

MASTER THESIS

TITLE: Study and implementation of a real time online football game for

mobile devices

MASTER DEGREE: Master in Science in Telecommunication Engineering &

Management

AUTHOR: Marc Fernández Vanaclocha

DIRECTOR: José Yúfera Gómez

DATE: 02-08-2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41806114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Title: Study and implementation of a real time online football game for mobile

devices

Author: Marc Fernández Vanaclocha

Director: José Yúfera Gómez

Date: 02-08-2012

Overview

The main goal of this project is extracting an optimized system to do a sensible

application to delay loses and jitter in a wireless environment.

This system will be used in a football game for mobile devices with maximum

two players per game.

To all those who gave me the

opportunity to do it.

 Master Thesis

INDEX

INTRODUCTION .. 11

CHAPTER 1. PROBLEMS TO RESOLVE.. 12

CHAPTER 2. GAME DESCRIPTION .. 13

CHAPTER 3. TRANSPORT LAYER ANALYSIS ... 13

3.1. TCP .. 14

3.2. UDP .. 14

CHAPTER 4. TYPES OF ARCHITECTURE ... 16

4.1. P2P(peer to peer) .. 16

4.2. Client-server ... 17

4.3. Hybrid .. 18

4.4. Conclusions .. 20

CHAPTER 5. NAT TRANSVERSAL TECHNIQUES .. 20

5.1. Types of NAT .. 21

5.2. UDP and TCP hole punching... 22

5.3. Stun (Simple Transversal UDP over NATs) technique ... 24

5.4. Conclusion .. 24

CHAPTER 6. SYNCHRONIZATION TECHNIQUES ... 26

CHAPTER 7. OWN NETWORK SYSTEM .. 28

7.1. Connection layer .. 28

7.2. Signaling layer .. 31

7.3. Synchronism ... 32
7.3.1. Clock synchronization .. 32
7.3.2. Game synchronization ... 33
7.3.3. Master description .. 33
7.3.4. Slave description .. 35

7.4. Complete flow scheme .. 35

7.5. Analysis of vulnerabilities and cheating .. 40

Problems to resolve 8

CHAPTER 8. STATISTICS ... 43

8.1. Scenario, configuration and tests .. 43

8.2. Results ... 45

CHAPTER 9. CONCLUSIONS ... 46

BIBLIOGRAPHY .. 47

Introduction 11

INTRODUCTION

This memory reflects the theory and the work made to do a commercial

application for mobile devices.

The goal is to offer a 2 players football online game with 3d graphics and

physics in a mobile OS (Operating System) like iOS and Android; in the

process, it will be necessary to resolve the network problem of how to manage

the data to give a good service to the final user in mobile networks.

With this problematic in mind, there is an analysis of how to synchronize, avoid

delay, jitter, loses, resolve the matching players and take empirical statistics

and verify the results to evaluate the system.

At the end, the result will be a fun football game for mobile devices that will rock

the market.

The document is divided into:

-Problems to solve: an enumeration of all target problems to solve.

-Game Description: a description of the game to introduce.

-Transport layer analysis: a basic vision of UDP (User Datagram Protocol) and

TCP (Transmission Control Protocol) and the role of each one in the result.

-Types of architecture: a basic view of three basic architectures and the

selected one.

-NAT transversal techniques: a description of NAT (Network address

translation), the problem produced because of it and a description of how to

avoid this problem.

-Synchronization techniques: a description of why it is needed synchronization

and a view of different techniques with advantages and drawbacks.

-Own network system: a complete description of the resulting work.

- Statistics: description of the test, the results and an evaluation.

-Conclusions: at last, a global view of all the work and some critics.

Problems to resolve 12

CHAPTER 1. PROBLEMS TO RESOLVE

The base of this project is a java 2D offline game football and the result, a 3D

game based on C/C++ with online mode.

The points to resolve in this project are:

- Translate the logic and remake the structure if it is needed.

- Make a new 3D system.

- Resolve input system for different SO.

- Make a new GUI (Graphic User Interface).

- Resolve audio system.

- Analyze and select the online architecture.

- Analyze the game data, the transport layer options, select one option and give

reasons.

- Describe how to resolve the NAT transversal techniques to be implemented

with the transport layer selected and the architecture.

- Analyze how to synchronize the application and what the acceptable clock

resolution is.

- Analyze what signaling is needed and how to resolve it.

- Describe the protocol used.

- Describe the application life flow for online system.

- Analyze the main security problems and what options we can take to resolve

it.

- Analyze the application and extract statistics to make conclusions.

At the end, this document reflects all network points.

Types of architecture 13

CHAPTER 2. GAME DESCRIPTION

It is a single and multiplayer soccer game; where there are in screen 11 players

for team, 3 referees and 1 ball.

The game logic is based on a java game for Android called Striker Soccer,

simple 2D game with some physics and tactic control.

The interfaces and controls must be really simple because the target can be

kids smashing phones or a simple player that wants to play right now.

Illustration 1 - In game screen shot

Transport layer analysis 14

CHAPTER 3. TRANSPORT LAYER ANALYSIS

This section will analyze the two main options that can access developing a

mobile application, TCP (Transmission Control Protocol) and UDP (User

Datagram Protocol).

3.1. TCP

There are too many TCP versions.

To explain how it works we can assume that mobile devices work with TCP

Westwood [12] version that takes into account the random loses from the radio

environment.

TCP offers a congestion control [11], assures that the data stream will be read

in the original sort, ensures retransmissions if there are any loses and is

connection oriented with only 20 bytes overhead.

Congestion control can be defined as reactive or predictive: reactive is based

on doing a reduction of the sender window when a RTO expires; this means

that TCP is reducing its data flow when the network has congestion and in

consequence, it needs time to recover the normal function and maybe will be

congested again.

Predictive are more complicated but they are based on the increasing delay of

router queues. If a RTT increase is detected, TCP will decrease his window; in

the other hand, if RTT decreases the window will increase.

With this technique the network has less loses by queue overflow and has more

stable throughput.

In wireless connections, those using TCP Westwood inclusive, the channel can

present many loses and this will decrease the efficiency of throughput and

increase the delay in some data. This data, that arrives really late, can be

useless in case of a real time application.

3.2. UDP

This transport protocol only has 8 bytes of overhead and does not ensure

anything.

UDP can be useful when a periodic emission is needed and the service can

manage loses like video or voice over IP.

Types of architecture 15

If the network is congested, it will continue congested but other TCP

connections will reduce their flows because of its congestion control.

In wireless access, UDP can be an excellent option because the channel is

shared along all users and if your application congests the link, the other TCP

connections will decrease their flows and liberate resources.

To end, because the game has an interactive level with a hard dead line,

messages that come later are useless.

All critical data will be sent using UDP datagram and data sensible to loses, like

signaling using TCP to ensure that they arrive to the destination.

Types of architecture 16

CHAPTER 4. TYPES OF ARCHITECTURE

The main goal of this chapter is to analyze and select the best architecture for

the project.

There are 3 basic types to choose: pure peer to peer, client server structure and

hybrid architecture.

4.1. P2P(peer to peer)

This architecture, based on the peer to peer one, does not have any

infrastructure that supports it. See figure 1.

Figure 1 - Peer to peer architecture

There are some hybrid solutions to solve the problems but the result is a

network overlay to do all with high resistance to crashes.

Advantages:

-Robust to crash: there is not any essential computer that holds all the

service, then, if any peer closes the application the service will run (if there are

other peers in the network).

-Low delay (once connected): it is a point to point connection. For

applications with high interactivity like videogames this is basic; other structures

(not point to point connections) would be really hard to develop correctly and

have a good commercial result.

Types of architecture 17

Drawbacks:

 -Search: without any server that holds information to start a connection

and search other peers, the solutions are given by an IP multicast direction or

using broadcast communication to search peers. Multicast direction is not a

cheap or possible solution and broadcast messages are limited to LANs.

 -Volatile information: the data held in the P2P networks can disappear

quickly. If the service wants to hold some data like the football match results

or/and associate them to an account, this drawback is really hard.

 -Cheating access: all logic is inside the peers, then, if there is any

advanced user, it can extract important data from the software and network and

make their own programs to cheat.

4.2. Client-server

Client-Server architecture means that each client is connected to a server and

this one gives all data to the client; each action from the client will pass through

the server.

An example of client server architecture is shown on figure 2.

Figure 2 - Client server architecture

Typical problems are that the whole service is held by one side only and can be

target of attacks.

Advantages:

 -Control of data: this architecture can control all data from the clients. In a

game scenario, this data can be the match results from each account to make

some rankings and print it in a web page.

Types of architecture 18

 -Control of statistics: all communication between clients pass into the

server. Then, the server can measure delay, cadency, jitter, charge of the

system, hours played, places with most clicks to put a banner for example and

all the information that can be extracted from all movements done by the users,

or detect if any of the servers is not enough to the number of users.

 -Anti cheating: if the logic is inside the server, it cannot be manipulated

without an attack and the service can assure a quality of service detecting users

that try to cheat and ban it.

Drawbacks:

 -Maximum delay: in this scenario the data travels to the server and it

sends the new events to the other clients. In the best case this delay can be

approximated to the point to point connection if the ISP (Internet Service

Provider) does not supply variations given by congestion, losses, access control

or multipath.

 -Maintain the servers: this point is expensive because any crash in the

server side implies a downtime of the service and, in consequence, losing

money and getting frustrated users.

 -Crash or inaccessible servers: this can occur because the server cannot
manage more clients (this architecture has lot of load), because of being the
target of a DoS attack (Denny of Service) or because of sudden problems like
the NIC (Network Interface Card) being broken.

4.3. Hybrid

This architecture mixes P2P and client server architectures with more or less

influence of each type (figure 3 tries to show all components of this

architecture).

Types of architecture 19

Figure 3 - Hybrid architecture

In result this network architecture ensures service and has low load at server

side.

Advantages:

 -Lower delay: the connections from peers are point to point; this means

that there is not any middle point that adds delay.

 -Easy search: a big problem of a pure P2P is to search the first peer to

enter to the network overlay. This problem is solved because the server knows

some or all peers connected and if any problem occurs like a crash of these, the

server can become a fulcrum to the peers to rejoin to the overlay network.

Drawbacks:

 -Cheating access: same that P2P architecture but, the peers can report

any incongruence of the other peers. This report has to be managed carefully to

do not become an attack spot to the server.

 -Susceptible to crash: in case of server crash, the current served peers

will continue with their own work but new petitions to the server will not be

served.

 -Susceptible to fake data: if at the end of any activity the peers upload

some data to associate it to their own account, the server can accept some fake

data like a match lost by 4-0 becoming a favourable 4-0 at their own account.

 -Maintenance cost: like client server but the server does not have a big

load, then the maintenance is cheaper or for the same machine can serve more

users or other functionalities.

Types of architecture 20

4.4. Conclusions

Some drawbacks can be avoided with solutions like using more servers,

comparing results from peers and comparing with expected results, or doing

periodic actualizations to avoid the appeal of cheating programs of easy use for

everyone, among others.

These architectures have their own targets. In the scenario of an online game

(application with critical interactivity) the best solution might be a hybrid solution

if the match is for a few players, or a client server architecture if it is pretended

that game has more than N players in the same match (number of players

depend on target device, expected throughput for each peer and expected

problems in network to chose hybrid or client server).

For a two player game, like a soccer game, hybrid architecture will maximize

the player experience because the reduction of delay. This option is the

selected one to design the online system taking into account that actual mobile

devices have enough process capacity.

NAT transversal techniques 21

CHAPTER 5. NAT TRANSVERSAL TECHNIQUES

Some problems in the current networks are the large amount of machines

connected and the limited IP directions. This is a problem solved with IPv6 but it

is not used globally. For this reason and to reduce the use of public IP address

the NATs (Network Address Translator) were created.

NAT basically uses a single public IP for a private IP range, which saves a lot of

directions but increases the number of problems to do a direct connection

between two machines that are inside other NATs.

There are 3 IP ranges defined with IP and subnetting that become for private

use: 10.0.0.0/8, 172.16.0.0/12 and 192.168/16, defined at RFC 1918 [8].

These ranges are used inside the private network behind the NAT and all

messages with private address are translated to the same public address.

All this is a good solution but adds a problem for connections between users

inside private networks and the applications affected are the ones that try a

peer to peer connection.

The main problem is, without any previous configuration to NAT, that translating

incoming IP packets correctly to the private address becomes impossible.

To do a successful communication there are some tricks that normally include a

mid point with a public IP address to be accessible from every place.

The tricks used depend of the NAT type. Once it is learned how it works, the

process to cross it can be found easily.

There is not any NAT transversal technique without using an accessible

midpoint and without doing any interaction with NAT or trying a port mapping.

There are some projects like UPnP but it is not needed to activate this option in

the house routers, since it could become a big disadvantage for mobile users

that do not want to know anything about technical procedures.

5.1. Types of NAT

There are 4 types of NAT defined at RFC 3489 [9] (definitions extracted from

RFC):

Full Cone: A full cone NAT is one where all requests from the same

internal IP address and port are mapped to the same external IP address

NAT transversal techniques 22

and port. Furthermore, any external host can send a packet to the

internal host, by sending a packet to the mapped external address.

Restricted Cone: A restricted cone NAT is one where all requests from

the same internal IP address and port are mapped to the same external

IP address and port. Unlike a full cone NAT, an external host (with IP

address X) can send a packet to the internal host only if the internal host

had previously sent a packet to IP address X.

Port Restricted Cone: A port restricted cone NAT is like a restricted cone

NAT, but the restriction includes port numbers. Specifically, an external

host can send a packet, with source IP address X and source port P, to

the internal host only if the internal host had previously sent a packet to

IP address X and port P.

Symmetric: A symmetric NAT is one where all requests from the same

internal IP address and port, to a specific destination IP address and

port, are mapped to the same external IP address and port. If the same

host sends a packet with the same source address and port, but to a

different destination, a different mapping is used. Furthermore, only the

external host that receives a packet can send a UDP packet back to the

internal host.

With these definitions, all cone type maintains a mapping if the internal host

sends a previous packet.

This can be a problem for unidirectional messages but an online game has

bidirectional communication and the mapping at NAT can be created from the

two sides.

At last, symmetric NAT can increase problems. However, the patterns that use

the NAT to change the output ports can be extracted with more logic and

multiple public midpoints, not without a painful development.

5.2. UDP and TCP hole punching

Described at [2], this technique describes how to connect two peers with the

four types of NAT using TCP and UDP and one or two midpoints.

The typical scenario will be two users behind one NAT, not with multiple NAT.

The worst case scenario will be a port restricted cone NAT.

The scheme of UDP hole punching technique in Figure 4:

NAT transversal techniques 23

Figure 4 – UDP Hole punching

Suppose two clients A and B behind their own different NATs. A and B have

initiated their own bidirectional communications with server S.

Each NAT has assigned to privatePort-A and privateIP-A a publicIP-A and

publicPort-A. The same for B for the UDP channel. These public values are

known by S.

A and B want to communicate between them, then S will pass the public values

from the other to each client.

If the two peers start to send data to the other public IP and port, the mapping

will be correct in any cone NAT and it will be the same with the server. At last,

some datagrams will cross creating the complete connection.

This system requires that a peer does not change of port origin. With UDP this

is not a problem, but using TCP there are some complications because not all

OS support it.

In this case, there is a sequential method that needs a little schedule to sort out

who listens and who tries the connection.

In order to do multiple TCP sockets with the same values and do the same like

UDP, though listening and trying connections, the SO needs to accept the

SO_REUSEADDR flag.

The scheme of the needed sockets to do the same as UDP is represented at

figure 5.

NAT transversal techniques 24

Figure 5 - TCP Socket scheme

The sequential scheme needs to reuse the socket closing connections with the

server (another socket can be opened to manage new incoming messages),

decide who will listen and whom to send. Although the first try will crash, it will

do a correct mapping on one side.

Then the server schedules another connection, though, in the other way, the

mapping is completed and the TCP connection is created.

5.3. Stun (Simple Transversal UDP over NATs) technique

Defined with RFC [10], the technique is basically the same as hole punching but

with standards to communicate with everyone. This case is used with VoIP

(Voice over IP) to create a channel to use SIP (Session Initiation Protocol) and

SDP (Session Description Protocol) but with an online game there is no need to

implement all the requirements.

5.4. Conclusion

A mid implementation of STUN is useless since this one only ensures UDP

communication with cone NATs.

NAT transversal techniques 25

Because mobile devices have their own problems, using an open source

implementation can be a bad solution if this one does not work well or using

different options such as threads or blocking sockets.

From other side, the hole punching technique describes how to cross a NAT to

make an UDP and TCP connection between peers using a midpoint. Since it is

not needed to follow any standard, this technique will be used to solve NAT

transversal in this project.

Synchronization techniques 26

CHAPTER 6. SYNCHRONIZATION TECHNIQUES

A basic thing of online real time games is the synchronization of each player

[2][3][4][5].

What seems a good game when each user sees something different becomes a

bad game experience, for example, in shooters that have critical interactivity. If

a player shoots another one and kills him but in other computer the latter is still

alive and kills the killer, there is an incongruence. It causes angry and confused

players that become less money for the company.

There are some techniques to ensure the interactivity and coherence between

users.

These concepts are:

-Interactivity: it is based on time. It is better when less time is spent on

visualizing the actions of the user.

This implies that all tasks needed to the normal game function do not have to

overpass interactivity time limit, about 150 – 200 ms in games.

-Coherence: it is the other aim of synchronization techniques, none of the

players have to perceive any difference between screens, and this can be

obtained using the same clock and reproducing the state in the same time.

Synchronization systems are evaluated with human perception and then there

are fewer restrictions in the implementation.

There are two kinds of approaches: optimistic and conservative

implementations.

Conservative approaches are based on retaining the maximum coherence

possible. A simple implementation is the lock step technique. This technique is

based on not advancing the game state until all players acknowledge that they

have processed it; the global experience is the worst possible for all users, so

this approach only works in good such as playing in the same LAN.

Another conservative system is the time-bucket synchronization, also known as

local lag. It is based on queuing the entrance events and processing them at the

same time. This gives time to reorder events, ensure coherence between

players and put a limit on interaction. This one works for a maximum delay. If

one user surpasses it, this user will work doing constant death reckoning

because all events come later.

The time warp mechanism is an optimistic approach. It is based on detecting

incoherence in the game state and in this case, correcting it with a roll back to a

Synchronization techniques 27

coherent game state. This roll backs need to be really infrequent because they

create a disappointing user experience losing all actions previously done.

This system is used for large scale multiplayer games and normally with client

server architecture with multiple servers that hold the game state. In this case

can maximize the interactivity.

At the end, for the game system, time-bucket synchronization can be easy to

implement and with good results for a hybrid architecture.

Own network system 28

CHAPTER 7. OWN NETWORK SYSTEM

The network method designed in this master thesis is a mixture of some of the

techniques described before. It is a good result but only for our aim because the

game is player restricted (in this case 2 players, though the system can work for

more but not massive players).

The design is based on 3 columns:

1- Limited number of players: the mobile phone goes really short with 3D

graphics, networking, AI (Artificial Intelligence) and managing inputs;

then it becomes nonsense to design an online system to hold more

than 4 or 8 players at the same time.

2- Maintain the normal speed of the game without incoherence.

3- The game has to be delay resistant; it has to be playable with delays

up to 150ms and high loss like half second without communication

because the radio links are not the best scenario.

7.1. Connection layer

The final architecture is a hybrid peer to peer with a tracker, and clients

organized with master and slave role (master holds all logic and slave is a

simple client) once connected, as explained in previous chapters.

This architecture reduces the tracker load and delays between peers, though it

might be the target of cheats easily.

For example, 500 concurrent matches with client server architecture, a unique

server will manage 1000 TCP connections, 1000 UDP sockets, 500 match

logic…

In throughput data, if it is only considered the upload traffic, with an expected

datagram size of 350bytes (all data from 25 puppets at screen, ball and time

stamp), the load at server will be like the figure 6:

Synchronization techniques 29

Figure 6 – Throughput in case of client server architecture at server side

These values can be reduced accepting more loss effect, reducing events per

second.

A normal value is 15 events / s reducing it to half but 45Mb/s is a big value if

there is not a big infrastructure at back.

With a tracker this load does not exist. With the first implementations the tracker

will hold several TCP connections with low activity. The throughput charge

resides on clients.

Following, the way to start a new match is explained: a player connects to

tracker, he/she waits for another player, when there are two players, starts a

connection with the other one (between them) and starts: they do the signal to

solve all game prerequisites, play the match and the game ends and uploads

statistics to tracker.

Own network system 30

Main menu

Online Game

Selected

Conect to tracker

Connect the

players with UDP

and TCP

Game Rutine

End connection

and upload

statistics

Error at loading

Error at connecting

or

user cancel

Error at connecting

or

user cancel

Network error

or

player left

Figure 7 - Basic network game states

The connection between peers is made using TCP and UDP hole punching.

The TCP channel is for signaling, and the UDP channel is for synchronising and

sending game events (the events that can be lost).

If there is any problem with the connection, an error will pop up and the user will

be noticed.

Because the peers can be located inside a private network, the reconnect

option is not contemplated right now.

Synchronization techniques 31

7.2. Signaling layer

Signaling is the logic behind the online game and it is necessary to choose the

roles (master or slave), negotiate with tracker, know certain values to use

algorithms like the hole punching technique, or advertise important events to

slave like half time or end time.

There are some standards like SIP using SDP (with their own RFCs) or H.323

defined by ITU. However, using those protocols to made the required signalling

is a waste of resources.

Signalling data is a really critic data. Because of that and to ensure no losses

the transport layer selected is TCP for all messages. However, it is not

important if it is received 500 ms later.

In this case, signalling can be divided into 3 points: tracker, master and slave.

Tracker

Its function is to match players and be a NAT traversal server; it will take

statistics from players, search for cheats, and manage users by authenticating,

searching for friends and giving the option to create matches.

Once the players are chosen and connected, they need to select their role.

Master

The master will be the one with better hardware or, in case of draw, the one

selected by tracker.

Become master implies more CPU usage, better game response and waste of

uploading throughput.

Master role will signal each game event and there will be some acknowledges

sent from slave to ensure an application keep alive.

Slave

Slave role have less CPU usage than a single player game but it is the target of

network problems. If there are any losses or jitters or high delays the user will

be affected directly. For this reason all the efforts are focused on ensuring delay

and losses resistance.

Own network system 32

7.3. Synchronism

In our game there are two types of synchronization: clock and game

synchronism.

7.3.1. Clock synchronization

To do something coherent, the same reference is needed, in this case the

clock.

Because the result has an empirical evaluation, the clocks does not need to be

synchronized at high resolution, with an error of +-5ms the game experience is

not affected. To solve this problem a simple UDP system considering symmetric

delay is used.

The clock synchronism used, consist on given moments that the game can be

hold (start, half part or some faults). Slave sends his clock to master, this one

marks with its own clock and sends back to slave; at the end, the slave knows

its RTT and marked clock; to use the same clock of master only need to use the

formula from figure 8.

Figure 8 – How a slave calculates the clock

To ensure some precision there will be 5 measures and in the worst case, this

measures will hold the player 2’5 seconds until a game message notifies

him/her that synchronism is not available (more than 500ms RTT).

Master Slave

Figure 9 - Clock synchronization scheme

Synchronization techniques 33

Once synchronized, slave sends the expected delay to master to use it later.

7.3.2. Game synchronization

Once the peers are using the same clock it is time to send events. To ensure a

good experience the methods used are the following:

A dead reckoning technique is applied on slave to ensure the perception of

interactivity but really simple (using first order equation and taking to account

gravity on ball) to safe CPU.

Another measure is adding delay at master. An event is sent out and queued to

delay its visualization delay (milliseconds). This reduces the effects of dead

reckoning on slave and gives some fairness because both players have the

same delay in actions.

At the end, if there is not so much variations at the delay between peers, the

slave will do a simple use of dead reckoning with little time intervals.

In the other side, to become more loss resistance, every event is independent

from the others because each one has absolute data and not relative, and in

consequence there is a major use of throughput.

7.3.3. Master description

The next scheme (figure 10) reflects how the system works for master events:

Own network system 34

Figure 10 - Online scheme for events generated by master

- Event 0 is delayed 2 frames at master queue because delay point to

point is near 2 frame seconds.

Slave when receives event 0. This one has a timestamp that points

present or past clock, and in this case, the program will visualize it. In

case of the actual time – time stamp ≥ 1frame a dead reckoning will be

applied.

- Event 1 is lost. There isn’t any problem for master but slave will predict

his next event taking into account the previous correct event. In that case

event 0.

- Event 3 and 4 suffered some delay variation, again for master role

there isn’t any problem.

Synchronization techniques 35

For slave, to print the event number 3 use a prediction from 2 and for the

event number 4 use a prediction of event number 3. Event 4 is discarded

because event 5 comes before the game logic look if it is in the queue.

7.3.4. Slave description

Slave sends his control data with the current time stamp + delay ms, and server

will process it and correct the possible jitter.

Slave will receive the master event with the actual control at RTT ms; for

example the figure 11, a shoot (c0) at t0 will be received at t2 (t0+RTT)

processed inside an event. The shoot will be displayed correctly but not from

start.

Master Slave

Figure 11 - Slave control message scheme

This scheme reflects that control event 0, that is a state variation (running,

shooting, tackle or waiting to other one), will come back with more delay. The

user will not appreciate any difference if the delay is less than 150ms. When

this happens, it will be the slave who visualizes the transition before the event

arrives.

7.4. Complete flow scheme

At this point the entire system is near to be described and, to do a global vision

of all the system, there is a flow diagram of all the process followed to make,

play and end a match (figure 12).

Own network system 36

Main menu
Online Game

Selected

yes

Conect to

tracker

count ++;

Is

connected?
count < 5?no

yes

Message

“Network error:

can’t connect

to tracker”

no

Match

ready?
no

yes

User bored?

yes

no

Connect the

players with

UDP and TCP

using hole

punching

technics

Any

connection

problem?

yes
User want

to retry?

yes

Clean sockets,

renegotiate

with tracker

no

Message

“Network error:

can’t connect

user”

no

Peer signaling

and load game

data

Role?
Receive

Synchronism

Send

Synchronism

count ++;

Slave

Master

Any

problem?

yes

count < 5?yes

no

Message

“Network error:

can’t

synchronizate

correctly”

no

Any

problem?
yes

no

Message

“Network error:

can’t

synchronizate

correctly”

Events

without

ACK?

Mark event

with

TimeStamp = t

+ delay

Any event? yes

no

Util? yes

Send to server

with the last

2*delay events

yes

Data in

UDP

socket?

no

yes

no

Queue events

Data from

state t?
no

yes

Dead

reckoning

technic

Process and

render

Data in TCP

socket?
yes

no

Actualize

signal events

End match?

no

Sleep 30ms -

frameTime

yes

Message

“win / lose”

Clean network

Mark event

with

TimeStamp = t

+ delay.

Queue it

Any event? yes

no

Util? yes

Data in UDP

socket?

no

Queue events

no

yes
Need

corrections?

Correct actual

state
yes

no

Process state

t+delay

Send state

t+delay by

UDP socket

Signaling

event at

t+delay?

no

yes

Send signaling

event by TCP

socket

Enqueue

processed

state and

signaling

events

Render state t

Close socket

with tracker

Close socket

with tracker

End Match? yes

no

Connect with

tracker and

actualize

statistics,

close socket

Sleep 30ms -

frameTime

Message

“win / lose”

Clean network

Figure 12 – Complete flow scheme

Synchronization techniques 37

This scheme can be explained in seven points:

1- Tracker runs, is listening for a known port and known IP address.

2- A peer connects to tracker searching for a match; the connection is

maintained until there is another user to start a match (figure 13).

Main menu
Online Game

Selected

yes

Conect to

tracker

count ++;

Is

connected?
count < 5?no

yes

Message

“Network error:

can’t connect

to tracker”

no

Match

ready?
no User bored?

yes

no

yes

.

Figure 13 – Point 2 flow scheme

3- A second peer connects to tracker. Now there are 2 peer connected,

tracker starts a new match, sends data to peers to start with P2P

connection and helps them to connect and chose roles (figure 14).

Main menu

Match

ready?
no

yes

User bored? yes

no

Connect the

players with

UDP and TCP

using hole

punching

technics

Any

connection

problem?

yes
User wants

to retry?

yes

Clean sockets,

renegotiate

with tracker
no

Message

“Network error:

can’t connect

user”

no

Peer signaling

and load game

data

Role?

Figure 14 – Point 3 flow scheme

Own network system 38

4- Once peers are connected, they do the signalling and clock synchronism

(figure 15).

Role?
Receive

Synchronism

Send

Synchronism

count ++;

Slave

Master

Any

problem?

yes

count < 5?yes

no

no

Any

problem?
yes

no

Message

“Network error:

can’t

synchronizate

correctly”

Close socket

with tracker

Close socket

with tracker

Figure 15 – Point 4 flow scheme

5- If all works fine, the match starts and ends in a few minutes. All signalling

events go with the TCP channel to avoid losses (figure 16).

Synchronization techniques 39

Events

without

ACK?

Mark event

with

TimeStamp = t

+ delay

Any event? yes

no

Util? yes

Send to server

with the last

2*delay events

yes

Data in

UDP

socket?

no

yes

no

Queue events

Data from

state t?
no

yes

Dead

reckoning

technic

Process and

render

Data in TCP

socket?
yes

no

Actualize

signal events

End match?

no

Sleep 30ms -

frameTime

Mark event

with

TimeStamp = t

+ delay.

Queue it

Any event? yes

no

Util? yes

Data in UDP

socket?

no

Queue events

no

yes
Need

corrections?

Correct actual

state
yes

no

Process state

t+delay

Send state

t+delay by

UDP socket

Signaling

event at

t+delay?

no

yes

Send signaling

event by TCP

socket

Enqueue

processed

state and

signaling

events

Render state t

End Match?

no

Sleep 30ms -

frameTime

 Figure 16 – Point 5 flow scheme (left slave role, right master role)

6- At the end, the tracker will know the result to extract statistics (figure 17).

Main menuEnd match? yes

Message

“win / lose”

Clean network

End Match? yes

Connect with

tracker and

actualize

statistics,

close socket

Message

“win / lose”

Clean network

MASTER

SLAVE

Figure 17 – Point 6 flow scheme

7- If there is any error in network or application, the live peer will notify the

tracker. The peers will close connections and print an error message on

the screen before any error.

This is useful to use to develop it and into take to account the scheme to search

all vulnerabilities. That is the next section.

Own network system 40

7.5. Analysis of vulnerabilities and cheating

What are software vulnerabilities? The short answer is all the things that a user

(expert or not) can do to change the normal function of software to take an

advantage from the normal using. If there is not any advantage on doing this,

the options changed by the user can be considered a bug, for example, in a

calculator putting 1/0 and crashing it.

To do an analysis of any software and search and get protections is needed to

know every part of the code. In addition, using the previous scheme, the

analysis will be divided into sections trying to expose how to solve it.

A constant work is needed to actually avoid vulnerabilities because these kinds

of projects are in continuous development and giving new functionalities: a

simple new formulary to search friends can be a big security hole giving access

to users to access to databases, for example.

In a game context some vulnerabilities might be used to cheat and take

advantage in front of other players.

System vulnerabilities can be explained in 7 points that represent 7 states to

make a complete online match: tracker normal runtime, peer log in, match

signalling, peer synchronization, game, game ending and, at last, network

errors.

Point 1:

· Tracker application crash. It can happen because:

Segmentation fault: error because of any null pointer in the program

Memory leak: it needs a good memory management

Buffer overflow: it can be located with backtraces

· Tracker suffers DoS (Denial of Service):

Add a previous login server to avoid ghost players and to kick inactive

players.

1.1. To avoid attacks on login server and hijacking accounts, the

number of login tries can be limited to 5 each 5 min per IP.

1.2. To avoid man in the middle attacks to extract user and password,

the channel will be encrypted using SSL for example.

1.2.1. This is not enough to avoid all attacks like ARP spoofing.

1.3. The password sent and stored will be a hash to avoid losing

important data in case of any successful attack.

Synchronization techniques 41

1.4. All data will be parsed searching any special character to avoid

SQL injection. This includes all client inputs, formularies or

getting/posting parameters

Point 2:

· When peer does five fail logins, the server will refuses all connections

until the penalty expires. In case of trying it more times, the tracker will

trigger a warning to administrators.

· If peer does not do anything in 1 min, the connection will be reset to save

connections.

· Once logged:

o If there is any signalling fake, the tracker will close the connection

and send warnings to administrator.

Point 3:

· Two users are selected by tracker to play; the server generates a

symmetric code to encrypt the communication between peers. This code

is sent by the secure channel between users and server.

· The tracker saves the match data and puts a time mark to avoid data

manipulation out of time.

· Before create a match, it is seen if any one of the players has any match

already started or in penalty because he left, in this case, it is

communicated to the user who will not be able to start the match.

· In case of data manipulation in the client side, the result will be an error

message to the other player and the end of the match.

· To ensure the channel between peers, the symmetric code is generated

randomly.

Point 4:

· At this phase the critical values are the clock synchronism values. For

example, in case of master with a freeBSD proxy that adds delay once

the game starts, the game for slave player is lost; this attack cannot be

avoided, because of the extra delay, so the slave will play without a

correct delay in actions and will have inconsistencies. If the player does

clock synchronism with a certain frequency the problem can be solved,

though mobile devices cannot do these measures without adding delay if

the measure does not block the game.

· In case of signalling manipulation, the tracker will apply a penalty to user

that depends on the number of manipulations done.

Own network system 42

Point 5:

Now the game is running.

· A modification of game results might happen because master is sending

goals to its own team but they are not real. To avoid this, slave will see if

any signalling event is coherent with the game state.

· Referring about coherence between game events, again, the master can

try to cheat the slave doing a change position favourable to it; in this

case, slave will measure if the different distances are coherent with the

time between events.

Point 6:

The game is ended.

· Players connect with tracker with his own session id (to avoid log in

again). This action might become a real problem since the session will

have a caducity of 10 min of inactivity, for instance.

· When uploading their statistics, the tracker will compare the 2 reports to

avoid different values. In case of differences the match will have a

warning to be revised later. If there is any report of player this one will

have more priority to be resolved.

· Again, all the data is referred to a match identifier. If this match does not

exist or it is over, a warning will be made to erase cheaters.

Point 7:

Network errors.

· If a disconnection happens, the master will only accept reconnections of

the same slaves. In order to do it, the slave needs to encrypt with the

same generated code and have the same values (IP addresses, user,

MAC).

· In case of total disconnection, master and slave will notify the tracker

with his current state; the match will not count.

· If there is a disconnection and it is caused by the match result (since one

player is losing), the other player can report it.

· In case of disconnection the match will be a loss in player’s statistics in

order not to favour disconnections.

Statistics 43

CHAPTER 8. STATISTICS

To evaluate the final work there are some methodical steps to draw objective

and subjective conclusions.

The objective results only demonstrate that the scenario is correct to start the

subjective test.

The basic points to see are the delay resistance and loss capacity.

8.1. Scenario, configuration and tests

To test the application a private network with 3 pc is used.

The extremes using windows XP without firewall and at the middle a

FrenzyBSD based on FreeBSD to add delay and loses (figure 18).

Laptop A FrenzyBSD Laptop B

Figure 18 – Test scenario

The hardware used is:

- 2 x crossover cable

- 2 x laptop with Ethernet and windows XP

- 1 x personal computer with 2 NIC interface

- 1 x a CD with FrenzyBSD that includes dummy net software

Software used at server:

- Ipfw commands: these commands are used to set delay and loses in the

network. There are a lot of options.

- Ifconfig commands: they can be used to configure network interfaces.

- mii-tool commands: they list the network devices and if there is any

physical connection and the throughput negotiated at Ethernet level.

- Ping command: it is used to know if there is any communication between

machines.

44 Study and implementation of a real time online football game for mobile devices

Software used at client side:

- Iperf commands: it is a software to generate UDP and TCP flows.

- Game implementation.

- Wireshark: it is a network sniffer.

- Network connection options from windows control panel.

- Ping command: it is used to know if there is any communication between

machines.

The configuration follows the next steps:

1- Connect one laptop to the server with the cable.

2- At server side, open a console and write mii-tool with root privileges and

know what interface is used.

3- Set the IP, netmask and default gateway at the laptop.

4- Set the IP and netmask to the correct NIC at server side.

5- Test using ping from server to laptop and vice versa. If there is any

problem only from server to client look if the firewall is deactivated.

6- Repeat the same process for the second laptop.

7- Test connectivity between laptops.

Now there is the work setting.

Server configuration for each test [13]:

- ipfw add 100 pipe 1 ip from any to any adds internal pipe from any to

any with no rules.

- To add delay: ipfw pipe 1 config delay 100ms

- To add random losses: ipfw pipe 1 config plr 0.5

One thing to take into account is that with this configuration, delay and losses

are applied at each entry queue.

From one laptop to the other, a single ping will be added 100ms delay four

times and in each queue a 50% loose probability.

At the end of the test:

- ipfw pipe 1 delete deletes the previous created pipe with all the rules.

Once ipfw commands are done, to test if the results are coherent, at one side it

is used:

- iperf -c <server address> -u

- iperf -s

Iperf is only used to know if dummy net configuration is correct.

The tests to evaluate the application will be:

Statistics 45

- Delay: 32, 64, 80, 100, 120, 150 and 200 ms.

- Looses P(e): 0’02, 0’04, 0’06, 0’08, 0’10, 0’15 and 0’20.

A good result will be that the game supports up to 120-150 ms delay and

probability error up to 0’06.

8.2. Results

The results are all empirical evaluated from 0 to 5 (the best) in two terms:

response time, since you move and you perceive the move, and screen

synchronism, the difference between the screen clients.

Delay tests:

ms 32 64 80 100 150 200

Response

time

5 4.5 4.5 4 3.25 2

Screen

synchronism

5 5 5 5 5 5

P(e) 0’02 0’04 0’06 0’08 0’10 0’15

Response

time

5 0 0 0 0 0

Screen

synchronism

5 0 0 0 0 0

The delay results are really good, more than 100 ms delay with good response.

They are along the same line as normal market games.

The error test has the worst results. The game does not start, and the problem

is in the clock synchronization of the two peers and the politics of dummynet to

discard.

To solve these errors we need to ensure a robust system for the signalling.

There is a new version pending.

46 Study and implementation of a real time online football game for mobile devices

CHAPTER 9. CONCLUSIONS

At the end of it all, there is not any perfect solution but the one chosen out for

this scenario to work correctly.

The goals of interactivity, if delay is not to big, can be respected and there is not

any appreciable incongruence unless the scenario becomes hell.

For bigger games, a decentralized architecture will be a big problem with

solutions that can give a bad interactivity or bad user experience because the

game freezes when any super peer falls. Massive online games normally use

any load balance system in server side and time warp synchronism techniques.

In terms of security, in mobile phone devices or other ones, the critical data that

needs really secure channels are the client server communications, between

peers, a simple symmetric but each time different key (symmetric key generated

by the server and sent via the secure channel) to avoid easy bots should be ok.

In other cases, the security will be focused on revising all data that comes from

users and really important, security inside the enterprise needs to be really high

too.

In a few words, this document doesn’t does not intend to become a great study,

because this needs some years and more empirical tests, but a guide to start to

know how to develop an online game for any platform; what needs to be taken

into account, what problems might appear and some solutions.

This master thesis doesn’t does not reflects all work related, like how to

organize the code, more than 10k lines in C++, how to generate 3D graphics,

how to manage inputs, non blocking input output system, how to do

multiplatform games and much more technical work that have had to be done.

Bibliography 47

BIBLIOGRAPHY

Secure vulnerability definition

[1] http://technet.microsoft.com/en-us/library/cc751383.aspx

Synchronism:

[2] Shawn Bonham, Daniel Grossman, William Portnoy, & Kenneth Tam:

Quake: An Example Multi-User Network Application | Problems and

Solutions in Distributed Interactive Simulations, University of Washington,

May 2000, CSE 561.

[3] Honghui Lu, Björn Knutsson, Margaret Delap ,John Fiore, Baohua

Wu: The Design of Synchronization Mechanisms for Peer-to-Peer

Massively Multiplayer Games, Department of Computer and Information

Science, University of Pennsylvania 2009.

[4] Marco Roccetti, Stefano Ferretti, Department of Computer Science,

University of Bologna, Claudio E. Palazzi, Department of Pure and

Applied Mathematics, University of Padua: The Brave New World of

Multiplayer Online Games: Synchronization Issues with Smart Solutions,

2008 IEEE.

[5] Haishu Zhang: The effect of delay on network games, Master’s Thesis

at Umea University, May 2006.

Game cheating:

[6] Steve Webb: A Survey of Cheating Techniques in Online Games,
CS7001.

http://technet.microsoft.com/en-us/library/cc751383.aspx

48 Study and implementation of a real time online football game for mobile devices

NAT transversal:

[7] Bryan Ford, Massachussets Institute of Technology, Pyda Srisuresh,

Caymas Systems Inc, Dan Kegel: Peer-to-Peer Communication Across

Network Address Translators, 2005 Proceeding.

[8] Y. Rekhter Cisco, B. Moskowitz Chrysler Corp., D. Karrenberg, G. J.

de Groot RIPE NCC, E. Lear Silicon Graphics Inc., RFC 1918: Address

Allocation for Private Internets, February 1996.

[9] J. Rosenberg, J. Weinberger dynamicsoft, C. Huitema Microsoft, R.

Mahy Microsoft, RFC 3489: Simple Traversal of User Datagram Protocol

(UDP) Through Network Address Translators (NATs), March 2003.

[10] J. Rosenberg Cisco, R. Mahy, P.Matthews, D. Wing Cisco, RFC

5389: Session Traversal Utilities for NAT (STUN), October 2008.

TCP:

[11] M. Allman NASA, V. Paxson ACIRI, W. Stevens, RFC 2581: TCP

Congestion Control, April 1999.

[12] Claudio Casetti, Politecnico di Torino, Mario Gerla, UCLA Computer

Science Department, Saverio Mascolo, Politecnico di Bari, M.Y. Sanadidi

and Ren Wang, UCLA Computer Science Department: TCP Westwood:

End-to-End Congestion Control for Wired/Wireless Networks, 2002.

Dummynet guide:

 [13] http://cs.baylor.edu/~donahoo/tools/dummy/tutorial.htm

http://cs.baylor.edu/~donahoo/tools/dummy/tutorial.htm

