
Modelling of realistic Blood Vessel Geometry

Gottfried Wilhelm Leibniz Universität Hannover

Fakultät für Elektrotechnik und Informatik

Institut für Mensch-Maschine-Kommunikation

Fachgebiet Graphische Datenverarbeitung

Bachelor Thesis of

Sergi Lázaro

Erstprüfer: Prof. Franz-Erich Wolter

Betreuer: Dr. Karl-Ingo Friese

Hannover, September 28, 2011

Contents

Contents

1 Introduction 4

1.1 Motivation . 4

1.2 Previous work . 4

1.3 Objectives and Scope of Work . 5

1.4 Overview of the process . 6

2 Basic concepts 7

2.1 Blood Vessels . 7

2.2 Lindenmayer systems . 7

2.3 Turtle Graphics . 10

2.4 Medial Axis . 11

3 Literature 14

3.1 Similar work . 14

3.2 Lindenmayer Systems . 14

3.3 Medial Axis . 14

4 Tree structure 15

4.1 Building the tree structure . 15

4.1.1 Our L-system to generate the “middle” tree 15

4.1.2 3D Turtle graphics . 16

4.2 Calculating L-system parameters given higher-level parameters . . . 17

4.2.1 Input parameters for the program 17

4.2.2 Solving for 2D trees . 18

4.2.3 Using the parameters for the 3D tree 22

4.3 Summary . 22

5 Mesh Generation 24

5.1 The back-transformation of the Medial Axis 24

5.2 Constructive Solid Geometry . 26

5.2.1 Splitting into nodes . 28

5.2.2 Scaling and stitching together 29

5.2.3 Finding the proper scale factor for each joint 31

5.3 Summary . 32

6 Results 33

2

Contents

7 Future Work 37

8 Statement 38

List of Figures 39

List of Algorithms 39

References 40

3

1 Introduction

1 Introduction

1.1 Motivation

Figure 1: Overview of the 3D printing process for living tissue.

In the field of biological engineering, recent advances have made possible the print-

ing of 3D living human tissue, with the help of laser technology (see figure 1). It

consists of sticking cells together layer by layer, so as to build a general structure

in the end. They voxelize a triangle mesh with their own software, and print the

3D matrix of cells in a similar way to current 3D printing. This is currently in

development in the Laser Zentrum Hannover e.V., which this thesis is made in

collaboration with. In their current setting, they can print the 3D living structure

of human cells; however, it quickly dies given the lack of proper sustenance (i.e.

blood).

Their objective now is to add the vascular system to the current structure, in order

to be able to feed the cells and keep them alive, both during and after the creation

process. For that purpose, they need a tridimensional model of the blood vessels,

that must follow certain parameters in order to be useful.

1.2 Previous work

There are not many papers or projects on a similar topic to what we need to do.

The closest existing work to what we need is by Xuemei and Huan in [7]. In this

paper, they propose an algorithm to create visually convincing 2D blood vessels,

using Lindenmayer Systems (see section 2.2 on page 7). While the basic concept

is similar (using L-systems to mimic the branching patterns, see figure 2), the

objective is totally different. We want useful and working blood vessels, obviously

in three dimensions, with real-life sizes and proportions, et cetera.

In addition, we only need the low-level sections of the veins and arteries, not the

high-level structure of the vascular system. Therefore, we need less human input

4

1 Introduction

Figure 2: Results by the paper in [7]. On the left, real-life pictures of human blood vessels. On

the right, their 2D results using their L-System.

for visually convincing structures, since it will be more uniform regardless of the

organ it will be used for (see section 2.1 on page 7).

1.3 Objectives and Scope of Work

The objective of this thesis is to develop the program that will be used to create the

tridimensional models for use with the laser 3D printing system. Only a 3D mesh

is required so far, since there are existing tools to convert the mesh to volumetric

model.

The requirements for the final blood vessel model are strong: as opposed to just a

visually convincing model, where iterative improvements on the visual quality can

be made until satisfactory, and intermediate stages may be good enough, in this

project the resulting model has to satisfy some hard requirements:

• The vessels must be connectable at both ends to input and output valves.

• The walls must be thick enough to withstand the blood pressure.

• The bifurcations must have angles that are not too sharp to prevent the proper

flow of blood.

5

1 Introduction

• The proportions for input diameter and output diameters in each bifurcation

must be such that the blood that goes in has enough room to come out.

• The maximum distance from any given cell to a blood vessel cannot exceed a

certain threshold, so that all cells can get their sustenance.

Any of these requirements not being met would cause the model to be unusable.

All these requirements are too many to be properly addressed in a Bachelor Thesis.

Therefore, the goal of this thesis will be to develop the system that can create a

resulting 3D model, with the maximum amount of simplifications applied, and then

iteratively improve the process in order to get as close as possible to the desired

usable model. This way, a basic pipeline for the process will be created, and future

work can improve and expand its capabilities in an iterative fashion until the result

is the one needed.

1.4 Overview of the process

The process of creating the blood vessel geometry will start with the creation of

the Medial Axis (section 2.4 on page 11) of the blood vessel geometry, being able to

visualize it, with the possibility of tweaking the parameters in order to improve the

structure. Then, the generation of the final mesh can be started, given the Medial

Axis and the radius function, also defined during the previous tweaking.

6

2 Basic concepts

2 Basic concepts

2.1 Blood Vessels

Figure 3: A section of a blood vessel. The inner space and the thickness of the wall are visible.

Human vascular systems have known properties both on the high level and on the

low level. They differ greatly in size across the whole body: their diameter ranges

from 25mm to 8µm [4].

On the high level, the arteries and veins are big enough to be visible to the naked

eye, and display some structures that are specific to the part of the body they supply

blood to. This structures are well known, and are followed with little variation in

all healthy human beings.

On the lower levels, the shapes are not dictated as much by the zone they are in,

but display instead some uniformity in the subdivisions, with also some amount of

randomness. The patterns of subdivision are defined by local flow requirements,

determined at the time the vessels are developed.

2.2 Lindenmayer systems

Lindenmayer systems, or L-systems, were introduced in 1968 by Lindenmayer [6].

They consist of rewriting rules that, when applied recursively, permit the creation

of fractal-like or tree-like structures. Formally, they consist of a grammar

G = (Σ, ω, P)

7

2 Basic concepts

where

• Σ is the alphabet of symbols,

• ω is the initial symbol, and

• P is the set of substitution rules that determine the patterns.

There are several variations on this idea; one that proves useful for the later usage

of an L-system as a geometrical representation, is the parametrical L-systems. This

variation introduces numerical parameters to be added to each symbol, which can

be, as in the next example, the length of a segment or the angle of bifurcation of a

branch.

Figure 4: A tree generated by an L-system.

As an example, the parametrical L-system

G = (Σ, ω, P)

with

• Σ = {a(θ), s(l), t(l), [,]},

• ω = t(1), and

• P = t(l)→ s(.6l)[a(−45)t(.4l)][a(45)t(.4l)]

would create, after four steps, a tree-like structure like Figure 4. In this system,

the alphabet consists of three parametrical symbols and two simple symbols:

8

2 Basic concepts

• a(θ): make a turn of θ degrees clockwise,

• s(l): create a middle segment of length l (these segments will not be modified

further),

• t(l): create a leaf (terminal) segment of length l (these segments will be

subdivided in further steps),

• [: start a new branch from the end of the previous middle segment,

•]: end of the branch that was started most recently;

Figure 5: Graphical representation of the subdivision rule.

and the production rule shortens each leaf branch, and adds two smaller leaf

branches to its end, separated 45 degrees from the original one, one at each side.

The subsitution rule could be graphically represented as in Figure 5. These are the

first four steps of the Lindenmayer System.

At the first step, we would have

t(1)

which corresponds to just one straight line of length 1. At the second step, we

apply the substitution rule to the only segment that we have, yielding

s(.6)[a(−45)t(.4)][a(45)t(.4)]

which graphically would match the second image in Figure 5. First we have a

segment of length .6, with two branches of length .4, separated at 45o from the

main branch. The main branch is represented with the parametrical symbol s(),

while the other two branches are t(). That means that the main branch will not be

replaced with other branches in further steps, and the other two will.

9

2 Basic concepts

The third step starts to be quite difficult to understand in text form; as we can see,

the exponential growth that comes with L-Systems is apparent not only with the

graphical trees that can be created with it, but also with the length of the words:

s(.6)[a(−45)s(.24)[a(−45)t(.16)][a(45)t(.16)]][a(45)s(.24)[a(−45)t(.16)][a(45)t(.16)]]

Other parameters that could be included in the substitution rule could be the

diameter of each segment (either constant or varying within the segment), a second

angle (torsion) in order to have the final model be truly tridimensional and not

only lie in a plane, etc.

In order to transform the long strings of words to their graphical form, the well

known method of Turtle Graphics is used.

2.3 Turtle Graphics

Turtle Graphics is a method for drawing vector graphics by controlling a cursor in

a 2D plane. The most primitive turtle could be T = (p, ~d), where

• p is the current position

• ~d is the direction vector

A basic set of the commands to operate it could be:

• line distance: draw a line of length distance, from p in the direction ~d.

• turn angle: rotate ~d for angle degrees.

• save turtle: save the current position and direction to the turtle named

turtle.

• load turtle: set the current position and direction to the previously saved

turtle named turtle.

In the previous example of L-system, these commands map exactly to the terminal

symbols in the system: a(θ) is turn angle, s(l) is line distance, and [,] would

be save turtle and load turtle, respectively.

As an example, the sequence of Turtle actions that would generate the tree corre-

sponding to the second step of the L-system example in page 9 would be:

10

2 Basic concepts

line 0.6

save turtle

turn -45

line 0.4

load turtle

turn 45

line 0.4

For other, more complex L-systems, with different parameters, in 3D, etc., varia-

tions on the Turtle Graphics will have to be made, as will be seen in section 4.1.2

in page 16.

2.4 Medial Axis

The concept of Medial Axis (MA) was introduced in 1967 by Blum [2]. The MA of

an object (a closed set in 2D or 3D) is the set of all points inside the object that

have two or more closest ponts to the boundary. Explained in a different way, it is

the set of all centers of maximal spheres (in 3D, or circles in 2D) contained in the

object. A sphere in the object is maximal if there’s no other sphere (also contained

in the object) that contains it.

Figure 6: A simple polygon (green), its Medial Axis (red), and nodes of the tree (blue).

Informally, the Medial Axis of an object can be thought of as its skeleton: it will

consist (mainly) of a tree-like structure of lines that go through the “middle” of its

“limbs”. An example can be seen in Figure 6.

11

2 Basic concepts

Figure 7: Different shapes (black), their Medial Axes (red), their nodes (green), and some of

the maximal circumferences (blue)

Figure 7 shows two examples on top, plus three variations of the first example on

the bottom row. With these three variations it can be seen that the topology of

the Medial Axis as a graph changes when two nodes join. Two nodes joining means

that the maximal circumference centered there shares their tangential points to the

shape.

(a) 2D example. (b) 3D example.

Figure 8: Black curve (a) and gray surface (b), created by applying the radius function to the

red axes, and some example circumferences in blue.

Additionally, the Medial Axis can have a radius function associated with it: for

each point in the axis, it defines the diameter of the “limb” of the object at that

point. This function together with the MA is called the Medial Axis Transform,

12

2 Basic concepts

since by applying the radius function to the Medial Axis the original object can be

reconstructed, in a process called the back-transformation of the Medial Axis. An

example can be seen in Figure 8.

In our project, we will interpret the output of our L-System as the Medial Axis of

the blood vessel and then we apply the back-transformation to it in order to get

the blood vessel shape itself.

13

3 Literature

3 Literature

3.1 Similar work

As seen in section 1.2, the other existing previous work by Xuemei and Huan

in [7] shares some similarities with the objective of this thesis, but also has some

important differences. Expanding on previous work in the same subject by Zamir in

[11], it focuses mainly on visually appealing 2D images of blood vessels. Obviously

we want 3D models, with wall thickness, and we don’t focus on visual similarity:

we want something usable; whether it looks regular or not is irrelevant.

3.2 Lindenmayer Systems

The first definition of Lindenmayer Systems was introduced by the own Linden-

mayer in 1968 [6], it has been used in numerous publications since then.

In 1991, Lindenmayer himself and Prusinkiewicz explain in depth the usage of L-

systems and Turtle Graphics for generation of plants [8], which is applicable to our

blood vessel structure.

A very detailed look on Turtle Graphics alone is available in the book Turtle ge-

ometry [1].

3.3 Medial Axis

Blum introduced the mathematical concept in a paper in 1967 [2]. Its implementa-

tion, and applications, both for the 2D and the 3D case, has been worked on since

then.

Wolter in [9] and with Friese in [10] give overviews of the modelling of solids using

the Medial Axis Transform, computation of the MA given the solid, and recon-

struction of the solid given the MA and the radius function.

In the Diploma Thesis of Böttcher [3], improvements of the modelling using Medial

Axis Transform are introduced, as well as the construction of shapes given the input

data for the program. The computation of the surface given the MA is key to our

thesis, and is covered in depth in this work.

14

4 Tree structure

4 Tree structure

There are two main steps for creating the 3D mesh.

In the first step for creating the mesh, the general structure of the tree needs to

be created (section 4.1). That is, to know where in space each node of the tree is

located, which diameter and wall thickness it has, and its connectivity. In order to

do this, the parameters for the generation of the tree have to be calculated given

the user input data (section 4.2).

After that, given the information of the structure (Medial Axis) and thickness at

each point (radius function), the 3D mesh has to be generated (section 5).

4.1 Building the tree structure

In order to create the structure of the tree, an L-system (section 4.1.1) is used

with a simple set of parameters, and the actual position of each node is found by

“drawing” with a 3D version of Turtle Graphics (section 4.1.2).

The L-system just produces one part of the whole vessel structure, since the end

result is not exactly a tree (it has cycles). As it can be seen in Figure 10 on page

18, the tree consists of start and end vertical segments, middle capillaries, and two

symmetrical (actual) “middle” trees (in the figure, marked with hm). Therefore,

only one of those trees is generated, and the other one is created by reflecting

the original one through the XY-plane that would cut the whole structure in two

halves.

4.1.1 Our L-system to generate the “middle” tree

The L-system that we will use for the generation of the tree will be

G = (Σ, ω, P)

with

• Σ = {d(n), b(n, θ), s(L), r(φ), y(θ), [,]}

• ω = d(0)

15

4 Tree structure

• P = {d(n), b(n, θ)}

• d(n)→ [b(n, θn)][b(n,−θn)]

• b(n, θ)→ y(θ)s(Ln)y(−θ)r(φn)d(n+ 1)

where the parameters mean:

• d(n): “dummy” symbol to create the recursion, it will just be substituted for

level n in the tree.

• b(n, θ): branch in level n, with bifurcation angle θ.

• s(L): create a segment of length L.

• r(φ): do a roll-turn of angle φ, for torsion.

• y(θ): do a yaw-turn of angle θ, for bifurcations.

• [,]: push-pop symbols to save-restore the position, in order to define both

branches at the same level.

With this L-system definition, there is only one bifurcation angle and torsion per

level (θn and φn, respectively). This can be changed for variations on the tree

generation, like randomizing the torsion angle to add a more organic feel, but for

our application it’s sufficient.

4.1.2 3D Turtle graphics

The actions of the helper 3D Turtle graphics that we need are defined by the L-

system that it will be used with. That is, for each terminal symbol in the system,

we will need an action for the Turtle. Therefore, we will need the standard line

distance, save turtle and load turtle, as seen in Section 2.3.

For the angles, we need something more than the 2D turn angle. In addition,

since we need 3D movement and orientation, a single position point p and direction

vector ~d will not be enough. Our 3D Turtle T will be (see figure 9):

T = (p, ~d, ~u)

where

• p is the current position

16

4 Tree structure

• ~d is the direction vector

• ~u is the up-vector, perpendicular to ~d

p

~d

~u

yaw(θ)

roll(φ)

Figure 9: The 3D Turtle vectors and their rotations.

With this, ~d is still used for drawing straight lines, and the new ~u is used only for

the rotations. We have two new rotate actions: rotate yaw angle rotates around

~u, and rotate roll angle rotates around ~d, by modifying these two vectors.

4.2 Calculating L-system parameters given higher-level parameters

The input parameters for creating the vessel structure are not the ones that the

Lindenmayer System uses to create the tree. As seen in section 4.1.1, our L-system

requires a length Ln for each level, plus a bifurcation angle θn and a torsion angle φn.

But giving all of these parameters would be tedious, and we need some control on the

total width and height of the tree, as well as some other higher-level requirements.

Therefore, some calculations have to be made in order to derive the parameters

needed for the L-system.

4.2.1 Input parameters for the program

The parameters (see Figure 10) are:

• bounding box dimensions: wb, h

• for start vessel s and capillaries c,

– length of the segment: Ls, Lc

17

4 Tree structure

tws

ds

twc

dc

d

Ls

hm

Lc

hm

Ls

wb

wb

h

Figure 10: The parameters for the generation of the tree.

– diameter: ds, dc

– wall thickness: tws, twc

• capillary spacing d

One of the requirements for the laser-printed structure is that the distribution of

the capillaries at the end has to be uniform, and cover a given area. This requires

some mathematics, that are easier solved when considering 2D trees.

4.2.2 Solving for 2D trees

A binary tree divides the space in halves, recursively (see Figure 11), when the

lengths of the segments Ln and the bifurcation angles θn follow some properties:

θn = θn+1 = θ ∀n

Ln = 2Ln+1 ∀n

Therefore, to calculate the angle θ, we need the height of the “middle tree” hm
and the covered width c (see Figure 12), which are calculated from some of the

parameters:

hm :=
h− 2Ls − Lc

2

c := wb − 2m, where

18

4 Tree structure

θ

θ

L0

L1

L2

d d d

w0w1w2

h0

h1

h2

hm

Figure 11: The trigonometrical properties of the branches of the tree at various levels.

m :=
d

2

Given the capillary spacing d and the covered width c, we can calculate the number

of levels of the tree N . Since N ∈ N, we have to use the minimum number of levels

so that the distance between end points is less than c:

N := dlog2(
c

d
)e

In order to calculate the lengths Ln, we need the widths wn, which can be calculated

by dividing the width by two, recursively. But since this would be a geometric series,

it would never reach the covered width c. Therefore, we need to calculate a new

width w, slightly larger than c, so that c is reached after N levels of subdivision.

As it can be seen in Figure 13, w0 = 1
4w. Going forward, we can see that the

general formula is

wn =
1

2n+2
w, ∀n < N

and also

c = 2
N−1∑
n=0

wn

but we can also see that

c = w − 2wN−1 = w − 1

2N
w = w(1− 1

2N
) = w

2N − 1

2N

19

4 Tree structure

m

d

c

wb

m

Figure 12: The sizes and distances at the capillary level.

therefore, we can calculate w now:

w := c
2N

2N − 1

With all this information, now we have to calculate the angle θ and the lengths Ln,

which are the only parameters needed for the L-system.

θ = |arctan(
c

2hm
)|

Ln =
wn

sin(θ)

The number of segments in the tree and the number of nodes can be calculated like

so (see Figure 14):

Nsegments = 3 + 2N

Nnodes = Nsegments + 1

Additionally, we will have a diameter and wall thickness for each node of the tree

(dn and tn, respectively). Since we only have the values at the start and capillaries

(tws, ds, twc, dc), the rest of the values for the “middle tree” will have to be inter-

polated. The values can be created just for the first half of the tree, since the tree

is symmetrical:

∀n ∈ [
Nnodes

2
, N − 1] :

20

4 Tree structure

w0 w0w1 w1w2 w2

c

w

? ?

Figure 13: The recursive subdivision of the tree, by halving widths, when N = 3.

0

1

2
3

4
5

6

7

0

1

2

3

4

5

6

Figure 14: The numbering of segments (left of tree) and nodes (right of tree), when N = 2.

tn := tNnodes−n−1

wn := wNnodes−n−1

In order to make it with a constant rate along the way, it has to be interpolated in

relation to the accumulated length from the beginning of the tree (al(n)):

al(n) =

{
0 n = 0

al(n− 1) + Ln−1 0 < n < Nnodes

altotal := al(
Nnodes

2
− 1)

21

4 Tree structure

in :=
al(n)

altotal

dn := lerp(in, ds, dc)

tn := lerp(in, tws, twc)

where

lerp(i, start, end) = start+ i · (end− start)

4.2.3 Using the parameters for the 3D tree

All the calculations so far have been made assuming the tree is 2D. But for our

application, the tree is actually 3D. For that, we will use a “fake” 2D tree to get

its parameters, which will be adapted to use for the 3D tree.

First, we will calculate θ for the 2D tree of half the height hm, with all the other

parameters being the same. The number of levels N for the 3D tree will be twice

the value of the 2D tree.

The 3D tree will be formed by adding a torsion angle φ of 90o, so that the 3D turtle

(section 4.1.2) does a roll-turn of φ as well as the yaw-turn of θ. This way, it’s as

if there is two half-trees growing in the XZ and the Y Z planes, interleaving levels

with each other.

All Ln, dn and tn values are calculated for the assembled 3D tree, by following the

same rules as with the 2D trees.

4.3 Summary

The process for calculating the tree structure fill finally be:

22

4 Tree structure

Algorithm 4.1 Overview for calculating the tree structure

calculate N and φ given the input parameters

calculate w given c and N

for n < N do

calculate wn given w and n

calculate Ln given wn and φ

end for

generate tree with the L-System given N , φ and {Ln |n < N}
for all node ∈ nodes do

calculate dn by interpolating from ds and dc
calculate tn by interpolating from tws and twc

end for

23

5 Mesh Generation

5 Mesh Generation

Once we have the needed information of the structure of the tree (Medial Axis) and

thickness at each point (Radius Function), the 3D mesh has to be generated. This

consists in applying the back-transformation of the Medial Axis with the Radius

Function.

One important observation has to be had in mind for all this process: as seen in

section 2.1, the sizes of the vessels vary greatly in diameter, which means that

approaches based on voxelization will have some shorcomings, and any resulting

mesh will have big differences in triangle size, unless this is specifically addressed.

5.1 The back-transformation of the Medial Axis

The back-transformation of the Medial Axis is an open problem, that can be solved

with different approaches, depending on the specific characteristics of the data to

transform.

Figure 15: A 2D Capped Truncated Cone (CTC) in blue. The maximal circles at start and end

in red, the corresponding medial axis in black.

Our particular case deals with linear (as opposed to planar) Medial Axes, composed

of a 3D graph of several linear segments connected to each other at their ends by

nodes. The values of the Radius Function (RF) are known at each node, and

the RF for each segment consists of the linear interpolation of the values at both

ends. Therefore, for the simplest case of only one Medial Axis segment, the back-

transformation would look like figure 15.

24

5 Mesh Generation

Figure 16: The proper circle tangency (green), compared with the naive, incorrect way (red).

The first, intuitive approach at creating the surface would be to ”sweep” a circle

of varying size along the medial axis, with radius equal to the value of the Radius

Function at that point of the Medial Axis. This poses two problems: The first

one is that there would obviously be intersections at the bifurcations of the MA,

which should be somehow resolved. The second one is that it would yield incorrect

results, caused by a common misconception on the nature of circle to circle (or

sphere to sphere) tangency (see Figure 16). The tangencies between circles are not

found on the points perpendicular to the center-to-center segment (pictured in red

in the figure): the proper tangency is found at a certain slope, easily found using

trigonometry (pictured in green in the figure).

Figure 17 shows the appearance of a bifurcation in 2D. It can be seen that the shape

(in blue) consists of parts of the circles at the ends, plus the tangent lines between

the circles of each pair of adjacent nodes. The intersections (in green) have to be

computed, but that is an easy calculation.

Upon further inspection, it becomes apparent that resolving the shape at the in-

tersections is the hard problem (see Figure 17), and even harder in 3D.

Figure 17 also raises an interesting fact about the Medial Axis transform: You can

have a Medial Axis and a Radius Function that, when used to get a surface with the

back-transformation, yield a surface that has a different MA+RF pair. Depending

on the particular case, one or both of them will be different.

25

5 Mesh Generation

Figure 17: A Medial Axis bifurcation in 2D. The maximal circles at each node are in red, a first

approximation to the desired shape in blue, and the intersection points in green. On

the right, the final shape from the Medial Axis, in blue.

It is made more explicit in figure 18, where the RF at the bifurcation gives the red

circumference, and the tangency lines in blue show that the shape is bigger at that

point: the Radius Function at that point should be the green circumference, that

passes through the intersections of the tangency lines. This is the Radius Function

that would be calculated from the shape.

Another way to construct the final shape for the bifurcation in figure 17 is to

compute the union of the basic shapes (figure 15), as seen in section 5.2.

In order to calculate the union of the shapes, the method of Constructive Solid

Geometry is used, which can be applied to 2D and 3D shapes.

5.2 Constructive Solid Geometry

Constructive Solid Geometry (CSG) consists of a set of boolean operations on basic

solids that, applied in a sequence, allows the construction of more complex shapes.

The operations typically consist of Union (∪), Intersection (∩) and Difference (−),

and are applied to pairs of solids to get a new solid (see figure 19).

In our case, applying the union of all the CTCs of each segment would yield the

final surface. In broad terms, we will calculate two solids that will represent the

26

5 Mesh Generation

Figure 18: The inconsistency in radius value at the bifurcation point. Medial Axis in black,

tangent lines in blue, red circle of original radius (with tangency points also in red),

and green circle of proper radius (with intersection points also in green).

A ∪B A−BA ∩BA,B B −A

Figure 19: Visual example for the usage of CSG in 2D, based on the shapes A and B, applying

the operations Union (∪), Intersection (∩) and Difference (−).

whole tree, one thinner than the other, so that the first one represents the outer side

of the vessels and the second one the inner side. For the complete vessel structure,

the sequence of operations to apply would be as follows (illustrated in figure 20):

1. For both thicknesses:

a) For both halves of the tree, calculate the union of all its segments.

b) Unite both halves, as well as with the capillaries.

2. Subtract the thinner solid to the thicker solid.

3. Intersect the resulting solid with a box, in order to open the ends.

In order to perform CSG operations with our code, the Java3D library J3DBool

(http://unbboolean.sourceforge.net/) has been used. This library uses Solid

27

http://unbboolean.sourceforge.net/

5 Mesh Generation

Figure 20: The stages of the CSG process to get the final mesh, for a simple tree (in 2D).

objects that consist of b-rep IndexedTriangleArray meshes, and applies boolean

operations to them, yielding further Solids; it implements an algorithm described

in 1986 by Laidlaw et al [5]. Using this library solves the mesh generation part, by

following the steps in the previous enumeration.

However, this library proved to be a problem in the long run, since it only works

properly under certain Solid sizes, running into infinite loops otherwise, and with

an unmanageable time growth in terms of number of segments of the Medial Axis

tree.

5.2.1 Splitting into nodes

In order to fix the problems with the Solid sizes and the growth of time, one solution

was devised. Each CTC is split into two Half CTCs (HCTCs), as illustrated in

figure 21. Therefore, each HCTC belongs to only one node, and the joining can be

done per-node, avoiding the time growth in the CSG algorithm, and then stitched

together, as seen in section 5.2.2. Also, the HCTC group to be joined can be scaled

to a manageable size that will avoid the infinite loop problem, as seen in section

5.2.3.

28

5 Mesh Generation

Figure 21: Splitting a Capped Truncated Cone (CTC) into two Half CTCs (HCTCs). In green,

the center of the straight cap, important for stitching them back together.

5.2.2 Scaling and stitching together

Figure 22: The updated stages of the CSG process to get the final mesh, when the joining

is done per-node. An additional operation symbol (+) added to represent simple

merging of triangles, as opposed to binary union (∪). The rest of the stages remain

as in figure 20.

The process now will consist of joining each node separately (avoiding the time

growth, since the CSG operations will be applied independently for groups of up

to three shapes), and then “stitching” them together, as seen in figure 22.

In order to stitch them together, we need to remove all faces connected with

the center of the straight cap (in green in figure 23), and connect all vertices

around it (in red in the figure). For this, we need to keep count of which are

the IndexedTriangleArray indices of the vertices to stitch together, as well as the

center of the straight cap.

The scaling and joining process of each node consists of three steps (see figure 24):

1. Scale the node up: since we just modify the coordinates of each vertex, its

indices remain the same.

29

5 Mesh Generation

Figure 23: A Half CTC (HCTC) in 3D. The center of the straight cap is in green, and the

vertices to be stitched are in red.

Scale up Scale downJoin
(same index) (same index)(same coords)

Figure 24: Steps to follow when joining and scaling each node, in order to preserve vertices that

shouldn’t have changed (in green)

2. Join them together: using CSG as seen before, the coordinates for the vertices

in the straight cap won’t be changed, since they are not part of the bifurcation

per se. However, we can’t guarantee that the indices are unchanged as well.

Therefore, we keep a HashMap to get from the unchanged coordinates to the

indices in the mesh.

3. Scale the node back down: as with step 1, we are just changing the coordi-

nates, so the indices are unchanged.

Given that we can keep track of which vertices in the joined node are the ones we

need to modify, we proceed to stitch it to the rest of the mesh so far:

1. Remove all faces connected with the straight cap center (in green in figure

23).

30

5 Mesh Generation

2. Remove the straight cap center itself.

3. Connect all possible ends with ends already existing in the mesh. The ones

to be connected can be known if the Medial Axis tree is traversed depth-

first: we know which segments of this node are connected to nodes that are

already visited, these are the ones to be stitched back. In order to stitch

back, we just need to find which are the indices of the accumulated mesh that

coincide with the vertices that we want to connect. For this purpose, we keep

another HashMap for the accumulated mesh, so we introduce the vertices to

be stitched, get the corresponding indices, and add the new vertices and faces

to the accumulated mesh, having in mind that the vertices to be stitched

shouldn’t be added, their existing indices have to be used instead.

All of this will solve the time growth problems, since we apply CSG operations to

just a part of the total geometry each time, and we also solve the scale problem,

since we scale up or down to a proper size for the CSG library to function properly.

The only question now is how to know which one is the proper scale for each node.

5.2.3 Finding the proper scale factor for each joint

Calculating the scale factor for each joint is not easy, since it depends on the par-

ticular algorithm that the J3DBool library uses, and also the numerical properties

of the lower level intersection computations used. Solving this problem analytically

would require too much time, which would be better invested in approaching the

problem in a different way, by not using this library. However, this would be too

much for the scope of this thesis, so an alternative solution was developed.

The quick-and-easy solution is to keep trying scale sizes until one works. In a

nutshell, the process will be algorithm 5.1:

Algorithm 5.1 Finding a working scale size

for all node ∈ nodes do

repeat

scale node with first unused scale size

try CSG union for this node

until CSG operation performs successfully

merge joined node with the rest of the accumulated mesh

end for

31

5 Mesh Generation

The list of scale sizes to try is determined experimentally: centered in a value that

is close to what usually works, it alternates going a bit bigger or smaller, so that it

will eventually find a scale factor that doesn’t break the CSG algorithm.

This process, although not the proper way of solving the problem, will nonethe-

less function accurately. Of course, this is only done this way because of time

constraints, and would be dealt with in a different way, if the available time was

longer.

5.3 Summary

The process of the generation of the mesh will consist of:

Algorithm 5.2 Overview of mesh generation

for all node ∈ nodes do

calculate inner HCTCs (reference) that belong to it

calculate outer HCTCs that belong to it

end for

for both thicknesses do

for all node ∈ nodes, traversing depth-first do

find scale factor

scale up all HCTCs from this node

perform CSG union of them

scale the result down

remove caps from ends of the node

stitch the ends with any parent nodes

end for

end for

subtract inner mesh from outer mesh

intersect with desired bounding box

32

6 Results

6 Results

Figure 25: Screenshots from a mesh (in red) generated with the program. Includes the bounding

box in transparent gray that is used as an input parameter to the program.

Using the input parameters given to us by the Laser Zentrum, we obtain the mesh

seen in figure 25. Most of the mesh consists of the in and out tube, since there is

where the needles will be connected to the vessel, in order to pump blood in and

suck it out.

This is a test mesh, that will be used with the printer in order to check that the

whole process pipeline works properly, and once the test is passed successfully,

further meshes will be created with the program. Therefore, the input parameters

are changeable through the interface.

The program features the generation of the tree given the parameters requested by

the LZH, but by changing the process of the generation of the tree structure (as

seen in section 4 in page 15), new meshes can be created with different shapes.

In figure 26, the variation on the general shape of the tree can be quite big. On

the left, the number of levels N of the tree is increased. That can be done with

the same input parameters, by reducing the thicknesses at the capillary ends, and

reducing the maximum distance between them. On the right, a modification is done

on the tree structure generation, by calculating the L-System parameters directly.

In this case, the torsion at each bifurcation is modified with a random component,

and the rest of the parameters are calculated by simple interpolation between the

two ends.

33

6 Results

Figure 26: Alternative examples, by filling with a high number of levels of subdivision (left),

and by adding some degree of randomnes on the torsion angle (right).

The Graphical User Interface (GUI) of the program consists of a panel with the

controls, and a 3D view of the generated mesh (see figure 27). Parameters can be

input manually, or saved to and loaded from a file.

Once the parameters are input, a preview of the mesh can be shown (see figure

28). This preview consists of the simple visualization of all the geometry together,

without any merging or CSG joining done. The rasterization of the geometry as

done by the 3D visualization makes it appear as if the mesh is already finished, but

as seen on the right of the figure, the mesh is not hollow inside. Also, the ends are

rounded, since they will be like that until the CSG intersection operation is done

(see section 5.2 in page 26).

Despite not being the final result, it is a helpful feedback on the general shape of the

mesh before it is generated. As an example, the preview for the LZH test mesh only

takes about two seconds, while the final generation of the mesh takes more than

two minutes. Given that with the input parameters themselves don’t give an idea

for the final appearance of the structure, the preview helps get quasi-immediate

feedback for tweaking the parameters as desired.

Once the preview has been shown, the final mesh can be generated, and then

saved as an STL file. For any of the two kinds of visualization (preview or final),

some options are available: Stereo visualization (when possible, depending on the

system), antialiasing (also depending on the system), black or white background,

and transparency.

34

6 Results

Figure 27: View of the GUI of the program: on top, the whole window, on the bottom, a closeup

of the controls.

Enabling transparency can be helpful to examine the mesh and be able to see the

thickness of the wall (see figure 29). With this, it can be confirmed that there

are no self-intersections, that the wall thickness is properly interpolated from the

beginning through the end, and that there are no occlusions in between both open

ends.

35

6 Results

Figure 28: Preview of the mesh before finally generating.

Figure 29: When exploring the result, transparency can be enabled.

36

7 Future Work

7 Future Work

If the work done on this Thesis is to be followed, suggestions for future work are:

• Stop CSG usage. The CSG approach is valid in theory, since it solves the Me-

dial Axis back-transformation problem, when dealing with non-triangulated

surfaces and Medial Axes that are composed of linear segments. More specifi-

cally, it would solve the problem of joining all Medial Axis segments, whenever

the Medial Axis back-transformation shape is computable for all of the seg-

ments. However, any implementation of CSG for triangulated meshes is going

to have the same problems, mainly numerical problems when computing in-

tersections between triangles.

• Research the back-transformation problem in itself. This was the hard prob-

lem of this thesis, and it poses some questions that would be interesting to

research:

– How to solve the problem at the intersections when the independent

shape of each segment is known? This is the main problem encountered

in this Thesis.

– What would be the shape from a Medial Axis segment when it’s curved

instead of linear?

– What would be the shape from a Medial Axis segment with a non-linear

Radius Function?

– How to deal with Medial Axis segments that consist of surfaces?

• Follow the colaboration with the Laser Zentrum. When the LZH test our

final mesh and get some results from it, they might have some feedback on

the shape of the mesh, or the quality of the triangles, etc. Furthermore,

certain constraints like the regularity of the distribution of the capillaries, the

angle of the bifurcations, etc. might have to be changed, since once the mesh

is printed and blood is run through it, other non-geometric considerations

(for example, flow requirements) might come to light, which will have to be

addressed in further work.

37

8 Statement

With this signature I declare that I have written this research thesis all by

myself and did not use any other but the quoted sources and materials.

Hannover, September 28, 2011

(Sergi Lazaro)

List of Figures

List of Figures

1 3D printing process . 4

2 Xuemei et al. results . 5

3 Blood Vessel section . 7

4 L-System tree . 8

5 Subdivision rule . 9

6 Medial Axis example . 11

7 Medial Axis transformations . 12

8 Medial Axis back-transformation . 12

9 3D Turtle . 17

10 Input parameters . 18

11 Trigonometrical properties of the tree 19

12 The sizes and distances at the capillary level. 20

13 Recursive tree subdivision . 21

14 Tree segment and node numbering 21

15 2D Capped Truncated Cone (CTC) 24

16 Circle tangency . 25

17 2D Medial Axis bifurcation . 26

18 Medial Axis bifurcation inconsistencies 27

19 2D CSG operations overview . 27

20 CSG stages . 28

21 Splitting a CTC into two Half CTCs (HCTCs) 29

22 CSG stages (updated) . 29

23 3D HCTC . 30

24 Node joining and scaling . 30

25 Screenshots: Generated mesh . 33

26 Screenshot: Alternative vessel structures 34

27 Screenshots: GUI . 35

28 Screenshot: Mesh Preview . 36

29 Screenshot: Transparency when visualizing 36

List of Algorithms

4.1 Overview for calculating the tree structure 23

5.1 Finding a working scale size . 31

5.2 Overview of mesh generation . 32

39

References

References

[1] Abelson, Harold ; DiSessa, Andrea A.: Turtle geometry: The computer as a

medium for exploring mathematics. MIT Press, 1981 http://books.google.

de/books?id=3geYp44hJVcC 14

[2] Blum, Harry: A Transformation for Extracting New Descriptors of Shape. In:

Models for the Perception of Speech and Visual Form (1967), 362–380 11, 14

[3] Böttcher, Guido: Medial Axis and Haptics (Diploma Thesis), Lehrstuhl für

Graphische Datenverarbeitung, Gottfried Wilhelm Leibniz Universität Han-

nover, Diplomarbeit, 2004 14

[4] Colin Blakemore, Sheila J.: The Oxford Companion to the Body. Oxford

University Press, 2001 7

[5] Laidlaw, David H. ; Trumbore, W. B. ; Hughes, John F.: Constructive

solid geometry for polyhedral objects. In: SIGGRAPH Comput. Graph. 20

(1986), August, 161–170. http://dx.doi.org/10.1145/15886.15904 28

[6] Lindenmayer, Aristid: Mathematical models for cellular interactions in

development II. Simple and branching filaments with two-sided inputs. In:

Journal of Theoretical Biology 18 (1968), März, Nr. 3, 300–315. http:

//dx.doi.org/10.1016/0022-5193(68)90080-5 7, 14

[7] Liu, Xuemei ; Liu, Huan ; Hao, Aimin ; Zhao, Qinping: Simulation of Blood

Vessels for Surgery Simulators. In: MVHI’10, 2010, S. 377–380 4, 5, 14

[8] Prusinkiewicz, Przemyslaw ; Lindenmayer, Aristid: The Algorith-

mic Beauty of Plants (The Virtual Laboratory). Springer, 1991 http:

//algorithmicbotany.org/papers/abop/abop.lowquality.pdf. – ISBN

0387972978 14

[9] Wolter, F.-E.: Cut Locus and Medial Axis in Global Shape Interrogation

and Representation. (1992) 14

[10] Wolter, F.-E. ; Friese, K.-I.: Local and global geometric methods for

analysis, interrogation, reconstruction, modification and design of shape. In:

Computer Graphics International, 2000. Proceedings, 2000 14

[11] Zamir, Mair: Arterial branching within the confines of fractal L-system for-

malism. In: Journal of General Physiology 118 (2001), 267–275 14

40

http://books.google.de/books?id=3geYp44hJVcC
http://books.google.de/books?id=3geYp44hJVcC
http://dx.doi.org/10.1145/15886.15904
http://dx.doi.org/10.1016/0022-5193(68)90080-5
http://dx.doi.org/10.1016/0022-5193(68)90080-5
http://algorithmicbotany.org/papers/abop/abop.lowquality.pdf
http://algorithmicbotany.org/papers/abop/abop.lowquality.pdf

	Introduction
	Motivation
	Previous work
	Objectives and Scope of Work
	Overview of the process

	Basic concepts
	Blood Vessels
	Lindenmayer systems
	Turtle Graphics
	Medial Axis

	Literature
	Similar work
	Lindenmayer Systems
	Medial Axis

	Tree structure
	Building the tree structure
	Our L-system to generate the ``middle'' tree
	3D Turtle graphics

	Calculating L-system parameters given higher-level parameters
	Input parameters for the program
	Solving for 2D trees
	Using the parameters for the 3D tree

	Summary

	Mesh Generation
	The back-transformation of the Medial Axis
	Constructive Solid Geometry
	Splitting into nodes
	Scaling and stitching together
	Finding the proper scale factor for each joint

	Summary

	Results
	Future Work
	Statement
	List of Figures
	List of Algorithms
	References

