
Thesis

Extracting Knowledge Bases from
table-structured Web Resources applied to

the semantic-based Requirements
Engineering Methodology Softwiki

Rubén Navarro Piris

September 1, 2010

Universität Leipzig
Fakultät für Mathematik und Informatik

Institut für Informatik
Betriebliche Informationsssysteme

Academic Advisors: Prof. Dr. Klaus-Peter Fähnrich
Dipl.-Inf. Thomas Riechert

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41805836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Authenticity Statement
I hereby declare that I created this work independently and no other resources than the
given ones were used.

Leipzig, September 1, 2010

Rubén Navarro Piris

Thanks
This thesis would not have been possible without the help of Thomas Riechert, teacher of
the Faculty of Informatics in the University of Leipzig. I want to thank him for his help
and guidance in this project and with other topics outside the strict context of the thesis.

I also want to thank the rest of the Agile Knowledge Engineering and Semantic
Web workgroup for their help solving some questions and problems with the OntoWiki
framework.

Finally, I want to thank Mike Giese, student at the University of Leipzig, for helping
me with some technical problems at the beginning of the project.

Contents

1 Introduction 1

2 Technological Context 3
2.1 The Wiki Technologies . 3
2.2 The Semantic Web . 4

2.2.1 First Attends of Semantic Web 4
2.2.2 The RDF Language . 5
2.2.3 1st Extension Level: RDFs . 6
2.2.4 2nd Extension Level: OWL . 6

2.3 Semantic Wiki . 7
2.4 OntoWiki Project . 8

2.4.1 Main features of OntoWiki for Users and Developers 9
2.4.2 OntoWiki Extension Framework 9

2.5 SoftWiki . 11

3 Objectives 13
3.1 Specific objectives . 13

3.1.1 Section summary . 15

4 CSVLoad 16
4.1 Design . 16

4.1.1 Input data format . 16
4.1.2 Generated information . 18
4.1.3 Mapping information: the RDF semantic template 19
4.1.4 Basic template for importing information to a knowledge base . . 20
4.1.5 Template support of multivalued attributes 24
4.1.6 Template support of empty values 26
4.1.7 Template support of non-defined attributes 27
4.1.8 Template support of data type definition 29
4.1.9 Template support of data processing functions 29
4.1.10 Semantic dependencies graph . 30
4.1.11 Static & Iterative Parts of the Template 32
4.1.12 The template syntax . 33
4.1.13 Data dependencies & risks . 34
4.1.14 Section summary . 35

4.2 Application requirements . 36
4.2.1 Functional requirements / Use cases 37
4.2.2 Non-functional requirements . 40

IV

Contents Contents

4.3 Implementation . 41
4.3.1 GUI Design . 41
4.3.2 Declaring a template . 41
4.3.3 Application algorithm . 42
4.3.4 File structure . 44

4.4 Google Code Issues Template . 45
4.4.1 Template .ttlt file . 45
4.4.2 Template semantic dependencies reduced graph 47

4.5 Related projects . 47
4.5.1 ConvertToRDF . 47
4.5.2 Triplify . 48
4.5.3 SCOVO to RDF data converter 49

4.6 Legal implications . 50

5 Gcode 51
5.1 Design . 51

5.1.1 HTML structure . 52
5.1.2 From Google Code Issues to OntoWiki (SoftWiki) 53

5.2 Application requirements . 53
5.2.1 Functional requirements / Use cases 53
5.2.2 Non-functional requirements . 55

5.3 Implementation . 55
5.3.1 GUI Design . 55
5.3.2 Application algorithm . 55
5.3.3 File structure . 57

5.4 Legal implications . 58

6 Conclusion & future scope 60

7 Summary 63

Installation & configuration 64

Glossar 65

Bibliography 67

V

List of Figures

2.1 OntoWiki extension folder tree example 10
2.2 OntoWiki framework abstract GUI . 11
2.3 SWORE Ontology . 12

4.1 From CSV data to stored RDF triples 19
4.2 Cities table full semantic dependencies graph 31
4.3 Cities table reduced semantic dependencies graph 31
4.4 RDF template structure . 32
4.5 RDF template structure & syntax . 34
4.6 From CSV data to stored RDF triples using templates 36
4.7 CSVLoad GUI Screen 1 . 41
4.8 CSVLoad GUI Screen 2 . 42
4.9 CSVLoad file tree . 44
4.10 CSVLoad generated part (marked in red) of the SWORE Ontology . . . 46
4.11 GCI Template Semantic dependencies reduced graph 47
4.12 SCOVE to RDF mapping view . 50

5.1 Gcode generated part (marked in red) of the SWORE Ontology 54
5.2 Gcode GUI Screen 1 . 56
5.3 Gcode GUI Screen 2 . 56
5.4 Gcode file tree . 57

VI

List of Tables

2.1 Example information of 2 persons . 5
2.2 Example of triples definition . 5
2.3 Example of triples definition (rd.do being a random domain of an enterprise) 5

3.1 Goal applications (conceptual) . 15

6.1 Example of contextual data (1) . 61
6.2 Example of contextual data (1) . 61

VII

Listings

2.1 Object-oriented class definition example 6
2.2 RDFs class definition example . 7
2.3 OWL class definition example . 7

4.1 Basic abstract structure of a CSV file 17
4.2 Detailed abstract structure of a CSV file 18
4.3 Example of CSV file records (1) . 18
4.4 Example of CSV file records (2) . 19
4.5 N3 triples example (1) . 21
4.6 First idea of template . 22
4.7 Second idea of template . 22
4.8 Result of template mapping (1) . 23
4.9 Example of template (1) . 23
4.10 Result of template mapping (2) . 24
4.11 Example of CSV file records (3) . 24
4.12 Example of template (1b) . 24
4.14 Result of template mapping (3) . 25
4.13 Example of template (2) . 26
4.15 Example of CSV file records (4) . 26
4.16 Result of template mapping (4) . 26
4.17 Reduced template due to empty values 27
4.18 Example of general template . 28
4.19 Triples reflecting the semantic dependencies graph problem 31
4.20 RDF template syntax . 33
4.21 Google Code Issues Template . 45

5.1 Google Code Issues HTML structure (reduced) 52

VIII

1 Introduction

There are currently a lot of different data sources all over the Web, each one with
its own structure and semantics. Although the Semantic Web (see section 2.2), which
describes methods and technologies that allow machines understanding the meaning - or
semantics - of information on the World Wide Web by explicitly defining its semantics,
gets bigger everyday, there are still a lot of systems which have not adopted Semantic
Web technologies.

On the other hand, Semantic Web mechanisms need more and more semantic infor-
mation in order to improve and to become an efficient and useful technology. So, tools
to transform the already existing plain data into semantic data are needed in order to
make the transition from Web to Semantic Web possible.

Over the last years the use of the Internet by users has evolved drastically from
just consulting to publishing, sharing and modifying contents, turning the Internet into
a social net in which the possibilities to collaborate and communicate grow every day
bigger.

A good example are the Wiki-technologies. Their goal is to achieve a high level of
collaboration among the user community of a data storage oriented system by enabling
the possibility of adding or correcting content fast and easily. One of the most well
known examples is Wikipedia1, a free and multilingual Encyclopedia project.

The OntoWiki project (further explained in section 2.4) merges the characteristics
of the Wiki technology with the technology and benefits of the Semantic Web, giving
birth to a so-called Semantic Wiki.

A good example of the use of this framework is the Catalogus Professorum Lipsiensis
(CPL)2 3, a common initiative of the AKSW workgroup and the Department of Modern
and Contemporary History at the History Department, also of the University of Leipzig.

The aim of the project is to build a semantic database containing all the teaching
staff of the University of Leipzig in the 19th and 20th century.

SoftWiki is both a methodology and a tool (an OntoWiki extension detailed in section
2.5) for requirements engineering in a distributed stakeholders context. In order to
further develop the SoftWiki tool, big amounts of semantic data are needed, but the
only way to introduce non-semantic data into the system is manually, which means
writing every single piece of new information. This works fine for new projects, but
what about reusing already existing information? If it comes from another tool which
also supports Semantic Web technologies its just a matter of importing the database,

1 http://en.wikipedia.org/
2 detailed info: http://www.uni-leipzig.de/unigeschichte/professorenkatalog/info-en.html
3 example: http://catalogus-professorum.org/website/en!

1

http://www.uni-leipzig.de/unigeschichte/professorenkatalog/info-en.html
http://catalogus-professorum.org/website/en!

CHAPTER 1. INTRODUCTION

but the problem comes when the source of the information is non-semantic data, e.g.
data-tables or HTML4 embedded data.

For example, the Agile Knowledge Engineering and Semantic Web (AKSW) work-
group of the University of Leipzig does not use SoftWiki, but another already solid,
functional, non-semantic tool: for defining the requirements of the OntoWiki project
the Google Code Issues platform. The AKSW wanted, however, to import all this
information into the SoftWiki platform to be able to test and improve the tools and
methodologies around it. So a new software needs to be created: a tool able to import
data from the Google Code Issues platform into the SoftWiki tool.

This objective was then generalized to: import plain data from table-structured and
HTML web resources into OntoWiki knowledge bases with a specific application to the
semantic based requirements engineering methodology SoftWiki.

Thanks to the OntoWiki extension framework it is possible to fulfill this objective
by extending an OntoWiki system, but for design reasons, two different extensions are
defined: CSVLoad and Gcode.

CSVLoad takes care of importing data from table-structured resources into an RDF
knowledge base. CSVLoad provides the necessary tools to define plain-to-semantic map-
ping using an RDF configurable template system. Although being initially designed to
import CSV tables from Google Code Issues into SoftWiki, it is designed to be able to
import any type of table to any type of semantic model just by defining the adequate
template.

As data embedded in a HTML file follows a very specific and chaotic structure, defin-
ing a tool able to extract information out of any general HTML file to a semantic model
is an extremely difficult task. It does, therefor, make no sense developing such a tool in
the context of this project. As the initial goal was to import information from Google
Code Issues and CSVLoad is not able to retrieve all the relevant or interesting infor-
mation from it, the Gcode extension will be responsible for importing this information
from the Google Code Issues HTML code to the SWORE ontology.

4 HyperText Markup Language

2

2 Technological Context

The field in informatics in which we can find more innovative initiatives and which has
the fastest increasing use rate is the Web and its technologies. Different companies and
organizations compete to impose their own standards and services in a world in which
new functionalities and business models are developed at a very high rate.

The Web suffered a big change at the beginning of the 21st century, changing from
the know as Web 1.0, in which the users were merely information consumers of static
pages, to the Web 2.0.

The Web 2.0 is the Web as we know it today: information sharing between different
applications/stakeholders, dynamic interoperability, user centered design, RIA1, web
applications that provide a similar look-and-feel as desktop applications by using data
that can be processed both by the server and the client, exchanging this information
in most cases in an asynchronous way [BK09]. Good examples of this trend are the
Wiki technologies (Wikipedia), user video-sharing websites (Youtube) or social networks
(Facebook, Twitter).

2.1 The Wiki Technologies
Wiki software is a type of collaborative web-application which allows users to collab-
oratively create and edit web pages directly on the web browser. The main difference
between Wiki and other content management systems, such as blogs, is both that it is
clearly focused on the content itself and the possibility of editing it collaboratively with
other users of the community. The content (including all current and previous revisions)
is usually stored in either a file system or a database on usually more than one server
[Wag04].

With the help of a big community (more active users means more information pre-
cision) and moderators to ensure its correct use (avoid offensive or illegal content) this
kind of applications show great results in building reliable information nets/databases.
The best example for it is Wikipedia, “a free, web-based, collaborative, multilingual
encyclopedia project”2. According to a research by the British journal Nature [Tec05]
Wikipedia shows a similar error rate (both of serious and factual errors) to the Ency-
clopedia Britannica, the oldest English-language encyclopedia still in print, considered
one of the most reliable information sources.

The structure of the content that users add or edit in a Wiki system is ordinarily
defined by a simplified markup language which provides tools to organize the text or
introduce specific elements like links to other resources. Although it makes the users

1 Rich Internet Applications
2 http://en.wikipedia.org/wiki/Wikipedia

3

http://en.wikipedia.org/wiki/Wikipedia

2.2. THE SEMANTIC WEB CHAPTER 2. TECHNOLOGICAL CONTEXT

lose a lot of possibilities towards editing directly the HTML or CSS documents or using
JavaScript on any format, a general consistency in the look and feel of the whole Wiki-
application is promoted. Some systems offer also WYSIWYG3 editing tools, which
are AJAX4 powered, to make editing more comfortable and user friendly (although
sometimes not all of the features are supported by this tools).

2.2 The Semantic Web
The Web community is nowadays already working on the concept of the Web 3.0. It
includes not just the improvement, but also the revolution of the Web 2.0 thanks to
the recent birth of new technologies that work together with already existing Web
technologies.

The most important new concept is the transformation of the Web into a huge
database system that can be understood and analyzed by a computer. To make that
possible the use of semantic markup tools (e.g. RDF and RDF-based technologies like
OWL) to define data models (creating the so called Semantic Web) and the use of AI5

tools able to interpret this new information become essential.
The goal of the development of the Semantic Web is to make machines (computers)

able to analyze the data of the Web, making functions like finding information, combin-
ing it and putting it into a specific context automatic. Such a difficult task could only
be done in an appropriate way manually by humans [BLHL02].

It can also be seen the other way round: the Semantic Web makes machine-readable
content available on the World Wide Web. Tools like Protégé6 where first developed
in the field of the AI, but are now adapted to the semantic web by using semantic
description languages [GGP+02].

2.2.1 First Attends of Semantic Web
The Web is based on the HTML language. It permits the description and visualization of
a document (text) and references (links) to other documents (other HTML documents,
graphics or multimedia contents), but does not support the definition of semantic rela-
tionships between resources and possible attributes of them, as well of special meaning
or features of the text itself.

To fulfill this objective one of the first initiatives was to extend the HTML language
to enrich its semantic meaning, giving as a result the so called Semantic HTML. For
example, the use of denoting emphasis rather than <i>, which specifies italics.
But this specification was still not enough to specify the semantics (the actual meaning
and relationship) of objects referenced or described in the HTML document. Because
of this the definition of a specific language for this purpose was necessary and that is
when the RDF language (and derivatives like OWL) was born.

3 What You See Is What You Get
4 Asynchronous JavaScript And XML
5 Artificial Inteligence
6 http://protege.stanford.edu/

4

http://protege.stanford.edu/

2.2. THE SEMANTIC WEB CHAPTER 2. TECHNOLOGICAL CONTEXT

name email office
John john@email.xx E-202
Roger roger@anotheremail.xx F-367

Table 2.1: Example information of 2 persons

2.2.2 The RDF Language
The main idea of the Resource Description Language (RDF) is to build statements
(called triples) in the form subject-predicate-object. Thanks to its very simple structure,
labeled and directed conceptual graphs can be easily build.

An easy example. The information in table 2.1 can be defined in the triples of table
2.2.

John hasEmail john@email.xx
John isInOffice E-202
Roger hasEmail roger@anotheremail.xx
Roger isInOffice F-367

Table 2.2: Example of triples definition

In order to make the Web compatible with this model, the subject is defined as a web
resource (an URI) and the object also as a resource or sometimes directly as a literal or
label, a String containing information.

Supposing that a person has its own website (for instance an enterprise internal page)
the previous example could be defined like in the triples (in N-Triples form) of table
2.3.

In this case an additional triple is added in each case because the subject is not directly
the name of the object, but a web resource, whose associated property is a name.

One of the biggest advantages towards other model definition structures (as, for exam-
ple, an object-oriented approach) is its high level of extendability: any time new prop-
erties can be added without having to redefine the rest of the graph.

http://rd.do/empl/178 <http://rd.do/rdf/hasName> “John”
http://rd.do/empl/178 <http://rd.do/rdf/hasEmail> “john@email.xx”
http://rd.do/empl/178 <http://rd.do/rdf/isInOffice> “E-202”
http://rd.do/empls/847 <http://rd.do/rdf/hasName> “Roger”
http://rd.do/empl/847 <http://rd.do/rdf/hasEmail> “roger@anotheremail.xx”
http://rd.do/empl/847 <http://rd.do/rdf/isInOffice> “F-367”

Table 2.3: Example of triples definition (rd.do being a random domain of an enterprise)

5

2.2. THE SEMANTIC WEB CHAPTER 2. TECHNOLOGICAL CONTEXT

class Person {
. . .

}

class Document{
Person author ;

}
Listing 2.1: Object-oriented class definition example

2.2.3 1st Extension Level: RDFs
RDF is good for defining attributes of resources, that means, an easy way of build-
ing traditional attribute-value pairs, which in some cases also represent relationships
between resources. But this is not enough to describe the meaning of such properties
or the relationships with other resources.

In this context was the RDF Schema (RDFs) defined. RDFs is an extension of RDF,
build and specified also on RDF, which enriches it by defining the concepts of Class
and Property. This makes it easier to build object-oriented models (similar to object-
oriented languages such as Java or C++). However the definition takes place the other
way round: in object-oriented languages a class is defined with the attributes that it
contains (the properties) while in RDFs we can specify properties with a range or domain
later. The major benefit of this architecture is the possibility of extending a class without
having to redefine it (in object-oriented languages we have to either redefine the class of
create a new one inheriting the characteristics of the original one). This makes reusing
and extending models much easier7.

For better understanding of this here is an example. Listing 2.1 shows an object-
oriented language class definition.

The attributes of the class Document (in this case author of type Person) is declared
with the class, and therefore no other ones can be added unless we change the definition.
The same conceptual definition in RDFs syntax is on listing 2.2.

As shown in the example, Person and Document are defined as classes and later the
property author (in this case hasAuthor) is defined.

2.2.4 2nd Extension Level: OWL
Although RDFs enables the definition of classes, relationships and attributes, these fea-
tures are in most of the cases insufficient to model a full ontology because of the existence
of certain constrains (like cardinality or class disjointness among others). Because of that
the Web Ontology Language (OWL) was defined. Its main goal is to provide support
to this constrains, making it possible to define ontologies in an RDF environment8.

7 http://www.w3.org/TR/rdf-schema/
8 http://www.w3.org/TR/owl-guide/

6

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-guide/

2.3. SEMANTIC WIKI CHAPTER 2. TECHNOLOGICAL CONTEXT

@pref ix ex : <h t t p : //www. example . xx/ rdfsmodel#> .
@pre f ix r d f : <h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#> .
@pre f ix r d f s : <h t t p : //www. w3 . org /2000/01/ rdf−schema#> .

ex :Person a r d f s : C l a s s .
ex:Document a r d f s : C l a s s .
ex:hasAuthor rd f s :domain ex:Document .
ex:hasAuthor r d f s : r a n g e ex :Person .

Listing 2.2: RDFs class definition example

The OWL Full version permits mixing OWL specifications with pure RDF specifica-
tions without restrictions, but in some cases defining ontology restrictions and constrains
is necessary when using efficient reasoning systems. That is the reason why the sub-
language OWL DL was developed. On the other hand, the main disadvantage is that
an RDF document cannot be assumed to be a compatible OWL DL document. Another
sub-language, OWL Lite, was developed with tool builders as main target. It is a subset
of the OWL DL, which means it works also good with reasoning systems.

OWLLite ⊆ OWLDL ⊆ OWLFull

The representation of the example in the previous section (cf. listing 2.2) in OWL
form is shown in listing 2.3.

@pre f ix ex : <h t t p : //www. example . xx/ rdfsmodel#> .
@pre f ix r d f : <h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#> .
@pre f ix r d f s : <h t t p : //www. w3 . org /2000/01/ rdf−schema#> .
@pre f ix owl : <h t t p : //www. w3 . org /2002/07/ owl#> .

ex :Person r d f : t y p e ow l :C la s s .
ex:Document r d f : t y p e ow l :C la s s .
ex:hasAuthor r d f : t y p e owl :Annotat ionProperty .
ex:Document ex:hasAuthor ex :Person .

Listing 2.3: OWL class definition example

2.3 Semantic Wiki
Wiki technologies are useful to build large interactive data storage systems, having
Wikipedia as the best example, but they have a big problem: this data is stored/shown
in the form of plain HTML. Some Wiki tools use already markup languages, although
these are usually insufficient for doing complex tasks like for example information reuse,
selective export or querying. As an example: finding out the names of movies, that were

7

2.4. ONTOWIKI PROJECT CHAPTER 2. TECHNOLOGICAL CONTEXT

first played from 1995 and on and collected more than 100 million US dollar. Finding
this information in Wikipedia seems a really difficult task, as we should look every
movie one by one and look for the information “manually” (that means, read all of the
plain information until we find the specific information). Besides, although Wikipedia
provides the users with templates for specific themes and article types, the article editor
is quite free to write in the structure or format he wants, so similar objects (in this case
movies) present different information structures, which makes information search even
harder.

The solution to this problem is the use of semantic data models, that means, to
structure the information in order to make querying and data linking possible. In
this context we can find the DBPedia9 project. Its purpose is to extract structured
information from Wikipedia and make this information available on the Web. In this
case finding the information of the example exposed before would be much easier: we
just have to use a SPARQL query like in every normal (semantic) database.

Another advantage of using semantic structured data in a Wiki is that the presentation
of the information to the user is uniform and makes navigating through this information
more agile and, in much cases, with a wide range. An example of this can be seen
comparing the Wikipedia page for the city of Leipzig10 with the same information in
DBPedia11. The first one is obviously more comfortable to read as a hole due to its
typical text structure an an interface which has been improved for years, but if we are
looking for a specific information about Leipzig, it is easier to find it in the DBPedia
page. For instance, it is immediate to find out which cars are manufactured in Leipzig
thanks to the is dbpedia-owl:assembly of property. On the other hand, in order to find
this information in Wikipedia, the article has to be read only to find out that only the
companies are mentioned. Then the companies pages in Wikipedia should also be read
and maybe all of their manufactured cars pages. So this makes clear, that a semantic
linkage and presentation shows more complete information in a very structured way.

2.4 OntoWiki Project

The OntoWiki project12 [DAR06] is being developed since 2004 by the Agile Knowledge
Engineering and Semantic Web (AKSW13) workgroup of the University of Leipzig and
it enables the visualization, modification and insertion of semantic based data with a
Wiki framework. Its current version is 0.9.

In order to make collaboration between the developers of OntoWiki (both the AKSW
group as the developers community) easier, the source code is hosted in the Google
Code platform, which permits code hosting, versioning, browser code viewing and social
interaction, in the form of Issues definitions, and comments and attachment of additional
documents/sources to them.

9 http://dbpedia.org/
10 http://en.wikipedia.org/wiki/Leipzig
11 http://dbpedia.org/resource/Leipzig
12 http://ontowiki.net/Projects/OntoWiki
13 http://aksw.org/

8

http://dbpedia.org/
http://en.wikipedia.org/wiki/Leipzig
http://dbpedia.org/resource/Leipzig
http://ontowiki.net/Projects/OntoWiki
http://aksw.org/

2.4. ONTOWIKI PROJECT CHAPTER 2. TECHNOLOGICAL CONTEXT

2.4.1 Main features of OntoWiki for Users and Developers
OntoWiki provides, among others14, the following interesting features.

Facet-based Browsing

Thanks to it the user is able to navigate through the information along multiple paths
corresponding to different orderings of the facets.

In-line editing

Following the WYSIWYG (What You See Is What You Get) philosophy to make edit-
ing more user friendly, OntoWiki enables in-line editing, which means that users can
modify/add data directly in the graphic interface by double clicking on the desired field.

Integrated map and calendar tab

Data containing property values representing geographical information or associated to
the data type xsd:date.

Themes modification

Just modifying the default CSS file and the main.php file the OntoWiki system will have
a total different look.

Extensions

OntoWiki has a GPL License and by this can be changed by anyone to adapt to its
specific needs with the help of its widgets and extension framework. Widgets are reusable
components of the OntoWiki user interface that the user interacts with. Developers can
activate/deactivate or add new widgets in order to adapt the functionalities to a specific
schema or needs. See section 2.4.2 for more information15.

2.4.2 OntoWiki Extension Framework
OntoWiki enables a sophisticated extension framework which permits developers adding
new functionalities and personalize the deployed OntoWiki framework. Every installed
extension can be enabled/disabled when wished by the system manager. There are three
types of extensions:

1. Components

2. Modules

3. Plug-ins

14 source: http://ontowiki.net/Projects/OntoWiki/Features
15 or go to http://code.google.com/p/ontowiki/wiki/ExtensionCookbook

9

http://ontowiki.net/Projects/OntoWiki/Features
http://code.google.com/p/ontowiki/wiki/ExtensionCookbook

2.4. ONTOWIKI PROJECT CHAPTER 2. TECHNOLOGICAL CONTEXT

extensions/

plugins/modules/components/

EXT/

OthersEXTHelper.phpEXTController.phpconfiguration.ini

Figure 2.1: OntoWiki extension folder tree example

each one with its purpose and structure. All of them have their specific .ini file
({component|module|plugin}.ini) where the standard configuration (enabled, name, etc.)
and specific private parameters are defined. This file, together with the extension main
file (and every oder file the extension needs to work) is under the extension folder to
find. An example of the OntoWiki extensions folder tree with a component extension
(referenced as EXT) can be seen in figure 2.1.

Component

Components are controllers with a MVC16 architecture. Components receive and serve
requests, usually using the main window to interact with the user by showing or getting
information (cf. figure 2.2), but they can also serve as asynchronous request controllers.

A component can have the so called Helper. Unlike the component controller, which
serves only its specific request(s), a component helper is instantiated every time a request
takes place. This results very useful for doing actions not directly related with the
controller, e.g. registering a new menu option.

Every component extends OntoWiki Controller Component and every helper extends
OntoWiki Component Helper. The component is configured on its component.ini file.

Module

Modules shown little displays, either in the main information info or in the empty
left part of the screen (cf. figure 2.2). They usually show additional information or
functionalities related with the information displayed in the main window. They act
more dynamically than components because they are able to modify their configuration
file.

Every module extends OntoWiki Module and has its own module.ini configuration
file.

16 Model-View-Controller

10

2.5. SOFTWIKI CHAPTER 2. TECHNOLOGICAL CONTEXT

Figure 2.2: OntoWiki framework abstract GUI

Plug-in

Plug-ins are the most flexible extensions. Instead on being based on a standard class
with defined display and requests, a plug-in executes arbitrary code when a specific
event is triggered. Plug-ins can modify the information associated to this event, so
they depend on the good definition of them in order to work properly. Some events are
already defined in the framework core, but they can also be triggered by extensions at
any moment and with any wished information.

Every plug-in extends OntoWiki Plugin (although this class does not define strong
structural guidelines or properties) and has its own plugin.ini configuration file.

2.5 SoftWiki
The discussion and specification of requirements is a key aspect in the developing of
both software and other innovative projects. In order to achieve a successful require-
ments engineering, all the project stakeholders (clients, users, managers, developers,
etc.) have to take part on it. However, this is sometimes really hard when the project is
big and its stakeholders groups are big or very distributed (e.g. open source or govern-
mental projects). So a tool and/or methodology which permits the easy collaboration
of different stakeholder groups is needed to solve this problem [Aue09].

Thanks to the possible use of widgets, a requirements and tags management extension
called SoftWiki [LR09] was developed for the former version of OntoWiki(0.85)and is
being currently adapted to Ontowiki v0.9 by M. Giese.

11

2.5. SOFTWIKI CHAPTER 2. TECHNOLOGICAL CONTEXT

Figure 2.3: SWORE Ontology

The SoftWiki tool allows the definition of a project’s requirements and the tagging
of these. With the help of the OntoWiki framework it provides also visualization and
search/navigation tools for these requirements.

But SoftWiki is not only a tool, it consists also in the Agile Requirements Engi-
neering Methodology and an ontology (SWORE: Software Ontology for Requirements
Engineering) that supports it.

This methodology consist on the collaboration of potentially very large and spatially
distributed stakeholder groups in the process of software development, particularly in
the field of software requirements engineering17.

The SWORE Ontology (see figure 2.318) defines the semantic model of the require-
ments definition. It is a flexible definition which allows linking to external sources
(public domain knowledge or company-specific knowledge).

Requirements can be linked to other requirements, redefined, commented, etc. and
in this process it becomes more semantically rich. It is a sort of requirements seman-
tification process [LHA+08].

17 Project homesite: http://softwiki.de/netzwerk/en/
18 source: http://softwiki.de/netzwerk/en/methodologie/swore/

12

http://softwiki.de/netzwerk/en/
http://softwiki.de/netzwerk/en/methodologie/swore/

3 Objectives

The main general goal of the project is to add importing functionalities to the OntoWiki
(SoftWiki) platform. A large community of projects have their requirements hosted
in the Google Code platform or in similar systems, included OntoWiki as explained
in section 2.4. This projects contain big amounts of information, which makes the
migration to another system (in this case SoftWiki) impossible if the right importing
tools are not provided.

Importing information from other sources
SoftWiki permits the definition and editing of requirements for a defined project hosted
in the system, but a lot of software projects actually use other non-semantic tools to
manage their requirements. The transition from one of this tools to the SoftWiki plat-
form would need a lot of work, because every requirement has to be defined manually. So
in this sense a main goal of the project is to make possible to automatically import great
amounts of data into the OntoWiki system and more specifically importing requirements
into the SoftWiki platform.

Transforming great amounts of imported information into semantic data
Another think to take into consideration is that OntoWiki saves semantic data, but the
information we are going to import comes in form of plain data (the import of semantic
data models is already implemented in OntoWiki). Another main goal of the project is
to provide tools to convert the imported plain data to the according semantic model.

Importing information directly from the Web
Some services do not provide easy information access points, that means, standard
table, object-like or semantic data formats to make data importing easier. Instead, all
the information is shown directly in the form of HTML. That leads to the next main
goal of the project: extracting information from HTML resources.

3.1 Specific objectives

In order to fulfill the objectives approached in the previous section (cf. section 3) soft-
ware tools have to be developed to work together with the OntoWiki system. OntoWiki
provides a sophisticated extension system, which makes possible the inclusion of new
functionalities under the same integrated platform (cf. section 2.4.1).

The next thing to do is deciding the next topics:

13

3.1. SPECIFIC OBJECTIVES CHAPTER 3. OBJECTIVES

• Fulfilling the proposed objectives with one extension or with several of them.

• Checking if the initial objectives are not feasible or too big an have to be reduced

In order to make importing information from very different sources possible, the use
of a standard plain data format gets clear. And the simpler and more widely used this
format is, the easier for getting the information. So what we need in first place is an
application (OntoWiki extension) that is able to import the new information from an
external source (defined by the user) in a simple data format, yet to be defined, to
further work on it. This application will be referenced as CSVLoad (the reason for this
name will become clear later on).

As discussed before, OntoWiki saves semantic data. Because of that all the informa-
tion imported from other sources has to be transformed to semantic data. In this sense
the user needs tools to define a semantic model and how the imported information is to
be mapped to it.

Considering that the information that has to be transformed is contained in CSVLoad,
the inclusion of this functionalities in the mentioned application is the most adequate
thing to do. By this we avoid unnecessary process steps and data storage.

A user may also want to create a new semantic model from a web service which offers
its information only in HTML form. But a difficult problem is that every service uses
its own HTML format. This makes the importing process even harder, because specific
importing tools for every web are then necessary.

It is clear that the implementation of a tool that is able to import data from any kind
of HTML structure is not possible, as it would need either a sophisticated structural
analysis and AI system or very complex and user-unfriendly configuration settings. Such
features cannot be covered by a project of this type (a thesis project).

Considering that the whole project was build around the idea of importing require-
ments from the Google Code Issues platform possible and that some of its information
is only available in HTML form, this project objective will be reduced to import require-
ments information from Google Code Issues HTML code. Including this functionality
in CSVLoad would not make much sense due to the following reasons:

• It does not respect the philosophy of the OntoWiki extensions: one extension, as
little as possible, for every functionality or process. As it is later explained (cf.
section 5.1 on page 51), the importing of this specific information cannot be done
at the same time as the importing and transformation of a complete model, so
they take place in different processes.

• CSVLoad is conceptualized to be general purposed, that means, for different sys-
tems and for a standard simple format, so it will be stable and will not need major
changes. On the other hand, the discussed functionality is very specific to another
system that is defined by other developers. Therefor the possibilities of change
are bigger, because any change on the information display in Google Code Issues
can influence negatively in the correct working of the system. In this sense it is
better to isolate the functionality in an independent extension, enhancing by this

14

3.1. SPECIFIC OBJECTIVES CHAPTER 3. OBJECTIVES

way the possibility of disabling it when a change or error occurs, but keeping all
other functionalities active till the problem is solved.

It is clear then that another extension (referenced as Gcode) is the best option.

3.1.1 Section summary
In order to enable the importing of large amounts of data from non semantic systems
to the OntoWiki systems, new software tools are needed. This tools have to fulfill the
following objectives:

• Import information from other sources

• Transform great amounts of imported information into semantic data

• Import HTML information from the Google Code Issues platform

Two OntoWiki extensions are to be developed, CSVLoad and Gcode. Their objectives
are defined in the table 3.1.

CSVLoad - Import new information in a simple data from an external source format
- Map information to user-defined semantic information

Gcode - Import requirements information from Google Code Issues HTML code

Table 3.1: Goal applications (conceptual)

15

4 CSVLoad

As mentioned in section 3.1 on page 13, the extension CSVLoad will be responsible of
two main objectives:

• Import new information in a simple data format from an external source into the
system

• Map this imported information to a user-defined semantic model

4.1 Design

4.1.1 Input data format
Before designing and implementing the functionalities, the according data input format
has to be defined. To fulfill the system requirements it should fit the following terms:

1. Simplicity: in order to make the system as flexible as possible, the best way to
go is to use a data format as simple as possible, in the sense of the most plain, the
better. In oder words, avoid using any type of tagging, markup or type definition,
so that almost any kind of data is potentially representable in this format and
therefor processable by the system.

2. Data structure: the initial idea of the project was the importing of requirements
into the OntoWiki system. This means that a lot of entities with the same struc-
ture, but with different attribute values are going to be processed. It is clear then
that a collection of objects of the same class will be imported, and that means
that the input will consist of an entity definition and a collection of entities which
fit this definition.

3. Multivalued attributes: another very common property of such data entities
are the multivalued attributes, that means, that a list of values of certain type are
stored as one single attribute in the entity definition. A very easy example: an
entity (defining an article) contains, among others, the attributes Name, Theme,
Content and Authors. Although Authors is just one attribute in the entity defini-
tion, it can contain more than one value. In an object-like structure an attribute
of a class (entity) could also be a class (entity) with different attributes, but this
would conflict with the first term (Simplicity), so this feature will not be consid-
ered.

4. Standard: considering that the main goal of the application is the migration of
data from one external system to the OntoWiki system, it is very important that

16

4.1. DESIGN CHAPTER 4. CSVLOAD

DEFINITION
RECORD 1

.

.

.
RECORD N

Listing 4.1: Basic abstract structure of a CSV file

the used format is standard, proved and widely accepted. The objective of the
application is to make the data migration as easy as possible; if a non-standard or
non well-known format is used, the user is then forced to transform the data into
a new, unknown format, leading to extra work and a bigger error probability.

Considering all this terms, an appropriate format is a CSV table, because it respects
all the terms:

1. No tags, markups or types, only information.

2. First row defines the attributes of an entity, the rest the entities information.

3. Permits multivalued attributes by including CSV information inside a CSV
attribute.

4. Most of the popular programming languages have CSV support incorporated (e.g.
PHP1, Python2, Ruby3) or have free accessible libraries or tools available (e.g.
Java4, C/C++5). Popular database systems (e.g. MySQL6, Oracle7) or office
software suite spreadsheets (Microsoft Excel, OpenOffice Calc) also fully support
the CSV format.

CSV format

The CSV format is a simple text format for defining information records. The structure
of a CSV file is the following: every record is a line in the file, that means, that records are
separated by a new line character. The first record defines the names of the attributes
(cf. listing 4.1).

Every record consists of a series of fields, separated by commas (cf. listing 4.2).
An example of a simple CSV file can be seen in listing 4.3. As explained before, the

first line defines the attributes and the following define the values of every record.
1 http://php.net/manual/en/function.fgetcsv.php
2 http://docs.python.org/library/csv.html
3 http://www.ruby-doc.org/stdlib/libdoc/csv/rdoc/
4 http://sourceforge.net/projects/javacsv/, http://opencsv.sourceforge.net/
5 http://www.ioplex.com/˜miallen/libmba/dl/src/csv.c
6 http://dev.mysql.com/tech-resources/articles/csv-storage-engine.html
7 http://download.oracle.com/docs/cd/E14571_01/apirefs.1111/e10653/oracle/adf/model/

adapter/dataformat/csv/CSVParser.html

17

http://php.net/manual/en/function.fgetcsv.php
http://docs.python.org/library/csv.html
http://www.ruby-doc.org/stdlib/libdoc/csv/rdoc/
http://sourceforge.net/projects/javacsv/
http://opencsv.sourceforge.net/
http://www.ioplex.com/~miallen/libmba/dl/src/csv.c
http://dev.mysql.com/tech-resources/articles/csv-storage-engine.html
http://download.oracle.com/docs/cd/E14571_01/apirefs.1111/e10653/oracle/adf/model/adapter/dataformat/csv/CSVParser.html
http://download.oracle.com/docs/cd/E14571_01/apirefs.1111/e10653/oracle/adf/model/adapter/dataformat/csv/CSVParser.html

4.1. DESIGN CHAPTER 4. CSVLOAD

DEF FIELD 1 , DEF FIELD 2 , . . . , DEF FIELD N
FIELD 1 1 , FIELD 1 2 , . . . , FIELD 1 N

.

.

.
FIELD N 1 , FIELD N 2 , . . . , FIELD N N

Listing 4.2: Detailed abstract structure of a CSV file

City , Country , Inhab i tant s
Le ipz i g , Germany , 518 .862
Barcelona , Spain , 1 . 621 . 537
Listing 4.3: Example of CSV file records (1)

Initially the field was conceived to be just a simple string of information, but this
supposed a problem to include information strings that actually need to include comma
or new line characters. To solve this the field information can be delimited by double-
quote characters and every comma or new line character will be considered as part of
the field information and not as a CSV file delimiter. In this case the rule every line
is a record is only true when considering that every new line character embedded in a
double-quote character delimited field is not being taken into account.

In case of wanting to use a double-quote character in the information field, the field
will have to be delimited and the double-quote character will be encoded by a double
double-quote character.

The listing 4.4 shows an extended version of listing 4.3, in which an attribute
containing commas, new lines and double-quotes is included.

The use of double-quoting is optional (implicitly necessary when the information
contains double-quote, comma or new line characters), but it is a good and extended
practice to use them on all of the fields for uniformity and avoiding errors.

4.1.2 Generated information
OntoWiki saves information in form of semantic knowledge bases. This means that the
information is stored in the system in the form of RDF triples. So what the CSVLoad
application has to do is transform the plain CSV information into semantic data in RDF
form (cf. figure 4.1).

To achieve this objective the CSV file is not enough, because there is only a definition
of the names of the attributes, but neither their semantic meaning nor their relation-
ships are specified. It is clear then that some additional information to map the plain
information to a semantic model is necessary.

18

4.1. DESIGN CHAPTER 4. CSVLOAD

City , Country , Inhabi tants , Des c r ip t i on

Le ipz ig , Germany , 5 1 8 . 8 6 2 , ‘ ‘ . . . Le ipz ig ’ s name i s der ived from
the S l a v i c word Lipsk ,
which means ’ ’ ’ ’ s e t t l ement
where the l ime t r e e s (American :
l i nden t r e e s) stand ‘ ‘ ’ ’ ’ ’ .
F i r s t documented in 1015 in the
c h r o n i c l e s o f Bishop Thietmar
o f Merseburg . . . ’ ’

Barcelona , Spain , 1 . 6 2 1 . 5 3 7 , ‘ ‘ . . . in the 3 rd century BC.
About 15 BC, the Romans redrew
the town as a castrum (Roman
m i l i t a r y camp) cente red on the
‘ ‘ ’ ’ Mons Taber ‘ ‘ ’ ’ , a l i t t l e
h i l l near the contemporary
c i t y h a l l . . . ’ ’

Listing 4.4: Example of CSV file records (2)

Figure 4.1: From CSV data to stored RDF triples

4.1.3 Mapping information: the RDF semantic template
Considering that the data received from the system to create the knowledge base (cf.
section 4.1.1) is insufficient due to the lack of semantic information, the system has to
have this information already hosted or receive it from the user.

Configuration flexibility, that means, that the user is able to add new plain-to-
semantic mapping settings or modify the existing, is an important feature. The system
must provide tools that permit the existence of several configuration settings, so that
the user can choose the one he prefers, and provide also a way to easily add new ones.

The first step is analyzing which type of information does the system need and in
which form in order to transform plain data to semantic data.

19

4.1. DESIGN CHAPTER 4. CSVLOAD

Creating a new model

The extension needs the definition of the semantic model to adapt the imported data to
it. The format will be a set of RDF triples, accordingly modified so that this definition
is reusable for further knowledge base definitions and for the different record values of
the CSV table, avoiding this way the redefinition of the model every time it is used.

OntoWiki offers tools for defining models and adding information directly from RDF
code in either XML, JSON or Turtle format. For reasons of simplicity and readability
the Turtle (N3) format is the chosen one for the mapping definition. In conclusion, the
semantic model will be defined in a modified subset of the Turtle (N3) language.

In order to make the semantic model definition reusable, the use of some sort of
identifying input values is the simplest yet effective option.

Input identifying values

When creating a new knowledge base in OntoWiki two information are requested
(besides the input table and the mapping information):

• knowledge base (or model) URI

• base URI

This information can be useful in order to make the semantic mapping reusable for
creating new knowledge bases without having to redefine it. As a consequence some
input identifying values will be accepted. The used syntax is the following:

$<INPUT_CODE>

where INPUT CODE is one of the following:

• BASE URI:the introduced base URI.

• MODEL URI: the introduced model URI.

• MODEL LABEL: the last argument of the introduced knowledge base (model) URI,
used to make the new instances easier to identify.

Those input identifying values will be included anywhere wished in the semantic
mapping.

4.1.4 Basic template for importing information to a knowledge base
As explained before, the goal of the extension is to import data in the form of a CSV
table, that means, a lot of information following the same pattern, which is defined in
the first row (cf. section 4.1.1 on page 17). So every row will be mapped the same way
to the same semantic structure only changing the concrete values. To implement this
functionality, constructing the semantic model definition (the semantic mapping) as a
mapping template is the best way to go.

20

4.1. DESIGN CHAPTER 4. CSVLOAD

Germany a Country ;
l a b e l ‘ ‘ Germany ’ ’ .
Le ipz i g a City ;
l a b e l ‘ ‘ Le ipz i g ’ ’ ;
i sC i tyOf Germany ;
has Inhab i tant s ‘ ‘ 518 .862 ’ ’ ;
ha sDesc r ip t i on ‘ ‘ . . . Le ipz i g ’ s

name i s der ived from the S l a v i c
word Lipsk , which means
’ ’ ’ ’ s e t t l ement where the l ime
t r e e s (American: l i nden t r e e s)
stand ’ ’ ’ ’ .

F i r s t documented in 1015 in the
c h r o n i c l e s o f Bishop Thietmar
o f Merseburg . . . ’ ’ .

Spain a Country ;
l a b e l ‘ ‘ Spain ’ ’ .
Barcelona a City ;
l a b e l ‘ ‘ Barcelona ’ ’ ;
i sC i tyOf Spain ;
has Inhab i tant s ‘ ‘ 1 . 6 2 1 . 5 3 7 ’ ’ ;
ha sDesc r ip t i on ‘ ‘ . . . in the 3 rd century BC.

About 15 BC, the Romans redrew the town as
a castrum (Roman m i l i t a r y camp) centered
on the ’ ’ ’ ’Mons Taber ’ ’ ’ ’ , a l i t t l e h i l l
near the contemporary c i t y h a l l . . . ’ ’

Listing 4.5: N3 triples example (1)

Basically the template will be a definition of all the semantic triples that describe
the semantics of a record according to the user wished semantic model, but using the
attribute names instead of their values.

The following example clarifies this proposal. If the information shown in the listing
4.4 on page 19 is to be imported to OntoWiki, a possible way of defining its semantics
is the set of Turtle (N3) triples shown in listing 4.5.

Now transforming this into a template in the formerly proposed format the result is
something like the shown in listing 4.6.

It is easy to see that the direct substitution of the values by the attribute name can
lead to confusion when processing it, because the system is, for example, unable to tell
the difference between the word Country that represents the attribute and the one that
is just a part of the semantic definition in the first line. The same happens with the
City attribute.

21

4.1. DESIGN CHAPTER 4. CSVLOAD

Country a Country ;
l a b e l ‘ ‘ Country ’ ’ .
City a City ;
l a b e l ‘ ‘ City ’ ’ ;
i sC i tyOf Country ;
has Inhab i tant s ‘ ‘ Inhab i tant s ’ ’ ;
ha sDesc r ip t i on ‘ ‘ De s c r ip t i on ’ ’ .

Listing 4.6: First idea of template

! Country a Country ;
l a b e l ‘ ‘ ! Country ’ ’ .
! City a City ;
l a b e l ‘ ‘ ! City ’ ’ ;
i sC i tyOf ! Country ;
has Inhab i tant s ‘ ‘ ! Inhab i tant s ’ ’ ;
ha sDesc r ip t i on ‘ ‘ ! De s c r ip t i on ’ ’ .

Listing 4.7: Second idea of template

Solving this situation is that simple as adding a special coding character to the
attributes names to make them easy to recognize. The chosen symbol is the excla-
mation (!) mark as shown in listing 4.7:

Now the system is able to recognize the attributes, but further problems become clear.
The attribute Country is used indistinctly in the first and second lines although it is a
URI8 in one case and a literal9 in the other respectively. In the previous examples this
did not suppose a problem, but if the next record is included :

Los Angeles , United States of America , 3.833.995 , “...”.

using direct substitution on the template the result would be the shown in listing 4.8.
Direct translation works when the attribute is a literal, but not when it is a URI. In

this example, both the first and the third lines do not respect the triple structure. So
two important facts are deduced:

1. Attributes must be analyzed (and modified if necessary) to avoid violating the
correct RDF syntax.

2. The set of supported characters by a URI differs from the one supported by a
literal.

8 Unified Resource Identifier
9 literal information

22

4.1. DESIGN CHAPTER 4. CSVLOAD

United Sta t e s o f America a Country ;
l a b e l ‘ ‘ United Sta t e s o f America ’ ’ .
Los Angeles a City ;
l a b e l ‘ ‘ Los Angeles ’ ’ ;
i sC i tyOf United Sta t e s o f America ;
has Inhab i tant s ‘ ‘ 3 . 8 3 3 . 9 9 5 ’ ’ ;
ha sDesc r ip t i on ‘ ‘ . . . ’ ’ .

Listing 4.8: Result of template mapping (1)

! Country a Country ;
l a b e l ?Country .
! City a City ;
l a b e l ? City ;
i sC i tyOf ! Country ;
has Inhab i tant s ? Inhab i tant s ;
ha sDesc r ip t i on ? Desc r ip t i on .

Listing 4.9: Example of template (1)

It is then necessary to define those supported character sets, make somehow URI and
literal attributes differentiable and apply the right set in every case. In the case of a
literal the only restriction is that the content is a standard string, while in the case of a
URI the only accepted characters will be the alphanumeric10 and the underscore (). In
this sense, every character that differs from the ones mentioned will be substituted by
an underscore. This same restriction is applied to the mapping attributes, in order to
reduce complexity and error provability. Also, in order to avoid excessively long values
which could lead to malfunctions in the resource system, URIs will be cut to a maximum
length of 40 characters.

To make URI and literal different between each other we can use different characters to
encode them, for example the exclamation mark (!) for the URI and the question mark
(?) for the literal. As literals are always double-quoted the marks are not necessary
anymore and will therefor not be used. The resulting template would be the shown in
listing 4.9 and the resulting output for the previous example is the shown in listing
4.10.

With those resulting template syntax and features there are enough tools to import
a CSV table into an OntoWiki knowledge base. However only the direct substitution
of simple attribute values is supported. Other features like multivalued attributes or
values pre-processing are not supported by it at this point.

10 case-sensitive Latin letters and Arabic digits

23

4.1. DESIGN CHAPTER 4. CSVLOAD

Uni ted State s o f Amer i ca a Country ;
l a b e l ‘ ‘ United Sta t e s o f America ’ ’ .
Los Angeles a City ;
l a b e l ‘ ‘ Los Angeles ’ ’ ;
i sC i tyOf Un i t ed State s o f Amer i ca ;
has Inhab i tant s ‘ ‘ 3 . 8 3 3 . 9 9 5 ’ ’ ;
ha sDesc r ip t i on ‘ ‘ . . . ’ ’ .
Listing 4.10: Result of template mapping (2)

City , Country , Inhab i tant s , U n i v e r s i t i e s
‘ ‘ Le ipz i g ’ ’ , ‘ ‘ Germany ’ ’ , ‘ ‘ 5 18 . 862 ’ ’ , ‘ ‘ Uni Le ipz ig ,HTWK’ ’
‘ ‘ Barcelona ’ ’ , ‘ ‘ Spain ’ ’ , ‘ ‘ 1 . 6 2 1 . 5 3 7 ’ ’ , ‘ ‘UPC,UB,UPF ’ ’

Listing 4.11: Example of CSV file records (3)

4.1.5 Template support of multivalued attributes
Normally every attribute contains one single value. But there are some cases where one
single attribute contains complex values, for example, in the form of a list of values of
the attribute type. It could also contain a simpler representation of an object that fits
to a certain class. However, as explained before, the extension accepts only simple CSV
tables as input, so this type of representation is not accepted. In conclusion, the only
complex attribute type accepted is a multivalued attribute, that means, a list of values
(separated by comma or any other selected character) of the same type.

To clarify this let us keep on with the example data of listing 4.3 on page 18. Extend-
ing the table with an attribute called Universities containing a list of the universities of
the specified City the result would be the shown in listing 4.11.

A possible template that would fit this data table is the shown in listing 4.12.
But this way the resulting semantic model would be very poor and would not represent

every piece of information (in this case every University) as a meaningful and unique

! Country a Country ;
l a b e l ?Country .
! City a City ;
l a b e l ? City ;
i sC i tyOf ! Country ;
has Inhab i tant s ? Inhab i tant s ;
h a s U n i v e r s i t i e s ? U n i v e r s i t i e s .
Listing 4.12: Example of template (1b)

24

4.1. DESIGN CHAPTER 4. CSVLOAD

entity. The most appropriate way to do it is defining every value in the list Universities
as a University and refer it to the city as University isLocatedIn City.

In order to achieve this, the template has to support some kind of additional syntax
that accepts multivalued attributes. The features of this extension should at least
contemplate the following:

• Abstract semantic definition : following the style of the whole template, this
syntax will define the abstract model for every general value in the multivalued
attribute and the system will be the one to do the necessary substitutions and
processing.

• Range selection: in some cases the user will not want to use all of the values
of the multivalued attribute. He could wish only one of the values or a subset of
them. The syntax must also accept some sort of index range definition to allow
the user a bigger personalization level.

• Delimiter identifying: in the most common case the character used to separate
values in a same field is the comma. In a CSV file, as example, a multivalued
attribute usually contains itself a CSV record, with the particularity that all fields
correspond to the same attribute definition. But the delimiter can also be some
other depending on the source or type of data. In some countries the comma is
used as the separating character between the integer and the decimal part of a
numeric value and, in order to avoid problems with it, CSV files use the semicolon
(;) character. Because of this the new syntax has to allow defining the delimiter
character.

The selected way to do this is defining the attribute mapping as usual but concate-
nated with rectangular brackets ([]) with the necessary configuration parameters inside
of them, which are the range definition and the delimiter. The supported range defini-
tion at the time is the following:

1. *: it means that all of the values should be taken.

2. N : where N is a positive integer from 0 to 9 which determines the only specific
element of the values list to be mapped.

The delimiter comes next quoted (‘’) or double-quoted (“”) and the
parameters are comma-separated.

Considering all the previous the resulting template that would fit the data shown in
listing 4.11 is the one shown in listing 4.13.

Using the improved substitution algorithm, the result of applying the template to the
second record of listing 4.11 on the previous page (the information about the city of
Leipzig) are the triples shown in listing 4.14.

Germany a Country ;
l a b e l ‘ ‘ Germany ’ ’ .

25

4.1. DESIGN CHAPTER 4. CSVLOAD

! Country a Country ;
l a b e l ?Country .
! City a City ;
l a b e l ? City ;
i sC i tyOf ! Country ;
has Inhab i tant s ? Inhab i tant s .
! U n i v e r s i t i e s [∗ , ‘ ‘ , ’ ’] a Un ive r s i ty .
! U n i v e r s i t i e s [∗ , ‘ ‘ , ’ ’] l a b e l ? U n i v e r s i t i e s [∗ , ‘ ‘ , ’ ’] .
! U n i v e r s i t i e s [∗ , ‘ ‘ , ’ ’] i sLocated In ! City .

Listing 4.13: Example of template (2)

Le ipz i g a City ;
l a b e l ‘ ‘ Le ipz i g ’ ’ ;
i sC i tyOf Germany ;
has Inhab i tant s ‘ ‘ 518 .862 ’ ’ .
Un i Le ipz ig a Un ive r s i ty .
Un i Le ipz ig l a b e l ‘ ‘ Uni Le ipz i g ’ ’ .
Un i Le ipz ig i sLocated In ! City .

HTWK a Unive r s i ty .
HTWK l a b e l ‘ ‘HTWK’ ’ .
HTWK isLocated In Le ipz i g .

Listing 4.14: Result of template mapping (3)

4.1.6 Template support of empty values
The nature of CSV tables and of information itself permits the existence of empty values.
Let us consider the previous example shown in listing 4.11 with an additional record
for Markkleeberg, a little city near Leipzig which does not have universities (cf. listing
4.15).

City , Country , Inhab i tant s , U n i v e r s i t i e s
‘ ‘ Le ipz i g ’ ’ , ‘ ‘ Germany ’ ’ , ‘ ‘ 5 18 . 862 ’ ’ , ‘ ‘ Uni Le ipz i g , HTWK’ ’
‘ ‘ Barcelona ’ ’ , ‘ ‘ Spain ’ ’ , ‘ ‘ 1 . 6 2 1 . 5 3 7 ’ ’ , ‘ ‘UPC , UB , UPF ’ ’
‘ ‘ Markkleeberg ’ ’ , ‘ ‘ Germany ’ ’ , ‘ ‘ 2 4 . 254 ’ ’ , ‘ ‘ ’ ’

Listing 4.15: Example of CSV file records (4)

Applying the actual algorithm to this record with the template of listing 4.13, the
result would be the shown in listing 4.16.

Germany a Country ;
l a b e l ‘ ‘ Germany ’ ’ .

26

4.1. DESIGN CHAPTER 4. CSVLOAD

Markkleeberg a City ;
l a b e l ‘ ‘ Markkleeberg ’ ’ ;
i sC i tyOf Germany ;
has Inhab i tant s ‘ ‘ 24 . 254 ’ ’ .
a Un ive r s i ty .
l a b e l ‘ ‘ ’ ’ .
i sLocated In Markkleeberg .

Listing 4.16: Result of template mapping (4)

The last three lines are obviously wrong because they do not respect the RDF triple
syntax. To avoid this problem the system will recognize if an attribute is empty and
delete any RDF expression that contains it from the record semantic mapping. That
means that the system would apply the reduced template shown in listing 4.17 to the
mentioned record.

! Country a Country ;
l a b e l ?Country .
! City a City ;
l a b e l ? City ;
i sC i tyOf ! Country ;
has Inhab i tant s ? Inhab i tant s .

Listing 4.17: Reduced template due to empty values

4.1.7 Template support of non-defined attributes
Along the definition of this template 2 different data tables have been used:

1. City , Country , Inhabitants , Description

2. City , Country , Inhabitants , Universities

It is clear that the templates that fit to those tables (listings 4.9 and 4.13) are the
same for the first 3 attributes (City , Country , Inhabitants) and differ only in the last
attribute (Description and Universities respectively). But even so they need their own
specific template. For example, if the template of the 1. table was applied to an input
table of the second type, two irregularities would occur:

1. The system would not be able to apply the semantic mapping to the input attribute
Universities.

2. The system would not find the information to substitute the Description mapping
definition and the resulting output triples would be wrong.

The first case just means a loss of information, but the system would still work
correctly and the import process would not stop, so it is just responsibility of the user.

27

4.1. DESIGN CHAPTER 4. CSVLOAD

This loss could also be intentional if the user simply does not want or does not need to
import this information.

In the second case the output would be wrong and the importing process would be
interrupted. Therefor the system will also detect when an attribute, that is defined in
the template, does not exist in the input table and will delete the RDF expressions just
like with empty attributes, as explained in the previous section (cf. section 4.1.6).

This implies two big advantages: first, the problem of the second irregularity is solved,
which means that tables with similar attributes can use the same template for importing
at least all their similar information. Second, along the same line, the user could define
a template with a group of attributes, but use a CSV input table containing only a
subset of this attributes. This means that a general template (cf. listing 4.18) can be
defined and after that different types of tables with just some attributes in common can
be imported using the same template.

! Country a Country ;
l a b e l ?Country .
! City a City ;
l a b e l ? City ;
i sC i tyOf ! Country ;
has Inhab i tant s ? Inhab i tant s ;
ha sDesc r ip t i on ? Desc r ip t i on .
! U n i v e r s i t i e s [∗ , ‘ ‘ , ’ ’] a Un ive r s i ty .
! U n i v e r s i t i e s [∗ , ‘ ‘ , ’ ’] l a b e l ? U n i v e r s i t i e s [∗ , ‘ ‘ , ’ ’] .
! U n i v e r s i t i e s [∗ , ‘ ‘ , ’ ’] i sLocated In ! City .

Listing 4.18: Example of general template

According to the previous idea, a template that would map the following table:

• City , Country , Inhabitants , Description, Universities

would also map the tables mentioned before:

• City , Country , Inhabitants , Description

• City , Country , Inhabitants , Universities

As well as those:

• City , Country , Description

• City , Country

• City , Country, Universities

However, not every table is a valid input of the template (see section 4.1.10 on
page 30).

The templates of the previous examples are simplified (no prefixes or ontology defini-
tion are used) in order to make them easier to understand. A complete, usable version
of the template in listing 4.18 is available in the CSVLoad source code folder.

28

4.1. DESIGN CHAPTER 4. CSVLOAD

4.1.8 Template support of data type definition
RDF supports the explicit definition of the data type of a literal in this form:

‘‘LITERAL_VALUE’’ˆˆ<TYPE_DEFINITION_URI>

Because of its simplicity and utility the template supports this feature following this
syntax:

?ATTRIBUTE_NAMEˆˆ<TYPE_DEFINITION_URI>

4.1.9 Template support of data processing functions
Sometimes the same data can be represented in different ways. A very good example
is the data type Date/Time. This can be shown in different ways or with a different
amount of information (minutes or seconds are not always necessary or used). Examples
of different representations (also with different precision) of the same Date/Time value:

• 2010-07-16T19:20+01:00

• 2010-07-16T19:20:18+01:00

• July 16, 2010, 19:20

• Fri Jul 16 19:20:18 2010

Although they all represent the same (approximate) moment in time, they have differ-
ent formats. And that is not the only problem; the first two alternatives give the infor-
mation of the time zone, but the other two do not. This can lead to misunderstanding of
the data. To avoid this, some systems use some kind of unique, time zone independent
representation to store this data. A widely spread format is the UNIX timestamp. Orig-
inally defined for UNIX systems, but used currently in several other OS and file systems,
it represents the number of seconds passed from 1970-01-01T00:00+00:00 (Second 0 of
minute 0 at 00:00 on the first of January 1970) till the current moment 11. In this sense
the UNIX timestamp representation of the Date/Time shown in the upper example is
1279304418.

So this kind of data formats are very useful for sending information in a standard,
error free form, but not user friendly. A user needs this information represented as
year-month-day-time (or similar) format, but the template processing algorithm only
substitutes the input data into RDF triples as specified. Considering the mentioned
problematic, an interesting feature is offering some transforming functions that the
template defining user can request when needed. This makes more sense for literals,
because they are the ones that respond to such problematic in a clear way due to their
data representing function.

Again the best way to include this feature is using a special encoding character (in
this case the $ character) together with an identifier code of the specific function. The
resulting representation is the following (taking into consideration the syntax of the
previous section):
11 more info: http://www.unixtimestamp.com/

29

http://www.unixtimestamp.com/

4.1. DESIGN CHAPTER 4. CSVLOAD

?ATTRIBUTE_NAME$FUNCTION_CODEˆˆ<TYPE_DEFINITION_URI>

being both processing function and type definition optional.
At this point only the DATE function code, which transforms the attribute from a

UNIX timestamp to the ISO 8601 YYYY-MM-DDThh:mmTZD date-time format, is
defined.

4.1.10 Semantic dependencies graph
As explained in section 4.1.7 on page 27, attributes defined in the template that do
not exist in the input table will be deleted from the template before executing the
substitution algorithm. This feature is designed to permit the user importing new data
using a general template without having to import all the defined data and without
having to redefine the template for every specific table. Even so the user does not have
total freedom to decide the input data because of the semantic dependencies graph.

Having a correct template as input, the semantic dependencies graph is defined like
that:

1. An expression of type “N a <Type>.”, being N a URI, creates a node with label
N .

2. An expression of type “N1 <property> N2.”, being N1 and N2 URIs (or also a
literal in the case of N2), creates a N1N2 node.

3. An expression of type “<expression>; <property> N1; <property> N2;...;
<property> NN .”, being <expression> an expression as defined in 1. or
2. and N1, N2, ..., NN URIs, creates a dependency tree, graphically shown by
N1, N2, ..., NN being the child nodes (the dependent nodes) and the node defined
by <expression> being the parent node (the node provoking a dependency).

4. If a node N1 is dependent to an equivalent one N2 (a node with the same label), the
nodes joint, that means, from now on there is only one node N12, whose children
are both the former ones from N1 and N2

5. When all nodes have been defined according to the previous rules, independent
nodes (nodes with no dependency) are deleted from the graph.

The first 3 rules create the full graph and, by applying the last 2, a reduced graph (a
tree) is build, clean from redundant or useless information.

When deleting an attribute from the template because it is not in the input informa-
tion, the system deletes every expression in which this attribute appears (cf. sections
4.1.6 on page 26 and 4.1.7 on page 27), deleting it implicitly from the semantic depen-
dencies graph. According to the third rule of the graph definition, the direction of the
dependency is bottom-up, which means that a node that has no children can be deleted
with no problem, but a parent node can only be deleted if all of their child nodes are
also deleted. Otherwise a conflict is created.

30

4.1. DESIGN CHAPTER 4. CSVLOAD

Country

Country

City

DescriptionInhabitantsCountryCity

Universities Universities/Universities Universities/City

Figure 4.2: Cities table full semantic dependencies graph

City

DescriptionInhabitantsCountry

Figure 4.3: Cities table reduced semantic dependencies graph

The following example clarifies this. Applying the first 3 rules to the template shown
in listing 4.18 on page 28 the generated full graph is the shown in figure 4.2.

The reduced version (applying the full set of rules) is the one shown in figure 4.3.
So, according to the previous statement, if the input data does not contain an attribute

City (either it is empty or it is non-defined) the system will output wrong triples. Let
us think that the 2nd record of listing 4.15 on page 26 (the information about Leipzig)
has the field City empty. Applying the mapping algorithm with the template of listing
4.18 on page 28 the result would be the shown in listing 4.19.

An argument is missing in the third row (and consequently also in the fourth and
fifth), giving a non valid RDF output as a result. To avoid such a problem there are 2
different ways to go:

Germany a Country ;
l a b e l ‘ ‘ Germany ’ ’ .

i sC i tyOf Germany ;
has Inhab i tant s ‘ ‘ 518 .862 ’ ’ ;
ha sDesc r ip t i on ‘ ‘ . . . ’ ’ .

Un i Le ipz ig a Un ive r s i ty .
Un i Le ipz ig l a b e l ‘ ‘ Uni Le ipz i g ’ ’ .

HTWK a Unive r s i ty .
HTWK l a b e l ‘ ‘HTWK’ ’ .
HTWK isLocated In Le ipz i g .

Listing 4.19: Triples reflecting the semantic dependencies graph problem

31

4.1. DESIGN CHAPTER 4. CSVLOAD

• Use of identifying attributes: make sure that an attribute that is parenting
other nodes in the semantic dependencies graph is the identifier12, part of the
identifying group of attributes or at least an attribute that will never be empty or
non-defined.

• Avoiding parent nodes: if all the expressions are defined as shown in points 1.
and 2. of the semantic dependencies graph, the graph will be empty at the end of
the defining process, which means that there are no dependencies and therefore
no conflict. In other words, avoid interconnecting expressions with the semicolon
character if the first condition cannot be guaranteed.

4.1.11 Static & Iterative Parts of the Template
Taking all the previous into consideration, the designed syntax for a template is a mix of
a subset of the Turtle (N3) syntax and new self-defined elements. The user must define a
new abstract knowledge base model, which will be personalized when instancing, directly
on the template. The template defines also the abstract structure of every record in the
input CSV table.

So there is a part of the template which is used only at the beginning for defining
the new model and any needed related data. This is the so-called static part of the
template. On the other hand, there is a part that is iteratively used for mapping every
record to its according semantic representation. This is the so-called iterative part.

Figure 4.4: RDF template structure

The differences between the static part and the iterative part are:

• The Static part defines a set of triples which are loaded in the first place. After-
wards all the triples generated by the iterative part are introduced.

• Attribute mapping (attr. substitution, empty values and non-defined attr. sup-
port) and data processing functions are only supported by the iterative part.

12 an attribute with unique value and not empty

32

4.1. DESIGN CHAPTER 4. CSVLOAD

• Input identifying values are supported by both parts.

• The template is build like this: <static part> * <iterative part>, with an asterisk
character (*) at the beginning of the iterative part to mark the separation (cf.
figure 4.4).

4.1.12 The template syntax
The static part does not need any special treatment (except for the processing of the
input identifying values) since its syntax is the usual of a Turtle (N3) document:

• Definition of a base (@base <BASE URI>).

• Definition of prefixes (@prefix PREFIX LABEL <PREFIX URI>).

• RDF triples.

On the other hand, the iterative part is defined with a modified subset of this language.
It contains a sequence of 0 or more RDF EXPRs following the syntax of listing 4.20.

RDF EXPR => (EXPR | MULT EXPR)
EXPR => [‘ ∗ ’ ‘ . ’ ‘ ; ’] (CLASSDEF |URITOLIT |TOURI |TOLIT))
CLASSDEF => URI ‘ a ’PROP
URITOLIT => URI ‘ ’PROP‘ ’LIT
TOURI => PROP‘ ’URI
TOLIT => PROP‘ ’LIT

MULT EXPR=>[‘∗ ’ ‘ . ’ ‘ ; ’] (M CLASSDEF |M URITOMLIT |M TOLIT |M TOMURI)
M CLASSDEF =>URI ‘ [’RANGE‘ , ’DEL‘] a ’PROP
M URITOMLIT=>URI ‘ [’RANGE‘ , ’DEL‘] ’PROP‘ ’LIT ‘ [’RANGE‘ , ’DEL‘] . ’
M TOLIT=> ‘ [’RANGE‘ , ’DEL‘] ’PROP‘ ’LIT ‘ . ’
M TOMURI=> ‘ [’RANGE‘ , ’DEL‘] ’PROP‘ ’URI ‘ [’RANGE‘ , ’DEL‘] . ’

PROP => ALPHA NUM‘ : ’ [ALPHA NUM‘ / ’ ‘ . ’ ‘− ’ ‘# ’]
URI => PREF‘ : ’ ‘ ! ’ALPHA NUM
LIT => ‘ ? ’ALPHA NUM(‘$ ’FUNC |) (‘ˆˆ< ’ [! ‘< ’]+ ‘> ’ |)

RANGE => ([‘ 1 ’−‘9 ’] | ‘∗ ’)
DEL => ‘ ” ’ [, ;] ‘ ” ’
PREF => [‘ a ’−‘z ’ ‘A ’−‘Z ’]
ALPHA NUM => [‘ 1 ’−‘9 ’ ‘ a ’−‘z ’ ‘A ’−‘Z ’]
FUNC => ‘DATE’

Listing 4.20: RDF template syntax

So the final structure of the template is the shown in figure 4.5.

33

4.1. DESIGN CHAPTER 4. CSVLOAD

Figure 4.5: RDF template structure & syntax

4.1.13 Data dependencies & risks
The application needs the input of several data in a specific format in order to work
properly. That means that the system depends on this data and, depending on the

34

4.1. DESIGN CHAPTER 4. CSVLOAD

degree of dependence on this data, the system suffers the risk of not working properly
or not working at all.

The CSVLoad extension has 3 information sources, each with its own risks.

CSV table data

The application requires an specific type of file as an input. This could mean a risk if
the file type became obsolete and lesser used, or was redefined or substituted. In this
case the application would stop working properly.

However, this risk should not be high due to the extended use of CSV. In addition to
this, it is a very simple format conceived with the idea of being simple, so redefinition
or substitution are not likely to happen.

Semantic template

In the case of the semantic template the input dependency is greater than with the CSV
table. The syntax of the template is specific, complex and recently developed, which
makes it a source of risk. Although it is based in a subset of the Turtle (N3) language, it
has new elements to which the users are not used to. Plus it is a very young technology
and still needs more testing and bug fixing in order to be fully reliable.

The template system provides the user with a lot of flexibility which, in addition
to the mentioned complexity and its lack of proved reliability, produces a high error
possibility (both from user mistakes and from possible undetected bugs). The possibility
of modifying and adding templates is only available for user with access to the file system.
This type of users are in general semantic web experts or have at least a good RDF
knowledge, so the learning an adapting curve should not be excessively pronounced.

User input data

The system has already tools for filtering the demanded values when creating a model
(knowledge base URI, base URI, file location). Even so, the system needs for them to
be correct (well-defined URIs, file exist) and not used in previously existing knowledge
bases, otherwise the process will stop when trying to create a knowledge base (described
model already exists) or trying to load the template and CSV files (template parameters
not respected or bad-defined; input CSV file does not exist, cannot be loaded or does
not have the right format).

If the templates were previously well-defined by the file system administrator, no
problem should occur when being selected by the application user. Otherwise the system
will not be able to open the template file or the mapping will not be correctly done, and
therefor the process will be stopped.

4.1.14 Section summary
As determined in section 4.1.1 on page 16 the input information will be in the form of a
simple CSV data table. In order to make the importing possible, the declaration of a new
knowledge base and a semantic mapping are necessary. This mapping is implemented

35

4.2. APPLICATION REQUIREMENTS CHAPTER 4. CSVLOAD

with a semantic template which defines the general semantic structure that each record
should follow and a specific engine that applies this semantic structure to every data
record in the input CSV table. Other features of this template are:

• support of multivalued attributes

• support of empty values

• support of non-defined attributes

• support of data type definition

• support of data processing functions

The structure and syntax of this template consists of two parts (cf. figure 4.5 on
page 34): the static part, which contains the triples that define the ontology and general
properties of the model, and the iterative part, which contains the mapping definition
for every inputed record.

The extension takes the input information (CSV + identifying values) and, with the
help of one of the defined templates (which can be changed/defined by someone with
access to the file system), transforms plain information into a semantic model and stores
it in the defined system knowledge base, as shown in figure 4.6.

Figure 4.6: From CSV data to stored RDF triples using templates

4.2 Application requirements
In order to make sure that the main objectives are satisfactory fulfilled, concrete, mea-
surable requirements are defined. Those requirements can be divided into two categories:

36

4.2. APPLICATION REQUIREMENTS CHAPTER 4. CSVLOAD

• Functional requirements: they define processes together with their according
input data, behavior and output data. So they define what the system does, in
other words, its use cases. The main objectives are here reflected.

• Non-functional requirements: they define different criteria in terms of quality,
such as usability, extensibility or performance (among others). So they define how
a system is supposed to be and work, in other words, they represent the quality
and general behavior and look that the system/application should have.

4.2.1 Functional requirements / Use cases

Import new knowledge base from CSV

Actors:

• OntoWiki (SoftWiki) user with administrator privileges

Preconditions:

• None

Case scenario:

1. User enters the required input data:
a) String: knowledgeBaseUri

b) String: baseUri

c) Depending on the CSV file source chosen option (Web/local):
• URL: webFileURL (optional)
• URL: localFileURL

d) Select: templateId (selection from HTML list)
and clicks on ‘Create Knowledge Base’.

2. The system:
a) creates the knowledge base
b) reads the CSV file
c) loads the chosen template
d) executes the mapping algorithm
e) introduces the new RDF triples into the knowledge base system

3. The system shows the model configuration screen with the information of the new
loaded model

Error scenario:

37

4.2. APPLICATION REQUIREMENTS CHAPTER 4. CSVLOAD

• 2a → the described new knowledge base does already exist in the system

• 2b → the built path to the file is wrong or the file does not exist

• 2c → the template path was not good defined in the component.ini file or the file
does not exist

• 2e→ the inputed model is not valid (probably because of a violation in the seman-
tic dependencies graph terms)

Postconditions:

1. A knowledge base with the specified knowledge base uri and base uri exists in the
knowledge base system and contains the data of the CSV input table accordingly
mapped to the semantic model specified in the selected template

Add a new template

Actors:

• User with access to the CSVLoad extension files and modification privileges

Preconditions:

• None

Case scenario:

1. The user:
a) defines the parameters of the template in the [private] section of the config-

uration file (component.ini) following this pattern:
i. properties.ttltemplates[] = “<TEMPL ID>”
ii. properties.<TEMPL ID>[label] = “<LABEL>”

iii. properties.<TEMPL ID>[descr] = “<DESCRIPTION>”
iv. properties.<TEMPL ID>[template] = “<TEMPL FILE NAME>.ttlt”
v. properties.<TEMPL ID>[url] = “<URL>”
vi. properties.<TEMPL ID>[params] = “<PARAMETERS>”

b) saves the <TEMPL FILE NAME>.ttlt file containing the template defini-
tion in the ttlt folder under the extension folder (.../csvload/ttl/<TEMPL -
FILE NAME>.ttlt).

Postconditions:

1. The template is accessible from now on when executing the use case Import new
knowledge base from CSV (cf. section v4.2.1)

38

4.2. APPLICATION REQUIREMENTS CHAPTER 4. CSVLOAD

Activate/deactivate template

Actors:

• User with access to the CSVLoad extension files and modification privileges

Preconditions:

• The system contains a well-defined template with the identifier <TEMPL ID>

Case scenario:

1. The user uncomments (if wanting to activate) or comments (if wanting to deacti-
vate) the following line of the template:

a) properties.ttltemplates[] = “<TEMPL ID>”

2. Optional: the user uncomments (if wanting to activate) or comments (if wanting
to deactivate) the following lines of the template:

a) properties.<TEMPL ID>[label] = “<LABEL>”
b) properties.<TEMPL ID>[descr] = “<DESCRIPTION>”
c) properties.<TEMPL ID>[template] = “<TEMPL FILE NAME>.ttlt”
d) properties.<TEMPL ID>[url] = “<URL>”
e) properties.<TEMPL ID>[params] = “<PARAMETERS>”

Postconditions:

1. The template is from now on accessible (if activated) or no longer accessible (if
deactivated) when executing the use case Import new knowledge base from CSV
(cf. section 4.2.1 on page 37).

Delete template

Actors:

• User with access to the CSVLoad extension files and modification privileges

Preconditions:

• The system contains a well-defined template with the identifier <TEMPL ID>
and a file under .../csvload/ttlt named <TEMPL FILE NAME>.ttlt

Case scenario:

1. The user:
a) deletes the following lines (in case of existing) of the template in the [private]

section of the configuration file (component.ini):

39

4.2. APPLICATION REQUIREMENTS CHAPTER 4. CSVLOAD

i. properties.<TEMPL ID>[label] = “<LABEL>”
ii. properties.<TEMPL ID>[descr] = “<DESCRIPTION>”

iii. properties.<TEMPL ID>[template] = “<TEMPL FILE NAME>.ttlt”
iv. properties.<TEMPL ID>[url] = “<URL>”
v. properties.<TEMPL ID>[params] = “<PARAMETERS>”

b) deletes the <TEMPL FILE NAME>.ttlt file containing the template defini-
tion in the ttlt folder under the extension folder (.../csvload/ttl/<TEMPL -
FILE NAME>.ttlt).

Postconditions:

1. The template with ID <TEMPL ID> and file <TEMPL FILE NAME>.ttlt is
completely deleted from the system.

4.2.2 Non-functional requirements

System architecture consistency

OntoWiki provides a sophisticated extension architecture. It is important to choose the
correct extension in order to keep the system consistent, according to the information
given in section 2.4.2 on page 9.

Requirement terms:

• Extensions, that need a high level of user interaction (more than two fields/op-
tions) or that show information of different type in the same context should be
defined using a component extension architecture.

• Extensions, that need a high level of processing but not much user interaction
and/or not much display options should be defined using a component extension
architecture.

• Extensions, that need to show some additional/new information directly related to
some existing and in an already established GUI, or that provide any event-based
functionality should be defined using a plug-in extension architecture.

Application:
Considering this, it gets clear that the CSVLoad extension has to follow a component
extension architecture.

GUI consistency

In order to provide the user with a satisfying navigation experience, new extensions
and functionalities have to share a common structure with the already existing.

Requirement terms:

40

4.3. IMPLEMENTATION CHAPTER 4. CSVLOAD

1. Every new extension has to follow the same element distribution of previous exten-
sions/system elements accordingly.

Application:
As the CSVLoad extension provides a very similar functionality to the createAction
function of the ModelController, the structure will be as similar as possible, in other
words, CSVLoad will also be a component and will have similar (or equal) data arranged
in the same way in its display.

4.3 Implementation

4.3.1 GUI Design

Figure 4.7: CSVLoad GUI Screen 1

The initial screen of the use case Import new knowledge base from CSV of CSVLoad
is shown in figure 4.7. In case of successful importing, the screen of figure 4.8 is shown.

4.3.2 Declaring a template
In order to make the template accessible, it has to be declared in the component.ini
file. The required parameters are:

• templ id: template internal identifier

• label: name of the template

• template: name of the template file in the ttlt folder

41

4.3. IMPLEMENTATION CHAPTER 4. CSVLOAD

Figure 4.8: CSVLoad GUI Screen 2

• descr (optional): template description

• url (optional): url to host system of the CSV file

• params (optional): additional path and parameters to the CSV file

The exact syntax to define this parameters is described in the component.ini file of
the CSVLoad extension.

4.3.3 Application algorithm

Input data & first steps

The required input data are the shown in figure 4.7 on the preceding page. If no file
URL is explicitly defined, the source of the file is build by concatenating the <url> and
<params> values of the selected template definition in the configuration file (compo-
nent.ini) with the specified MODEL URI in this form: <url>MODEL URI<params>. This is
very helpful when a template is clearly focused on a specific system which has a complex
or very configurable URL. The Google Code Issues Template (cf. section 4.4 on page 45)
is a good example; in this case url contains the url to the Google Code projects site
while params contains the definition of the wished information (issue types, columns,
sorting).

42

4.3. IMPLEMENTATION CHAPTER 4. CSVLOAD

When the user clicks on “Create Knowledge Base” the system loads the CSV file and
the template file. If the input data and the template definition are correct, the system
creates the knowledge base and calls the mapping algorithm.

Mapping algorithm

The system takes the following steps:

1. Declares the template syntax (cf. listing 4.20 on page 33).

2. Substitutes the input identifying values of the template with the according values
(cf. section 4.1.3 on page 20).

3. Splits the modified template into the Static and the Iterative parts (cf. section
4.1.11 on page 32).

4. Splits the Iterative part into RDF EXPR expressions according to the template
syntax.

5. Establishes the mapping index between the template variables array and the input
columns. Taking the template on listing 4.18 on page 28 as an example:

• template variables array: vars{[0]→Country, [1]→City, [2]→Inhabitants,
[3]→Description, [4]→Universities}

• example input columns(0-4): City , Country , Description , Extension , Uni-
versities

• resulting mapping index: matchArray{[Country]→, [City]→0,
[Description]→2, [Universities]→4}

6. For every row of the CSV table (except for the name definition row) the system:
a) Makes a copy of the modified template to work on.
b) Looks for the variables defined in every RDF EXPR of the template.
c) If they do not exist in the mapping array, the RDF EXPR is deleted from

the template copy.
d) For every variable:

i. Gets the appropriate value for the variable using the matching array.
ii. Applies the according content cleaning method depending on the variable

type (cf. section 4.1.4 on page 20).
iii. Applies the according data processing function if there is any valid one

specified (cf. section 4.1.9 on page 29).
iv. Substitutes the processed value in the template with the variable refer-

ence.
e) Once every RDF EXPR has been processed, the resulting N3 triples are

temporally stored in an array.

43

4.3. IMPLEMENTATION CHAPTER 4. CSVLOAD

7. Once every row of the CSV input table has been mapped to its according N3
triples, the processed Static part is concatenated with all the elements in the
array (the resulting N3 triples for every record) giving as a result a String which
contains the wished semantic model.

Storage of the created model

The last step is saving the semantic model in the system knowledge bases. To do it,
OntoWiki already provides a tool for this matter, the importRdf function13.

If the process was successful, the model configuration screen (cf. figure 4.8 on page 42)
is shown. Otherwise the system reports of the problem in the CSV model import screen
(cf. figure 4.7 on page 41).

4.3.4 File structure
The file structure of the extension follows the abstract model of section 2.4.2 on page 9
in form shown in figure 4.9.

extensions/

plugins/modules/components/

csvload/

ttlt/

test.ttltGC.ttlt

imp.php

CsvHlp.phpCsvCtr.php

comp.ini

comp.ini = componemt.ini imp.php = import.php
CsvCtr.php = CsvloadController.php GC.ttlt = googlecode.ttlt

CsvHlp.php = CsvloadHelper.php

Figure 4.9: CSVLoad file tree

The functionalities of the files are the following:

• component.ini: contains the configuration of the extension. In the private part
the templates are declared as explained in section 4.3.2 on page 41

• CsvloadController.php: creates the GUI, gets the basic input data (URIs) and calls
the mapping algorithm (import.php file). Afterwards, it saves the defined model
in the OntoWiki system knowledge bases.

13 http://code.google.com/p/ontowiki/source/browse/Erfurt/Store.php?repo=erfurt#982

44

http://code.google.com/p/ontowiki/source/browse/Erfurt/Store.php?repo=erfurt#982

4.4. GOOGLE CODE ISSUES TEMPLATE CHAPTER 4. CSVLOAD

• CsvloadHelper.php: adds the “Import Knowledge Base from CSV” menu option
to the “Extras” menu.

• import.php: loads the input CSV table and the template file, and executes the
mapping algorithm. This file is defined so that does not depend on the OntoWiki
framework. In other words, so that it can be easily adapted to other systems or
be independent to major changes in the basic OntoWiki structure.

• googlecode.ttlt: contains the Google Code Issues Template (cf. section 4.4).

• test.ttlt: the Cities template, used as an example in the template definition (cf.
section 4.1.4 on page 20).

4.4 Google Code Issues Template
The Google Code Issues Template defines a mapping from a CSV file to the SWORE
ontology of the SoftWiki project. It gets this name because the names of the mapping
attributes correspond to those of the CSV files provided by Google Code Issues, but
any table following a similar structure to this files can also be imported into a SWORE
knowledge base using this template.

However, there is a problem importing data from Google Code Issues, which is that
the requirement description (and also the comments about this requirement) are not
provided by the CSV table an have to be acquired in another way (cf. section 5 on
page 51).

The generated semantic data corresponds to a subset of the SWORE ontology as
shown in figure 4.10. As previously said, the description of the requirement is not
imported from Google Code Issues, but even so the template supports this input value.

4.4.1 Template .ttlt file
The designed template, which maps information from a CSV file provided by Google
Code Issues (or a similar table) to the SWORE ontology, is shown in listing 4.21.

@pref ix owl : <h t t p : //www. w3 . org /2002/07/ owl#> .
@pre f ix r d f s : <h t t p : //www. w3 . org /2000/01/ rdf−schema#> .
@pre f ix t a g s : <h t t p : //www. holygoat . co . uk/owl/redwood /0 .1/ tags /> .
@pre f ix r e q : <h t t p : // ns . s o f t w i k i . de/ req /> .
@pre f ix s i o c : <h t t p : // r d f s . org / s i o c /ns#> .
@pre f ix s k o s : <h t t p : //www. w3 . org /2004/02/ skos / core#> .
@pre f ix dcterms : <h t t p : // pur l . org /dc/ terms /> .
@pre f ix dc : <h t t p : // pur l . org /dc/ e lements /1 .1/> .
@pre f ix c o n f i g : <h t t p : // l o c a l h o s t /OntoWiki/ Config /> .

<$BASE URI> a owl:Ontology ;

45

4.4. GOOGLE CODE ISSUES TEMPLATE CHAPTER 4. CSVLOAD

Figure 4.10: CSVLoad generated part (marked in red) of the SWORE Ontology

rdfs:comment ” Requirements f o r the development o f the
GoogleCode p r o j e c t : $MODEL LABEL” ;

r d f s : l a b e l ”$MODEL LABEL−GCIssues ” ;
owl : import s <h t t p : // ns . s o f t w i k i . de/ req /> ,

<h t t p : // r d f s . org / s i o c /ns#> ,
<h t t p : //www. holygoat . co . uk/owl/redwood /0 .1/ tags /> ,
<h t t p : //www. w3 . org /2004/02/ skos / core> .

∗
g co : $MODEL LABELReq! ID a req:Requirement ;
d c : t i t l e ?Summary ;
d c : d e s c r i p t i o n ? Desc r ip t i on ;
d c : c r e a t o r c o n f i g : ! Reporter ;
d c : c o n t r i b u t o r c o n f i g : ! Owner ;
d c : s u b j e c t g co : ! Type ;

46

4.5. RELATED PROJECTS CHAPTER 4. CSVLOAD

r e q : m o d i f i e d ? ModifiedTimestamp$DATE
ˆˆ<h t t p : //www. w3 . org /2001/XMLSchema#dateTime> ;

d c t e rms : c r ea t ed ?OpenedTimestamp$DATE
ˆˆ<h t t p : //www. w3 . org /2001/XMLSchema#dateTime> ;

skos :p r imarySub jec t ?Type ;
tags:taggedWithTag gco : ! A l lLabe l s [∗ , ” , ”] .

g co : ! A l lLabe l s [∗ , ” , ”] a tags :Tag .

g co : ! A l lLabe l s [∗ , ” , ”] tags:name ? Al lLabe l s [∗ , ” , ”] .

c o n f i g : ! Reporter a f o a f : P e r s o n ;
r d f s : l a b e l ? Reporter .

c o n f i g : ! Owner a f o a f : P e r s o n ;
r d f s : l a b e l ?Owner .

g co : ! Type a skos :Concept ;
r d f s : l a b e l ?Type .

Listing 4.21: Google Code Issues Template

4.4.2 Template semantic dependencies reduced graph
According to the conditions described in section 4.1.10 on page 30, the semantic depen-
dencies of the Google Code Issues Template is the shown in figure 4.11.

ID

AllLabelsTypeOpenedTimest.ModifiedTimest.OwnerReporterSummary

Figure 4.11: GCI Template Semantic dependencies reduced graph

The attribute ID is essential to build a valid output graph, but since it is an identifier
value of the record, the problem defined in section 4.1.10 is solved.

4.5 Related projects

4.5.1 ConvertToRDF
“Convert To RDF is a tool for automatically converting delimited text data into RDF
via a simple mapping mechanism” [GGP+02].

Interesting features of this tool14 are:
14 ConvertToRDF is available under: http://www.mindswap.org/˜mhgrove/convert/

47

http://www.mindswap.org/~mhgrove/convert/

4.5. RELATED PROJECTS CHAPTER 4. CSVLOAD

• Direct mapping of attributes (columns) to object with properties.

• Possibility of choosing the column that will identify the RDF object and the
columns that will be mapped as object attributes, together with its RDF syn-
tax.

• Use of a GUI15 for defining the mapping. There is also a former version16 that
uses predefined mapping files (with either a simple own defined syntax or an RDF
syntax based on a predefined ontology).

There are however some features that are not supported by ConvertToRDF but in
CSVLoad:

• Multiple objects from a single row: A row does not necessarily contain infor-
mation of only one object. The ontology may include, for example, the City and
Country objects. In this case, using the information of listing 4.3 on page 18,
both a City object and a Country object are to be defined.

• Multivalued attributes: Using as example the information of listing 4.11 on
page 24, the ontology may also contain the University object. In this case the
system has to be able of splitting the multivalued attribute and process every
attribute separately.

• Missing or empty attributes: CSVLoad works with predefined templates, but
does not require that the defined attributes appear the exact way in the input CSV
table. If an attribute does not exist in the table (or it is empty) it is automatically
omitted of the resulting N3 triples. Also if there are attributes in the table, which
are not defined in the template, they are omitted too.

• Data types: The data type of an attribute can also be defined (e.g. for a Date/-
Time attribute).

• Data processing functionalities: CSVLoad offers some data converting/pro-
cessing functions. In this case just by adding the specific tag to an attribute the
system will execute an specific routine/conversion to the tagged attribute.

4.5.2 Triplify
The largest part of information on the Web is already stored in structured form, often
as data contained in relational databases, but usually published by Web applications
only as HTML mixing structure, layout and content. The Triplify application17, born
with the idea of overcoming the chicken-and-egg dilemma (simultaneously lacking of
semantic representations and semantics-conscious Web search facilities) that delays the
expansion of the Semantic Web, permits the conversion of web information (extracted
from a relational DB) into RDF, JSON and Linked Data [ADL+09].

Interesting features of this tool are:
15 Graphical User Interface
16 available under: http://www.mindswap.org/˜mhgrove/ConvertToRDF/
17 http://triplify.org/About

48

http://www.mindswap.org/~mhgrove/ConvertToRDF/
http://triplify.org/About

4.5. RELATED PROJECTS CHAPTER 4. CSVLOAD

• Easy to install and configure (with few SQL knowledge).

• Already pre-configured mappings to several popular Web applications.

• Focused on deploying the information of a Web into the Semantic Web, fact that
provides several advantages:

1. Search engines can better evaluate the content and find content more easily.
2. Possibility of creating customized data queries, for example, easy searching

for a product with certain characteristics.

Triplify, like CSVLoad, is focused on the conversion of table-based data to RDF.
However, CSVLoad and Triplify differ in some aspects:

• Triplify works directly on SQL while CSVLoad does it with CSV and template-
based mapping, in which case the flexibility is higher because of the possibility of
defining different templates, each supporting different types of tables.

• CSVLoad is able to ignore non defined or empty attributes, so it is easier to define
more general purpose input configurations than with Triplify, which demands very
specific configuration.

• Triplify does not support data processing or converting.

4.5.3 SCOVO to RDF data converter
At the point of finishing this documentation, there is another project also developed by
the AKSW, which also imports data from CSV files, but with a very different approach.
This project is focused on converting biomedical statistical data of the Global Health
Observatory (GHO) to RDF models. According to the Statistical Core Vocabulary
(SCOVO) [HHR+09], this data consists on three concepts:

• Dataset: A dataset represents the container of the data, such as a table holding
data in its cells.

• Data Item: A data item represents a single piece of data, such as a cell in a
table.

• Dimension: A dimension represents the unit of a single piece of data, such as a
time period, location or a disease.

As transforming SCOVO data into RDF in a fully automated way is not possible,
since publication formats often contain implicit assumptions that have to be discovered
by humans, a semi-automatic approach implements this mapping. thanks to it, he user
is able to define the dimensions of the CSV table (which is shown in the form of a HTML
table as in figure 4.12) and select the elements that belong to this dimension. The user
can also select the range of statistical items that fit to the dimensions and store this
configuration for further tables with the same structure (e.g data from different years).

49

4.6. LEGAL IMPLICATIONS CHAPTER 4. CSVLOAD

Figure 4.12: SCOVE to RDF mapping view

With this information the system is able to import the data items to RDF, with the
according dimensions as properties of it.

So, in comparison to CSVLoad, this tool provides an in-line simple mapping con-
figuration system, which can be more easy to use and more useful for importing data
structures just one time in comparison to a predefined template. However, CSVLoad is
more powerful in defining wide-ranged mappings that can be reused multiple times by
slightly different structures (structures with very similar attribute sets, but not neces-
sarily exactly the same).

CSVLoad focuses on typical table structures (first row defines attributes, the following
the values) which define entities, while this tool focuses on data items that belong to
several dimensions and that are represented in a multidimensional table, which is clearly
focused on visualization, not on computing.

4.6 Legal implications

CSVLoad uses self-generated content (the templates, input URIs) and input data from
the user (the CSV file, additional templates). The first case does not present any legal
problems, but in the second case there could be. If the imported data are bound to
restricted use (because of copyright or privacy terms), importing and using this data
could mean a violation of some type. However CSVLoad provides only a tool for hosting
data according to the wishes of the user. So in case of rights violation it is the user’s
responsibility.

50

5 Gcode

As explained in section 3.1 on page 14 the Gcode extension for OntoWiki (SoftWiki)
is designed to import additional information from Google Code Issues and display it in
the resource view screen of OntoWiki.

In oder words, the extension Gcode is responsible of fulfilling one main objective:

• Import information from the Google Code Issues platform and display it on the
OntoWiki (SoftWiki) framework.

5.1 Design
Every requirement defined in Google Code Issues has its own HTML page with all the
detailed information about it. The information provided by the CSV table imported
with the CSVLoad extension (cf. section 4 on page 16) and the Google Code Template
(cf. section 4.4 on page 45) provides some important information (titel, owner, date,
etc.) but not all. Detailed description, community comments and attached files are not
included in this data table, but only in the specific requirement HTML page. Therefor,
in order to get this information displayed in OntoWiki (SoftWiki), the HTML page is
taken as input information and analyzed by the Gcode extension.

CSVLoad imports at once the basic information of all the requirements included in
the input CSV table. Gcode on the other hand receives an HTML page of a single
requirement to analyze. The possibility of iteratively analyze all of the requirements
to import the hole information was already discussed, but discarded. The reason why
lays on the DoS1 attack preventing mechanism. As an imported model can be really
extense, the number of needed calls would also be very big. This could lead to a
temporal banning from the source (Google), which could not only imply not getting all
the information, but also being banned from other Google’s services (in this case access
to other CSV tables or others like Gmail, Google Docs) until Google’s security systems
could determine that it was not an attack.

Because of that, the information will be imported on demand. That means, that when
a requirement which was previously imported from Google Code Issues is requested,
Gcode imports the additional information from the requirement’s (issue) Google Code
page and stores then the information. If a requirement is requested, but its information
was already imported, Gcode does not import it again.

1 Denial of Service: saturating the target (victim) machine with external communications requests,
such that it cannot respond to legitimate traffic

51

5.1. DESIGN CHAPTER 5. GCODE

5.1.1 HTML structure
In order to get the wished information, the specific structure of the HTML website has
to be defined and followed. At the moment of finishing the application’s development
and the writing of this documentation, the structure of the relevant information of this
HTML document is the shown in listing 5.1 (capital letter names refer to the wished
information).

<html>

<td class = ‘ ‘ vt i s s u e d e s c r i p t i o n ’ ’>
<a>(AUTHOR)]

<pre>REQ DESCRIPTION</pre>
<div class = ‘ ‘ attachments ’ ’>
Download

</td>

<td class = ‘ ‘ vt issuecomment ’ ’>

<a>AUTHOR

<pre>COMMENT</pre>
<div class = ‘ ‘ attachments ’ ’>
Download

</td>
.
.
.

<td class = ‘ ‘ vt issuecomment ’ ’>

<a>AUTHOR

<pre>COMMENT</pre>
<div class = ‘ ‘ attachments ’ ’>
Download

</td>

</html>
Listing 5.1: Google Code Issues HTML structure (reduced)

The HTML code presents an issue description, from which the REQ DESCRIPTION
value represents the description of the requirement, followed by a list of comments with
similar structure. Every comment has (among other) relevant information corresponding
to this list of attributes:

• AUTHOR: comment author

52

5.2. APPLICATION REQUIREMENTS CHAPTER 5. GCODE

• DATE: moment in time in which the comment was posted

• COMMENT: the comment text content

• FILE URL [0..N]: download link to the comment attachments (if any)

in the form expressed in the previous listing.

5.1.2 From Google Code Issues to OntoWiki (SoftWiki)
As explained in the previous section, Google Code Issues stores the comments to a
requirement with Author, Date, Comment and attachments (File urls), as well as the
requirement’s Description. OntoWiki follows the same comments structure except for
the attachments, which are directly related to the requirement. So Gcode stores the
comments with Author, Date and Description as independent entities and puts all the
attachments as properties of the requirement. The extension also provides the user with
a direct link to the Google Code Issue website.

To avoid the DoS problem (cf. section 5.1 on page 51) the extension acts only when a
requirement that was previously imported using the CSVLoad extension and the Google
Code Template is requested. The initial goal of importing the data from Google Code
was the possibility of changing the requirements engineering environment, keeping on
with the work right from were it was, but using a different tool: the OntoWiki (SoftWiki)
framework. Therefor the extension only imports the data in case that the requested
requirement does not have a description. The figure 5.1.2 shows the relationships and
properties of the SWORE ontology imported by Gcode.

5.2 Application requirements

The requirements of an application are divided in two groups: (1) Functional require-
ments and (2) Non-functional requirements, as explained on section 4.2 on page 36.

5.2.1 Functional requirements / Use cases

Import comments & attachment from Google Code Issues

Actors:

• None

Preconditions:

• A resource is requested to the resource view controller

Case scenario:

1. The system:

53

5.2. APPLICATION REQUIREMENTS CHAPTER 5. GCODE

Figure 5.1: Gcode generated part (marked in red) of the SWORE Ontology

a) checks that the required resource is a requirement that was imported from
Google Code Issues with the CSVLoad and Google Code Template tools:

i. if not, the extension does not activate its display and the use case ends
here

ii. if yes, the extension activates its display
b) shows a link to the requirement’s Google Code Issues website in the extensions

display
c) if the requirement has not a defined Description:

i. downloads the Issue HTML page
ii. extracts the Description, Comments and Attachments information and

adds it to the requirement’s properties
iii. shows the recently imported information in the extensions display

54

5.3. IMPLEMENTATION CHAPTER 5. GCODE

d) if the requirement has already a defined Description:
i. shows a message telling that the information was already imported

Postconditions:

1. If the requirement was imported from Google Code Issues with the CSVLoad and
Google Code Template tools, it has now the Description, Comments and Attach-
ments information from the requirements Google Code Issues HTML website as
accessible properties in the OntoWiki (SoftWiki) knowledge base system.

5.2.2 Non-functional requirements

System architecture consistency

See description and terms in section 4.2.2 on page 40.

Application:
Considering this, it gets clear that the Gcode extension has to follow a module exten-

sion architecture.

GUI consistency

See description and terms in section 4.2.2 on page 40.

Application:
As Gcode is a module extension, the rendering format inside the extension display is

relatively free and can be fully adapted to the nature of the data.

5.3 Implementation

5.3.1 GUI Design
The screen of the use case Import comments & attachment from Google Code Issues of
Gcode when the information was not previously imported is shown in figure 5.2. If,
on the other hand, the information was already imported, the screen of figure 5.3 is
shown.

5.3.2 Application algorithm
When the user requires some information to be shown in the resource view screen, and
in order to check if the extension has to activate its display, the system:

1. Checks that the required resource is a requirement that was imported from Google
Code Issues with the CSVLoad and Google Code Issues Template tools. For this,
it analyzes the last part of the URI, which, in case of fitting to the mentioned con-
ditions should have this structure: <MODEL LABEL>Req<REQUIREMENT -
ID>.

55

5.3. IMPLEMENTATION CHAPTER 5. GCODE

Figure 5.2: Gcode GUI Screen 1

Figure 5.3: Gcode GUI Screen 2

56

5.3. IMPLEMENTATION CHAPTER 5. GCODE

2. Splits this structure to get the information.

3. Downloads the HTML page of the requirement from Google Code Issues.

If this process was successful, it means that the resource is in fact a requirement
previously imported from Google Code Issues. So what the system does next is:

1. Looks for the description property of the requirement.
a) If the result is not empty, the display shows a message informing that the

additional information was already imported (cf. figure 5.3).
b) If the result is empty, the system:

i. Analyzes the downloaded HTML page structure and extracts its relevant
information as explained in section 5.1.1 on page 52.

ii. Shows the extracted information (comments and attachments) in the
extension display (cf. figure 5.2).

iii. Stores the information in the according semantic form into the system
knowledge bases.

In order to get the relevant information of the HTML structure, the PHP Simple
HTML DOM Parser v1.11 tool2 is used. This tool permits the easy information extract-
ing and modifying of HTML files.

5.3.3 File structure
The file structure of the extension follows the abstract model of section 2.4.2 on page 9
in the form shown in figure 5.4.

extensions/

plugins/modules/

gcode/

simple html dom.phpgcode.phpmodule.ini

components/

Figure 5.4: Gcode file tree

The functionalities of the files are the following:

• module.ini: contains the extension configuration.

• gcode.php: executes the application algorithm (cf. 5.3.2).
2 http://simplehtmldom.sourceforge.net/

57

5.4. LEGAL IMPLICATIONS CHAPTER 5. GCODE

• simple html dom.php: provides the necessary functions for navigating the HTML
document.

5.4 Legal implications

Simple HTML DOM Parser
This tool is licensed under the MIT License:

“Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in the Soft-
ware without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHER-
WISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.”

So the use of software of this license establishes few boundaries, less actually than
the GNU General Public License3 (or short GPL). The OntoWiki project is under the
GPL license and both GPL an MIT license are compatible, so the use of the PHP
Simple HTML DOM Parser v1.11 Software is permitted and does not suppose any
legal problem.

Google
The extension is specifically designed for importing data from Google Code. Google is
a private enterprise and therefor it is important to keep their Proprietary Rights and
Terms of Use policy4 in mind.

“(...)Google claims no ownership or control over any Content submitted, posted or
displayed by you on or through Google services. You or a third party licensor, as appro-
priate, retain all patent, trademark and copyright to any Content you submit, post or
display on or through Google services and you are responsible for protecting those rights,
as appropriate. By submitting, posting or displaying Content on or through Google ser-
vices which are intended to be available to the members of the public, you grant Google

3 http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
4 available under http://code.google.com/intl/en/projecthosting/terms.html

58

http://code.google.com/intl/en/projecthosting/terms.html

5.4. LEGAL IMPLICATIONS CHAPTER 5. GCODE

a worldwide, non-exclusive, royalty-free license to reproduce, adapt, modify, publish and
distribute such Content on Google services for the purpose of displaying, distributing
and promoting Google services.”

According to this, Google does neither have any copyright of this data nor the
obligation of defending any rights the owner could claim for them.

However, the author of content published in Google Services can retain rights over
this content, but it is his/her obligation to defend them. This implies that the use of
the Gcode extension (both commercial and non-commercial) could provoke a copyright
conflict, specially taking into account that the data are automatically imported without
any specific request from the user.

On the other hand, the information Gcode imports is additional information of a
project hosted in Google Code. Such in formation has, in general, the same legal
terms as the additional imported information, so the legal violation first takes place by
misusing the CSVLoad extension.

Even so, in case of considering the public use of this extension, a deeper legal study
would be recommendable.

59

6 Conclusion & future scope

Conclusion
One of the most important topics of the project is the analysis and processing of data
structured with different formats, which can be summarized in three levels:

Data embedded in HTML documents
Although this data always follows a certain pattern, it does not necessarily follow a

rational, well-defined, easy to process structure, but a very specific one, with different
formats and in different elements (e.g. tag attributes, tag content, different tags). The
HTML structure of the Google Code Issues platform (cf. section 5.1.1 on page 52)
is a good example of that. In addition to this, HTML is strongly focused on visual
presentation, not on data storage. In this sense, its structure will easily change anytime
that the visual presentation suffers modifications. The work on the Gcode extension
shows that tools for working with this type of data are highly structure-dependent
and too specific, having to change them every time the structure of the HTML site is
changed, which could have only visual reasons.

Data in table-based form
On the other hand, if the information is stored in table-structured databases (CSV as

the simplest example, a relational database as an advanced table-based architecture),
it is presentation independent. This provokes the definition of an extra layer mapping
the information to its visual presentation necessary, but it is yet an advantage, since
the same information can be shown in different ways (depending on every necessity).
If the use of standard formats is added to this, the independence of the data gets even
clearer, since the share of information becomes much easier. The use of the CSV file
format with the CSVLoad tool (cf. section 4.1.1 on page 17) proves it.

Semantic Data
However, data in table-form shows very little or none contextual information

(the relationship between the different data units). Having a table like this one
(City,Country,Inhabitants) a person could easily identify that a City is in a Country
and, depending on the shown data and previous knowledge, determine to which one of
the previous belongs the attribute Inhabitants. Having the data on table 6.1, with few
previous knowledge almost anyone could easily identify that Inhabitants refers to City.

On the example on table 6.2 the attribute Inhabitants belongs clearly to the Country
(even being very similar to the value in the previous example). But a computer is not
able to recognize it for itself, so it needs to have such information specifically defined.

60

CHAPTER 6. CONCLUSION & FUTURE SCOPE

City Country Inhabitants
New York USA 10.573.000

Table 6.1: Example of contextual data (1)

City Country Inhabitants
Brussels Belgium 10.827.000

Table 6.2: Example of contextual data (1)

The first way of doing it is with a classical object-oriented structure, in which it can
be defined that a Country has City and Inhabitants as attributes, or a Country has City
as attribute and this City has the Inhabitants attribute . However, an object definition
is final, which means that if its attributes and semantics are to be expanded, either
redefining or inheriting are necessary. The semantic data, thanks to the use of triples
that define the properties and attributes, can be gradually defined and expanded (cf.
section 2.2.3 on page 6). So the semantic data provides the advantages of object-oriented
data structures, but with a much bigger level of flexibility and expansion. This, added
to the use of standard languages (RDF, RDFs, OWL) makes semantic data perfect for
distributed, incremental environments like the whole Web itself.

Future scope
CSVLoad was recently developed in an investigation environment and has therefore lots
of room for improvement. The importance of implementing the following or any other
features depends mainly on the use of this tool (by developers? by general users?) and
the users feedback and own desires. Some interesting possible improvements or new
features are:

• Allow users without access to the application file system to load new own tem-
plates. Depending on the needs and permissiveness of the system towards the
users, it could be loaded just for this execution or added to the application server’s
template collection.

• Extend the template syntax to cover the hole Turtle (N3) syntax. At this point
the template’s supported syntax does not cover the hole Turtle (N3) syntax, which
could represent a problem when defining a new template. Supporting the whole
syntax could imply a bigger definition flexibility.

• Change the expression management in order to avoid the problems defined by the
semantic dependencies graph (cf. section 4.1.10 on page 30), in other words, if
a parent node is deleted, automatically delete its child nodes also. Although the

61

CHAPTER 6. CONCLUSION & FUTURE SCOPE

resulting models could be almost empty or incongruent since big sets of expressions
could be deleted due to the lack of one single attribute, it would give the users
more flexibility in defining their templates.

• Permit the configuration of CSV attribute names to template attribute names
mapping. At this point, the names of the attributes in the input table have to
be equal as the ones on the template in order to be matched. Allowing in-line
mapping definition could be useful to allow importing from other languages (e.g.
Stadt [City in German] → City) or attributes with similar or equal meaning, but
written differently (e.g. Detail → Description) without having to change the input
table.

• Possible fusion or exchange of functionalities with the SCOVO to RDF data con-
versor tool. Combining the flexibility and potential of the template syntax with
the in-line properties defining and its application to a HTML version of the input
CSV table could help creating a more complete, user-friendly and less error prone
CSV importing framework.

• Add more data processing functions (cf. 4.1.9 on page 29). Additional func-
tions like type-specific checking or additional transforming ones could increase the
system’s data type support.

• Show template information. At this point the extension is focused in investigation
and development and the users of it will normally also have access to the files
and will be able to see all the information directly in the template’s definition and
declaration. If not, a user will only be able to see the title of the template. Adding
tools to see its description and possibly its structure would improve usability.

On the other hand, Gcode is a very specific tool, designed to import specific informa-
tion to a specific ontology. Therefor the most important work on it would be updating
the code to possible changes in the HTML structure of the Google Code Issues platform
or in the basic structure of the SWORE ontology. An improvement on the extensions
behaviour could also be an option, e.g. implementing a hidden behaviour, which means
importing and adding the information without showing a specific display, in order to
avoid confusion or excessive information in the resource view.

It could also serve as an example for other specific tools for importing data embedded
in HTML documents from other sources.

62

7 Summary

Over the last years the use of the Internet by users has evolved drastically from just
consulting to publishing, sharing and modifying contents, turning the Internet into a
social net in which the possibilities to collaborate and communicate grow every day
bigger. A good example are the Wiki systems, which are collaborative, content-focused
platforms in which the work of a community is the key to its good performance. Another
of the biggest web technology developments of the Internet nowadays is the so-called
Semantic Web, a Web in which every piece of data has its context clearly specified and
machines are able to understand it.

The OntoWiki project merges both Semantic Web and Wiki technology, enabling the
definition, modification and visualization of agile, distributed knowledge engineering
scenarios. Profiting from the complex extension system of OntoWiki, the SoftWiki
platform was born. Thanks to this tool and the associated Agile Requirements Engi-
neering methodology, potentially very large and spatially separate stakeholder groups
are able to gather, semantically enrich, classify and aggregate software requirements in
an easy manner.

Originally created from the desire to import non-semantic requirement data from
the Google Code Issues platform to SoftWiki, the CSVLoad extension for OntoWiki
enables importing plain data out of CSV table files into OntoWiki with the help of
an administrator-defined RDF semantic template, defined with a modified subset of
the Turtle (N3) language with support of input and mapping values. The use of
CSVLoad and the already defined Google Code Issues Template makes importing the
requirements of a project hosted in Google Code into SoftWiki (in other words, into a
SWORE ontology) very easy.

Some platforms permit exporting only a part (or in some cases none) of their infor-
mation in standard formats like CSV or RDF. Instead they just show their data in
HTML documents, which makes creating general, effective plain-to-semantic importing
tools an extremely difficult (and in some cases impossible) task, forcing developers to
build custom-made tools. The Gcode extension is a tool specifically built to extract
additional requirements information from the Google Code Issues platform HTML
code and, together with the CSVLoad tool, it turns importing all the requirements
information from Google Code Issues into SoftWiki into an easy, automatic process.

By comparing both extensions, their input data and features, the advantages of
using structured, view-independent data compared to view-representation-embedded
data (e.g. data in a HTML document) become clear. But this data needs a next
step, the semantic mark-up, so that computers are able to know the context of the
information in an expandable, flexible environment.

63

Installation & configuration

In order to install the CSVLoad and Gcode extensions, the first step is to have a working
installation of OntoWiki. It can be installed from the repository with this command1:

hg clone https://ontowiki.googlecode.com/hg/ ontowiki

downloaded as a compressed file from http://code.google.com/p/ontowiki/
downloads/list or downloaded from Mercurial following the instructions at
http://code.google.com/p/ontowiki/wiki/InstallFromMercurial.

Once OntoWiki is installed an working, CSVLoad and Gcode can be installed. The
source packages are available at the CSVLoad project page2 at the SoftWiki project
Web site3. After downloading, uncompress them in the OntoWiki main folder.

Developing versions can be downloaded from the Bitbucket repository at http:
//bitbucket.org/tausendeins/ontowikiextentions.

Once the files are copied, go to each extension folder (.../ontowiki/extensions/compo-
nents/csvload and .../ontowiki/extensions/modules/gcode respectively) and copy the
(...).ini-dist files to (...).ini in order to activate them.

The installation is now complete!

1 go to http://code.google.com/p/ontowiki/source/checkout for more information
2 http://softwiki.de/netzwerk/plattform/csv-load-projekt/
3 http://softwiki.de/

64

http://code.google.com/p/ontowiki/downloads/list
http://code.google.com/p/ontowiki/downloads/list
http://code.google.com/p/ontowiki/wiki/InstallFromMercurial
http://bitbucket.org/tausendeins/ontowikiextentions
http://bitbucket.org/tausendeins/ontowikiextentions
http://code.google.com/p/ontowiki/source/checkout
http://softwiki.de/netzwerk/plattform/csv-load-projekt/
http://softwiki.de/

Glossar

AJAX Asynchronous JavaScript and XML, a group of interrelated web development
techniques used on the client-side to create interactive web applications.

AKSW Agile Knowledge Engineering and Semantic Web, a workgroup of the Faculty of
Informatics at the University of Leipzig.

CSS Cascading Style Sheets, a style sheet language used to describe the the look and
formatting of a document written in a markup language.

CSV Comma Separated Values, a simple text format for a database table where each
record in the table is one line of the file and whose record field value are separated
with a comma.

GHO Global Health Observatory, an access point to the data and analyses of the World
Health Organization for monitoring the global health situation.

GNU GPL GNU General Public License, the most widely used free software license.

GPL Short form of GNU GPL.

GUI Graphical User Interface, a type of user interface that allows users to interact with
programs with graphical elements rather than text commands.

HTML HyperText Markup Language, the predominant markup language for web pages,
which provides a means to create structured documents by denoting structural
semantics for text such as headings, paragraphs, lists, links, quotes and other
items.

MVC Model-View-Controller, a software architecture or pattern used in software engi-
neering that isolates domain logic from input and presentation, permitting inde-
pendent development, testing and maintenance of each.

OWL Web Ontology Language, a knowledge representation language for authoring
ontologies.

PHP PHP: Hypertext Preprocessor, a widely used, general-purpose scripting language
that was originally designed for web development to produce dynamic web pages.

65

RDF Resource Description Framework, a general method for conceptual description or
modeling of information that is implemented in web resources.

RDFs RDF Schema, extensible knowledge representation language, providing basic ele-
ments for the description of ontologies.

SCOVO Statistical Core Vocabulary, an RDF vocabulary used to represent statistical
data in the form of a semantic model.

SPARQL SPARQL Protocol and RDF Query Language, an RDF query language con-
sidered a key semantic web technology.

SWORE Software Ontology for Requirements Engineering, ontology for Agile Require-
ments Engineering.

URI Uniform Resource Identifier, a string of characters used to name and locate a
resource on the Internet.

WYSIWYG What You See Is What You Get, used to describe a results-oriented graph-
ical user interface.

66

Bibliography

[ADL+09] Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian Hellmann, and
David Aumueller. Triplify - lightweight linked data publication from rela-
tional databases. In Proceedings of the 17th International Conference on
World Wide Web, WWW 2009, Madrid, Spain, April 20-24, 2009, pages
621–630, 2009. 48

[Aue09] Sören Auer. Das projekt softwiki: Methoden- und softwareunterstützung für
agiles, endanwender-getriebenes requirements engineering. In Sören Auer,
Kim Lauenroth, Steffen Lohmann, and Thomas Riechert, editors, Agiles
Requirements Engineering für Softwareprojekte mit einer großen Anzahl
verteilter Stakeholder, volume XVIII of Leipziger Beiträge zur Informatik,
pages 3–7. Leipziger Informatik-Verbund (LIV), 2009. 11

[BK09] Marianne Busch and Nora Koch. Rich internet applications. state-of-the-art.
technical report, ludwig-maximilians-universität münchen. 2009. 3

[BLHL02] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web - a
new form of web content that is meaningful to computers will unleash a
revolution of new possibilities. ScientificAmerican.com, 2002. 4

[DAR06] Sebastian Dietzold, Sören Auer, and Thomas Riechert. Kolloborative wis-
sensarbeit mit OntoWiki. In Proceedings of the INFORMATIK 2006 Work-
shop: Bildung von Sozialen Netzwerken in Anwendungen der Social Software,
2006. 8

[GGP+02] Jennifer Golbeck, Michael Grove, Bijan Parsia, Adtiya Kalyanpur, and
James Hendler. New tools for the semantic web. In Knowledge Engineer-
ing and Knowledge Management: Ontologies and the Semantic Web, pages
23–38. 2002. 4, 47

[HHR+09] Michael Hausenblas, Wolfgang Halb, Yves Raimond, Lee Feigenbaum, and
Danny Ayers. Scovo: Using statistics on the web of data. In ESWC, pages
708–722, 2009. 49

[LHA+08] Steffen Lohmann, Philipp Heim, Sören Auer, Sebastian Dietzold, and
Thomas Riechert. Semantifying requirements engineering the softwiki
approach. 2008. 12

[LR09] Kim Lauenroth and Thomas Riechert. Der SoftWiki-Ansatz für verteiltes
requirements engineering mit großen stakeholdergruppen. In Sören Auer,
Kim Lauenroth, Steffen Lohmann, and Thomas Riechert, editors, Agiles

67

Requirements Engineering für Softwareprojekte mit einer großen Anzahl
verteilter Stakeholder, volume XVIII of Leipziger Beiträge zur Informatik,
pages 39–48. Leipziger Informatik-Verbund (LIV), 2009. 11

[Tec05] BBC News Technology. Wikipedia survives research test. BBC News, 2005.
3

[Wag04] Christian Wagner. Wiki: A technology for conversational knowledge man-
agement and group collaboration. In Communications of the Association for
Information Systems (Volume13), pages 265–289, 2004. 3

68

	Introduction
	Technological Context
	The Wiki Technologies
	The Semantic Web
	First Attends of Semantic Web
	The RDF Language
	1st Extension Level: RDFs
	2nd Extension Level: OWL

	Semantic Wiki
	OntoWiki Project
	Main features of OntoWiki for Users and Developers
	OntoWiki Extension Framework

	SoftWiki

	Objectives
	Specific objectives
	Section summary

	CSVLoad
	Design
	Input data format
	Generated information
	Mapping information: the RDF semantic template
	Basic template for importing information to a knowledge base
	Template support of multivalued attributes
	Template support of empty values
	Template support of non-defined attributes
	Template support of data type definition
	Template support of data processing functions
	Semantic dependencies graph
	Static & Iterative Parts of the Template
	The template syntax
	Data dependencies & risks
	Section summary

	Application requirements
	Functional requirements / Use cases
	Non-functional requirements

	Implementation
	GUI Design
	Declaring a template
	Application algorithm
	File structure

	Google Code Issues Template
	Template .ttlt file
	Template semantic dependencies reduced graph

	Related projects
	ConvertToRDF
	Triplify
	SCOVO to RDF data converter

	Legal implications

	Gcode
	Design
	HTML structure
	From Google Code Issues to OntoWiki (SoftWiki)

	Application requirements
	Functional requirements / Use cases
	Non-functional requirements

	Implementation
	GUI Design
	Application algorithm
	File structure

	Legal implications

	Conclusion & future scope
	Summary
	Installation & configuration
	Glossar
	Bibliography

