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Abstract

Two problems related with hybrid electric vehicles have been analyzed in this dissertation.
The first one consists in proposing a propulsion system scheme for the vehicle and the
second one consist in modeling it.

In order to set a propulsion system scheme, the standard configurations for the hybrid
electric vehicles are presented as well as some variations of the series topologies. Then,
a novel configuration which is composed by a synchronous machine and an induction
machine is also presented.

As said before, the second problem consist in modeling this novel configuration.
The reduced model of each machine of the dynamical model is described using thedq-
transformation. Bond Graph and Port-Controlled Hamiltonianapproaches are also used
to describe the WRSM, the DFIM and the whole system models.

Finally, the analysis of the power flowing through the systemand the regenerative
braking possibilities are done.
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Chapter 1

Introduction

ResumeThis Chapter briefly describes the motivation of the Thesis based on the evolu-
tion of hybrid vehicles since the beginning until now. The chapter ends with the Thesis
objectives and the outline of the Thesis.

1.1 Motivation

The electric vehicle (EV) development began between 1832 and 1839, when Robert An-
derson invented the first electric car. Practical and more successful electric road vehi-
cles were invented by both American Thomas Davenport and Scotsmen Robert Davidson
around 1842. Both inventors were the first to use non-rechargeable electric cells. The
improvement in storage batteries invented in 1865 by Frenchmen Gaston Plante and im-
proved in 1881 by Camille Faure paved the way for development of EV [1].

The attention in these vehicles began in the United States in1891 when Riker built an
electric trycicle, and simultaneously Morrison built a six-passenger wagon. Shortly there-
after, in 1897, in New York, began the first commercial application of electric vehicles by
a taxi company [1].

The first hybrid electric vehicle (HEV) was invented by Woodsin 1916. The label
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2 1.1. Motivation

“hybrid” comes from the internal combustion engine (ICE) andthe electric motor Woods
vehicle had. [1].

The EV, had many advantages over its 1900’s competitors. At that time “the EV did
not have the vibration, smell, and noise associated with gasoline cars. Changing gears on
gasoline cars was the most difficult part of driving, while electric vehicles did not require
gear changes. While steam-powered cars also had no gear shifting, they suffered from
long start-up times of up to 45 minutes on cold mornings. The steam cars had less range
before needing water than an electric’s range on a single charge. The only good roads of
the period were in town, causing most travel to be local commuting, a perfect situation
for electric vehicles, since their range was limited. The electric vehicle was the preferred
choice of many because it did not require the manual effort tostart, as with the hand crank
on gasoline vehicles, and there was no wrestling with a gear shifter” [1].

The development of EV declined in 1920; United States had a better road system,
bringing the need for longer range vehicles. Henry Ford initiated a mass production of
internal combustion engine vehicles, which made these vehicles available and affordable.
The invention of the electric starter by Kettering in 1912 eliminated the need for the hand
crank.

The period compress between 1935 and 1960 was bad years for the development of
EV. However, at the sixties a new interest based on the need for alternative vehicles to
reduce exhausted emissions of ICE as well as oil dependence began. Since then, there
have been a lot of attempts to build a practical EV. Additionally, several legislative and
regulatory actions around the world have renewed electric vehicle development efforts.

In the nowadays automotive world, the electric traction is getting back to take the
importance used in HEV, combining the advantages of combustion engine (especially
its autonomy), those of the electric motor (mainly the possibility of using regenerative
braking). Therefore, the use of HEV gives the option to maintain the momentum of the
market in the use of fossil fuels, while improving performance with respect to traditional
internal combustion vehicles.

Due to the high interest in the HEV, several companies have entered in this business
using series and parallel configurations. The vehicles which are currently on the market
include: Honda (Civic Hybrid and Insight), Lexus RX 400h, Toyota Prius, GM Hx, Audi
(Q7 hybrid and Duo), BMW Concept X3 Efficient Dynamics, Mercedes (BlueTec Hybrid
S-Class, Direct Hybrid S-Class and F 600 Hygenius), Mercury Mariner Hybrid, Chevrolet
Tahoe Hybrid, Peugeot (307 CC Hybride and 405), Citroen C4 Hybrid, Saab BioPower
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Concept Hybrid, Nissan Altima Hybrid, Opel Corsa Hybrid concept, Volkswagen Golf,
LA 301, IAD, Iveco Bus, Conceptor, Magnetmotor [35], [13], [15].

1.2 Thesis Objectives

• General Objective

To propose, model and simulate a propulsion system for a series hybrid electric
vehicle.

• Specific Objectives

– To propose a series hybrid electric vehicle propulsion system.

– To model the system using dynamic analysis of electrical machines.

– To model the system using Bond-Graph techniques.

– To evaluate the proposed system using a steady state power analysis.

– To analyze the capacity of the new system for regenerative braking.

1.3 Main contributions of the Thesis

The main contributions of the Thesis are:

• A novel proposal for a series hybrid electric vehicle propulsion system.

• The Bond Graph model of the wound rotor synchronous machine, and its intercon-
nection with a doubly-fed induction machine.

• The Port Controlled Hamiltonian model of the whole system.

• The power analysis for the system.

The principal results of the Thesis were presented in [27].



4 1.4. Thesis organization

1.4 Thesis organization

In Chapter 2 the standard configurations for the hybrid electric vehicle are presented as
well as some variations on series one, based on this a novel configuration which is com-
posed by a synchronous machine and an induction machine is presented.

The full system dynamics is modelled in Chapter 3. It containsthe equations of
the three-phase synchronous and induction machines and thetransformation that reduces
them intodq-models.

In Chapter 4 the Bond Graph model of the DFIM, the WRSM and the wholesystem is
obtained. Then, the Port-Controlled Hamiltonian models of each machine and the whole
system are presented. Finally, simulation results of the whole system are depicted.

System balance energy, in particular the possibility of regenerative braking is analyzed
in Chapter 5.



Chapter 2

Hybrid Electric Vehicles

Resume
In this Chapter standard hybrid electric vehicle configurations are presented emphasiz-
ing series designs. Based on these, a novel configuration is considered. It consists of a
synchronous and an induction machine.

2.1 HEV Configurations

Hybrid electrical vehicles (HEV) are the focus of many research interests because they
provide good performance and long operating time [16]. Basically, the HEV is composed
of an internal combustion engine, an electrical machine anda battery pack.

In this work we focus on the advanced topologies of series HEV. The use of wound-
rotor machines (as doubly-fed induction machines) was studied in [9] and [28]. These
systems had some performance limitations because they are unable to control interme-
diate variables between both machines. More control inputsare necessary in order to
achieve a good control for HEV purposes. The propulsion system we present consists
of a wound-rotor synchronous generator (WRSM) and a doubly-fed induction machine
(DFIM). The main advantage of this system is the ability to manage the energy without

5



6 2.1. HEV Configurations

a power converter between both machines. In this case the power management is done
through the rotor voltages of the DFIM and the field voltage ofthe WRSM.

The main goal of the HEV is to reduce theCO2 emissions by means of the regenera-
tive braking, using the electrical machine both as a motor drive or as a generator, which
charges or discharges the batteries. It is also desired to keep the drivability performance
of the vehicle [26]. Then, the key goals for HEV’s are [13]:

• Maximize fuel economy.

• Minimize exhaust emissions (CO2).

• Guarantee good driving performance.

TE

F

G P

B

M

(a) series hybrid

T
E

F

MPB

(b) parallel hybrid

T
E

F

MPB

G

(c) series-parallel hybrid

T
E

F

MPB

GP

(d) complex hybrid

Figure 2.1: HEV topologies.

Figure 2.1 shows some HEV topologies. B represents the battery, E the internal com-
bustion engine (ICE), F the fuel tank, G the electrical generator, M the electrical motor, P
the power converter and T the vehicle transmission.

Depending on the interconnection between the different parts of the HEV, this classi-
fication can be summarized as:
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• Series Hybrid Electric Vehicle (SHEV): In a SHEV the ICE mechanical output
drives an electric machine, which generates electrical energy. This energy supplies
another electric machine, which acts as a motor coupled to the transmission line
[13]. The main advantages of this configuration are: on the one hand, the ICE can
work at an optimal configuration point finding a compromise between fuel economy
and exhaust emissions reduction and, on the other hand, the gear shifting is not
necessary. The SHEV is suitable for city cars [17][2][19].

• Parallel Hybrid Electric Vehicle (PHEV): The mechanical power is provided si-
multaneously by the ICE and the electric motor. In this way theICE can be used for
driving while the electric motor for acceleration [13]. There are less energy conver-
sion stages compared to the SHEV, and therefore, the system is more efficient than
SHEV, which is the main advantage[17].

• Series-Parallel Hybrid Electric Vehicle (SPHEV) and ComplexHybrid Elec-
tric Vehicle (CHEV): These configurations combine the features and advantages
of a SHEV and a PHEV. The main problem of them is that they are very complex
and expensive. The CHEV has bidirectional power flow of the electric motor, that
can allow three propulsion power, in this way it is used for dual-axle propulsion
[13][17].

2.2 Alternative SHEV’s configurations

At the previous Section four generic configurations of HEV’swere presented. In this
Section we are going to talk about an especial case of SHEV where the stators of the
electrical generator and the electrical motor are directlyconnected. With this, we have
found in literature the following schemes: Joint System (JS) and Variable Voltage Variable
Frequency (VVVF).

• Joint System:

The Joint System, see Figure 2.2, was introduced by Caratozzolo et al. in [9]. The
main feature is the use of a doubly-fed induction machine (DFIM). Then the JS
is composed by a DFIM and a squirrel cage induction machine (IM). The induc-
tion motor is fed by the DFIM, that has like primary motor an internal combustion
engine; the vehicle output torque is provided by the IM.
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TE

F
DFIM

P B

IM

Figure 2.2: The joint system scheme

In this case the DFIM manages all the power flowing through thesystem (ICE, IM,
battery). This power flow is controlled by the rotor voltagesof the DFIM using a
bidirectional inverter, which connects the DFIM to the battery pack.

The JS has only two degrees of freedom (DFIM rotor voltages),therefore it could
not control efficiently the power flux between machine stators and the output torque
at the same time.

Some works in control and energy management analysis of the system were pre-
sented in [10], [8], [11], [12] and [6].

• VVVF system:

A Variable Voltage Variable Frequency scheme ( Figure 2.3),was introduced by
Ortmeyer in [29], [30], [31], it was previously minded to marine applications, but
can be used as a particular SHEV. The VVVF use a permanent magnet synchronous
machine (PMSM) as a generator, while the mechanical torque is produced by an IM.
The stator frequency of both machines is imposed by the mechanical speed of the
ICE. In this configuration, the only control input is the torque produced by the ICE.

This system was improved in [28], where the IM was replaced bya DFIM (Fig-
ure 2.4). The DFIM allows to store energy into the batteries.All the system is
controlled through the DFIM rotor voltages with a bi-directional inverter.
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TE

F
PMSM IM

Figure 2.3: VVVF scheme

TE

F
PMSM DFIM

B P

Figure 2.4: VVVF modified scheme

2.3 Direct Synchronous-Asynchronous Conversion Sys-
tem

Is well known that a permanent magnet synchronous machine (PMSM) is more efficient
that a wound rotor synchronous machine (WRSM) [34], but the second one has the abi-
lity to control the stator voltage through the rotor voltages. In this work a new SHEV
scheme is proposed, where the generator is a WRSM which fixes thestator voltage am-
plitude to a DFIM that acts as motor. This system is called DiSAC (Direct Synchronous-
Asynchronous Conversion). An electrical scheme of the DiSACsystem is shown in Figure
2.5.

This scheme has four available control inputs:

• DFIM rotor voltages,vrd, vrq.

• WRSM field voltage,vF .

• ICE torque,τE.

To control the system efficiently we must fulfill four specifications namely:
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WRSM

τE,ω

DFIMvs,is

τ ,ωr

vF ,iF vr,ir

B

Figure 2.5: Electrical scheme of the DiSAC scheme.

• To regulate the DFIM torque,τe.

• To keep an unitary stator power factor.

• To regulate the stator voltage amplitudevs.

• To manage the system power.



Chapter 3

DiSAC System Model

ResumeThe full system dynamics is modelled in this Chapter. It describes the dynam-
ics of the three-phase synchronous and induction machines and the transformation that
reduces them intodq-model. Finally, the rules that describes the interconnection are also
described.

3.1 Three-phase dynamical model

The electrical machines modeling has been widely studied. In general, the dynamic equa-
tions that govern the electrical machine behavior are givenby two differential equations,
one electrical and one mechanical. The first one is given by [25],

v(t) = Ri(t) + λ̇(t), (3.1)

wherev(t), i(t) andλ(t) are the voltages, currents and fluxes;R is the machine dissipative
matrix. Neglecting saturation effects, the fluxes,λ, are related with the currents,i, through
the inductances matrix,L(θ),

λ = L(θ)i, (3.2)

11



12 3.1. Three-phase dynamical model

whereθ is the rotor position. The inductance matrix shape depends on the machine phy-
sical structure. The mechanical equation is described by the Newton’s second law,

J
dωr

dt
= −Bωr + τe + τ, (3.3)

whereJ is the inertia,B is the damping coefficient,τ is the external torque provided to
the machine andτe is the electromechanical torque generated by the machine, which can
be written as,

τe =
1

2
iT

∂L(θ)

∂θ
i. (3.4)

As usual, studying electrical machines the following assumptions are considered:

• Symmetrical phases with uniform air-gap and sinusoidally distributed phase win-
dings.

• Infinite permeability of the fully laminated cores.

• Saturation iron losses, end winding and slot effects are neglected.

• Only linear magnetic materials are considered.

• All parameters are constant.

3.1.1 Wound rotor synchronous machine

SM

τE,ω

Figure 3.1: Three-phase synchronous machine scheme

A three-phase wound rotor synchronous machine is composed by a three-phase stator
winding and a field winding feed with DC voltage at rotor side (Figure 3.1). In syn-
chronous machines, the stator frequency is directly given by the mechanical speed,ωs
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(ωs = npω, whereω is the electrical speed,np is the number of pole pairs). At the sta-
tor side, the voltages, currents and fluxes are three-phase variables, while rotor variables,
indicated with theF subindex, are one dimensional [25].

v(t)T =
[

vsa, vsb, vsc, vF

]

= [vT
s , vF ] ∈ R

4,

i(t)T =
[

isa, isb, isc, iF
]

= [iTs , iF ] ∈ R
4,

λ(t)T =
[

λsa, λsb, λsc, λF

]

= [λT
s , λF ] ∈ R

4.

The three-phase variables are usually considered balanced, i.e.,

vs(t)
T = [vsa, vsb, vsc] = Vs

[

cos(θ + φv), cos

(

θ + φv −
2π

3

)

, cos

(

θ + φv +
2π

3

)]

,

is(t)
T = [isa, isb, isc] = Is

[

cos(θ + φi), cos

(

θ + φi −
2π

3

)

, cos

(

θ + φi +
2π

3

)]

,

λs(t)
T = [λsa, λsb, λsc] = Λs

[

cos(θ + φλ), cos

(

θ + φλ −
2π

3

)

, cos

(

θ + φλ +
2π

3

)]

,

whereVs, Is andΛs are the amplitudes of the stator voltages, currents and fluxes, res-
pectively, andφv, φi andφλ are their phase respect to the rotor position. The electric
dissipation is represented by

R =









RsW 0 0 0
0 RsW 0 0
0 0 RsW 0
0 0 0 RF









,

whereRsW andRF are the stator and field resistances, respectively.

The inductance matrix,L(θ), is defined as,

L =









LsW LlsW LlsW Lm cos θ

LlsW LsW LlsW Lm cos
(

θ − 2π
3

)

LlsW LlsW LsW Lm cos
(

θ + 2π
3

)

Lm cos θ Lm cos
(

θ − 2π
3

)

Lm cos
(

θ + 2π
3

)

LF









,

whereLsW , Lm andLF are the stator, magnetization and field inductances, respectively.

τe is the electrical torque which can be computed from 3.4,

τe = −LmiF

(

ia sin θ + ib sin

(

θ − 2π

3

)

+ ic sin

(

θ +
2π

3

))

. (3.5)
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DFIM

τ ,ωr

Figure 3.2: Three-phase induction machine scheme.

3.1.2 Doubly-fed induction machine

The DFIM is composed by two three-phase systems, on the stator and on the rotor sides,
see Figure 3.21. The voltages, currents and fluxes can be written as,

v(t) =
[

vsa, vsb, vsc, vra, vrb, vrc

]

= [vT
s , vT

r ] ∈ R
6,

i(t) =
[

isa, isb, isc, ira, irb, irc

]

=
[

iTs , iTr
]

∈ R
6,

λ(t) =
[

λsa, λsb, λsc, λra, λrb, λrc

]

= [λT
s , λT

r ] ∈ R
6.

The three-phase variables, considering a balanced system,are

vs(t)
T = [vsa, vsb, vsc] = Vs

[

cos(θ + φv), cos

(

θ + φv −
2π

3

)

, cos

(

θ + φv +
2π

3

)]

,

vr(t)
T = [vra, vrb, vrc] = Vr

[

cos(θ + φvr), cos

(

θ + φvr −
2π

3

)

, cos

(

θ + φvr +
2π

3

)]

,

is(t)
T = [isa, isb, isc] = Is

[

cos(θ + φi), cos

(

θ + φi −
2π

3

)

, cos

(

θ + φi +
2π

3

)]

,

ir(t)
T = [ira, irb, irc] = Is

[

cos(θ + φir), cos

(

θ + φir −
2π

3

)

, cos

(

θ + φir +
2π

3

)]

,

λs(t)
T = [λsa, λsb, λsc] = Λs

[

cos(θ + φλ), cos

(

θ + φλ −
2π

3

)

, cos

(

θ + φλ +
2π

3

)]

,

λr(t)
T = [λra, λrb, λrc] = Λs

[

cos(θ + φλr), cos

(

θ + φλr −
2π

3

)

, cos

(

θ + φλr +
2π

3

)]

,

1Thes andr subscripts represent the stator and rotor variables, respectively
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whereVs, Vr, Is, Ir, Λs and Λr are the amplitudes of the stator and rotor voltages,
currents and fluxes, respectively, andφv, φvr, φi, φir, φλ andφλr are their phases respect
to the rotor position. The electric dissipation is represented by the following matrix

R =

















RsD 0 0 0 0 0
0 RsD 0 0 0 0
0 0 RsD 0 0 0
0 0 0 Rr 0 0
0 0 0 0 Rr 0
0 0 0 0 0 Rr

















,

whereRsD andRr are the stator and rotor resistances, respectively.

The inductances matrix,L(θ), is defined as,

L(θr) =

[

LsD Lsr(θr)
Lsr(θr)

T Lr

]

∈ R
6×6,

where the stator, rotor and magnetization inductances sub-matrix are,

LsD = LsD





1 cos(2π
3

) cos(2π
3

)
cos(2π

3
) 1 cos(2π

3
)

cos(2π
3

) cos(2π
3

) 1



 ,

Lr = Lr





1 cos(2π
3

) cos(2π
3

)
cos(2π

3
) 1 cos(2π

3
)

cos(2π
3

) cos(2π
3

) 1



 ,

and

Lsr(θr) = Lsr





cos(θr) cos(θr + 2π

3
) cos(θr − 2π

3
)

cos(θr − 2π

3
) cos(θr) cos(θr + 2π

3
)

cos(θr + 2π

3
) cos(θr − 2π

3
) cos(θr)



 .

LsD, Lr and Lsr are the stator, rotor and magnetization inductances, respectively.
It is important to emphasize that theθr dependence occurs only in the magnetization
inductance sub-matrix.

The electromagnetic torque can be expressed as follows

τe = iTs L̂sr(θr)ir, (3.6)

where

L̂sr(θr) = Lsr





− sin(θr) cos(θr − π
6
) − cos(θr − π

6
)

− cos(θr + π
6
) − sin(θr) sin(θr + π

3
)

cos(θr − π
6
) sin(θr − π

3
) − sin(θr)



 .
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3.2 Thedq-transformation

Thedq-transformation allows to simplify the study of power systems [25] [34]. Under the
standard assumptions listed previously, this transformation eliminates theθ-depending co-
efficients of the inductance matrix, reduces a three-phase system into a two-phase system
and allows us to describe a tracking problem as a regulation one.

Let us to define a three-phase variables vector as

fT
abc = F

[

cos(ωt), cos

(

ωt − 2π

3

)

, cos

(

ωt +
2π

3

)]

, (3.7)

whereF is the amplitude of the sinusoidal waves andω is its frequency.

The dq-transformation can be split in two parts. Firstly, the three-phase system is
reduced to a two-phase system2, fαβγ = [fα, fβ, fγ ]

T ∈ R
3, through a static reference

frame, by means of

fαβγ = Tfabc (3.8)

and

T =







√
2√
3

− 1√
6

− 1√
6

0 1√
2

− 1√
2

1√
3

1√
3

1√
3






. (3.9)

The second part transforms the sinusoidal functions into constants. To this end, a
rotatingdq-referenceK is defined. The new variablesfdq = [fd, fq]

T ∈ R
2 are given by

fdq = K−1fαβ, (3.10)

where

K = eJδ =

[

cos(δ) − sin(δ)
sin(δ) cos(δ)

]

, (3.11)

δ is an arbitrary function of time andfT
αβ = [fα, fβ].

The proposed scheme is composed by a DFIM and a SM. In the next sections, the
dissipative and inductance matrices of each machine are presented. Then, theαβ and
dq-models are obtained.

2This reduction is due to the balance of the three-phase system and the third component of the resulting
vector (so-called homopolar term) is zero.
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3.3 Theαβ model

A two-phase model can be obtained using the transformation presented in (3.11). Then
equation (3.1) can be rewritten inαβγ coordinates as

vαβγ = λ̇αβγ + Rαβγiαβγ, (3.12)

with
Rαβγ = TRT−1 = R

and the fluxes and currents are now related by

λαβγ = Lαβγiαβγ, (3.13)

whereLαβγ = TLT−1.

Assuming a three-phase equilibrated system (fa + fb + fc = 0), the three-phase varia-
bles in theαβγ coordinates yields,

vT
αβγ = [vα, vβ, vγ] = V [cos(θ + φv), sin(θ + φv), 0] ,

iTαβγ = [iα, iβ, iγ] = I [cos(θ + φi), sin(θ + φi), 0] ,

λT
αβγ = [λα, λβ, λγ ] = Λ [cos(θ + φλ), sin(θ + φλ), 0] ,

whereV =
√

3√
2
V, I =

√
3√
2
I andΛ =

√
3√
2
Λ. Note that the third component,γ, is zero and,

under the equilibrated three-phase variables assumption,the system dimension is reduced.

Finally, the two-phase system can be rewritten in only theαβ coordinates as

vαβ = λ̇αβ + Rαβiαβ (3.14)

with
λαβ = Lαβiαβ. (3.15)

3.3.1 Wound rotor synchronous machine

For the WRSM, the dissipation and inductance matrices inαβ-coordinates, are

Rαβ =





RsW 0 0
0 RsW 0
0 0 RF



 ,



18 3.4. Thedq model

Lαβγ =





LsW 0 Lm cos θ

0 LsW Lm sin θ

Lm cos θ Lm sin θ LF



 .

The electrical torque,τe, from (3.5) and (3.9)

τe = LmiF (iα sin θ − iβ cos θ) . (3.16)

3.3.2 Doubly-fed induction machine

As for the DFIM, the dissipation and inductance matrices inαβ-coordinates, are

Rαβ =









RsD 0 0 0
0 RsD 0
0 0 Rr 0
0 0 0 Rr









,

Lαβ =









LsD 0 Lsr cos θr −Lsr sin θr

0 LsD Lsr sin θr Lsr cos θr

Lsr cos θr Lsr sin θr Lr 0
−Lsr sin θr Lsr sin θr 0 Lr









.

The electrical torque,τe is derived from (3.6) and (3.9)

τe = Lsr(isαirα sin θr + isαirβ cos θr − isβirα cos θr + isβirβ sin θr). (3.17)

3.4 Thedq model

The dq-model is obtained rotating theαβ reduced model with (3.11). Then, the relation-
ship between fluxes and currents can be rewritten as

eJθλdq = LαβeJθidq

or
λdq = e−JθLαβeJθidq = Ldqidq.

From theαβ-electrical model (3.14), with (3.11),

eJθvdq = RαβeJθidq +
d
dt

(eJθλdq)

= RαβeJθidq +
d
dt

(eJθ)λdq + eJθλ̇dq.
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Then,

vdq = e−JθRαβeJθidq + e−Jθ d
dt

(eJθ)λdq + λ̇dq, (3.18)

where, usingdθ
dt

= ω,

e−Jθ d
dt

(eJθ) = e−Jθω

[

− sin θ − cos θ

cos θ − sin θ

]

= ω

[

0 −1
1 0

]

= ωJ2,

and
e−JθRαβeJθ = Rαβ = Rdq.

Finally, the dq-model is described by

vdq = Rdqidq + Jωλdq + λ̇dq. (3.19)

The mechanical dynamics also follows (3.3), and the electromechanical torque is de-
rived from (3.4), and it depends on the topology of the electrical machine.

Notice that, assuming an equilibrated system, the three-phase variables are, in thedq

coordinates
vT

dq = [vd, vq] = V [cos φv, sin φv] ,

iTdq = [id, iq] = I [cos φi, sin φi] ,

λT
dq = [λd, λq] = Λ [cos φλ, sin φλ] .

3.4.1 Wound rotor synchronous machine

As explained above, a generalized dq model of an electrical machine follows equations
(3.3) and (3.19). For the WRSM, and after some algebra, theLdq andJω matrices are,

Ldq =





Ls 0 Lm

0 Ls 0
Lm 0 LF



 ,

Jω =





0 −ωW 0
ωW 0 0
0 0 0



 .

Note that the inductance matrix,Ldq does not depend onθ.

The electromechanical torque can be derived from (3.5),

τe = −LmiF iq. (3.20)
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3.4.2 Doubly-fed induction machine

For the DFIM, the generalized dq model of an electrical machine following equations
(3.3) and (3.19) can also be applied. After some algebra, theLdq andJω matrices are,

Ldq =

[

LsDI2 LsrI2

LsrI2 LrI2

]

∈ R
4×4, I2 =

[

1 0
0 1

]

,

Jω =

[

ωsJ2 O2×2

O2×2 (ωs − ωD)J2

]

, O2 =

[

0 0
0 0

]

.

Note that the inductance matrix neither depends onθ.

The generated torque is reduced to,

τe = LmiTsdqJ2irdq. (3.21)

3.5 System interconnection

The DiSAC model can be obtained interconnecting the WRSM and the DFIM through the
stator side of both machines. The interconnection rules are,

vsW = vsD, (3.22)

isW = −isD, (3.23)

ωs = ωW . (3.24)



Chapter 4

Energy-Based Models

Resume
In this Chapter, energy-based modelling techniques are applied to the DiSAC propulsion
system. Bond Graph and Port-Controlled Hamiltonian approaches are used to describe
the WRSM and the DFIM dynamics. Thanks to its ability to obtain complex system
from the physical interconnection rules, the DiSAC system is finally presented using both
modelling methodologies.

4.1 Bond Graph model

“Bond-Graph” (BG) is a graphic language to describe the dynamic behavior ofphysi-
cal systems regardless of the work domain. Therefore, is a powerful tool for analyzing
complex dynamical systems [7], [23], [32]. This approach isbased on the power flow be-
tween the different elements of the system. The choice of bond graph allows to describe
the systems keeping the information of energy generation, storage, dissipation, and trans-
fer, which can help to design, in a future, a low-level and supervisory control algorithm
[23].

The bond graph description permits the integration of submodels easily and, by means
of a simple computer algorithm, the simulation-ready equations of a complex model can

21
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be derived. Thus, the physical concepts are similar in theirdifferent domains (Table 4.1).

Effort Flow
Mechanical Force (F ) Speed (V )

Mechanical Rotative Torque (τ ) Angular speed (ω)
Electrical Voltage (v) Current (i)
Hydraulic Pressure (P ) Flow (Q)

Table 4.1: Equivalences between different domains

In BG (Figure 4.1) the vertexes represent the sub-models thatare describing the phy-
sical phenomenon, and the axis, called “bonds”, represent the ideal point to point energy
connection between the ports of the different sub-models. The bond consists of two sig-
nals, or power variables, with opposite directions, which are called effort (e(t)) and flow
(f(t)).

The power flow direction in the bond is determined by the arrow, which assign only a
sign agreement for further analysis.

The causality determines which power variable is the cause (input into its equivalent
in block diagram) and which is the result (output). The causality is represented by a
orthogonal line to the power bond in the element where the action is forced. For example,
in Figure 4.1 the causality states that the element A fixes theeffort in B; and B returns a
flow as result.

Causality

Power

Bond

e(t)

f(t)

A B

Figure 4.1: Bond Graph

The relationship between flow and effort in a subsystem describes its own behavior.
Roughly speaking, the bond graph elements can be classified in: resistors, storage ele-
ments, sources, transformers, gyrators and unions.
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• Resistors (R):These elements dissipate energy. The power flowing through aresis-
tor is always positive and does not assign causality prefered. If the resistance value
can be controlled externally is called a modulated resistor(MR). Examples are the
frictions, electrical resistors and dampers. The equationthat relates the effort and
the flow is algebraic and is given by,

e = Rf.

• Storage elements (C, I):Storage elements store all kinds of energy. There are two
kinds of storage elements; C-elements and I-elements. Examples are found in ca-
pacitors, inductors, masses and springs. In the C-element, the conserved quantity,q
( which is a state variable called generalized displacement), results from the net flow
accumulation,f , therefore the causality is flow prefered. The differentialequation
that represents the C-element is,

e =
1

C
q

q =

∫

fdt + q(0).

For an I-element, the conserved quantity,p (called momentum), results from the
net effort accumulation, therefore the causality is effortassigned. The element
constitutive equation is,

f =
1

L
p

p =

∫

edt + p(0).

• Sources (Se, Sf):Sources represent the system interaction with the environment.
Examples are voltage sources, current sources (for electrical systems) and external
forces and torques (for the mechanical systems). Source elements can impose effort
or flow, and, consequently they have the causality allocateddepending on the nature
of the source.

e = eb

f = fb.
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• Transformers (TF) and Gyrators (GY):Transformers and Gyrators are neither sto-
ring nor dissipating power and therefore preserving power elements. An ideal e-
nergy transformer traduces the effort to effort and the flow to flow, through a trans-
formation relationshipn. If n is not a constant, the transformer is a modulated
transformer (MTF).

e1 = ne2

f2 = nf1.

An ideal gyrator represents a domain transformation with gyrator ratior. If r is
not a constant, the gyrator is a modulated gyrator (MGY). Examples are electric
motors, pumps and turbines. In the gyrator the effort becomes flow and viceversa.

e1 = rf2

e2 = rf1.

• Unions (1,0): These elements join two or more elements preserving power, it can
done keeping the effort or the flow. They are represented by0 and1 respectively,
i.e., a0 union represents a node in which all connected efforts each other, and the
addition of the connected flows is equal to zero. The1 union is the dual of the0
union and represent a node in which all flows that are connected are equal and the
efforts addition is equal to zero. In electrical terms, unions0 and1 are equivalent
to the voltage and current Kirchhoff laws.

Many electrical machines are described using the bond graphapproach. From the DC
machine [23] or a simple AC generator [5], to three-phase induction machines [4][24].
HEV are also modeled using this graphical tool. In [22], a complete bond graph model
for a long urban transit bus is obtained and simulated. A bondgraph model of a parallel
HEV system is presented in [18], where the electrical machine and internal combustion
engine were modeled as an ideal torque source (Se-element), while the main contribution
was focused in the transmission, aerodynamics and wheel models.

The bond graph models of the electrical machines are obtained from the dynamical
equations presented in the previous Chapter. Figures 4.2 and4.3 represent the developed
models for the DFIM and the WRSM, respectively. For this modeling theI-elementsLlsD,
Llr, LlsW , LlF are defined as
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LlsD : I Lsr : I Llr : I

R : RsD R : Rr

Se : VsdD 1 0 1 Se : Vrd R : BD

GY : ωsLsr MGY : LsrisqD + Lrirq

GY : ωsLsD GY : ωsLr 1 Se : τD

GY : ωsLsr MGY : LsrisdD + Lrird

Se : VsqD 1 0 1 Se : Vrq I : JD

R : RsD R : Rr

LlsD : I Lsr : I Llr : I

Figure 4.2: Bond Graph model of a doubly-fed induction machine.

LlsD = LsD − Lsr,

Llr = Lr − Lsr,

LlsW = LsW − Lm,

LlF = LF − Lm.

Notice that, from the WRSM model, the Bond Graph of a permanent magnet syn-
chronous machine (PMSM) can be easily obtained by replacingthe field dynamics by a
constant flux,φ. It implies to eliminate all elements around the up-right1-junction, and
then theMGY becomes a standardGY-element, with aφ-depending gyrator modulus.

The DiSAC system model can be obtained interconnecting the WRSM and the DFIM
through the stator side of both machines. The interconnection rules are described in the
previous Chapter, equations (3.22), (3.23) and (3.24).

Finally, the Bond Graph scheme for the DiSAC system is shown inFigure 4.4. Notice
that, besides the differential causality assignments internal to the two machines, there are
extra ones (one for eachdq coordinate) due to the way the machines are connected (see
theLlsD elements).

In order to obtain a three-phase system description, the dq transformation can be also
represented under the BG formalism. Figures 4.5 and 4.6 show theαβ to dq, and theabc

to αβ transformations, respectively.
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LlsW : I Lm : I LlF : I

R : RsW R : RF

Se : VsdW 1 0 1 Se : VF R : BW

MGY : ωsLsW 1 Se : τW

Se : VsqW 1 MGY : LmiF I : JW

R : RsW

LsW : I

Figure 4.3: Bond Graph model of a wound-rotor synchronous machine.

4.2 Port controlled Hamiltonian model

Port-Controlled Hamiltonian Systems (PCHS) theory providesthe mathematical founda-
tion of the Bond Graph approach [20]. Hamiltonian modeling uses the state dependent
energy functions to characterize the dynamics of the different subsystems, and connect
them using a Dirac structure, which embodies the power preserving network of relations
established by the corresponding physical laws. The resultis a mathematical model with
an specific structure, called port-controlled Hamiltoniansystem (PCHS) [33], which lends
itself to a natural, physics-based analysis and control design.

An explicit PCHS has the form [14]

{

ẋ = (J (x) −R(x))∂H + g(x)u
y = gT (x)∂H

(4.1)

wherex ∈ R
n are the energy variables (or state vector),u, y ∈ R

m are the port variables,
andH(x) : R

n → R is the Hamiltonian function, representing the energy function of the
system. The∂x (or ∂, if no confusion arises) operator defines the gradient of a function
of x and, in the sequel, we will take it as a column vector.J (x) ∈ R

n×n is the interco-
nnection matrix, which is skew-symmetric (J (x) = −J (x)T ), representing the internal
energy flow in the system, andR(x) ∈ R

n×n is the dissipation matrix, symmetric and,
in physical systems, positive semidefinite (R(x) = R(x)T ≥ 0), which accounts for the
internal losses of the system. Finally,g(x) ∈ R

n×m is an interconnection matrix descri-
bing the port connection of the system to the outside world. It yields the flow of energy
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LlF : I Lm : I LlsW : I LlsD : I Lsr : I Llr : I

R : RF R : RsW R : RsD R : Rr

R : BW Se : VF 1 0 1 1 0 1 Se : vrd

GY : ωsLsr MGY : LsrisqD + Lrirq R : BD

Se : τW 1 MGY : ωsLsW GY : ωsLsD GY : ωsLr 1 Se : τD

GY : ωsLsr MGY : LsrisdD + Lrird I : JD

I : JW MGY : LmiF 1 1 0 1 Se : vrq

R : RsW R : RsD R : Rr

LsW : I LlsD : I Lsr : I Llr : I
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f(a) 0

TF
..√
(2)√
(3)

1 f(α)

TF
..

− 1√
(6)

f(b) 0
TF

..
1√
(2)

1 f(β)

TF
..

− 1√
(6)

f(c) 0
TF

..

− 1√
(2)

Figure 4.5: Bond Graph of the T matrix ofdq-transformation

f(α) 0
MTF

..

cos(δ)
1 f(d)

MTF
..

sin(δ)

MTF
..

− sin(δ)

f(β) 0
MTF

..

cos(δ)
1 f(q)

Figure 4.6: Bond Graph of the K matrix ofdq-transformation
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to/from the system through the port variables,u andy, which are conjugated,i.e. their
dot product has units of power.

In this Section, from the standarddq models of the DFIM and WRSM, the PCHS
for each machine is derived and the whole interconnected Hamiltonian system is also
obtained.

4.2.1 PCHS of a doubly-fed induction machine

The PCHS of a doubly-fed induction machine has been presentedin [3]. The Hamiltonian
variables are

xT
D = [λT

D, pD] = [λT
sD, λT

r , pD] ∈ R
5,

whereλsD = [λsDd, λsDq]
T andλr = [λrd, λrq]

T are the stator and rotor fluxes indq-
coordinates, respectively,pD = JDωD is the mechanical momentum,ωD is the mechani-
cal speed andJD is the inertia of the rotating parts. Note that theD subindex has been
included to refer to the DFIM.

The interconnection and damping matrix are, respectively,

JD =





−ωsLsDJ2 −ωsLsrJ2 O2×1

−ωsLsrJ2 −(ωs − ωD)LrJ2 LsrJ2isD
O1×2 Lsri

T
sDJ2 0



 ∈ R
5×5,

RD =





RsDI2 O2×2 O2×1

O2×2 RrI2 O2×1

O1×2 O1×2 BD



 ∈ R
5×5,

whereisD, ir ∈ R
2 are the stator and rotor currents,R andL are resistance and induc-

tances1, ωs is the stator electric frequency,BD is the mechanical damping,

J2 =

[

0 −1
1 0

]

, I2 =

[

1 0
0 1

]

andO∗×∗ represents zero matrix.

Fluxes,λD, and currents,iTD = [iTsD, iTr ] ∈ R
4, are related by

λD = LDiD, (4.2)

1Subscriptss andr refers to the stator and rotor, respectively.
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where the inductance matrix,LD, is

LD =

[

LsDI2 LsrI2

LsrI2 LrI2

]

∈ R
4×4.

The port connection is represented by

gD =





I2 O2×2 O2×1

O2×2 I2 O2×1

O1×2 O1×2 1



 ∈ R
5×5,

with the port variablesuT
D = [vT

sD, vT
r , τD], wherevsD, vr ∈ R

2 are the stator and rotor
voltages andτD is an external torque. The Hamiltonian model is completed with the
energy function

HD(xD) =
1

2
λT

DL−1
D λD +

1

2JD

p2
D.

4.2.2 PCHS of a wound-rotor synchronous machine

A Port-Controlled Hamiltonian model of a synchronous machine, with permanent mag-
net, can be found in [21]. The wound rotor synchronous machine includes a rotor winding
which has to be considered. In this case, the Hamiltonian variables are

xT
W = [λT

W , pW ] = [λT
sW , λF , pW ] ∈ R

4,

whereλsW = [λsWd, λsWq]
T is the stator inductor flux indq-coordinates,λF is the rotor

(or field) inductor flux,pW = JW ωW is the mechanical momentum,ωW is the mechanical
speed, andJW is the inertia of the rotating parts. TheW subindex has been included to
refer to the WRSM.

The interconnection and damping matrix are, respectively,

JW =





−ωW LsW J2 O2×1 −MiF
O1×2 0 0
MT iF 0 0



 ∈ R
4×4,

RW =





RsW I2 O2×1 O2×1

O1×2 RF 0
O1×2 0 BW



 ∈ R
4×4,
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whereisW ∈ R
2 are the stator currents,iF is the rotor (or field) current,R andL are

resistance and inductances2, BW is the mechanical damping and

M =

[

0
Lm

]

∈ R
2×1,

with Lm being the mutual inductance.

The WRSM fluxes,λW , and currents,iTW = [iTsW , iF ] ∈ R
3, are related by

λW = LW iW (4.3)

and the inductance matrix,LW , is

LW =

[

LsW I2 M

MT LF

]

∈ R
3×3.

The port connection,gW , is represented by an identity4 × 4 matrix,

gW = I4,

with the port variablesuT
W = [vT

sW , vF , τW ], wherevsW ∈ R
2 is the stator voltage,vF is

the rotor (or field) voltage, andτW is the applied external torque. Finally, the Hamiltonian
function is

HW (xW ) =
1

2
λT

WL−1
W λF +

1

2JW

p2
W .

4.2.3 PCHS of the DiSAC system

As it is shown in Figure 2.5, both machines are interconnected through their stator win-
dings. This implies that

vsD = vsW = vs, (4.4)

isD = −isW = is, (4.5)

ωs = ωW . (4.6)

This particular way of interconnecting the electric machines implies the series connec-
tion of two inductors, therefore we define a new variable,λs ∈ R

2, such that

λs = λsD − λsW . (4.7)

2Subscriptss andF refers to stator and field respectively.
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Using (4.2) and (4.3), (4.7) can be written as

λs = (LsD + LsW )I2is + LsrI2 + MiF , (4.8)

or, differentiating,
λ̇s = λ̇sD − λ̇sW . (4.9)

Notice that defining the new state variable as

xT = [λT
s , λT

r , λF , pD, pW ] ∈ R
7

and using (4.8) and (4.9), a new Hamiltonian system (4.1) canbe obtained. The new
Hamiltonian function is

H(x) =
1

2
λTL−1λ +

1

2JD

p2
D +

1

2JW

p2
W

where fluxesλT = [λT
s , λT

r , λF ] ∈ R
5 and currentsiT = [iTs , iTr , iF ] ∈ R

5 are related by,
λ = Li. L is the new inductance matrix

L =





(LsD + LsW )I2 LsrI2 M

LsrI2 LrI2 O2×1

MT O1×2 LF



 .

Finally, the interconnection and dissipation matrices, ofthe DiSAC system become

J =













−ωW (LsD + LsW )J2 −ωW LsrJ2 O2×1 O2×1 −MiF
−ωW LsrJ2 −(ωW − ωD)LrJ2 O2×1 LsrJ2is O2×1

O1×2 O1×2 0 0 0
O1×2 Lsri

T
s J2 0 0 0

MT iF O1×2 0 0 0













,

R =













(RsD + RsW )I2 O2×2 O2×1 O2×1 O2×1

O2×2 RrI2 O2×1 O2×1 O2×1

O1×2 O1×2 RF 0 0
O1×2 O1×2 0 BD 0
O1×2 O1×2 0 0 BW













and

g =













O2×2 O2×1 O2×1 O2×1

I2 O2×1 O2×1 O2×1

O1×2 1 0 0
O1×2 0 1 0
O1×2 0 0 1













where the input variablesuT = [vT
r , vF , τD, τW ] ∈ R

5.
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4.3 Simulation results

In this Section numerical simulations of the DiSAC system are presented in order to va-
lidate the obtained models. The WRSM was controlled via a PI controller. The DFIM
uses a nested control system. An outer PI controller generates the speed reference for an
inner current controller, designed accordingly to [4]. Simulations were performed using
the20sim software which contains a Bond Graph editor.

The DFIM and WRSM parameters are, respectively:RsD = 0.0823Ω, Rr = 0.0503Ω,
Ls = 27.834mH, Lr = 27.834mH, Lsr = 27.11mH, BD = 0.02791Nmrad−1s−1, JD =
0.37Kgm2, andLsW = 26.25mH, RsW = 0.181Ω, Lm = 25.29mH, LF = 27.19mH,
RF = 0.1002Ω and the WRSM mechanical speed is fixed atω = 314rads−1. The ma-
chines rated power are:PW = 37.5kVA and PD = 37kVA. The controllers parameters
are for the WRSM:Kp = 30, Ki = 3; for the DFIM inner current loop:Kp = 0.4,
Ki = 0.009, for the outer loop:Kp = 0.1, Ki = 0.01.

The control objectives are: to regulate the stator voltage (V = 400V), to regulate
the DFIM mechanical speed (ωr = 200rads−1) and to regulate the stator reactive power
(Qs = 0VAR).

The DFIM load torques starts atτD = 10Nm and changes toτD = −10Nm att = 2s.
With these values two modes can be observed. Firstly, the system is storing energy into
the batteries. Secondly, power is provided by the batteries.

Figure 4.7 shows the mechanical power flow (computed fromP = τω), the rotor
active power,Pr, and the stator reactive power3, Qs. As explained before, the rotor active
power is bidirectional and allows to store energy into the batteries.

Figure 4.8 shows the DFIM mechanical speed and its reference. Figure 4.9 shows the
rotor amplitude, the stator amplitude and the field voltage,respectively.

3In thedq coordinates, the instantaneous active and reactive power can be computed asPr = vT

r
ir and

Qs = vT

s
J2is.
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Figure 4.7: Simulation results: WRSM mechanical power (PW , dashed-doted black line),
DFIM mechanical power (PD, dashed red line), rotor active power (Pr, continuous blue
line), and stator reactive power (Qs, below).
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Figure 4.9: Simulation results: Rotor (vrd, continuous blue line,vrq, dashed red line),
stator amplitude (V , dashed-doted black line) and field voltage (vF , doted magenta line).
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Chapter 5

Power Analysis for the DiSAC System

Resume
This chapter is devoted to the analysis of the system power balance. We wonder to what
extend the regenerative braking is worth. We conclude that the system must be modified
as a future work in order to be used in a HEV.

5.1 Power analysis of a wound-rotor synchronous ma-
chine

In this Section, a steady-state analysis of the energy flowing through a WRSM is done.
From thedq-dynamical model, and using the active and reactive power definitions, the
energy balance equations are obtained. Finally, approximated expressions for the stator
and field power are depicted.

As we have presented in Chapter 3, the WRSM equations indq-coordinates can be
written as,

vdq = Rdqidq + Jωλdq + λ̇dq, (5.1)

37
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where

Rdq =





RsW 0 0
0 RsW 0
0 0 RF



 ,

Ldq =





Ls 0 Lm

0 Ls 0
Lm 0 LF



 ,

Jω =





0 −ωs 0
ωs 0 0
0 0 0



 .

The mechanical torque is,
τe = −LmiF iq. (5.2)

From (5.1) the field and stator voltages in steady state are1,

vF = RF iF

and

vs = RsW is + ωsJ2Lsis + ωsLm

[

0
iF

]

.

The active power can be expressed asP = vT i, and taking into account thatJT
2 =

−J2, the stator voltage transpose vector is,

vT
s = iTs RsW − ωsLsi

T
s J2 + ωsLm

[

0 iF
]

.

Then, the field and stator active power are,

PF = RF i2F , (5.3)

PsW = iTs RsW is − ωsLsi
T
s J2is + ωsLm

[

0 iF
]

is.

Finally, using (5.2) and substitutingiT J2i = 0, the stator active power results in

PsW = Rsi
2
s − ωsτe.

Neglecting the dissipative losses,

PF ≈ 0

PsW ≈ −ωsτe.

1For simplicity, thedq subscripts are avoided
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5.2 Power analysis of a doubly-fed induction machine

In this Section, an analysis similar to the presented in the previous section is applied to
the DFIM. This is also a steady-state analysis of the energy flowing through the DFIM.
Expressions for the stator and rotor power of the machine neglecting the dissipative terms
are obtained in order to do in the next section a power analysis of the whole system.

As we have presented in Chapter 3, the DFIM equations indq-coordinates can be
written as,

vdq = Rdqidq + Jωλdq + λ̇dq, (5.4)

where

Rdq =









RsD 0 0 0
0 RsD 0
0 0 Rr 0
0 0 0 Rr









,

Ldq =

[

LsDI2 LsrI2

LsrI2 LrI2

]

∈ R
4×4, I2 =

[

1 0
0 1

]

,

Jω =

[

ωsJ2 O2×2

O2×2 (ωs − ωD)J2

]

, O2 =

[

0 0
0 0

]

.

The electromechanical torque is,

τe = LmiTsdqJ2irdq. (5.5)

From (5.4) the stator and rotor voltages in steady state are2,

vs = RsDis + ωsJ2LsDis + ωsJ2Lsrir,

and
vr = Rrir + (ωs − ωD)J2Lsris + (ωs − ωD)J2Lrir.

The active power can be expressed asP = vT i. The stator and rotor voltages transpose
vector are,

vT
s = iTs RsD − ωsLsDiTs J2 − ωsLsri

T
r J2

and
vT

r = iTr Rr − (ωs − ωD)Lsri
T
s J2 − (ωs − ωD)Lri

T
r J2.

2For simplicity, thedq subscripts are avoided.
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Then, the stator and rotor active power results in

PsD = iTs RsDis − ωsLsDiTs J2is − ωsLsri
T
r J2is

and
Pr = iTr Rrir − (ωs − ωD)Lsri

T
s J2ir − (ωs − ωD)Lri

T
r J2ir.

Using (5.5) andiT J2i = 0,

PsD = RsDi2s + ωsτe, (5.6)

and
Pr = Rri

2
r − (ωs − ωD)τe. (5.7)

Finally, neglecting dissipative losses (RsD = 0,Rr = 0), simpler expressions for the
stator and rotor active power are obtained. Namely,

PsD ≈ ωsτe

Pr ≈ −(ωs − ωD)τe.

5.3 Power analysis applied to the DiSAC system

In this Section, the steady-state power expressions for thestator and rotor power of both
machines are used in order to analyze the power flowing through the DiSAC system. Due
the WRSM field power can be neglected and the WRSM stator power is proportional to the
ICE applied torque, the HEV power can be analyzed using the DFIM power expressions.

As a result of the DFIM design, the DFIM speed is bounded by zero and two times
the stator frequency (0 < ωD < 2ωs). We will analyze the following four cases in order
to take an idea of the system behavior,ωD = 0, ωD = ωs, ωD = 2ωs andωD = nωs.

5.3.1 Vehicle stopped

When the vehicle is stopped the DFIM speed is equal to zero (ωD = 0), the stator and
rotor power are

PsD ≈ ωsτe

and
Pr ≈ −ωsτe.

The machine is working as a transformer, all the power is flowing from the stator to
the rotor or viceversa, depending on the torque sign.
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5.3.2 Vehicle running at the synchronous speed

At synchronous speed,ωD = ωs, then, the stator and rotor power are

PsD ≈ ωDτe,

and
Pr ≈ 0.

The rotor neither absorbs nor provides power. The stator power is approximately equal
to the mechanical power (Pω = ωDτe), then, all the power is flowing from the stator to
the mechanical axis or viceversa, depending on the torque sign.

5.3.3 Vehicle running at twice the synchronous speed

This speed means,ωD = 2ωs, then, the stator and rotor power are

PsD ≈ ωsτe =
ωDτe

2
,

and
Pr ≈ ωsτe =

ωDτe

2
.

The stator and the rotor power are equal each other and its addition is the mechanical
power. In motor mode (τe > 0), the mechanical power comes, in equal parts, from the
stator and the rotor. In regenerative braking (τe < 0), half of the power is absorbed by the
stator and half of the power is absorbed by the rotor.

5.3.4 General analysis

A general analysis is done withωD = nωs, n ∈ R

PsD ≈ ωsτe =
ωDτe

n
,

and

Pr ≈ (n − 1)ωsτe =
(n − 1)ωDτe

n
.

The stator power plus the rotor power is the mechanical power. In motor mode (τe >

0), the mechanical power is provided for the stator and the rotor. In regenerative braking
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(τe < 0), a part of the power is absorbed by the stator and another part of the power is
absorbed by the rotor.

Although, the stator is always absorbing or providing power, the unique exception is
whenn >> 1. This operation point is not desired, because it incrementsthe reactive
power losses. Then, in regenerative braking the stator is always absorbing power that
can not be controlled with the proposed system. We conclude that the system must be
modified in order to control this power.



Chapter 6

Conclusions and future work

A novel series hybrid electric vehicle propulsion system that can be controlled through
the rotor voltages of every machine was proposed. This system has the advantage in our
knowledge that the rotor converters could be smaller than stator converters in traditional
machines. The proposed system defines a novel architecture for the study of isolated
generation or a series HEV propulsion system.

This system composed by several subsystems was modeled and simulated in the elec-
trical and mechanical domains. Additionally, two energy-based models were presented
following the Hamiltonian formalism and the Bond Graph approach. Simulations results
have also been presented. The use of the Bond Graph technique,thanks to easy sub-
models integration, allows to complement the presented model with other mechanical
(transmission, wheels, aerodynamics...) and electrical parts (power converters, batter-
ies,...).

There is just one operating point where the stator does not absorb power in regenera-
tive braking and, this condition occurs when the ICE is stopped (ωs = 0). The maximum
power that can be absorbed through the rotor whenωs 6= 0 is the half of the mechanical
power in a standard designs. Hence, the proposed configuration must be modified.

As we conclude, the DiSAC system must be modified in order to guarantee a complete
controlled regenerative braking. To this end, an inverter could be included between the
stator of both machines and the battery pack. This converterwould permit to store the
energy absorbed by the stator of the DFIM while the regenerative braking occurs and
apply extra power to the stator at another operation points.An electrical scheme of the
proposed modified DISAC system is shown in figure 6.1.
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WRSM

τE,ω

DFIMvs,is

τ ,ωr

vF ,iF vr,ir

B

Figure 6.1: Electrical scheme of the modified DiSAC system.

In future works, the modified DiSAC system must be analyze in order to show its
behavior. Then, a robust controller and an energy management for the modified DISAC
system must be designed and implemented at laboratory and atan actual vehicle.

Also, a model of the HEV mechanical parts must be included to complete the sys-
tem. The complete model behavior with the designed controllers must be simulated using
standard profiles for vehicles.



Bibliography

[1] About. History of electric vehicle, 2002. Available in
http://inventors.about.com/library/weekly/aacarselectrica.htm.
1, 2

[2] M. Al-Atabi and T. Yusaf. Experimental investigation of a single cylinder diesel engine as a
hybrid power unit for a series hybrid electric vehicle. InProc. IEEE Student Conference on
Research and Development, pages 261–264, 2002. 7

[3] C. Batlle, A. Dòria-Cerezo, and R. Ortega. Power Flow Control of aDoubly–Fed Induction
Machine Coupled to a Flywheel.European Journal of Control, 11(3):209–221, 2005. 29

[4] C. Batlle and A. Dòria. Energy-based modeling and simulation of the interconnection of a
back-to-back converter and a doubly-fed induction machine. InAmerican Control Confer-
ence, pages 1851–1856, 2006. 24, 33

[5] C. Batlle and A. Dòria-Cerezo. Bond graph models of electromechanical systems. the ac
generator case. InIEEE Int. Symp. on Industrial Electronics, 2008. 24

[6] M. Becherif, R Ortega., E Mendes., and S. Lee. Passivity-based control of a doubly-fed
induction generator interconnected with an induction motor. InProc. of the 42nd IEEE
Conference on Decision and Control, pages 5657–5662, 2003. 8

[7] J. Broenik. Introduction to physical systems modelling with bond graphs. Technical report,
University of Twente, 1999. 21

[8] P. Caratozzolo.Nonlinear Control Strategies of an Isolated Motion System with a Double-
Fed Induction Generator. PhD thesis, Technical University of Catalonia, 2003. 8

[9] P. Caratozzolo, E. Fossas, J. Pedra, and J. Riera. Dynamic modeling of an isolated motion
system with dfig. InProc. of the VII IEEE International Power Electronics Congress, pages
287–292, 2000. 5, 7

45

http://inventors.about.com/library/weekly/aacarselectrica.htm


46 BIBLIOGRAPHY

[10] P. Caratozzolo, E. Fossas, and J. Riera. Nonlinear control of an isolated motion system with
dfig. In Proc. 15th IFAC World Congress, 2002. 8

[11] P. Caratozzolo, M. Serra, C. Ocampo, and J. Riera. A proposalfor the propulsion system of a
series hybrid electric. InProc. IEEE 34th Annual Power Electronics Specialist Conference,
pages 586–591, 2003. 8

[12] P. Caratozzolo, M. Serra, and J. Riera. Energy management strategies for hybrid electric
vehicles. InProc. IEEE International Electric Machines and Drives Conference, pages
241–248, 2003. 8

[13] C. Chan. The state of the art of electric and hybrid electric vehicles.In Proceedings of the
IEEE, volume 90, 2002. 3, 6, 7

[14] M. Dalsmo and A. van der Schaft. On representations and integrabilityof mathematical
structures in energy-conserving physical systems.SIAM J. Control Optim., 37:54–91, 1998.
26

[15] El diferencial. Several articles.
Available inhttp://www.eldiferencial.com.mx. 3

[16] M. Ehsani, Y. Gao, S.E. Gay, and A. Emadi.Modern Electric, Hybrid Electric, and Fuel
Cell Vehicles: Fundamentals, Theory, and Design. CRC, Boca Raton, FL, 2004. 5

[17] A. Emadi, K. Rajashekara, S. Williamson, and S. Lukic. Topological overview of hybrid
electric and fuel cell vehicular power system architectures and configurations.IEEE Trans-
actions on Vehicular Technology, 54(3):763–770, May 2005. 7

[18] M. Filippa, C. Mi, J. Shen, and C. Stevenson. Modeling of a hybrid electric vehicle power-
train test cell using bond graphs.IEEE Transactions on Vehicular Technology, 54(3):837–
845, 2005. 24

[19] M. Gokasan, S. Bogosyan, and D. Goering. Sliding mode based powertrain control for ef-
ficiency improvement in series hybrid-electric vehicles.IEEE Transactions on Power Elec-
tronics, 21:779–790, May 2006. 7

[20] G. Golo, A.J. van der Schaft, P.C. Breedveld, and B. Maschke. Hamiltonian formulation of
Bond Graphs. InWorkshop NACO II, pages 2642–2647, 2001. 26

[21] Y. Guo, Z. Xi, and D. Cheng. Speed regulation of permanent magnet synchronous motor
via feedback dissipative hamiltonian realisation.IET Control Theory Appl., 1(1):281–290,
2007. 30

http://www.eldiferencial.com.mx


BIBLIOGRAPHY 47

[22] G. Hubbard and K. Youcef-Toumi. Modeling and simulation of a hybrid-electric vehicle
drivetrain. InProc. of the 1997 American Control Conference, volume 1, pages 636–640,
1997. 24

[23] D. Karnopp, D. Margolis, and R. Rosenberg.System Dynamics: Modeling and Simulation
of Mechatronic Systems. John Wiley and Sons, Inc, 2006. 21, 24

[24] J. Kim and M. Bryant. Bond graph model of a squirrel cage induction motor with direct
physical correspondence.Journal of Dynamic Systems, Measurement and Control, 22:461–
469, 2000. 24

[25] P. Krause, O. Wasynczuk, and S. Sudhoff.Analysis of Electric Machinery and Drive Sys-
tems. John-Wiley and Sons, 2002. 11, 13, 16

[26] J.M. Miller. Propulsion systems for hybrid vehicles. IEE, Power and Energy series, 2004. 6

[27] R. S. Muñoz-Aguilar, A. Dòria-Cerezo, and P. F. Puleston. Energy-based modelling and sim-
ulation of a series hybrid electric vehicle propulsion system. InProc. European Conference
on Power Electronics and Applications, 2009. 3

[28] T. Ortmeyer. Variable voltage variable frequency options for series hybrid vehicles. InProc.
of IEEE Conference on Vehicle Power and Propulsion, pages 262–267, 2005. 5, 8

[29] T. Ortmeyer, L. Ban, K. Joshi, and X. Yan. Novel variable voltagevariable frequency electric
drive. InProc. of the Large Engineering Systems Conference on Power Engineering, pages
44–49, 2003. 8

[30] T. Ortmeyer and X. Yan. Novel electric drive with power regenerating capability: modeling
and simulation. InProc. of 11th International Conference on Harmonics and Quality of
Power, pages 794–800, 2004. 8

[31] T. Ortmeyer and X. Yan. Pulse load capability for vvvf propulsion drives. InProc. of IEEE
Electric Ship Technologies Symposium, pages 340–346, 2005. 8

[32] A. Samantaray. About bond graphs, 2005.
Available inhttp://www.bondgraph.info/about.html. 21

[33] A. van der Schaft.L2 gain and passivity techniques in nonlinear control. Springer, 2000.
26

[34] P. Vas.Vector Control of AC Machines. Oxford University Press, 1994. 9, 16

[35] J. West. Dc, induction, reluctance and pm motors for electric vehicles. Power Engineering
Journal, pages 77–88, 1994. 3

http://www.bondgraph.info/about.html

	Acknowledgments
	Abstract
	Contents
	List of Figures
	Acronyms
	Glossary of symbols
	Introduction
	Motivation
	Thesis Objectives
	Main contributions of the Thesis
	Thesis organization

	Hybrid Electric Vehicles
	HEV Configurations
	Alternative SHEV's configurations
	Direct Synchronous-Asynchronous Conversion System

	DiSAC System Model
	Three-phase dynamical model
	Wound rotor synchronous machine
	Doubly-fed induction machine

	The dq-transformation
	The  model
	Wound rotor synchronous machine
	Doubly-fed induction machine

	The dq model
	Wound rotor synchronous machine
	Doubly-fed induction machine

	System interconnection

	Energy-Based Models
	Bond Graph model
	Port controlled Hamiltonian model
	PCHS of a doubly-fed induction machine
	PCHS of a wound-rotor synchronous machine
	PCHS of the DiSAC system

	Simulation results

	Power Analysis for the DiSAC System
	Power analysis of a wound-rotor synchronous machine
	Power analysis of a doubly-fed induction machine
	Power analysis applied to the DiSAC system
	Vehicle stopped
	Vehicle running at the synchronous speed
	Vehicle running at twice the synchronous speed
	General analysis


	Conclusions and future work
	Bibliography

