.

Theorem 6.2.3 NP = PCP1, 1
2
[O(log n), O(1)]

To show the implications of this theorem for inapproximability results, first we

have to define a problem. Max-3SAT is the maximization version of 3SAT. This

is, given a CNF formula with 3 literals per clause, find the assignment that satisfies

the maximum number of clauses.

Following the previous theorem, Arora et al. also proved another one relating

the new definition of NP with the hardness of Max-3SAT. This states,

Theorem 6.2.4 NP = PCP1, 1
2
[O(log n), O(1)] if and only if there is a constant

ε > 0 for which there exists a polynomial time reduction f from any language

L ∈ NP to Max-3SAT such that
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• if x ∈ L, then Opt(f(x)) = 1,

• if x /∈ L, then Opt(f(x)) < 1− ε,

where Opt(f(x)) is the maximum fraction of clauses of f(x) that can be satisfied

by the maximum assignment.

We call f a gap-introducing reduction because a gap of length ε is introduced be-

tween the the two cases. From these two theorems we can see that Max-3SAT does

not have a (1 − ε)-approximation algorithm (unless P=NP). In other words, it is

NP-hard to approximate Max-3SAT within a factor of (1− ε). The inapproxima-

bility of NP-problems is a question initially discussed by Garey and Johnson [17]

but it wasn’t until Arora et al. [1] that Max-3SAT was shown to be hard to ap-

proximate within some constant factor. Later, using parallel repetition and other

sophisticated techniques, H̊astad [22] improved the hardness result to the optimal

(7
8 + ε)-inapproximability.

In the next section we briefly discuss how H̊astad made use of parallel repetition.

6.3 2P1R PCPs: gap amplification by parallel repeti-

tion

We define a concept analogous to the (r(n), q(n))-restricted verifier where the

verifier asks two queries to two uncommunicated provers.

Definition 6.3.1 A r(n)-two-prover verifier V is a probabilistic polynomial time

algorithm such that, given an input x of length n and query access to both prover

P1 and P2, it uses r(n) random bits to select two questions, queries the provers

with these questions, and acepts or rejects x based on the values received.
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The class of languages having a two-prover one-round interactive proof system

with r(n) random bits is defined as follows.

Definition 6.3.2 Let 0 ≤ s ≤ c ≤ 1, and let r(n) and q(n) be integer functions.

A language L is in 2P1Rc,s[r(n)] if there exists a r(n)-two-prover verifier such

that, for all x, the following properties are fulfilled,

• if x ∈ L, then there exist two provers P1 and P2 such that Pr[V P1,P2(x) =

1] ≥ c,

• if x /∈ L, then for every two provers P1 and P2 such that Pr[V P1,P2(x) = 1] ≥

s.

Theorems 6.2.3 and 6.2.4 showed a gap-introducing reduction from any language L

in NP to Max-3SAT. H̊astad goal was to imrpove this gap from 1− ε to 7/8. This

was done by transforming Max-3SAT into a 2P1R by the following way. Suppose

we perform that reduction, now, we may want to distinguis between formulas in

which all the clauses can be satisfied (when x ∈ L) and formulas in which some

fraction of the formulas cannot be satisfied by any assignment (when x /∈ L).

Then, we construct the following 2-prover 1-round interactive proof system.

Let φ be a Boolean formula with v variables and m clauses. The verifier uses

the random bits to select a random clause C in the formula and a random variable

x occurring in C. He asks the first prover for the value assigned to x and the

second prover for the values assigned to the variables in C. The verifier accepts

the answers if they are consistent, this is, if the value of x given by the first prover

is equal to the implicit value of x given by the second player when giving all values

of C.

Let us see that this is a 2P1R with completeness value 1 and soundness value
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1− ε/3.

Now, there are two cases:

• if x ∈ L, then in φ is satisfiable, and so, the provers will have correct satis-

fying assignments. Then, the probability that the verifier accepts is 1.

• if x /∈ L, then φ more than an ε fraction of its clauses are not satisfied any

assignament, in particular, by the one that the provers use. With probabil-

ity greater than ε we are randomly choosing a non-satisfied clause. A non

satisfied clause will have, at least, a variable which is not satisfied. Then,

since every clause has 3 variables, we have probability 1/3 to detect that

inconsistency between the provers, the chance of choosing that particular

variable. Then, the probability of the verifier accepting the protocol when

x /∈ L is less than 1− ε/3.

This 2P1R now has a good property and a bad property. The good one is that

its query complexity is very low, since only two queries to the provers are made.

The bad thing is that the probability of the verifier accepting the protocol when

it sholdn’t is still high, namely 1− ε/3.

H̊astad applied k-parallel repetition to this protocol to obtain a R2P1 with com-

pleteness 1 and soundness (1− ε)k which may be arbitrarily small for sufficiently

large k’s. However, the answers of the provers are not bits, and turning them into

bits increases the soundness value until 7/8. This turns out to be optimal [24].

6.4 Unique games conjecture

After the inapproximability of Max-3SAT was fully resolved by H̊astad’s theorem,

Khot [26] proposed the Unique Games conjecture to deal with other optimization
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problems. Consider unique 2-prover 1-round interactive proof systems analogously

defined as unique games. It states that the verifier for unique two-prover interactive

proof systems becomes powerful enough to construct PCPs for every NP language.

The conjecture is,

Conjecture 6.4.1 For arbitrarily small constants ζ, δ > 0, there exists a constant

k = k(ζ, δ) such that it is NP-hard to determine whether the value of a unique game

G = (X,Y, π,A,B, V ) with |A| = |B| = k is at least 1− ζ or at most δ.
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Conclusions

As seen in Chapter 3, parallel repetition is a perfect example of how subtle some

concepts may be and how careful we have to be when dealing with problems of

such nature. Before Fortnow’s counterexample, it seemed not only true, but also

obvious, that sequential and parallel repetition of two-prover one-round interactive

proof systems had to have exactly the same behaviour. However, once the coun-

terexample and the reasons that falsify this statement are seen, one can observe

how deep the question of parallel repetition is, leading to the use of elaborated

techniques and, ultimately, to one of the most complicated proofs in this field. This

can be taken as a lesson for every researcher in order to avoid accepting statements

and arguments as valid, if they just seem to be so at first glance; making ourselves

question the basis of the problems in order to, both increase our confidence in

our further results and acquire a better position to understand all subtleties and

insights of a given problem.

Parallel repetition, also, has been useful for simplifying and improving substan-

tially the study of interactive proof systems and PCPs. Once it was known that

two provers were enough in order to decide any language that could be decided by
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a bigger number, this analogous result for rounds was pivotal to focus our research

in one-round protocols, avoiding the emergence of hierarchical structures over the

number of rounds. Also, with the introduction of PCPs, the proof of the paral-

lel repetition theorem fulfilled the requirement of a real written-at-one-time proof

with good soundness vs. completeness gaps. Also, techniques specifically useful

for unique games can be useful in further development about the unique games

conjecture.

Finally, the question of parallel repetition has powered the development of new

interesting and powerful techniques, as the ones presented, with such a degree of

subtlety that might become useful for other questions in computational complexity,

communication complexity, etc.

7.1 Open problems

Although the study of parallel repetition has reached a state in which most of the

main questions have been positively answered for the needs for which they arised,

some subtleties about the methods and bounds for specific classes of games are

still unknown. For that reason, we highlight some in this section.

• Verbitsky proposed in [31] a version of the Parallel Repetition Theorem in

which the games are unbounded, this is, the answer sets can be of infinite

size. It is easy to see that recursion based methods in which the size of

the answer set is dividing the number of repetitions is now useless. Then,

only the forbidden subgraph approach can deal with such games. After

Verbitsky [31] proved the generalization true when the question sets of the

games are trees, it is interesting to see if it can be extended to all graphs.

Feige and Verbitsky [12] answered this negatively, but it is still open the
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question of knowing which games can be proven by the forbidden subgraph

approach. Verbitsky suggested that games with a question set forming a

cycle might be doable.

• Holenstein provided explicit values on the function f in his bounds for the

arbitrary distribution case. It is open whether these values can be reduced

or they are optimal. Recently, Feige, Kindler and O’Donell [10] pointed out

that improving from f(x) = 1 − c(1 − x)3 to f(x) = 1 − c(1 − x) would

have important consequences for an fundamental open problem in geometry,

known as the foam problem. It would also have consequences for the unique

games conjecture.

• How much the bounds for games with the uniqueness property can be op-

timized? Is there a way to avoid the dependence on the size of the answer

sets when the games are unique, maybe extending in a more clever way

Feige’s matrix approach? Otherwise, is the uniqueness property simplifying

the bounds of the recursion-based analysis?
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