

MASTER THESIS

TITLE: Programmable-System-on-Chip-based data acquisition system for

educational purposes

MASTER DEGREE: Master in Science in Telecommunication Engineering

& Management

AUTHOR: Fernando Manzano Rubio

DIRECTOR: Ernesto Serrano Finetti

DATE: April 23 th 2012

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41806306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Título: Programmable-System-on-Chip-based data acquisition system for

educational purposes

Autor: Fernando Manzano Rubio

Director: Ernesto Serrano Finetti

Fecha: 23 de abril de 2012

Resumen

El objetivo del proyecto es desarrollar un sistema DAS con fines docentes
basándose en un PSoC DVK. El sistema está orientado principalmente a ser
un soporte para desarrollar conocimientos básicos sobre la adquisición de
señales, así como una herramienta para llevar a cabo medidas sencillas.

Para ello se ha implementado una parte hardware y una parte software. El
hardware consiste en el PSoC DVK, el cual tiene las funciones de adquirir y
generar señales AC y DC, mostrar información sobre la función seleccionada y
sobre la señal adquirida mediante un display y transmitir las muestras
adquiridas a través de una comunicación RS-232. El software permite la
interacción con el PSoC así como la visualización de las muestras adquiridas
tanto en función del tiempo como en un histograma.

El sistema ofrece la capacidad de seleccionar el tipo de ADC entre integrador,
SAR y doble integrador; así como varias resoluciones y tasas de muestreo.
Esto permite disponer de varias configuraciones, con el fin de estudiar algunas
características del ámbito de la adquisición de señales como por ejemplo la
capacidad del integrador para el rechazo de interferencias en comparación con
el SAR y el testeo de circuitos analógicos mediante el doble integrador.
Además, el sistema dispone de un DAC para la generación de señales AC y
DC con amplitudes y frecuencias seleccionables, como fuente de señal para el
testeo de los circuitos analógicos o el estudio de los ADCs.

Finalmente, el sistema permite seleccionar el número de muestras a adquirir
entre varios tamaños predefinidos para poder observar con más o menos
detalle la representación temporal de la señal, así como una opción de escalar
la entrada para aprovechar la resolución del ADC en señales de baja amplitud.

Title: Programmable-System-on-Chip-based data acquisition system for

educational purposes

Author: Fernando Manzano Rubio

Director: Ernesto Serrano Finetti

Date: April, 23 th 2012

Overview

The project aims to implement a PSoC DVK based DAS system learning
resource. The idea is to provide a way to develop signal acquiring basic
knowledge, as well as a tool to implement simple measures.

In order to do it, hardware and software have been implemented. Hardware
consists of PSoC DVK, which has the functions of AC and DC signal acquiring
and generating, showing information about the selected function and the
acquired signal through a display, and transmitting the acquired samples
through the RS-232 communication. Software allows PSoC interacting and
showing the acquired samples over the time and in a histogram.

The system provides the capability for selecting the ADC type between an
integrating, a SAR and a dual integrating. Also, different resolutions and
sample rates can be selected. This allows having several configurations in
order to study some signal acquiring features, such as the interference
rejection capability of the integrating ADC compared to the SAR and the analog
circuit response, or to study each ADC type signal acquiring.

Finally, the system allows selecting the number of samples to be acquired
between some preset quantities. It allows showing a detailed temporal
representation of the samples acquired. Also, the input can be scaled in order
to profit the ADC resolution for small amplitude signals.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my tutor Ernesto Serrano, whose expertise,
understanding and time invested had helped me in all the time research for and
writing of this project.

I must also acknowledge my family for the support they have provided me during
the project development and the encouragement to going on in the hard moments.

TABLE OF CONTENTS

ACRONYMS LIST .. 1

1. Introduction .. 2

1.1 Objectives ... 2

1.2 DAS .. 2

1.3 PSoC .. 5

1.3.1 Why use a PSoC? .. 5

1.3.2 PSoC architecture .. 7

1.3.3 Technical specifications of resources needed 12

1.3.4 Dynamic Reconfiguration .. 15

1.3.5 PSoC DVK .. 15

2. Design and implementation of a PSoC-based DAS system 17

2.1 Functional description ... 17

2.2 Global resources ... 18

2.3 RS232 transmission .. 19

2.4 LCD... 20

2.5 ADC .. 21

2.5.1 PGA .. 21

2.5.2 SAR6 .. 22

2.5.3 ADCINCVR ... 23

2.5.4 DUALADC .. 24

2.5.5 How the ADCs sample rates are obtained .. 25

2.5.6 ADCINCVR frequency rejection .. 27

2.6 Test of linear circuits ... 28

2.6.1 How the DAC generates the signals ... 29

2.7 PSoC dynamic reconfiguration .. 31

2.8 Detected PSoC limitations ... 31

3. User interface .. 33

3.1 Functional description ... 33

3.2 Implementation ... 36

4. Experimental results .. 38

4.1 Test of different ADC features ... 38

4.2 Interference rejection .. 40

4.3 Test of DAC signal generation... 42

4.4 ADC and DAC working together .. 43

5. Conclusions ... 46

BIBLIOGRAPHY .. 47

ANNEX A. HOW ADCINCVR MAKES THE CONVERSION 48

ANNEX B. DATA FORMAT USED BY THE USER MODULES 49

ANNEX C. USER MODULES LIBRARY FUNCTIONS USED 50

ANNEX D. TEST OF DAC GENERATION ... 53

ANNEX E. PSoC AND USER INTERFACE SOURCE CODES 56

1

ACRONYMS LIST

ADC: Analog to Digital Converter.
AC: Alternating Current.
API: Application Programming Interface.
CPU: Central Processing Unit.
CRC: Cyclic Redundancy Check.
DAC: Digital to Analog Converter.
DAQ: Data acQuisition.
DAS: Data Acquisition System.
DC: Direct Current.
DNL: Differential Non-Linearity.
DTMF: Dual-Tone Multi-Frequency.
DVK: DeVelopment Kit.
EEPROM: Electrically Erasable Programmable Read-Only Memory.
ENOB: Effective Number Of Bits.
FSR: Full-Scale Range.
GPIO: General Purpose Input/Output.
I2C: Inter-Integrated circuit Communication.
INL: Integral Non-Linearity.
IO: Input/Output.
IRDA: Infrared Data Association.
ISSP: In-System Serial Programming.
LCD: Liquid Cristal Display.
LED: Light-Emitting Diode.
LSB: Least Significant Bit.
MCU: Micro-Controlling Unit.
MIPS: Million Instructions Per Second.
PGA: Programmable Gain Amplifier.
PSRR: Power Supply Rejection Ratio.
PRS: Pseudo-Random Sequence.
PWM: Pulse-Width Modulation.
RAM: Random-Access Memory.
RMS: Root Mean Square.
ROM: Read-Only Memory.
RS232: Recommended Standard 232.
SAR: Successive Approximation Register.
SINAD: Signal to Noise And Distortion ratio.
SPI: Serial Peripheral Interface.
SQNR: Signal to Quantization Noise Ratio.
SRAM: Static Random-Access Memory.
UART: Universal Asynchronous Receiver Transmitter.

2 PSoC-based data acquisition system for educational purposes

1. INTRODUCTION

1.1 Objectives

The main objective of this project is to implement a DAS learning resource based
on a PSoC DVK for a wide variety of engineering students, from those closely
related to electronic systems like telecommunications to those who need to
understand the basic features of signal acquisition but only as a necessary tool to
perform measurements. This learning resource will cover many basic features of a
DAS such as ADC resolution and sampling rates, aliasing, particular characteristics
of different ADC types, DAC AC-DC signal generation, data logging capability,
noise and input/output characterization. Also, in this study the main PSoC
limitations referring to dynamic reconfiguration or system resources will be
assessed.

Finally, a user interface will be developed in order to interact with the PSoC. It will
allow the configuration and running of the PSoC to work and test the previously
mentioned DAS features.

1.2 DAS

In some areas, data of interest is present in the real world in a difficult manner to
treat it. It is present as physical signals that, because of its nature, can be in a
great quantity, with fast variations or small dimensions in order to appreciate the
information they can give us.

A DAS is a system designed to acquire these signals from the real world to a
device. The main objective of this system is to measure, process or store these
signals. Typically, the DAS needs some other elements to do it. These elements
can be seen as stages, which everyone has a concrete task in the acquisition of
the signal. Fig. 1.1 shows the common stages in a DAS.

Introduction

3

Fig. 1.1 A typical DAS system.1

Usually, the goal of a DAS is to acquire signals coming from one or more sensors
which are used to get the real signal and to convert it to an electrical one, normally
expressed as a voltage signal. Sensors can be classified in a great number of
groups, depending on the way they sense the signal and the kind of output they
provide. Alternatively, a DAS might be used together with well-known signals to
study input/output characteristics of a certain electronic device or circuit.

Whatever its source, the signals will be converted into digital codes by an ADC
which is the key component of the DAS. The signal is sampled and quantified and
a binary value is assigned to each signal level, which represents the analog value
in the digital world. This sampling is triggered by the DAS main clock at a periodic
rate. So, the main characteristics of the DAS depend on the basic ADC
performance parameters: the resolution, the full scale voltage and the sampling
rate.

The resolution, determined by the number of bits (N) of the ADC, gives the number
of levels that the analog signal can be quantified into. Therefore, the number of bits
corresponds to the size of the digital code.

The voltage reference is a voltage in the system that determines the FSR and the
dynamic range of the ADC, which is defined as the difference between the
maximum and the minimum voltages that can be detected at the input. This one,
altogether to the resolution, gives the minimum voltage variation that the system
can detect in the analog signal at the input, named LSB and corresponds to:

(1.1)

1
 Source: http://www.kostic.niu.edu/DAQ-LabVIEW.html

http://www.kostic.niu.edu/DAQ-LabVIEW.html

4 PSoC-based data acquisition system for educational purposes

From this parameter, another aspect of the DAS can be obtained, the quantization
error (eq), expressed as:

 ⁄

(1.2)

This error is the uncertainty between the levels that can be quantified by the ADC.
It is usually regarded as noise (quantization noise) and therefore, its relation with
the signal at the input can be calculated as:

(1.3)

Also, if important levels of noise or distortion are present at the ADC input, some
bits can be unavailable to represent the signal because they are masked. So,
another parameter used to characterize the system, which also considers the
quantization noise, is the ENOB. It specifies the number of bits in the digital signal
above the noise floor and it is calculated as:

(1.4)

Where the SINAD is a parameter that shows the relation between the signal and
the noise and distortion present.

The sampling rate is the rate at which the quantization of the analog signal is done.
In order to represent correctly the real signal in the digital world, it is mandatory to
be greater than the double of the analog signal bandwidth.

Apart from this, the benefits of an ADC depend on the type of ADC. The most
common are the Flash ADC, the SAR, the integrating ADC and the Sigma-Delta.
The main difference between them is the way to implement the conversion,
achieving different performance.

Another important step in the process of signal acquisition is signal conditioning,
which adapts the electrical signal coming from the sensor to the DAS input to
match dynamic range, offset, common mode and bandwidth to mention some of
the key performance parameters. This stage is named the Analog Front End and it
is previous to the DAS input. This adaptation is necessary to obtain the maximum
quality in the conversion.

Introduction

5

Filtering is done to attenuate noise and other unwanted signals in order to keep the
noise floor as close as possible to keep the expected DAS resolution while also
avoiding aliasing effects.

Amplifying or attenuating allows the level of the signal match the DAS dynamic
range. This is usually done to take full profit of the number of bits offered by the
DAS. For example, if only half the full scale voltage is used then the effective
resolution will be one bit less than expected.

Offset shifts the average level of signal to match the maximum and minimum
values accepted by the DAS input. For example, a signal might swing between -2
to 3 V while the DAS input might only accept values from 0 to 5 V. It is clear that a
shift of 2 V is necessary for the signal to be accurately sampled.

Multiplexing the signal is a secondary aspect of adaptation that depends on the
quantity of signals to acquire. It allows the DAS to acquire several signals in
parallel.

Once the signal is adapted to the DAS input, it is converted to digital and is finally
transferred to the final device. This device normally is referred to some kind of
computer with powerful software that shows this data and allows processing it if
needed in order to measure and study some processes. Also, more concretely
systems can be used to store data for future manipulations.

1.3 PSoC

This section will explain some features about the PSoC, such as its description, the

resources needed to implement the project, the Dynamic Reconfiguration and the

DVK.

1.3.1 Why use a PSoC?

PSoC stands for Programmable System on Chip, and it is a variety of the Cypress
programmable microcontrollers’ family. It has a core, a configurable system
integrated which includes mixed-signal arrays of configurable analog and digital
blocks, and a programmable routing and interconnect. Fig. 1.2 shows these parts.

6 PSoC-based data acquisition system for educational purposes

Fig. 1.2 The PSoC main parts.2

These configurable blocks can be programmed as peripherals to perform a wide
variety of functions, and then they can be interconnected to perform a specific task.
Between these functions there are ADCs, PGAs, filters, DACs, counters or UART
communication.

Furthermore, PSoC allows to create several configurations for different tasks, and
to switch between them in real time. This characteristic, called Dynamic
Reconfiguration, gives to the PSoC the main difference from other microcontrollers.

PSoC is programmed by a powerful software provided by the manufacturer, PSoC
Designer. It has a graphic interface to configure the analog and digital blocks with
user modules, which represents the peripherals such as ADC, PGA, DAC, etc. and
their parameters. Also, parameters of the entire PSoC such as clocks, reference
voltages, power, etc. and the device pins can be set through the software. Apart
from this, the software allows to program the PSoC through C++ or assembler
code. All user modules parameters and functions can be accessed through code,
in order to achieve a more complexity configuration. To allow it, the manufacturer
has implemented a series of libraries for each user module, which provides an API
to configure them.

2
 Source: http://www.cypress.com

http://www.cypress.com/

Introduction

7

Therefore, versatility and capability to switch between different tasks are the
strengths of these microcontrollers. Aspects that make them a good choice to
develop the functionality presented in this project.

1.3.2 PSoC architecture

There are three families of PSoC: PSoC 1, PSoC 3 and PSoC 5. The principal
difference is the MCU that feeds the core, which increases its performance in
terms of clock rate and therefore the calculation rate. Also, the instruction length is
incremented from 8 to 16 and 32 bits. Fig. 1.3 shows a comparative between them.
In this project we will work with a PSoC 1 because of its availability and technical
support.

Fig. 1.3 PSoC family cores.3

Then, depending on the PSoC model, the digital and analog systems may have 16,
8, or 4 digital blocks and 12, 6, 4 analog blocks. Also, the number of pins and the
memories size may differ from each other categories. To implement the project, a
CY8C29x66 model of PSoC 1 has been chosen, which is powered by a M8C MCU
of up to 24 MHz and 4 MIPS and has the capability of Dynamic Reconfiguration.

As mentioned earlier in this section for general PSoCs, PSoC 1 devices are formed
by a core, a configurable system based on analog and digital blocks, and a
programmable routing and interconnect.

The most important elements included in the core are CPU, memory, clocks, and
configurable GPIOs. Memory refers to RAM memory and Flash memory to locate

3
 Source: http://www.cypress.com

http://www.cypress.com/

8 PSoC-based data acquisition system for educational purposes

the firmware. PSoC uses 16 KB of flash for program storage, 256 bytes of SRAM
for data storage, and up to 2 KB of EEPROM emulated using the flash.
The clocks are used to synchronize the internal clock of the analog and the digital
blocks. They are part of the PSoC global resources. PSoC has a wide variety of
clock sources in order to increase the flexibility. They provide the following clocking
signals:

- SYSCLK: Is the system main reference clocking signal, it can be created by
the Internal Main Oscillator (IMO) which runs at 24 MHz or and external clock
(EXTCLK).
- SYSCLKx2: Twice the frequency of SYSCLK.
- CPUCLK: Determines the speed of the CPU. It is created by SYSCLK
divided down to one of eight possible frequencies.
- VC1, VC2 and VC3: Are Variable Clocks (VC), related between them, the
SYSCLK and the SYSCLKx2 through a divisor.
- CLK32K: Can be created by the Internal Low Speed Oscillator or the
External Crystal Oscillator (ECO).
- CLK24M: Is the internally generated 24 MHz clock by the IMO.

Fig. 1.4 shows the relationship between the different PSoC clocks.

Fig. 1.4 Source clock PSoC internal distribution.4

4
 Source: http://www.psoc-chile.es.tl/Clock-y-Frecuenias.htm

http://www.psoc-chile.es.tl/Clock-y-Frecuenias.htm

Introduction

9

The GPIO blocks provide the interface between the CPU and the outside world.
Each GPIO block is formed by different I/O pins, which have several drive modes,
as well as and interrupt capabilities. They can be used for the following types of
I/O:

- Digital I/O (used by the CPU to send out and get into information)
- Global I/O (digital PSoC block input and output)
- Analog I/O (analog PSoC block input and output)

The programmable routing and interconnect allows any connection between the
configurable system and the GPIO. It is done through a series of global buses that
can route any signal to any pin. The buses also allow signal multiplexing and
performing logic operations.

The digital part of the CY8C29x66 category configurable system is composed by
16 digital blocks provided in rows of four, where each row has two blocks for
communication purposes (DCB) and two blocks for basic purposes (DBB). Fig. 1.5
shows the digital system distribution.

10 PSoC-based data acquisition system for educational purposes

Fig. 1.5 PSoC digital system distribution.5

These blocks can be used alone or combined with other blocks to form 8-, 16-, 24-,
and 32-bit user modules. The user modules included are:

- PWMs (8- to 32-bit)
- PWMs with dead band (8- to 32-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit)
- UART 8-bit with selectable parity (up to 2)
- SPI slave and master (up to 2)
- I2C slave and multi-master (one available as a system resource)
- CRC generator (8- to 32-bit)
- IrDA (up to 2)
- PRS generators (8- to 32-bit)

5
 Source: Cypress CY8C29x66 datasheet.

Introduction

11

The analog part of the CY8C29x66 category configurable system is composed by
12 analog blocks provided in columns of three, where each column includes one
continuous time (CT) and two switched capacitor (SC) blocks. Fig. 1.6 shows the
analog system distribution.

Fig. 1.6 PSoC analog system distribution.6

6
 Source: Cypress CY8C29x66 datasheet.

12 PSoC-based data acquisition system for educational purposes

These blocks, each containing an opamp circuit that allows the creation of complex
analog signal flows, can be used as a wide variety of peripherals. The user
modules that can be configured as these peripherals are:

- ADCs (up to 4, with 6- to 14- bit resolution; selectable as incremental, delta
sigma, and SAR)
- Filters (2-, 4-, 6-, and 8-pole band pass, low pass, and notch)
- Amplifiers (up to 4, with selectable gain to 48x)
- Instrumentation amplifiers (up to 2, with selectable gain to 93x)
- Comparators (up to 4, with 16 selectable thresholds)
- DACs (up to 4, with 6-bit to 9-bit resolution)
- Multiplying DACs (up to 4, with 6-bit to 9-bit resolution)
- DTMF Dialer
- Modulators
- Correlators
- Peak detectors
- Etc.

Also, a reference voltage and a nominal operation voltage are needed for setting
the analog ground and the peak-to-peak voltage limit of the analog system. They
are provided by the Vcc and the Ref Mux parameters of the PSoC and also are part
of the PSoC global resources together the clocks. The Vcc corresponds to the
power supply voltage of the system.

1.3.3 Technical specifications of resources needed

As explained at the beginning of this chapter, the PSoC peripherals are
represented by user modules. These user modules have a series of technical
specifications that characterize them. To implement the different system functions
some user modules are needed, as well as other resources considered global
resources. The user modules needed, as well as their technical specifications, are
shown below. They corresponds to a temperature of 25 ºC, a system power supply
of Vcc = 5 V and a high power supply for analog blocks.

UART

- Asynchronous receiving and transmitting.
- RS-232 serial-data format.
- Burst rates up to 6 Mbps.
- Data frame composed by start, optional parity and stop bits.
- Optional interrupt on receive register full and/or transmit buffer empty.
- Parity, overrun and framing error detection.

LCD

- Requires seven I/O pins.
- Allows for printing RAM or ROM strings.

Introduction

13

- Allows for printing numbers.
- Allows for displaying horizontal and vertical bar graphs.

Counter

- Up to 32-bit resolution.
- Source clock rates up to 48 MHz.
- Automatic reload of period on terminal count.
- Programmable pulse width.
- Selectable continuous counter operation.
- Optional interrupt on compare output or terminal count.

DAC

- 6-bit resolution.
- 2’s complement, offset binary and sign/magnitude input data formats.
- Up to 250 ksps.
- Output voltage range depending on the system reference voltage.
- DNL of 0,09 LSB, INL of 0,07 LSB.
- Including reference gain error of 3,4 %FSR, excluding reference gain error
of 0,45 %FSR.7
- Offset voltage of +- 7,5 mV.
- Output noise of 4,6 mV RMS.

PGA

- Thirty-three user-programmable gain settings with a maximum gain of 48,0.
- High impedance input.
- Input voltage range depending on the system reference voltage.
- PSRR of 73 dB.
- Slew rate (20% to 80%) of 9,5 V/µs.
- Settling time of 1 µs.
- Noise of 99 nV/√Hz.

ADCINCVR

- 7- to 13-bit resolution.
- 2’s complement and unsigned output data format.
- Sample rates from 4 to 10 000 sps.
- Input voltage range depending on the system reference voltage.
- SNR of 77 dB.
- DNL of 0,4 LSB, INL of 1,0 LSB.
- Offset error of 9 mV.
- Including reference gain error of 2,0 %FSR, excluding reference gain error
of 0,1 %FSR.
-

DUALADC
- 7- to 13-bit resolution.

7
 Cypress condition: reference gain error measured by comparing the external reference to VRefHigh

and VRefLow routed through the test mux and back out to a pin.

14 PSoC-based data acquisition system for educational purposes

- 2’s complement and unsigned output data format.
- Sample rates from 4 to 10 000 sps.
- Input voltage range depending on the system reference voltage.
- SNR of 77 dB.
- DNL of 2,0 LSB, INL of 1,0 LSB.
- Offset error of 9 mV.
- Including reference gain error of 3,0 %FSR, excluding reference gain error
of 0,1 %FSR.

SAR6

- 6-bit resolution.
- 2’s complement output data format.
- Internal update rate of 32 to 333 kHz.
- Input voltage range depending on the system reference voltage.
- DNL of 0,25 LSB, INL of 0,75 LSB.
- Offset error of 8 mV.
- Including reference gain error of 1,5 %FSR, excluding reference gain error
of 0,4 %FSR.

The global resources needed, as well as their technical specifications are shown
below.

Clocks
As introduced above in the section Basic explanation of the architecture, PSoC has
a wide variety of clock sources in order to increase the flexibility. The clock sources
needed for implementing the project are SysClk, VC1, VC2 and VC3.

- SysClk: It can be sourced by the IMO or an external clock (ExtClk pin). The
frequencies to be selected from the IMO are 24 MHz and 6 MHz.
- VC1: Is sourced by SysClk. An integer from 1 to 16 divides down the
frequency.
- VC2: Is sourced by VC1. An integer from 1 to 16 divides down the
frequency.
- VC3: It can be sourced by the VC1, VC2, SysClk or SysClk*2. An integer
from 1 to 256 divides down the frequency.

Reference voltages
The reference voltages needed by the user modules are given by the Ref Mux and
Vcc global resources parameters. They set the analog ground and the peak-to-peak
voltage limits of the analog system.

- Vcc: Is the system supply voltage. It is selectable between 3,3 V and 5 V.
- Ref Mux: Sets the analog ground and the peak-to-peak voltage limits. The
options offered are:

o Vdd/2 +/- BandGap
o Vdd/2 +/- Vdd/2
o BandGap +/- BandGap

Introduction

15

o 1,6 BandGap +/- 1,6 BandGap
o 2 BandGap +/- BandGap
o 2 BandGap +/- P2[6]
o P2[4] +/- BandGap
o P2[4] +/- P2[6]

1.3.4 Dynamic Reconfiguration

The Dynamic Reconfiguration is a technique developed by Cypress that allows
PSoC 1 devices to reuse analog and digital resources to maximize the
functionality. It consists in creating different layers, each of them with the user
module configuration that have to work as a system.

The PSoC Designer allows easily the implementation of the Dynamic
Reconfiguration by creating these layers in the user interface in a graphical way.
These layers are located in the firmware and can be switched between and
interacted with them at a firmware API levels. To do it there are some instructions
in the code level that allow loading or unloading a concrete layer. Load a layer is
referred to make it active and unload a layer is referred to make it inactive.

When the PSoC is started the boot code is executed. It includes loading the base
configuration layer. This base layer must be always loaded. The rest of the layers
are considered overlays. Apart from the base layer, more than one overlay can be
loaded at the same time. So the user modules placed in these layers are always
active. The digital and analog blocks used in these layers can’t be used in other
layers; otherwise they will be overlapped and as a consequence there will appear
conflicts.

Global resources as reference voltages or clocks are set by the last loaded layer,
so they may be reconfigured to accomplish with the user modules of the current
layer. In this case, those resources used by other user modules already active
have to be respected so that these user modules can work properly.

The result is a system composed by parallel systems that can be switched on and
off at any time. And the blocks used at the same time by different layers can’t be
overlapped.

1.3.5 PSoC DVK

The PSoC DVK provides a common development platform, as well as optional
peripherals such as RS-232, LCD, potentiometers and Input Peripherals, to help to
prototype and to evaluate applications using a PSoC device. It is used to examine

16 PSoC-based data acquisition system for educational purposes

and explore the peripherals and hardware features that are integrated into the
PSoC device. Also, it allows programming the PSoC from the PSoC Designer.

There are many PSoC DVKs, oriented to any PSoC family, which have more or
less capabilities and other optional components. To implement this project, the
CY3210 PSoCEval1

8
 has been selected, which works with the PSoC 1 family. This

evaluation kit demonstrates the function of PSoC 1 devices. It connects the device
to onboard peripherals such as potentiometers, LEDs, LCD, and RS-232. It also
has additional features such as a general prototype area of bread board and an
ISSP programming header to program the PSoC through the MiniProg
programming unit also included. Fig. 1.7 shows the PSoCEval1 DVK and its main
components.

Fig. 1.7 CY3210 PSoCEval1 DVK.9

8
 Web reference: http://www.cypress.com/?rID=2541

9
 Source: CY3210-PSoCEVAL1 PSoC 1 Evaluation Kit Guide.

http://www.cypress.com/?rID=2541

Design and implementation of a PSoC-based DAS system

17

2. DESIGN AND IMPLEMENTATION OF A PSOC-BASED
DAS SYSTEM

This chapter will explain the system functions as well as each of its modules. Then,
a detailed explanation about the design and the implementation of each module
will be given.

2.1 Functional description

As it has been said in the introduction chapter, this project consists in the
implementation of a PSoC-based DAS system for teaching purposes. For this
reason the system has the functions of a DAS and also the capability to generate
some test signals. These functions are: getting a signal from outside through
different types of ADCs, generating test signals through a DAC, showing some
basic information about the process by an LCD display and finally providing a way
to interact and transmit the data through the RS232 interface of the board.

In order to choose one of them, the PSoC have a main code to process all the
external user interactions10. This code activates the proper layer with the global
resources defined and allows setting the desired parameters through the user
modules libraries11. Fig. 2.1 shows a diagram of the main code with the different
system functions.

Fig. 2.1 System general functions diagram.

The functional description of these functions is explained below.
First, the communication between the user and the system is made through the
RS232 interface in the board. In order to achieve that, the UART user module is

10

 See the source code in the annex.
11

 See the user modules library functions used in the annex.

18 PSoC-based data acquisition system for educational purposes

used in the PSoC. It is the responsible for transmitting the signal information
gathered by the PSoC to the RS232 and then outside and of allowing the user to
send the proper command for switching between the system functions.

The LCD shows information about the active function and the set parameters.
Depending on the function it also shows information about the signal that is being
acquired.

The ADCs are the main objective of the project. This part is composed by several
ADCs types and configurations in order to compare their results and to study the
main aspects of signal acquiring. Resolution and sample rates can be selected, as
well as the ADC type between integrator and SAR. These configurations can be
switched from outside, and their results are sent out to make the appropriate
comparisons. Also this part includes a dual ADC in order to test the response of
analog circuits external to the PSoC. In this case, two signals are acquired at the
same time by the two ADC present in the dual ADC. In this case the resolution and
the sample rate are fixed.

The DAC allows obtaining test signals to do the ADC comparisons by the
generation of AC and DC signals. Amplitude and frequency can be set. It provides
some autonomy to the system because is not necessary the use of external signal
generators.

The main code makes possible to switch between these functions. It depends on
the RS232 communication. When a command is received from the user, the code
goes to the function called, sets the parameters desired, or loads the proper layer.
Also, it is responsible for transmitting the signal information through the RS232.

All functions of the system are provided by the PSoC, through the different user
modules loaded. So, the PSoC is the principal process unit in the DVK board, the
rest of the board only provides connectivity between PSoC ports as well as inputs
and outputs such as the RS232 transceiver, the potentiometer or the LCD display.

The design and implementation of these functions are explained below.

2.2 Global resources

As it has been explained before, the most important global resources for the
project are the clocks and the reference voltages.
They define the internal clock of the analog and the digital blocks and the reference
voltage of the analog system. Consequently, parameters of the user modules such
as ADCs sample rates and input ranges, DAC frequency or UART bitrate are also
defined.

Design and implementation of a PSoC-based DAS system

19

These global resources are set by the Vcc, Ref Mux and clocks parameters. Vcc is
set to 5 V. It corresponds to the PSoC power supply, so it is always the same
value. Ref Mux is always set to Vdd/2 ±Vdd/2. They give a ground of 2,5 V and an
input range of ±2,5 V to the ADCs. Also, it determines the DAC output range to 0 to
5 V. The clocks parameters used are SysClk, VC1, VC2 and VC3. They are taken
as follows:

- SysClk is set to 24 MHz. It corresponds to the PSoC CPU clock, so is
always the same value.
- VC2 is divided down from VC1, and this is divided down from the SysClk.
They are combined in order to obtain the sample rates for the converters. They
change for every overlay loaded in order to provide the sample rate desired.
- VC3 can be used only for digital blocks, so it is used as a fixed resource for
digital blocks-based user modules that are always active, for example UART
and the counter. It is derived directly from the SysClk to be independent from
the variable VC1 or VC2 parameters.

2.3 RS232 transmission

The RS232 transmission is implemented by the UART user module, which needs
two communication type digital blocks, one of them for receiving and the other for
transmitting. Finally, these blocks are connected to the external pins through the
digital interconnect rows.

Fig. 2.2 shows the UART blocks and the way they are connected to the outside.

Fig. 2.2 UART digital blocks.

20 PSoC-based data acquisition system for educational purposes

The UART user module is located in the base layer in order to be active at any
moment because it transmits data and listens for a command continuously. Its
parameters set are a bit rate of 115 384 bps and none parity; a start bit, a stop bit
and 8 data bits are used as default set. The bit rate has been chosen in order to
provide enough bandwidth for transmitting the fastest ADC, which is 7 500 samples
per second at 7 bits per sample that it corresponds to a 52 500 bps of output. A
more accurate bit rate isn’t possible as it has discrete values because it is divided
down from other clock, it can’t be finely adjusted and in addition, it has to match
with a preset bit rates list12. The clock used to synchronize the UART module and
to provide the bit rate is the VC3 set directly from the SysClk. No interrupts are
used with the UART user module.

2.4 LCD

The LCD is represented by the LCD user module, which no needs any digital or
analog block to be implemented. The user module only includes the LCD
parameters to be set. It allows setting the pin port where the display is connected.
Fig. 2.3 shows the pins used for the LCD display.

Fig. 2.3 Pins used by the LCD user module.

It is located in the base layer in order to be accessible at any moment because is
the way to show the PSoC state. The LCD user module doesn’t need any
interruption and clock signal for running.

12

 Windows recognizes the serial port as a COM device with a preset bit rates list. The PSoC bit
rate has to match with it.

Design and implementation of a PSoC-based DAS system

21

2.5 ADC

The ADC function offers acquiring a signal through two ADC types: SAR and
integrating, and testing analog circuits through the dual ADC, composed by two
integrating ADC.

The SAR ADC compares the input signal to a voltage level produced by an internal

DAC. Depending on if it is higher or lower, the DAC voltage is incremented or

decremented and the corresponding bit is added to the digital output. This type of

ADC usually has a medium-high resolution and sample rates under other types of

ADC. Its strength is its low power consumption and its size.

The integrating ADC uses an integrator to convert an input voltage into its digital

representation. The one provided by the PSoC is algorithmically equivalent to the

dual-slope ADC architecture. The conversion process of this architecture consists

in two phases, the run-up and the run-down. In the run-up phase, the input signal

voltage is integrated during a predetermined period of time. In the run-down phase,

the input switches to a known reference voltage and a counter measures the

period of time that the integrator takes to return a zero value. Finally, the input

voltage is calculated from the run-up phase period of time, the reference voltage

and the measured run-down phase period. This ADC type can achieve high

resolution trading off its speed, and as consequence decreasing its bandwidth.

Other advantages are accuracy, a good noise performance and the frequency

rejection capability.

The ADC function is implemented by three different user modules: SAR6,
ADCINCVR and DUALADC. Any ADC user module has to acquire their signal
through a PGA user module of unit gain.

2.5.1 PGA

The PGA user module provides the signal to the ADC from outside. It also allows
amplifying the input signal by a predetermined selected value of 1, 2 or 8 in order
to optimize the ADC resolution. To do it, the Reference parameter is set to Vss in
order to amplify ranges from 0 V to Vdd.

This user module needs a continuous time type analog block to be implemented. It
is connected to the analog column multiplexers, which drive the signal from the
input pin to the proper block, and to the analog column clock to be synchronized.
Fig. 2.4 shows this user module. As the PGA is common to the all ADCs and it can

22 PSoC-based data acquisition system for educational purposes

be always active, is located in the base layer. No interrupts are needed for running
this user module.

Fig. 2.4 PGA analog block.

2.5.2 SAR6

The SAR6 user module only needs a switched capacitor type analog block to be
implemented. Its source signal is provided by the PGA and the clock signal is
provided by the analog column clock. Fig. 2.5 shows the SAR6 user module.

Fig. 2.5 SAR6 analog block.

This user module is located in an overlay in order to be activated or inactivated
when desired. SAR6 has a resolution of 6 bits and a 2’s complement value data
format predetermined13. Sample rate is set to 3 900 samples per second. It is given
by the VC2. No interrupts are used to run this user module.

13

 See annex: Data format used by the user modules.

Design and implementation of a PSoC-based DAS system

23

2.5.3 ADCINCVR

The ADCINCVR needs more than one block to be implemented. On one hand, a
switched capacitor analog block is needed for getting the signal from the outside.
On the other hand, three digital blocks are needed to obtain the digital value: one
for a counter and two to form a 16-bit PWM. The source signal for the analog block
is provided by the PGA, and its clock signal is provided by the analog column
clock. For the digital blocks, which also need to be synchronized, is done through
the counter source clock input. Fig. 2.6 and Fig. 2.7 show the ADCINCVR user
module.

Fig. 2.6 ADCINVR digital blocks.

Fig. 2.7 ADCINCVR analog block.

24 PSoC-based data acquisition system for educational purposes

The ADCINCVR is located in four overlays in order to be activated or inactivated
when desired. These overlays have different configuration. They are explained
below. The first overlay provides a selectable resolution of 7, 10, and 13 bits with a
sample rate of 6, 50 and 400 samples per second respectively. These resolutions
can be selected through the properly function from the user module library. The
sample rates change because they depend on the resolution and the analog
column clock, which is given by the VC2 clock, fixed to the layer loaded.

The second, third and fourth overlays have the same fixed resolution, set to 7 bits,
and only the sample rates change from each other, which are 2 000, 5 000 and 7
400 samples per second respectively. These sample rates are also given by the
VC2 clock14. The ADCINCVR user module needs that the interruptions are enabled
in order to generate the digital value for the current sample. Also, it is needed for
detecting the end of the sample conversion15. All the four overlays return the
sample value in an unsigned data format16.

2.5.4 DUALADC

The DUALADC user module consists of two ADCINCVR because it performs two
conversions at the same time. It needs two switched capacitor analog blocks and
four digital blocks to be implemented. The analog ones in order to acquire the two
different signals and the digital ones in order to obtain the two digital values: two
for two counters and two more to form the 16-bit PWM.

Each of the two analog blocks must be in a different column and can’t share a
column with another switch cap block that connects to the comparator bus. They
are connected to two different PGA and their clock is provided by the analog
column clock. The two counters may be placed in any digital block, but the pulse
width modulator has to be placed in any two consecutive digital blocks. They are
synchronized through the first counter source clock input. Fig. 2.8 and Fig. 2.9
show the DUALADC user module.

This user module only has a configuration, so is placed in one overlay. It has a
fixed resolution of 10 bits and a sample rate of 1 000 samples per second, given by
the VC2 clock. The DUALADC user module needs that the interruptions are
enabled in order to generate the digital value for the current samples. Also, it is
needed for detecting the end of the samples conversion. It returns the sample
value in an unsigned data format17.

14

 The way to change them is explained in this section: How the ADCs sample rates are obtained.
15

 See annex: How ADCINCVR makes the conversion.
16

 See annex: Data format used by the user modules.
17

 See annex: Data format used by the user modules.

Design and implementation of a PSoC-based DAS system

25

Fig. 2.8 DUALADC digital blocks.

Fig. 2.9 DUALADC analog blocks.

2.5.5 How the ADCs sample rates are obtained

The ADCs user modules analog block has an internal clock in order to acquire the
samples. It needs an external clock signal in order to synchronize the internal
clock, as well as any user module implemented by analog blocks. This external
clock is provided by the analog column clock, which is obtained from the system
main clock SysClk through the different variable clock used for this purpose: VC1
and VC2. So, the sample rate for these peripherals will be given by these clocks.

Apart from this, depending on the ADC type, there are other parameters that
influence in the sample rate calculation, they are explained below.

26 PSoC-based data acquisition system for educational purposes

ADCINCVR

The ADCINCVR sample rate (SR) is given by the DataClock (DC), the resolution
(N) and the CalcTime (CT) parameters, as the equation (2.1) shows.

(2.1)

DataClock is the name for the analog block internal clock, which is actually
composed by two clocks, ᶲ1 and ᶲ2

18, with a frequency of one fourth the analog
column clock frequency. The resolution gives the integrate time and the CalcTime
defines the time to do the result calculations, which can be selected from a
minimum required in order to optimize the sample rate. This minimum value can be
calculated as follows in the equation (2.2) and its units are DataClock cycles. Table
2.1 shows the values used for these parameters in each ADCINCVR.

(2.2)

Table 2.1 Parameters values used for each ADCINCVR.

User module SysClk [MHz] VC1 [Hz] DC (VC2) [Hz] N [bits] CTmin CT SR [sps]

ADCINCVR_1 24 1 846 153 205 128 7 1,53 2 399

ADCINCVR_1 24 1 846 153 205 128 10 1,53 2 50

ADCINCVR_1 24 1 846 153 205 128 13 1,53 2 6,25

ADCINCVR_2 24 2 000 000 2 000 000 7 15 488 2 000

ADCINCVR_3 24 3 000 000 3 000 000 7 22,5 88 5 000

ADCINCVR_4 24 4 000 000 4 000 000 7 30 31 7 366

DUALADC

The DUALADC user module is composed by two ADCINCVR analog blocks. By
this reason, the sample rate calculation is done as the same way that for the
ADCINCVR. The only difference is that the minimum CalcTime needed
corresponds to 260 CPU cycles instead of 180 needed by the ADCINCVR. So, the
equation is:

(2.3)

18

 ᶲ1 and ᶲ2 are the phase clocks used to acquire and transfer the signal.

Design and implementation of a PSoC-based DAS system

27

Table 2.2 shows the values used for the implementation of this user module.

Table 2.2 Parameters values used for the DUALADC.

User module SysClk [MHz] VC1 [Hz] DC (VC2) [Hz] N [bits] CTmin CT SR [sps]

DUALADC_1 24 4 000 000 4 000 000 10 44 45 966

SAR6

The SAR6 sample rate is given by the SampleClock. It is the analog block internal
clock name; which is actually composed by two clocks, ᶲ1 and ᶲ2

19, with a frequency
of one fourth the analog column clock. On the other hand, the SAR6 needs six
times the period of the sample clock to perform the sample total conversion. The
equation (2.4) shows the SAR6 Conversion Time calculation.

(2.4)

Finally, the sample rate corresponds to:

(2.5)

So, the values used for the implementation of the SAR6 are 93 750 Hz for the
analog column clock and a sample rate of 3 906 samples per second.

2.5.6 ADCINCVR frequency rejection

The ADCINCVR user module is able to reject interferences added to the signal of

interest due to its integrating architecture. To reject a frequency, the integration

time must be equal to the interference integral cycle that corresponds to its period.

It implies that the harmonics will be also rejected. To reject more than one

interference and their harmonics the integration time must be an integral cycle of

both interferences.

19

 ᶲ1 and ᶲ2 are the phase clocks that control each successive approximation step.

28 PSoC-based data acquisition system for educational purposes

For this project, the first ADCINVR configuration layer has been designed in order

to reject the 50 Hz power supply interferences, so the integration time must be

equal to 20 ms. This parameter is given by the ADCINCVR DataClock and the

resolution (N) as the equation (2.6) shows.

(2.6)

The selected resolution chosen is 10 bits, so the DataClock has to be 204,800 Hz.

As this clock signal is given by the discrete parameter VC2, the nearest value

achieved is 205 128,205 Hz, so the final integrate time will be 19,968 ms. Then,

selecting the proper CalcTime, the ADCINCVR sample rate will be obtained as

explained in the previous section.

2.6 Test of linear circuits

The system also has a function to generate some signals in order to do the ADC
comparisons or to test analog circuits. This function needs two user modules to be
implemented: a DAC and a counter. They are placed in a switched capacitor
analog block and in a digital block, respectively. The DAC is connected to the
analog out bus to output the corresponding signal voltage level, and its clock signal
input is connected to the analog column clock. The counter is synchronized
through its source clock input. Fig. 2.10 and Fig. 2.11 show these two user
modules.

Fig. 2.10 Counter digital block.

Design and implementation of a PSoC-based DAS system

29

Fig. 2.11 DAC analog block.

These modules are located in the base layer in order to be available at any
moment. The signals implemented are a sinusoidal with three selectable
frequencies and a continuous one. Both of them have a Vdd/4 to Vdd amplitude,
selectable in steps of ¼. A 64-samples lookup table is needed for generating the
sinusoidal signal. Every time that the counter arrives to the value of period set it
sends to the DAC the next sample from the table and this sets the voltage level
corresponding to the sample. The frequency of the sinusoidal signal is 57, 100 and
200 Hz. It is defined by the internal clock of the counter, the period of the lookup
table and the period of the counter, which can be selected to obtain the sinusoidal
frequency desired

20
.

The ground and the amplitude of the generated signal, either continuous or
sinusoidal are given by the reference voltage set for the analog system in the
global resources. The internal clock of the counter is sourced by the VC3, and the
DAC is sourced by VC2. The DAC user module doesn’t need any interruption for
running. The counter needs an interruption for generating the sinusoidal signal.
The data format for the DAC input is set to offset binary21.

2.6.1 How the DAC generates the signals

As explained through the report, the DAC6 user module is used to generate
continuous and sinusoidal signals. This user module is implemented by an analog
block.

It has an internal clock to update the output analog voltage level with the current
digital code value. It needs an external clock signal in order to synchronize the
internal clock. This external clock is provided by the analog column clock, which is
obtained from the system main clock SysClk through the different variable clocks
used for this purpose: VC1 and VC2. These variable clocks haven’t a concrete
value for the DAC because they are used by the last loaded ADC overlay and the
DAC is located in the base layer. The reason is that the DAC function must be
available at any moment to provide the signal and so, it can’t have an own overlay

20

 See annex: How the DAC generates the signals.
21

 See annex: Data format used by the user modules.

30 PSoC-based data acquisition system for educational purposes

for setting these parameters. Also, the Counter8 user module is needed for
generating the sinusoidal signal. This user module provides a counter that sets the
proper sample from a look up table in the DAC6. This look up table looks like as
follows.

int SINtable[SIN_PERIOD] = {31, 33, 36, 39, 41, 44, 46, 49, 51, 53, 55,

56, 58, 59, 59, 60, 60, 60, 59, 59, 58, 56, 55, 53, 51, 49, 47, 44, 42,

39, 36, 33, 31, 28, 25, 22, 19, 16, 13, 11, 9, 7, 5, 3, 2, 1, 0, 0, 0, 0,

1, 2, 3, 4, 6, 7, 10, 12, 14, 17, 20, 23, 26, 29};

The Counter8 has an internal clock to increment the counter and a Period
parameter that defines the counter maximum value. When the counter reaches the
Period parameter value set, an interruption is triggered and the next value in the
look up table is set in the DAC6. Its internal clock and the counter period (Tcounter)
give the Counter8 sample rate (SR) as the equation (2.7) shows.

(2.7)

So, the sinusoidal signal frequency is given by the Counter8 sample rate and
the look up table number of samples (. The equation (2.8) shows the relation
between these parameters.

(2.8)

The internal clock is synchronized through the variable clock VC3. This clock is
also needed for the UART user module, so the value is set by this one because is
more restrictive in order to set the bitrate of the RS232 transmission. Table 2.3
shows the values used to obtain the three sinusoidal frequencies used in the
system.

Table 2.3 Values used for generating the three sinusoidal signals.

finternal clock [Hz] Tcounter [cycles] SR [sps] N [samples] fout [Hz]

923 076,923 255 3 619,909 64 56,56

923 076,923 144 6 410,256 64 100,16

923 076,923 72 12 820,512 64 200,32

Design and implementation of a PSoC-based DAS system

31

For the sinusoidal signal generation, the value of the variable clocks VC1 and VC2
may limit the sinusoidal frequency if the DAC6 internal clock was slower than the
Counter8 sample rate. This isn’t the case because the slowest DAC6 internal clock
is 205 128 Hz and the fastest Counter8 sample rate is 3 619,909 Hz. This means
that the DAC6 analog block always has a new sinusoidal sample to output, and
that the frequency is respected.

2.7 PSoC dynamic reconfiguration

PSoC dynamic reconfiguration has been used to reuse digital and analog
resources in order to provide all the proposed functions. It has been done as
follows.

Blocks from functions that are always activated, such as UART for communicating,
LCD for displaying information and PGA for giving the input signal to the ADCs,
and blocks from functions that may be used parallel to other functions, such as the
DAC and the counter for generating signals, are located in the base layer, which is
always loaded. Other blocks from functions that are not always active are located
in different overlays. The main code loads the proper overlay corresponding to the
function selected. Blocks that are always loaded must use different parameters
than the blocks that are activated and inactivated in order not to interference each
other. The global resources parameters used by the blocks that are always loaded
are Ref Mux used by the PGA and VC3 used by the counter and the UART. They
must have always the same value, so these parameters must remain unaltered in
each overlay. The global resources parameters used by the blocks that are
activated and inactivated are VC1 and VC2, used by the different ADCs
configurations. They change its value depending on the configuration selected, so
these parameters must have its proper value in each overlay.

Global resources are defined in each layer, so the last loaded overlay will reset the
current parameters. By this reason, these parameters must be set carefully to
avoid that the functions which are always loaded remain without configuration.

2.8 Detected PSoC limitations

The first detected limitation is referring to the clock resources. All the digital or
analog blocks need a clock signal to be synchronized. They are provided by a
limited number of sources, which are basically the VC1, VC2 and VC3 parameters
from the global resources. In this project, the sample rate of the different ADC
configurations is given by a combination of these clock sources in order to obtain a
range of different sample rates.

32 PSoC-based data acquisition system for educational purposes

The need to have some user modules always active requires not having some
resources available for the rest of the user modules. The UART for communicating,
the LCD for displaying information or the counter for generating the AC test signals
require that VC3 global resource clock parameter has always the same value in
order to this functions work properly at any time. This implies that ADC obtains its
clock source only from the VC1 and the VC2, and consequently to have a more
limited range for their sample rates. Also, another consequence is that the DAC
generated AC signals frequency is limited by the UART bit rate, which
predetermines the VC3.

Another limitation is given by the CPU processing time. The user modules
implementation has been done through the libraries provided by Cypress. They
consist of a group of C++ functions in order to control and configure the user
module. These functions, formed by different assembly instructions, need for some
CPU cycles to be executed. Depending on the C++ function complexity, the
number of CPU cycles may vary. When the ADC sample rate is increased, the time
between two adjacent samples is decreased. This means that the sample
processing is limited in time and therefore, the number of functions to be executed
after getting the sample must be the smallest as possible in order to, for highest
sample rates, leave the CPU free to acquire the next sample. Acquiring a sample,
displaying it on the LCD and transmitting it through the RS232, hold the CPU for a
time that limits the sample rate. By this reason, for all the ADC configurations
except the ADCINCVR_1, the LCD displaying has been needed to avoid. Also, for
ADCINCVR_3, ADCINCVR_4 and SAR6, the sample transmission is done in
blocks of 100 samples. For it, a predetermined number of samples are acquired
continuously before transmitting them through the RS232. So, the sampled signal
is transmitted in blocks. This avoids the displaying and transmitting CPU tasks
between samplings.

Also, a detected limitation is that SAR6 can’t acquire properly 100 and 200 Hz AC
signals generated by the DAC. The reason is that due to its architecture, it requires
100 % of the PSoC CPU during the sample conversion22 and the DAC needs a
CPU interruption to generate the AC signal.

22

 As explained in the Cypress Application Note 2239: Analog – ADC selection,
(http://www.cypress.com/?rID=2641)

http://www.cypress.com/?rID=2641

User interface

33

3. USER INTERFACE

The last stage of the system is a personal computer with a software that provides a
user interface for the system.23 It is used to show the signal information and to
interact with the system. The next section explains its different functions in detail.

3.1 Functional description

The user interface can be divided in two different parts: the configuration area,
which is composed by a tab for the RS232 communication and a tab for the system
control panel, and the visualization area.

The RS232 communication tab allows setting the RS232 communication between
the system and the personal computer. When all the communication parameters
24are set the Open communication option is enabled. When the communication is
opened, the Close communication option becomes visible in order to close it. Also,
an option to save the set parameters is provided. Fig. 3.1 shows a screenshot of
the RS232 communication tab.

Fig. 3.1 RS232 communication tab screenshot.

23

 See the source code in the Annex.
24

 Parameters: 115 200 bps, 8 data bits, no parity, 1 stop bits and no flow control.

34 PSoC-based data acquisition system for educational purposes

The system control panel tab is enabled only if the communication is opened. This
tab allows configuring the system and powering on and off. It has two separated
parts: the signal generator and the ADC selection. The first one activates the signal
generation, allows selecting the signal type and setting its frequency and
amplitude. The second one allows setting the type of converter, the resolution, the
sample rate and the number of samples to acquire. Also, there is an option to
select the scale for the signal acquired. With this function the resolution of the
ADCs is optimized for small signals.

When the parameters corresponding to the ADC selection are set, the button Start
is enabled and the process of acquiring the signal can be started. In this moment,
the Stop button is enabled and all the parameters including the RS232
communication tab are blocked. The process can be stopped at any moment or it
will be stopped automatically when all the samples indicated in the buffer size are
get. Fig. 3.2 shows a screenshot of the system control panel tab.

Fig. 3.2 System control panel tab screenshot.

When the process of acquiring the signal is finished, the signal is visualized along
the time in the visualization area. The visualization area is the space from the
interface where the signal is shown. Two types of visualizations can be selected:
the signal along the time and a histogram of the acquired samples. The button
under the visualization area allows switching between them. Fig. 3.3 and Fig. 3.4
show a screenshot with an example of these visualizations: a continuous signal
represented along the time and its histogram, respectively.

User interface

35

Fig. 3.3 Visualization area in time respresentation mode.

Fig. 3.4 Visualization area in histogram mode.

36 PSoC-based data acquisition system for educational purposes

3.2 Implementation

The user interface is implemented in C# language for Windows. For the RS232
communication the COM serial ports from Windows have been used. C# provides
a library to manage these ports in several ways.

For visualizing the signal along the time and the histogram, the MSChart library
from Microsoft has been used. It allows several types of graphs and a lot of ways
to configure them. Fig. 3.5 shows the software flowchart.

User interface

37

Fig. 3.5 User interface software flowchart.

38 PSoC-based data acquisition system for educational purposes

4. EXPERIMENTAL RESULTS

4.1 Test of different ADC features

To observe the ADC linearity the 13-bits integrating ADC is used because its

higher resolution is better to represent this characteristic. To see this characteristic,

the ADC transfer curve is needed. It is obtained applying different DC voltage

levels to the ADC input. The onboard potentiometer connected to the Vcc pin is

used to obtain these DC voltage levels, previously measured with a tester of up to

200 mV scale.

The output code is compared with the ideal output (n) given by the equation (4.1),

where is the voltage level applied, FSR is equal to 5 V and N are the 13 bits.

(4.1)

The voltage level applied as well as its ideal output code (y-axe values) and its real

output value (labels values) is given in the Fig. 4.1.

Fig. 4.1 ADC transfer curve.

415
830

1238
1665

2071
2492

2914
3335

3750
4173

4580
5011

5421
5836

6254
6666

7080
7494

7903

0
410
819

1229
1638
2048
2458
2867
3277
3686
4096
4506
4915
5325
5734
6144
6554
6963
7373
7782

0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3 3,25 3,5 3,75 4 4,25 4,5 4,75 4,93

O
u

tp
u

t
co

d
e

Vin [V]

Experimental results

39

To test the experimental dynamic range the input is connected to the board ground

in order to measure the noise floor present in the device. Then, the noise RMS

() is calculated from the histogram obtained. Finally, the experimental dynamic

range can be obtained from this parameter.

To show the noise floor, the 13-bits integrating ADC is used with a sample rate of 6

sps and an integration time of 19,968 ms. The test is done with a buffer size of 1

000 samples. The noise floor histogram obtained is shown in the Fig. 4.2.

Fig. 4.2 Noise floor histogram for a 13-bits integrating ADC.

The histogram shows a Gauss distribution of media µ equal to 24,4 mV (value

corresponding to the decimal code 40, obtained by the LCD display). It means that

there is an offset between the ADC internal ground and the on board ground pin

where the ADC input is connected. Also, a noise variation of ±1 LSB can be seen,

equal to ±0,61 mV, value given by the resolution and the FSR which corresponds

to 5 V.

An approximation of the noise value can be obtained from this distribution,

applying the equation (4.2). Where N are the total of samples acquired,

corresponding to the buffer size and is the voltage value corresponding to the

different obtained codes. The value obtained is 1,337 mV.

40 PSoC-based data acquisition system for educational purposes

 √

∑

(4.2)

And the corresponding ADC dynamic range can be estimated through the equation

(4.3), where the is equal to 3,125 V, a value that corresponds to a FSR

amplitude sinusoidal signal. The expected DR is equal to 67 dB.

.

(4.3)

4.2 Interference rejection

This section aims to show the main power line 50 Hz interference rejection

capability of the integrating ADC, the design to this purpose of which is explained

in the section 2.5.6 ADCINCVR frequency rejection.

To do it, the AC signals generating system function is used in order to generate a

100 Hz AC signal, which is a proper signal for the test because it is a 50 Hz signal

harmonic. Also, the integrating type ADC and the 10 bits resolution (with restrings

the sample rate to 50 sps) are selected in the user interface, parameters that

provide the proper integration time, equal to 19,968 ms. The samples acquired are

1 000 samples that gives the 20 seconds of acquisition time. The Fig. 4.3 shows

the acquired signal.

Only a signal approximated to a 2,5 V DC voltage level is shown. The reason is

that the sinusoidal integration operation gives its average value, which corresponds

to its DC voltage component or offset value. For this case, the generated AC signal

reference voltage has a ground of Vdd/2, which is given by the system in order to

generate both positive and negative semi-cycles. For a 0 V based-ground, the

interference would be attenuated to the 0 V value.

Also, another test to check the rejection is to try to get some main power line

interference leaving opened the ADC input and acquiring it with the SAR type ADC.

If a main power line is near to the input the acquired signal looks like the Fig. 4.4.

Experimental results

41

Fig. 4.3 Integrating ADC acquired signal.

Fig. 4.4 User interface with the SAR ADC selected.

An interference with an approximated frequency of 50 Hz can be seen. The Fig.

4.5 shows the input with the same conditions that the last test, but for an

integrating ADC with 20 ms of integration time instead of the SAR type. The figure

shows that the interference is not present.

42 PSoC-based data acquisition system for educational purposes

Fig. 4.5 User interface with the integrating ADC selected.

4.3 Test of DAC signal generation

This section shows the different signals that can be obtained from the DAC. The

user can select between AC signals with an amplitude of 1,25, 2,5, 3,75 and 5 V

and DC signals with a voltage level of 1,25, 2,5, 3,75 and 5 V. For the AC signal,

the frequencies are 57, 100 and 200 Hz. To show it, the user interface has been

used, although previously they have been already tested through an oscilloscope.

Only the 100 Hz AC signal with an amplitude of 2,5 V will be analyzed in the

section in order to not extend the report, the rest of the screenshots can be seen in

the annex. The Fig. 4.6 shows it.

An integrating ADC converter has been used to acquire the signal. The sample
rate is set to 2 000 sps and the buffer size to 100 samples, which provide the
shown capture of 50 ms, calculation given by the equation (4.4).

(4.4)

Experimental results

43

To calculate approximately the signal frequency the equation (4.5) can be used.
The 5 cycles that can be shown in an approximate period of 44 ms are divided by
this period, it corresponds to 113 Hz.

(4.5)

Fig. 4.6 100 Hz AC signal generation.

4.4 ADC and DAC working together

The ADC and DAC working together are tested through a RC circuit designed as a

first order low-pass filter, as Fig. 4.7 shows. In order to do this test, the dual ADC is

needed for comparing the amplitude and phase of the two signals present in the

filter. It is configured with the only parameters available that are 10 bits and a

sample rate of 1000 sps.

The test consists in generating a 100 Hz AC signal with amplitude of 5 V. This

signal is output from the DAC through the P05 PSoC pin to the circuit and to the

P00 dual ADC input 1 pin. The circuit is formed by a resistor of resistance R and a

44 PSoC-based data acquisition system for educational purposes

capacitor of capacity C, with the input Vin and the output Vout. The circuit output is

connected to the P01 dual ADC input 2 pin.

This circuit configuration behaves as a first order low-pass filter, which attenuates

the amplitude of the input signal frequency to the 70,7 % of the maximum (the

signal power is attenuated 3 dB) and changes its phase -45º. This frequency

characterizes the circuit and is given by the resistance and capacitor values as the

equation (4.6) shows.

(4.6)

Fig. 4.7 RC filter schematic.25

In order to attenuate the 100 Hz AC signal, R is calculated through the equation

(4.6) when C is fixed to 1 µF. Its value is to 1 591 Ω, but the nearest commercial

resistor value is 1 500 Ω, with an experimental resistance of R = 1 493 Ω, so the

final is 106,6 Hz.

The Fig. 4.8 shows the relation between the filter input signal V in(1) and the filter

output signal Vin(2).

25

 Source: http://es.wikipedia.org/wiki/Filtro_paso_bajo

http://es.wikipedia.org/wiki/Filtro_paso_bajo

Experimental results

45

Fig. 4.8 Signals input in the dual ADC. Vin(1) from the DAC and Vin(2) from the filter
output.

As can be seen, the filter output signal is dephased near to the expected 45º and

the maximum voltage is decreased from 4,5 V to 3,8 V, which corresponds to 84 %

of attenuation. These values are not exactly the expected due to mainly the ADC

internal impedance which hasn’t been taken into account.

46 PSoC-based data acquisition system for educational purposes

5. CONCLUSIONS

The project main objective has been achieved; the system has the capabilities of

acquiring a signal allowing a variety of configurations including the ADC type

selection. Also generating AC and DC signals is provided. The interface allows

interacting with the system and showing the results. Also, PSoC advantages and

some limitations have been detected.

With the PSoC families of chip, Cypress provides a powerful tool in order to

implement a high variety of devices; although the main advantage is the chip

capability to be reconfigured into several preloaded systems. This capability is the

key to implement the DAS system, not only for switching between peripherals if not

for reusing the global resources. Several configurations which need for the same

resources can be activated or not from the same firmware and in real time.

Despite of this, the global resources are the principal limitation detected in the DAS

implementation. Concretely, the three variable clocks must be specifically

distributed for the user modules in order to be available for the rest of the user

modules. This makes that the entire variety of ADC sample rates can’t be

achieved. Also by this reason, the generated AC signals have an important

restriction in their generated frequencies, which are limited to some hundreds of

hertz. A possible future work could be to study and design a better reuse of the

global resources in order to obtain more performance from the user modules

implemented.

Another point to be considered is the CPU use for the expected tasks. Some

difficulties to sample the input signal properly have been found when using the

LCD, generating a DAC AC signal and transmitting the sample one by one at

highest sample rates. This presents a future work in order to optimize the PSoC

firmware using the assembler language for programming it instead of using the

C++ libraries provided by Cypress for each user module.

In terms of environment, it is important to say that it has not been a point to

consider in this project due to its educational objectives. In the expected conditions

the main power line can be present, so it is not necessary to maximize the DAS

system autonomy, a feature that would be a trade off with the system performance,

for example limiting the sample rates.

BIBLIOGRAPHY

47

BIBLIOGRAPHY

[1] Bertran Albertí, E., Procesado digital de señales, Edicions UPC, Barcelona

(2006)

[2] Halámek, J., Viscor, I., Kasal, M., “Dynamic range and acquisition system”,

Measurement science review, Institute of Scientific Instruments, Královopolská

(2001)

[3] Drake Moyano, J. M., “Ruidos e Interferencias: Técnicas de reducción”,

Instrumentación electrónica de comunicaciones, Escuela Técnica Superior de

Ingenieros Industriales y de Telecomunicación, Cantabria (2005)

[4] Garcimartín Montero, A., Sistemas de medida y adquisición de datos, DPTO.

De Física y Matemática Aplicada, Navarra.

[5] Gómez, J., ¿Cómo controlar el puerto serie usando C#?, Escuela Técnica

Superior de Telecomunicaciones, Bilbao.

[6] Mićaković, P., Architecture and Programming of PSoC Microcontrollers, Free

online book mikroElektronika, http://www.easypsoc.com/book/

[7] Saravanja, Z., Fundamentals of PSoC GPIO, psocdeveloper.com (2004),

http://www.psocdeveloper.com/articles/fundamentals-of-psoc-gpio/introduction.html

[8] Cypress Semiconductor Corporation, PSoC Designer IDE Guide, Document #

001-42655 Rev *E, San Jose, www.cypress.com/?docID=16790

[9] Cypress Semiconductor Corporation, PSoC Programmable System-on-Chip,

PSoC TRM, Document No. 001-14463 Rev. *D, San Jose,

www.cypress.com/?docID=29893

[10] Cypress Semiconductor Corporation, CY3210-PSoCEVAL1 PSoC 1

Evaluation Kit Guide, Doc. #: 001-66768 Rev. *B, San Jose,

www.cypress.com/?docID=32028

http://www.easypsoc.com/book/
http://www.psocdeveloper.com/articles/fundamentals-of-psoc-gpio/introduction.html
http://www.cypress.com/?docID=16790
http://www.cypress.com/?docID=29893
http://www.cypress.com/?docID=32028

48 PSoC-based data acquisition system for educational purposes

ANNEX A. HOW ADCINCVR MAKES THE CONVERSION

The ADCINCVR user module is implemented with three digital blocks apart from
the analog one used to acquire the external signal. These digital blocks are an 8-
bits counter and a 16-bits PWM composed by two 8-bits PWM.

The counter is used to accumulate the number of cycles that the analog block
comparator output is positive. The counter is able to provide only the LSB of the
digital code due to its 8-bits size. In order to generate a digital code greater than 8-
bits, an interruption is needed. When the hardware counter overflows, the
interruption is generated in order to increment a software counter with the digital
code MSB. This design is needed in order to save a Counter8 digital block, which
will correspond to the digital code MSB.

The PWM is used to time the entire process. It times the integrate time, which

corresponds to times the DataClock. During this time, the PWM outputs a
high value that enables the counter to measure the integration. When the integrate
time ends the PWM outputs a low value to disable the counter. At this moment the
integrator is reset, the counter is read and the result is calculated, then the counter
is reenabled to make the next measure. The time needed to do these steps is

named CalcTime. It corresponds to a minimum of CPU cycles expressed in
terms of the DataClock, but can be increased in order to adjust the sample rate.

ANNEX B. DATA FORMAT USED BY THE USER MODULES

49

ANNEX B. DATA FORMAT USED BY THE USER
MODULES

The DAC and the ADCs analog signal is referenced to an analog ground, thereby
this signal may have a polarity.

Depending on the reference used to make the digital code, it can express the
signal polarity or not. Therefore, these codes can be signed or unsigned. Also,
there are different formats to express the signed one.

The way to express this code can vary from one user module to another. The
format used by the user modules are explained below.

SIGN AND MAGNITUDE
This format expresses the magnitude as a normal binary and uses the MSB to
express the signal polarity. It uses 0 for positive numbers and 1 for negative
numbers. Its range is from -2N-1 -1 to 2N-1 -1.

The main disadvantage is the difficult to operate them algebraically. The magnitude
is symmetric respect to the ground but the zero value is expressed by two codes.

2’S COMPLEMENT
It is the native 2’s complement format of the microcontroller. The positive values
are expressed as natural binary and the negatives are given by the positive
complement plus ‘1’. Its range is from -2N-1 to 2N-1 -1.

The advantage of this format is the facility to operate them, because any number is
expressed with its own code and the sum of them make the proper code to the
decimal result.

OFFSET BINARY
In this format, the lowest analog value is represented by zero and the highest by
the bits totally set. The code range is from 0 to 2N -1. So, the signal polarity isn’t
represented.

Some user modules don’t use the sign and magnitude format, in these case 2’s
complement format is called signed and the offset binary is called unsigned.

50 PSoC-based data acquisition system for educational purposes

ANNEX C. USER MODULES LIBRARY FUNCTIONS USED

Cypress provides each user module with a library of C++ programming language
functions in order to implement the projects based in this language. The ones used
to implement this project are listed and explained below.

UART
UART_CmdReset(void);
Resets Rx command buffer.

UART_IntCntl(BYTE bMask);
Selectively enables/disables RX and TX interrupts.

UART_Start(BYTE bParity);
Enables user module and set parity.

UART_bReadRxData(void);
Returns data in RX Data register without checking status of character is valid.

UART_PutSHexInt(int iValue);
Sends a four character hex representation of iValue to the TX port.

UART_PutCRLF(void);
Sends a carriage return and a line feed to the TX port.

UART_CPutString(const char *azStr);
Sends NULL terminated constant (ROM) string out TX port.

LCD
LCD_Start(void);
Initializes LCD to use the multi-line, 4-bit interface.

LCD_InitBG(BYTE bBGType);
Initializes the LCD to display the specified type of horizontal bar graph.

LCD_Init(void);
Initializes LCD to use the multi-line, 4-bit interface.

LCD_Position(BYTE bRow, BYTE bCol);
Moves the cursor to a location specified by the parameters.

LCD_PrCString(const char *sRomString);
Prints a null terminated ROM-based character string to the LCD at the present
cursor location.

LCD_PrHexInt(INT iValue);

ANNEX C. USER MODULES LIBRARY FUNCTIONS USED

51

Prints an integer as a four-character hex string at the present LCD cursor position.

LCD_DrawBG(BYTE bRow, BYTE bCol, BYTE bLen, BYTE bPixelColEnd);
Draws the horizontal bar graph starting at character location with a character
length to a column position.

Counter8
Counter8_EnableInt(void);
Enables interrupt mode operation.

Counter8_Start(void);
Starts the counter operation.

Counter8_Stop(void);
Stops counter operation.

Counter8_WritePeriod(BYTE bPeriod);
Writes the Period register with the period value. It is transferred to the Counter
register immediately, if the counter is stopped or when the counter reaches the
zero count.

DAC6
DAC6_Start(BYTE bPowerSetting);
Performs all required initialization for this user module and sets the power level for
the analog block.

DAC6_WriteBlind(CHAR cOutputValue);
Immediately updates the output voltage to the indicated value.

PGA
PGA_Start(BYTE bPowerSetting);
Performs all required initialization for the user module and sets the power level for
the analog block.

PGA_SetGain(BYTE bGainSetting);
Sets the gain for the user module.

ADCINCVR
ADCINCVR_Start(BYTE bPower);
Performs all required initialization for the user module and sets the power level for
the analog block.

ADCINCVR_SetResolution(BYTE bResolution);
Sets the resolution of the A/D converter.

ADCINCVR_GetSamples(BYTE bNumSamples);

52 PSoC-based data acquisition system for educational purposes

Initializes and starts the ADC algorithm to collect the specified number of samples.

ADCINCVR_fIsDataAvailable(void);
Returns non-zero data when a data conversion is completed and data is available.

ADCINCVR_iGetData(void);
Returns last converted data.

ADCINCVR_ClearFlag(void);
Clears Data Available flag.

DUALADC
DUALADC_Start(BYTE bPowerSetting);
Initializes the user module and sets the power level for the analog block.

DUALADC_GetSamples(BYTE bNumSamples);
Initializes and starts the ADC algorithm to collect the specified number of samples.

DUALADC_fIsDataAvailable(void);
Returns non-zero when a data conversion is complete and data is available.

DUALADC_iGetData1(void);
Returns last converted data for ADC input1.

DUALADC_iGetData2(void);
Returns last converted data for ADC input2.

DUALADC_ClearFlag(void);
Clear Data Available flag.

SAR6
SAR6_Start(BYTE bPowerSetting);
Performs all required initialization for the user module and sets the power level for
the analog block.

SAR6_cGetSample(void);
Performs a conversion, returning a 2’s complement value.

Dynamic Reconfiguration
LoadConfig_config(void);
Executes code that configures the device to implement the named configuration.

UnLoadConfig_config(void);
Executes code that configures the device to undo the settings of a loaded
configuration.

ANNEX D. TEST OF DAC GENERATION

53

ANNEX D. TEST OF DAC GENERATION

This annex aims to complete the DAC generation test showing some screenshots.

In order to acquire the tested signals, the integrating ADC type is selected, with a

resolution of 7 bits and a sample rate of 2 000 sps. The number of adquired

samples is set to 1000 samples.

Fig. 5.1 57 Hz AC signal generation with 2,5 V amplitude.

Fig. 5.2 100 Hz AC signal generation with 2,5 V amplitude.

54 PSoC-based data acquisition system for educational purposes

Fig. 5.3 DC signal generation with 5 V amplitude.

Fig. 5.4 DC signal generation with 3,75 V amplitude.

ANNEX D. TEST OF DAC GENERATION

55

Fig. 5.5 DC signal generation with 2,5 V amplitude.

Fig. 5.6 DC signal generation with 1,25 V amplitude.

56 PSoC-based data acquisition system for educational purposes

ANNEX E. PSOC AND USER INTERFACE SOURCE
CODES

This annex shows the PSoC and the PC user interface source codes.

PSoC source code

#include <m8c.h> /* part specific constants and

macros */

#include <PSoCDynamic.h> // Dynamic

reconfiguration API

#include "PSoCAPI.h" /* PSoC API definitions for all

User Modules */

#define RESOLUTION_ADC1 7 /* ADC resolution */

#define RESOLUTION_ADC2 7

#define RESOLUTION_ADC3 7

#define RESOLUTION_ADC4 7

#define RESOLUTION_ADC5 10

#define RESOLUTION_SAR 6

#define SIN_PERIOD 64

#define SCALE_BG_ADC1 ((1 << RESOLUTION_ADC1)/55) /* BarGraph scale

factor */

#define SCALE_BG_ADC2 ((1 << RESOLUTION_ADC2)/55)

#define SCALE_BG_ADC3 ((1 << RESOLUTION_ADC3)/55)

#define SCALE_BG_ADC4 ((1 << RESOLUTION_ADC4)/55)

#define SCALE_BG_ADC5 ((1 << RESOLUTION_ADC5)/55)

#define SCALE_BG_SAR ((1 << RESOLUTION_SAR)/55)

//variables

BYTE rx; // Variable con el

contenido del búffer de recepción del UART

BYTE bgPos; // BarGraph position

BYTE BG_ADC1;

int iResult; // ADC result variable /DUALADC

output signal

int iResult_source; // DUALADC source

signal

char iResult_SAR; // SAR result variable

int res1;

int res2;

int res3;

int x = 100;

int w = 0;

int resultado[100];

int pos_SIN = 1;

int SINtable[SIN_PERIOD] = {31, 33, 36, 39, 41, 44, 46, 49, 51, 53, 55,

56, 58, 59, 59, 60, 60, 60, 59, 59, 58, 56, 55, 53, 51, 49, 47, 44, 42,

39, 36, 33, 31, 28, 25, 22, 19, 16, 13, 11, 9, 7, 5, 3, 2, 1, 0, 0, 0, 0,

1, 2, 3, 4, 6, 7, 10, 12, 14, 17, 20, 23, 26, 29};

int SIN_vout[SIN_PERIOD];

ANNEX E. PSoC AND USER INTERFACE SOURCE CODES

57

int v = 1;

int i;

void config1(void)

{

 LCD_1_Init(); LCD_1_Position(0,0); LCD_1_PrCString("CONFIG 1: ADC

1");

 UnloadConfig_Config2();

 UnloadConfig_Config3();

 UnloadConfig_Config4();

 UnloadConfig_Config5();

 UnloadConfig_Config6();

 LoadConfig_Config1();

 PGA_1_Start(PGA_1_HIGHPOWER); // Turn on PGA power

 ADCINCVR_1_Start(ADCINCVR_1_HIGHPOWER);

 ADCINCVR_1_GetSamples(0);

 while(1)

 {

 if(ADCINCVR_1_fIsDataAvailable() != 0) // Check if ADC

conversion is complete

 {

 iResult = ADCINCVR_1_iGetData(); /* Get result, convert

to unsigned (sumando el valor correspondiente a n bits - 1) and clear

flag */

 ADCINCVR_1_ClearFlag();

 LCD_1_Position(1,0); /* display result on LCD in

hex and as a bar graph */

 LCD_1_PrHexInt(iResult);

 bgPos = (BYTE)(iResult/BG_ADC1);

 LCD_1_DrawBG(1, 5, 11, bgPos);

 UART_1_PutSHexInt(iResult); /* Print result to UART

*/

 UART_1_PutCRLF(); /* Tack on a CR and LF */

 }

 rx = UART_1_bReadRxData();

 switch(rx)

 {

 case 'x':

 {

 LCD_1_Init();

 LCD_1_Position(0,0);

 LCD_1_PrCString("PSoC 1");

 LCD_1_Position(1,0);

 LCD_1_PrCString("Salir de ADC 1");

 return;

 }

 case '1': // Cambiamos resolución

 {

 if(res1)

 {

58 PSoC-based data acquisition system for educational purposes

 res1 = 0;

 res2 = 1;

 res3 = 1;

 LCD_1_Init();

 LCD_1_Position(0,0);

 LCD_1_PrCString("SetRes.: 7bits");

 BG_ADC1 = ((1 << RESOLUTION_ADC1)/55);

 ADCINCVR_1_SetResolution(7);

 ADCINCVR_1_Start(ADCINCVR_1_HIGHPOWER);

 ADCINCVR_1_GetSamples(0);

 }

 break;

 }

 case '2': // Cambiamos resolución

 {

 if(res2)

 {

 res2 = 0;

 res1 = 1;

 res3 = 1;

 LCD_1_Init();

 LCD_1_Position(0,0);

 LCD_1_PrCString("SetRes.: 10bits");

 BG_ADC1 = ((1 << 10)/55);

 ADCINCVR_1_SetResolution(10);

 ADCINCVR_1_Start(ADCINCVR_1_HIGHPOWER);

 ADCINCVR_1_GetSamples(0);

 }

 break;

 }

 case '3': // Cambiamos resolución

 {

 if(res3)

 {

 res3 = 0;

 res1 = 1;

 res2 = 1;

 LCD_1_Init();

 LCD_1_Position(0,0);

 LCD_1_PrCString("SetRes.: 13bits");

 BG_ADC1 = ((1 << 13)/55);

 ADCINCVR_1_SetResolution(13);

 ADCINCVR_1_Start(ADCINCVR_1_HIGHPOWER);

 ADCINCVR_1_GetSamples(0);

 }

 break;

 }

 default:

 break;

 }

 }

}

ANNEX E. PSoC AND USER INTERFACE SOURCE CODES

59

void config2(void)

{

 LCD_1_Init(); LCD_1_Position(0,0); LCD_1_PrCString("CONFIG 2: ADC

2");

 UnloadConfig_Config1();

 UnloadConfig_Config3();

 UnloadConfig_Config4();

 UnloadConfig_Config5();

 UnloadConfig_Config6();

 LoadConfig_Config2();

 PGA_1_Start(PGA_1_HIGHPOWER); // Turn on PGA power

 ADCINCVR_2_Start(ADCINCVR_2_HIGHPOWER);

 ADCINCVR_2_GetSamples(0);

 while(1)

 {

 if(ADCINCVR_2_fIsDataAvailable() != 0) // Check if ADC

conversion is complete

 {

 //iResult = ADCINCVR_2_iGetData() + 2048; /* Get

result, convert to unsigned and clear flag */

 iResult = ADCINCVR_2_iGetData(); /* Get result, convert

to unsigned and clear flag */

 ADCINCVR_2_ClearFlag();

 //LCD_1_Position(1,0); /* display result on LCD in

hex and as a bar graph */

 //LCD_1_PrHexInt(iResult);

 //bgPos = (BYTE)(iResult/SCALE_BG_ADC2);

 //LCD_1_DrawBG(1, 5, 11, bgPos);

 UART_1_PutSHexInt(iResult); /* Print result to UART

*/

 UART_1_PutCRLF(); /* Tack on a CR and LF */

 }

 rx = UART_1_bReadRxData();

 if(rx == 'x')

 {

 LCD_1_Init();

 LCD_1_Position(0,0);

 LCD_1_PrCString("PSoC 1");

 LCD_1_Position(1,0);

 LCD_1_PrCString("Salir de ADC 2");

 rx = 0;

 return;

 }

 rx = 0;

 }

}

void config3(void)

{

60 PSoC-based data acquisition system for educational purposes

 LCD_1_Init(); LCD_1_Position(0,0); LCD_1_PrCString("CONFIG 3: ADC

3");

 UnloadConfig_Config1();

 UnloadConfig_Config2();

 UnloadConfig_Config4();

 UnloadConfig_Config5();

 UnloadConfig_Config6();

 LoadConfig_Config3();

 PGA_1_Start(PGA_1_HIGHPOWER); // Turn on PGA power

 ADCINCVR_3_Start(ADCINCVR_3_HIGHPOWER);

 ADCINCVR_3_GetSamples(0);

 while(1)

 {

 w = 0;

 while(w < x)

 {

 if(ADCINCVR_3_fIsDataAvailable() != 0) // Check if

ADC conversion is complete

 {

 resultado[w] = ADCINCVR_3_iGetData();

 ADCINCVR_3_ClearFlag();

 w++;

 }

 }

 w = 0;

 while(w < x)

 {

 UART_1_PutSHexInt(resultado[w]);UART_1_PutCRLF();

 w++;

 }

 rx = UART_1_bReadRxData();

 if(rx == 'x')

 {

 LCD_1_Init();LCD_1_Position(0,0);LCD_1_PrCString("PSoC

1");LCD_1_Position(1,0);LCD_1_PrCString("Salir de ADC 3");

 rx = 0;

 return;

 }

 }

}

void config4(void)

{

 LCD_1_Init(); LCD_1_Position(0,0); LCD_1_PrCString("CONFIG 4: ADC

4");

 UnloadConfig_Config1();

 UnloadConfig_Config2();

 UnloadConfig_Config3();

 UnloadConfig_Config5();

 UnloadConfig_Config6();

 LoadConfig_Config4();

 PGA_1_Start(PGA_1_HIGHPOWER); // Turn on PGA power

ANNEX E. PSoC AND USER INTERFACE SOURCE CODES

61

 ADCINCVR_4_Start(ADCINCVR_4_HIGHPOWER);

 ADCINCVR_4_GetSamples(0);

 while(1)

 {

 w = 0;

 while(w < x)

 {

 if(ADCINCVR_4_fIsDataAvailable() != 0) // Check if

ADC conversion is complete

 {

 resultado[w] = ADCINCVR_4_iGetData();

 ADCINCVR_4_ClearFlag();

 w++;

 }

 }

 w = 0;

 while(w < x)

 {

 UART_1_PutSHexInt(resultado[w]);UART_1_PutCRLF();

 w++;

 }

 rx = UART_1_bReadRxData();

 if(rx == 'x')

 {

 LCD_1_Init();LCD_1_Position(0,0);LCD_1_PrCString("PSoC

1");LCD_1_Position(1,0);LCD_1_PrCString("Salir de ADC 4");

 rx = 0;

 return;

 }

 }

}

void config5(void)

{

 LCD_1_Init(); LCD_1_Position(0,0); LCD_1_PrCString("CONFIG 5:

DUALADC");

 UnloadConfig_Config1();

 UnloadConfig_Config2();

 UnloadConfig_Config3();

 UnloadConfig_Config4();

 UnloadConfig_Config6();

 LoadConfig_Config5();

 PGA_1_Start(PGA_1_HIGHPOWER); // Turn on PGA1 power

 PGA_2_Start(PGA_2_HIGHPOWER); // Turn on PGA2 power

 DUALADC_1_Start(DUALADC_1_HIGHPOWER);

 DUALADC_1_GetSamples(0);

 while(1)

 {

 if(DUALADC_1_fIsDataAvailable() != 0) // Check if ADC

conversion is complete

 {

62 PSoC-based data acquisition system for educational purposes

 // Muestreamos la señal de entrada en el circuito, que

proviene del p01 y el PGA2 y la señal de salida, que proviene del p00

 iResult_source = DUALADC_1_iGetData1();

 iResult = DUALADC_1_iGetData2();

 DUALADC_1_ClearFlag();

 // Mostramos en el LCD SÓLO la señal de salida

 //LCD_1_Position(1,0);

 //LCD_1_PrHexInt(iResult);

 //bgPos = (BYTE)(iResult/SCALE_BG_ADC5);

 //LCD_1_DrawBG(1, 5, 11, bgPos);

 // Mandamos por el UART ambas señales

 UART_1_PutSHexInt(iResult); //

Enviamos la muestra del segundo canal (output signal)

 UART_1_CPutString("src"); // Enviamos

un código para reconocer el primer canal

 UART_1_PutSHexInt(iResult_source); // Enviamos

la muestra del primer canal (source signal)

 UART_1_PutCRLF();

 }

 rx = UART_1_bReadRxData();

 if(rx == 'x')

 {

 LCD_1_Init();LCD_1_Position(0,0);LCD_1_PrCString("PSoC

1");LCD_1_Position(1,0);LCD_1_PrCString("Salir de DUALADC");

 rx = 0;

 return;

 }

 rx = 0;

 }

}

void config6(void)

{

 LCD_1_Init(); LCD_1_Position(0,0); LCD_1_PrCString("CONFIG 6: SAR

6");

 UnloadConfig_Config1();

 UnloadConfig_Config2();

 UnloadConfig_Config3();

 UnloadConfig_Config4();

 UnloadConfig_Config5();

 LoadConfig_Config6();

 PGA_1_Start(PGA_1_HIGHPOWER); // Start PGA in HIGH power mode

 SAR6_1_Start(SAR6_1_HIGHPOWER); // Start ADC in HIGH power mode

 while(1)

 {

 //PRT0DR = 0x04; //Se coloca en nivel bajo el Port_0_2

 // ver datasheet: AN2094 (io pin-port config)

 w = 0;

 while(w < x)

 {

 resultado[w] = SAR6_1_cGetSample() + 32;

ANNEX E. PSoC AND USER INTERFACE SOURCE CODES

63

 w++;

 }

 w = 0;

 while(w < x)

 {

 UART_1_PutSHexInt(resultado[w]);UART_1_PutCRLF();

 w++;

 }

 rx = UART_1_bReadRxData();

 if(rx == 'x')

 {

 LCD_1_Init();LCD_1_Position(0,0);LCD_1_PrCString("PSoC

1");LCD_1_Position(1,0);LCD_1_PrCString("Salir de SAR 6");

 rx = 0;

 return;

 }

 rx = 0;

 //PRT0DR = 0x00; // se coloca en nivel alto el Port_0_2

 }

}

void genera_SIN(void)

{

 // Cada vez que se llama a la función se coloca un valor del vector

del SENO en el DAC, generando así la señal a lo largo del tiempo.

 pos_SIN--;

 if(pos_SIN != 0)

 DAC6_1_WriteBlind(SIN_vout[pos_SIN]);

 else

 pos_SIN = 64;

}

void main(void)

{

 Counter8_1_EnableInt();

 BG_ADC1 = ((1 << RESOLUTION_ADC1)/55);

 DAC6_1_Start(DAC6_1_HIGHPOWER);

 UART_1_Start(UART_PARITY_NONE); /* Enable UART */

 LCD_1_Start(); /* Init the LCD */

 LCD_1_InitBG(LCD_1_SOLID_BG);

 M8C_EnableGInt; /* Enable Global interrupts */

 LCD_1_Init(); LCD_1_Position(0,0); LCD_1_PrCString("Select a

config:");

 while (1)

 {

 res1 = res2 = res3 = 1;

 rx = UART_1_bReadRxData();

 switch(rx)

 {

 // DAC modo contínuo

 case 'a':

 {

64 PSoC-based data acquisition system for educational purposes

 // Paramos el contador regresivo. El SENO no se puede

generar y el DAC mantiene su valor al valor establecido por el resto de

funciones.

 Counter8_1_Stop();

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("DAC DC mode");

 rx = 0; break;

 }

 // Modo configuración de amplitud

 case 'c':

 {

 DAC6_1_WriteBlind(62);

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("DAC DC mode"); LCD_1_Position(1,0);

LCD_1_PrCString("Amplitude: 5 V");

 v = 0; rx = 0; break;

 }

 case 'd':

 {

 DAC6_1_WriteBlind(46);

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("DAC DC mode"); LCD_1_Position(1,0);

LCD_1_PrCString("Amplitude: 3.75V");

 v = 0; rx = 0; break;

 }

 case 'e':

 {

 DAC6_1_WriteBlind(31);

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("DAC DC mode"); LCD_1_Position(1,0);

LCD_1_PrCString("Amplitude: 2.5 V");

 v = 0; rx = 0; break;

 }

 case 'f':

 {

 DAC6_1_WriteBlind(15);

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("DAC DC mode"); LCD_1_Position(1,0);

LCD_1_PrCString("Amplitude: 1.25V");

 v = 0; rx = 0; break;

 }

 // DAC modo variable (SENO)

 case 'g':

 {

 // Encendemos el contador regresivo. Cuando éste

alcanza el 0 la interrupción asociada llama a la función que genera el

SENO y vuelve a empezar.

 Counter8_1_Start();

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("DAC AC mode");

 rx = 0; break;

 }

 // Modo configuración de amplitud

 case 'i':

 {

 for(i = 0; i<= SIN_PERIOD; i++)

 SIN_vout[i] = SINtable[i];

ANNEX E. PSoC AND USER INTERFACE SOURCE CODES

65

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("DAC AC mode"); LCD_1_Position(1,0);

LCD_1_PrCString("Amplitude: 5 V");

 v = 0; rx = 0; break;

 }

 case 'j':

 {

 for(i = 0; i<= SIN_PERIOD; i++)

 SIN_vout[i] = (SINtable[i] *3) /4;

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("DAC AC mode"); LCD_1_Position(1,0);

LCD_1_PrCString("Amplitude: 3.75V");

 v = 0; rx = 0; break;

 }

 case 'k':

 {

 for(i = 0; i<= SIN_PERIOD; i++)

 SIN_vout[i] = SINtable[i] /2;

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("DAC AC mode"); LCD_1_Position(1,0);

LCD_1_PrCString("Amplitude: 2.5 V");

 v = 0; rx = 0; break;

 }

 case 'l':

 {

 for(i = 0; i<= SIN_PERIOD; i++)

 SIN_vout[i] = SINtable[i] /4;

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("DAC AC mode"); LCD_1_Position(1,0);

LCD_1_PrCString("Amplitude: 1.25V");

 v = 0; rx = 0; break;

 }

 // Modo configuración de frecuencia

 case 'n':

 {

 Counter8_1_WritePeriod(255);

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("DAC AC mode"); LCD_1_Position(1,0);

LCD_1_PrCString("Frequency: 57Hz");

 v = 0; rx = 0; break;

 }

 case 'o':

 {

 Counter8_1_WritePeriod(0x90);

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("DAC AC mode"); LCD_1_Position(1,0);

LCD_1_PrCString("Frequency: 100Hz");

 v = 0; rx = 0; break;

 }

 case 'p':

 {

 Counter8_1_WritePeriod(0x48);

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("DAC AC mode"); LCD_1_Position(1,0);

LCD_1_PrCString("Frequency: 200Hz");

 v = 0; rx = 0; break;

66 PSoC-based data acquisition system for educational purposes

 }

 // Modo selección de capa config (Selector de ADC)

 case '1':

 config1(); rx = 0; break;

 case '2':

 config2(); rx = 0; break;

 case '3':

 config3(); rx = 0; break;

 case '4':

 config4(); rx = 0; break;

 case '5':

 config5(); rx = 0; break;

 case '6':

 config6(); rx = 0; break;

 // Selección del fondo de escala del PGA

 case '7':

 {

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("PGA scale"); LCD_1_Position(1,0); LCD_1_PrCString("Gain:

1");

 PGA_1_SetGain(PGA_1_G1_00); rx = 0; break;

 }

 case '8':

 {

 // Acepta entradas de 0 a 625 mV

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("PGA scale"); LCD_1_Position(1,0); LCD_1_PrCString("Gain:

2");

 PGA_1_SetGain(PGA_1_G2_00); rx = 0; break;

 }

 case '9':

 {

 // Acepta entradas de 0 a 104 mV

 LCD_1_Init(); LCD_1_Position(0,0);

LCD_1_PrCString("PGA scale"); LCD_1_Position(1,0); LCD_1_PrCString("Gain:

8");

 PGA_1_SetGain(PGA_1_G8_00); rx = 0; break;

 }

 default:

 break;

 }

 }

}

ANNEX E. PSoC AND USER INTERFACE SOURCE CODES

67

User interface source code

using System;

using System.Collections;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.IO;

using System.IO.Ports;

using System.Windows.Forms.DataVisualization.Charting;

namespace interfaz_project

{

 public partial class Form1 : Form

 {

 SerialPort sp = new SerialPort();

 bool sp_abierto = false;

 string ruta_config = @"C:\config";

 StreamReader sr_config_r;

 StreamWriter sr_config_w;

 string port_config;

 string[] tasas = new string[18] { "75", "110", "134", "150",

"300", "600", "1200", "1800", "2400", "4800", "7200", "9600", "14400",

"19200", "38400", "57600", "115200", "128000" };

 string tasa_config;

 string[] bits_datos_s = new string[5] { "4", "5", "6", "7", "8"

};

 string bits_datos_config;

 string[] paridades = new string[5] { "Even", "Odd", "None",

"Mark", "Space" };

 string paridad_config;

 string[] bits_stop_s = new string[4] { "0", "1", "1,5", "2" };

 string bits_stop_config;

 string[] handshake_s = new string[4] { "None", "Hardware",

"Hardware & Software", "Software" };

 string handshake_config;

 string[] adc_types = new string[3] { "integrating ADC", "SAR

ADC", "dual ADC" };

 string[] sample_rates = new string[4] { "400 sps", "2000 sps",

"5000 sps", "7400 sps" };

 string[] resolutions = new string[3] { "7 bits", "10 bits", "13

bits" };

 string[] dac_voltage = new string[4] { "Vcc", "3Vcc/4", "Vcc/2",

"Vcc/4" };

 string[] sin_freq = new string[3] { "57 Hz", "100 Hz", "200 Hz"

};

 string[] scale = new string[3] { "Vcc", "Vcc /2", "Vcc /8" };

 string[] buffer = new string[5] { "25 samples", "50 samples",

"100 samples", "1000 samples", "10000 samples" };

 int buffer_size = 0;

68 PSoC-based data acquisition system for educational purposes

 int device_selected = 0;

 int res_selected = 0;

 int i;

 double vcc = 5;

 double vfs; // Vref, Tensión fondo de escala

 double res; // Resolución actual

 int code; // Código generado por el ADC

 double power; // Potencia de la resolución

 double value; // Valor medido (código traducido a

valor de tensión)

 char erre = (char)13;

 char ene = (char)10;

 string s1_string;

 Series s1 = new Series();

 Series s2 = new Series();

 Series histo = new Series();

 bool histogram_mode = true;

 int histo_pos;

 DataPoint dp; double dp_y;

 double f_sample; double t; double t_sample;

 public Form1()

 {

 InitializeComponent();

 this.comboBox1.DropDownStyle = ComboBoxStyle.DropDownList;

 this.comboBox2.DropDownStyle = ComboBoxStyle.DropDownList;

 this.comboBox3.DropDownStyle = ComboBoxStyle.DropDownList;

 this.comboBox4.DropDownStyle = ComboBoxStyle.DropDownList;

 this.comboBox5.DropDownStyle = ComboBoxStyle.DropDownList;

 this.comboBox6.DropDownStyle = ComboBoxStyle.DropDownList;

 this.comboBox7.DropDownStyle = ComboBoxStyle.DropDownList;

 this.comboBox8.DropDownStyle = ComboBoxStyle.DropDownList;

 this.comboBox9.DropDownStyle = ComboBoxStyle.DropDownList;

 this.comboBox10.DropDownStyle = ComboBoxStyle.DropDownList;

 this.comboBox11.DropDownStyle = ComboBoxStyle.DropDownList;

 this.comboBox12.DropDownStyle = ComboBoxStyle.DropDownList;

 this.comboBox13.DropDownStyle = ComboBoxStyle.DropDownList;

 this.comboBox14.DropDownStyle = ComboBoxStyle.DropDownList;

 comboBox1.Items.AddRange(SerialPort.GetPortNames());

 comboBox2.Items.AddRange(tasas);

 comboBox3.Items.AddRange(bits_datos_s);

 comboBox4.Items.AddRange(paridades);

 comboBox5.Items.AddRange(bits_stop_s);

 comboBox6.Items.AddRange(handshake_s);

 comboBox7.Items.AddRange(adc_types);

 comboBox10.Items.AddRange(buffer);

 comboBox11.Items.AddRange(dac_voltage);

 comboBox12.Items.AddRange(dac_voltage);

 comboBox13.Items.AddRange(sin_freq);

 comboBox14.Items.AddRange(scale);

 button3.Enabled = false; button4.Enabled = false;

button5.Enabled = false;

ANNEX E. PSoC AND USER INTERFACE SOURCE CODES

69

 comboBox11.Enabled = false;

 comboBox12.Enabled = false;

 comboBox13.Enabled = false;

 s1.ChartType = SeriesChartType.Spline;

 s1.LegendText = "Vin (1)";

 s2.ChartType = SeriesChartType.Spline;

 s2.LegendText = "Vin (2)";

 histo.LegendText = "Vin (1)";

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 CheckForIllegalCrossThreadCalls = false;

 try

 {

 sr_config_r = new StreamReader(ruta_config);

 }

 catch (FileNotFoundException ex)

 {

 MessageBox.Show("Configuration file still set.");

 return;

 }

 //cargamos configuración del fichero en los combobox y en las

variables

 port_config = sr_config_r.ReadLine();

 for (i = 0; i < SerialPort.GetPortNames().Length; i++)

 if (SerialPort.GetPortNames()[i] == port_config)

 comboBox1.SelectedIndex = i;

 tasa_config = sr_config_r.ReadLine();

 for (i = 0; i < tasas.Length; i++)

 if (tasas[i] == tasa_config)

 comboBox2.SelectedIndex = i;

 bits_datos_config = sr_config_r.ReadLine();

 for (i = 0; i < bits_datos_s.Length; i++)

 if (bits_datos_s[i] == bits_datos_config)

 comboBox3.SelectedIndex = i;

 paridad_config = sr_config_r.ReadLine();

 for (i = 0; i < paridades.Length; i++)

 if (paridades[i] == paridad_config)

 comboBox4.SelectedIndex = i;

 bits_stop_config = sr_config_r.ReadLine();

 for (i = 0; i < bits_stop_s.Length; i++)

 if (bits_stop_s[i] == bits_stop_config)

 comboBox5.SelectedIndex = i;

 handshake_config = sr_config_r.ReadLine();

 for (i = 0; i < handshake_s.Length; i++)

 if (handshake_s[i] == handshake_config)

70 PSoC-based data acquisition system for educational purposes

 comboBox6.SelectedIndex = i;

 sr_config_r.Close();

 }

 // Pestaña configuración

 private void button1_Click(object sender, EventArgs e)

 {

 if (sp_abierto)

 {

 sp.Close();

 comboBox1.Enabled = true;

 comboBox2.Enabled = true;

 comboBox3.Enabled = true;

 comboBox4.Enabled = true;

 comboBox5.Enabled = true;

 comboBox6.Enabled = true;

 button1.Text = "Open port";

 sp_abierto = false;

 return;

 }

 else

 {

 try

 {

 sp.PortName = comboBox1.Text;

 }

 catch (ArgumentException)

 {

 MessageBox.Show("No COM device founded.");

 return;

 }

 sp.BaudRate = Convert.ToInt32(comboBox2.Text);

 sp.DataBits = Convert.ToInt32(comboBox3.Text);

 switch(comboBox4.Text)

 {

 case "Even": sp.Parity = Parity.Even; break;

 case "Odd": sp.Parity = Parity.Odd; break;

 case "None": sp.Parity = Parity.None; break;

 case "Mark": sp.Parity = Parity.Mark; break;

 case "Space": sp.Parity = Parity.Space; break;

 default: break;

 }

 switch(comboBox5.Text)

 {

 case "0": sp.StopBits = StopBits.None; break;

 case "1": sp.StopBits = StopBits.One; break;

 case "1,5": sp.StopBits = StopBits.OnePointFive;

break;

 case "2": sp.StopBits = StopBits.Two; break;

 default: break;

 }

 switch(comboBox6.Text)

 {

 case "None": sp.Handshake = Handshake.None; break;

ANNEX E. PSoC AND USER INTERFACE SOURCE CODES

71

 case "Hardware": sp.Handshake =

Handshake.RequestToSend; break;

 case "Hardware & Software": sp.Handshake =

Handshake.RequestToSendXOnXOff; break;

 case "Software": sp.Handshake = Handshake.XOnXOff;

break;

 default: break;

 }

 sp.Open();

 comboBox1.Enabled = false;

 comboBox2.Enabled = false;

 comboBox3.Enabled = false;

 comboBox4.Enabled = false;

 comboBox5.Enabled = false;

 comboBox6.Enabled = false;

 sp_abierto = true;

 button1.Text = "Close port";

 sp.DataReceived += new

SerialDataReceivedEventHandler(DataReceivedHandler);

 return;

 }

 }

 private void button2_Click(object sender, EventArgs e)

 {

 //comprobar que todos los combobox están llenos

 while (comboBox1.Text == "" | comboBox2.Text == "" |

comboBox3.Text == "" | comboBox4.Text == "" |

 comboBox5.Text == "" | comboBox6.Text == "")

 {

 MessageBox.Show("Fill in the gaps.");

 return;

 }

 //guardar configuración de los combobox en el fichero

 //en el caso de que no exista el fichero primero lo crea y

luego sobreescribe la configuración en él

 sr_config_w = new StreamWriter(ruta_config);

 sr_config_w.Close();

 sr_config_w = new StreamWriter(ruta_config);

 port_config = comboBox1.Text;

 tasa_config = comboBox2.Text;

 bits_datos_config = comboBox3.Text;

 paridad_config = comboBox4.Text;

 bits_stop_config = comboBox5.Text;

 handshake_config = comboBox6.Text;

 sr_config_w.WriteLine(comboBox1.Text);

 sr_config_w.WriteLine(comboBox2.Text);

 sr_config_w.WriteLine(comboBox3.Text);

 sr_config_w.WriteLine(comboBox4.Text);

 sr_config_w.WriteLine(comboBox5.Text);

 sr_config_w.WriteLine(comboBox6.Text);

 sr_config_w.Close();

72 PSoC-based data acquisition system for educational purposes

 }

 //

 private void tabControl1_Selecting(object sender,

TabControlCancelEventArgs e)

 {

 if (tabControl1.SelectedTab == tabPage1)

 {

 if (button4.Enabled == true)

 {

 MessageBox.Show("First, stop the ADC.");

 tabControl1.SelectedTab = tabPage2;

 return;

 }

 }

 if (tabControl1.SelectedTab == tabPage2)

 {

 if (sp_abierto == false)

 {

 MessageBox.Show("Open COM port before.");

 tabControl1.SelectedTab = tabPage1;

 return;

 }

 }

 }

 // Pestaña generador de señal

 private void radioButton1_CheckedChanged(object sender, EventArgs

e)

 {

 if (radioButton1.Checked == true)

 {

 // Seleccionamos el DAC continuo y habilitamos las

opciones

 sp.Write("a"); sp.Write("x");

 label13.Enabled = true; comboBox11.Enabled = true;

 label14.Enabled = false; comboBox12.Enabled = false;

 label15.Enabled = false; comboBox13.Enabled = false;

 }

 else

 {

 // Seleccionamos el DAC variable y habilitamos las

opciones

 sp.Write("g"); sp.Write("x");

 label13.Enabled = false; comboBox11.Enabled = false;

 label14.Enabled = true; comboBox12.Enabled = true;

 label15.Enabled = true; comboBox13.Enabled = true;

 }

 }

 private void radioButton2_CheckedChanged(object sender, EventArgs

e)

 {

 if (radioButton1.Checked == true)

 {

ANNEX E. PSoC AND USER INTERFACE SOURCE CODES

73

 // Seleccionamos el DAC continuo y habilitamos las

opciones

 sp.Write("a"); sp.Write("x");

 label13.Enabled = true; comboBox11.Enabled = true;

 label14.Enabled = false; comboBox12.Enabled = false;

 label15.Enabled = false; comboBox13.Enabled = false;

 }

 else

 {

 // Seleccionamos el DAC variable y habilitamos las

opciones

 sp.Write("g"); sp.Write("x");

 label13.Enabled = false; comboBox11.Enabled = false;

 label14.Enabled = true; comboBox12.Enabled = true;

 label15.Enabled = true; comboBox13.Enabled = true;

 }

 }

 private void comboBox11_SelectedIndexChanged(object sender,

EventArgs e)

 {

 // Seleccionamos la amplitud

 switch (comboBox11.SelectedIndex.ToString())

 {

 case "0": sp.Write("c"); sp.Write("x"); break;

 case "1": sp.Write("d"); sp.Write("x"); break;

 case "2": sp.Write("e"); sp.Write("x"); break;

 case "3": sp.Write("f"); sp.Write("x"); break;

 default: break;

 }

 }

 private void comboBox12_SelectedIndexChanged(object sender,

EventArgs e)

 {

 // Seleccionamos la amplitud

 switch (comboBox12.SelectedIndex.ToString())

 {

 case "0": sp.Write("i"); sp.Write("x"); break;

 case "1": sp.Write("j"); sp.Write("x"); break;

 case "2": sp.Write("k"); sp.Write("x"); break;

 case "3": sp.Write("l"); sp.Write("x"); break;

 default: break;

 }

 }

 private void comboBox13_SelectedIndexChanged(object sender,

EventArgs e)

 {

 // Seleccionamos la frecuencia

 switch (comboBox13.SelectedIndex.ToString())

 {

 case "0": sp.Write("n"); sp.Write("x"); break;

 case "1": sp.Write("o"); sp.Write("x"); break;

 case "2": sp.Write("p"); sp.Write("x"); break;

74 PSoC-based data acquisition system for educational purposes

 default: break;

 }

 }

 private void comboBox14_SelectedIndexChanged(object sender,

EventArgs e)

 {

 // Seleccionamos la escala de entrada (Ganancia del PGA)

 switch (comboBox14.SelectedIndex.ToString())

 {

 case "0": vfs = vcc; sp.Write("7"); sp.Write("x"); break;

 case "1": vfs = vcc/2; sp.Write("8"); sp.Write("x");

break;

 case "2": vfs = vcc/8; sp.Write("9"); sp.Write("x");

break;

 default: break;

 }

 }

 //

 // Pestaña selector de ADC

 private void comboBox7_SelectedIndexChanged(object sender,

EventArgs e)

 {

 button3.Enabled = true;

 comboBox14.SelectedIndex = 0;

 if (comboBox7.SelectedIndex == 0)

 {

 // ADCINC conversor

 comboBox8.Items.Clear();

comboBox8.Items.AddRange(resolutions); comboBox8.SelectedIndex = 0;

 comboBox9.Items.Clear();

comboBox9.Items.AddRange(sample_rates); comboBox9.SelectedIndex = 0;

 }

 else if (comboBox7.SelectedIndex == 1)

 {

 // SAR conversor

 comboBox8.Items.Clear(); comboBox8.Items.Add("6 bits");

comboBox8.SelectedIndex = 0;

 comboBox9.Items.Clear(); comboBox9.Items.Add("3900 sps");

comboBox9.SelectedIndex = 0;

 device_selected = 6;

 res = 6;

 f_sample = 3900;

 }

 else if (comboBox7.SelectedIndex == 2)

 {

 // DUALADC conversor

 comboBox8.Items.Clear(); comboBox8.Items.Add("10 bits");

comboBox8.SelectedIndex = 0;

 comboBox9.Items.Clear(); comboBox9.Items.Add("1000 sps");

comboBox9.SelectedIndex = 0;

 device_selected = 5;

 res = 10;

 f_sample = 1000;

 }

ANNEX E. PSoC AND USER INTERFACE SOURCE CODES

75

 comboBox10.SelectedIndex = 0;

 }

 private void comboBox8_SelectedIndexChanged(object sender,

EventArgs e)

 {

 if (comboBox7.SelectedIndex == 0)

 {

 // Conversor ADCINC de 7, 10 ó 13 bits

 if (comboBox8.SelectedIndex == 0)

 {

 comboBox9.Items.Clear();

comboBox9.Items.AddRange(sample_rates); comboBox9.SelectedIndex = 0;

 res = 7; res_selected = 1;

 }

 else if (comboBox8.SelectedIndex == 1)

 {

 comboBox9.Items.Clear(); comboBox9.Items.Add("50

sps"); comboBox9.SelectedIndex = 0;

 device_selected = 1;

 res = 10; res_selected = 2;

 f_sample = 50;

 }

 else if (comboBox8.SelectedIndex == 2)

 {

 comboBox9.Items.Clear(); comboBox9.Items.Add("6

sps"); comboBox9.SelectedIndex = 0;

 device_selected = 1;

 res = 13; res_selected = 3;

 f_sample = 6;

 }

 }

 }

 private void comboBox9_SelectedIndexChanged(object sender,

EventArgs e)

 {

 // It selects the ADC function mode depending on the combobox

selection

 if (comboBox7.SelectedIndex == 0)

 if(comboBox8.SelectedIndex == 0)

 switch (comboBox9.SelectedIndex)

 {

 case 0: device_selected = 1; f_sample = 400;

break;

 case 1: device_selected = 2; f_sample = 2000;

break;

 case 2: device_selected = 3; f_sample = 5000;

break;

 case 3: device_selected = 4; f_sample = 7400;

break;

 default: break;

 }

 }

 private void button3_Click(object sender, EventArgs e)

76 PSoC-based data acquisition system for educational purposes

 {

 button3.Enabled = false; button4.Enabled = true;

button5.Enabled = false;

 groupBox1.Visible = false;

 comboBox14.Enabled = false;

 switch (comboBox10.SelectedIndex)

 {

 case 0: buffer_size = 25; break;

 case 1: buffer_size = 50; break;

 case 2: buffer_size = 100; break;

 case 3: buffer_size = 1000; break;

 case 4: buffer_size = 10000; break;

 default: break;

 }

 s1_string = "";

 sp.Write(device_selected.ToString());

 sp.Write(res_selected.ToString());

 }

 private void button4_Click(object sender, EventArgs e)

 {

 // Enviamos una X para salir del ADC seleccionado

 sp.Write("x");

 procesa_Datos();

 sp.DiscardInBuffer();

 }

 //

 // Procesado de datos

 private void procesa_Datos()

 {

 // Deshabilitamos el botón "Stop" -> Se inicia el procesado

de los datos

 button4.Enabled = false;

 t = 0;

 t_sample = 1/f_sample;

 power = Math.Pow(2, res);

 chart1.Series.Clear();

 s1.Points.Clear(); s2.Points.Clear();

 foreach (string s in s1_string.Split(erre))

 if (s != "")

 {

 t = t + t_sample;

 if (device_selected == 5)

 {

 code = Int32.Parse(s.Substring(0, 4),

System.Globalization.NumberStyles.HexNumber);

 value = (code) * vfs / power;

 s1.Points.AddXY(t, value);

 code = Int32.Parse(s.Substring(7, 4),

System.Globalization.NumberStyles.HexNumber);

 value = (code) * vfs / power;

 s2.Points.AddXY(t, value);

ANNEX E. PSoC AND USER INTERFACE SOURCE CODES

77

 }

 else

 {

 code = Int32.Parse(s,

System.Globalization.NumberStyles.HexNumber);

 value = (code) * vfs / power;

 s1.Points.AddXY(t, value);

 }

 }

 // Calculamos el histograma

 calcula_Histograma();

 añade_Timeline();

 // Habilitamos el botón "Start" -> Ya se han procesado los

datos y se ha mostrado el gráfico

 button3.Enabled = true; button5.Enabled = true;

 groupBox1.Visible = true;

 comboBox14.Enabled = true;

 }

 private void calcula_Histograma()

 {

 histo.Points.Clear();

 histo.Points.AddXY(0, 0);

 foreach (DataPoint p in s1.Points)

 {

 dp_y = p.YValues[0];

 dp = histo.Points.FindByValue(dp_y, "X");

 if (dp == null)

 {

 histo.Points.AddXY(dp_y, 1);

 dp = histo.Points.FindByValue(dp_y, "X");

 histo_pos = histo.Points.IndexOf(dp);

 foreach (DataPoint p2 in

s1.Points.FindAllByValue(dp_y))

 histo.Points[histo_pos].YValues[0]++;

 }

 }

 histo.Points.RemoveAt(0);

 }

 private void añade_Timeline()

 {

 chart1.Series.Clear();

 chart1.Series.Add(s1);

 if (device_selected == 5)

 chart1.Series.Add(s2);

 chart1.ChartAreas[0].AxisX.Title = "t [s]";

chart1.ChartAreas[0].AxisX.TitleAlignment = StringAlignment.Far;

 chart1.ChartAreas[0].AxisY.Title = "v(t) [V]";

chart1.ChartAreas[0].AxisY.TitleAlignment = StringAlignment.Far;

 button5.Text = "Histogram"; histogram_mode = false;

 }

78 PSoC-based data acquisition system for educational purposes

 private void añade_Histogram()

 {

 chart1.Series.Clear();

 chart1.Series.Add(histo);

 chart1.ChartAreas[0].AxisX.Title = "v(t) [V]";

chart1.ChartAreas[0].AxisX.TitleAlignment = StringAlignment.Far;

 chart1.ChartAreas[0].AxisY.Title = "Samples";

chart1.ChartAreas[0].AxisY.TitleAlignment = StringAlignment.Far;

 button5.Text = "Timeline"; histogram_mode = true;

 }

 private void button5_Click(object sender, EventArgs e)

 {

 // It switchs between histogram or timeline modes

 if (histogram_mode)

 añade_Timeline();

 else

 añade_Histogram();

 }

 //

 // Otros eventos

 private void DataReceivedHandler(object sender,

SerialDataReceivedEventArgs e)

 {

 while(sp.BytesToRead>0)

 {

 s1_string += sp.ReadLine();

 if (buffer_size-- == 0)

 {

 // Enviamos una X para salir del ADC seleccionado

 sp.Write("x");

 procesa_Datos();

 sp.DiscardInBuffer();

 }

 }

 }

 private void Form1_FormClosing(object sender,

FormClosingEventArgs e)

 {

 if (sp_abierto)

 {

 sp.Close();

 sp.Dispose();

 }

 }

 //

 }

}

