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Chapter 1

Introduction

1.1 Motivation

It is common for longitudinal clinical trials to face problems with missing data
that occur when patients do not complete the study or lose some visit. In HIV
clinical trials, blood plasma HIV-1 RNA concentration (”viral load”) and CD4 are
markers of the clinical evolution of HIV infected patients and are used as primary
and secondary endpoints. In fact clinicians are interested in evaluating the per-
centage of patients with HIV-1 RNA less than copies/mL at week 48 (in general
lower values than 50 are unmeasurable and they are refered as undetectable viral
load) and the virological changes in CD4 at time 48 weeks for determining the
effectiveness of the antiretroviral drugs compared in the trial. Problems arise in
the presence of missing data for these variables. Although it has been shown that
missing data are a source of bias and may led to different results when compar-
ing treatments effectiveness, the recommended method from the European and
American guidelines for clinical trials is to exclude them or to consider an inten-
tion to treat analysis. In general, whenever the percentage of missing values is
lower than 5%, the effect on bias is negligible.

There is a need to plan an appropriate statistical analysis of missing data. Based
on it, the main objectives of this thesis are:

• Review the different typologies of missing data in clinical trials in HIV.

• Explore the most important methods used to handle missing data, describe
the advantages and disadvanteges, apply some of these methods to the
Lluta Fundacio’ study and implement in the R environment one of the new
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approaches.

• Generate some guidelines that should be followed by researchers working
in clinical trials (in particular in the Lluita Fundacio’) who have to analyse
data sets with missing data and give some recommendation when it would
be better to use a method instead of another according to the estimates and
confidence intervals.

In order to achieve these objectives:

1. I have introduced some useful concepts used in the HIV literature, described
the different HIV stages, the HIV diffusion pattern in developed countries and
overviewed the antiretroviral treatments at the moment in use.

2. I have defined the causes of dropouts and the sources of missings data and
provided a review of the state of the art in the development of the strategies used
to handle missing data in clinical trials in HIV from later ’90 up to now.

3. I have analized data and compared the different techniques according to some
of the statistical values obtained.

4. I have given some conclusions and planned the future steps of the analysis.

1.2 Definitions: HIV-1 RNA viral load and CD4

In a randomized control trial in HIV, measurement of blood plasma HIV-1 RNA
concentration (”viral load”) and CD4 are markers of the clinical evolution of HIV
infected patients. We summarize them briefly:

Viral load is a measure of the severity of an infection such as HIV, cytomegalovirus,
hepatitis B and hepatitis C viruses. In HIV the units of interest are copies of the
virus in a milliliter (mL) of blood. Changes in viral load are usually reported as
a log change (in powers of 10). For example, a three log increase in viral load (3
Log10) is an increase of 103 or 1000 times the previously reported level, while a
drop from 500,000 to 500 copies would be a three-log-drop (also 3 Log10).

CD4 cells are a type of lymphocyte (white blood cell) and they are an important
part of the immune system. CD4 cells are sometimes called T-cells. There are two
main types of CD4 cells: T-4 cells, also called CD4+, are ”helper” cells. They lead
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the attack against infections. T-8 cells (CD8+) are ”suppressor” cells that complete
the immune response and CD8 cells can also be ”killer” cells that kill cancer cells
and cells infected with a virus. When someone is infected with HIV but has not
started treatment, the number of CD4 cells they have goes down. This is a sign
that the immune system is being weakened. The lower the CD4 cell count, the
more likely the person will get sick.

1.3 HIV

Human immunodeficiency virus (HIV) is a lentivirus (a member of the retrovirus
family) that causes acquired immunodeficiency syndrome (AIDS), a condition in
humans in which the immune system begins to fail, leading to life-threatening
opportunistic infections. Infection with HIV occurs by the transfer of blood, se-
men, vaginal fluid, pre-ejaculate, or breast milk. Viral load (the HIV RNA level)
and the CD4 counts are used as markers to asses the patient’s health status, as
predictive factors for mortality and also their levels are fundamental to deter-
mine the treatment efficacy.

In absence of treatment, CD4 counts tend to decrease while the HIV RNA level
tends to increase. We may distinguish different stages:

• Primary infection (also known as acute infection): refers to a early stage
of HIV. In this stage patients experiment a high viral load RNA levels of
> 100.000 copies/m (corresponding to the first maximum in the red ten-
dency in the figure 1.1). This is often accompanied by a dramatic drop in
CD4 count. In general, clinicians miss to diagnose HIV in its first stage
as the HIV antibody becomes positive just 25 days after infection (this is
called HIV seroconversion, converting from HIV negative to HIV positive
by blood testing).

• Chronic infection: Chronic HIV infection refers to the period following se-
roconversion, lasting until the development of symptomatic immune fail-
ure and AIDS. This period could variate between weeks and years. This
phase is characterized by deteriorating immune function with declining
CD4-count. The 75-80% of all patients maintain in the chronical stage dur-
ing a median period of 7-10 years. The remaining patients, corresponding
to 10-15% experience a rapid progression of the disease, reaching AIDS in
2-3 years. Few people (5-10%), have no progression for long time, usually
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Figure 1.1: HIV progression

around 10 years. In some rare case, known in the literature as HIV con-
trollers or elite suppressors, patients do not present the virus in the blood
stream, this means that they maintain the load viral below the limit of de-
tection ( < 50 HIV RNA -copies/ml) for extended periods. The disease pro-
gression depends on the magnitude of load viral peak, load viral decline,
viral diversity and so on during the acute stage.

In the figure 1.1 is represented the normal disease progression for the major
part of infected people.

1.4 Antiretroviral Treatments

Prior to 1987, no antiretroviral drugs were available and treatment consisted of
treating complications from the immunodeficiency. In the last twenty years, we
passed from a single drug (AZT) to a dual-drug therapy and, now, to highly ac-
tive antiretroviral therapy (HAART), consisting in the drug somministration of a
series of drugs, usually three or four:

• Nucleoside Reverse Transcriptase Inhibitor (NRTI): NRTIs is analogues of
the nucleotides. When they are incorporated into the viral DNA their slightly
different structure provokes the blockage of DNA synthesis and therefore
the termination of DNA chain assembling. All NRTIs and NtRTIs are clas-
sified as competitive substrate inhibitors.
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• Protease inhibitor (PI): The HIV protease is an essential enzyme for virus
replication. Its activity is to cut the precursors of the virus proteins dur-
ing the HIV life-cycle. Protease inhibitors are molecules which are able to
bind the enzyme and blocking its activity and their use results in protease
inactivity and uninfectious viruses.

or

• non-nucleotide reverse transcriptase inhibitor (NNRTI): the NNRTIs block
the enzyme reverse transcriptase, this is achieved by binding at a different
site on the enzyme, inhibiting the reverse transcriptase activity. NNRTIs are
classified as non-competitive inhibitors of reverse transcriptase.

When antiretroviral drugs were introduced, most clinicians agreed that HIV pos-
itive patients with low CD4 counts should be treated. So patients undergo treat-
ments when the CD4 count reaches a low point, around 350 cells per microlite or
plasma HIV ribonucleic acid (RNA) levels of > 55.000 copies/mL. For the limit
cases (cell counts between 350 and 500) the HAART therapy is recommended in
the 50% of cases. Otherwise treatment should be highly reccomended in case of
hepatitis C and B coinfection requiring therapy, HIV-associated nephropathy or
other specific organ deficiency, age higher than 50, pregnancy or malignancy. No
consensus formed as to whether to treat patients with high CD4 counts (> 500

cells/mm3). The 50% view initiating therapy at this stage as optional. In this case
clinicians have to evaluate the potential benefits and risks of initiating a therapy
as the improvement in the quality of life.

The initial goal of therapy in primary stage, are evaluated through plasma
HIV RNA levels, which are expected to indicate a 1.0 log10 decrease at 2-8 weeks
and to suppress the HIV viral load to undetectable levels (< 50 copies/mL) at
4-6 months after treatment initiation. The current guidelines for the clinical man-
agement and treatment of HIV-infected adults in Europe, consider antiretroviral
therapy, the best therapy to treat infected individual at the moment. In 2003 and
2009 the WHO and the United States Department of Health and Human Services
Use, established a series of criteria to consider starting HAART based on the stage
of the infection (determined by the number of CD4 counts). In particular the rec-
ommended goal for patients starting an antiretroviral drugs is the achievement
of a viral load (HIV RNA level)< 50 copies/ml within 16 or 24 weeks and the
maintenance of such level. Even among people who respond well to HAART,
the treatment does not get rid of HIV. The virus continues to reproduce but at a
slower pace. The goal of HAART therapy is to improve the patient survival and
the quality of life.
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There are at the moment 28 drugs in common use for HIV treatment. Treat-
ment success needs strict lifelong drug adherence. Although the widely used
drugs are generally well tolerated, most have some short-term toxic effects and
all have the potential for both known and unknown long-term toxic effects.

1.5 HIV origin and diffusion around the world

The origin of AIDS in men is relative new and the first cases recognised as AIDS
occured in USA in the early 1980s. In March 1981 there was an evidence between
an homosexual comunity of New York of a more aggressive form of infection and
cancers that seem to be resistent to any treatment available at the moment. Later,
clinicians showed a strong connection between these cases. The discovery of the
Human Immunodeficiency Virus (HIV), was made soon after and was considered
the source of AIDS. Since the 1981 the number of AIDS cases increased dramat-
ically around the world. At the moment there are two types of HIV: HIV-1 and
HIV-2, that could be transmitted sexually, through blood, and from mother to
progeny at birth. HIV-1 is the most prevalent form while the HIV-2 is less easily
transmitted and is highly concentrated in West Africa.

A virus similar to HIV have been found in cats, sheeps, horses and cattles but
the most important for investigation of the origin of HIV is the Simian Immunod-
eficiency Virus (SIV) that affects monkeys, which is believed to be at least 32,000
years old. In 1999 a group of researchers from the University of Alabama found
a SIV’s virus in chimpanzees almost identical to HIV-1 and claimed that chim-
panzees could have in some way brought the HIV between men. A recent theory
note as the ”hunter theory” affirms that the SIV was transferred to humans as a
result of chimps being eaten or through their blood enter in contact with hunters.
Another theory note as ”colonialism theory” concentrated the attention on the
colonial countries. In these areas slaves were forced to work in really bad con-
ditions. In such conditions sick chimpanzees with SIV could have been an extra
source of food for the workers.

While the origin of AIDS is still controversial and under discussion, its diffu-
sion is no longer isolated. UNAIDS, the Joint United Nations Programme on
HIV/AIDS (is an innovative partnership that leads and inspires the world in
achieving universal access to HIV prevention, treatment, care and support) es-
timates that the absolute number of people living with HIV rose from around 8
million in 1990 to 33 million by the end of 2009 (Figure 1.2)
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Figure 1.2: HIV trend

The increase in the number of persons living with HIV is related with the increase
in people receiving antiretroviral therapy and with the reduction in the number
of AIDS-related deaths. So it is not surprising that the number of new cases in
HIV has steadily declined (Figure 1.3)

Figure 1.3: Global HIV estimates

Figure 1.4 summarizes the estimated number of people infected with HIV or
diagnosed with AIDS at the end of 2009 distinguishing between adults, women
and children. The number of people newly infected with HIV was 2.6 millions
and the number of deaths equal to 1.8 millions for 2009. The number of orphans
between 0 and 1 year due to AIDS was estimated to 16.6 millions.

Figure 1.5, summarizes the number of adults and children living with HIV/AIDS,
the adult and children newly infected, the number of deaths and the adult preva-
lences at the end of 2009 around the world. 22.5 millions of adults and chil-
dren(corresponding to almost the 68 percent of all people living with HIV) live in
sub-Saharan Africa, the region carries the greatest burden of the epidemic. Epi-
demics in Asia have remained relatively stable and are still largerly concentrated
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Figure 1.4: Global HIV estimates

among high risk groups. Conversely, the number of people living with HIV in
Eastern Europe and Central Asia has almost tripled since 2000.

Figure 1.5: HIV trend around the world

The number of deaths for HIV reduced drastically in particular in sub-Saharian
regions after the introduction of antiretroviral therapy since 2003. The future step
for reducing the number of death of about 10 millions consists of guarantee the
access to life-safe medicines.

1.6 Clinical Trial

Many areas of HIV/AIDS research involve clinical trials. A clinical trial is a re-
search study involving patients which may be conducted by universities, hospi-
tals, pharmaceutical agencies and others. Patients are randomly assigned to two
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or three different treatments for evaluating the effects of new or existing drugs.
The main reason for using a randomized clinical trial is to avoid bias in the allo-
cation of the patients to each treatment. Each patient has the same probability of
receiving any of the intervention under study. So neither the participant nor the
investigator will know in advance the allocation assignment.

A trial is said to be blind whether the subjects involved in the study as clin-
icians, statistician, person responsible for the treatment administration and pa-
tients do not know the treatment allocation. In particular we may distinguish:

• single blind: when just the patient does not know the treatment allocation

• double blind: when patient and also the researchers do not know which
treatment is being given to any given subject.

• triple blind: when in the experiment, neither the subject nor the person ad-
ministering the treatment nor the person evaluating the response to treat-
ment knows which treatment any particular subject is receiving.

Clinical trials could have different trials design:

• Superiority trial: the Superiority trial has the aim of showing that one treat-
ment (the new one) is superior (better) to another (the older one).

µN − µR > ε

where µN is the average effect of the new treatment and µR the average effect of
the old treatment and ε represents a small value higher than zero. In mathemat-
ical terms this means that the average effect of the new treatment is higher than
the one of the old treatment for a small value equal to ε.

• Equivalent: In equivalent trials, a new treatment is equivalent to another one
whether the difference in its effects not reach a certain value:

|µN − µR| < ε

or

ε1 < µN − µR < ε2

where ε1 and < ε2 are values higher than zero with ε2>ε1

• Non inferiority: the new treatment is at least as good as the old Treatment. In
mathematical terms:

µN − µR ≥ ε
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Noninferiority trials are intended to show that the effect of a new treatment is not
worse than that of an active drug by more than a tollerance margin denoted by ε.

Due to increased HIV treatment options and ethical concerns (this means that is
no longer possible to design a clinical study with placebo versus drug treatment),
superiority randomized controlled may be changed for non-inferiority designs.

Before starting a randomized control trial, investigators need to consider a
number of design features:

• the number of subjects and duration of follow-up.

• whether the trial will evaluate efficacy or effectiveness or safety. Efficacy tri-
als (explanatory trials) determine whether an intervention has any promise
of being as good as or better than existing treatments under ideal circum-
stances. Effectiveness trials (pragmatic trials) permit to evaluate if treat-
ments can work under real-life conditions. Safety trials permit to collect
information about adverse drug reactions and adverse effects of the new
drug.

• the phase of the trials:

i) Phase I: Patients are treated with placebo and a new drug but are unin-
fected (at low risk of HIV) as the issue of the trial is to evaluate the safety of
the new drug. Phase I trials usually last 12-18 months. Permits to define the
drug dosis.

ii) Phase II: is performed on hundreds of participants (200-300) and is de-
signed to assess how the drug works and to better characterize the safety of
the treatment. It usually lasts two years.

iii) Phase III: is performed on thousands of high-risk participants and is de-
signed to assess if the treatment works in preventing HIV infection. Phase
III trials can last 3-5 years

iv) Phase IV: Post marketing studies to better understand the drug’s risks,
benefits and optimal uses.

There are two preferred approaches to the analysis of most clinical trials :

• Intention to treat analysis: as pointed out by Fisher et al. (1990) ”a clini-
cal trial includes all randomized patients in the groups to which they were
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randomly assigned, regardless of their adherence with the entry criteria,
regardless of the treatment they actually received, and regardless of subse-
quent withdrawal from treatment or deviation from the protocol”.

• protocol analysis or on treatment analysis: can only be restricted to the par-
ticipants who complete the entire clinical trial in the terms of the eligibility,
interventions, and outcome assessment.

• available case analysis : analysis are done with the available information of
the patient that entered in the clinical trial and followed the trial guidelines.
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Chapter 2

Missing data

2.1 Missing Causes

As observed in Chapter 1, a randomized control trial has the advantage to pro-
duce unbiased experiments. Patients are followed during a follow up time that
could be enough longer for experiensing some dropout. A useful classification of
dropouts was given by Rubin (1976) and Little and Rubin (1998):

• Completely at random dropouts (CRD): the drop-out and measurements of
CD4 and/or viral load are independent. Example are: a patient moving to
another city for non-health reasons, a different disease from the examined
outcome, an uncooperative patient, protocolol violation.

• Informative dropout (ID): the dropout may lead to unmeasured information
on CD4 and/or viral load and on the final effect of the administrated drugs.
Example are: adverse events, death, unpleasant study procedures, lack of
improvement and/or early recovery.

In the literature we may refer to two types of missing data patterns:

• intermittent missings (non-monotone missings): in which an observed se-
quence has missings in one or more points of time and then observations
again. Example are: missing visits for practical or administrative reasons,
measurement equipment failures.

• monotone missings (dropouts or withdrawals): in which an observed se-
quence has missings from a time point to the end of the follow-up. Example
are: loss to follow-up, lack of efficacy or adverse reaction to the treatment.
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2.2 Missing Causes in clinical trials in HIV

In order to know which are the most common missing data in HIV, we conducted
a search of the clinical trials in HIV in the ClinicalTrials.gov registry. ClinicalTri-
als.gov gives information about a trial’s purpose, who may participate, locations,
and the centers involved in the study in the United States and around the world.
We performed a structured search based parametres: HIV and clinical trials. We
found 4804 studies according to these criteria. I reduced the search result to ran-
domized double blind control trials of fase III or IV and I obtained 1219 studies. I
considered some examples with published results showing the participants flow
for evaluating the common missing data in HIV:

Example 1: A Multicenter randomized double blind control trial with the pur-
pose to evaluate safety and efficacy. The combination of protease inhibitor with
two NRTIs has resulted in dramatic decreases in HIV-1-related morbidity and
mortality and is currently considered a standard of care regimen for initial treat-
ment of HIV-1-infected patients (Smith, 2009). The study was conducted to eval-
uate the efficacy and safety of TDF/FTC with ABC/3TC that were both combined
with two NRTIs: LPV/RTV.

• emtricitabine/tenofovir + Lopinavir/Ritonavir (TDF/FTC + LPV/RTV)

• abacavir/lamivudine + Lopinavir/Ritonavir (ABC/3TC + LPV/RTV)

Patients are recluted from 76 study sites in the US and 2 study sites in Puerto Rico
between 26 July 2005 and 16 June 2006. RNA > 1000 copies/mL at screening was
asseted as an inclusion criteria to partecipate in the trial. The primary efficacy
endpoint of the trial was to evaluate the percentage of participants with HIV-1
RNA < 50 copies/mL at week 48. The safety endpoint was asset to evaluate the
proportion of patients experiensing adverse events over 96 weeks. The study ran-
domized 343 patients in the abacavir/lamivudine + Lopinavir/Ritonavir (ABC/3TC
+ LPV/RTV) group and 345 in the emtricitabine/tenofovir + Lopinavir/Ritonavir
(TDF/FTC + LPV/RTV) group. Patients are followed at baseline (1 day), 2, 6, 12,
18, 24, 32, 40, 48, 60, 72, 84 and 96 weeks or withdrawall. At each visit CD4 and
HIV-1 RNA were collected. The flow of participants are shown in the following
figure:
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Figure 2.1: PARTICIPANTS FLOW

As shown in figure 2.1, just 234 participants in the first group and 221 par-
ticipants in the second group completed the trial. As summarized in the not
completed part of the figure, there are different causes for having missing ob-
servations: loss during follow-up, lack of compliance, protocol defined virolog-
ical failure, protocol violation, adverse event. Some of them may be thought to
be independent with the primary endpoint as for example withdrawal by sub-
ject. Adverse events may or may not hide an informative nature for the primary
enpoint: in some cases patients withdraw because of an adverse reaction to the
therapy but they reach an HIV-1 RNA below the undetectable limit. So we may
talk of a failure in tolerability but not in the efficicay of the treatment itself. Vi-
rologic failure was defined in the study as either failure to achieve HIV-1 RNA
below 200 c/ml or confirmed rebound to 200 c/ml after reduction to below 50
c/ml by week 24. After week 24, virologic failure was defined as a confirmed
HIV-1 RNA rebound to 200 c/ml. In both cases virological failure is an informa-
tive missing example. Loss to follow up could be also dependent to the efficacy
endpoints as a patient could decide to abandon a study because of its perception
of lack of results in reducing their HIV-1 RNA levels.

Example 2: A multicenter randomized double blind control trial assessing the
efficacy of a Treatment maintenance phase with unboosted vs. boosted reyataz
after an induction phase with reyataz and ritonavir in treatment naive HIV pa-
tients. The trial is divided into two phases:

• Induction Phase: from 26 to 33 weeks. Patients are treated with Atazanavir
+ Ritonavir + 2 NRTIs.

• Maintenance Phase: from the end of the induction phase. Patients are treated
with:

– Atazanavir + 2 NRTIs

– Atazanavir + Ritonavir + 2 NRTIs
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The primary outcome of the study was to evaluate the percentage of partic-
ipants with HIV-1 RNA < 50 copies/mL (c/mL) through week 48 of the main-
tenance phase. Inclusion criteria were: treatment naive HIV-1 infected subjects
(< 10 days of treatment with any ARV), subjects who have an HIV-1 RNA level =
5000 c/mL at screening. and subjects who have a CD4 count = 50 cells/mm3.

The flow of participants for the two phases are shown in the following figures:

Figure 2.2: PARTICIPANTS FLOW
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Figure 2.3: PARTICIPANTS FLOW

In the previous example, we may observe a low percentage in the number of
missing observations. There are different causes for dropouts. As shown in the
example 1, the nature of the missing causes is important to determine whether
the missing information may be informative or not. In the case of incarceration,
laboratory problems, pregnancy and death (when for other causes different from
the objective of the study), we may state that missing data are independent from
the primary endpoints of the study. For the other causes, we should make the
same considerations presented in the example 1.

2.3 Brief overview of missing data mechanisms

Rubin (1976) and Little and Rubin (2002) have given a review of the different
parameter modeling frameworks that can be used for modeling the following
data density:

f(Yi, Ri | Xi,Wi, θ, ψ) (2.1)

where Xi, Wi are vectors of covariates for the measurements and for the miss-
ings and θ and ψ are the corresponding parameter vectors. Let consider a sample
of N individuals identified by the indicator i with i=1.....N and a set of measures
collected over time j for each unit i, Yij (j = 1.....ni). So for each subject i, we
will have a vector Yi = (Yi1.....Yini

). We define Rij as the dummy variable rep-
resenting missing value for the individuals i at time j. So in case of longitudinal
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studies, for each individuals the dummy variable will be identified with the vec-
tor Ri = (Ri1.....Rini) and will assume a value equal to:

0 if the outcome is observed at time j

1 if the outcome is missing at time j

The parameterization of the joint distribution of R and Y, can be put into the
selection moded, the fixed pattern-mixture models or shared parameters models:

Selection models:

f(Yi, Ri | Xi,Wi, θ, ψ) = f(Yi | Xi, θ)f(Ri | Yi,Wi, ψ) (2.2)

Yi is divided into two parts Yo and Ym. In this case, we will have a model for
the observed mechanism Yi and a model for the missing mechanism Ri.

Pattern mixture models:

f(Yi, Ri | Xi,Wi, θ, ψ) = f(Yi | Ri, Xi, θ)f(Ri | Wi, ψ) (2.3)

a distribution probability for the missing data patterns and a different re-
sponse model Yi for each pattern of missing data Ri

Shared parameters models:

f(Yi, Ri | Xi,Wi, θ, ψ) = f(Yi | Xi, Ri, θ, bi)f(Ri | Wi, ψ, bi) (2.4)

In case of selection patterns, we may distinguish:

• Missing completely at random (MCAR)

f(Ri | Yo, Ym,Wi, ψ) = f(Ri | Wi, ψ) (2.5)

the probability density function or the probability mass function of being
missing does not depend of observed Yo or missing observation Ym.
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• Missing at random (MAR):

f(Ri | Yo, Ym,Wi, ψ) = f(Ri | Yo,Wi, ψ) (2.6)

the probability density function or the probability mass function of being
missing does depend of observed Yo. MAR means that a participants prob-
abilities of response may be related only to his or her own set of observed
items, a set that may change from one participant to another.

• Missing not at random (MNAR):

f(Ri | Yo, Ym,Wi, ψ) = f(Ri | Yo, Ym,Wi, ψ) (2.7)

the probability density function or the probability mass function of being
missing does depend of observed Yo and missing Ym parts .

MAR is considered ignorable non reponse and MNAR non ignorable. In the sec-
tion 2.6, we will review some techiniques used to treat missing data that are based
on: deleting the missing observations (as in the case of complete case analysis or
available case analysis), to fill the missing observations with some assumption
(as in the case of hot deck imputation and LOCF). In both case, for being valid
and not biased, the MCAR assumption have to be hold.

Let consider a probability density function (or probability mass function in
the case of discrete distribution) that depends on X, Y, W, ψ and Θ:

Y→ f(Y,R|X,W,Θ, ψ)

Where Θ and ψ are vector of parameters, X and W are vectors of covariants
and Y is the outcome. The likelihood function for the all subjects is:

θ → f(Y,R|X,W,Θ, ψ)

That could be written as:

Ł(Θ, ψ|X,W,Y,R) = f(Y,R|X,W,Θ, ψ)
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In other words, when f(Y,R|X,W,Θ, ψ) is viewed as a function of Y and R
with Θ and ψ fixed, it is a probability density function, and when viewed as a
function of Θ and ψ with Y and R fixed, it is a likelihood function. We have
described a likelihood function in case of values Y observed. Under missing data
for the outcome, the likelihood function will be tranformed in the following way:

L(Θ, ψ|X,W,Yo,R) = f(Yo, R|X,W,Θ, ψ)

In this case we cannot evaluate the conditional distribution because of the
dependency of missing values. Instead we will have:

f(Yo, R | θ, ψ) =

∫
f(Y,R | θ, ψ)dYm (2.8)

Substituing the joint distribution for the selection model:

∫
f(Yo, Ym | X, θ)f(R | Yo, Ym,W,ψ)dYm (2.9)

So under the MCAR assumption, we will have:

∫
f(Yo, Ym | X, θ)f(R | Yo, Ym,W,ψ)dYm = f(Yo | X, θ)f(R | Wψ) (2.10)

as the missing part does not depend of Yo and Ym

Under the MAR assumption, the missing value depends on the observed part,
in this case:∫

f(Yo, Ym | X, θ)f(R | Yo, Ym,W,ψ)dYm = f(Yo | X, θ)f(R | Yo,Wψ) (2.11)

In the case of MCAR and MAR the separability property is satisfied and the
parameter estimation could be based on the maximum likelihood (using the EM
algoritm) or a bayesian approach (as we will see for the imputation approach).
Under the MNAR assumption no simplification of the joint distribution is possi-
ble and this approach is usually not examined fot the lack of statistical software.
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2.4 Missing Data approaches in HIV/AIDS clinical tri-
als

In a recent paper Wood et al. (2004), review the missing data treatment for the
clinical trials published in the most important medical journals. The authors
identifies 71 trials of which 63 (89%) reported having some missing outcome data,
with 13 of these having more than 20% of patients with missing outcomes. The
study suggests that the major part of the trials just report missing data or treated
them employing some traditional strategy as for example complete case analysis,
available case analysis and last observation carried forward.

2.4.1 Later ’90-2000

In clinical trials in HIV, complete case analysis and last observation carried for-
ward were also considered the most used statistical techniques up to the later ’90
in case of ”attrition bias”, that occurs when data are collected over two or more
points in time and some participants drop out of the study prematurely:

• Complete case analysis or listwise deletion: the strategy consists at exclud-
ing the missing data for each follow up time. For clinical trials this means,
for example, to graphically display the change in HIV RNA level from base-
line to 48 weeks and reporting the summary statistics as means, medians,
ranges and others, just considering the effective number of patients in each
follow up time and omitting those cases with missing data. This approach
could drastically reduce the sample size and generate biases, in particular
when the number of missing data in the treatment groups is unbalanced.

• Last observation carried forward (LOCF): LOCF uses the last value ob-
served before dropout, regardless of when it occurred. Let Ya = {ya,1, ya,2 ....ya,n}
the vector of all potential observations of patient A who dropouts at time
k (with k<n), respectively at time 1,2,...n. If for this patient observations
ya,k+1,.... ya,n are not available (missing), the LOCF methos will replace them
by ya,k.

In 1998 Cozzi Lepri et al. published a paper on HIV clinical trials, review-
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ing the LOCF method and comparing it with a new method called adjusted
mean change from baseline (AMCB). In AMCB method the mean change
from baseline is used as characteristic to ”match” similar patients. We may
consider a research study in which investigators are interested at 4-weekly
changes in viral load usually reported as a difference between viral load at
time point X minus viral load at time point Y. When values are dropouts
after a certain time, the missing observations are replaced by values taken
from another patient, whose change in log10 HIV-RNA level is closest to the
value the patient has at the time of dropouts. AMCB is a particular case of
”nearest-neighbor” or ”hot deck” imputation, consisiting of replacing miss-
ing data by values taken from another patient with similar characteristics,
in case of HIV we may think to the value of HIV-1 RNA level that is closest
to the value the patient had at the time of dropouts.

So we summarize the hot deck imputation in the following way: indicate
with I the number of patients with no missing outcomes values. Consider a
patient B who dropouts at time k and another patient C with complete in-
formation and similar HIV-1 RNA level at time k. Let Yb = {yb,1, yb,2 ....yb,n}
and Yc = {yc,1, yc,2 ....yc,n} be the vector of all potential observations of pa-
tients B and C, respectively. If the observations yb,k+1,.... yb,n are missing,
substitute them by yc,k+1,.... yc,n (with k<n), chosen minimizing the differ-
ence in absolute terms in HIV-1 RNA levels for patient B and patient C at
time of dropout abs(yb,k − yc,k) with i = 1, ..., I .

The nearest neighbour permits to reduce the bias respect to LOCF. The last
one assumes constancy over time that may not be justified for HIV data as
HIV-1 RNA levels seem to substantial decline in the first two or four weeks
from starting an antiretroviral drug.

In 1999, Le Corfec et al. reported a study research in which the constancy
hipothesis under LOCF is longer valid. Based on Rabould and Montaner
study (1997), he suggests that ”HIV-1 RNA maintains relatively constant
for weeks 2 to 24 since after an initial decline, plasma RNA levels remain
flat for several months or slowly increase for most patients”

Another attempt to compare missing methods in clinical trials in HIV is due
to Kelleher et al. (2001). They focused on different ways to evaluate HIV-1
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RNA level:

– The change of HIV-1 RNA from baseline through week 48 for patients
randomized in two different treatments groups A and B. In this case,
three different approaches for treating missing data were introduced:
available case analysis or pairwise deletion that omits cases which do
not have data on a variable used in the current calculation only, com-
plete case analysis and LOCF.

– The proportion of subjects with HIV RNA< of a certain value. Also in
this case three approaches were evaluated: worst case scenario consid-
ers missing measurements as failures (NC=F), complete case analysis
and composite. Composite is an approach suggested by the regula-
tory authority and define the case in which missings are set equal to
failure: i) No confirmed HIV RNA response (two consecutive HIV-
1 RNA < 400 c/mL, ii) HIV RNA rebound (two consecutive HIV-1
RNA >= 400 c/mL, after response, iii) Discontinuation of treatment,
iv) AIDS event or death.

– The time to treatment failure based on HIV-1 RNA measurements for
two treatments using a Kaplan Meier or a Proportional Cox model
approach.

2.4.2 2000-2010

In a more recent paper Huson et al. (2007) reviewed the newer and older
method mechanisms recomended in clinical trials for treating missing val-
ues. The major part of these techniques were previously described as LOCF
and hot deck imputation with the only exception of:

– baseline carried forward: In a clinical trial where the primary end-
point is the change in HIV-1 RNA level from baseline to week 24 (early
virological response at 24 weeks), this method was described by Hu-
son as follow: ”it consists at setting the change in HIV RNA level from
baseline to 24 weeks to zero for all patients who withdrew from the
study prior to week 24”. Let Ya = {ya,1, ya,2 ....ya,n} the vector of all po-
tential observations of patients A who dropouts at time k (with k<n),

27



if the observations ya,k+1,.... ya,n are missing, substitute them by ya,1 so
the change from baseline to the end of the study will be equal to zero.

– Multiple imputation: as pointed out by Huson ”It consists of imput-
ing a value for change in HIV-1 RNA levels from baseline to week
24 for all patients who withdrew from the study prior to week 24”.
This method was used for a no monotone missing data structure. A
detailed description of this method will be given in section 2.7.

2.4.3 EMEA-FDA

In the last years the European Medicines Agency (EMEA) and the US Food
and Drug Administration (FDA) authorities have given some guidelines
for treating missing data. Complete case analysis was recommended in
the guidelines offered by the European medicine agency. Furthermore, the
complete case analysis violated the intention to treat principle which states:
a clinical trial should be based on the initial treatment intent, not on the
treatment eventually administrated. Simply use the completers is conve-
nient when we have missing completely at random data. Otherwise the
FDA Division has traditionally viewed LOCF as the preferred method of
analysis. LOCF produce unbiased estimates in case we assume missing
completely at random. It is a better approach compared to complete case
analysis conducting to shorter confidence intervals but could be used if the
assumption of stability does hold.

In general the LOCF approach seem to be the most used method to handle
missing data in HIV. Some authors refer to LOCF as a conservative method.
For patients in whom conditions are expected to deteriorate, as in the case
of a clinical trial in HIV for patients in an advanced state of the infection,
the LOCF is very likely to give optimistic results. For example in the case of
a new antiretroviral treatment compared to the drugs currently used. If we
have more missing values at 24 weeks for the older treatment and we im-
pute values using the LOCF (for example values of HIV-1 RNA at baseline),
the treatment comparison may be biased in favor of the new therapy. Other
authors state that considering LOCF as conservative is a common misun-
derstanding, as there are situations in which this strategy is anticonserva-
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tive. For instance, consider a randomized trial with the issue to evaluate
couples at high risk of HIV infection. We might expect a reduction in risky
behavior even in the absence of the randomized experiment. Therefore the
LOCF will result in values that look worse than truly are. Differential rates
of missing data across the treatment and control groups will result in biased
treatment effect estimates that are anticonservative.

2.5 Exploratory data analysis (EDA)

The first step to investigate the nature of the missing values in the HIV out-
comes, as for example the viral load, consists at summarising the different
types of missings data for the general group of patients and also for the in-
tervention and the control group during the follow up time. To explore if
there is a correlation structure of missing observations during time, we may
built a series of χ2 tests to asset if there is a statistically significant associ-
ation between the presence of missing data at baseline, 12, 24, 36 and 48
weeks. The missing data pattern could be evaluated using different strate-
gies:

• A logistic regression: is a generalized linear model used for binomial re-
gression in which two components are specified: a categorical response
variable R with two levels (1 =missing and 0 =observed ) and a logit link
function:

log

(
pij

1− pij

)
= β0 + β1timei + β2cov2i + β3cov3i + .....β4g(Yij) + εi (2.12)

εi ∼ N(0, στ )

• Where pij = E(Rij | Xi) = P (Rij = 1 | Xi) and Rij is the presence of the i-th
individual measured at time j, with distribution Rij ∼ Bernoulli(pij). g(Yij) is
the variable response or a trasformation of the variable (after an imputation for
instance).

In case of longitudinal studies, the general linear model (GLM) could be changed
in favor of a generalized estimation equation model (GEE). The GEE (Linag and
Zeger, 1986) method allows for the correlation between observations. In the or-
dinary logistic regression model, standards errors are based on the assumption
that the proposed correlation structure is correct. However, GEE as the property
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that even if this structure is incorrect, the fixed effect estimates are still consis-
tent. Nevertheless, the naive standard errors may be improved by the use of a
sandwich estimator. This gives us the robust standard errors. Confidence in-
terval under sandwich standard errors in GEE, are in general shorter then the
confidence intervals in logistic regression models. So we may fit a GEE model
with the presence of missing as response to explore the dependence between R
and time, some of the covariates known to be associated with the response (cov1,
cov2, cov3) and g(Yij):

– If the final model only include the constant we may conclude that
missings have a MCAR structure.

– If the final model include some covariates, we will assume a MAR
structure.

– If we may include the observed outcomes g(Yij) as variable response,
we may assume a MNAR structure.

This approach present a problem: missingness at random is relatively easy to
handle, simply include in the model all variables that affect the probability of
missingness. Unfortunately, we generally cannot be sure whether data really are
missing at random, or whether the missingness depends on unobserved predic-
tors or the missing data themselves. We generally must make assumptions, or
check with reference to other studies. In practice, we typically try to include as
many predictors as possible in a model so that the missing at random assumption
is reasonable.

• Sensitivity analysis: fitting different models valid under different scenarios of
nonresponse mechanism (MCAR and MAR) and compare the estimations and
the confidence intervals. For example compare the estimates obtained from a
logistic regression valid under MCAR and a mixed models valid under MAR.

2.6 Simple stochastic imputation

In section 2.4, we have analyzed different simple methods used in the literature
to handle missings data in clinical trials. Some of them are used more frequently
than other, in particular we may distinguish:
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• LOCF : is a simple imputation method used to complete the values of a
dataset that have not been recorded with the last measured observation
from a certain time point. Under LOCF the estimated mean and variance
are biased and consequentlly the treatment estimates are also biased.

• missings as failures: assigning the worst possible value of the outcomes
to dropouts for a negative reason (treatment failure). In the Example 1 in
section 2.2 the primary endpoints were evaluated considering the missing
observations equal to failures outcomes. The use of this approach may be a
reasonable starting point in case of virological failure but in case of adverse
event for intolerability of a drug is no longer valid.

• missings as success: assigning the best possible value of the outcomes to
dropouts for a positive reason (treatment cure)

The exploration of the ”worst” and the ”best” scenarios are common sensi-
tivity analysis approaches for binary outcomes in clinical trials and permit
to create a lower and upper bounds for the intervention effect under study.
The ”best”, the ”worst” scenarios and LOCF are unbiased methods under a
MCAR assumption.

• Regression model imputation: We begin considering all the variables to be
used in the analysis. Then a regression model (logit model in case of binary
outcomes) with the outcome of interest as response variable is fitted. We
get predictions from the model and use them by randomly assign to the
missing values. Finally we use this to impute missing outcomes.

2.7 Multiple Imputation

In the previous section we have described some single imputation methods as
for example LOCF and the regression analysis. The multiple imputation (MI)
method of missing data was firstly proposed by Little (1982) and applied in Sur-
vey studies, the crucial difference respect to a single stochastic imputation based
on completing the data once, is that the imputation process is repeated a small
number of times. As for LOCF and regression analysis, it permits to analyze the
data sets as we would have done if no data were missing, generating multiple
copies of the original data set and replacing missing values by randomly gen-
erate values. The key idea of MI is to use the data from units where both the
outcome Y and the vector of variables X are observed, together with the rest of
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the X’s, to learn about the relationship between Y and X. Once we have imputed
m complete data sets, we should analyze each of them in the usual way (i.e. us-
ing the model intended for the complete data). We obtained m estimates of the
original quantity of interest, Q. Let denote these estimates Q1,..., Qm. So, each Q
could represent a regression coefficient from a regression model of interest. We
may obtain the average of m complete data estimates in the usual way:

ˆQMI =
m∑
j=1

Q̂j

m
(2.13)

The variance is composed by two components:

• within imputation variance: which is the average of the m variances

σ̄2
ω =

m∑
j=1

σ̂2


m
(2.14)

• between imputation variance:

σ̄2
b =

1

m− 1

m∑
j=1

(Q̂j− Q̄MI) (2.15)

The total variance is aproximately:

T = σ̄2
ω + σ̄2

b

(
1 +

1

m

)
(2.16)

The tests and the confidence interval are based on a Student’s approximation:(
ˆQMI −Q

)
/
√
T ∼ tν

Unless rates of missing information are unusually high, there tends to be little
or no practical benefit to using more than five to ten imputations. Rubin (1987),
showed that the relative efficiency (RE) of an estimate based on m imputations to
one based on an infinite number of them is approximately:

RE =(1+λ/m)−1
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where λ is the rate of missing information.

λ

m 10% 30% 50% 70%
3 0.98 0.95 0.93 0.90
5 0.99 0.97 0.95 0.94

20 0.99 0.99 0.98 0.97
∞ 1 1 1 1

As we may observe from the table above with a small percentage of missing val-
ues and m=3 or m=5, we may obtain a nearly fully efficiency. This information
can be summarized also in terms of standard deviation. Let

√
1 + λ/m the stan-

dard deviation. With λ = 50% missing information, an estimate based on m=5
imputations has a standard deviation that is only about 5% wider than one based
on m =∞, with

√
1 + 0.5/5 = 1.049 versus 1.

In the literature the most famous multiple imputation model are:

• Multivariate normal model, firstly introduced by Shafer (1997). It assumes
that data are normally distributed. Skewed variables were firstly trans-
formed as no normality distribution can lead to a bias into the analysis.

• Chained equation model using the chained equation approach. The ad-
vantage of the chained equation model is that perform a series of univari-
ate regressions rather than a single multivariate normal model so it can be
easier to estimate. Moreover variables are not assumed to have a normal
distribution, so the regression model can be replaced by some generalized
linear model (GLM) for no normal responses. This approach can be sum-
marized in 5 steps: 1) for each variables we fill missing values with ran-
domly chosen observed values 2) once we have the all dataset completely
full, we start with the multiple imputation mechanism. We firstly asset a
single regression model involving a single response variable, the original
missing data for the first variable and multiple predictors corresponding to
the other variables in the dataset that were previously imputed as described
in step 1. 3) the ’filled in’ values in the second variable are discarded. These
missing values are then imputed using the regression imputation on all the
other variables. 4) this process is repeated for the all number of variables in-
troduced for the imputation analysis. 5) this process is continued for several
cycles.
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The common assumption for these two methods is that missings have a MAR
structure.

2.8 Hot deck multiple imputation

We consider an Hot deck (HD) multiple imputation approach as presented in
Tang et al. (2005) for Survey Studies using a predictive mean matching method
and the approximate Bayesian bootstrap for missing values. The HD method is
the non parametric version of the multiple imputation approach.

First of all, it is required to indroduce some useful terms:

i) Propensity score: is the probability of a unit (such as a person) being as-
signed to a particular condition in a study (for example a treatment), given a set
of known covariates. In clinical trials for evaluating if a new treatment is better
than the traditional one, we may want to asses the conditional probability of be-
ing treated with the new intervention (T=1) given some backgrounds variables
X1,X2,......,Xp:

PS = P (T = 1|X1, X2, ......, Xp)

We may estimate the propensity score through the logistic regression model:

Ln(PS/1− PS) = β0 + β1X1 + ........βpXp where PS is the propensity score

Solving respect to PS:

PS = exp(β0 + β1X1 + ........βpXp)/(1 + exp(β0 + β1X1 + ........βpXp))

In case of missing data, we are interested at evaluating the probability of being
observed respect to being not observed. In section 2.3, we have defined Ri a
dummy variable that assumes a value equal to zero if the outcome is observed at
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time j and one if the outcome is not observed at time j.

PR1(X0) = P (R1 = 0|X0)

PR2(X0, Y1) = P (R1 = 0|X0, Y1)

PRT (X0, Y1, ....YT−1) = P (R1 = 0|X0, Y1, YT−1....)

Where X0 is a vector of baseline characteristics, Y1 a vector of the response out-
come at time 1, Y2 a vector of the response outcome at time 2, and finally YT−1 a
vector of the response outcome at time T-1.

The first equation means that the probability of response at time 1 is conditioned
to the baseline covariates vector X0 into the dataset. The second equation means
that the probability of response at time 2 is conditioned to the baseline character-
istics (X0) and to the outcome vector at time 1 (Y1). The last equation means that
the probability of response at time t depends on the baseline characteristics and
on the outcome vector at time 1,2 up to T-1. We may employ the same procedure
for obtening the probability of no response:

PR1(X0) = P (R1 = 1|X0)

PR2(X0, Y1) = P (R1 = 1|X0, Y1)

PRT (X0, Y1, ....YT−1) = P (R1 = 1|X0, Y1, YT−1....)

We may reconduct the last equation to equation 2.6 in case we consider a proba-
bility mass function instead of a probability density function. The probability of
being missing depends on the covariates and the oserved outcomes. So in case of
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HD nultiple imputation we are assuming a MAR structure.

In the second step, the propensity scores were stratified basing on quartiles
and an approximate Bayesian bootstrap was introduced:

i) In each quantiles, we define with nobs the number of observed outcome and
with nmiss the number of not observed outcomes. So we randomly sample with
replacement n1 values from the observed responses nobs.

ii) We draw the n0 = n - n1 missing outcomes randomly with replacement from
the potential set of observed outcomes created in step i.

iii) we repeated step i and ii in each time.

The propensity score method is valid under a monotone missing data struc-
ture.
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Chapter 3

Analysis of a clinical trial in HIV

The aim of this chapter is to introduce the dataset that has motivated the contri-
bution of this thesis.

3.1 The HIV dataset

International treatment guidelines recommend an antiretroviral therapy contein-
ing 2 nucleoside reverse transcriptase inhibitors (NRTIs) and a boosted PI or a
non nucleoside reverse transcriptase inhibitor (NNRTI) in treatment-naive pa-
tients. In particular the 2007 european guidelines (EACS) consider a treatment
consisting of lopinavir/ritonavir (Lopivavir/r) or Efavirenz as the best choices.
The first one for its high antiviral potency, long durability (low risk of resistance)
and its acceptable tollerance. The other for its low pill burden, which make ad-
herence easier, and the high number of patients who achieve viral suppression.
Therefore, a multicenter randomized double blind control trial of phase III called
LAKE (Negredo et al., 2010), was performed. A number of 116 patients were
randomly assigned in a ratio of 1:1 to two drugs:

• efavirenz + abacavir (600 mg) /lamivudine (300 mg) once daily =EFV +
KIVEXA

• Lopinavir (400 mg, 3 capsules) +ritonavir(100 mg twice a day)= KALETRA
+ KIVEXA

The clinical trial was planned to have 5 visits: basal, at 12 weeks, 24 weeks, 36
weeks and 48 weeks (corresponding to the end of the drug administration).
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Patients were recluted from 19 study centers in Spain between March 2005 to
March 2006 from people aged 18 years or above, with HIV-1. The primary end-
point was to evaluate the percentage of participants with HIV-1 RNA< 50 copies/mL
at week 48. The second endpoint was to evaluate the virological failure and
changes in CD4 at time 48 weeks. In the course of this thesis we will focus on
the primary endpoint.

3.2 Missing Causes

A number of 58 patients were assigned to the Efavirenz group and the other 58
patients to the Lopivavir/r group. Reasons for discontinuation are classified as:
virological failure, adverse events (mild, moderate and severe based on the inten-
sity), hypersensibility reaction, death or any other causes (voluntary discontinu-
ation, simplification, etc) and are sumarized in figure 3.1.
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Figure 3.1: Missing causes
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As shown in chapter 2, not all subjects included in the study, will complete the
48 weeks follow-up. Focusing on the primary endpoint the number of patients
with viral load < 50 copies/mL and >= 50 copies/mL for the two treatments
during time are summarized in the following follow-up sequence:

Figure 3.2: Lake Study design

The number of missing values for viral load increase over time in the two
treatment groups. The distribution of missings over time for the two drugs is
quite similar at 12, 24 and 48 weeks. In the other weeks we may observe some
difference. The distribution of response, defined as measuring a viral load < 50

copies/mL, and of no reponse, defined as measuring a viral load>= 50 copies/mL,
are also heterogenous between groups.

3.3 Descriptive analysis

For each patient, sociological variables were recorded at the beginning of the
study. According to the duration of the trial, the viral load and the CD4 were
evaluated at baseline, 12, 24, 36 and 48 weeks:
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TABLE 3.1: Variables Description

Name Description
Sex Patient sex =1 male, =2 female
Age Age in years
Group EFV + Kivexa, Kaletra + Kivexa
CD4A0 T-CD4 lymphocytes counts at time 0
CD4A12 T-CD4 lymphocytes counts at week 12
CD4A24 T-CD4 lymphocytes counts at week 24
CD4A36 T-CD4 lymphocytes counts at week 36
CD4A48 T-CD4 lymphocytes counts at week 48
cv500 Percentage of load viral at time 0,<= 50,> 50

cv5012 Percentage of load viral at week 12,<= 50,> 50

cv5024 Percentage of load viral at week 24,<= 50,> 50

cv5036 Percentage of load viral at week 36,<= 50,> 50

cv5048 Percentage of load viral at week 48,<= 50,> 50

Infection time Time from the HIV infection measured in months

In table 3.2, we presented some statistics for the continuous and the categorical
variables considered in the study.

TABLE 3.2: Summary Statistics

Variable Mean (sd) Median (Inter. Range) MIN-MAX Freq.(%)
Sex(Man) 95 (86.36)
Age 38.04 (8.28) 37 (32.25-43) 20-59
Group (EFV + Kivexa) 58 (50)
CD4A0 192.6(123.32) 188(89-283) 3.3-569
CD4A12 417.8(672.96) 333(209-459) 45.8-6604
CD4A24 362.9(192.046) 331.5(193.6-499.8) 83.8-806
CD4A36 392.2(202.879) 375(223-519) 13.8-900
CD4A48 431.2(243.95) 398.5(268.2-509) 15.1-1169
cv500<= 50 0 (0)
cv5012<= 50 53 (58.24)
cv5024<= 50 61 (84.72)
cv5036<= 50 54 (94.74)
cv5048<= 50 41 (89.13)
Infect.time(months) 27.82 (53.090) 6.067(2.083-23.47) 0-285.30
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Descriptive statistics by group are summarized in the table below:

TABLE 3.3: Summary Statistics by group of treatment

Variable EFV + Kivexa (N=58) Kaletra + Kivexa(N=58)
Age* 38.68(8.49) 37.4(8.082)
Infection time (in months)** 13.2(3.317-38.75) 4.32(1.725-17.02)
Sex(Man)*** 48(85.71) 47(87.04)

* Values are Mean (standard deviation) for variables normally distributed.

** Values are Median (interquartile range) for variables no normally distributed.

*** Values are number of cases (proporions) for categorical variables.

Time infection could be thought as a confounder variable that should be taken
into account when we analyze the effect of the treatment. Patients following an
EFV + Kivexa are patients with higher infection time and so with poor health
respect to patients treated with Kaletra + Kivexa. Moreover in the presence of a no
good administration of the treatment, EFV + Kivexa patients are more resistent.
The variable infection time could be responsible for lack of effect for EFV + Kivexa
compared to Kaletra + Kivexa group. In the following analysis we adjust for this
variable.

The table above shows homogeneity in the mean age and the same proportion of
men included for the two treatments. It seems to be a difference in the infection
time. In particular patients in the EFV + Kivexa tend to have an higher infection
time respect to patients in the Kaletra + Kivexa group.

3.4 Study of the missing patterns

Results in the study were presented every 12 weeks starting from baseline up
to 48 weeks. We firstly summarized the different types of missings data for the
variable viral load during time, respectively at baseline, 12, 24, 36 and 48 months.
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Where o is the observed outcome and m the missing outcome

More than 45% of missings have a monotone structure, the 25% of values are
observed during the follow-up time and almost the 30% of missings have a non
monotone missing structure.

We also summarize the missing patterns for type of administrated drug:

TABLE 3.4: Missing pattern for group of treatment

Missing pattern EFV + Kivexa Kaletra + Kivexa
ooooo 16 (27.59) 13(22.41)
oooom 3 (5.17) 2 (3.45)
ooomm 8 (13.79) 11 (18.97)
mmmmm 2 (3.45) 2 (3.45)
no monotone missings 11(18.97) 19 (32.76)
Total 58 58

Values are frequency (%)

As we may see from table 3.4, almost 28% of patients in EFV + Kivexa and 22%
in Kaletra + Kivexa have a complete pattern of response during time. The second
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line shows a missing data structure in which values are missing at 48 weeks, in
the third line values are missings at 36 weeks. Finally, we may observe the same
number of cases (2) and percentages (3.45) for a missing data pattern correspond-
ing to missing observations during the all follow up-time.

3.5 Different missing treatments

In chapter 2, we have described different simple methods used to handle missing
data in clinical trials. In this section we will apply some of them to the Lake
study according to two of the prefered principles to the analysis of clinical trials:
intention to treat analysis and protocol analysis.

• Intention to treat principle: ”everyone randomized should be included into
the analysis”. Based on this principle we consider three approaches: LOCF,
Missings=Failure and Missings=Success. LOCF was applied to the data and
the percentage of viral load < 50 copies/mL and is described in the follow-
ing table:

TABLE 3.5: LOCF

Group Baseline 12 Weeks 24 Weeks 36 Weeks 48 Weeks
EFV+Kivexa 0 48 68.97 75.86 70.69
Kaletra+Kivexa 0 36.21 63.79 68.97 68.97

Values are expressed as % of patients with viral load < 50 copies/mL

The table 3.5 shows as EFV+Kivexa treatment is more effective than Kale-
tra+Kivexa during the all follow-up time.

In the case of a poor outcome assumption, we set missing values equal to
failures.

TABLE 3.6: Assuming poor outcome(Missing = Failure)

Group Baseline 12 Weeks 24 Weeks 36 Weeks 48 Weeks
EFV+Kivexa 0 55.17 50 48.28 34.48
Kaletra+Kivexa 0 36.21 55.17 54.17 36.21

Values are expressed as % of patients with viral load < 50 copies/mL
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With the assumption of Missings=failure, we are assuming that a patient
withdraws because does not believe in the advantage of the treatment as
he has not responded up to the time of dropout. The table 3.6 shows as
Kaletra+Kivexa treatment is more effective than EFV+Kivexa starting from
24 weeks.

In the case of a good outcome assumption, we set missing values equal to
success. This hypothesis is less plausible than the previous one because it is
difficult to think that severe patients could control the HIV virus before the
end of the treatment and no require any other drug administration.

TABLE 3.7: Assuming good outcome (Missing = Success)

Group Baseline 12 Weeks 24 Weeks 36 Weeks 48 Weeks
EFV+Kivexa 17.24 75.86 93.10 100 94.83
Kaletra+Kivexa 24.14 58.62 87.93 93.75 96.55

Values are expressed as % of patients with viral load < 50 copies/mL

The table 3.7 shows as the Kaletra+Kivexa treatment is more effective than
EFV+Kivexa at baseline (24.14% versus 17.24%) and at the end of the treat-
ment administration (96.55 % versus 94.83 %).

• On treatment analysis (or protocol analysis): to avoid diluition of treatment
effect, we also perform an analysis by treatment actually received or com-
plete case analysis:

TABLE 3.8: On treatment analysis

Group Baseline 12 Weeks 24 Weeks 36 Weeks 48 Weeks
EFV+Kivexa 0 69.57 87.88 100 86.96
Kaletra+Kivexa 0 46.67 82.051 89.66 91.3

Values are expressed as % of patients with viral load < 50

As we may observe from the table 3.8, in case of on treatment analysis, the
percentage of response is higher for EFV+Kivexa respect to Kaletra+Kivexa
treatment during time up to 36 weeks. At 48 weeks, the Kaletra+Kivexa
treatment will be more effective than the other one. We may conclude that
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the EFV+Kivexa experiments fast effectiveness, but at the time of the evalu-
ation of the primary endpoint Kaletra+Kivexa will be prefered as permit to
reach 91.3 % of patients with viral load < 50 copies/mL.

The results presented in tables 3.5-3.8 are quite ambiguous. For some analysis
EFV+Kivexa is more effective than Kaletra+Kivexa. For others we may state the
opposite conclusion. Conclusion about treatment effectiveness is related to miss-
ingness treatment. In section 3.6.2, we analyze the same models considering some
adjusting variables.

3.6 Exploratory data analysis

As observed in section 2.5, to explore if there is a structure of missings observa-
tions during time, we built a series of χ2 tests to check the correlation between
missingness over different time points. We found a statistically significant associ-
ation between the proportion of missing data for viral load at week 12 and week
24 (p-value = 1.907e-04), at week 24 and week 36 (p-value = 6.485e-08), at week
36 and week 48 (p-value < 2.2e−16). We did not find any statistically association
between missings at baseline and 24 months.

Following section 2.5 the missings data pattern could be evaluated using the lo-
gistic regression for independent observations and the GEE models in case we
assume a correlation structure:

3.6.1 Logistic regression

We specify a categorical response variable R with two levels (1 =missing and 0
=observed viral load during follow-up), a logit link function and a series of co-
variates known to be associated with the presence of missing like time of infec-
tion, time, sex, age of the patient and treatment for clarifying this dependency.
We set male and EFV+KIVEXA as reference categories

log

(
pij

1− pij

)
= β0 + β1timei + β2InfectionT imei + β3Femalei + β4agei

+βKALETRA+KIV EXAi+ εi
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with the error term εi ∼ N(0, στ )

Where pij = E(Rij | Xi) = P (Rij = 1 | Xi) and Rij is the presence of the i-th
individual measured at time j, with distribution Rij ∼ Bernoulli(pij).

To allow account for correlation between observations, we fit a GEE model
with the presence of missing for the different time points as response with un-
structured correlation matrix structure. We started evaluating the dependency of
missings from time and treatment:

TABLE 3.9: GEE with treatment and time

Variable Estimate SANDWINCK SE P-value
Intercept -1.991 0.249 1.443e-15
TREAT.(Kaletra + Kivexa) -0.0324 0.180 0.857
Time 0.491 0.0679 4.645e-13

From table 3.9, we may observe as the missing structure depends on the visit
times. In this case, we could conclude that missing data are not completely at ran-
dom, because the missingness does depend on variables in the database (time).

We also consider a model with sex and treatment as covariates adjusted to the
number of values not missing for the sex variable:

TABLE 3.10: GEE with sex, treatment and time

Variable Estimate SANDWINCK SE P-value
Intercept -1.987 0.254 4.885e-15
TREAT.(Kaletra + Kivexa) -0.0733 0.186 0.693
Time 0.485 0.069 2.201e-12
Sex(Female) -0.00869 0.285 0.9756

Sex and treatment are not associated with the presence of missing for the variable
viral load.

As we did not observe any dependency respect to sex, we decide to exclude this
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variable from the analysis. Finally we fit a model with infection time, treatment
effect and time.

TABLE 3.11: GEE with treatment, time and infection time

Variable Estimate SANDWINCK SE P-value
Intercept -1.788 0.277 1.141e-10
TREAT.(Kaletra + Kivexa) -0.00428 0.197 0.983
Time 0.415 0.072 8.521e-09
Infection Time -0.0026 0.00183 0.156

Introducing the time of infection we may observe a statistically significant
dependence of missing respect to visit times. A model adjusted for age was also
fitted but we did not find any association with the missing response. We also
evaluated the association between CD4 during time and the presence of missing
for viral load as described in the literature. We observed missings data in CD4
corresponding to missing data in the viral load during time. This is an evidence of
the lack of blood analysis and so we may conclude than the correlation structure
is not fiable. So we decided to not consider the CD4 for our analysis.

3.6.2 Sensitivity analysis

The sensitivity analysis consists at comparing the model coefficients obtained un-
der various models valid under different missing structures: MCAR or MAR. We
first started with a logistic regression model that is valid under a MCAR struc-
ture and under MAR. The coefficient estimations is based on the likelihood func-
tion. In particular logistic regression is equivalent to a GEE under the hypoth-
esis of independency between observations. As we have shown in paragraph
3.6.1, the generalized estimating equations procedure (GEE) requires that miss-
ing data depend only on covariates or that they be missing completely at random
(MCAR) otherwise GEE regression parameter estimates are biased. In case of
MAR assumption we should introduce a weighted generalized estimating equa-
tions (WGEE) to have unbiased estimation of parameters or we should specify a
good model in which the covariates explain the missing observations. With the
logistic regression model, we use the observed data ignoring all missing mea-
surements for the response (viral load) and the other covariates (time, infection
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time, age, sex and treatment):

logit(Yi=1 | timei, treatmenti, agei, infectiontimei, sexi) = β0+β1timei+β2treatmenti+

β3agei + β4infectiontimei + β5sexi + εi

with the error term εi ∼ N(0, στ )

The model above allows for:

• differences between group of treatment

• differences between sex

• differences in age

• linear changes in the log odds of infection over time with slope β4

We are interested at evaluating the viral response to the treatment during time,
so we fix cv>= 50 copies/mL as the reference category. Also we have considered
EFV+Kivexa respect to Kaletra+ Kivexa and female respect to male.

TABLE 3.12: Logistic regression model

Variable Estimate Standard error P-value
Intercept -2.970 0.852 0.000487
TREAT.(EFV + Kivexa) 0.8216 0.336 0.0144
Time 1.700 0.189 < 2e− 16

Time Infection -0.000451 0.00293 0.877
Female -0.944 0.481 0.0494
Age -0.0263 0.0199 0.187

We first see from Table 3.12 that treatment, sex and time are all statistically sig-
nificant predictors of viral load. In this model, increasing time is associated with
an increasing response defined as viral load < 50 copies/mL (1.700), female sex
is associated with a decreased response (-0.944), and EFV+Kivexa treatment is
associated with an increased response respect to Kaletra+Kivexa.

The ordinary logistic regression model permits to analyze an association model
with just fixed effects so a model with both fixed effects and random effect in the
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constant or in the slope, called mixed model is going to be used. With this model
we may:

• evaluate the random effects into the intercept that allow for heterogeneity
between individuals and represents the part of omitted subject specific co-
variates that causes some subjects to be more prone to the EFV + Kivexa
than others.

• evaluate the random effect into time, allow the model to take account of
different slopes between individuals.

Under a mixed model we are assuming a MAR structure.

We first started considering a mixed model with a random intercept:

logit(Yi=1 | timei, treatmenti, agei, infectiontimei, sexi) = (β0 +bi0)+β1timei+

β2treatmenti + β3agei + β4infectiontimei + β5sexi + εi

with the error term following a multivariate normal distribution with mean
0 and variance στ εi ∼ N(0, στ ), and random effects following a multivariate
normal distribution with mean 0 and variance σ0 , bi0 ∼ N(0, σ0).

TABLE 3.13: Mixed logistic model with random effect in the constant

Variable Estimate Standard error P-value
Intercept -2.973 0.853 0.00049
TREAT.(EFV + Kivexa) 0.8219 0.336 0.0144
Time 1.701 0.189 < 2e− 16

Time Infection -0.000451 0.00293 0.878
Female -0.945 0.481 0.0495
Age -0.0263 0.0199 0.187

Results presented in table 3.13 are quite similar to results displayed in table 3.12.
We may observe some difference in the treatment effect 0.8216 versus 0.8218 and
for time 1.700 versus 1.701.

We can employ the likelihood ratio approach for testing the random effect on the
constant. A random effect in the constant is not statistically significant (p= 0.497)
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We also considered a mixed model with a random intercept and slope:

logit(Yi=1 | timei, treatmenti, agei, infectiontimei, sexi) = (β0 + bi0) + (β1 +

bi1)timei + β2treatmenti + β3agei + β4infectiontimei + β5sexi + εi

with the error term and random effects εi ∼ N(0, στ ) , bi0 ∼ N(0, σ0) and bi1 ∼
N(0, σ1)

Where the random effects are represented by bi0 and bi1 .

TABLE 3.14: Mixed logistic model with random effect on constant and slope

Variable Estimate Standard error P-value
Intercept -6.499 1.417 4.63e-06
TREAT.(EFV + Kivexa) 1.187 0.477 0.0128
Time 3.764 0.480 4.66e-15
Time Infection 0.00179 0.00429 0.676
Female -0.137 0.659 0.835
Age -0.042 0.0298 0.158

Table 3.14 displays that treatment and time are statistically associated with re-
sponse. In particular an increasing time is associated with an increasing response
(3.764) and EFV+Kivexa treatment is associated with an increased response re-
spect to Kaletra+Kivexa (1.187).

We employed the likelihood ratio approach for testing the random effects. Both
random effects into intercept and slope are statistically significant (p< 0.00001).

With a mixed model with random effect in the constant and in the slope, the total
variability is decomposed in:

• Individual variability: 12.278

• Time variability: 4.678

• Residuals variability

An alternative approach to the available case analiysis examined in tables (3.12-
3.14) is the imputation analysis. In this case we include all the randomized sub-
jects by imputing the missing values with various imputation strategies: LOCF,
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missings =Failure, missings=Success, logit model imputation, multiple imputa-
tion and hot deck multiple imputation. We first start with 4 ways of imputation:

1) Logit model imputation: with this approach we take into account the signif-
icant dependence of missing values of the main outcome with the observation
data of the treatment variable and the others covariates. We built a logit regres-
sion with dichotomous response for modelling this relationship that allows us to
impute values on missing observations.

TABLE 3.15: Mixed logistic model with missings simple Imputation

Variable Estimate Standard error P-value
Intercept -3.068 0.8307 0.000221
TREAT.(EFV + Kivexa) 0.939 0.327 0.004053
Time 0.889 0.0898 < 2.e− 16

Time Infection -0.0007564 0.00313 0.809
Female 0.136 0.460 0.767
Age 0.00973 0.0202 0.6306

2) LOCF

TABLE 3.16: Mixed logistic model with LOCF Imputation

Variable Estimate Standard error P-value
Intercept -3.133 1.614 0.0522
TREAT.(EFV + Kivexa) 0.859 0.657 0.1908
Time 1.585 0.151 < 2.e− 16

Time Infection 0.00345 0.0062 0.556
Female -0.843 0.918 0.578
Age -0.0468 0.040 0.358

As we may observe from table 3.16 according with the results presented in
table 3.5, the effect of Kaletra+Kivexa and EFV+Kivexa are quite similar during
time (p=0.1908, no statistically significant).

3) Missings=success
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TABLE 3.17: Mixed logistic model with Missings=success

Variable Estimate Standard error P-value
Intercept -2.883 0.888 0.00116
TREAT.(EFV + Kivexa) 0.617 0.341 0.0703
Time 2.294 0.229 < 2.e− 16

Time Infection -0.000566 0.00331 0.864
Female 0.0477 0.461 0.918
Age -0.0309 0.0215 0.150

We first see from Table 3.17 that time is still significant but we may not assume
differences in treatment effectiveness.

4) Missings=failure

TABLE 3.18: Mixed logistic model with Missings=Failure

Variable Estimate Standard error P-value
Intercept -1.321 0.889 0.137
TREAT.(EFV + Kivexa) 0.458 0.365 0.210
Time 0.479 0.104 4.32e-06
Time Infection 0.00228 0.00336 0.498
Female -0.233 0.525 0.657
Age -0.0262 0.0228 0.250

In case of a worst scenario, EFV + Kivexa drug is no longer prefered to Kalexa +
Kivexa treatment.

1) is valid under a MCAR structure and could permit to create a complete dataset
that will be analyzed with a regression model. In the first step we estimate the
mean vector and the covariance matrix for the complete cases assuming a logistic
regression model. In the second step the conditional mean from the regression of
the missing components on the observed measurements is calculated and substi-
tuted for the missing values. Using this method permit to have some advantages
and disadvantages:

Advantages

• The point estimation maintains

53



• Reduce the covariances distortion

• The size of the sample is preserved

Disadvantage

• The model should be correctly specified and this highly complicated to
reach

2),3) and 4) permit to create a complete dataset that will be analyzed with a mixed
model with both random effects in the intercept and in the constant who permits
to have unbiased estimates under a MAR structure.

Another approach used to handle missing data, was showen in section 2.7 and
is known with the name of multiple imputation. With the multiple imputation
the missing data for each variable are predicted using existing values from other
variables.

TABLE 3.19: Multiple Imputation for time of infection

Observation imput.1 imput.2 imput.3 imput.4 imput.5
1 10.3 3.267 6.033 4.90 0.667
9 0.967 41 23.10 0.70 52.233
23 10.667 14.567 43.20 18.30 52.267
26 10.30 36.267 213.967 3.267 30.80
35 41 0 1.567 13.20 1.367
44 181.60 181.60 1.233 285.30 36.50

In table 3.19 we may observe some of the imputed values for the variable time of
infection in 5 imputed datasets.

The library mice (multiple imputation by chained equation) in the R environment
permits to impute any incomplete data specified into the model. The default
methods used in mice are predictive mean matching for numeric data, logistic re-
gression for two categories and polytomic logistic regression for categorical vari-
ables.

Once the imputed dataset have been created (we created 5 datasets, we have seen
in section 2.7 that with 5 imputations we reach a nearly fully efficiency), we fit 5
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logistic regression models for the viral load. Once the analysis have been com-
pleted for each of the 5 datasets, we combined the parameter estimates using
Rubin’s rules for obtaining an overall set of estimates. We first have built a table
for evaluating the percentage of patients with viral load < 50 copies/mL in the
two treatments during the 48 weeks.

TABLE 3.20: Multiple Imputation analysis

Group Baseline 12 Weeks 24 Weeks 36 Weeks 48 Weeks
EFV + Kivexa 0 67.24 79.31 96.55 86.21
Kaletra + Kivexa 0 43.10 82.76 93.10 86.21

Values are expressed as % of patients with viral load < 50 copies/mL

With multiple imputation the two treatments are equal effective at 48 weeks. We
may observe some differences from baseline up to 36 weeks. The parameter esti-
mates for the pool multiple imputation are reported in the following table:

TABLE 3.21: Pool Multiple Imputation

Variable Estimate Standard error P-value
Intercept -0.00524 0.0760 0.945
TREAT.(EFV + Kivexa) 0.0718 0.0289 0.0136
Time 0.225 0.0101 < 2e− 16

Time Infection -0.00053 0.000272 0.0516
Female -0.130 0.0420 0.00206
Age -0.000152 0.00178 0.932

By using multiple imputation analysis sex, time and treatment are statistically
significant.

3.7 Hot-Deck analysis

The hot-deck method was already described in section 2.8. In this section, I imple-
ment the hot-deck imputation method in the R environment. We may summarize
the procedure in 4 steps:

Step 1) We start the process creating a Ri variable that assumes value 1 if
the variable viral load is missing at baseline and 0 otherwise. For our dataset,
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at time 0 the number of patients with viral load < 50 is equal to zero. In this
particular case, we simplify the analysis assigning to the missing observations
the value=viral load >= 50.

Step 2) At week 12, we repeat the process. We have created a Ri variable
that will assume value equal to 1 if the viral load is missing at week 12 and 0
otherwise. We fit a logistic regression model in Ri=1(week=12) and we introduce
the same covariates considered in the previous models. We also expect to have a
dependency respect to viral load at baseline. In our particular case the viral load
has just one category (viral load >= 50) so will not appear into the model:

logit(Ri=1)week=12 = β0 + β1timei + β2treatmenti + β3agei + β4infectiontimei +

β5sexi + εi

From the logistic regression, we estimate the probability of response (viral
load < 50) and also the propensity score as described in section 2.8. The propen-
sity score will be divided into quartiles. In each quartile there will be a number
of missings outcomes (nmiss) and a certain number of observed outcomes (nobs)
We randomly sample the missing outcomes from the observed outcomes that
were previously randomized with replacement (to be adjusted to the length of
the missings outcomes). We do the same for each quartile.

Step 3) We repeat the same process at week 24. In this case we will fit the
following model:

logit(Ri=1)week=24 = β0 + β1timei + β2treatmenti + β3agei + β4infectiontimei +

β5sexi + β6 ∗ viraloadiweek=0 + β7 ∗ viraloadiweek=12 + εi

where viraloadiweek=12 was imputed in step 1 and step 2.

Step 4) We repeat this analysis for each time up to 48 weeks.

Let consider 6 missing values for the first quartile at week 12. We assigned ran-
domly with replacement the 6 values from the 8 observed outcomes:

With the same process, we have obtained the following table at week 12:
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Figure 3.4: HOT-DECK

TABLE 3.22: Hot deck imputation at week 12

Category at start 1 Quartile 2 Quartile 3 Quartile 4 Quartile
cv< 50 53 58 59 63 64
cv>= 50 38 39 40 942 47
NA 25 19 17 11 5

Running the step 1) 2) and 3) for each time, we will be able to explore the effect
of the treatment using a logistic regression model for the parameter estimations.

We first have built a table for evaluating the percentage of patients with viral
load < 50 in the two treatments during the 48 weeks.

TABLE 3.23: Hot-Deck analysis

Group Baseline 12 Weeks 24 Weeks 36 Weeks 48 Weeks
EFV + Kivexa 0 70.69 93.10 100 94.83
Kaletra + Kivexa 0 47.17 85.42 92.10 93.75

Values are expressed as % of patients with viral load < 50 copies/mL

EFV + Kivexa seems to be more effective during the all follow-up time in case of
hot deck multiple imputation.

The parameter estimates, standard error and P-values are summarize in table
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3.24:

TABLE 3.24: Hot-Deck Multiple imputation

Variable Estimate Standard error P-value
Intercept -10.1905 1.422 7.65e-13
TREAT.(EFV + Kivexa) 1.042 0.428 0.0149
Time 4.005 0.4505 < 2e− 16

Time Infection 0.00178 0.0039 0.647
Female -0.221 0.605 0.715
Age 0.0451 0.0253 0.0750

By using Hot-deck multiple imputation analysis we found time and treatment
statistically associated with the viral response.

3.8 Conclusions

We have reviewed different techniques to handle missing data in clinical trials.
Some of these methods are valid under a MCAR assumption other under a MAR
structure. The following table summarizes the odds ratio and the confidence in-
tervals obtained using the different missing approaches:

TABLE 3.25: OR AND CI 95%

Model OR Lower CI (95%) Upper CI (95%)
GLM 2.274 1.178 4.390
GLMM 3.276 1.287 8.339
SIMPLE IMP. 2.559 1.846 3.550
LOCF 2.362 0.652 8.559
MISSING=SUCCESS 1.853 0.950 3.616
MISSING=FAILURE 1.580 0.773 3.2309
MULTIPLE IMP. 1.088 1.348 4.859
HOT-DECK IMP. 1.225 2.836 6.566
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The table above shows as EFV + Kivexa treatment seems to be more effec-
tive than EFV + Kivexa in the major part of the approaches. In case of GLM
and GLMM, we have greater estimates for treatment effect and wider confidence
intervals because we are excluding some cases (complete case analysis). With
GLMM, we have obtained a greater Odds ratio, so we are overestimating the
EFV+Kivexa treatment. In case of LOCF, missing=failure and missing=success,
the two treatments appear to have the same effectiveness. The conditional mean
imputation has the advantage to maintain the size of the sample and the estima-
tion mean parameters but it should be correctly specified and this highly compli-
cated to reach. Under the multiple imputation we have obtained lower estimates
and also shorter confidence intervals respect to the other methods. With multiple
imputation we are not just imputing the missings response but also the missings
in the covariates. Finally by the hot-deck multiple imputation, we have obtained
the same results in terms of direction of the effect but wider confidence intervals
compared to the multiple imputation approach. We see that the coefficients ob-
tained under a MAR structure and a MCAR structure are quite different, that it
might be inferred that the missingness does affect the response.

The validity of the treatment methods depends of some assumptions about
the missing structure: the simple imputation methods (LOCF, missings=failure
and missing=success) are valid under a MCAR structure while under a MAR
structure are considered invalid. The direct likelihood method without using
imputation strategies (mixed logistic regression model without considering any
missing imputation approach) and the multiple imputation approaches are both
valid under a MAR assumption. Finally, selection models and the sensitivity
analysis are valid under a MNAR structure of missing data. In case of sensitivity
analysis we are considering different methods to handle missing data. Based on
it and comparing the estimates we may conclude that the effectiveness of the
EFV + Kivexa treatment is higher but not for all methods and we may build two
intervals: a set of parameter estimates (region of ignorance) and a set of interval
estimates (region of uncertainty). The region of interval is (1.088-3.276) and the
region of uncertainty is (0.652-8.559).
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Chapter 4

Concluding remarks

This master thesis gave me the opportunity to improve my skills in longitudi-
nal data analysis and learn about the different methods used to handle missing
data in clinical trials. The overall result of my work is a R function, which I have
created, to implement the Hot-deck multiple imputation up to date only avail-
able in SAS environment. Moreover this work generate guidelines that should
be followed by researchers working in clinical trials (in particular in the Lluita
Fundacio’) who have to analyse data sets with missing data:

• First of all researchers should evaluate if the percentage of the missing is
negligible (less than 5%) which lead to unbiased estimates. In case of a per-
centage of missing higher than 5 %, researchers should investigate the miss-
ing data structure to confirm if the missing data are MCAR, MAR or MNAR
fitting a GEE model with the presence of missing as response. If the model
just include the constant, they may conclude that missing have a MCAR
structure. If the final model includes some covariates, they should assume
a MAR structure. In the case in which the model also include the observed
outcomes a MNAR structure could be assumed. Unfortunally we generally
cannot be sure whether data are actually missing at random, or the miss-
ingness depends on unobserved predictors or the missing data themselves.

• Make assumptions about the missingness: instead of exploring the missing
structure, researchers could analyze the different missing data techniques
to handle missing data, making assumptions on the missing structure and
evaluate if the different approaches are valid. Based on it, simple impu-
tation methods as LOCF, the worst case scenario (missing=failure) and the
best scenario missing=success are valid under a MCAR structure while un-
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der a MAR structure are considered invalid. The multiple imputation ap-
proach is valid under a MAR assumption and the sensitivity analysis under
a MNAR structure.

My recommendation for researchers working in clinical trials in HIV is to avoid
simple imputation methods invalid under a MAR structure. The biases in the
estimates may lead to false conclusions. I suggest to consider methods that are
valid under a MAR structure (multiple imputation methods) or a MNAR struc-
ture (sensitivity analysis).

We conclude that the effectiveness of a treatment in a clinical trial is affected by
the nature of the missing data and the preference for a particular method instead
of another may affect the conclusions of a trial.

Future steps of this work will be to simulate different scenarios of missing per-
centage to evaluate from which percentage results will not be affected, simulate
different sample sizes and to adopt different rules to generate missing data. With
the simulates studies we could evaluate the treatment effectiveness under differ-
ent scenario and missing data treatments.
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