
Diplomarbeit

Constrained Random Sampling and Gap
Filling Technique for Near-regular Texture

Synthesis

Diego López Recas

July 28, 2011

Technische Universität Berlin
Fakultät IV: Fakultät Elektrotechnik und Informatik

Institut für Technische Informatik und Mikroelektronik
Computer Vision and Remote Sensing

Betreuender Hochschullehrer: Prof. Dr.-Ing. Olaf Hellwich
Betreuender Mitarbeiter: Dipl.-Ing. Anna Hilsmann

(Fraunhofer HHI)

Erklärung
Hiermit erkläre ich, dass ich diese Arbeit selbstständig erstellt und keine anderen als die
angegebenen Hilfsmittel benutzt habe.

Berlin, den July 28, 2011

Diego López Recas

Acknowledgements
I am grateful to all authors that have worked on texture synthesis before us and whose
publications have inspired our work, especially Efros and Freeman’s and Liu et al.’s.

I would also like to thank Technische Universität Berlin, Fraunhofer HHI and Peter
Eisert (head of Computer Vision & Graphics Group of Fraunhofer HHI) for giving me
the opportunity to work with them. Thanks as well to Olaf Hellwich for his help and
effort made to finally evaluate my work.

A warm thanks goes to my family, closest friends and especially my girlfriend for
their unconditional support, love and a great amount of patience. I could not have done
it without them.

And finally, I cannot forget that I would probably have failed to write this thesis with-
out Anna Hilsmann. Her constant support, encouragement, motivation and technical
advice has mean everything to me. Thank you very much.

Contents

1 Introduction 1

2 Related Work and Contribution 5
2.1 Pixel-Based Texture Synthesis . 5
2.2 Patch-Based Texture Synthesis . 9
2.3 Texture Synthesis over Surfaces . 11
2.4 Near-Regular Texture Synthesis . 13
2.5 Contribution . 15

3 Regular Structure Detection (Analysis) 17
3.1 Generalized Normalized Cross-Correlation (GNCC) 18
3.2 Multi-channel GNCC . 22
3.3 Translation Vectors Estimation . 23

3.3.1 Significant Values of the Autocorrelation 28
3.4 Conclusion . 31

4 Synthesis 33
4.1 Best Self-similar Tile Repetition . 33

4.1.1 Best Self-Similar Tile Search . 35
4.2 Constrained Random Sampling and Gap Filling 37

4.2.1 Constrained Random Sampling 38
4.2.2 Constrained Gap Filling . 40
4.2.3 Final Composition and Blending 43

4.3 Conclusion . 44

5 Results and Evaluation 45
5.1 Analysis Evaluation . 45
5.2 Synthesis Evaluation . 46

6 Conclusions and Future Work 67

Bibliography 69

VII

List of Figures

1.1 Texture spectrum. 2
1.2 Categorization of Near-regular Textures. 2

2.1 How textures differ from images. 6
2.2 Wei/Levoy single resolution texture synthesis. 7
2.3 Ashikhmin’s algorithm. 8
2.4 Some Image Analogies results. 9
2.5 Image Quilting. 10
2.6 Wang Tile Textures. 11
2.7 Surface synthesis results. 12
2.8 Sample tiles of The Promise and Perils of Near-regular Texture. 13
2.9 Color deformation field as modeled in Near-Regular Texture Analysis and

Manipulation [LLH04]. 14
2.10 Comparison of absolute DFT and FrDFT coefficients. 15

3.1 Description of the analysis step. 18
3.2 Overlapping region of the generalized normalized cross-correlation at dif-

ferent positions. 19
3.3 The translation vectors v1,v2 define the tile of a 2D periodic signal. . . 25
3.4 Some spurious relatively high local maxima may appear in the normalized

autocorrelation. 26
3.5 Texture samples with their detected lattice and examples of goodness

evaluation. 28
3.6 Pixel numbering in function of their relative position within a tile. . . . 29
3.7 Is an overlapping significant? . 30

4.1 Any portion of the signal with the shape and size of the tile reproduces
the original signal when repeated. 34

4.2 The translation vectors generate a mesh. 35
4.3 Example of borders at tile edges. 35
4.4 Accumulated squared color differences between opposite v2-long sides of

every possible tile. 36
4.5 Accumulated squared color differences between opposite v1-long sides of

every possible tile. 37
4.6 Best tile versus worst tile comparison. 37
4.7 Example of random sampling in progress. 39
4.8 Comparison between border shapes. 40
4.9 Example of gap filling in progress. 41

IX

List of Figures

4.10 Differences between GNCC border matching and color differences matching. 42
4.11 Result after Gap Filling compared to Best Self-similar Tile Repetition. . 43
4.12 Blending sketch. 43
4.13 Final synthesis result. 44

5.1 Examples of cases where our lattice detector fails to estimate correctly. . 46
5.2 Results: NRT Type I textures are better synthesized with our method

than with other existing patch-based approaches - Part I. 50
5.3 Results: NRT Type I textures are better synthesized with our method

than with other existing patch-based approaches - Part II. 51
5.4 Results: NRT Type I textures are better synthesized with our method

than with other existing patch-based approaches - Part III. 52
5.5 Results: NRT Type I textures are better synthesized with our method

than with other existing patch-based approaches - Part IV. 53
5.6 Results: NRT Type I textures are better synthesized with our method

than with other existing patch-based approaches - Part V. 54
5.7 Results: NRT Type I textures are better synthesized with our method

than with other existing patch-based approaches - Part VI. 55
5.8 Results: our method ensures the output "rich" random irregularities -

Part I. 56
5.9 Results: our method ensures the output "rich" random irregularities -

Part II. 57
5.10 Results: in some cases, the price of ensured regularity reproduction is the

appearance of boundary missmatch artifacts. 58
5.11 Results: if the tile of the texture has non-integer coordinates or the tex-

ture sample presents geometric distortions, visible boundary missmatch
artifacts may appear. 59

5.12 Results: blockiness appearance can be effectively reduced by applying a
wider blending area between blocks. 60

5.13 Results achieved with our method for irregular textures - Part I. 61
5.14 Results achieved with our method for irregular textures - Part II. 62
5.15 Results achieved with our method for irregular textures - Part III. . . . 63
5.16 Results achieved with our method for irregular textures - Part IV. . . . 64
5.17 Results achieved with our method for irregular textures - Part V. 65

X

1 Introduction

Textures have traditionally been used in computer graphics to enhance the appearance
of scenes, e.g., texture mapping provides an inexpensive way of representing surface
detail for special effects, image editing, content creation, rendering, and animation. In
most cases, textures are taken from pictures of the real world or hand-drawn textures
and are wanted to cover surfaces for wich the input texture does not fit well or is simply
too small and an "enlargement" is needed.
The objective of texture synthesis is to generate an arbitrarily sized image that repro-

duces the texture of a relatively small sample image. That is, the output should be
a "new" image that is different from the input image but a human eye perceives them
containing the same texture. This thesis presents a novel texture synthesis approach for
near-regular textures.
During the last years, many researchers in computer vision and computer graph-

ics have proposed methods for texture synthesis and achieved impressive results for
many kinds of textures. Especially successful and relatively simple approaches are
those commonly classified as non-parametric example-based texture synthesis techniques
[WLKT09]. These non-parametric methods are based on the idea of applying the
Markov Random Field (MRF) model to textures, thus supposing that they have sta-
tionary and local statistics and that any pixel of the texture is fully characterized by its
neighbourhood around. Then, the output is composed by sequencially selecting pixels
whose neighbourhood agrees with the already synthesized part of the output. In this
way, the output is generated by sampling the input texture example.
Non-parametric example-based methods have very good results for many different

types of texture. However, the so-called near-regular textures [LTL05] have been spe-
cially difficult to reproduce faithfully. There are many examples of this type of near-
regular textures, such as brick walls, tiled floors, carpets, woven sheets, where the texture
patterns (each brick, tile, straw or bamboo strip) vary only locally. Our work is focused
on this specific kind of textures where a global regular structure coexists with subtle
yet characterisitic stochastic deviations from regularity.
Figure 1.1 [LLH04] shows examples of textures with different levels of regularity.

Mathematically speaking, regular texture refers to periodic patterns that present non-
trivial translation symmetry. Near-regular texture is referring to textures that are not
strictly symmetrical. The irregularity can be caused by various statistical departures
from regular textures. Liu et al. [LLH04] proposed a categorization of near-regular
textures depending on the nature of the deformations, whether the deviations are in
geometry or in color (see Figure 1.2). The focus of this thesis is on faithful texture
synthesis of near-regular textures where departure from regularity is primarily caused
by statistical color and intensity variations, while the underlying structural regularity

1

1 Introduction

Figure 1.1: Texture spectrum.

Figure 1.2: Categorization of Near-regular Textures from [LLH04].

remains (Type I in Figure 1.2).

The synthesis of near-regular textures is especially troublesome because two very
different properties coexist. The regular part is periodic, deterministic and global,
whereas the irregular part is stochastic with local statistics. This makes non-parametric
neighbourhood-based methods often fail to reproduce the large-scale global structure of
the input texture, whereas a simple tiling approach is unable to introduce the charac-
teristic randomness of the irregularities and the output would look rather unnatural.
In order to overcome these difficulties, we propose to synthesize near-regular textures

in a constrained random sampling approach. In a first analysis step, we treat the tex-
ture as regular and analyze the global regular structure of the input texture sample to
estimate two translation vectors defining the translation symmetry of the texture under
analysis. In a subsequent synthesis step, this structure is exploited to guide or constrain
a random sampling process so that random samples of the input are introduced into the
output preserving the regular structure previously detected. This ensures the stochastic
nature of the irregularities in the output yet preserving the regular pattern of the input
texture.
Although our method was developed for near-regular textures we observed that it

produces also very good results for irregular and stochastic textures if the analysis step
is skipped.
The remainder of this work is structured as follows:

• Chapter 2 gives an overview of related work and our contribution. An overview of
several existing non-parametric example-based synthesis techniques is presented

2

along with some reported or potential weaknesses. The chapter is concluded with
an introduction to the kind of improvements that our technique is intended to
introduce.

• Chapter 3 describes the analysis step that we propose to estimate the regular
structure (or lattice) of the texture sample. By an observation of the local max-
ima distribution of a normalized autocorrelation of the input texture image, two
independent translation vectors defining the translational symmetry of the input
texture are estimated.

• Chapter 4 focuses on the synthesis stage. In Section 4.1, a method to find the
best self-similar tile within the input is presented. A simple tiling of the best self-
similar tile produces the best results for regular textures and helps to illustrate
that the output looks unnatural if there are no random irregularities in the case
of near-regular textures. On the other hand, Section 4.2 explains the alternative
constrained random sampling and gap filling synthesis method that does introduce
randomness in the output and enhances the natural appearance of the result.

• Chapter 5 discusses the performance, advantages and disadvantages of the pro-
posed method and gives several examples and comparisons with other approaches.

• A conclussion and a discussion and thoughts about future work is presented in
Chapter 6.

3

2 Related Work and Contribution
Texture analysis and synthesis has had a long history in psychology, statistics and
computer vision. During the last years, it has been devoted significant work from
researchers in the areas of computer graphics and computer vision.
The objective of texture synthesis is to generate images that reproduce a distribution

of textural features which humans perceive as a specific type of texture. For a limited
class of textures this distribution can be modeled using for example Perlin Noise [Per85]
or reactiondiffusion systems [Tur91]. These types of procedural texture synthesis offer
the advantage of user control and extremely compact representation. Statistical mod-
eling is applicable to more general types of texture. Motivated by research on human
texture perception, they mostly use statistics of filter response vectors. The actual
synthesis is performed by iteratively matching statistics of a sample texture and the
synthesized result. Heeger and Bergen [HB95], for example, matched marginal his-
tograms of filter response vectors at different spatial scales. Follow-up publications
[dB97, PS00, BJEYLW01] improved upon this scheme by enforcing more complex joint
statistics of filter coefficients but still fail on highly structured textures. Few publica-
tions (e.g. [ZWM98]) propose parametric texture models based on the Markov Random
Field model of the texture. Texture synthesis involves fitting the model to a sample tex-
ture and sampling from the resulting distribution which can be computationally very
expensive and still reproduces mainly stochastic textures only. These elaborate models
are outperformed in speed, quality and applicability by simple non-parametric sampling
that was first proposed in the seminal paper by Efros and Leung [EL99] and many other
publications improved on the idea (e.g. [WL00, TZL+02, ZG02]).
Our texture synthesis technique is closely related to the last mentioned idea, for

which there are numerous examples. In this chapter, we try to give an overview of the
existing non-parametric sampling approaches. The inclined reader can follow references
in the computer vision literature [LM99, LM01, ZWM97, ZWM98, ZGWW02] to get an
overview of other existing work, which we do not further discuss. We list the work most
relevant to ours in the following loose classification.

2.1 Pixel-Based Texture Synthesis
Pixel-based texture synthesis algorithms are generally based on the theory of Markov
Random Fields (MRF’s), a two-dimensional extension to Markov Chains, inspired by
Shannon’s work on modelling the English language using n-grams [SW63]. Using MRF’s,
a texture is modelled as a local and stationary random process: each pixel is classified
by a small set of neighboring pixels (local causality) and this classification is the same
for all pixels (stationary). In this context, Wei and Levoy [WL00] give a very nice
description on the difference between images and textures as depicted in Figure 2.1.

5

2 Related Work and Contribution

Figure 2.1: How textures differ from images. (a) is a general image while (b) is a texture. A
movable window with two different positions are drawn as black squares in (a) and
(b), with the corresponding contents shown below. Different regions of a texture
are always perceived to be similar (b1,b2), which is not the case for a general image
(a1,a2). In addition, each pixel in (b) is only related to a small set of neighboring
pixels. These two characteristics are called stationarity and locality, respectively.
Image and caption taken from [WL00].

For a full MRF realization of texture analysis and synthesis, an explicit probability
distribution must be constructed from the input texture, and then sampled by the
synthesizer. This process is computationally expensive, both in size and speed, which is
why state-of-the-art pixel-based synthesis algorithms prefer a non-parametric approach.
Therein, new pixels are synthesized based solely on already synthesized regions by
maintaining local similarity, and no explicit probability distribution is needed.

Efros and Leung [EL99] pioneered this approach with their non-parametric sam-
pling. They synthesize a texture Iout by repeatedly matching the neighborhood around
the target pixel in the synthesis result with the neighborhood around all pixels in
the input texture Iin, starting from a seed pixel and growing outwards. For each
to-be-synthesized pixel pout and its neighborhood of already synthesized pixels ω(pout),
an approximation to the conditional probability P (pin|ω(pout)) is constructed for each
pin ∈ Iin. This is achieved by computing a gaussian weighted, normalized sum of square
differences (SSD) between ω(pout) and the pixel neighborhoods of each candidate in the
input texture, ω(pin). A target pixel is then selected from a set of pixels pin with high
conditional probability. The algorithm performs an exhaustive search in Iin for each
synthesized pixel and is therefore quite slow. Also, the algorithm has a tendency to slip
into the wrong part of the search space and start growing garbage [EL99] or to perform
verbatim copying of the input.

Wei and Levoy [WL00] introduced some significant changes to enhance both quality
and speed of Efros and Leung’s [EL99] work. In Efros and Leung’s approach, the pixel

6

2.1 Pixel-Based Texture Synthesis

Figure 2.2: Wei/Levoy single resolution texture synthesis. (a) is the input texture and (b)-(d)
show different synthesis stages of the output image. Pixels in the output image are
assigned in a raster scan ordering. The value of each output pixel p is determined
by comparing its spatial neighborhood N(p) with all neighborhoods in the input
texture. The input pixel with the most similar neighborhood will be assigned to the
corresponding output pixel. Neighborhoods crossing the output image boundaries
(shown in (b) and (d)) are handled toroidally. Although the output image starts
as a random noise, only the last few rows and columns of the noise are actually
used. For clarity, we present the unused noise pixels as black. (b) synthesizing the
first pixel, (c) synthesizing the middle pixel, (d) synthesizing the last pixel. Image
and caption taken from [WL00].

neighborhood of already synthesized pixels in the output image is not known a priori,
since they grow texture from a single seed pixel outwards. Wei and Levoy start off
with a white random noise output image and then iterate through it in scanline order.
At each iteration, the pixel in the input texture is picked, which best matches the
L-shaped, fixed neighborhood around the current to be synthesized pixel (Figure 2.2).
This results in their seed being the last few rows and columns of white random noise.
The algorithm makes excellent use of the fixed neighborhood size by interpreting all
possible neighborhoods in the input texture as a set of 1D vectors (each vector is an
ordered concatenation of RGB triples) and preprocessing these high dimensional neigh-
borhood vectors using tree structured vector quantization (TSVQ). This preprocess
results in logarithmic complexity for each best-pixel-search and an overall speedup by
two orders of magnitude compared to Efros and Leung’s algorithm, at the price of
some artifacts. The algorithm is furthermore extended to a multiresolution synthesis
pyramid, progressing from coarse to fine. This results in smaller search neighborhoods,
with synthesis quality comparable to using larger neighborhoods with single resolution
synthesis. The reason for this is that larger, low frequency features are captured in low
pyramid resolutions and that these lower resolution pixels constrain the added high
frequency features to be consistent with the already synthesized low frequency structure.

7

2 Related Work and Contribution

Figure 2.3: Ashikhmin’s algorithm. Left: candidate pixels for the algorithm (the Ashikhmin
Set 2.3). Each pixel in the current L-shaped neighborhood generates a shifted
candidate pixel (black) according to its original position (hatched) in the input
texture. The best pixel is chosen among these candidates only. Several different
pixels in the current neighborhood can generate the same candidate. Right: region-
growing nature of the algorithm. Boundaries of texture pieces are marked white
on the right. Images and captions taken from [Ash01].

Ashikhmin [Ash01] introduced and intelligent modification to significantly reduce
search space and achieve interactive framerates. He realized that, at a given step
in the Wei/Levoy synthesis process, pixels in the input sample with neighborhoods
similar to the shifted current neighborhood in the output image have already been
found. Exploiting this observation leads to an algorithm, which encourages verbatim
copying (or region growing as stated in [Ash01]) to a certain degree (Figure 2.3), as the
candidate set (we call this set the Ashikhmin Set or As) for each pixel is very small
compared to Wei/Levoy synthesis (at most size(As) = (n2 − 1)/2 with n being the
corner length of the L-shaped neighborhood in pixels). For each pixel, the set As is
constructed as outlined in Figure 2.3, which requires the storage of an additional source
map with source locations of already synthesized pixels. Synthesis runs at interactive
rates, allows user control (texture transfer with a user-provided target image) and
works well for a class of textures titled natural textures [Ash01], where pure Wei/Levoy
synthesis shows a tendency to blur out small objects [Ash01]. Note that this blurring
is not problematic when using input textures with low color variance (in the extreme
case, a binary image), since Wei/Levoy synthesis only chooses pixels which exist in the
input texture [Ash01].

Merging both Ashikhmin and Wei/Levoy synthesis into a framework, Hertzmann
et al. [HJO+01] introduce the problem statement titled Image Analogies: given a pair
of images A and A′ (the unfiltered and filtered source images, respectively) along with
an unfiltered target image B, synthesize a new filtered target image B′ such that B′
relates to B in the same way A′ relates to A [HJO+01]. Texture synthesis then reduces

8

2.2 Patch-Based Texture Synthesis

Figure 2.4: Some Image Analogies results. Left (weave): applying the framework to simple
texture synthesis. The input weave texture (upper left) and results of Wei/Levoy
(upper right), Ashikhmin (lower left), and Image Analogies (lower right). Right:
texture-by-numbers. The pseudocolored texture area-map A (upper left), the orig-
inal scene A′ (upper right), the new pseudo-colored texture area-map B (bottom
left, created interactively by the user) and the resulting new scene B′ (bottom
right). Images taken from [HJO+01].

to a trivial case of image analogies, where the images A and B are zero-dimensional or
constant, and B′ is synthesized from the input texture A′. By using both approximate
nearest neighbors (ANN [AMN+95]) and coherence (Ashikhmin [Ash01]) search, their
framework manages to combine the best of both worlds, as seen in the results of the
weave texture in Figure 2.4, left. One of the most interesting applications attributed
to Image Analogies is texture-by-numbers, where an unfiltered, pseudo-colored texture
area-map A is created from the original image A′, and thereafter used to allow the
user to interactively paint a new, pseudo-colored scenario B, from which the algorithm
generates the new scene B′ (Figure 2.4, right).

Zelinka and Garland [ZG02] create a datastructure from the input texture in a
preprocess, similar to Video Textures [SSSE00]. They term this datastructure jump
map and use it to synthesize texture per-pixel in real-time. The jump map stores a
set of k-nearest (pixel) neighbors (in feature space) for each pixel in the input texture.
Each pixel in this set is a minimum distance away (in image space) from all other pixels
in the set, analogous to poisson disk sampling, thus ensuring diversity in the synthesis
result. During per-pixel synthesis (using various pixel orderings), the algorithm simply
performs a random walk through the jump map, resulting in algorithmic complexity
linear in the number of output pixels, and therefore realtime performance. Judging
from the results in their paper, the synthesis quality is generally inferior to Ashikhmin’s
algorithm [Ash01].

2.2 Patch-Based Texture Synthesis
Patch-based texture synthesis methods preserve global structure by generating the
texture on a per-patch basis, and then (in most cases) attempt to repair the patch

9

2 Related Work and Contribution

Figure 2.5: Image Quilting. Square blocks from the input texture are patched together to
synthesize a new texture sample: (a) blocks are chosen randomly, (b) the blocks
overlap and each new block is chosen so as to agree with its neighbors in the region
of overlap, (c) to reduce blockiness, the boundary between blocks is computed as
a minimum cost path through the error surface at the overlap. Image and caption
taken from [EF01].

overlap regions using different strategies.

Efros and Freeman [EF01] proposed a patch-based technique called Image Quilting
(IQ). IQ iterates through a uniform quadrilateral grid of patches, which, combined,
resemble a tiling of the output texture. In scanline order, the algorithm selects, for
each output patch, a congruent patch of pixels from the input texture, constrained
by overlap with the already synthesized result. It then performs a minimum-error-
boundary-cut (MEBC) within the overlap region of adjacent texture patches to reduce
artifacts (Figure 2.5).
The MEBC is implemented by employing dynamic programming (the authors men-

tion that Dijkstra’s algorithm would also do the job). The algorithm is also well suited
for texture transfer, which is demonstrated in the paper. Synthesis results presented in
[EF01] are equal to or better than Efros/Leung-like, pixel-based algorithms. Still, as
also pointed out by Liang et al. [LLX+01], hard color changes along patch boundaries,
termed boundary mismatch, tend to occur.

Liang et al.’s Patch-Based Sampling [LLX+01] (PBS) uses the same technique as
IQ for patch placement, but simply alpha-blends the overlap regions (feathering), as
their primary concern is speeding up the algorithm to real-time performance. They
also prefer blurring artifacts to IQ’s boundary mismatch artifacts. The uniform patch
sampling size, and therefore small set of overlap cases, gives way to an input texture
preprocess, using an optimized kd-tree, a quadtree pyramid and principal component
analysis (PCA) for feature vector dimension reduction. This accelerates the entire
algorithm to real-time performance at negligible visual drawback. Blurring artifacts
along patch boundaries do remain a problem though, especially in the presence of high
frequency features.

10

2.3 Texture Synthesis over Surfaces

Figure 2.6: Wang Tile Textures. Left: (a) four subimages are combined to form each Wang
Tile; (b) construction of an eight tile set. Right: a texture using 18 Wang Tiles.
Images and captions taken from [CSHD03].

Kwatra et al. [KSE+03] developed a generalization of IQ called Graphcut Textures
(GCT). The uniform patch sizes used in IQ and PBS is generalized to arbitrarily shaped
patches. Their shapes are determined entirely by performing a minimum cost graph-cut
with the underlying (partially synthesized, or perhaps already fully synthesized) result.
The process is iterative and can therefore correct badly matched seams (with high
cost) by pasting a new patch from the input texture (constrained by overlap) over the
visually displeasing seam and repeating the graph-cutting process.

Cohen et al.’s Wang Tile Textures [CSHD03] use principles of provably non-periodic
tilings of the plane to generate arbitrary amounts of non-repetitive texture (see the
seminal work on aperiodic tilings by Grünbaum and Shepard [GS86]).
Their tile generation procedure randomly selects a set of base tiles from the input tex-

ture, one tile for each Wang Tile edge color, and constructs Wang Tiles by assembling the
necessary 4-permutations of the base tileset (Figure 2.6, left). For each 4-permutation,
the overlap region is repaired by performing a minimum-error-boundary-cut (MEBC
[EF01]). If the resulting Wang Tileset is below a visual quality threshold (i.e. arti-
facts along the MEBC), a new base tileset is selected and the assembly procedure is
repeated (optimization). Still, we assume as a result of the random selection process,
some diamond-shaped artifacts might appear (Figure 2.6, right).

2.3 Texture Synthesis over Surfaces
The synthesis methods previously introduced work in 2D, i.e. the output is a plain
image that will tipically be deformed later to cover a 3D surface. An alternative is
to directly synthesize over the 3D surface itself. We show here relevant examples of
this methodology as most surface texture synthesis methods are direct extensions of
pixel-based [Tur01, WL01, YHBZ01] or patch-based [PFH00, SCA02] algorithms.

11

2 Related Work and Contribution

Figure 2.7: Surface synthesis results. Wei/Levoy [WL01] (left), Ying et al. [YHBZ01] (center,
multiscale synthesis) and Soler et al. [SCA02] (right). Each image taken from the
respective publication.

Turk’s [Tur01] (TS) and Wei and Levoy’s [WL01] (WLS) surface synthesis methods
both densely tessellate the 3-dimensional input mesh of an object using Turk’s re-tiler
[Tur92] and then perform a per-vertex color synthesis. These two approaches are very
similar (both use a multiresolution mesh hierarchy), yet have three quite significant
differences. (1) WLS uses both random and symmetric vector fields, whereas TS always
uses a user defined, smooth vector field. (2) TS uses a sweeping order derived from the
smooth vector field for vertex traversal, WLS visits the mesh vertices in random order.
(3) TS uses surface marching to construct the mesh neighborhood, while WLS performs
flattening and resampling of the mesh. Results of the two methods are comparable in
quality. A texture synthesized on the Stanford bunny using WLS can be viewed in
Figure 2.7, left.

Ying et al. [YHBZ01] worked on overcoming the drawbacks of surface marching
methods (such as [Tur01]): (1) the sampling pattern is not guaranteed to be even in
the presence of irregular geometry, (2) the sampling is numerically unstable, as small
surface variations can cause large variations in the pattern and (3) the method is
slow due to many geometric intersection and projection operations. In their approach,
texture is synthesized on surfaces per-texel using a texture atlas of the polygonal mesh
(a collection of rectangular domains Ui on which the surface is smoothly parameter-
ized) and a common planar domain, the chart V, from which neighborhood sample
positions in the domains Ui are gathered. These positions in the Ui then correspond
to the neighborhood on the original surface along a previously defined, orthogonal unit
tangent vector field. They apply both Wei/Levoy and Ashikhmin per-pixel synthesis
strategies with convincing results (Figure 2.7, middle).

Praun et al.’s Lapped Textures [PFH00] extend the chaos mosaic [XGS00] to
surfaces with a pre-computed vector field to direct anisotropy. In their system, the
user specifies a tangential vector field over the surface, controlling texture scale and
orientation. A (possibly irregular) input texture sample is then repeatedly pasted onto
the surface by growing a surface patch and parameterizing it in texture space. The
parametrization is optimized (by solving a sparse linear system) such that the vector
field aligns with the frame of the texture patch. They render the resulting model both
with a generated texture atlas and by runtime-pasting, the latter significantly reducing

12

2.4 Near-Regular Texture Synthesis

(a) Sample set of selected user-aligned
tiles (T).

(b) Sample set of selected half-way
shifted tiles (Th).

Figure 2.8: Sample tiles of The Promise and Perils of Near-regular Texture. The sample tiles
are shown (rhombic shaped tiles are minimum tiles and rectangle shaped tiles are
maximum tiles), they are carved from the input brick texture. (a) and (b) show
the two different lattice positions. Images taken from [LTL05].

texture memory at the cost of rendering some faces multiple times.

Soler et al. demonstrated in Hierarchical Pattern Mapping (HPM) [SCA02] how
a mesh can be seamlessly textured with only the input texture and a set of texture
coordinates for each vertex. They set up a hierarchy of face clusters for the input
mesh and then, for each cluster, (1) flatten it (if distortion is too high, the cluster
is subdivided for later processing), (2) find a texture patch in the example texture
for the flattened cluster which best matches already textured neighbors (if the error
due to texture discontinuities with the existing neighbors is too high, the cluster is
subdivided for later processing), (3) if (1+2) pass, map texture coordinates onto all
polygons in the cluster. Unlike previous methods, HPM does not use a vector field,
instead letting possible texture anisotropy propagate itself (Figure 2.7, right). Similar to
Lapped Textures runtime-pasting [PFH00], the texture memory overhead for rendering
is minimal, and additionally, all faces are rendered only once.

2.4 Near-Regular Texture Synthesis
A few authors have proposed specialized methods for synthesizing a specific type
of textures known as Near-Regular Textures (see techreport [LHW+04] to have an
overview, for example). The work of this thesis is as well focused on the synthesis of
this particular kind of textures. These textures are ubiquitous in the real world, e.g.
brick walls, tiled floors, carpets and woven sheets fall in this category where a dominant
global structure or pattern (each brick, tile, straw or bamboo strip) varies only locally.

Liu et al.’s The Promise and Perils of Near-regular Texture [LTL05] focuses on the
synthesis of near-regular textures whose local irregularities are mainly color deviations

13

2 Related Work and Contribution

Figure 2.9: Color deformation field as modeled in Near-Regular Texture Analysis and Manip-
ulation [LLH04]. In this example, each input tile can be represented as a linear
combination of its mean tile with the top 11 PCA bases. The blue colors on PCA
bases reflect negative values. Images taken from [LLH04].

and no important geometric deformation of the global pattern exists. Similar to ours,
they analyze the input texture image to estimate the translational symmetry of the input
texture by using a correlation-based method proposed in [LCT04]. After a user assisted
alignment of the detected lattice, two sets of maximum tiles are identified within the
input: aligned maximum tiles (T) and half-way shifted maximum tiles (Th) (Figure 2.8).
Starting with one randomly selected maximum tile, the output is composed then by
sequentially stitching maximum tiles in the directions of the detected lattice. Each
new maximum tile is alternatively selected from T or Th and pasted at lattice points
or half-way shifted lattice points respectively. The selection is constrained by over-
lapping and the selected candidate is registered with a correlation-based method such
that small movements around the current lattice point are possible. At each step, the
current tile is stitch to what has already been synthesized in a similar manner to [EF01].

Liu et al. further worked on near-regular textures and developed a multimodal
framework to treat a wider range of near-regular textures in Near-Regular Texture
Analysis and Manipulation [LLH04]. They extend the idea developed in [LL03] to
address geometry, lighting and color deviations from regularity.
User assistance helps detect a coarse irregular lattice from which a geometric defor-

mation field dgeo is inferred and extracted to obtain a regularized version of the input
texture (flattened texture). Tsin et al.’s algorithm [TLR01] is then applied to this
flattened version to estimate a lighting deformation field dlight that is afterwards
mapped back to the original input texture applying the inverse deformation field. The
previous deformation and lighting models are extracted from the input and individual
tiles (pattern units) are identified to estimate a color deformation field from a PCA
analysis. The color deformation field is modeled with the mean tile and a set of PCA
basis that are representative tile color deviations (Figure 2.9). In the synthesis stage,
the geometry and lighting deformation fields are related. A geometric deformation field

14

2.5 Contribution

Figure 2.10: Comparison of absolute DFT and FrDFT coefficients (right) for the first scanline
of a Corduroy texture sample (left) after subtraction of mean value. The dominant
regular structure is caused by frequency 7.2. The small plot shows the FrDFT of
the function cos(7.2 · 2πx). Images taken from [NMMK05].

synthesis algorithm [LL03] is applied to synthesize Dgeo from dgeo first, then image
analogies [HJO+01] is used to synthesize the lighting deformation field Dlight with
A = dgeo, A′ = dlight, B = Dgeo and B′ = Dlight. Finally, the color deformation field
is synthesized by sampling the multidimensional space defined by the PCA basis as axis.

Nicoll et al. [NMMK05] used the concept of fractional Fourier analysis to perform
an automatic separation of the global regular structure from the irregular structure.
The actual synthesis is performed by generating a fractional Fourier texture mask from
the extracted global regular structure which is used to guide the synthesis of irregular
texture details.
First, they separate the dominant regular structure from irregular texture detail using

the fractional Fourier transform (FrDFT, see Figure 2.10) and an intensity filter. This
allows them to generate a fractional Fourier texture mask (FFTM) (procedural texture
for the regular part), which is derived by "enlarging" the regular structure obtained
from the fractional Fourier analysis to a desired size. That is, the FrDFT analysis
identifies a set of dominant fractional frequency pairs b1, . . . , bn and their corresponding
coefficients F1, . . . , Fn that synthesize the FFTM by using the inverse DFT formula in a
process known as Fourier synthesis [WW91]. The addition of irregular texture detail is
finally done by an extended version of either pixel-based or patch-based texture synthesis
algorithms.

2.5 Contribution
Our work is focused on the improvement of the synthesis of near-regular textures
(NRT Type I, see Figure 1.2), as we see that this kind of textures especially pose
problems to exisiting synthesis methods.
Pixel-based texture synthesis approaches are generally unable to capture global

largescale structures and fail to reproduce the regularity of NRTs. In addition, the
synthesis is sequential, hence newly synthesized pixels are dependent of what has been
synthesized before. This may sometimes lead to garbage accumulation problems if the

15

2 Related Work and Contribution

process "slips" into a wrong part of the search space [EL99]. Furthermore, synthesizing
one pixel at a time may cause blurriness in the output.
Patch-based texture synthesis techniques base largescale pattern reproduction on tak-

ing groups of contigous pixels as the sampling unit instead of individual pixels and con-
straining the selection of each new group (or patch) by overlapping with the already syn-
thesized part of the output. However, this does not generally ensures faithful gobal regu-
lar structure reproduction [LTL05]. Moreover, although garbage accumulation problems
of pixel-based methods are reduced, they report the appearance of boundary missmatch
artifacts that may be propagated to new patches in our experience. Furthermore, new
patches are still dependent on the previously synthesized output and this may also cause
visible repetitions (poor randomness of the irregularities).
Texture synthesis approaches specialized in near-regular textures generally require an

important amount of user intervention and specific tuning [LLH04, LTL05, NMMK05].
In addition, they are still sequential, what we see as an incovenience because errors may
propagate across the output and visible repetitions may appear if no especial care is
taken. Nicoll et al. [NMMK05] also report that fractional Fourier texture masks suffer
a degeneration if the extracted frequencies are not completely accurate, what in our
experience is always if the output is big enough.
In this thesis, we focus on the improvement of two of the main drawbacks of existing

synthesis approaches for near-regular textures. On the one hand, we propose a lattice
estimation method that works successfully in most cases with no user intervention at all.
On the other hand, we exploit the estimated lattice to break the tradicional sequencial
approach of the synthesis process: independent input samples are sparsely introduced
into the output to ensure that local errors are not futher propagated and that the irreg-
ularities of the texture are stochastically rich. Again, special attention is given to avoid
user intervention in the synthesis process as its configuration is generally automatizable.
Following sections 3 and 4 explain our methodology in detail.

16

3 Regular Structure Detection (Analysis)

This thesis describes a example-based synthesis approach for a specific kind of textures
referred to as near-regular textures [LTL05]. According to Liu et al. [LLH04], a near-
regular texture (NRT) can be categorized according to Figure 1.2. The type of NRT we
are interested in is Type 1, where a regular structure (i.e. an identifiable repeated pat-
tern) is combined with stocastic deviations from regularity that are mainly photometric
rather than geometric. Examples of this type of texture are frequently found in the real
world: most textiles (e.g. used for clothing, furniture, or car interiors) and construction
elements (walls, floors, grid structures, corrugated sheet roofs) fall into this category,
and yet they are are still very difficult to synthesize faithfully. Many existing example-
based methods typically focus on preserving local properties and fail to reproduce the
large-scale global structure of the texture as reported in [LTL05].
In order to avoid this, we perform an analysis step prior to the synthesis to derive the

strictly regular structure from the input and use the result to guide (constrain) the sub-
sequent synthesis step so that the stocastic deviations respect the inferred periodicity.
In practice, the regular structure is defined by two independent vectors describing the
displacements that cause the texture to repeat itself [GS86]. These vectors are called
translation vectors in this thesis, and define what we call the tile of the regular pattern.

To estimate the translation vectors, we make use of a normalized cross-correlation
(NCC) of the input image with itself. Normalized cross-correlation is known to be a
good tool for template matching [Lew95]. Its invariance with respect to image bright-
ness and contrast makes it especially appropriate for template matching in non-ideal
lighting conditions. We use it to compute the autocorrelation of the texture sample,
and derive the two translation vectors from its local maxima. The common formula of
the normalized cross-correlation has some characteristics that do not completely suit
our problem domain.
As we do not want to make any assumption in the size of the underlying pattern of

the input texture, we correlate the whole sample image with itself (autocorrelation).
Section 3.1 describes why a generalized reformulation of the common NCC is needed
in order to compute the normalized autocorrelation correctly and shows how this gen-
eralized calculation can be kept acceptably efficient by a computation in the frequency
domain.
Moreover, we perform the autocorrelation of a 3-channel image (RGB), so we need

a way to combine the autocorrelation of each separate channel. Section 3.2 describes
how we combine the cross-correlation of various channels into a single measure.

From this measure we estimate two translation vectors v1,v2 that characterize the
regular structure of the input texture from an observation of the local maxima distri-

17

3 Regular Structure Detection (Analysis)

(a) (b)

(c) (d)

Figure 3.1: An example describing the analysis procedure. The normalized autocorrelation
(b) of the input near-regular texture sample (a) has high local maxima where the
underlying regular structure repeats itself. Two independent translation vectors
v1,v2 (c) (d) are found to describe the underlying repetition pattern.

bution. Section 3.3 explains the translation vectors estimation process.

Figure 3.1 illustrates the goal of the analysis process. The high local maxima of the
normalized autocorrelation of the input texture sample are related to the underlying
repetition pattern. We analyze the local maxima distribution to get two independent
translation vectors describing this regularity.

3.1 Generalized Normalized Cross-Correlation (GNCC)

The common formulation of the normalized cross-correlation (NCC) supposes that a
full template (i.e. a relatively small image) is to be found within a bigger image and
thus does not allow partial matches (or gives them invalid values). This is specially
inconvenient if we want to perform an autocorrelation or a cross-correlation of two
images of the same size, as every point but the origin is a partial match. We show here

18

3.1 Generalized Normalized Cross-Correlation (GNCC)

Figure 3.2: Overlapping region (in stripes) of the generalized normalized cross-correlation at
different positions. Only the example at the bottom-right corner has an overlapping
region that covers g(x− x′) entirely.

how we can reformulate the NCC formula to get a generalized computation that allows
partial matches. We call it generalized normalized cross-correlation GNCC.1
We will apply this generalized formula to perform the autocorrelation of the input

image, which will allow us to detect the translation vectors related to underlying regular
structure in section 3.3.

The common formula of the normalized cross-correlation NCC is [Lew95]:

γ(x′) =

∑
x

(f(x)− f̄x′)(t(x− x′)− t̄)√∑
x

(f(x)− f̄x′)2
√∑

x
(t(x− x′)− t̄)2

(3.1)

where t̄ and f̄ denote the mean of the template and the covered image region. Both the
mean of the image f̄x′ and the sums are over all pixels x = [x, y]T under the window
containing the template positioned at a pixel position x′ = [x′, y′]T .
This categorization in image and template implies that it is assumed that the template

is small compared to the image and thus the correlation is usually invalid or undefined
where the template is not entirely contained in the size of the image.
The generalization overcomes this categorization in image and template and considers

the cross-correlation of two arbitrarily sized images with no distinction between the two
inputs. It gives a normalized scalar product of the overlapping between the two images
for every relative displacement with non-void intersection (or overlapping). Figure 3.2
depicts some examples of the overlapping region between two images f, g for different

1 We sometimes overuse the acronym GNCC to refer to a normalized autocorrelation as its computation
is our main application of the Generalized Normalized Cross Correlation.

19

3 Regular Structure Detection (Analysis)

relative displacements x′ = [x′, y′]T . The formula of the generalized normalized cross-
correlation GNCC between an Nf ×Mf image f and an Ng ×Mg image g now yields:

γ(x′) =

∑
x

(f(x)− f̄x′)(g(x− x′)− ḡx′)√∑
x

(f(x)− f̄x′)2
√∑

x
(g(x− x′)− ḡx′)2

(3.2)

where the sums and the mean of both images f̄x′ , ḡx′ are over all pixels x in the over-
lapping region between the images with g positioned at x′. Note that the new formula-
tion is equal to the original NCC for g = t, Ng < Nf ,Mg < Mf and 0 ≤ x′ ≤ Nf −Ng,
0 ≤ y′ ≤Mf −Mg.
This generalization makes the computation potentially much costlier, but its computa-

tion in the frequency domain allows us to keep it acceptably efficient. This computation
in the frequency domain needs some considerations to be made. A reformulation of
equation (3.2) makes clear what operations need to be done:

γ(x′) = NSfg − SfSg√
NSf2 − S2

f

√
NSg2 − S2

g

(3.3)

with

Sfg(x′) =
∑

x
f(x)g(x− x′)

Sf (x′) =
∑

x
f(x)

Sg(x′) =
∑

x
g(x− x′)

Sf2(x′) =
∑

x
f(x)2

Sg2(x′) =
∑

x
g(x− x′)2

f̄x′ = Sf (x′)
N (x′)

ḡx′ = Sg(x
′)

N (x′)

(3.4)

and N (x′) is the number of pixels in the overlapping region between the images when
g is at position x′. Equation (3.3) is equivalent to equation (3.2) and shows that the
computation can be obtained from a few integrations and the (unnormalized) cross-
correlation between the two images.

We need to compute Sfg, Sf , Sg, Sf2 , Sg2 and N , where the unnormalized cross-
correlation Sfg is the costliest operation, as the others can be computed in linear time.
Fortunately, it is equivalent to the convolution f(x) ∗ g(−x) and so it can be computed
as F−1{F(f)F∗(g)}, where F ,F−1 stand for the Direct and Inverse Fourier Transforms

20

3.1 Generalized Normalized Cross-Correlation (GNCC)

respectively2. Regarding the other computations, [Lew95] showed that they can be
done in linear time from tables with the precomputed integration (running sum) of the
respective images.

The recursive definition of the precomputed integration sf of image f is:

sf (x′) = f(x′) + sf (x′ − [1, 0]T) + sf (x′ − [0, 1]T)− sf (x′ − [1, 1]T) (3.5)

where sf (x′) = 0 when either x′, y′ < 0. This integration allows the reduction of the
computation of Sf to:

Sf (x′) = sf (x′ + [Ng − 1,Mg − 1]T) (3.6)
−sf (x′ + [Ng − 1,−1]T)
−sf (x′ + [−1,Mg − 1]T)
+sf (x′ + [−1,−1]T)

where Ng and Mg are the horizontal and vertical dimensions of image g respectively.
A similar procedure can be applied for Sf2 , by integrating f(x)2 instead of f(x).
On the other hand, Sg needs the integration of g to be done backwards, what is

equivalent to a forward integration of a 180◦-rotated version g̃ of g , i.e.:

g̃(x) = g([Ng − 1,Mg − 1]T − x) (3.7)
sg̃(x′) = g̃(x′) + sg̃(x′ − [1, 0]T) + sg̃(x′ − [0, 1]T)− sg̃(x′ − [1, 1]T)

where sg̃(x′) = 0 when either x′, y′ < 0. And analogously, this can be used to easily
compute Sg:

Sg(x′) = sg̃(x′ + [Nf − 1,Mf − 1]T) (3.8)
−sg̃(x′ + [Nf − 1,−1]T)
−sg̃(x′ + [−1,Mf − 1]T)
+sg̃(x′ + [−1,−1]T)

where Nf andMf are the horizontal and vertical dimensions of f respectively. Again,
a similar procedure gives Sg2 by integrating g̃(x)2 instead of g̃(x).

The computation of N has also linear cost:

N (x′) = min(Ng, x
′ +Ng, Nf − x′) ·min(Mg, y

′ +Mg,Mf − y′) (3.9)

where min stands for the minimum and −Ng < x′ < Nf , −Mg < y′ < Mf .

2 As our domain is discrete, we have to zero-pad the images to be size (Nf + Ng − 1) × (Mf + Mg − 1)
before computing their DFTs in oder to do this correctly.

21

3 Regular Structure Detection (Analysis)

3.2 Multi-channel GNCC
The definition of the generalized normalized cross-correlation in section 3.1 is only appli-
cable to a pair of single channel images (e.g. grayscale images). As we usually deal with
multi-channel images (usually RGB images), we need to find a way to deal with more
than one channel at the same time. We do this by evaluating the cross-correlation of
each channel separately and then combining them in a single measure as a weighted
sum of the independent correlations.
A normalized measure is always confined to the interval [−1, 1] regardless of the actual

magnitude of the inputs. This makes it more general and comparable for a wide range of
different inputs. On a first thought, we could try to take advantage of this and simply
multiply the correlation coefficients of each channel to get a combined result. How-
ever, that way, a poor match in one of the channels would make the combined measure
as poor or even poorer. This is specially undesirable considering that normalization
implies that the magnitude of information that the channel actually carries (or its rel-
evance in the combined measure) is no longer taken into account. So, for instance, the
correlation coefficient of a channel where one or both of the images are constant (and
so with no structure information and no relevance at all) would be undetermined (see
equation (3.2)) and usually taken as zero, causing the combined measure be zero as well.
Similarly, a channel with little changes, maybe even imperceptible to human eyes, could
have a poor match and mislead the overall measure.
An alternative is the mean coefficient, but still a poor match in a channel with little or

no relevance would affect the overall measure considerably. For instance, with 3-channel
RGB images, if one channel with no structure information has a correlation coefficient
of zero, one third of the combined result is lost at once, and it would be even worse if
it had a negative value. This undesired effect can be effectively reduced performing a
weighted sum of the correlation coefficients of each channel instead of a blind mean.
Having a look at equation (3.2), we can see that its denominator is the product

of the square root of the zero-mean energy of each of the two images in the current
overlapping. That is the product of their standard deviations and can be thought of
as a measure of the magnitude of structure information they carry (a constant value
or small changes mean no structure information). This measure specially emphasizes
sharp edge-like changes, as they are more energetic than smooth transitions. This
makes it appropriate to weighting in our combined measure, considering that human
perception is specially sensitive to edges when recognizing objects and patterns.

Let γi be the generalized normalized cross-correlation of the f i, gi channels of two
multi-channel f, g images (with i = R,G,B typically). Then, the combined correlation
coefficient γ is:

γ(x′) =

∑
i
γi(x′)σf iσgi∑
i
σf iσgi

(3.10)

where

22

3.3 Translation Vectors Estimation

σf i =
√∑

x
[f i(x)− f ix′]2 (3.11)

σgi =
√∑

x
[gi(x− x′)− gix′]2 (3.12)

Reformulated as in equation (3.3) and expanded yields:

γ(x′) =

∑
i

[NSf igi − Sf iSgi]∑
i

√
NSf i2 − S2

f i

√
NSgi2 − S2

gi

(3.13)

The denominator normalizes the applied weighting to sum one so that the final result
falls into [−1, 1] again. The applied weights in the two alternative formulations are:

wi =
σf iσgi∑
k
σfkσgk

(3.14)

wi =

√
NSf i2 − S2

f i

√
NSgi2 − S2

gi∑
k

√
NS

fk2 − S2
fk

√
NS

gk2 − S2
gk

(3.15)

Note that the denominator of each γi (see Equation (3.3))is simplified by the numer-
ator of the applied weighting in Equation (3.13) and the formula reduces to the sum of
numerators divided by the sum of denominators.

3.3 Translation Vectors Estimation
The previous Sections 3.1 and 3.2 provide a tool for obtaining the normalized cross-
correlation of two arbitrarily sized RGB images. Now, we use this technique to perform
a cross-correlation of our texture sample with itself, i.e. the normalized autocorrelation
of the input texture sample image. This allows us to analyse the repetition pattern of
the input near-regular texture.
In practice, we are looking for two independent displacements (in the form of 2-

dimensional vectors) defining the tile of the underlying regular pattern. What we call
the tile is the 2-dimensional counterpart of the 1-dimensional period, as the regular
structure we want to characterize is a periodic signal in two dimensions. For simplicity,
we will first reduce the problem to the 1-dimensional case.

Consider the 1-dimensional ideally periodic discrete signal f(x) = f(x + kT) with
x, k, T ∈ Z and T constant and equal to its minimum period. Now, imagine we only
have a sample fsam of this periodic signal confined to the interval [0, N−1] with N > T ,
thus

23

3 Regular Structure Detection (Analysis)

fsam(x) =
{
f(x) if 0 ≤ x ≤ N − 1,
0 otherwise.

(3.16)

Then, for each −(N−1) ≤ x′ ≤ N−1, the normalized autocorrelation (as analogously
defined in equation (3.2) for the 2-dimensional case) of the sample signal fsam is the
scalar dot product of two multidimensional unit vectors (cosine similarity):

γ(x′) =

ux′,N−1·u0,N−x′−1
‖ux′,N−1‖‖u0,N−x′−1‖

if 0 ≤ x′ ≤ N − 1,
γ(−x′) if −(N − 1) ≤ x′ < 0,
0 otherwise

(3.17)

where

ua,b =

f(a)

f(a+ 1)
...

f(b− 1)
f(b)

−
1

b− a+ 1

b∑
x=a

f(x) (3.18)

This means that our measure γ is confined to the interval [−1, 1] and has
the maximum value (γ = 1) whenever ux′,N−1,u0,N−x′−1 are linearly dependent
ux′,N−1 = αu0,N−x′−1 with α > 0 ∈ R. In the case of a periodic signal, we have
f(x) = f(x+ kT), k ∈ Z, and then ux′,N−1 = u0,N−x′−1, ∀x′ = kT, k ∈ Z:

ukT,N−1 =

f(kT)

f(kT + 1)
...

f(N − 2)
f(N − 1)

−
1

N − kT

N−1∑
x=kT

f(x) (3.19)

ukT,N−1 =

f(0)
f(1)
...

f(N − kT − 2)
f(N − kT − 1)

−
1

N − kT

N−kT−1∑
x=0

f(x+ kT) = u0,N−kT−1 (3.20)

So, γ gets its maximum value every multiple of the period T .

A regular texture can be described as a 2-dimensional periodic signal, and the sample
image as a rectangular piece of texture. A 2D periodic signal f(x), x = [x, y]T obeys
the rule

f(x) = f(x + av1 + bv2) (3.21)

24

3.3 Translation Vectors Estimation

(a) (b)

Figure 3.3: (a) The translation vectors v1,v2 define a parallelogram that is the tile of the 2D
periodic signal. (b) The tile is the 2D counterpart of the 1D period.

where a, b ∈ Z and v1,v2 are two independent vectors called translation vectors that
define the tile of the signal. The tile is the parallelogram that has the translation
vectors as its non-parallel sides and is the 2D counterpart of the 1D period (see Fig-
ure 3.3). Anagously to the 1-dimesional space, the GNCC of a 2D regular texture sample
image with itself has absolute maxima at linear combinations of the translation vectors
x = av1 + bv2 with a, b integers.
Although we want to analyze non-strictly regular but near-regular texture samples,

we expect their normalized autocorrelation to still have high local maxima at multiples
of the translation vectors related to their regular structure. Therefore, it is reasonable to
believe that we can infer the shortest (defining the smallest tile), independent translation
vectors from an observation of the local maxima of the normalized autocorrelation of
the input texture sample. However, detecting which peaks are related to the regular
structure of the input texture is not a trivial task. Deviations from regularity present
at the texture sample can cause the ideally absolute maxima to decrease and become
only local maxima that may be confused with other spurious local maxima.
Figure 3.4 shows two examples of near-regular texture samples and their normalized

autocorrelation. The horizontal profile passing through the origin (i.e. the center row
of the correlation matrix) of both correlations is also represented to better illustrate the
magnitude of the peaks.
In the first example (upper row in Figure 3.4), the normalized autocorrelation presents

local maxima wherever the shape of the little paintings roughly coincide. However, as
well as the shape, the colors of the little paintings also follow a regular distribution
and only those displacements where the colors are also matched in the overlapping
truly define the translation symmetry of the texture (see Figure 3.1). Fortunately, the
normalized autocorrelation has higher local maxima where both the shape and colors
are matched (peak D) than where only the shape is matched (peaks A, B and C), so on
first thought we could think of thresholding to detect the correct repetition pattern.
On the other hand, the second example (lower row in Figure 3.4) shows that simple

thresholding may be inconvenient in some cases. The input texture is made of squared
gray tiles of varying brightness. We would like to detect one single tile as the smallest
unit of repetition of the regular structure, so the relatively low peaks A and B are not

25

3 Regular Structure Detection (Analysis)

Figure 3.4: Some spurious relatively high local maxima may appear in the normalized auto-
correlation. Left: input texture sample. Center: RGB-combined normalized auto-
correlation. Right: horizontal profile passing through the origin of the combined
GNCC (center row).

spurious but are caused by the repetition pattern that we want to estimate. So, if we
applied the hypothetical thresholding proposed in the previous paragraph, we would
fail to detect the smallest translation vectors in this case.

The method to estimate the two smallest translation vectors related to the regularity
of input texture from the analysis of the normalized autocorrelation of the texture
sample that we propose here tries to overcome these difficulties. On the one hand, it
intends to find the smallest possible translation vectors, and on the other hand, avoid
misleadings that spurious maxima may cause (and do it without user intervention).
The procedure mainly derives from the following observations:

i. The autocorrelation has the symmetry γ(x) = γ(−x).

ii. If two vectors are translation vectors for the near-regular texture under analysis,
the normalized autocorrelation of the input sample has high local maxima not only
at those displacements but also at every of their multiples.

iii. A translation vector v is equivalent to its opposite −v as they have the same
multiples.

iv. A pair of translation vectors {v1,v2} is equivalent to {v2,v1}, {v1,v2 +k1v1} and
to {v1 + k2v2,v2} for any k1, k2 ∈ Z as they all have the same set of multiples and
so define the same periodicity.

26

3.3 Translation Vectors Estimation

v. Some spurious maxima are likely to appear at the borders of the autocorrelation
matrix, where the values are obtained from the comparison of a smaller pixel region
(see Figure 3.2).

vi. Other spurious maxima not at the borders of the autocorrelation are generally lower
than the peaks caused by the periodicity of the texture.

Given these observations, we decide to proceed as follows:

1. Mark every local maximum of the right half of the autocorrelation matrix (the left
half is redundant given the symmetry of γ).

2. Form a candidate list c1 of vectors v1(1), . . . ,v1(n) with the displacements of each
marked local maximum from the origin (i.e. the center of the matrix) sorted in
ascending length ‖v1(1)‖ ≤ . . . ≤ ‖v1(n)‖.

3. Explore each vector v1(i) in c1 in order and form c2 = {v1(i+1), . . . ,v1(n)} with
the vectors that are after v1(i) in the sorted list c1.

4. Reduce every v2(j) in c2 to v2(j) = v2(j)−
[v2(j)·v1(i)
‖v1(i)‖2

]
v1(i) (and take v2(j) = −v2(j)

if it lay on the left semi-plane) and eliminate duplicates and vectors shorter than
v1(i), where [.] is the round-to-nearest-integer operator and the dot is the scalar
dot product. Among all equivalent pairs (observation (iv)) we keep the one with
the greatest angle between vectors.

5. Given the normalized autocorrelation, v1(i) and for all v2(j) in c2, evaluate the
goodness:

g({v1(i),v2(j)}) =

(∑
a,b∈Z

γ(av1(i) + bv2(j))
)α

n
(3.22)

where the sum is over the significant multiples of {v1(i),v2(j)} that are on the
right half of the autocorrelation excluding the origin and n is the final number of
summands.

6. The pair of vectors with the higher goodness are the final estimation of the trans-
lation vectors.

Note that the formula defining the goodness of a candidate pair {v1,v2} is equivalent
to:

g({v1,v2}) = (γ̄v1,v2)α · nα−1 (3.23)

with

γ̄v1,v2 =

∑
a,b∈Z

γ(av1 + bv2)

n
(3.24)

27

3 Regular Structure Detection (Analysis)

Figure 3.5: Texture samples with their detected lattice and examples of goodness evaluation.
Black crosses mark the values of the autocorrelation that compose the sum for the
goodness evaluation. The shading differenciates which values of the autocorrelation
are considered significant with the current candidate translation vectors (invalid
border).

the mean GNCC at the significant multiples of the translation vectors {v1,v2}. The
idea is to mainly rate two candidate vectors {v1,v2} with the mean GNCC at their
significant multiples, but assign a slightly greater than 1 value to α to give priority to
smaller tiles in case of similar mean GNCC. All our results were achived with α = 1.12.
Note that only significant multiples of the candidate translation vectors are taken

into account. Section 3.3.1 explains what significant means in this context.

Figure 3.5 is a summary of the estimation procedure. It shows that the tile shape
and size of both example textures of Figure 3.4 were estimated correctly and without
user intervention. In the first example (upper row), the bigger tile scores better because
the spurious peaks not at the border of the autocorrelation make the mean γ of the
smaller tile lower. In the second example however (lower row), the bigger tile has no
valid multiple of v1, so its goodnes is automatically 0.

3.3.1 Significant Values of the Autocorrelation
Recall that the estimation is based on the normalized autocorrelation (see Sections 3.1
and 3.2) of the texture sample image. The normalized autocorrelation gives a measure of
similarity between the image and a displaced version of itself in their overlapping region
for every possible relative displacement. If this overlapping region is small compared to
the tile of the texture (i.e. the periodicity unit), high spurious local maxima are likely
to appear (borders of the autocorrelation matrix). Therefore, only those values of the

28

3.3 Translation Vectors Estimation

Figure 3.6: Input space split in tiles and each pixel numbered in function of its relative position
within its tile.

autocorrelation that come from a significant set of pixels are taken into account in the
goodness evaluation of two candidate translation vectors (see Equation (3.22)).
Note that whether an overlapping is significant or not depends on the specific tex-

ture, but it is sure enough if it contains a full tile of the repetition pattern and we
cannot assure the validity of γ if only a little part of the tile is included. So when
rating the goodness of a candidate pair of vectors {v1,v2}, we only consider values
of the autocorrelation whose overlapping contains at least a certain percentage of the
candidate tile (i.e. the parallelogram defined by the candidate pair of vectors). In all
our results, we chose an 85% as the minimum percentage of the candidate tile that
significant overlappings have to contain.

Seeing how much of the tile an overlapping contains is not a trivial task. The
intersection of two rectangular images is always rectangular itself, but the tile is a
parallelogram that can have any orientation. Depending on the orientation and angle
between the two translation vectors, the border of the autocorrelation matrix that we
consider invalid may have different shape and width (see Figure 3.5). Although other
faster conservative approximations could be applied, we propose an exact method for
determining the percentage of the tile that a given overlapping contains.

We split the input space in disjoint contiguous tiles (i.e. tile-shaped pieces) and
assign an identifier to each pixel in function of its relative position within its tile (see
Figure 3.6). Then, we find out how many unique identifiers a given overlapping contains.
Figure 3.7 shows two examples of overlapping regions. They suppose the input dimen-

sions and the candidate vectors {v1,v2} depicted in Figure 3.6. The first example (upper
row) is the overlapping corresponding to the computation of γ(14, 7) and shows that it
only includes a 57.9% of the candidate tile, so it would not pass the threshold of 85%
that we impose. However, the second example (lower row) corresponds to the computa-
tion of γ(12, 8) and includes a 92.1% of the candidate tile, so it would pass the imposed
threshold of 85%.
Note that the percentage of the tile included in an overlapping region only depends

on the shape and size of both the tile and the overlapping region, regardless of the

29

3 Regular Structure Detection (Analysis)

Figure 3.7: The overlappings on the left correspond to the computation of γ(12, 8) and γ(14, 7)
respectively. On the right, the representation shows that the upper overlapping
contains 22 out of 38 unique identifiers and the lower ovelapping 35 out of 38.

alignment. The particular identifiers included in the overlapping region may change
depending on the relative position, but the size of the set of unique identifiers remains
constant. So, for example, a rectangular 3 × 8 overlapping as in the upper row in
Figure 3.7 with the defined tile will always contain 22 unique identifiers no matter if
it is on the top-left, top-right, bottom-left or bottom-right corners of the input space
(correspondig to γ(−14,−7), γ(14,−7), γ(−14, 7), γ(14, 7) respectively).
Therefore, to calculate the percentage of the tile included in an overlapping for a

candidate translation vectors pair {v1,v2}, we can proceed as follows. First, identify
each pixel in the overlapping with its regular x = [x, y]T coordinates. Then, wrap
(see below) the x coordinates to the first tile defined by {v1,v2} so that the wrapped
coordinates x̃ = [x̃, ỹ]T of every pixel at the same relative position within a tile are equal.
And finally, find out how many different wrapped coordinates x̃ there are compared to
the maximum possible. Note that if v1 = [v1x, v1y]T and v2 = [v2x, v2y]T have integer
coordinates, the maximum possible different wrapped coordinates (i.e. the number of
pixels in one tile) is: ∣∣∣∣∣det

([
v1x v2x
v1y v2y

])∣∣∣∣∣ = |v1xv2y − v2xv1y| (3.25)

where |.| is the modulus or absolute value operator and det(.) stands for determinant.

30

3.4 Conclusion

To understand what the wrapping operation does, consider the analogy with a 1D-
periodic signal with period T . If a given position x is wrapped to x̃, it means that

x = kT + x̃ (3.26)
x̃ = x− kT (3.27)

with k ∈ Z so that x̃ ∈ [0, T). Then,

x̃ = x−
⌊
x

T

⌋
T (3.28)

where b.c is the round-down (or floor) operator.
Analogously, in the context of a 2D-periodic signal with translation vectors {v1,v2},

the wrapped coordinates x̃ of a position x can be obtained as follows:

x̃ = x−Q
⌊
Q−1x

⌋
(3.29)

where

Q =
[
v1 v2

]
=
[
v1x v2x
v1y v2y

]
(3.30)

Note that the wrapped coordinates are always in the first tile, i.e. in the parallelogram
(0, 0),v1,v1 + v2,v2.

3.4 Conclusion
The computation described in the previous Section 3.3.1 allows us to determine which
multiples of each candidate pair of vectors should compose the sum of the goodness
evaluation in Equation (3.22). This ultimately leads to the estimation of the translation
vectors of the texture under analysis as the candidate pair with the highest score. Then,
the analysis stage is finished and the detected lattice is represented with the estimated
pair of vectors, which along with the sample image are the input of the subsequent
synthesis stage explained in the following Chapter 4.

31

4 Synthesis

The objective of example-based texture synthesis is to generate an arbitrarily sized
image that faithfully reproduces the texture of a relatively small sample image. The
procedure is said to be example-based if it composes the output only from extracted
pieces of the input sample in contrast to methods that infer a statistical model for the
input texture. This section describes two example-based synthesis methods focused on
the reproduction of near-regular textures.
The type of near-regular textures addressed in this thesis are textures that have a

recognizable structure (i.e. repetition pattern) mixed up with characteristic stochastical
disturbances that cannot be reproduced by simple tiling. On the other hand, local-
statistics example-based methods that are not aware of the underlying regular structure
of the input texture fail to fairly reproduce that repetition pattern.
In section 3, we have shown how the regular structure of a near-regular texture sample

image can be analyzed to obtain the two independent translation vectors that describe
the underlying repetition pattern. Now, we can make use of this information to synthe-
size an arbitrarily sized image that respects the same regular structure of the texture
sample.
First, we describe how the two independent translation vectors found in the analysis

step define the tile of the underlying regular structure in section 4.1. In section 4.1.1, we
present a method to search for the best self-similar piece of texture with the shape of the
tile that produces the most seamless tiling, inpired by [DED05]. This fairly reproduces
the regular structure of the texture to be synthesized, but pays no attention to the
slight yet characteristic stocastic deviations that usually make near-regular textures look
natural. Nonetheless, it serves us to illustrate the improvement that we get with the
constrained random sampling and gap filling technique that is presented in section 4.2.
Proper comparisons between the two outputs are shown in section 5.
The constrained random sampling and gap filling technique that is presented in sec-

tion 4.2 exploits the information about the regular structure of the input texture that
is obtained in the analysis step to ensure its preservation in the synthesized texture,
but introduces random deviations from strict regularity to make the output look more
natural. It is mainly subdivided in two substeps: constrained random sampling and
constrained gap filling. Both of them are described in detail in sections 4.2.1 and 4.2.2.

4.1 Best Self-similar Tile Repetition
Recall that a 2D-periodic signal follows the rule:

f(x) = f(x + av1 + bv2) (4.1)

33

4 Synthesis

(a) Input texture sample. (b) Repetition of the tile in blue
in (a).

(c) Repetition of the tile in
green in (a).

Figure 4.1: Any portion of the signal with the shape and size of the tile reproduces the original
signal when repeated.

where x = [x, y]T , a, b are integers and the independent vectors v1,v2 are the shortest
possible translation vectors and define the tile of the signal.
We call the tile of a 2D-periodic signal the parallelogram that has the translation

vectors v1,v2 as its non-parallel sides (see Figure 3.3). The tile in the 2-dimensional
space is the counterpart of the 1-dimensional period. In the 1-dimensional space, any
interval of length T of a periodic signal f(x) with T its period is representative of the
signal. That means that any array of size T of the form

[f(xoff), f(xoff + 1), . . . , f(xoff + T − 2), f(xoff + T − 1)]

can be repeatedly concatenated to faithfully reproduce the signal to any length regard-
less of the offset xoff . Anagously, in two dimensions, a tile-shaped piece is enough to
synthesize an arbitrarily sized portion of a 2-dimensional signal by repeatedly pasting
the extracted tile-shaped piece in both the directions of the translation vectors, thus
joining opposite sides of the parallelogram.
This is illustrated in Figure 4.1. It shows two examples of viable pieces (i.e. with the

shape and size of the tile) that can reproduce the input sample of a regular texture. By
repeatedly pasting together copies of the extracted tiles,1 we can generate an arbitrarily
sized output with the same regular structure. In the examples, some space is left
between neighboring copies of the extracted tile to illustrate the composition.

As the input texture deviates from strict regularity, it is probable that direct tiling of
a single piece of texture creates seams between adjacent copies pasted together in the
output. Inspired by [DED05], we propose here a way to minimize this effect. The basic
idea is to examine every possible tile-shaped portion of the input and select the best
self-similar tile, i.e the tile-shaped piece of texture whose opposite sides are the most
similar possible to each other so that the transition from the end of one tile copy to the
begining of the next is smooth. The main difference to [DED05] is that they suppose
that the input texture sample is properly aligned and only consider rectangles while we

1 We sometimes overuse the term tile to refer to a tile-shaped piece of texture.

34

4.1 Best Self-similar Tile Repetition

(a) (b)

Figure 4.2: (a) Input texture sample with a mesh generated by the translation vectors found
in the analysis step in red. (b) Detail of the shape of the tile.

(a) Top and bottom
v1-long borders of
one possible tile.

(b) Detail of the mask
for each v1-long
border. Anchor
point in red.

(c) Left and right
v2-long borders of
one possible tile.

(d) Detail of the mask
for each v2-long
border. Anchor
point in red.

Figure 4.3: Example of borders at tile edges. Opposite borders of every possible tile-shaped
piece of input texture are compared to each other to find the best self-seamless tile.

accept any parallelogram as the tile shape. Moreover, their measure of self-similarity for
a given tile is based on the first derivative at tile junctions approximated as the squared
color difference between pixels at opposite sides (between pixels at the first column and
pixels at the last column, and between pixels at the first row and pixels at the last row
of the candidate rectangular tile). We evaluate direct squared color differences instead,
as detailed in the following section 4.1.1.

4.1.1 Best Self-Similar Tile Search
Consider the input texture sample in Figure 4.2. The analysis step has estimated two
independent vectors v1,v2 as the shortest translation vectors. They generate the mesh
depicted in Figure 4.2a. The tile shape is represented in Figure 4.2b, where v2 defines
the length of the left and right sides and v1 defines the length of the top and bottom
sides.
To evaluate the self-similarity of a given tile, we compare a border centered on the left

side with a same-shaped border centered on the right side, and a border centered on the
top side with a same-shaped border centered on the bottom side (see Figure 4.3). The
measure of similary between opposite borders is given by their accumulated squared
color differences. Every pixel in the left border is compared to the corresponding pixel

35

4 Synthesis

(a) (b) (c)

Figure 4.4: (a) Every pixel x = [x, y]T is related to the pixel x+v1. (b) Squared color difference
between every pair of pixels distant to each other in v1. (c) The integration in
(b) of a border-shaped patch (see fig. 4.3d) gives the accumulated squared color
differences between opposite v2-long sides of every possible tile.

in the right border, their squared color difference is obtained and the accumulation of
all the squared color differences in the border gives the left-right similarity measure.
An analogous computation gives the top-bottom similarity measure. Then, the sum of
both measures gives the final accumulated squared color differences between opposite
borders. The lower this values is, the more self-similar the tile under analysis is.
Let us start with the v2-long left and right sides of the parallelogram. Note that

pixels in the left border are always related to their right-border-counterpart pixel by
a v1 displacement. Therefore, to compute the left-right similarity measure for every
possible tile in the input, we precompute the squared color difference between each
pixel and its v1-distant counterpart:∑

i=R,G,B
[fi(x)− fi(x + v1)]2 (4.2)

and then integrate a patch of the shape of the defined border over the result.
Figure 4.4 illustrates this process. First, every pixel x = [x, y]T is related to the

pixel x + v1 and their squared color difference is computed, i.e. we precompute the
squared color differences between pixels of the subimage marked in blue and pixels of
the subimage marked in green in Figure 4.4a thus obtaining Figure 4.4b. Then, an
integration over the intermediate result of a patch of the shape and size of the desired
border (see Figure 4.3d) gives the final comparison between opposite v2-long borders
in Figure 4.4c. Note that every pixel in Figure 4.4c represents the left-right similarity
of a tile with the top-left corner at the position of that pixel. Tiles whose borders are
outside the size of the input have undefined self-similarity (white).
The top and bottom v1-long sides of the tile are analogously compared. Figure 4.5

shows the analogous process.
Finally, we sum both results to get a final rating of how self-similar every possible

tile is. The tile with the lowest total accumulated squared color differences between
opposite borders is the best self-similar tile.
Figure 4.6 shows the final best and worst self-similar tiles for the conducting example.

The top-left corner is the anchor point of the tiles, so the worst tile is at the highest
(dark red) point of the measure and the best tile at the lowest (dark blue). Note how

36

4.2 Constrained Random Sampling and Gap Filling

(a) (b) (c)

Figure 4.5: (a) Every pixel x = [x, y]T is related to the pixel x+v2. (b) Squared color difference
between every pair of pixels distant to each other in v2. (c) The integration in
(b) of a border-shaped patch (see fig. 4.3b) gives the accumulated squared color
differences between opposite v1-long sides of every possible tile.

(a) (b) (c) (d)

Figure 4.6: (a) Final accumulated squared color differences between opposite borders of every
possible tile with the best tile in green and the worst tile in red. (b) Input texture
sample with the best tile in green and the worst tile in red. (c) The best tile present
a smooth transition at tile junctions. (d) The worst tile presents visible seams at
tile junctions.

the best tile presents smooth transitions between contiguous tile copies, whereas the
worst tile has clear discontinuities at tile junctions.

4.2 Constrained Random Sampling and Gap Filling
In this section, we present a near-regular texture synthesis technique that we call con-
strained random sampling and gap filling. The intention is to synthesize a near-regular
texture of an arbitrary size from a previously analyzed (as explained in section 3) sample
image. The previous analysis step is exploited to preserve the repetition pattern of the
near-regular texture sample and at the same time, contrary to the method described
in section 4.1, the output preserves the characteristic random irregularities of the input
texture to make the result look more natural.
This synthesis method is mainly subdivided in two substeps. The constrained random

sampling substep ensures that stocastic deviations from regularity are introduced in
the output by filling half the output space with randomly selected pixels from the
input. Then, the constrained gap filling completes the synthesis process reducing visible
transitions that might have appeared if the procedure were completely random. Both

37

4 Synthesis

substeps are fully described in sections 4.2.1 and 4.2.2 respectively.

Before explaining the synthesis process in detail, we will first make some definitions.
Our synthesis approach splits the output space in square-shaped blocks of a constant

size.2 Each of these blocks will be filled with a piece of texture or patch from the input
sample at the end. We usually call patch any piece of texture extracted from the input
sample during the synthesis process.
It is also worth mentioning that a regular texture can be seen as a 2D-periodic discrete

signal and, if we recall that a 2D-periodic discrete signal satisfies

f [x] = f [x + av1 + bv2] (4.3)

where v1,v2 are its shortest translation vectors and a, b are integers, it is straightfor-
ward that a given pixel in a regular texture sample image is repeated at every point at a
distance multiple of the translation vectors. Moreover, any group of pixels of the sample
image is repeated every multiple of the translation vectors. However, we actually deal
with non-ideally regular textures but near-regular textures that have a regular structure
but also some stochastic irregularities. Therefore, if the regular structure were separa-
ble form the irregularities, the regular part (more energetic) would be repeated every
multiple of the translation vectors, but the irregular part might differ. So we say that a
group of pixels has a similar group of pixels at every multiple of the translation vectors,
because their most energetic part is equal but they have little random disturbances that
may be different.
Furthermore, the output image is initially empty and usually bigger than the input

sample. So, when we say that a patch is similar to an empty block, it means that the
patch is similar to what we would find in the input at the position of the block if the
sample image were big enough.

Note the difference in sampling from the previous method (see section 4.1). While in
the previous section we extract a piece of texture from the input with the shape and
size of the tile, here, the extracted pieces are always squared-shaped regardless of the
actual shape of the tile. The size of the squared blocks/patches can be any as long as
it remains constant during the synthesis process. The tile (i.e. the translation vectors)
serves here as a guidance for the sampling, i.e. to constrain the sampling so that every
block is filled with one of its similar patches. This is explained in detail in the following
subsections.

4.2.1 Constrained Random Sampling
First of all, we divide the output space in square-shaped blocks of a constant size. For
simplicity, if we want to synthesize an output image of size Nout ×Mout with blocks of
side b, we will synthesize an output of size

⌈
Nout
b

⌉
b×

⌈
Mout
b

⌉
b and then crop the result

to the originally desired size. Each of these blocks will be filled with a patch of the same

2 We leave the discussion about the election of an appropriate block size for the evaluation chapter (see
section 5)

38

4.2 Constrained Random Sampling and Gap Filling

(a) Synthesis in progress. The grid in gray illus-
trates the division of the output in blocks.
The current block is marked with a red
frame.

(b) The distance between the candidate (i.e.
similar to the current block) patches and the
current location is a multiple of the transla-
tion vectors v1, v2.

Figure 4.7: Example of random sampling in progress. The borders around the blocks are shown
to emphasize that only patches whose borders do not lie outside the input image
can be candidates. Input image size: 256x256 px. Block size: 50x50 px. Border
width: 2x8 px.

size and shape from the input sample in two different steps. We explain here the first
of these steps which we call constrained random sampling.
The first step in our synthesis process consists in filling every second block of the

output (in a chess-like fashion) with a randomly selected patch from the input.
For the texture synthesis process, we only have at our disposal a texture sample of a

limited size. However, in the analysis step, we have learned that our texture presents a
regular pattern that is described by two independent translation vectors v1,v2 that we
have estimated. In near-regular textures, this regular structure appears diffused with
stocastic deviations from regularity, but still the estimated translation vectors tell us
where to find similar pieces of texture.
For each second block, patches from the input texture that are similar to the current

block are preselected. Then, we randomly choose one among these preselected patches
to finally fill the current block, and proceed to the next block. We repeat the random
assignment of patches to blocks until every second block of the output is covered.
Figure 4.7a shows the synthesis process at the time one of these randomly selected

patches is pasted into the current block. Note that we enforce some overlapping between
neighboring blocks. We need this for the next step, which is described in section 4.2.2.
Patches that are similar to the current block can be found at integer multiples of the

translation vectors, as defined in Section 4.2. Figure 4.7b illustrates this relationship.
Note that the top-left corner is taken as the anchor point of the patch/blocks.
Once we have covered all the output space and randomly filled half the output, we

preceed to the constrained gap filling substep, which is described in the following section.

39

4 Synthesis

(a) Rectangular-shaped borders. (b) Wedge-shaped borders.

Figure 4.8: Comparison between border shapes. While rectangular borders overlap each other,
wedge-shaped borders do not.

4.2.2 Constrained Gap Filling
At this point, every second block of the output has been filled with a randomly selected
patch from the input (see Figure 4.7), thus leaving empty blocks (gaps) sorrounded by
already synthesized blocks. Again, these resulting gaps will be filled with patches from
the input, but now, for each block, we will choose the patch that best matches the
borders with its already synthesized sorrounding neighbors.
We consider borders centered on the edge between blocks, hence the border is always

an even number of pixels width. This means that the sorrounding borders of a gap
would overlap each other if they had straightforward rectangular shapes, so we consider
wedge-shaped borders instead. We prefer this to an alternative blending between
overlapping borders, as the latter would cause blurring and detail loss. Figure 4.8 shows
these different border shapes. It can be seen that, contrary to rectangular borders,
wedge-shaped borders do not overlap each other.

For the synthesis of each gap, we know where in the input sample the source of
each of the sorrounding blocks is. Therefore, as in section 4.2.1 we ensured that only
patches with borders inside the input image were selected, we can compose a full border
for the gap by extracting the corresponding wedge-shaped border of every sorrounding
neighbor. Figure 4.9 shows an example of the composition of this full border as well as
a representation of its position in the output. We will fill the gap with the patch from
the texture sample that best matches this full border.
We propose two ways of measuring how good a border matches a patch of the input.
The first alternative is to make use of the combined GNCC presented in sections 3.1

and 3.2. In this case, we consider the border as a template to be correlated with our
sample image. Although it is the same problem enunciation as an ordinary NCC, the
problem now is that our template has a hole in the middle. However, the formulation
of the GNCC presented in equation (3.3) helps us to overcome this problem. The only

40

4.2 Constrained Random Sampling and Gap Filling

(a) Output after random sampling. Current gap
and sorrounding borders in bright red.

(b) Detail of the current gap and its full bor-
der. The wedges from each separate source
are enclosed in bright red.

Figure 4.9: Example of gap filling in progress. Block size: 50x50 px. Border width: 16 px.

adaptation we need to do is to substract to Sf , Sf2 , Sg, Sg2 , and N the integration
corresponding to the hole analogously to equations 3.6,3.8,3.9. The unnormalized cross-
correlation Sfg remains the same if we fill the hole with zeros. Note that, as we are only
interested in those values of the correlation where the border (template) fully overlaps
the input, Sg, Sg2 and N are constant. The patch with the highest correlation is then
chosen as the best matching patch.
The second alternative is to evaluate the squared color differences for each postion

within the input:

χ(x′) =
∑

x

∑
i=R,G,B

[fi(x)− gi(x− x′)]2 (4.4)

where f is the input sample, g is the composed border and the outer sum is over the
overlapping. Note that∑

x
[fi(x)− gi(x− x′)]2 = Sf2

i
− 2Sfigi

+ Sg2
i

(4.5)

so it can also be computed in the frequency domain (see equation (3.3)). In this case,
the best match is that with the smallest χ.

Both alternatives produce similarly good results. In general, it can be said that
the normalized cross-correlation may adjust sharp edges more accurately in some cases
(e.g. lines between bricks in a brik wall) while the color differences also pays attention
to the overall brightness and contrast. This may sometimes make the GNCC result
look slightly more blocky specially when the input sample was taken with non-uniform

41

4 Synthesis

Figure 4.10: Differences between GNCC border matching and color differences matching.
GNCC matching (on the left) can sometimes give slightly more blocky results,
while color differences matching (on the right) may adjust sharp edges slightly
worse.

illumination. Moreover, the color differences needs a few less linear-time operations to
be computed, thus it is roughly a constant factor faster.
Figure 4.10 shows an example of the explained before. GNCC matching adjusts the

lines between blocks slightly better but color differences matching preserves brightness
and contrast local uniformity somewhat better. Nonetheless, both approaches show
similarly good results.

Although in most cases it is enough to look for the best border-matching piece of
texture from the input without further restrictions, sometimes this does not ensure
that the global structure of the texture is preserved. To avoid this possible structure
misreproduction, we limit the search space as in the previous section, but with a looser
restriction. In section 4.2.1, we considered only those patches as candidates whose
distance from the current position is a multiple of the translation vectors v1,v2. Now,
we allow a certain tolerance around those candidates, i.e. patches that are a certain
configurable number of pixels apart from the former candidates are also taken into
account. A tolerance of ±3 pixels has been enough in all studied cases. This ensures
structure preservation and allows little adaptative adjustments that may be required
in some cases (e.g. when the translation vectors are not completely accurate. See
section 3.3).

Figure 4.11 shows an example of synthesis after the Gap Filling step and the result
obtained with the Best Self-similar Tile Repetition method described in section 4.1.
It can be observed that the previous Random Sampling step has effectively introduced
stochastic irregularities in the output without introducing visible repetitions and making
the result look more natural than if produced by the Best Self-similar Tile Repetition
method. Nonetheless, some visible transitions between neighboring blocks appear. The
next step helps smooth this visible transitions and obtain the final result.

42

4.2 Constrained Random Sampling and Gap Filling

Figure 4.11: Result after Gap Filling compared to Best Self-similar Tile Repetition. Left:
input texture with its lattice superimposed as detected by the analysis step (see
section 3). Center: result with Best Self-similar Tile Repetition. Right: result
after Gap Filling step.

Figure 4.12: Blending sketch.

4.2.3 Final Composition and Blending
At the end of the previous step we have all the blocks in which we had split the output
space assigned to a patch from the input. As a result, we already have a complete
synthesized output image of the desired size. However, the synthesized texture may
still present visible discontinuities at block junctions due to the stochastic nature of the
input texture. We propose here a linear blending of overlapping borders around blocks
as a way to effectively reduce this effect.
Figure 4.12 illustrates the blending composition at edges between neighboring blocks.

The blending is applied to the area in stripes, smoothing the black edges between blocks.
There are 3 different cases of combination in the blending area for wich we give the
mathematical description:

Vertical edge (V) where one block on the left (Bl) meets its right neighbor (Br):

αxBl + (1− αx)Br (4.6)

Horizontal edge (H) where one block on the top (Bt) meets its neighbor below (Bb):

αyBt + (1− αy)Bb (4.7)

43

4 Synthesis

Figure 4.13: Final synthesis result. Left: output without smoothing of edges between blocks.
Right: final result after transitions have been smoothed.

Corner (C) in which 4 different blocks (top-left Btl, top-right Btr, bottom-left Bbl and
bottom-right Bbr) intervene:

αxαyBtl + (1− αx)αyBtr + αx(1− αy)Bbl + (1− αx)(1− αy)Bbr (4.8)

The previous formulas define the linear combination that is applied to each RGB pixel
in the blending area of the participating blocks where

αx = 1− x

w + 1 (4.9)

αy = 1− y

w + 1 (4.10)

and where w is the width of the blending area and the reference point x = 0, y = 0 is sit-
uated at the last bottom-right pixel of the top-left block that is not in the blending area.

The final result effectively smooths the visible transitions and enhances the previous
output. Figure 4.13 presents the final smoothed result compared to the output obtained
just after Gap Filling for the example input image of Figure 4.11.

4.3 Conclusion
Section 4.1 describes a procedure to find within the input image the tile-shaped patch
that better reproduces the regular part of the input texture. It is straightforward that
this gives optimum results if the input texture is strictly regular or the irregularities
are caused by noise in the capture of the texture sample and its reproduction is to be
avoided.
We do not further discuss the performance of the best self-similar tile repetition

method proposed in Section 4.1. Instead, we use its output to illustrate that textures
with subtle yet characteristic deviations from regularity (i.e. near-regular textures) are
more faithfully reproduced with our main synthesis method described in Section 4.2.
This and other advantages of our proposed technique over existing methods along with

other considerations and possible disadvantages are presented in the following Chapter 5.

44

5 Results and Evaluation

In this section, we will evaluate the performance of our texture synthesis technique.
First, we will concentrate on the analysis stage of our algorithm, presenting example
results and comparing and discussing other existing approaches in section 5.1. Then,
we will discuss existing trade-offs in the election of block/border sizes and compare final
synthesized results with other existing methods in section 5.2.

5.1 Analysis Evaluation
We have run our fully automatic regular structure detector with several texture samples
(see figures 5.2 to 5.11).
A part from some rare cases, our approach works fine with all examples that we

have tried. We see that our analysis method has some advantages over other existing
approaches. The main advantages of our regular structure detector is that it estimates
the tile correctly in most cases and with no user assistance at all. Other existing methods
require an important amount of user intervention [LCT04, LHW+04, LHW+06].
Liu et al. [LCT04] presented an automatic method based on the selection of peaks

in the (unnormalized) autocorrelation by thresholding their regions of dominance and
then estimating the shortest translation vectors with a Hough transform approach. The
use of a (more robust) normalized autocorrelation in our approach makes lattice-related
maxima stand out from other spurious maxima and allows our simpler approximation.
Moreover, Liu et al. exploit intensity images whereas we exploit all three RGB channels,
thus introducing sensitivity to color in case of similar intensities.
Nicoll et al. [NMMK05] performed a fractional Fourier analysis to isolate the regular

part from the irregularities and generate a Fractional Fourier Texture Mask to constrain
the synthesis. The main advantage of their method is that it works even if the input
sample only contains a single tile. However, a number of different tiles are needed to
reproduce the stochastic nature of the irregularities. In addition, the frequencies are
extracted with an intensity threshold that is dependent on each particual case and needs
especific tunning and the generated texture masks have degeneration problems if the
extracted frequencies are not completely accurate. In our experience, the degeneration
occurs in most cases when the output size is big compared to the input sample.

Although the smaller tile was estimated correctly in most cases, we have detected
that the procedure has problems in some very specific cases (see Figure 5.1):

• The texture is composed of basic elements of irregularly varying color but arranged
regularly ((a) and (b) in Figure 5.1). If texture elements are uniformly colored,
this may cause our analysis procedure to detect a bigger yet still valid tile.

45

5 Results and Evaluation

(a) (b) (c) (d) (e) (f)

Figure 5.1: Examples of cases where our lattice detector fails to estimate correctly.

• The texture is composed of basic elements of regularly varying color and arranged
regularly ((c) and (d) in Figure 5.1). The color variation may not lower the
spurious maxima enough and mislead the estimation to a smaller tile, especially
if it is combined with geometric distortion.

• The texture is a combination of various (near-)regular textures of different lattices
with no common multiple in the input sample ((e) in Figure 5.1).

• The texture is highly geometrically distorted or the irregularities are similarly
energetic to the regular structure ((f) in Figure 5.1).

5.2 Synthesis Evaluation
The evaluation of the synthesis step is dedicated to the Costrained Random Sampling
and Gap Filling technique, and results obtained by Best Self-similar Tile Repetition are
used to illustrate how the introduction of random irregularities improves the output.
The synthesis stage has a few parameters that need to be configured in advance (see

section 4):

• The size of the blocks in which the output space is split.

• The width of the boundary that forms the neighborhood of the gaps.

• The width of the blending area at the edges between blocks.

Although configurable, our results were obtained with the same configuration execept
for some cases were a wider blending area was needed to better reduce visible transitions
between neighboring blocks.
Synthesis tests show that a trade-off exists in the election of an appropriate block

size. Larger block sizes make the synthesis faster and are likely to produce nicer results
in general, because they create less transitions. However, larger blocks also reduce the
randomness of the irregularities and may cause noticeable repetition, something that
may be caused by a sample containing too few tiles as well. All presented results over
128px× 128px texture sample images were obtained with 40px× 40px blocks to produce
256px× 256px synthesized outputs. Regardless of the block size, the process successfully
preserves the regular pattern of the input texture as long as the lattice was detected

46

5.2 Synthesis Evaluation

correctly. Compared to direct tiling of a representative tile, the ensured randomness of
the output makes the result look far more natural even when the irregularities create
visible seams.
Regarding the width of the neighborhood border width for the gap filling substep, a

constant value of 10px width has been used in all presented results. A thiner border is
more tolerant to local deformations, but, as it is more sensitive to local irregularities, it
may adjust the dominant global structure worse.
The width of the blending area has remained a constant value of 4px width except

for few specific cases for which extra blending has smoothed residual visible transitions
between blocks.

Figures 5.2 to 5.7 show that our synthesis technique outperforms other existing patch-
based approaches when applyed to NRT Type I (see Figure 1.2). Our results are pre-
sented along with the output of direct tiling and the output of an implementation of IQ
[EF01] as a representative of existing patch-based techniques. The IQ algorithm worked
with an equivalent configuration of 50px× 50px blocks and 10px-width overlappings.
All RSGF results enhance the appearance of direct tiling and have better (or equal)
quality than IQ results.
We observe that IQ (with constant configuration and no specific tuning) may some-

times suffer from a phenomenon analogous to the garbage accumulation of pixel-based
synthesis algorithms. The sequencial synthesis implies that the selection of every new
patch is dependent on what has been previously synthesized. This may cause visible
repetitions in the output or boundary missmatch propagation.
Our method does neither suffer from garbage accumulation that pixel-based methods

report [EL99, WL00] nor from any kind of accumulated misalignment or missmatch
propagation that other patch-based techniques [LLX+01, EF01, KSE+03] may cause.
The fact that each second block is filled with a "fresh" aligned patch in the constrained
random sampling substep, makes each boundary matching independent from the others
(gap filling). In this way, the maximum disagreement between neighboring blocks is
limited regardless of the output size in our technique.

Another important advantage of breaking the dependency on what has been previ-
ously synthesized is that the stochastic nature of the irregularities is better reproduced
in the output. Our constrained random sampling step makes sure that "rich" random-
ness is introduced in the synthesized output. Figures 5.8 and 5.9 show examples where
our technique produces more random irregularities than IQ.

We have observed that the output can sometimes look blocky. This mainly happens
when the input texture has non-uniform lighting or each composition unit (each brick
in a brick wall or tile in a tiled floor) of the texture takes a different color with no
particular rule. This blockiness can be effectively reduced if the width of the blending
area is increased. Figure 5.12 shows how the output is effectively improved when
changing from a 4px-width blending area to a 28px-width blending area.

47

5 Results and Evaluation

Non-sequencial synthesis has also some disadvantages. The main disadvantage is that
it is somtimes more prone to produce visible boundary missmatch artifacts (disconti-
nuities at block junctions). This is usually caused by an input texture that presents
important geometric distorsions or by little disagreements between especially noticeable
features, such as sharp edges between bricks in a brick wall. IQ’s sequential synthe-
sis might avoid this artifacts at the price of breaking the global repetition pattern.
Figure 5.10 shows examples where our method has more visible boundary missmatch
artifacts than IQ. Note that the IQ breaks the structure one long, one short of the
grayscale brick wall, produces a long brick in the color brick wall and does not conserve
the window size in the windows texture.

We have also observed that some discontinuities at block junctions are created
because the actual translation vectors of the texture have non-integer coordinates
(subpixel level) but we estimate them as the pixelwise position of the corresponding
peaks in the autocorrelation. This makes the location of similar patches not completely
accurate. Other especially noticeable disagreements are mainly caused by irregular
geometric deformations or non-uniform lighting in the input. Figure 5.11 shows some
of these cases.

Compared to texture synthesis approaches that are also specialized in near-regular
textures, our method has also some advantages. The main advantage is the high amount
of automatism that we achieve. In most cases, we get high quality results fully automat-
ically, i.e. with constant (default) configuration. A part from this important advantage,
we believe our method overcomes other weaknesses of some existing techniques.
Fractional Fourier Texture Mask [NMMK05] report degeneration problems if the fre-

quencies are extracted inaccurately. In our experience, the bigger the output is (com-
pared to the input sample), the more unlikely is that the estimated frequencies are
accurate enough to avoid degeneration problems. Degeneration of any kind is abso-
lutely impossible in our approach. In our case, the expected local quality is uniform
across the output space due to the independence of each random block/gap from the oth-
ers. In addition, the use of masks to preserve the regularity is less tolerant to geometric
deformations than the only-boundary check of our method (gap filling substep).
Liu et al. [LTL05] estimate the underlying regular lattice of the texture using the

method in [LCT04]. Then, they proceed in the lattice direction to fill the image with
rectangles containing a complete tile. They split the input in disjoint contiguous tiles
and select the alignment of the division manually. The size of our sampling unit is
not related to the tile of the texture. This allows the creation of "new" tiles com-
posed of pieces of different tiles if the synthesis blocks are smaller than the tile, thus
resulting in a richer (more random irregularities) output. On the other hand, if the
tile is small, a block size containing several tiles proportionally accelerates the synthesis.

Other methods not specialized in near-regular textures are focused on preserving
local properties and generally fail to faithfully reproduce the global structure of the
input texture [EL99, WL00, EF01, LYS01, Ash01, KSE+03]. We have also tested our
synthesis approach with some far from regular and some completely stochastic textures

48

5.2 Synthesis Evaluation

skiping the analysis step and taking v1 = [1, 0]T , v2 = [0, 1]T , thus unconstraining the
selection of patches. The results are as good or better than with existing patch-based
methods in many cases, but the sequential pasting of other techniques seems to be more
appropriate for some non-completely stochastic (irregular) textures. Results are shown
in figures 5.13 to 5.17.

Finally, our procedure also has some advantages regarding synthesis speed. The most
interesting advantage to us is that the two substeps of the synthesis are inherently
parallelizable. The random election of the patch to fill each block in the first substep
is independent of the others. The same happens in the second substep: once every
second block has been synthesized, the patch that better agrees with the sorrounding
neighbors of each resulting gap is independent of the others. Moreover, the nearest
neighbor search that determines which patch agrees better with the sorrounding blocks
of each gap could be made as in [LYS01] thus achieving real-time synthesis.

49

5 Results and Evaluation

Figure 5.2: Results: NRT Type I textures are better synthesized with our method than with
other existing patch-based approaches - Part I. In columns from left to right: input
texture sample with the detected lattice superimposed in red, output of best self-
similar tile repetition, our main synthesis technique (RSGF) and an implementation
of IQ [EF01].

50

5.2 Synthesis Evaluation

Figure 5.3: Results: NRT Type I textures are better synthesized with our method than with
other existing patch-based approaches - Part II. In columns from left to right: input
texture sample with the detected lattice superimposed in red, output of best self-
similar tile repetition, our main synthesis technique (RSGF) and an implementation
of IQ [EF01].

51

5 Results and Evaluation

Figure 5.4: Results: NRT Type I textures are better synthesized with our method than with
other existing patch-based approaches - Part III. In columns from left to right:
input texture sample with the detected lattice superimposed in red, output of best
self-similar tile repetition, our main synthesis technique (RSGF) and an implemen-
tation of IQ [EF01].

52

5.2 Synthesis Evaluation

Figure 5.5: Results: NRT Type I textures are better synthesized with our method than with
other existing patch-based approaches - Part IV. In columns from left to right:
input texture sample with the detected lattice superimposed in red, output of best
self-similar tile repetition, our main synthesis technique (RSGF) and an implemen-
tation of IQ [EF01].

53

5 Results and Evaluation

Figure 5.6: Results: NRT Type I textures are better synthesized with our method than with
other existing patch-based approaches - Part V. In columns from left to right: input
texture sample with the detected lattice superimposed in red, output of best self-
similar tile repetition, our main synthesis technique (RSGF) and an implementation
of IQ [EF01].

54

5.2 Synthesis Evaluation

Figure 5.7: Results: NRT Type I textures are better synthesized with our method than with
other existing patch-based approaches - Part VI. In columns from left to right:
input texture sample with the detected lattice superimposed in red, output of best
self-similar tile repetition, our main synthesis technique (RSGF) and an implemen-
tation of IQ [EF01].

55

5 Results and Evaluation

Figure 5.8: Results: our method ensures the output "rich" random irregularities - Part I. In
columns from left to right: input texture sample with the detected lattice superim-
posed in red, output of best self-similar tile repetition, our main synthesis technique
(RSGF) and an implementation of IQ [EF01].

56

5.2 Synthesis Evaluation

Figure 5.9: Results: our method ensures the output "rich" random irregularities - Part II. In
columns from left to right: input texture sample with the detected lattice superim-
posed in red, output of best self-similar tile repetition, our main synthesis technique
(RSGF) and an implementation of IQ [EF01].

57

5 Results and Evaluation

Figure 5.10: Results: in some cases, the price of ensured regularity reproduction is the appear-
ance of boundary missmatch artifacts. In columns from left to right: input texture
sample with the detected lattice superimposed in red, output of best self-similar
tile repetition, our main synthesis technique (RSGF) and an implementation of
IQ [EF01].

58

5.2 Synthesis Evaluation

Figure 5.11: Results: if the tile of the texture has non-integer coordinates or the texture sample
presents geometric distortions, visible boundary missmatch artifacts may appear.
In columns from left to right: input texture sample with the detected lattice
superimposed in red, output of best self-similar tile repetition, our main synthesis
technique (RSGF) and an implementation of IQ [EF01].

59

5 Results and Evaluation

Figure 5.12: Results: blockiness appearance can be effectively reduced by applying a wider
blending area between blocks. For each pair of images, execution result with a
4px-width blending area and a 28px-width blending area respectively.

60

5.2 Synthesis Evaluation

Figure 5.13: Results achieved with our method for irregular textures - Part I. In columns
from left to right: input texture sample, output of our main synthesis technique
(RSGF) with v1 = [1, 0]T , v2 = [0, 1]T and of an implementation of IQ [EF01].

61

5 Results and Evaluation

Figure 5.14: Results achieved with our method for irregular textures - Part II. In columns
from left to right: input texture sample, output of our main synthesis technique
(RSGF) with v1 = [1, 0]T , v2 = [0, 1]T and of an implementation of IQ [EF01].

62

5.2 Synthesis Evaluation

Figure 5.15: Results achieved with our method for irregular textures - Part III. In columns
from left to right: input texture sample, output of our main synthesis technique
(RSGF) with v1 = [1, 0]T , v2 = [0, 1]T and of an implementation of IQ [EF01].

63

5 Results and Evaluation

Figure 5.16: Results achieved with our method for irregular textures - Part IV. In columns
from left to right: input texture sample, output of our main synthesis technique
(RSGF) with v1 = [1, 0]T , v2 = [0, 1]T and of an implementation of IQ [EF01].

64

5.2 Synthesis Evaluation

Figure 5.17: Results achieved with our method for irregular textures - Part V. In columns
from left to right: input texture sample, output of our main synthesis technique
(RSGF) with v1 = [1, 0]T , v2 = [0, 1]T and of an implementation of IQ [EF01].

65

6 Conclusions and Future Work

In this thesis, a new approach for near-regular texture synthesis has been proposed. Two
are the key observation behind this method. On the one hand, a generalized version of
the normalized cross-correlation paves the way to a simpler than [LTL05] estimation of
the two independent vectors defining the translational symmetry of the texture under
analysis. On the other hand, once the two translation vectors are know, we know
that there are examples of how the texture should look like at a distance multiple of the
translation vectors for any position in the 2D space. There is no need to take a whole tile
as the unit of sampling. We use the latter observation to sparsely introduce random but
suitable patches from the texture sample in the output, thus ensuring the randomness
of the characteristic irregularities of the texture. Finally, the gaps left by the previous
sparse synthesis are filled with suitable best agreeing patches from the input.
Some examples have shown the high quality of the results that our method can achieve.

We preserve the global structure of near-regular textures that other approaches fail to
reproduce. Moreover, our sparse introduction of random patches in the output has some
interesting advantages (the maximum disagreement between neighboring blocks is lim-
ited and the proces is straighforwardly parallelizable). However, it has some weaknesses
that can be improved.
A goodness function based on the regions of dominance proposed in [LCT04] could

be investigated to overcome some of the difficulties in the lattice estimation. Other
approches for the goodness function or other methodologies to infer the shortest trans-
lation vectors from the local maxima of the normalized autocorrelation could be as well
researched.
Subpixel level estimation of the translation vectors could be used to either "correct"

the input to have integer translational symmetry or refine the location of the similar
patches when composing the output. Moreover, simple tiling of a representative tile
could be used to perform a prior correction of geometric irregularities of the input.
Alternatively, adaptative deformations could be applied to each gap in the gap filling
step to better agree with its neighbors (e.g. make lines between bricks in a brick wall
coincide).
Other ways to finally smooth transitions between neighboring blocks as image quilting

[EF01] or graph cuts [KSE+03] instead of linear blending could as well be explored.

67

Bibliography

[AMN+95] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and
Angela Y. Wu. An Optimal Algorithm for Approximate Nearest Neighbor
Searching in Fixed Dimensions. Technical report, University of Maryland
at College Park, College Park, MD, USA, 1995. 9

[Ash01] Michael Ashikhmin. Synthesizing Natural Textures. In Proceedings of
the 2001 Symposium on Interactive 3D Graphics, I3D ’01, pages 217–226,
New York, NY, USA, 2001. ACM. 8, 9, 48

[BJEYLW01] Ziv Bar-Joseph, Ran El-Yaniv, Dani Lischinski, and Michael Werman.
Texture Mixing and Texture Movie Synthesis Using Statistical Learning.
IEEE Transactions on Visualization and Computer Graphics, 7:120–135,
April 2001. 5

[CSHD03] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen.
Wang Tiles for Image and Texture Generation. In ACM SIGGRAPH
2003 Papers, SIGGRAPH ’03, pages 287–294, New York, NY, USA, 2003.
ACM. 11

[dB97] Jeremy S. de Bonet. Multiresolution Sampling Procedure for Analysis and
Synthesis of Texture Images. In Proceedings of the 24th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’97,
pages 361–368, New York, NY, USA, 1997. ACM Press/Addison-Wesley
Publishing Co. 5

[DED05] Khalid Djado, Richard Egli, and François Deschênes. Extraction of a Rep-
resentative Tile from a Near-periodic Texture. In Proceedings of the 3rd
International Conference on Computer Graphics and Interactive Tech-
niques in Australasia and South East Asia, GRAPHITE ’05, pages 331–
337, New York, NY, USA, 2005. ACM. 33, 34

[EF01] Alexei A. Efros and William T. Freeman. Image Quilting for Texture
Synthesis and Transfer. In Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pages
341–346, New York, NY, USA, 2001. ACM. 10, 11, 14, 47, 48, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67

[EL99] Alexei A. Efros and Thomas K. Leung. Texture Synthesis by Non-
Parametric Sampling. In Proceedings of the International Conference on
Computer Vision - Volume 2, ICCV ’99, pages 1033–, Washington, DC,
USA, 1999. IEEE Computer Society. 5, 6, 16, 47, 48

69

Bibliography

[GS86] Branko Grünbaum and G C Shephard. Tilings and Patterns. W. H.
Freeman & Co., New York, NY, USA, 1986. 11, 17

[HB95] David J. Heeger and James R. Bergen. Pyramid-based Texture Analy-
sis/Synthesis. In Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’95, pages 229–238,
New York, NY, USA, 1995. ACM. 5

[HJO+01] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and
David H. Salesin. Image Analogies. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’01, pages 327–340, New York, NY, USA, 2001. ACM. 8, 9,
15

[KSE+03] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick.
Graphcut Textures: Image and Video Synthesis Using Graph Cuts. ACM
Transactions on Graphics, SIGGRAPH 2003, 22(3):277–286, July 2003.
11, 47, 48, 67

[LCT04] Yanxi Liu, Robert T. Collins, and Yanghai Tsin. A Computational
Model for Periodic Pattern Perception Based on Frieze and Wallpaper
Groups. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 26:354–371, March 2004. 14, 45, 48, 67

[Lew95] J. P. Lewis. Fast Normalized Cross-correlation. In Vision Interface, pages
120–123. Canadian Image Processing and Pattern Recognition Society,
1995. 17, 19, 21

[LHW+04] W.-C. Lin, J. H. Hays, C. Wu, V. Kwatra, and Y. Liu. A Comparison
Study of Four Texture Synthesis Algorithms on Regular and Near-regular
Textures. Technical report, School of Coumpter Science Carnegie Mellon
University, 2004. 13, 45

[LHW+06] W.-C. Lin, J. H. Hays, C Wu, V. Kwatra, and Y. Liu. Quantitative
Evaluation on Near Regular Texture Synthesis. In Proceedings of the
International Conference on Computer Vision and Pattern Recognition
(CVPR 2006), volume 1, pages 427 – 434, New York, NY, USA, June
2006. 45

[LL03] Yanxi Liu and Wen-Chieh Lin. Deformable Texture: the Irregular-
Regular-Irregular Cycle. Technical Report CMU-RI-TR-03-26, Robotics
Institute, Pittsburgh, PA, August 2003. 14, 15

[LLH04] Yanxi Liu, Wen C. Lin, and James Hays. Near-regular Texture Analysis
and Manipulation. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04,
pages 368–376, New York, NY, USA, 2004. ACM. IX, 1, 2, 14, 16, 17

70

Bibliography

[LLX+01] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum.
Real-time Texture Synthesis by Patch-based Sampling. ACM Transac-
tions on Graphics, 20:127–150, July 2001. 10, 47

[LM99] Thomas Leung and Jitendra Malik. Recognizing Surfaces Using Three-
Dimensional Textons. In Proceedings of the International Conference on
Computer Vision - Volume 2, ICCV ’99, pages 1010–, Washington, DC,
USA, 1999. IEEE Computer Society. 5

[LM01] Thomas Leung and Jitendra Malik. Representing and Recognizing the
Visual Appearance of Materials Using Three-dimensional Textons. Inter-
national Journal of Computer Vision, 43:29–44, June 2001. 5

[LTL05] Yanxi Liu, Yanghai Tsin, and Wen-Chieh Lin. The Promise and Per-
ils of Near-Regular Texture. International Journal of Computer Vision,
62:145–159, April 2005. 1, 13, 16, 17, 48, 67

[LYS01] Xinguo Liu, Yizhou Yu, and Heung-Yeung Shum. Synthesizing Bidi-
rectional Texture Functions for Real-world Surfaces. In Proceedings of
the 28th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’01, pages 97–106, New York, NY, USA, 2001. ACM.
48, 49

[NMMK05] A. Nicoll, Jan Meseth, Gero Müller, and Reinhard Klein. Fractional
Fourier Texture Masks: Guiding Near-Regular Texture Synthesis. Com-
puter Graphics Forum, 24(3):569–579, 2005. 15, 16, 45, 48

[Per85] Ken Perlin. An Image Synthesizer. In Proceedings of the 12th Annual
Cnference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’85, pages 287–296, New York, NY, USA, 1985. ACM. 5

[PFH00] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped Textures. In
Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’00, pages 465–470, New York, NY,
USA, 2000. ACM Press/Addison-Wesley Publishing Co. 11, 12, 13

[PS00] Javier Portilla and Eero P. Simoncelli. A Parametric Texture Model Based
on Joint Statistics of Complex Wavelet Coefficients. International Journal
of Computer Vision, 40:49–70, October 2000. 5

[SCA02] Cyril Soler, Marie-Paule Cani, and Alexis Angelidis. Hierarchical Pattern
Mapping. In Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’02, pages 673–680,
New York, NY, USA, 2002. ACM. 11, 12, 13

[SSSE00] Arno Schödl, Richard Szeliski, David H. Salesin, and Irfan Essa. Video
Textures. In Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’00, pages 489–498,

71

Bibliography

New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.
9

[SW63] Claude E. Shannon and Warren Weaver. A Mathematical Theory of Com-
munication. University of Illinois Press, Champaign, IL, USA, 1963. 5

[TLR01] Yanghai Tsin, Yanxi Liu, and Visvanathan Ramesh. Texture Replacement
in Real Images. In Computer Vision and Pattern Recognition, pages 539–
544, 2001. 14

[Tur91] Greg Turk. Generating Textures on Arbitrary Surfaces Using Reaction-
diffusion. In Proceedings of the 18th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’91, pages 289–298,
New York, NY, USA, 1991. ACM. 5

[Tur92] Greg Turk. Re-tiling Polygonal Surfaces. In Proceedings of the 19th
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’92, pages 55–64, New York, NY, USA, 1992. ACM. 12

[Tur01] Greg Turk. Texture Synthesis on Surfaces. In Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’01, pages 347–354, New York, NY, USA, 2001. ACM. 11,
12

[TZL+02] Xin Tong, Jingdan Zhang, Ligang Liu, Xi Wang, Baining Guo, and
Heung-Yeung Shum. Synthesis of Bidirectional Texture Functions on
Arbitrary Surfaces. In Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’02, pages
665–672, New York, NY, USA, 2002. ACM. 5

[WL00] Li-Yi Wei and Marc Levoy. Fast Texture Synthesis Using Tree-structured
Vector Quantization. In Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pages
479–488, New York, NY, USA, 2000. ACM Press/Addison-Wesley Pub-
lishing Co. 5, 6, 7, 47, 48

[WL01] Li-Yi Wei and Marc Levoy. Texture Synthesis over Arbitrary Manifold
Surfaces. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’01, pages 355–360,
New York, NY, USA, 2001. ACM. 11, 12

[WLKT09] Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. State of the
Art in Example-based Texture Synthesis. In Eurographics 2009, State of
the Art Report, EG-STAR. Eurographics Association, 2009. 1

[WW91] Alan Watt and Mark Watt. Advanced Animation and Rendering Tech-
niques. ACM, New York, NY, USA, 1991. 15

72

Bibliography

[XGS00] Ying-Qing Xu, Baining Guo, and Harry Shum. Chaos Mosaic: Fast
and Memory Efficient Texture Synthesis. Technical report, Microsoft
Research, April 2000. 12

[YHBZ01] Lexing Ying, Aaron Hertzmann, Henning Biermann, and Denis Zorin.
Texture and Shape Synthesis on Surfaces. In Proceedings of the 12th
Eurographics Workshop on Rendering Techniques, pages 301–312, Lon-
don, UK, 2001. Springer-Verlag. 11, 12

[ZG02] Steve Zelinka and Michael Garland. Towards Real-time Texture Synthesis
with the Jump Map. In Proceedings of the 13th Eurographics Workshop on
Rendering Techniques, EGRW ’02, pages 99–104, Aire-la-Ville, Switzer-
land, Switzerland, 2002. Eurographics Association. 5, 9

[ZGWW02] Song Chun Zhu, Cheng-en Guo, Ying Nian Wu, and Yizhou Wang. What
Are Textons? In Proceedings of the 7th European Conference on Com-
puter Vision - Part IV, ECCV ’02, pages 793–807, London, UK, UK,
2002. Springer-Verlag. 5

[ZWM97] Song Chun Zhu, Ying Nian Wu, and David Mumford. Minimax Entropy
Principle and Its Application to Texture Modeling. Neural Computation,
9:1627–1660, November 1997. 5

[ZWM98] Song Chun Zhu, Yingnian Wu, and David Mumford. Filters, Random
Fields and Maximum Entropy (FRAME): Towards a Unified Theory for
Texture Modeling. International Journal of Computer Vision, 27:107–
126, April 1998. 5

73

	Introduction
	Related Work and Contribution
	Pixel-Based Texture Synthesis
	Patch-Based Texture Synthesis
	Texture Synthesis over Surfaces
	Near-Regular Texture Synthesis
	Contribution

	Regular Structure Detection (Analysis)
	Generalized Normalized Cross-Correlation (GNCC)
	Multi-channel GNCC
	Translation Vectors Estimation
	Significant Values of the Autocorrelation

	Conclusion

	Synthesis
	Best Self-similar Tile Repetition
	Best Self-Similar Tile Search

	Constrained Random Sampling and Gap Filling
	Constrained Random Sampling
	Constrained Gap Filling
	Final Composition and Blending

	Conclusion

	Results and Evaluation
	Analysis Evaluation
	Synthesis Evaluation

	Conclusions and Future Work
	Bibliography

