

Universiteit Antwerpen
Departement Wiskunde en Informatica

Performance Analysis of Telecommunication Systems

Adaptive Graphic User Interface

Author: Héctor Toll Vallejo

Supervisor: Vincenzo De Florio

Date: September 2011

b r o u g h t t o y o u b y C O R EV i e w m e t a d a t a , c i t a t i o n a n d s i m i l a r p a p e r s a t c o r e . a c . u k

p r o v i d e d b y U P C o m m o n s . P o r t a l d e l c o n e i x e m e n t o b e r t d e l a U P C

https://core.ac.uk/display/41805849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A word of thanks

I would like to thank my supervisor Vincenzo De Florio. Without his advice, support and encouragement
I would never have realized this thesis.

Table of Contents:

1 Introduction ... 7

 1.1 Motivation .. 7

 1.2 Goals .. 8

 1.3 Text structure... 9

2 Autonomic computing and QoE ... 11

 2.1 Autonomic computing .. 11

 2.1.1 Definition .. 11

 2.1.2 Model .. 13

 2.1.3 Characteristics ... 15

 2.1.4 Benefits .. 16

 2.2 Quality of Experience .. 17

3 Problem analysis and solutions ... 19

 3.1 Problem description .. 19

 3.2 Problem analysis ... 21

 3.3 Our solution ... 25

 3.3.1 First Design .. 25

 3.3.2 Encountered problems .. 30

4 Final implementation ... 33

 4.1 Tools used ... 33

 4.2 GUI’s Hierarchy .. 34

 4.3 Classes ... 37

 4.4 Drawing elements .. 48

 4.5 Saving/Loading the GUI .. 49

 4.6 Modifying the GUI .. 51

 4.7 Quality of Experience Rules ... 52

 4.7.1 Recording background actions .. 53

 4.7.2 First QoE failure detection: Slider .. 54

 4.7.3 Second QoE failure detection: Menues ... 56

 4.7.4 Third QoE failure detection: Email ... 57

 4.7.5 Fourth QoE failure detection: Date format .. 60

 4.7.6 Fifth QoE failure detection: Date order .. 61

 4.7.7 Sixth QoE failure detection: Text Area .. 63

 4.7.8 Seventh QoE failure detection: Clean button .. 64

 4.7.9 Eighth QoE failure detection: Validate button .. 66

5 Evaluation .. 67

 5.1 The system ... 67

 5.2 Experiments and their statistics .. 69

 5.2.1 First subject: Experienced user ... 69

 5.2.2 Second subject: Not experienced user ... 71

 5.2.3 About the results ... 73

6 Related work .. 74

7 Futur work and Conclusion .. 76

 7.1 Future work .. 76

 7.2 Conclusion ... 77

8 Bibliography .. 79

7

1 Introduction

1.1 Motivation

Nowadays when we use commercially available user interfaces, e.g.

those typical of a Smartphone, a PC, laptop or any other,

communication takes place between the user side and the computer

side: at the one end, e.g. keys are being pressed, screen portions

are being touched, words are typed in, text fields are filled, options

are selected, etc — at the other end, screens are being filled in with

widgets, images and textboxes, sounds are emitted, etc. We focus

here on the user-to-computer flow of actions, and observe that a

large portion of these actions is simply ignored by computers.

Some UI, like for Google search, are anticipative, thus they try to

predict what the user is expecting (in this case, what he or she is

looking for), but the general approach with UI's is simply to ignore

whatever user action is not associated with a function of the

underlying system. By doing so the computer side deliberately

chooses not to take into account most of the user context. This

means we do not know how comfortable the computer experience is,

how adequate the UI is to the current user and how fluent the person

in command is in the conversation with the computer system he or

she is using.

We want to highlight the importance to take into account all these

actions and we also think that no system should be an immutable

entity focused only in its main functionalities. We believe that taking

into account just a very little portion of the actions taken by the user

(thus wasting not too many resources) we can improve considerably

the user’s experience. Furthermore the current computers have

become powerful machines, flexible and intelligent agents able to

8

enhance our lifes, for which reason the general approach should be

fully exploit their potential an capabilities.

It is for these reasons that our approach is to create a systematic

way to address these problems. Since it is unfeasible to register all

actions generated by users due to the large variety of possible input

events, we propose to register a part of the domain input (e.g.

number of clicks on a certain button, number of times a menu is

selected and so on) that the user may generate while using a GUI in

order to change automatically those aspects of the User Interface

that could be improved for a better experience of that user.

Figure 1.1.1: Example of a User Interface.

 1.2 Goals

Before starting this thesis we set a group of objectives. These

objectives are:

General

 Demonstrate it is feasible to enhance the user’s experience

by taking into account some user actions typically ignored.

9

 Demonstrate through a scientific methodology how this

improvement is possible.

 Develop this work as a proof of concepts.

Particular

 Create a group of simple QoE rules in order to show the

validity of our concepts.

 Create an adaptive Graphical User Interface in order to

show the usefulness of well applied QoE rules.

1.3 Text structure

This text has been structured in order to be suitable for the reader.

That means that first, we introduce the reader to the theoretical terms

and concepts, then we analyse the main problem and its possible

solutions, we continue explaining the most important implementation

parts, after that we evaluate and test the final result and finally we

state lessons learned, conclusions and possible improvements.

The sections description is:

 Theoretical study (section 2): Prior to any analysis or

implementation is important to understand the different technical

concepts related to this thesis. Information about autonomic

systems and about quality of experience is provided in this

section.

10

 Analysis (section 3): Before starting any system implementation,

we need to do a deep study about the main problem in order to

find out the best way to solve it. Here we review the main problem

characteristics and the different designs/solutions adopted

throughout the realization of this thesis.

 Implementation (section 4): This section describes the

implementation of the final system. Specifically, it describes and

defines those parts of the software implementation that have

been significant for the accomplishment of our objectives. It

explains what tools we have used, how we storage the GUI in a

formal way, how we draw elements, what QoE rules have been

developed and what elements make up the application.

 Test/Evaluation (section 5): In section 5 the system is tested. We

evaluate the quality and effectiveness of our solution and also we

test the system responses according to the actions carried out by

the users. Here, two different experiments and their statistics are

shown. We considere two different subjects in order to check if

the changes in the GUI are adjusted to the user needs. The first

experiment is realized with an experienced user and the second

one is realized with a not experienced user.

 Conclusions (section 6 and section 7): Almost at the end of the

text we provide a brief summary about related work, introduce

possible extensions on this thesis, and summarize the concepts

and skills acquired during its realization and all conclusions that

have been reached.

11

2 Autonomic computing and QoE

2.1 Autonomic computing

In this sub-section we are going to explain one of the most important

concepts related to this thesis. What we mean by autonomic

computing? What kind of model follows it? What are its

characteristics? Which are its benefits? All these concepts will be

detailed here. Readers acquainted with these concepts can skip this

subsection and still read on subsection 2.2.

2.1.1 Definition

Autonomic Computing refers to the self-managing features of

computing resources, adapting to unpredictable changes while hiding

intrinsic complexity to operators and users. An autonomic system

makes decisions on its own, using high-level policies; it will

constantly check and optimize its status and automatically adapt

itself to changing conditions [1].

“These autonomic systems are focused on managing themselves

without direct human intervention. A well-known inspiration for this

functionality is the human central nervous system. Autonomic

controls use motor neurons to send indirect messages to organs at a

sub-conscious level. These messages regulate e.g. temperature,

breathing and heart rate without conscious intervention. The

implications for computing are immediately evident: a group of

organized, "smart" computing components that provide us with what

we need when we need it, without a conscious mental or even

physical effort” [2].

12

An autonomic computing framework might be seen as composed by

Autonomic Components (AC) interacting with each other. Although a

variety of architectural frameworks based on “self-regulating”

autonomic components has been proposed [1], we are going to

introduce here a particular set of ACs as they are directly related to

the kind of autonomic system we will use to represent our problem.

These ACs are called: Monitoring (M), Analyser (A), Planner (P),

Executer (E) and Knowledge (K).

In order to reach a better understanding on their mutual relations, we

are going to explain in detail each of them.

 M = At Monitoring stage sensors are responsible for detecting

and determining inputs. Such sensors are very important on

autonomic systems because the more of them we have, the

more complex rules we can add. Besides that here is where

all kind of information, important or not, is transmitted to the

Analyser stage.

 A = It collects events generated at the previous stage, it

analyses them and if they are relevant it storages them.

 P = Planner’s work consists of checking data saved at

Analyser stage and if that data fulfil some conditions then it

schedules response-actions to be executed.

 E = It is responsible for executing all those actions scheduled

by Planner so it will cause changes to the system.

 K = Knowledge block contains information generated through

system’s life. It is the fountain of knowledge from which the

system recognizes past patterns, correlates current with past

events and extracts data to decide if changes need to be

applied.

13

Depending on the general policies and rules defined as inputs for the

self-management process, IBM defined different functional areas [1]:

 Self-Configuration: Automatic configuration of components.

 Self-Healing: Automatic discovery, and correction of faults.

 Self-Optimization: Automatic monitoring and control of

resources to ensure optimal functioning.

 Self-Protection: Proactive identification and protection from

arbitrary attacks.

Specifically the functional areas where we will focus our work will be

on self-configuration and self-optimization.

2.1.2 Model

In order to understand what model an Autonomic system follows we

are going to introduce an important concept.

Control loops

A basic concept applied in Autonomic Systems are closed control

loops. This well-known concept stems from Process Control Theory.

Essentially, a closed control loop in a self-managing system monitors

some resource (software or hardware component) and autonomously

tries to keep its parameters within a desired range. If these

parameters exceeds from the desired range then the system reacts

changing some system aspects [1].

14

Conceptual model

If seen as conceptual model an autonomic system is divided into

different building blocks:

 Sensors (Si): The sensing capability, which enables the system

to observe its external/internal operational context.

 Purpose: The intention and goals the system tries to reach.

 Know-How: Determines which actions to implement and how to

apply them without external intervention (e.g. knowledge

configuration, interpretation of sensory data...).

 Logic: Responsible for taking the right decisions to serve its

Purpose, it is influenced by the observation of the operational

context based on the sensor information.

This model highlights the fact that the operation of an autonomic

system is purpose-driven. This includes, its mission (e.g. the service

it is supposed to offer), the policies (e.g. what defines the basic

behaviour) and its adaptability [1].

On subsection 3.2 it will be provided a correlation between concept

model elements and the problem at hand.

 Figure 2.1.2.1: Autonomic System Model.

15

2.1.3 Characteristics

Even though the purpose and thus the behaviour of autonomic

systems vary from system to system, every autonomic system should

be able to exhibit a set of characteristics to achieve its intention. The

following list suggests seven defining properties of an autonomic

system [2]:

1. An autonomic computing system needs to "know itself", that

means its components should be identifiable. An autonomic

system will need detailed knowledge of its components,

current status, and ultimate capacity.

2. An autonomic computing system must configure and

reconfigure itself under varying conditions.

3. An autonomic computing system always looks for ways to

optimize its workings. It will monitor its elements and adapt

workflow to reach predetermined system goals.

4. An autonomic computing system must be able to adapt to

routine and extraordinary events that might cause some of its

parts to function in a different way than desired. It must be

able to discover those components that give rise to confusion,

then find an alternate way of using resources or reconfiguring

the system to keep functioning according to what user is

expecting (this refers to QoE - more information on this is

provided in section 2.2).

5. An autonomic computing system must be an expert in self-

protection. It must detect, identify and protect itself against

various types of attacks.

16

6. An autonomic computing system must know its environment

and the context surrounding its activity, and act accordingly.

7. An autonomic computing system will anticipate the optimized

resources needed while keeping its complexity hidden (without

involving the user in that action).

On section 5 we will review which of these characteristics our

autonomic system has been reached.

2.1.4 Benefits

We can consider two different kind of benefits: Short-term and long-

term according to their benefits immediacy [2].

Short-term benefits

 Reduced dependence on human intervention to maintain

complex systems.

 Favourable relation between costs and user happiness.

 Simplified user experience through a more responsive system.

 Stability.

 High availability.

17

Long-term benefits

 Constructing autonomic federated systems: Embedding

autonomic capabilities in client, servers, middleware... and the

network itself.

 Achieving end-to-end service level management.

 Allowing different entities to collaborate on complex problem

solving.

 Quality of Experience maximization due to a large iterative

learning process.

2.2 Quality of Experience

Quality of experience (QoE), also known as quality of user

experience, is a subjective measure of a customer's experiences with

a service (Graphical application, phone call, TV broadcast, call to a

Call Center, web browsing...). Quality of Experience systems will try

to measure metrics that user will directly perceive as a quality

parameter (e.g. reaction time when some message appears on GUI).

For instance, if we analyse a vendor's or purveyor's offering from the

standpoint of the customer or end user, we want to know what mix of

goods, services, and support, the user thinks will provide him or her

with the perception that the total product is providing him or her with

the experience he or she desired and/or expected. If the

vendor/purveyor has not actually provided that, then the QoE tries to

determine what changes are needed to be made to enhance his or

her total experience (for instance, if a given user is not able to read

the values arranged on a slider, then the QoE determines that slider

size shoud be increased).

18

Quality of Experience is related to but differs from Quality of Service

(QoS), which attempts to objectively measure the service delivered

by the vendor: with QoS measurement is most of the time not related

to user, but to technology services offered. A vendor/purveyor may

be living up to the terms of a contract's language, thus rating high in

QoS, but, the users may be very unhappy, thus causing a low QoE.

Although QoE is perceived as subjective, it is the only measure that

counts for service users. Being able to measure it in a controlled way

helps companies/programmers understand what may be wrong with

their services/applications [5].

19

3 Problem analysis and solutions

3.1 Problem description

Here we are going to describe in detail the problem briefly presented

in the introduction.

This thesis investigates some problems in the context of autonomic

systems in order to make easier the interaction between the user and

the system.

Within that context it is required some application, in particular a

Graphical User Interface, where we can demonstrate (as a proof of

concepts) that if we monitor the actions produced by the user and we

analyse the QoE of these actions, then (when actions indicate a loss

of QoE) we can plan and execute changes of some aspects of the

GUI in order to facilitate user tasks and improve again QoE. These

concepts and ideas will be developed and explained later.

Through a GUI we usually can push buttons, enable a set of options,

select different menues, fill in text fields, move sliders to fix values

and much more. When users interact with these widgets/components

is because they are expecting a specific effect or response. If the

system detects that some set of actions carried out by the user do

not make sense or are different than the normal way (functionally

valid but semantically not valid), this indicate that the user does not

know how to interact properly. For example, in that case the system

could detect this sequence of actions and change correspondig

widgets so that the combination used by the user will be correct (“the

client is always right” – they say in business). Other examples could

be:

20

 When the user often presses the wrong button due to the fact

that e.g. that button is too close to a text field then the system

could reshape the GUI and move it away from the text field.

 If the user rarely uses some part of the screen (e.g. widgets

that never are used) then the system could remove elements

contained within that part and put other elements in its place.

As a general remark, before determining which conditions cause

what changes, we have to consider the environment and the context

for which a GUI is oriented. Because of the variety of commercially-

available user terminals a GUI may be deployed onto several

different surroundings. For instance, we cannot apply the same rules

on a GUI deployed onto a touch phone than a GUI deployed onto a

conventional PC.

In brief, if we detect QoE changes from recurring actions of the

users; unproductive actions, specific actions repeated more than n

times, etc, such patterns will be interpreted as a loss of QoE

therefore, once detected them, we have to show that indeed we can

reshape some aspect of the GUI in order to help the user. That

means, in an autonomous way the system has to make appear or

disappear widgets or parts of the GUI, it has to create shortcuts if

they are useful, it has to disable checkboxes, create new ways to

select values (e.g. use a slider rather than a text field), turn into a

bigger size some parts of the screen …

21

3.2 Problem analysis

If we analyse deeply the system needed, we can clearly understand

it as an autonomic system.

Inside this system we can identify the five different autonomic sub-

components commented in section 2.1: Monitoring (M), Analyser (A),

Planner (P), Executer (E) and finally Knowledge (K).

These sub-components are related and integrated in a control loop

that every cycle checks if adaptation is needed.

The following figure captures and shows this process.

Figure 3.2.1: Autonomic system control loop.

22

More specifically the process that describes the loop applied to our

problem can be summarized as follows.

 The system is “reading” data permanently (Monitoring stage).

Examples:

 The user is pushing buttons.

 The user is selecting menues.

 The user is entering characters.

 From that read data the system is deriving some knowledge

(Analyser and Knowledge stages).

Examples:

 The user is typing too fast and that is interpreted by the

system as a stress symptom.

 The user is always selecting the same menues and the

system interprets that the user is losing time

unnecessarily.

 Such knowledge is used to plan a response (Planner stage).

Example:

 The system is scheduling a reshaping of the GUI.

 Lastly, the changes are executed (Executer stage).

Examples (applied to the examples before):

 The GUI is transformed into a more friendly GUI with

different buttons or different colors in order to reduce

stress.

 The system creates a shortcut on the GUI in order to

save time the next time the user wants to select that

menu.

23

We will link now building blocks of the concept model with the design

we want to implement.

Sensors

We will use different widgets in order to validate our concepts.

Interaction between these widgets and the user give us the input

information to determine QoE’s user. Next table shows the most

important sensors used in our system. Information provided by this

sensors will be used in our rules with the purpose of deciding if a

change is needed.

Widget Number of
clicks

Times
Scroll
bar

Focus
on

Characters
entered

Number
characters

Slider Sensor
1

Sensor
2

Clean button Sensor
3

Name
TextField

 Sensor
4

Sensor
5

Sensor
21

Validate
Button

Sensor
6

Text Area Sensor
8

Sensor
7

Day TextField Sensor
9

Sensor
10

Sensor
22

Month
TextField

 Sensor
11

Sensor
12

Sensor
23

Year TextField Sensor
13

Sensor
14

Sensor
24

Username
TextField

 Sensor
15

Sensor
16

Sensor
25

Domain
TextField

 Sensor
17

Sensor
18

Sensor
26

Check button Sensor
19

Add Date
Button

Sensor
20

24

Purpose

Purpose determines the main goal system and within the context we

face it is very clear. Our main purpose is optimizing Quality of

Experience of the user.

Know-how

At this block knowledge is determined about how our system should

operate by itself. This block decides which sensory information is

important. For instance, our system provides several sensors (more

than those presented on the above table) but just a part of them are

considered. The Know-how block knows how to interprete data

information.

Logic

Here it is defined our semantinc block. Such block consists of a set of

rules whose functionality consists of detect QoE failures with the aim

of applying changes to the system.

Examples of these rules may be (see on above table sensor

references):

(Sensor21 = 0) and (Sensor3 > 4) move Clean button to the right

(Sensor1>4) increase slider size

(Sensor10 = ‘char’) or (Sensor12 = ‘char’) or (Sensor14 = ‘char’)

 Date field error

 . . .

25

We have to point out the fact that Artificial Intelligence support would

be required in order to deriving new knowledge and increase our

knowledge database but that is out of the scope of this work, we

want to highlight again that this work is a proof of concepts.

The reader may find similarities with other areas like control theory

and natural systems in the loop presented above. Ideas presented in

these areas could possibly be used in the software engineering area.

The major problem with the current autonomic components is that

this control loop presented here is often hidden, abstracted or

internalized.

3.3 Our solution

Now we will explain which were our first designs and ideas to define

the current system and which were our problems related to them.

3.3.1 First design

At the beginning, we had a set of files and base codes with which we

tried to start developing our solution. The origin of these files was

from an unfinished prototype which had to be completed.

These base files consisted of:

 A very simple Tcl/Tk GUI instrumented such that it creates a

transcript file that lists some basic actions carried out by user.

 A scanner of the transcript language file created with the

Tcl/Tk GUI.

 A Makefile to produce the executable file.

26

 A parser of the transcript language. When it is compiled using

the Makefile, it creates an executable file that checks with the

transcript file if some QoE failure rule have to be triggered.

Figure 3.3.1.1: GUI programmed with Tcl/Tk.

Taking these files we had yet a number of incomplete aspects:

1) A too simplistic GUI.

2) Too few and too simple QoE "detection rules".

3) No adaptation of the GUI is associated with the QoE

detection rules. That is, once the QoE failure are detected

then they are just reported back and no changes to the

GUI are applied regarding those QoE failures.

From this point of view, our original assessment was first, to study

the problem and the code and then, extend and design

improvements on 1) and 2) and finally, design a proof of concepts for

3). The positive aspect we saw in this is that we would work with a

number of well-defined and independent "units": pieces of 1), 2) and

3). If we got difficulties in one unit, we could switch to another one.

27

It is very important to highlight the fact that the system was not a

complete system.

Thus we decided to improve and add more complex components to

Tcl/Tk interface we had, and we also wanted to design new and more

sophisticated QoE detection rules in order to change the GUI in a

more useful way. From that moment, our main goal was focused on

finding a way to reach adaptation of the GUI if any QoE failure was

activated.

In order to make effective this adaptation one of the possible

solutions that we chose is summarized in the following chronological

step list.

28

The diagram on the left represents a description of each step. The

diagram on the right represents the functional logic associated with

each step (M, A, P and E mean Monitoring, Analyzer, Planner,

Executer respectively)

After thinking about it carefully we concluded that the best way to

store the GUI in some concise form and in order to be retrieved and

modified without problems, it would be serializing the contents of the

window.

If the rader is not familiar with the term serialize, now we are going to

detail some aspects related to this term. Otherwise, please skip the

next text box.

The words serialization and “serialize” have several different

meanings, depending on the context. In the context of this thesis,

serialize essentially means “to store the state of an object.”

Conversely, deserialize means “to restore the state of an object.”

This is most often associated with the save/load features of an

application, but serialization actually has several uses aside from

saving and loading, for example [7]:

* Generic cloning of objects. Any objects which can be serialized

can be cloned using the serialization interface, without requiring

an intermediary data file.

* Clipboard support. Serialization can be used to store a copy of an

object in a system clipboard.

* Network transport. Serialization can be used to transport over

arbitrary streams (files are also covered by this abstraction).

29

Regarding the format in which we would store the contents of the

interface, we analyzed different options.

At first we studied the possibility to do it through a library with which

we could serialize our object to XML. Using a XML format we could

use different tags easily identifiable and replaceable in case of

modification, as well as being an agile way to handle and understand

the information stored. So the idea was to create a class that stores

all information related to the interface. This class would contain

general parameters, as well as an array of widgets with specific

information for each item (size, color, position...).

However we observed that the GUIs form a special hierarchy. Such a

hierarchy can be represented by an n-ary tree where each node

represents one element of the screen. Using such a structure the

way to access the elements and cause changes in the interface is

much more efficient. That was how we finally decided that we would

represent the GUI through a tree that would be serialized using basic

serialization libraries (more details about how the structure and the

GUI are stored can be found on section 4.2).

Since many files we had available were programmed in C, we

decided to use any C library to serialize the tree. The chosen library

was the libc11n. Libc11n is released under the umbrella of the s11n

Project. That means libs11n is the conceptual forefather of c11n, and

its architecture is based entirely on s11n's [7].

On the other hand, we needed that our serialized tree containing the

GUI information could be retrieved and displayed on the screen

consistently. Since this serialization was done in C, we just could

deserialize the tree using libc11n if we did it also in C code or

another language that was capable of interpreting it.

30

Searching on Internet we found out a kind of peculiar language: L

language. “L is a compiled-to-byte-code language with the unusual

twist that it compiles to Tcl byte codes and by doing so leverages the

entire Tcl runtime. L is designed to peacefully coexist with Tcl rather

than replacing Tcl. L functions may call Tcl procs and vice versa.

They may also coexist in the same source file. L is a static weakly

typed language with int, float, string, struct, array, and hash as first-

class objects” [8]. The L syntax is completely based on C with a tiny

bit of C++ thrown in.

It is for the above consideration that using the language L we had the

bridge we needed between Tcl/Tk GUI and serialization with libc11n

C library.

3.3.2 Encountered problems

Although with this design we initially felt able to reach an acceptable

solution, we finally found different problems that made it difficult to

continue.

These problems were:

 Excessive coexistence of different programming languages in

a single system that led to compatibility problems between

them.

 Serializing objects like tree doesn’t work correctly with very big

sizes. Searching on Internet we found out a forum where other

libc11n’s users had tha same problems.

 Too many difficulties and big effort implementing when we

want to serialize or deserialize objects with libc11n.

31

 It was not possible to integrate the library libc11n inside L

language.

 Combination Tcl-L was not so good as we thought.

 There are not many help/information/examples on Internet

about L programming and about the correct use of the libc11n

library.

As a result of these problems we decided to change radically the

support with which we wanted to implement our design. We left out

all files from which we started to develop our solution. That means

we left aside the libc11n library, the L language, the base codes, the

implemented C new code... Then we started again in order to re-

implement all code completely from scratch and using only one

language: Java.

With Java we have graphical tools and useful libraries like Swing and

AWT(Abstract Window Toolkit) with which we can handle graphical

issues related to our GUI. These two libraries have important

features.

AWT features include [10]:

 A rich set of user interface components.

 Graphics and imaging tools, including shape, color, and font

classes.

 Layout managers, for flexible window layouts that don't depend

on a particular window size or screen resolution.

 Data transfer classes, for cut-and-paste through the native

platform clipboard.

32

 A robust event-handling model.

Swing features include [10]:

 All the features of AWT.

 100% Pure Java certified versions of the existing AWT

component set (Button, Scrollbar, Label, etc.).

 A rich set of higher-level components (such as tree view, list

box, and tabbed panes).

 Pluggable Look and Feel.

Apart from graphic control with Java we also have native serialization

library, whose packet implements the java.io.Serializable interface.

Benefits to programmers include:

 Reducing time taken to write code to save and restore objects

or application states.

 Eliminating complexity of save and restore operations, and

avoiding the need for creating a new file format.

 Making it easier for objects to travel over a network

connection[9].

On the next section we will detail each part of the implementation of

the final solution.

33

4 Final implementation

4.1 Tools used

Having once decided to implement the whole code using Java

language we had to choose with what IDE (Integrated development

environment) to implement our solution in order to make

programming easier.

Two options we considered here, NetBeans IDE or Eclipse IDE. After

studing the two options in depth we decided to use NetBeans IDE

version 6.9.1. The main reason was that NetBeans comes with a

professional and easy to use GUI builder.

Figure 4.1.1: NetBeans IDE.

34

Furthermore, as explained in the previous section we used different

typical Java modules for each purpose:

 Graphical modules:

 java.awt (AWT)

 javax.swing (Swing)

 Serialization modules:

 java.io.Serializable

4.2 GUI’s Hierarchy

As we mentioned in sub-section 3.3.1, if we look at the way in which

typically a graphical window is composed, we observe that its

structure can be represented as a tree-like hierarchy. That is, we

have a window and within it we can find various widgets such as

panels, buttons, sliders, text fields, text areas, menues... Each of

these widgets may contain or not contain other elements within it,

e.g. a menu bar may contain drop-down menues or menu items and

a drop-down menu may contain other menues. Likewise a panel

may contain buttons, text fields, sliders,..

35

The following figure shows the hierarchy just discussed.

Figure 4.2.1: Window’s hierarchy.

Therefore given this structure we can represent a GUI using an n-ary

tree (i.e. a tree where each node has an unlimited number of

children). For example, suppose you have a GUI that consists of a

main window with a panel and a menu bar. The panel contains a

button, a slider and a panel with a text field inside. Finally the menu

bar contains 2 menues with a menu item each.

36

Figure 4.2.1: Example GUI.

The tree structure of such a GUI would be as follows:

Figure 4.2.2: Window’s hierarchy of the srceen before.

37

Apart from the fact that using this tree we have the hierarchy of

containers, each node contains information related to the widget

configuration that is represented by that node. This basic information

consists of: the position, size, color, type of widget, boolean

activation... To store all this information the GUIelement.java class

was created (in the next section we will see its content).

Thus, each time there is a QoE failure giving rise to a change in the

GUI, we will access to a particular node (i.e. the widget) and excute

some actions. Such actions include:

 Modify parameters (position, color, size, ..) .

 Move element to another area on the screen.

 Delete element.

A comment regarding the fact of using a tree to represent our GUI is

that every time we need to move a GUI element (e.g. a sub-menu

inside another menu) we simply have to cut a tree branch and paste

it into another, reducing considerably the complexity of such

operations.

4.3 Classes

In this section we show the schema classes represented by our

system and we explain briefly the contents of each of them.

38

Figure 4.3.1: Schema file.

 GUItree.java

This is the class that represents our GUI therefore the most used

type data in the main.java class. The data structure contained in this

class is basically a special node type created by us, which works as

a root node and 2 lists used to save information about data that have

to be shown in some widgets (these widgets will be explained on

next sub-sections). The node contained in this class is the parent of

the remaining nodes and the first to visit on almost all searchs.

39

The type data definition contained in it and most important functions

are:

public class AST implements Serializable {

 private Node rootElement;
 private DefaultListModel domains;
 private DefaultListModel dates;
 /* NOTE: dates and domain are params used with
 specific widgets. */

 /* Default constructor */
 public AST() {
 . . .
 }

 /* Return the root Node of the tree
 Ouput= rootElement */
 public Node getRootElement() {
 . . .
 }

 /* Return the domains attribute.
 Output=domains */
 public DefaultListModel getDomainList() {
 . . .
 }

 /* Return the dates attribute
 Output=dates*/
 public DefaultListModel getDateList() {
 . . .
 }

 /* Set the root Element for the tree */
 public void setRootElement(Node rootElement) {
 . . .
 }
 /* Set the domain list */
 public void setDomainList(DefaultListModel list) {
 . . .
 }

40

 /* Set the date list */
 public void setDateList(DefaultListModel list) {
 . . .
 }

/* Returns the Tree GUI as a List of Node objects.
 The elements of the List are generated from a pre-order
 traversal of the tree.
 Output = List<Node> element*/
 public List<Node> toList() {
 . . .
 }

/* Returns the Tree GUI only from the n param Node as a List of
Node objects. The elements of the List are generated from a pre-
order traversal of the tree.
Output = List<Node> element*/
 public List<Node> toListNoRoot(Node n) {
 . . .
 }

/* Returns a String representation of the Tree where appears each
widget name contained on the tree.The representation format is
“ [{ grandparent, [parentA,...,parentN] }, { parentA, [childA1,...] },
 { childA1, [...] }, { parentN, [childN1,...] }, { childN1, [...] }] “
The elements are generated from a pre-order traversal of the Tree.
Output = String of the widgets name contained in the tree */
 public String toString() {
 . . .
 }

/* Returns a String representation of the SubTree contained at
node n. It uses the same representation of the above function The
elements are generated from a pre-order traversal of the Tree.
Output = String of the widgets name contained in the Subtree */
 public String toStringNoRoot(Node n) {
 . . .
 }

41

/* Moves the node containing the widget name1 to the node
 containing the widget name2 */
 public void moveWidgetTo(String name1, String name2){
 . . .
 }

/* Deletes the node containing the widget name1 and links name1’s
parent with name1’s children */
 public void deleteWidget(String name1){
 . . .
 }

/* Search the widget with name name and returns his node.
 Output = Node element containing widget name passed
 as param */
 public Node searchWidget(String name){
 . . .
 }

/* Adds node n1 as a child to the node containing the widget
name. It starts searching from the node element and puts on b
a boolean “true” if the widget is found and “false” if it is not found.
 It is a recursive method */
 public void walkAdd(Node n1, Node element, String name,
 boolean b){
 . . .
 }

/* Deletes the node containing the widget name1. It starts
 searching from the node element and puts on b a boolean true

 if the widget is found and false if it is not found. It is a recursive
 method */
private void walkDelete(Node element, String name1, boolean b){

 . . .
 }

42

/* Walks the Tree in pre-order traversal. This is a recursive method,
and is called from other methods (e.g. from toList() method with the
root element as the first argument). It appends found nodes to the
second argument list, which is passed by reference as it recurses
down the SubTree contained in element param.
Output= List<Node> list created from Node passed as param */
 private void walk(Node element, List<Node> list)
 {
 . . .
 }
}

 Node.java

This class defines the node type we mentioned in the class before,

corresponding to the root of the tree and therefore is the class

directly related to GUITree.java. Also it is the class that defines how

the tree nodes are related to each other.

The data type contained in it is a GUIelement type which contains

parameters regarding each widget and a linked node list

correspondig to the children of the related node.

The definition of the class and its most relevant functions is:

public class Node implements Serializable {

 public GUIelement data;
 public List<Node> children;

 /* Default constructor. */
 public Node() {
 . . .
 }

43

 /* Convenience constructor to create a Node with an instance
 of GUIelement */
 public Node(GUIelement data) {
 . . .
 }

 /* Return the children of Node. The Tree is represented by
 a single root Node whose children are represented by a
 List<Node>. Each of these Node elements in the List
 can have children.
 Output= children attribute */
 public List<Node> getChildren() {
 . . .
 }

 /* Sets the children attribute of a Node object which executes
 this method with children param */
 public void setChildren(List<Node> children) {
 . . .
 }

 /* Returns the number of immediate children of the Node wich
 executes this method.
 Output= number of children of the node */
 public int getNumberOfChildren() {
 . . .
 }

 /* Adds a child to the list of children for the associated Node
element. If the Node which executes this method has not children, it
will create a new List<Node> in such Node */
 public void addChild(Node child) {
 . . .
 }
 /* Inserts the Node child at the specified position index in the
 children list attribute. Will throw an
 ArrayIndexOutOfBoundsException
 if the index does not exist */
 public void insertChildAt(int index, Node child)

 throws IndexOutOfBoundsException {
 . . .
 }

44

 /* Remove the Node element at index index of the
 List<Node> */
 public void removeChildAt(int index)

 throws IndexOutOfBoundsException {
 . . .
 }

 /* Return the GUIelement data attribute
 Output= data */
 public GUIelement getData() {
 . . .
 }

 /* Set the GUIelement data attribute with the data param */
 public void setData(GUIelement data) {
 . . .
 }

 /* Return a list String of the name widgets contained in the
 node and its children. It works like toString() method
 stated in the class before but applied to the Node wich
 executes this method, not applied to the whole tree
 Output= String of the widgets name contained in
 the Node tree */
 public String toString() {
 . . .
 }

 /* Return a List Node of the node ans its children
 wich executes this function.
 Output= List<Node> of the node and its children*/
 public List<Node> toListNode() {
 . . .
 }

 /* Walks the tree from the element node in order to put
 in the list param a List Node of the node children */
 private void walk(Node element, List<Node> list) {
 . . .
 }
}

45

 GUIelement.java

It is the last class directly related to the representation of our

graphical interface, besides being the minimum accessible unit within

the tree and as we have repeated several times it contains

information related to each widget. Exactly this information is: X and

Y positions of the widget, sizes, height and width, widget name, color

and functionality booleans.

The content is as follows:

public class GUIelement implements Serializable {

 public int posx;
 public int posy;
 public String WidgetName;
 public String color;
 public int SizeX;
 public int SizeY;
 public boolean enabled;

 /* Default constructor */
 public GUIelement() {
 . . .
 }

 /* Return enabled attribute */
 public boolean getEnabled(){
 . . .
 }

 /* Set enabled attribute */
 public void setEnabled(boolean b){
 . . .
 }

 /* Return posx attribute */
 public int getPosx(){
 . . .
 }

46

 /* Return posy attribute */
 public int getPosy(){
 . . .
 }

 /* Return WidgetName attribute */
 public String getWidgetName(){
 . . .
 }

 /* Return color attribute */
 public String getColor(){
 . . .
 }

 /* Return Sizex attribute */
 public int getSizeX(){
 . . .
 }

 /* Set SizeX attribute */
 public void setSizeX(int i){
 . . .
 }

 /* Return SizeY attribute */
 public int getSizeY(){
 . . .
 }

 /* Set SizeY attribute */
 public void setSizeY(int i){
 . . .
 }

 /* Set posx attribute */
 public void setPosx(int i){
 . . .
 }
 /* Set posy attribute */
 public void setPosY(int pos){
 . . .
 }

47

 /* Set WidgetName attribute */
 public void setWidgetName(String text){
 . . .
 }

 /* Set color attribute */
 public void setColor(String color){
 this.color=color;
 }

}

 Main.java

Such class is the main program. Within it all the graphic elements

that make up the main window are defined and it specifies how they

have to be drawn. It also controls all operations performed by the

user so that it responds to a change in the GUI if it detects a QoE

failure. Due to its large size and extension we are not going to show

its content here however, on the following subsections we will

discuss its most important features.

As an important comment, we want to highlight that this classes

together are a library from which represent and handle other GUIs

and not just our GUI. It is true that in some classes there are

attributes and functions whose purpose are only oriented to our GUI

but if we want to represent another GUI with these classes, these

functions and attributs could be simply ignored.

48

4.4 Drawing elements

Once explained the data structure where we store the GUI and the

related classes, we are going to discuss here about how we proceed

in order to paint the elements contained in the tree.

In brief the part of the code responsible for this task is based on two

nested loops. The first one walks all nodes in the tree, keeping the

reference of the father and the second one walks through all child

nodes of the node kept by the top loop. If a node has children each

child is checked for what type of widget it is, accessing to the

WidgetName field of each element. When there is a match and

depending on the type of widget found we will define specific

parameters of that widget and it will be added to the father that, as

we said before, will correspond to the node kept in the upper loop. In

most cases, we will restore parameters as X and Y position on the

screen, X and Y size and color. As one may clearly see, this is part of

the Executer module of the MAPE-K loop.

Let us review in pseudocode what was explained before in order to

make it a little clearer.

 . . .

Tree= read_tree

While exist_nodes(Tree) do

 Father=get_node(Tree)

 Childs=get_childs(Father)

 While exist_childs(Childs) do

 Child=get_node(Childs)

 If (widget_name(Child)=button) then

 Set_posX(button, get_posX(Child))

 Set_posY(button, get_posY(Child))

 Set_sizeX(button, get_sizeX(Child))

49

 Set_sizeY(button, get_sizeY(Child))

 . . .

 Add(button, widget(Father))

 Else If (widget_name(Child)=slider) then

 Set_posX(button, get_posX(Child))

 Set_posY(button, get_posY(Child))

 Set_sizeX(button, get_sizeX(Child))

 Set_sizeY(button, get_sizeY(Child))

 . . .

 Add(button, widget(Father))

 . . .

 Take_out (Child, Childs)

 End_while

 Take_out (Father, Tree)

End_while

 . . .

4.5 Saving/loading the GUI

As mentioned at the beginning of this section, to save and retrieve

the contents of our GUI we apply serialization particularly, we use the

package java.io.Serializable.

The mechanism used by this package is quite simple when

compared with others. Any object whose class implements the

java.io.Serializable interface can be made persistent with only a few

lines of code. No extra methods need to be added to implement the

interface. We only need to add the “implements” keyword to our class

declaration, to identify our classes as serializable [9]:

50

public class GUIelement implements Serializable

“Now, once a class is serializable, we can write the object to any

OutputStream, such as to disk or a socket connection. To achieve

this, we must first create an instance of java.io.ObjectOutputStream,

and pass the constructor an existing OutputStream instance “ [9].

// Write to disk with FileOutputStream

FileOutputStream f_out = new FileOutputStream("our_object.gui");

// Write object with ObjectOutputStream

ObjectOutputStream obj_out = new ObjectOutputStream (f_out);

// Write object out to disk

obj_out.writeObject (GUItree);

Note that any Java object that implements the serializable interface

can be written to an output stream this way (including those that are

part of the Java API). Furthermore, any objects that are referenced

by a serialized object will also be stored. This means that arrays,

vectors, lists, trees and collections of objects can be saved in the

same fashion (without the need to manually save each one). This

can lead to significant time and code savings.

“Reading objects back is almost as easy. The one catch is that at

runtime, you can never be completely sure what type of data to

expect. A data stream containing serialized objects may contain a

mixture of different object classes, so you need to explicitly cast an

object to a particular class” [9].

51

// Read from disk using FileInputStream

FileInputStream f_in = new FileInputStream("our_object.gui");

// Read object using ObjectInputStream

ObjectInputStream obj_in = new ObjectInputStream (f_in);

// Read and cast to a GUItree from our ObjectInputStream

GUItree gui = new GUItree ();

gui = (GUItree)obj_in.readObject();

// Do something with gui....

4.6 Modifying the GUI

Each time a modification of the GUI is required the general steps to

achieve it are the same. The process which follows determines the

whole functionality of E component (Executer).

First, we have to load the tree that contains our GUI in the manner

described in the previous subsection and store it in a copy. Then we

have to take the node content regarding the widget to change (we do

this using the searchWidget function). Once we have the node, either

we remove it, or we add it into another, or we modify any of its

parameters (color, size, position,...). When the desired changes have

been done, the next step consists of save the new content by

overwriting the previous one (by means of serialization). Finally, to

see the new changes in the interface, we have to create a new

instance of the main window passing as parameters those values

that represent the current state of the application (entered text,

selected values, values shown,....) to finally stop the execution of the

52

original instance of the window. Thus when we execute the new main

window, the tree will be loaded again painting all the elements that

form the interface but now with the new changes applied. As a

remark, when the old interface is being replaced with the new one, it

is disabled in order to avoid inconsistences if the user tries to interact

with it.

The following pseudocode represents what we have just explained:

Tree=load_gui

Node=searchWidget(name_widget, Tree)

Modify_param(Node, param)

Replace_node(Node, Tree)

Save_gui(Tree)

New_main_Window=new mainWindow(current_state)

Delete(old_main_window)

4.7 Quality of Experience Rules

This section details each and every one of the Quality of Experience

Rules currently programmed in our application. What follows

attempts to offer to the reader a better understanding about how we

measure certain user actions. Such actions are very important

because they give us significant information related to what we

suppose that would help to improve interaction with the application.

53

4.7.1 Recording background actions

All actions carried out by the user considered as relevant are

registered in our system. In particular, and given the way our QoE

failure detections are oriented, we record actions related to specific

widgets. Actions also detail information such as number of times we

change the direction of slider movement, number of times we click a

button, number of times we enter information incorrectly in a text

field, number of times we scroll to a certain direction... Such

information is collected by our sensors at M stage of the MAPE-K.

Then, these parameters are stored and used to measure the Quality

of Experience for each user. If at any time any of these values

exceeds a certain limit then it is triggered a QoE failure so that the

interface changes according to what that parameter value means.

Interpretation of the meaning of each parameter is carried out by the

semantic module whose functionality is directly associated with the A

step/component. Such module establishes rules which determine

system behaviour (i.e what changes apply). Furthermore, a relevant

fact is that with this module we have a useful tool to detect “QoE

failure”. If we would add a publish/subscribe mechanism, once

detected a QoE failure, this knowledge could be shared with third

parties. Therefore any external service subscribing to it could also be

informed of a QoE failure.

Since the interface changes are based on assumptions about what

we believe that could be improved or at least about what we think

could become more useful for the user and due to the wide range of

possibilities related to users and preferences, these changes do not

occur unconditionally. Each time one of these improvements are

applied, first of all they are shown to the user to give him or give her

the opportunity to check what produces these new changes. Due to

what we mention here, some user could dislike these changes,

therefore our system always offers the possibility to dismiss these

54

changes. Thus, immediately after applying those changes a dialog is

opened in which both options are offered: to keep the new interface

or return to the previous one.

Figure 4.7.1.1: Dialog where user can choose either keep the new interface or

reject it.

Let us look at the detection rules mentioned.

4.7.2 First QoE failure detection: Slider

The first QoE failure detection we are going to explain is related to

the Slider. The user has a slider with which he or she can select his

or her age simply by moving right or left and drop on the desired

point.

Figure 4.7.3.1: Slider before QoE failure detection.

55

Depending on the kind of user that uses this widget and the input

terminal used it is possible that he or she thinks that the distance

between the different values are too short and therefore difficult to

see. We have to think about those people who have vision problems

and try to offer an easier and enjoyable reading. Thus, when the

system detects that the slider is adjusted too many times, it increases

its size.

Figure 4.7.3.2: Slider after QoE failure detection-1.

If even so the system still detect that the user is adjusting the slider

value then the system offers an alternative even more clear to him or

her. We shall consider users that are able to see values arrangement
but they do not know exactly how to interact with slider. In that case

when it detects another QoE failure on the same widget the system

offers the possibility of using a counter. This counter has two buttons,

one to increase the value and another to decrease it. Each time user

presses one of these buttons the value resulting from increase or

decrease is shown on the counter.

In addition, to match the desired value with the initial value shown on

the counter, we take the last two values selected with the slider and

average them. That average will be the number that appears on the

counter.

e.g.: v1=30,

 v2=26,

 countervalue=(30+26)/2=28

56

Figure 4.7.3.3: Slider after QoE failure detection-2.

4.7.3 Second QoE failure detection: Menues

The second QoE failure detection which will be discussed is related

with the menues.

Using menues users can select the different drop-down menues

shown until they get to the desired option.

These drop-down menues sometimes tend to be a little unpleasant in

the sense that we often have to select too many submenues until can

be selected a particular menu.

Figure 4.7.6.1: Selection menues before QoE failure detection.

57

To avoid stress to the user and to be as effective as possible saving

time to the user, when the system detects there are frequently used

options from a particular menu, it creates a shortcut of that menu in

the menu bar.

Figure 4.7.6.2: Selection menues after QoE failure detection.

In the example in Figure 4.7.6.1 we can see how each time user

wants to select one option from the MenuC he or she has to across

other menues. If the menu options are used occasionaly then no

change will be produced but if these options are used frequently then

that fact will be detected and the system will create a shortcut to the

MenuC like in Figure 4.7.6.2. In order not to place too many menues

as a shortcut the system just will select the three last most frequently

used menues.

4.7.4 Third QoE failure detection: Email

The user has a text field where he or she shalls enter a email

address. Once the email has been entered it is checked for

correctness by pressing the check button.

58

Figure 4.7.7.1: Email widget before QoE failure detection.

When the check button is pressed the system checks the basic

structure of introduced mail reporting an error if it is not correct. This

error may be due to the lack of point, the lack of domain, lack of @

and so on.

Figure 4.7.7.2: Message error when mail is not valid.

Specifically, when the system detects that the user often forgets to

enter the @ then the QoE failure is triggered changing the

appearance of the GUI so that the @ will be implied. Therefore the

system will create two text fields separated by a label. In the text field

on the left the user shalls enter the username of the email, the label

corresponds to @ (do not write anything) and on the right text field he

or she shall enter the domain.

59

Figure 4.7.7.3: Email widget after QoE failure detection.

Also in order to facilitate user tasks, the system remembers the last

email adresses entered correctly.

Figure 4.7.7.4: Text field remembering the last correct emails introduced.

In addition, the system tries to be proactive so that when user writes

the first letters of the domain, all registered email addresses that start

with those letters are shown, so the user can select directly the right

one avoiding to type the whole domain. In this sense, this behaviour

has similarities with google interface (at different scales, of course).

When we type in a text on the text field of google main page,

google’s system tries to be anticipative offering the most commonly

used searches starting with the characters written. Obviously, our

domain is much more reduced because it is just focused on latest

mails entered.

60

Figure 4.7.7.5: The system tries to be anticipative when the user is typing

the domain.

4.7.5 Fourth QoE failure detection: Date format

This QoE rule is based on the type of values you enter in the date

fields.

The application has three text fields corresponding to the day, month

and year in which the user must enter the date. Although is more

common that the user enter values for day, month and year in

numeric format someone could enter them in alphabetical format.

Figure 4.7.8.1: Date widget after QoE failure detection.

If any user has the bad habit for instance to introduce characters on

the date text fields rather than numbers (e.g. August instead of 08)

and the system detects that the user produces the same mistake

repeatedly, then it trigger the QoE failure. Once the fault is triggered

a message appears above the date text fields remembering that in

these fields only can be entered numbers.

61

 Figure 4.7.8.2: Date widget after QoE failure detection.

4.7.6 Fifth QoE failure detection: Date order

The fifth QoE failure detection that we will discuss in this section is

also related to how we type in the date.

The user through the use of the application is entering dates.

He or she must first enter day, month and year and click the Add

button below in order to register that date (assuming correct entered

values). These dates are introduced on different days so that they

should appear in chronologically order (see figure below).

Figure 4.7.9.1: Date widgets before QoE failure detection.

62

However, not all users use the same order of date. Other countries

commonly use month/day/year. Thus if the system detects a QoE

failure because the last date entered is not consistent with the other,

it proposes an alternative. The QoE failure dectection can be due to

either because in the month field the user has entered a value

greater than 12 or because the new date is earlier than the last one.

In such cases, the system offers the possibility of exchanging the text

fields day and month and re-registers the previous dates but now

with the new order. Taking the example above if we try to enter the

value date 2/1/2011 the system will detect a value earlier than the

others thus it will trigger the QoE failure proposing the change

represented in the figure below (the same would happen if we tried to

add the date 1/13/2011 because we would give a value to the month

field greater than 12).

 Figure 4.7.9.2: Date widgets after QoE failure detection.

63

4.7.7 Sixth QoE failure detection: Text Area

Now we are going to explain the QoE failure detection related to the

text area that shows the validated values.

As mentioned above each time the user presess the validate button

and if information has been entered, the text area displays a text with

that information.

Figure 4.7.5.1: Text Area with a short name before QoE failure detection.

If the entered name is short we can safely view the full description of

the selected name and age. However, if the name entered is too long

the text area just let us see a part of the description forcing the user

to scroll to the right if he or she wants to read the whole description.

Figure 4.7.5.2: Text Area with a large name before QoE failure detection.

64

Thus, if the user user scrolls horizontally repeatedly, then QoE failure

will be detected and give rise to a reshape of the GUI by doing the

text area larger. This process will be applied each time the user

scrolls until the text area size were enough to get the whole

description. As an additional comment the text area increases its size

until a max value, from that point if the user still scroll, the size will

not be modified. This makes sense because if we allowed to increase

indefinitely the text area, it would exceed the limits of our main

window.

Figure 4.7.5.3: Text Area with a large name after QoE failure detection.

4.7.8 Seventh QoE failure detection: Clean button

This QoE failure detection we are going to explain is related to the

clean button. The functionality of this button is basically clear the

contents of text field. Thus if the user when typing his or her name

makes a mistake, by pressing this button will delete everything that

had been introduced.

65

Figure 4.7.2.1: Clean button before QoE failure detection.

However, if the system detects that throughout the execution and

repeatedly, the user presses the button to clean the text field when

the content of text field is empty, then it triggers the QoE failure.

Since the functionality of the button just like it is labeled and

positioned should not lead to confusion, we assume that the

explanation about why the user presses the button when the text field

is empty is because this button is too close to the text field so that the

user is really looking for selecting the text field to fill it. In response to

this what the system does is to slightly shift to the right the button,

giving to the user the opportunity to return it where it was if he or she

wishes.

Figure 4.7.2.2: Clean button after QoE failure detection.

66

4.7.9 Eighth QoE failure detection: Validate button

The last QoE failure detection is related to the validate button. Once

the user has selected his or her age and introduced his or her name,

he or she can select the validate button to validate that information.

When the user clicks this button, the selected name and age is

displayed on a text area.

Figure 4.7.4.1: Validate button before QoE failure detection.

However, if the user presses the validation button repeatedly when

has not been filled in all the information yet (e.g. text field is empty)

then the system in order to avoid wasting resources will disable the

button. Once disabled the button and as a preventive measure, it will

be re-enabled only when the user introduces the name in the text

field. By doing so we drive the user to understand that first he or she

has to fill in his/her name and then click on the validate button.

Figure 4.7.4.2: Validate button after QoE failure detection.

67

5 Evaluation

5.1 The system

Once finished the system we can evaluate its properties, quality and

effectiveness.

Regarding the characteristics commented on subsection 2.1.3 we are

going to see which of them have been reached.

1. An autonomic computing system needs to "know itself": Our

system has a detailed knowledge of its components. All

widgets are identified properly so that at all times we can

check their current status, know their limits, when they are not

used correctly...

2. An autonomic computing system must configure and

reconfigure itself under varying conditions: Depending on what

kind of user are using our application, the system will react in

one way or other, reconfiguring its elements according to the

actions carried out by the user.

3. An autonomic computing system always looks for ways to

optimize its workings: If a determined user causes a QoE

failure and the system changes accordingly but even so, the

user still making the same error then the system will change in

a different way in order to optimize communication user-

interface.

4. An autonomic computing must be able to adapt routine and

extraordinary events that might cause some of its parts to

function in a different way than desired: For instance, when

68

the system detects a routine event like the user always

clicking on the same submenu, then a shortcut of that

submenu will be created on the main window.

5. An autonomic computing system must detect, identify and

protect itself against various types of attacks: Due to oriented

purpose of our application, this characteristic is not supported

by our prototypic system.

6. An autonomic computing system must know its environment

and the context surrounding its activity, and act accordingly: It

is well known in our system the context and environment

related to it. We are within a context that expects user actions,

interactions with the interface and the system reacts

depending on the value of these actions/interactions.

7. An autonomic computing system will anticipate the optimized

resources needed while keeping its complexity hidden:

Implementation related to changes produced are performed

without involving users in that implementation.

Although our autonomic system achieves most of the typical

properties an autonomic system has to reach, sometimes the

usefulness of some solutions adopted are not as good as we would

like. What we mean is that despite the tests carried out by ourselves

were quite satisfactory in some cases the system acts in a different

way than expected/disered.

That is due to the limitations to the system. We have to consider

limitations due to time constrain (this thesis began later than usual),

limitations of our approach (it is just a proof of concepts not a final

product), the lack of infrastructures…

69

5.2 Experiments and their statistics

As an important issue for the reader, the experiments/tests detailed

here are not a full-fledged experimentation due to above mentioned

infrastructure limitations (as a MSc thesis, this can’t be much more

than a proof of concepts).

Despite this, we carried out a limited analysis. To be precise, we

considered two different subjects: an experienced user and a not

experienced user. We detail their relevant characteristics and then

we comment what they did, what they were expecting and what

actually happened. Finally, we evaluate if the alternatives offered by

the system are adjusted to the needs of each kind of user.

At the end of this section, we will compare both results and discuss

them and we will continue providing indications about what is

acceptable, what needs to be changed and what could be changed in

order to make it better.

5.2.1 First subject: Experienced user

Age: 29.

Gender: Male.

Technology experience: Total experience (Computer Sciences

student).

Important considerations: He does not mentioned physical defects

such as vision problems or similar.

Since the subject was an experienced user accustomed to using

buttons, text fields, e-mails and so on he did not prompt many QoE

failures.

70

Nevertheless, we are going to explain which were his actions and

opinions regarding each widget and each change applied to the GUI.

Entering name: The subject entered his full name without making

errors on the text field enabled for this purpose.

Selecting age: He readjusted repeatedly the slider because he was

not able to read correctly the values arranged on the widget therefore

the first QoE failure was triggered making the widget bigger. With the

new slider size, he selected his exact age perfectly. He believed that

the change was quite useful.

Cleanning information: He pushed the clean button repeatedly to

check its work. When he saw the button move to the right he thought

it could be a good change for people who always clicks on incorrect

parts of the screen.

Validating name and age: He used the validate button correctly in

order to validate name and age selected.

Showing values selected: Once introduced his name and age and

pushed validate button he could not read the whole description in the

text area enabled for this purpose, in consequence he scrolled to the

right in order to read the whole description. When the scroll

movement was repeated the text area changed turning into a larger

widget, even so he could not read the whole description scrolling to

the right again. When the same QoE failure was triggered making the

text area even larger, the subject could read the entire description.

The user thought that this change was very useful and comfortable.

Entering mail: He introduced different mails correctly and without

triggering any QoE failure but he thought it was very comfortable and

useful that the system remembered the last mails entered.

71

Selecting menues: The subject clicked many times on different

options of the same submenu. When he saw a shortcut of that

submenu was created on the menu bar of the main window his

feelings were quite good. He believed that was an efficient change

avoiding to waste time.

Entering date: No errors were generated filling in the date fields.

5.2.2 Second subject: Not experienced user

Age: 53.

Gender: Female.

Technology experience: Subject not used to using computers (just to

check email once a month).

Important considerations: She has vision problems (she has to wear

glasses).

Selecting age: First of all the subject tried to select her age but due to

her vision problems he had to readjust many times slider value giving

rise to a resize of the slider. Althought once the QoE failure was

triggered the slider turned into a big enough size, the subject still had

problems selecting her age. When the second QoE failure was

triggered and the widget changed to a new widget using a counter

instead of a slider then she was able to select her age properly. The

subject believed that this change was very useful. If the widget had

not changed, she had never been able to select a proper value.

Validating name and age: Before enter her name, she tried to

validate information pushing validate button many times, for which

reason the QoE was triggered disabling the validate button. The

subject needed a few minuts to understand what was happening.

72

Once she checked that if she entered information on the text field the

validate button was enabled then she understood that first it was

necessary to enter her name. In a sense, this gave rise to a loss of

QoE.

Entering name: After problems mentioned above, the subject

introduced her name on the right widget.

Cleaning information: This subject did not push clean button.

Showing values selected: When she pushed on the validate button

(with all necessary information entered) the whole description

displayed on the text area could be read (her name was short).

Entering mail: She tried to enter her mail several times making

different errors (forgetting ‘.’, forgetting ‘@’,...) when the system

detected she checked the email too many times without ‘@’ then he

mail widget changed with an ‘@’ in the middle of the username and

domain. Once the change was applied she entered her mail address

correctly. Furthermore the system had remembered the last domains

entered and she could select one of them avoiding errors.

Selecting menues: No menues were selected.

Entering date: The subject tried to ener the month in alphabetical

way giving rise to QoE failure. Once the failure was detected, the

system created a label. Such label clarified that date fields only could

be filled in with numbers. That helped the subject because afterwards

she only entered numbers. She was used to use format mm/dd/yyyy

and although date fields are labeled with their appropriate type, she

caused a QoE failure giving rise to an exchange between fields day

and month. That was very useful to her because she could enter date

as preferred.

73

5.2.3 About the results

Comparing both results – though obtained with a sample population

of just 2 because of time restrictions – it is shown how for a not

experienced user the QoE rules have been very useful. The

experienced user has not experienced too many QoE failures but

even so he has evaluated most of the changes applied by the system

as useful, comfortable and efficient.

When the system applied changes reshaping some part of the GUI

the experienced user understood very quickly how he had to interact

with the interface. On the other hand, when the same changes were

applied with a not experienced user, she needed a few minutes to

understand what was happening and how she had to interact with the

system.

We also have detetected that some aspects of the system could be

improved. Specifically, some QoE failure detections are triggered too

late. For instance, when the user is scrolling to the right because it is

impossible to read the whole text displayed, the text area is not

resized until several scrollings. Other aspect to change could be for

example when the system detects that a set of actions carried out by

the user are contradictory or unusual then the system should react

indicating what the user has to do with the widgets related to those

actions.

All things considered including the above imperfections, calling for

specific improvements. Nevertheless, we can conclude that the tests

performed were quite satisfactory and positive.

74

6 Related work

Before detailing any conclusion reached with this thesis, we should

examine some other interesting works on adaptive GUIs.

Most of the work related to adaptive user interfaces found out on

internet is focused on the task of “information filtering”, in which the

aims is to provide the user with material that she/he will find

informative or useful.

“One example is Pazzani, Muramatsu, and Billsus (1996)

SYSKILL&WEBERT, which recommends web pages on a given topic

that the user is likely to find interesting. The user marks suggested

pages as desirable or undesirable and the system uses these as

training data to develop a model of his preferences. They incorporate

a common scheme known as content-based filtering, as the basis

for selection and learning.

Another example of an adaptive user interface was developed by

Hermens and Schlimmer (1995), who developed an adaptive system

for filling out repetitive forms. Their interface suggests values for

various fields in the form, but these are defaults that the user can

always override. Once the user completes the form, the system

interprets the entries as opportunities for learning and uses them to

revise its existing predictive rules. These rules predict a default value

for a concrete field based on fields entered earlier in the form and in

previous forms. Experiments carried out by them showed that the

system reduced keystrokes by 87 percent in eight months. In short,

this adaptive system learns a grammar that predicts the order and

content of the notes of the users focusing on reducing keystrokes

and helping users organize their thoughts” [12].

75

Cypher (1991) describes EAGER, a system that learns iterative

procedures from observation in a HyperCard setting, then highlights

the actions and it anticipates for the approval of the user. This kind of

work are called “programming by demonstration” and briefly, it is

based on constructing personalized user interfaces by observing the

behavior of the user [13].

The last example we will comment here is the work developed by

Leung, Morisson, Wringe and Zou (2006), who developed an

adaptive system to adapt Eclipse menu elements to each user. They

proposed an architecture that modifies the Eclipse menu system,

hiding infrequently used menu elements, and predicting the next

menu elements that a user is likely to click. Moreover, they

developed adaptive algorithms that perform a cost-benefit analysis

for making modifications to the menues system, and determine the

optimal changes to make [14].

As an important remark, the reader has to know that this list does not

exhaust the work on adaptive user interfaces, which is an active area

with many ongoing research efforts and therefore, other works

focused on adaptive user interfaces can be found.

76

7 Future work and Conclusion

7.1 Future work

Since this work is not a finished product, it remains open to possible

extensions and improvements. Some of them could be:

 As we have mentioned several times throughout this text, the

work developed here is just a proof of concepts. The main

extension/improvement that could be applied to our work

would be turn it into a final product, applying the basis of our

system and all concepts learned. They could be implemented

in a real environment like on an internet web page. A special

kind of web page where it would be useful could be on an

online travel agency. The web page system would register

user’s actions, storaging his or her likes and dislikes. The web

page would be a reliable application that would adapt

preferences, needs and improvements to each user.

Throughout user’s interaction with the system, the Graphical

User Interface of the web page would be more suitable, all

widgets and their features (buttons, selectors, text fields,

colors, shapes, positions...) would be created from what the

user are expecting and from errors learned, avoiding that the

user could repeat again the same errors. Furthermore the

system would be anticipative to users, filling out all information

on the forms. The system would suggest values from previous

values selected by the user but these values always could be

rejected by the user.

77

 Another interesting improvement to apply would be

implementing advanced concepts from Artificial Intelligence. It

could be developed an expert system with a very big

knowledge database. Inside this system, knowledge would be

introduced as rules. These predefined rules would be based

on other user’s experience. Every time the user would use our

system, the knowledge base would grow learning more with

every interaction user-system. From that knowledge base the

system could predict future user actions, possible user

preferences, needed changes to apply to the system...

 A very ambitious extension would be to extrapolate the system

to a large-scale. We would register all interactions with GUIs

carried out by the user, not only with our system but also with

all kind of user interfaces which the user interacts with,

including interfaces over internet like web pages. Every time

the user uses any GUI it would storage what they do and the

database about user behaviour would grow. The total

knowledge acquired about that user would accrue on a way to

determine exactly what would be better to that user so that

any application were able to apply changes on its user

interface in order to make easier user life.

7.2 Conclusion

In this thesis we considered the typical functionality of current

systems. Most of them by nature are based on predefined

assumptions about their defined states and their intended platforms.

They are just focused on the functionality of the underlying system,

thus they do not take into account many actions that could be

reasoned upon in order to learn about the current user’s QoE and

improve one or more services offered by the system. Systems

actually should not be ”blind” machines with little or no knowledge

78

about their environments. We proposed a different way to address

these problems in the specific context of Graphical User Interfaces.

We have decomposed the problem in the well-known autonomic

components with the aim of solve some problems related to the user-

to-GUI interaction. We have developed such a GUI with several

widgets, where each widget was associated with one or more QoE

failure detection rules. Furthermore such rules aimed to prove that in

fact it is possible to reshape a GUI or modify some functionality

system aspects, enhancing the total user experience as a main goal.

Under the limited experiments carried out here, we have

demonstrated that in practice the total experience of both subjects

was improved. In other words, we have proved that registering a

portion of the domain user actions and applying rules then, it is

feasible to increase user’s benefits, what it means that our work is

useful and also that all goals fixed at the beginning of this thesis have

been achieved.

As final comment I would like to conclude highlighting that this work

has been an educational, constructive, innovative and above all

rewarding experience.

79

8 Bibliography

[1] http://en.wikipedia.org/wiki/Autonomic_Computing.

[2] http://www.research.ibm.com/autonomic.

[3] http://www-03.ibm.com/press/us/en/pressrelease/464.wss.

[4] http://en.wikipedia.org/wiki/Dependability.

[5] http://en.wikipedia.org/wiki/Quality_of_experience.

[6] “An adaptive OSGi robotic application”, Pintens Pieter-Jan.

[7] Libc11n manual.

[8] “The L Programming Language or Tcl for C Programmers”, Oscar
Bonilla, Tim Daly, Jr., Larry McVoy.

[9] http://www.javacoffeebreak.com/articles/serialization/index.html.

[10] http://edn.embarcadero.com/article/26970.

[11] http://discuss.itacumens.com/index.php?topic=38945.0

[12] “Experimental study of adaptive user interfaces”, Pat Langley

[13] “Machine learning for adaptive user interfaces”, Pat Langley

[14] “Developing an adaptive user interface in Eclipse”, Alex Leung,
Scott Morisson, Matt Wringe and Ying Zou

80

