

Models for Type I X-Ray Bursts
Nucleosynthesis with Parallelisation

and Improved Nuclear Physics

Master Thesis

David Martin Rodriguez
Group of Astronomy and Astrophysics (GAA)

MASTER THESIS

Models for Type I X-Ray Bursts
Nucleosynthesis with Parallelisation

and Improved Nuclear Physics

David Martin Rodriguez

SUPERVISED BY

Jordi José
DEPARTAMENT DE FÍSICA I ENGINYERIA NUCLEAR

Universitat Politècnica de Catalunya
Master in Aerospace Science & Technology

February 2012

This Page Intentionally Left Blank

Models for Type I X-Ray Bursts Nucleosynthesis
with Parallelisation and Improved Nuclear

Physics

BY

David Martin Rodriguez

DIPLOMA THESIS FOR DEGREE

Master in Aerospace Science and Technology

AT

Universitat Politècnica de Catalunya

SUPERVISED BY:

Jordi José
DEPARTAMENT DE FÍSICA I ENGINYERIA NUCLEAR

This Page Intentionally Left Blank

A mi familia:
a la que ya no está,

a la que ha de venir.

This Page Intentionally Left Blank

ABSTRACT

Type I XRBs are thermonuclear flashes on the surface of neutron stars (NS) associated

with mass-accretion from a companion star. Models of type I XRBs and their associated
nucleosynthesis are physically complicated and extremely intense as regards the huge
computational power required to model the physical processes played out, with the required
precision to be truly representative. Until recently, because of these computational
limitations, studies of XRB nucleosynthesis have been performed using limited nuclear
reaction networks. In the bid to overcome this hurdle, parallel computing has been raised as
the main permitting factor of yet more precise and computationally intensive simulations as
it offers the potential to concentrate computational resources on intensive computational
problems. In this Work, we present a parallelisation of two different applications; a one-zone
(i.e. parameterized) nucleosynthesis code, and a one-dimensional (spherically symmetric),
hydrodynamic code, in Lagrangian formulation (hereafter SHIVA code), built originally to
model classical nova outbursts (José 1996; José & Hernanz 1998).

The codes have been parallelised using the MPICH2 implementation of the Message
Passing Interface (MPI) specification for the design of parallel applications using clusters of
distributed workstations. As an example, to execute a hydrodynamic simulation along 200k
time-steps, the SHIVA code requires (in its sequential, single-node version) about 147 hours
(6.1 days) to complete when using a reduced nuclear network with 324 isotopes and 1392
nuclear reactions, and 688 hours (28.6 days) when using a network with 606 nuclides and
3551 nuclear reactions for the same number of time-steps.

The post-processing nucleosynthesis code is a time-step loosely synchronous
application with a very small problem size (limited by the number of isotopes of the nuclear
network). As shown by the performance tests, this fact results in the worst possible scenario
for parallelisation; results show that the performance of the parallel application is much
worst than the sequential, 1-node version of the code. Our results show that it is therefore
not possible to parallelise efficiently a post-processing nucleosynthesis code, and efforts in
this regard should be avoided. On the contrary, the parallelised version of the SHIVA code
yields excellent performance results. A speed-up factor of 26 is achieved in a simulation with
a reduced network consisting of 324 isotopes and 1392 nuclear reactions when 42
processors are used in parallel to execute the application along 200k time-steps. On the
other hand, an excellent speed-up factor of 35 is accomplished in a simulation with a
reaction network up to 606 nuclides and 3551 nuclear reactions. Maximum speed-ups of
~41 and ~85 are predicted by the performance models when using 200 processors, for the
reduced and extended simulations respectively.

Our results will not only improve the quality of the simulations (and hence publications) in
terms of better numerical approaches, finer approximations, and a considerably shorter
time-to-publication, but also will allow taking advantage, if desired, of parallel
supercomputing facilities like the Mare Nostrum at the Supercomputing Centre in Barcelona
(BSC).

Subject headings: nuclear reactions, nucleosynthesis, abundances — stars: neutron —

X-rays: bursts, parallelisation, MPICH, MPI, supercomputing, hydrodynamics.

This Page Intentionally Left Blank

Contents

CHAPTER 1 THE PHYSICS CASE ... 3

1.1. Binary Star Systems ... 3

1.2. X-ray Binaries ... 4

1.3. Type I X-ray Bursts ... 5

1.4. Understanding Neutron Stars ... 7

CHAPTER 2 DDEESSIIGGNNIINNGG PARALLEL APPLICATIONS .. 11

2.1. Introduction .. 11

2.2. Thinking in Parallel .. 11

2.3. Designing and Building Parallel Programs ... 13
2.3.1. Parallel Computer Model .. 13
2.3.2. Granularity Levels of Parallelism ... 15
2.3.3. When is Parallelisation Effective? .. 18
2.3.4. Parallel Programming Models ... 21

2.4. Performance Limits ... 22

2.5. Execution Environment: Hyperion Cluster .. 24

2.6. Summary .. 25

CHAPTER 3 POST-PROCESSING PARALLELISATION .. 27

3.1. Introduction .. 27

3.2. Post-Processing Nucleosynthesis Code .. 28
3.2.1. Application Description ... 28
3.2.2. Time Evolution of the Nuclear Abundances ... 31
3.2.3. Numerical Treatment of Nuclear Abundances ... 31

3.3. Post-Processing Parallelisation Strategy .. 32
3.3.1. Parallel Initialisation ... 35
3.3.2. Interpolation of Reaction Rates ... 35
3.3.3. Matrix Assembly .. 37
3.3.4. Solution of the System of Equations ... 42
3.3.5. Convergence and Stability .. 44
3.3.6. Energy Released Computation ... 45

3.4. Validation of the Parallel Application .. 47

3.5. Results and Discussion .. 54

3.6. Discussion on the Chosen Solver ... 59

CHAPTER 4 PPAARRAALLLLEELLIISSAATTIIOONN OF A HYDRODYNAMIC CODE 63

4.1. Introduction .. 63

4.2. Hydrodynamic Simulation Code: SHIVA... 64
4.2.1. Application Description ... 64
4.2.2. Shell Structure ... 64
4.2.3. Computation Flow ... 65

4.3. Hydrodynamic Parallelisation ... 67
4.3.1. Parallelisation Analysis .. 67
4.3.2. Performance Prediction... 67
4.3.3. SHIVA Code Parallelisation ... 70
4.3.4. Validation of the Parallel Application ... 73

4.4. Results and Discussion .. 73

CHAPTER 5 SUMMARY AND CONCLUSIONS ... 81

APPENDIX A SOFTWARE TOOLS ... 83

List of Figures

Fig. 1 Binary star system with Roche lobe representation (The SAO Encyclopaedia of
Astronomy) ... 3

Fig. 2 Binary star system with accretion material (The SAO Encyclopaedia of Astronomy) 4
Fig. 3 Examples of X-Ray Bursts Profiles ... 6
Fig. 4 Artist's concept of a neutron star X-ray burst (Credit: NASA/Dana Berr) 7
Fig. 5 Cross-section of neutron star ... 8
Fig. 6 Gaussian elimination algorithm representation ... 12
Fig. 7 Parallel Gaussian elimination algorithm ... 13
Fig. 8 Cluster architecture with shared and distributed memory multiprocessors 14
Fig. 9 An example of perfect parallelism: a set of initial neutron star models 15
Fig. 10 An example of pipeline parallelism: a chart of nuclides animation 16
Fig. 11 An example of how a pipeline parallelism is executed on three processors 17
Fig. 12 Performance of the parallel problem architectures .. 19
Fig. 13 Parallel performance comparison for different values of communication costs 24
Fig. 14 Hyperion cluster ... 25
Fig. 15 Temperature vs. time profiles used in the post-processing Work of Koike et al. 2004 ... 28
Fig. 16 Network of isotopes used in this Work for post-processing calculations 29
Fig. 17 Hydrodynamic code versus post-processing nucleosynthesis computation 30
Fig. 18 Post-processing parallelisation strategy and processing stages 33
Fig. 19 Nuclear reactions partitioning in a parallel execution with 4 processors 36
Fig. 20 Non-zero entries of matrix A ... 38
Fig. 21 Parallel distribution of matrix A with four processors ... 41
Fig. 22 Example assembly tree (left) and a possible distribution over four processors (right) ... 42
Fig. 23 Distributed solution vector with 4 processors .. 43
Fig. 24 Partition of nuclear reactions to 4 processors for parallel nuclear energy calculation 46
Fig. 25 Mean absolute error comparison between sequential and parallel solvers 48
Fig. 26 Mean squared error comparison between sequential and parallel solvers 49
Fig. 27 Mean relative error comparison between sequential and parallel solvers 49
Fig. 28 Results comparison of mass fraction evolution of selected nuclei (1 ≤ Xi ≤ 10-4) 51
Fig. 29 Legend of selected nuclei (1 ≤ Xi ≤ 10-4) .. 52
Fig. 30 Comparison of energies released in both sequential and parallel solvers 53
Fig. 31 Performance results: Total execution time ... 54
Fig. 32 Performance results: Partial execution times ... 55
Fig. 33 Performance results: Matrix inversion time .. 56
Fig. 34 Performance results: Communication time .. 57
Fig. 35 Performance results: Aggregated simulation time (percentage) 58
Fig. 36 Performance results: Aggregated simulation time (absolute) ... 59
Fig. 37 Alternatives for direct sparse solvers ... 60
Fig. 38 MUMPS solver performance for large matrices ... 60
Fig. 39 MUMPS solver performance for medium sized matrices .. 61
Fig. 40 Shell structure and assignment of variables at grid points. ... 65
Fig. 41 Flow chart of the SHIVA code .. 66
Fig. 42 Timing the baseline program to estimate likely parallel performance. 68
Fig. 43 Estimation of the parallel performance of the parallel version of the SHIVA code 69
Fig. 44 SHIVA code parallelisation strategy and processing stages ... 72
Fig. 45 Performance of the parallel SHIVA code for executions with 324 and 606 nuclides 74
Fig. 46 Performance of the parallel SHIVA code for different levels of compiler optimisation 75
Fig. 47 Ratio of execution time of the parallel SHIVA code with 324 and 606 nuclides 77
Fig. 48 Performance of the parallel SHIVA code. Detail for a reduced number of processors ... 78
Fig. 49 Performance model of the parallel SHIVA code up to 200 processors 79

List of Tables

Table 1 Partition of nuclear reactions to four processors .. 47
Table 2 Results comparison of nuclei with resulting mass fraction abundance above 10-4 50
Table 3 Simulations run for the performance evaluation of the parallel SHIVA code 73
Table 4 Execution times for the reduced and extended simulations for different number of

processors ... 76

T

INTRODUCTION

ype I X-ray bursts (XRBs) are cataclysmic stellar events powered by thermonuclear
runaways (TNRs) in the H/He-rich envelopes accreted onto neutron stars in close binary

systems. They constitute the most frequent type of thermonuclear stellar explosion in the Galaxy
(the third, in terms of total energy output after supernovae and classical novae) because of their
short recurrence period (hours to days). More than 90 Galactic low-mass X-ray binaries
exhibiting such bursting behaviour (with typical durations of s10010 −) have been found since
the discovery of XRBs in 1976 (Grindlay et al. 1976, Belian et al. 1976).

Modelling of type I XRBs and their associated nucleosynthesis has been extensively

addressed by different groups, reflecting the astrophysical interest in determining the nuclear
processes that power the explosion, as well as in providing reliable estimates for the chemical
composition of the neutron star surface. Indeed, several thermal, radiative, electrical, and
mechanical properties of the neutron star depend critically on the specific chemical abundance
pattern of its outer layers.

Models of type I XRBs and their associated nucleosynthesis are physically complicated and

extremely intense as regards the huge computational power required to model the
abovementioned physical processes with the required precision to be truly representative. Until
recently, because of these computational limitations, studies of XRB nucleosynthesis have been
performed using limited nuclear reaction networks, truncated around Ni, Kr, Cd, or Y. On the
other hand, Schatz et al. (1999, 2001a) have carried out very detailed nucleosynthesis
calculations with a network containing more than 600 isotopes (up to Xe, in Schatz et al.
2001a), but using a one-zone approach. Koike et al. (2004) have also performed detailed one-
zone nucleosynthesis calculations, with temperature and density profiles obtained from a
spherically symmetric evolutionary code, linked to a 1270-isotope network extending up to 198Bi.

The simulation of accurate models is an especially high time-consuming task.

Computational cost of these simulations typically increase as the fourth power or more of the
'resolution' that determines accuracy, so these studies have a seemingly insatiable demand for
more computer power. They are also often characterised by large memory and input/output
requirements. For example a post-processing code that runs about 50,000 post-processing
calculations, with a network containing 606 nuclides (H to 113Xe) and more than 3500 nuclear
processes, requires about 9.1 CPU-months of calculating power to compute 1 burst using a
model with 200 shells (Moreno 2009).

In this regard, parallel computing has been raised as the main permitting factor of more and

more precise, computationally intensive simulations. A parallel computer is a set of processors
that are able to work cooperatively to solve a computational problem. This definition is broad
enough to include parallel supercomputers that have hundreds or thousands of processors,
networks of workstations, multiple-processor workstations, and embedded systems. Parallel
computers are interesting because they offer the potential to concentrate computational
resources---whether processors, memory, or I/O bandwidth---on important computational
problems.

In the first part of this Work, a type I XRBs post-processing nucleosynthesis code has been

parallelised using the MPICH2 implementation of the Message Passing Interface (MPI)
specification for the design of parallel applications using clusters of distributed workstations. In

2 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

the second part, we have successfully parallelised the spherically symmetric, Lagrangian,
hydrodynamic code SHIVA (José 1996; José & Hernanz 1998), in pursuit of significant speed-
ups that allow for detailed hydrodynamic simulations with extended nuclear reaction networks in
affordable times. This problem architecture represents the so called fully synchronous
parallelism (section 2.3.2), indicating that each one of the computations is performed
synchronously (or simultaneously) to all data. The main point here is that all future calculations
of decisions hinge on the results of the earlier, preceding data calculations. Parallelisation can
be achieved by having each node actually cycling through a subset of the neutron star
envelope shells (i.e. a number of contiguous shells).

Parallelism is an enticing and intuitive concept. In principle, parallelism is as simple as

applying several processors or CPUs to a single problem, so that if it takes, say, one hundred
hours to complete, we may put ten CPUs to work on the problem and get the results in just ten
hours. In practice, however, parallelisation takes a high toll on both engineering and
programming efforts, as it will be shown shortly. On top of that, depending on the nature of the
problem being parallelised it may turn out that parallelisation does not pay off altogether. Be
that as it may, if the problem at hand fits into the parallelisable categories, then in addition to
offering faster solutions, codes that are converted to parallel, are capable of solving larger,
more complex problems. Simulations can be executed at a much finer resolution, and also
physical phenomena may be modelled far more realistically.

One of the purposes of the parallelisation is to benefit from the 42-node Hyperion Cluster

that the Astronomy and Astrophysics Group (GAA) has at the EUETIB (UPC), and speed-up
considerably the execution of the code. This will allow for better and more accurate simulations
(e.g. with more isotopes and reactions, or with a significant increase in the resolution, in terms
of more layers of the neutron star envelope's model), in affordable execution times. This will not
only improve the quality of the simulations (and hence publications) in terms of better numerical
approaches and approximations, but will also allow to take advantage of parallel
supercomputing facilities.

An outline of this Master Thesis is as follows: Chapter 1 describes stellar binary systems and

X-ray binaries in particular. Also it is provided a brief description of neutron stars, and why its
understanding is important and how X-ray bursts can be used in determining the properties of
the neutron star. Chapter 2 provides an introduction to parallel computing, and the type of
applications that can be parallelised. Emphasis is placed on analysing the properties of an
application that make for better and more efficient parallelisation. It is also described the 42-
node Cluster Hyperion. Chapter 3 presents the parallelisation of the post-processing
nucleosynthesis application. It is shown the strategy followed to parallelise it as well as the tools
used. Performance results are summarised and discussed. Chapter 4 describes the
parallelisation strategy of the fully coupled hydrodynamic code SHIVA. A model to predict the
performance of the parallelisation is included, and performance results are shown and
discussed. Finally, Chapter 5 summarises the main points, results, and achievements of this
Thesis, and provides several points that are open for further research and improvement.

B

CHAPTER 1
THE PHYSICS CASE

"If the hand be held between the discharge-tube and the screen, the darker shadow of the bones
is seen within the slightly dark shadow-image of the hand itself... For brevity's sake I shall use the

expression 'rays'; and to distinguish them from others of this name I shall call them 'X-rays'."

Wilhelm Conrad Röntgen
'On a New Kind of Rays' (1895). In Herbert S. Klickstein, Wilhelm Conrad Rontgen: On a New

Kind of Rays, A Bibliographic Study (1966), 4.

1.1. Binary Star Systems

inary star systems contain two stars that orbit around their common centre of mass.
Many of the stars in our Galaxy are part of a binary system. According to statistics, it is

conceivable that approximately one half of all stars may belong to a binary system. The two
stars belonging to a binary system have a significant influence on each other’s evolution. In
these systems, the distance between the two stars may range from a few times the radii of the
stars to a completely different situation where there is an envelope common to both stars (this
type of binary systems are called contact binaries). Consider the binary star system shown in
Fig. 1 below. Each of the stars is surrounded by an equipotential tear-shaped volume. If and
where the two equipotentials of the stars touch, they are designated with the term Roche lobe.
In the figure below, it is shown as a dashed curve with the shape of an ‘8’, its intersection with
the equatorial plane.

Fig. 1 Binary star system with Roche lobe representation (The SAO Encyclopaedia of Astronomy)

There is a point where the effects of rotation and gravity cancel each other. This special point

is called the inner Lagrangian point. It may happen that the companion star fills its Roche lobe
(Fig. 2). This could occur for instance when one of the stars becomes a red giant, or even for

4 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

M

main sequence stars if they are close enough to their companion star. In this situation, matter is
then accreted from that star through the inner Lagrangian point onto the surface of the
companion.

Fig. 2 Binary star system with accretion material (The SAO Encyclopaedia of Astronomy)

There is a special class of binary stars called X-ray binaries. They are so-called because they

predominantly emit in X-rays. X-ray binaries are made up of a normal star and a collapsed star
(a white dwarf, neutron star, or black hole). These pairs of stars produce X-rays if the stars are
close enough together that material is accreted from the normal star by the gravity of the more
dense, collapsed star, by means of Roche lobe overflow. The X-rays come from the area
around the collapsed star where the material that is falling toward it is heated to extremely high
temperatures.

1.2. X-ray Binaries

any of the close binary star systems contain a neutron star as a compact object. A
neutron star could have a mass of approximately 1.4 M densely packed within a

radius between 10 and 15 km. The central density of the neutron star may reach 1015 g/cm3 (see
Lattimer and Prakash 2004). An enormous gravitational energy release is produced when the
matter from the companion star is accreted on the surface of the neutron star. This provokes
that the temperatures at the neutron star surface soar to approximately 107-108 K, while there is
a persistent emission that occurs predominantly at X-ray energies (Lewin et al. 1993).

X-ray binaries may be further classified as high-mass binaries and low-mass binaries. For
high-mass binaries, the companion star is a massive population I star (≥ 5 M), whereas the
compact neutron star is highly magnetised. This provokes that the accreted matter is
transferred at high velocities and is channelled along the lines of the magnetic field onto the
magnetic poles. Consequently a hot spot of X-ray emission is created and, if the axis of rotation
of the neutron star is inclined with respect to the magnetic axis, it generates an X-ray pulsar.
There are typical rotation periods from 0.1 seconds up to a fraction of an hour. It has been
observed that the periods of rotation of some X-ray sources decrease, which may be an
indication that the neutron star is spun up as a consequence of the accretion of matter from the
companion star.

On the other hand, low-mass X-ray binaries exist where the companion is a low mass star (≤

1.5 M) and where the neutron star has a weak magnetic field. In this scenario matter is

Chapter 1 - The Physics Case 5

M

transferred via Roche lobe overflow. In a fair number of cases these systems produce bursts in
the X-ray frequencies, as well as a persistent X-ray emission (Lewin, van Paradijs and Taam
1993). Additionally, it has been observed a rare kind, called type II X-ray bursts, where the
bursts occur in rapid succession with a separation of just a few minutes between them. There is
an abrupt rise and fall of the profile of each of these bursts. They are supposed to be
associated with a rapid increase in the mass accretion rate provoked by instabilities in the
accretion disk.

1.3. Type I X-ray Bursts

ost of the bursts can be classified as type I X-ray bursts where increases of an order of
magnitude are seen in the X-ray luminosity. Type I XRBs are thermonuclear flashes on

the H/He-rich envelopes of accreted matter onto neutron stars (NS). The hydrogen- and helium-
rich matter pulled out from the companion star has high angular momentum; therefore it does
not settle down directly but forms a rapidly rotating accretion disk. As accreted matter losses
momentum, it settles down onto the neutron star surface. The temperatures accomplished in
the accreted matter because of compression heating are high enough to maintain a continuous
fusion of hydrogen into helium via the hot CNO cycles (Bildsten et al. 2007, Iliadis 2007). As the
temperature rises, helium is finally ignited via the triple-α reaction, which makes the
temperature soar and as a consequence a thermonuclear runaway occurs. Some
nucleosynthesis models predicts that the mixture of hydrogen and helium of the outer region
will afterwards be burnt explosively, whereas other models indicate that the ignition may occur
in pure helium or in mixed hydrogen-helium material. Depending on the specific temperatures
and densities reached throughout the process, different nucleosynthesis phenomena may be
obtained in the several burning layers of the surface of the neutron star. Computations have
revealed that in the deepest, hottest and densest layers, elements beyond the iron peak are
synthesised (Woosley et al 2004, José et al. 2011, Fisker et al. 2006). At the end, the ashes of
the burst form a new shell of matter onto which new material is again accreted from the
companion star, and the cycle repeats.

The model shown in Fig. 3 explains the basic features of type I X-ray bursts. A burst lasts

typically for less than 1 min and repeats after several hours to days. The luminosity profile
shows a rapid rise within ≈1-10s, caused by the sudden nuclear energy release, and a slower
decline on the order of ≈5-100s, reflecting the cooling of the neutron star surface. Some bursts
show millisecond oscillations of the X-ray flux. These have been suggested to arise form a
surface wave in the nuclear burning layer or perhaps from anisotropies in the nuclear burning
caused by a spreading hot spot on the surface of a rapidly spinning neutron star.

To date, 96 Galactic low-mass X-ray binaries exhibiting such bursting behaviour

(with sburst 10010~ −τ) have been found since the discovery of XRBs in 1976 (Grindlay et al
1976), and (Belian et al 1976). A list of the current 96 Galactic Type-I X-ray bursters can be
found in http://www.sron.nl/~jeanz/bursterlist.html. X-ray bursts were detected as bright
sources in the X-ray band of the electromagnetic spectrum, which can only be observed out of
the Earth’s atmosphere. Grindlay et al. (1976) observed two bursts from a previously known X-
ray source in the globular cluster NGC 6624. As of that initial, pioneer detection, multiple
additional sources have been detected and reported; Lewin et al. (1993), Liu et al. (2007), and
in ’t Zand et al. (2009).

6 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

Fig. 3 Examples of X-Ray Bursts Profiles1

A number of different assumptions and parameters have a direct effect on the models of

type I X-ray bursts. Examples of these parameters are the mass accretion rate, the number of
points of ignition, the rotation velocity, how the burning front is propagated across the surface
of the neutron star, and finally the composition of the accreted matter.

According to Woosley et al. (2004), in order to simulate realistically Type I X-ray bursts,
researchers must cope first with four main difficulties. Firstly, it has to be known the geometry of
the runaway as well as the physics underneath the accretion process. Secondly, there is a high
complexity in the nuclear physics, where the interplay of the several reactions on the final result
is still under investigation and where there is no single reaction or group of reactions that, on
their own, drive the energy generation rate. The simulation must include all recent advances in
that regard, like recent progress in the understanding of the major flows in the rp- and α p-
processes and the properties of the isotopes involved (e.g., Schatz et al. 2001a, 2001b; Brown
et al. 2002). The third difficulty is accomplishing the simulation of not only one burst but a
number of successive bursts. As it was already indicated by Taam (1980) the inertia of the
neutron star in terms of the evolution of its temperature and composition may have important
implications on the properties of subsequent bursts. Only if a succession of X-ray bursts are
simulated, the temperature effects and changes in the composition due to previous bursts can
be taken into account (Ayasli & Joss 1982; Woosley & Weaver 1984).

1 Lewin et al. (1993). Examples of X-Ray burst profiles as observed with EXOSAT in the ~1-20 keV

energy band. The counting rates have not been corrected for dead time and refer to one half of the
detector array. The horizontal axes represent time in seconds.

Chapter 1 - The Physics Case 7

D

Fig. 4 Artist's concept of a neutron star X-ray burst (Credit: NASA/Dana Berr)

The fourth challenge is have access to as many photometry and spectra data as possible.

There is a rich archive of photometry for X-ray bursts observations that must be taken into
account in the models. Some models are limited to single-temperature black bodies, which are
usually calculated using flux-limited radiative diffusion. Detailed studies of the colour
temperature and spectrum may make use of these results as input to a more sophisticated
treatment of the radiation transport.

All in all, it is only with a better understanding and modelling of the mechanisms governing
the explosive X-ray bursts, that it is possible to determine the final abundance distribution
following a burst, and therefore the abundance distribution that falls back onto the neutron star
crust. This information is vital for the correct interpretation of the astronomical observations of
neutron stars and to determine the physics occurring on their surfaces.

1.4. Understanding Neutron Stars

uring the terminal phases of the evolution of a massive star (M ≥10 M), part of the
mass of the star is lost in an explosion. There is a possibility that the remnant mass falls

between 1.4 M and 2 M , in which case the star collapses into a neutron star; a compact
object with a radius of about 10 km to 15 km, but with dense core where the protons and
electrons have merged into neutrons (Fig. 5). The average central density of a neutron star is
1015 g/cm3 and the gravity on the surface would be around 1012 m/s2 (Lattimer and Prakash,
2004).

Bildsten and Strohmayer (1999) present a review of current research concerning neutron
stars, in which the authors make the following points:

1. With a density comparable to that of an atomic nucleus, a neutron star provides an
extreme environment for fast and violent phenomena. Matter orbiting a neutron star can
have a period as short as a millisecond. When such matter crashes into the star (i.e., is
"accreted" by the star), such matter can be moving at one-third the speed of light. In

8 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

general, because their behaviour can vary over readily observable timescales, neutron
stars can be rich sources of information about nuclear physics, general relativity, and
astrophysics.

2. Though relatively elusive, neutron stars have been detected and studied over a broad
range of electromagnetic frequencies, from radio frequencies to gamma rays. To date,
astronomers have identified more than 1000 of the estimated 108 neutron stars in our
galaxy. New orbiting astronomical satellites have produced recent rapid growth in our
knowledge of these objects, with much of the progress occurring in our understanding of
neutron stars that undergo sudden large energy releases.

3. The precise timing of radio pulsars has yielded astonishing astronomical discoveries,
such as multiple Earth-mass planets orbiting a neutron star, and the direct confirmation
of the loss of orbital angular momentum due to gravitational radiation in a double neutron
star binary system (for which Russell Hulse and Joseph Taylor received the 1993 Nobel
Prize in Physics). The brightest accreting neutron stars reside in binary systems and
accrete matter from their companions (see section 1.2). These accreting neutron stars
typically have luminosities more than a thousand times that of the Sun.

4. There is every reason to believe that new classes of neutron stars will be discovered by
continued observations from the currently orbiting x-ray and gamma-ray satellites.

Fig. 5 Cross-section of neutron star2

The Equation of State (EOS) of a neutron star is still not precisely known due to extremely
high gravitational effects, as well as the unknown behaviour of the exotic matter that is believed
to be composing part of the nucleus of the star (including degenerate strange matter, strange
quarks in addition to up and down quarks, matter containing high-energy pions and kaons in
addition to neutrons, or ultra-dense quark-degenerate matter, see Lattimer and Prakash 2004).

2 Credit: Robert Schulze 2010, Wikimedia Commons. Densities are in terms of 0ρ , the saturation

nuclear matter density, where nucleons begin to touch.

Chapter 1 - The Physics Case 9

As a consequence several EOS have been proposed by different authors, some of them with
very different predictions as to what is the behaviour of pressure (P) and density (ρ), and hence
resulting in different Mass-Radius relations for the neutron star. In this regard, X-ray bursts
constitute invaluable tools in determining the above mentioned properties, since
(Bhattacharyya, 2006):

1. They originate from neutron star surfaces.

2. Their intensities are ~ 10 times higher than the non-burst emission intensity. This gives
higher signal-to-noise ratio.

3. They show timing and spectral features, which can be used to constrain the mass,
radius and spin frequency of the same neutron star.

4. They provide a unique opportunity to understand the thermonuclear flame spreading on
neutron star surfaces.

5. Many bursts are observed from the same neutron star.

6. Comparatively lower magnetic fields (~ 107-109 G) of the bursting neutron stars simplify
the modelling.

In summary, our efforts in understanding X-ray bursts will definitely pay off because
thermonuclear X-ray bursts are important for understanding neutron stars.

This Page Intentionally Left Blank

A

C

CHAPTER 2
DDEESSIIGGNNIINNGG PARALLEL APPLICATIONS

"Want to make your computer go really fast? Throw it out a window."

Anonymous
In L. R. Parenti, Durata Del Dramma: Life Of Drama (2005), 32.

"There are 3 rules to follow when parallelizing large codes. Unfortunately, no
one knows what these rules are."

W. Somerset Maugham, Gary Montry
Quote collected by Steve Plimpton in the Massively Parallel Computing Research Laboratory

at Sandia National Laboratories.

2.1. Introduction

parallel computer is formed by a group of processors that execute specific tasks
cooperatively with the goal of solving a particular computational problem. This definition

is broad enough so that not only large clusters of supercomputers may be regarded as a
parallel computer, but also single workstations with several processing units or a group of
interconnected workstations can be regarded as well as parallel computers.

In the past, parallel computers and parallel programs constituted a rather obscure branch of
computing, with little to none interest by most computer engineers, being only investigated by
specialised researchers in the computing fields. Nowadays however, with the soaring
knowledge in physics, and mathematics, together with the rapid increase in the need of
computationally intensive simulations and calculations, has brought parallel computing forward,
as an enabler or permitting factor of many intensive, precise simulations.

2.2. Thinking in Parallel

onsider the classical Gaussian Elimination (GE) algorithm for solving the system of
equations

bAx = , (2.1)

being A a square matrix ()NxN . The algorithm consists in adding multiples of each row to all
the lower rows in order to make A upper triangular: U . Afterwards, the system is solved by
back substitution of the triangular system:

cUx = . (2.2)

In the following figure, it is shown the first part of the algorithm in its sequential form.

That is, after N-1 iterations matrix A is reduced to an upper triangular matrix U. This forward

elimination process takes

12 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

6
5

23

23 NNN
−+ (2.3)

floating point multiplications and

33

3 NN
− (2.4)

floating point additions (Tapia et al. 2001). It is easy to see that with a computational cost
proportional to the third power of the dimension of A , the time it takes to solve the system
grows exponentially with N . A way to reduce computing time is to distribute the forward
elimination work amongst a group of P processing nodes (0, …, P-1), so that computation work
is performed in parallel.

1st iteration 2nd iteration 3rd iteration (N-1)th iteration

0
.
.
.
.
.
.
0

0
.
.
.
.
.
.
0

0
.
.
.
.
.
.
0

0
.
.
.
.
.
.
0

0
.
.
.
.
0

0
.
.
.
.
0

0
.
.
.
.
0

0
.
.
.
0

0
.
.
.
0

0
.
0 0

Pivot row1

Pivot row

Pivot row

P. row

Fig. 6 Gaussian elimination algorithm representation

One such parallel Gaussian elimination algorithm is described in McGinn et al. (2002) and

depicted in Fig. 7. In this algorithm, matrix A is centralised in process 0 (root) which centralises
and coordinates the communication work with the rest of the processing nodes. Process root
(P0) sends (broadcasts) the pivot row to all other processors that collaborate in the
computation. Afterwards, all rows below the pivot row are grouped in chunks of data that are
subsequently sent to the processors. Each process receives its own chunk of data. Note that
the number of rows has to be split homogeneously amongst processors so that the workload is
equally distributed.

At this point, each process adds multiples of the pivot row to the rows in their chunk of data,

so as to zero out all elements below the diagonal (first column). This is a purely parallel phase
of the computation, as each process can proceed in parallel with no need of communications.
Once each process has performed the computations, the modified chunks of data are sent
back (gathered) in Process 0, which updates matrix A accordingly. The process repeats again,
now with pivot row 2, whilst the data chunks diminish as the matrix reduction progresses.

CHAPTER 2 - Designing Parallel Applications 13

Pivot row 1

Chunk 0

Chunk 1

Chunk N-1

...

P0

Pivot row 1

Chunk 0

Pivot row 1

Chunk 1

Pivot row 1

Chunk N-1...

P0 P1 PP-1

Pivot row 1

Chunk 0’

Pivot row 1

Chunk 1’

Pivot row 1

Chunk N-1’...
0
.
.
.
0

0
.
.
.
0

0
.
.
.
0

P0 P1 PP-1

Pivot row 1

Chunk 0’

Chunk 1’

Chunk N-1’

...

0
.
.
.
.
.
.
.
.
.
0

0
.
.
.
0

P0

Fig. 7 Parallel Gaussian elimination algorithm

More examples of parallel algorithms can be found in Foster (1995), and Lafferty (1993). MPI

Forum (2009) also includes illustrative examples using the message passing interface standard
for communications (see section 2.3.4).

2.3. Designing and Building Parallel Programs

2.3.1. Parallel Computer Model

Computer scientists tend to classify machines in different ways to provide different insights

into the machine's architecture. One well-known approach developed by Flynn (1972) classifies
a machine by the type of instruction stream (a sequence of instructions performed by a
computer) and data stream (a sequence of data that the computer performs instructions upon).
Following Flynn's format, machines can be designated as either single instruction stream,
multiple data stream (SIMD) or multiple instruction stream, multiple data stream (MIMD)
machines (Lafferty, 1993).

14 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

In the parallelisation discussed herein, our approach is mainly SIMD, as several nodes
execute (mainly) the same nucleosynthesis code, but with two different approaches:

1. With completely different, independent data at different stages of the computation
(for instance when the nucleosynthesis code is coupled to a hydrodynamic code, in
which case each node can compute nucleosynthesis on different disjoint layers of
the neutron star's envelope).

2. Cooperatively, working with different chunks of data from the same main data set
(this would be the case of the post-processing calculation, in which all processors
work cooperatively on computing the nucleosynthesis within the same envelope's
shell).

In addition, a second approach commonly used by researchers to classify machines is by

the memory architecture of the machine. For example, shared-memory multiprocessors (SMP)
imply multiple processors sharing one common memory, whereas distributed memory
multiprocessors (DMP) imply that memory is localized to each processor. These terms will also
be used extensively throughout this report. Although a high-performance computer may only
have one processor, the emphasis of this report is on those clusters of computers that utilise
multiple processors which run concurrently, thus the term parallel computing.

SH
AR

ED
M

EM
O

RY

SH
AR

ED
 M

EM
O

RY

INTERCONNECTION NETWORK

...

SH
AR

ED
 M

EM
O

RY

Node 0 Node 1 Node P-1

Fig. 8 Cluster architecture with shared and distributed memory multiprocessors

Shared memory multiprocessors have the clear advantage of localisation; sharing a

common memory usually means that processors are localised on a single node or workstation
(this is not always true, as there could exist shared memory multiprocessors with a common
memory allocation outside the nodes, although in this case the benefits of proximity are lost). In
the most usual case that shared memory also means shared location, message exchange
between the processors will be significantly fastest than for their distributed memory
counterparts, since intra-processors communications are much more effective than inter-
processors communications (networked communications). This is due to the fact that in a
distributed memory environment, communication latency significantly increases, as messages
exchanged between processors are transmitted through Ethernet switches, and network
interfaces. All such communication equipment introduce both physical delay (due to material
physical properties of the interconnection network, such as distance between nodes, number
of nodes, speed of transmission channels, etc.), as well as processing delay (due to

CHAPTER 2 - Designing Parallel Applications 15

particularities of the transmission protocol, such as error checking, acknowledgments, packet
distribution, etc.)

Fig. 8 shows a cluster architecture showing both shared and distributed memory

multiprocessors which are connected through an interconnection network. The cluster depicted
consists of a group of P interconnected workstations in which each workstation consists of
several processors. This is the environment where our parallelisation work has been carried out,
as described in the following section.

2.3.2. Granularity Levels of Parallelism

The performance or speed-up accomplished in the parallelisation hinges on the nature of the

problem being parallelised. Particularly, how data is accessed and processed gives information
about how painless or painful it will be. Classifying the problem at hand into several categories
(problem architectures), one can determine the likeliness of achieving good performances and
whether or not it is worth the effort (Fox, 1991).

1
0L

1
0X

1
0

1
0 , RM

1
0ρ

Neutron
Star Model
Simulation

1
shellsN

1EOS

NS Model 1

2
0L

2
0X

2
0

2
0 , RM

2
0ρ

Neutron
Star Model
Simulation

2
shellsN

2EOS

NS Model 2

ML0

MX 0

MM RM 00 ,

M
0ρ

Neutron
Star Model
Simulation

M
shellsN

MEOS

NS Model M

3
0L

3
0X

3
0

3
0 , RM

3
0ρ

Neutron
Star Model
Simulation

3
shellsN

3EOS

NS Model 3

…

Fig. 9 An example of perfect parallelism: a set of initial neutron star models

Consider the problem of generation of several neutron star models depicted in Fig. 9. Given

the central density (0ρ), the number of shells (shellsN), the initial luminosity (0L), the initial

chemical composition (0X) and the chosen equation of state of matter, electrons, ions and

radiation (EOS), one can construct (by integration of the set of equations of conservation) an
initial model of the neutron star in hydrostatic equilibrium, yielding, amongst other data, the
mass and radius of the star (Shapiro & Teukolsky 1983). The simulation can be a sequence of
serial executions, each calculating a neutron star model from different chosen parameters; or
parallelism can be introduced if we process multiple input parameters at the same time, in
order to generate several stellar models.

16 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

This is obviously the most desired problem to parallelise, and the most wanted by parallel
programmers worldwide. This problem architecture is referred to as perfect parallel. Basically,
the calculations on each input parameters can be executed fully independent from each other,
running copies of the code on several machines, provided that each copy has the appropriate
input data for their simulation. Speed-ups of the order of M (being M the number of processors
or machines where the simulations are run into) are easily achievable. This is why this style of
parallelism is often called "embarrassingly parallel" because it is embarrassingly easy to
parallelise.

1st

2nd

ith

(N-1)th

Nth

Envelope shells

tt
i

X Δ+

tt
N

X Δ+
−)1(

tt
N

X Δ+

ttX Δ+
1

…

Time-step
hydrodynamic
simulation with
nucleosynthesis

Simulation
results:

Abundances
evolution

Chart of
nuclides

Rendering
application

Time-step
snapshot of

nuclides
abundances

Visualisation
application:
Animation
Sequence

Fig. 10 An example of pipeline parallelism: a chart of nuclides animation

Now imagine a different scenario where data to be processed are not completely

independent; for instance if every data set has to be processed in a series of time steps as
shown in Fig. 10; a chart of nuclides evolution is animated so that the evolution of the several
abundances is visualised in an movie-like sequence. In a series of time-steps a hydrodynamic
simulation coupled with a nucleosynthesis code calculates the time evolution of the abundance
of the isotopes of the considered reaction network. The list of nuclides and their relative
abundances are then formatted for being displayed in a chart of nuclides diagram. Finally, a
visualisation application gathers the different snapshots and animates the sequence for
visualisation. Should this application be carried out sequentially, the nuclides abundances at
each time step would serve as input to the chart of nuclides rendering program, whose output
would in turn be used as input to the animation application. A quick analysis of the problem
reveals that parallelism can be exploited if the several processing stages are overlapped so that
the rendering of chart of nuclides is started as soon as the abundances at the first time step are
available. Afterwards, as the hydrodynamic code produces the third set of abundances, the
chart of nuclides rendering proceeds on the second data set, whereas the first abundance set
is then animated and displayed (Fig. 11).

This problem model is referred to as pipeline parallelism (Pancake 1996), because data sets

are in effect "piped" from one processing step on to the next. The key point is that processors
can work independently on consecutive data sets as long as data sets are passed just one way
through the pipe (that is, the hydrodynamic code does not require information from the chart
rendering or visualisation applications). The start of the execution is initially delayed as the data
set becomes gradually available to the several processing stages, so the gain in performance
due to parallelism will depend on the number of processing steps that can be effectively run in
parallel.

However, this type of parallelism poses evident problems. If several processing stages are
not computationally equivalent, faster phases will run quicker than the slower ones, so that
processors executing them will finish the execution and remain idle, waiting for more work. A

CHAPTER 2 - Designing Parallel Applications 17

possible solution is to take into account the characteristics of the several nodes involved in the
simulation, hence assigning the most computationally intensive tasks to the ones with faster
CPUs. At any rate, this would prove a difficult task, and its effectiveness lays strongly on the
nature of the problem being parallelised. All in all, pipeline parallelism is not as simple or
efficient as perfect parallelism described above.

There are many more applications where results cannot be obtained in a one-way

processing flow between stages. Consider, for instance the fully coupled hydrodynamic code
example depicted in Fig. 17. The evolution of the physical values of each of the envelope's
shells is affected by the evolution of the other, mainly neighbouring zones of the envelope. For
instance, temperature gradients may show convection setting in, with the subsequent
disturbance propagation towards neighbouring shells. If the simulation were to be executed
sequentially, the calculations would need to be performed across all the data on all shells to
find a specific envelope's state, and then a new iteration would begin. Parallelism may be
introduced with multiple nodes or processors participating at each time step, where each
processor would take mainly the processing work of some of the shells. Every single iteration
has to be completed across all data before the next time-step begins.

P0

P1

P2

Processes

Timet0 t0+ Δt t0+ 2Δt t0+ 3Δt

1st

2nd

ith

(N-1)th

Nth

Envelope shells

tt
i

X Δ+

tt
N

X Δ+
−)1(

tt
N

X Δ+

ttX Δ+
1

…

1
1st

2nd

ith

(N-1)th

Nth

Envelope shells

tt
i

X Δ+

tt
N

X Δ+
−)1(

tt
N

X Δ+

ttX Δ+
1

…

2
1st

2nd

ith

(N-1)th

Nth

Envelope shells

tt
i

X Δ+

tt
N

X Δ+
−)1(

tt
N

X Δ+

ttX Δ+
1

…

3
1st

2nd

ith

(N-1)th

Nth

Envelope shells

tt
i

X Δ+

tt
N

X Δ+
−)1(

tt
N

X Δ+

ttX Δ+
1

…

4
…

…

…

1 2 3

1 2

Fig. 11 An example of how a pipeline parallelism is executed on three processors

This problem architecture represents the so called fully synchronous parallelism, indicating

that (at least in principle) each computation is performed synchronously (or simultaneously) to
all data. The main point here is that all future calculations of decisions hinge on the results of
the earlier, preceding data calculations. There are usually not enough processors to execute a
computation to all data of all shells at the same time, therefore each node actually cycles
through a subset (i.e. a number of contiguous shells). If this group of shells, assigned to each
processor, is not homogeneous, the workload may vary across different nodes. This is often the
case where a disturbance in a specific shell starts to propagate to upper layers, modifying the
physical and compositional variables of these upper shells, whereas lower layers may rest
unaffected. A clear example of this is the buoyancy forces acting on a bubble of hotter matter,
moving the material upwards to an area of lower pressure, and exchanging in the process heat

18 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

and mass as it proceeds to upper layers (Kippenhahn et al. 1996). As a consequence, if each
process executes computations on a group of contiguous shells, only nodes acting on the area
containing the shells affected by the disturbance would perform intensive work at this point. In
the meantime, synchronicity requires that all the other processors cannot continue with the next
set of computations, so they must wait for the busier ones to catch up. Consequently, fully
synchronous parallelism stresses the programmer skills more than pipeline parallelism in the
bid of attaining good performance.

Consider now a post-processing nucleosynthesis code whose computing flow is shown in

Fig. 17. From a complete temperature-density versus time profile, previously calculated in a
hydrodynamic code coupled with a reduced nucleosynthesis network, the application
calculates the evolution of the abundances of the selected nuclides. Temperature and density
are interpolated at the current simulation time; this allows determining the value of the reaction
rates driving the nucleosynthesis at the current temperature and density. After this, the
linearised system of equations of the network abundances derivatives is constructed and
solved for proper precision. At this point of the simulation convergence and stability checks are

performed, and, if failed, the chosen Δt is reduced so that the system of equations has to be
build up again from scratch. Only if the convergence criteria determine that the simulation time-
step leads to convergence, the algorithm moves forward to calculate the nuclear energy
generated.

This scenario is a clear example of a loosely synchronous parallelism. None of the

processing stages can be executed in parallel with the others, because all of them need the
outputs of the previous steps to do their computations. For instance, it is not possible to build
and solve the system of equations that arises from the linearisation of the set of differential
equations describing the temporal evolution of the network abundances, if the reaction rates
have not been previously provided. Likewise, nuclear energy generation can only be computed
once the abundance variations have been computed and the convergence and stability
requirements met. As a consequence, this problem type can only be parallelised if all
processors contribute to all computing stages of the simulation, exchanging information
whenever needed. Over and above, when each simulation step ends, processors that have
finished their computation work must wait until all the other nodes have completed their work
too. This is due to the fact that they must share their intermediate results before going on to the
next time step. Loosely synchronous parallelism, suffers from the downsides of both pipeline
and fully synchronous parallelism, which makes it the least amenable problem type to being
parallelised. With loosely synchronous parallelism it is hard to equally distribute evenly
computation work between nodes. In particular (regarding the post-processing nucleosynthesis
code parallelised in this Thesis), it will be described in section 3.3.3, the devised strategy to
build the matrix network in a distributed manner, so that each process constructs only a portion
of the complete system of equations (the chunk it will later need to solve their part of the system
of equations). It will be shown later on, that, given the sparse structure of the network matrix A ,
it is highly difficult to evenly allocate the work to several nodes for the resolution of the system.

2.3.3. When is Parallelisation Effective?

Parallelism is not achieved without a cost. There is a steep learning curve to parallel

programming, as well as requiring considerable effort from the programmer, who must think on
the problem in completely new ways and may wind up rewriting almost all of the sequential
(single-node) code. In addition, parallel execution and development environments are inherently
unstable and, at times, lacking of deterministic behaviour. Completely different techniques and
strategies are used in the parallel world from those used to optimise and tune the performance

CHAPTER 2 - Designing Parallel Applications 19

of single-node, sequential applications. Debugging a parallel application is considerably harder
than their sequential counterparts (Pancake et al. 1994, McGraw et al. 1998).

perfect
parallel

pipeline
parallelism

fully
synchronous

loosely
synchronous

Communication
Time

very high

Computing
Time

high

medium

low

P
E

R
FO

R
M

A
N

C
E

PERFORMANCE -+

+

Fig. 12 Performance of the parallel problem architectures

To take the most out of parallelism it is therefore needed to analyse first the nature of the

problem at hand, and identify the problem architecture it may fit into (see section 2.3.2), in order
to clearly anticipate whether parallelism is worth it. According to Pancake (1996), this can be
determined applying the following four rules of thumb:

1. If the application can be classified as a perfect parallel problem, the parallelisation
work will be acceptably straightforward and good performance is very likely to be
achieved.

2. If the application fits the model of a pipeline parallelism, more work has to be put into
the parallelisation tasks, taking into account that the key to attain good speed-ups is
to balance the computational intensity.

3. If the problem at hand is identified as fully synchronous, a significant amount of work
is required and it might not eventually pay off. A decision has to be made according
to how evenly (equally distributed) the computational intensity will be.

4. The worst possible scenario is that of a loosely synchronous application, which it is
the most difficult problem to parallelise, by far. It is not worthwhile unless the ratio
between computation work and communication time is maximised (the points where
the nodes interact must be very infrequent).

All of the aforesaid guidelines to determine whether parallelisation is worthwhile or not, can

be summarised in a simple principle: the time spent on communication between processors
has to be kept to a small fraction of all computing time, that is, the main goal of any parallel
programmer will be to maximise the ratio:

20 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

ion timeCommunicat
n timeComputatioR = . (2.5)

The best approach to increase performance is thus the programmer's skills both to keep

communication to a minimum, regarding the interaction points and the data being transferred,
and to keep the processors busy in the distributed computations. For the first type of
applications discussed above (perfect parallel applications) this is relatively trivial, but fully
synchronous and loosely synchronous applications will only achieve acceptable speed-ups if
there are little interaction points between processors and/or long periods of time in which the
processors are allowed to exchange their data.

This is shown in Fig. 12, where it is depicted a qualitative measure of the performance

achievable for the several problem architectures and problem sizes. Green zones represent
substantial speed-ups, whereas yellow to orange zones represent moderate to small increases
in performance. It is illustrative to stress that applications falling into the red areas will most
certainly take more time to complete in their parallel version than in their sequential
counterparts, and therefore the viability of parallelisation has to be carefully evaluated in
advance. Note that the larger the problem size is, the longer it will be the time the processors
spend on computations. Similarly, the four types of problem architectures have an increasing
need of communication, and hence communication times will be the shortest for perfect
parallelism and the longest for loosely coupled parallelism. Fig. 12 reveals that the only way to
achieve respectable performances on a fully or loosely synchronous application, is to increase
the ratio (2.3), increasing the problem size (e.g. increase the problem resolution or complexity),
so that processors spend more time on computation.

The strategy should hence be quite clear: parallel applications must be designed to execute

almost independent processors. The less frequently the processors establish communication
(either by specific operations, blocking communications or explicit messages), the better the
application's scalability and performance will be. That is, in order to achieve high parallel
performance and scalability, one must strive for embarrassingly parallel algorithms, either by
the careful design of data structures and/or algorithms, the utilisation of parallel applications
and environments already existing, or finally by turning the problem into an algorithm for which
a perfect parallel solution exists (McKenney 2010)

Fully and loosely synchronous applications are more suitable to be executed on Shared

Memory Multiprocessors (SMPs, see section 2.3.1), because the high cost of network
communications between distributed memory multiprocessor may take too high a toll on
communication time for fully and loosely synchronous applications to be effective. In extreme
cases, especially if the problem is medium to small sized, communication time of the parallel
application may overtake the time it takes a serial program to be executed in a single machine.
It will be shown later on, that this is the case of a post-processing nucleosynthesis
parallelisation with a medium sized network of nuclides (~600 nuclides).

Finally, the gains in performance cannot be evaluated independently from the amount of

resources (CPUs) needed to achieve them. If a parallel version of a program is able to run a
simulation four times faster than the serial version, the speed-up is excellent if, say, five to six
nodes (CPUs) are used in the computation, but we would be wasting resources if we needed
twenty nodes to achieve this very same increase in performance. At the end of the day, it all
boils down to strike a balance between performance, application type, and needed resources.

CHAPTER 2 - Designing Parallel Applications 21

2.3.4. Parallel Programming Models

There are several parallel programming models that can be used to describe how the

parallel program executes, and to model aspects such as modularity, scalability, and
performance of the parallel program (Foster 1995). There is no programming model that suits
all types of parallel applications, but rather we must choose the programming model together
with its implementation that better fits our problem at hand as well as the parallel resources
available to us.

In the Tasks and Channels programming model, a computation consists of a set of tasks

connected by communication channels. A task is used to model encapsulation of a program
that executes with local memory, and defines an interface to other tasks for communication. A
channel is just a message queue used to place messages to and from other tasks. The
Message Passing model is a minor variation of the tasks and channels model, where each
node executes one or more tasks that communicate with the other processors by means of
message passing (MPI Forum 2009, Gropp et al. 1995). All processors execute the same code,
but with different data, therefore message passing is a single program multiple data (SPMD)
programming model. This is one of the most widely used parallel models, and has been the
chosen paradigm for the parallelisation of the post-processing code in this Work. Data
Parallelism is another model commonly used in parallel applications (Koelbel et al. 1994, Zima
1991). Data parallelism exploits the concurrency that may derive from the application of the
same operation to multiple elements of a data structure. Its application is therefore limited by
the nature of the problem being parallelised, and may be limited to single operations on arrays
or data structures that may be encapsulated in a bigger parallel framework. Finally, the Shared
Memory programming model establish that parallel jobs access a common address space,
which the several tasks use to read and write data in an asynchronous way (Gottlieb 1983,
Snyder 1986). Consequently, concurrency control mechanisms like locks and semaphores
must be put in place to control coherent access to shared memory locations. One clear
advantage of this model is that tasks do not need to communicate in a message exchanging
fashion; however, the management of locality becomes clearly harder. Also, its application is
limited to shared memory multiprocessors (section 2.3.1), where it is easier to have multiple
processors sharing a common memory space.

In the parallelisation performed in this Thesis, it has been used the MPICH2 implementation

of the Message Passing Interface (MPI) standard (MPI Forum 2009, MPICH2 2011, and
Appendix A). In the MPI programming model, the execution takes place across one or more
processors that communicate by making calls to MPICH2 library routines, in order to send and
receive messages from other concurrent processors. In this implementation (as in most of the
MPI implementations), the set of processors is fixed at start-up, being one process created per
processor. Processors can use point-to-point communications and send a message to a
specific process; this can be used to implement communications in a local or unstructured way.
Other commonly used communication mechanisms are the so called collective
communications, which can be used to collectively send and receive information (broadcast,
summations, gathering of intermediate results, etc). MPI supports both synchronous and
asynchronous communications; this makes it possible so manage effectively the time spent by
processors waiting for communications to complete.

Chapter 3 provides the details of the message passing parallelisation strategy designed in

this Thesis. Also, Appendix A, presents the software tools needed to build, compile, and debug
the parallel application.

22 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

C
2.4. Performance Limits

omputer scientists study parallel programming as a research subject in itself, but that is
not the generalised interest of most scientists and engineers. It is not parallelism what is

looked for, but the gain in performance that it brings about. However, if using multiple CPUs to
run a task does not accomplish results far sooner than a single CPU, we will all agree that
computing resources are being used inefficiently. Over and above, an engineer has had to
spent time and effort parallelising the application, so that human resources would have been
wasted too.

To avoid that problem, it is necessary to assess the application's potential for parallelisation,

and the kind of performance that is achievable for the application at hand. The speed-up is
usually measured as the ratio between the time it takes the application to run in 1 node (serial
execution), and the time it takes to execute on several nodes (parallel execution):

parallel

serial

T
T

up-Speed = (2.6)

This assumes that there exists a serial program that already runs the computation in a

sequential, one node version; this serial version of the code is referred to as the baseline for
parallel performance measures. Strict supporters of parallel programming claim that a parallel
application must be constructed from scratch, but this represents an unrealistic situation for the
majority of the users (several surveys on the development of parallel applications indicate that
about 60% of programmers modify or develop parallel programs from existing codes, whereas
only about 30%, mainly computer scientists or applied physicist or mathematicians, start the
parallel program from scratch - Pancake et al. 1994).

Not all the serial program's contents can be parallelised. Usually, initialisation and output

phases must be executed sequentially (where initialisation files might be read in, or when output
files have to be written to disk). Consequently, we may represent serial execution time by:

outputpptioninitialisaserial TTTT ++= (2.7)

where ppT is the time spent in the part of the code that is potentially parallelisable. In the post-

processing nucleosynthesis code object of this Thesis, tioninitialisaT and outputT are negligible with

respect to ppT , and therefore we can safely approximate ppserial TT ≈ .

Consider the parallel example depicted in Fig. 7; it is evident that the time spent in the

parallel version of the code would be:

output
'

commcptioninitialisa
'

parallel TTTTT +++= (2.8)

where cpT is the time spend by each of the processors in the execution of their portion of the

problem, and commT is the time devoted to communications and message passing amongst

nodes. Also, in this situation initialisation and output phases of the parallel version (tioninitialisa
'T

and output
'T) are totally negligible with respect to commcp TT + so they can be safely omitted from

CHAPTER 2 - Designing Parallel Applications 23

the theoretical approximation of the achievable speed-up; commcpparallel TTT +≈ . Furthermore,

the individual computing time cpT can be approximated by:

overhead
serial

cp T
P

T
T += (2.9)

where P is the number of nodes participating in the parallel computation, and overheadT is the

overhead time spent managing parallelisation (message construction and storage, sender-
receiver synchronisation, initialisation of parallel subroutines, imperfect concurrency, etc). This
might be a rough estimation, as we have assumed that the parallel portion of the code is
perfectly parallelisable so that it can be cleanly split up (with no overlapping tasks) into P
processors. This might not be the general case, but it is a close approximation to the real
execution time, and it will serve the purpose of providing an estimation of the accomplished (or
attainable) maximum speed-up, which can finally be approximated by:

serial

comm

serial

overhead
commoverhead

serial

serial

commcp

serial

T
T

T
T

P
1

1

TT
P

T
T

TT
T

up-Speed
++

=
++

=
+

≈ . (2.10)

Since the overhead time will be usually much smaller compared to the serial execution time

(serialoverhead TT <<), the maximum attainable speed-up will be driven by the ratio between commT

and serialT , so that the higher the ratio, the smaller the speed-up accomplished with the

parallelisation. Note that this result comes into agreement with the conclusions of section 2.3.3,
where we found that for higher speed-ups, the ratio between processing time and
communication time had to be maximised.

It is worth mentioning that both commT and overheadT vary with the number of nodes, that is:

(P)TT(P),TT overheadoverheadcommcomm == . (2.11)

The amount of variation with P highly depends on the type of communication (e.g. all to all,
broadcast, point to point sends and receives, gather, all gather, etc. – see MPI Forum: 2009),
but at any rate they are both monotonically increasing functions of P , with a much more
pronounced variation of commT than overheadT for increasing values of P (Thakur et al, 2002).

The effect of the costs of communications with respect to the total (serial) execution time, is

analysed in Fig. 13 below, for increasing values of commT given a fixed serialT and increasing

number of parallel nodes involved in the execution. The blue straight line with a unity slope
represents the ideal speed-up: Pup-Speed = , which is obtained by setting to zero both
communication and parallel overhead times. That is, in an ideal situation, putting P processors
into a parallel task would yield results P times faster compared with the serial execution. This
will obviously not be the case that we will find in a real application. As communication and
overhead times become not-negligible, the curve looses slope and bends rightwards. Green
and yellow lines represent a more real situation with low and medium communication costs,
respectively. The green line could easily be the speed-up accomplished in a perfect parallel

24 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

T

application, whereas the yellow line may represent the performance of a pipeline or fully
synchronous parallelism (see section 2.3.2). Too main conclusions can be drawn from this two
cases; firstly, as we increase the number of nodes, the efficiency of the parallelisation
decreases (the curve's slope diminishes), so that every new processor added into the
computation, accounts for smaller and smaller percentage of the total speed-up achieved.
Secondly, it is important to note that in a real application, the maximum achievable speed-up is
finite, that is, even if we could use infinite processors in the parallel application, the final speed-
up tends asymptotically to finite, fixed value.

Fig. 13 Parallel performance comparison for different values of communication costs

The worst case is represented by the red line in Fig. 13, which represents a loosely

synchronous application with a high communication-to-processing time ratio. Note that for a
small number of processors, the benefits of the parallelisation may outrun the burden of the
high communication costs, but as we increase the number of processors (and hence
communication times), the communication and parallel management tasks rapidly outgrows the
time saved up in the parallel execution, yielding speed-ups that may actually fall below unity,
that is, the parallel application may take longer to execute than its sequential counterpart.

2.5. Execution Environment: Hyperion Cluster

he development environment where this Thesis has been developed consists of a 42-
node Cluster (Hyperion) that the Astronomy and Astrophysics Group (GAA) has at the

EUETIB (UPC). All the nodes have local memory so that the architecture is that of a distributed
memory multiprocessor. Each of the 20 machines of the cluster is in itself a multiprocessor
workstation with 2 to 4 cores that correspond to the shared memory multiprocessor

CHAPTER 2 - Designing Parallel Applications 25

P

environment described above. In total there is one 4-processor machine and 19 machines
consisting of 2 processors each.

Note that in the remaining of this document, we will regard each single core or processor as

an independent processing unit, so that the terms node, processor, and core all refer to a
single microprocessor unit. Therefore, in our cluster environment there is a maximum of 42
nodes or processing units (4x1 plus 19x2).

Fig. 14 Hyperion cluster

Due to the high efficiency requirements, clusters are managed by a dedicated operating

system that (amongst other things) handles all communication issues between nodes or
workstations. The Hyperion cluster has the Rocks Cluster Distribution operating system
(http://www.rocksclusters.org/), which is a Linux distribution intended for high-performance
computing clusters. Rocks has become a widely-used cluster operating system, for academic,
government, and commercial organizations.

2.6. Summary

arallelism overcomes some of the constraints imposed by single-CPU computers,
offering faster solutions, running simulations at finer resolution or modelling physical

phenomena more realistically. However, parallelism does not come without a cost. Parallel
programming involves a steep learning curve. It is also effort-intensive; the programmer must
think about the application in new ways and may end up rewriting virtually all of the serial
(single-CPU) code. Parallel performance will depend strongly on the type of application:

26 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

1. Perfect parallel: the parallelisation will be acceptably straightforward and very good
performance is likely to be achieved.

2. Pipeline parallelism: more work has to be put into the parallelisation tasks. The key to
attain good speed-ups is to balance the computational intensity.

3. Fully synchronous: a significant amount of work is required and it might not eventually
pay off. It all depends on how evenly the computational intensity can be distributed.

4. Loosely synchronous: it is the most difficult problem to parallelise. It is not worthwhile
unless the ratio between computation work and communication time is large.

Not all applications can be parallelised. If this is not taken into account, it is perfectly

possible to work months on parallelizing an application, only to find that it yields incorrect
results or that it runs slower now than before. Parallel applications must be designed to execute
almost independent processors. The less frequently the processors establish communication,
the better the application's scalability and performance will be.

I

CHAPTER 3
POST-PROCESSING PARALLELISATION

"Nobody wants parallelism... what we want is performance."

Ken Neves
Boeing

"Parallel machines are hard to program and we should make them even harder - to keep the
riff-raff off them."

Gary Montry
Quote collected by Steve Plimpton in the Massively Parallel Computing Research Laboratory

at Sandia National Laboratories.

3.1. Introduction

n this Master Thesis, a post-processing nucleosynthesis code, with a network containing
606 nuclides (H to 113Xe) and more than 3500 nuclear processes, has been parallelised

using the MPICH2 implementation of the Message Passing Interface (MPI) specification for the
design of parallel applications using clusters of distributed workstations. This code requires (in
its sequential, single-node version) about 9.1 CPU-months of calculating power to perform
50.000 post-processing calculations of X-ray burst nucleosynthesis.

One of the purposes of the parallelisation is to benefit from the 42-node Hyperion Cluster
available at the EUETIB-UPC, and see whether speed-ups are achievable, in which case it
would considerably provide for better and more accurate simulations (e.g. with more isotopes
and reactions, or with a significant increase in the resolution, in terms of more layers of the
neutron star envelope's model). The main goal is to improve the performance of the code in
terms of speed, and also taking advantage, if desired, of parallel supercomputing facilities like
the Mare Nostrum at the Supercomputing Centre in Barcelona (BSC).

Unfortunately, parallelisation does not come without a cost, and achieving speed-ups has

certainly proven a difficult task. As shown in section 2.3.2, the time dependent iterations of the
post-processing code, places this problem in the worst possible categories for parallelisation;
that of a loosely synchronous application, where all processors have to participate throughout
the iteration, exchanging intermediate results when needed. Also, due to the nature of the
problem, the resulting abundances have to be broadcasted to all processors at the end of the
iteration, so that they are available to every node at the next time-step, for the distributed
construction of the system of equations that arises from the linearisation of the set of differential
equations describing the time evolution of the abundances. This is a serious bottleneck that
provokes that the simulation cannot proceed until all processors have received the results. It is
easy to see that the limit of applicability will be put by the communication time; if the time spent
in communications in the parallel execution is not much lower than the time it takes the problem
to be solved in its serial version on a single machine, parallelisation does not pay off at all, and
the parallelised version might even end up taking frustratingly longer to execute.

28 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

3.2. Post-Processing Nucleosynthesis Code

3.2.1. Application Description

Due to the enormous number of reactions involved in a detailed nucleosynthesis simulation

for XRBs, an approach based on a pure hydrodynamical study is often computationally
prohibitive. For that reason, it is quite often that it has to be adopted a post-processing
approach, relying on a set of temperature and density versus time profiles (see Fig. 15). These
T-ρ profiles are usually extracted from the literature or scaled to cover the wide parameter
space.

Fig. 15 Temperature vs. time profiles used in the post-processing Work of Koike et al. 2004

A typical post-processing nucleosynthesis code computing flow is shown in Fig. 17. From a

complete temperature-density profile, previously calculated in a hydrodynamic code coupled
with a reduced nucleosynthesis network, the application evolves through the simulation
calculating the evolution of the abundances of the selected nuclides. Temperature and density
are interpolated at the current simulation time; this allows determining the value of the reaction
rates driving the nucleosynthesis at the current temperature and density. After this, the
linearised system of equations of the network abundances derivatives is constructed and
solved for proper precision. At this point of the simulation convergence and stability checks are

performed, and, if failed, the chosen Δt is reduced so that the system of equations has to be
build up again from scratch. Only if the convergence criteria determine that the simulation time-
step leads to convergence, the algorithm moves forward to calculate the nuclear energy
generated.

In this Thesis, it has been used a fully updated network, consisting of 606 isotopes, from 1H

to 113Xe, and linked through a network of 3551 reactions (see Fig. 16). Elements, ranging from
1H to 113Xe have been marked as green squares. The location of the proton-drip line (left-hand

CHAPTER 3 - Post-Processing Parallelisation 29

side of the diagram), the neutron drip line (right-hand side), and the set of stable isotopes (dark
grey squares) are based on Audi et al. (2003).

Fig. 16 Network of isotopes used in this Work for post-processing calculations3

By means of post-processing techniques, the time evolution of the chemical abundances is

computed for a specific temperature-density versus time profile, and the set of modified
reaction rates. Limitations do exist for these post-processing techniques however, since a self-
consistent analysis requires putting in place a hydrodynamic code capable of self-adjusting
both the temperature and the density of the stellar envelope.

Consequently, post-processing calculations are not well suited to derive absolute
abundances (or to provide any insight into light curve variations and energetics) since they rely
only on temperature and density versus time profiles evaluated at a given location of the star
(usually, the innermost shells of the envelope). Indeed, it is likely that the evolution at other
depths will be characterized by a different set of physical conditions. Furthermore, adjacent
shells will eventually mix when convection sets in, altering the chemical abundance pattern in
those layers. Be that as it may, this approach is reliable enough to identify the key processes
governing the main nuclear activity at the specific temperature and density regimes that
characterize such bursting episodes.

3 Source: F. Moreno (2009), PhD Thesis, UPC

30 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

iL
ir

iu
2/1+iT

2/1+iρ
Henyey’s
Method

Eqs.

1st

N5

Nucleosynthesis
& Energy

Nucleosynthesis
& Energy

Nucleosynthesis
& Energy

Nucleosynthesis
& Energy

2nd

ith

(N-1)th

Nth

Envelope shells

tttt
ii

T Δ+Δ+
++ 2/12/1

,ρ

tttt
NN

T Δ+Δ+
+−+− 2/1)1(2/1)1(

,ρ

tttt
NN

T Δ+Δ+
++ 2/12/1

,ρ

… …

ttttT Δ+Δ+
++ 2/112/11

,ρ

tt
i

X Δ+

tt
N

X Δ+
−)1(

tt
N

X Δ+

ttX Δ+
1

EOS of
matter,

opacities
and

artificial
viscosity.

…
Linearised
system of
equations

for the
physical
values.

New values
for physical

values at

tt Δ+

New
abundances

tt
i

X Δ+

Accretion
of Mass:

New mass
grid.

tM Δ⋅Μ=Δ &

Extrapolation
of variables
due to new
mass grid

and
accretion.

Initial
Model

)(tt
iL Δ+′

)(tt
ir

Δ+′

)(tt
iu Δ+′

)(
2/1

tt
iT Δ+
+′

)(
2/1

tt
i

Δ+
+
′ρ

)(tt
i

X Δ+′

Solution of a
5N system of

linear
equations

bAx =

Evolution of the
mass fraction

abundances, and
energy generation

at each shell.

METHOD OF COMPUTATION: Fully coupled hydrodynamic code

Mass rezoning
within the
envelope

preserving the
total number of

mass shells

Complete T-ρ profile for a
single envelope shell

METHOD OF COMPUTATION: Post-processing nucleosynthesis code

ttttT Δ+Δ+ ρ,

Interpolate
reaction rates

at current
Temperature
and Density

ijr

Solve system
of equations.

Find new
nuclides

abundance.

)()(ttt ijij XXA =Δ+
1−A

)(ttj Δ+X Convergence,
stability and Δt Yes

No
Compute
energy

generation at
t+ Δt.

System of
equations of

nuclides
abundance
evolution.

Decrease
Δt

T ρ),,(XTtt ρεε =Δ+

t
iP 2/1+
t
iq 2/1+
t
iE 2/1+
t
ik 2/1+
t
i 2/1+ε

Fig. 17 Hydrodynamic code versus post-processing nucleosynthesis computation

CHAPTER 3 - Post-Processing Parallelisation 31

3.2.2. Time Evolution of the Nuclear Abundances

A typical nuclear reaction may be described by two particles, iP and jP , which mutually

interact, producing a pair of particles, kP and lP , in the form (Wagoner 1969):

l
Z
Ak

Z
Aj

Zj
Ai

Z
A PPPP l

l

k

kj

i

i
+→+

where iZ and iA are the atomic and mass numbers of particle i , respectively. Nuclear

reactions are governed by the standard laws of conservation of energy, linear and angular
momentum, mass number, and charge. The time evolution of species i is then computed from
a detailed balance between reactions that create and destroy such isotope. The equations
governing this evolution can be written as:

[] []∑∑∑ −−→+=
≥≠≠

→
j

ji
klik

iilk
ik

kik
i YYijYYYiklY

dt
dY

,
λλ (3.1)

where
i

i
i A

XY = is the mole fraction (with iX being the mass fraction of particle i), ik→λ is the

photodisintegration or β−decay rate of nucleus k leading to the formation of nucleus i ,
[]ikl → is the reaction rate between species k and l leading to the formation of nucleus i ,

[]
ilkA vNikl

→
=→

,
σρ (with AN being the Avogadro number, ρ the density, and

ilk
v

→,
σ the

Maxwellian-averaged product of the cross section and the velocity of the two nuclides k and
l), iλ is the total rate for all photodisintegration or β−decay channels of nucleus i , and []ij is

the total rate for all exit channels involving destruction of nucleus i .

3.2.3. Numerical Treatment of Nuclear Abundances

The numerical treatment (in the sequential, 1-node execution) of the nuclear abundances for

the whole set of isotopes included in our network is quite complex due to the large number of
reactions that link a given isotope with the rest. To derive the new chemical composition of the
whole envelope at a given time, we have to solve the system of differential equations given by
equation (3.1). This can be written as a matrix equation, after linearization of the
abovementioned system of equations (see Wagoner 1969):

0XXA =⋅ (3.2)

where A is a matrix containing information on the different nuclear reaction rates, X is the
matrix with the (unknown) new abundances, and 0X is the matrix containing the set of

abundances of the previous step.

This equation is solved by means of an iterative technique, based on Wagoner’s two-step
linearization procedure (1969), as described in Prantzos et al. (1987). The procedure assumes

32 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

T

0X as an initial guess to the new value of X , and a first-order correction Xδ1 to the initial 0X

value is obtained applying a pseudo-Gaussian elimination technique to the equation

00
1 XAXXA ⋅−=⋅δ . (3.3)

From this, a first-order approximation to the value of X is found:

XδXXX 1+=≈ 01 . (3.4)

To achieve better accuracy, a second order correction Xδ 2 is obtained through a similar
procedure:

10
2 XAXXδA ⋅−=⋅ , (3.5)

leading to the final solution:

XδXδXXX 21
02 ++=≈ (3.6)

which ensures conservation of the baryonic number up to 11 digits. This procedure is
particularly suited for the special properties of matrix A : essentially, a sparse matrix consisting
of an upper left square matrix, an upper horizontal band, a left vertical band, and a diagonal
band. This special geometry is due to the fact that the isotopes, ordered in terms of increasing
atomic number, are only linked -through nuclear processes- either with close neighbours or with
light particles (p, α, etc.).

Note that this is a sequential, 1-node algorithm that will not be used in the parallel numerical

treatment of the nuclear abundances matrix. A method of parallel multifrontal decomposition will
be used to solve the system of equations in a cluster of distributed-memory workstations (see
section 3.3).

3.3. Post-Processing Parallelisation Strategy

he most important and time consuming part of the post-processing nucleosynthesis
computation is that of the solution of the linearised system of equations of the network

abundances derivatives. It will be shown in section 3.5 that the sequential execution spends
most of the time inverting the matrix (82%) and building (16%) the system of equations (3.2). All
in all, 98 % of the simulation time is spent constructing and inverting a double precision square
matrix (A) of order 606 (the number of isotopes in the reaction network). Consequently, it is in
this part of the simulation where we have to put most of our effort in the parallelisation.

CHAPTER 3 - Post-Processing Parallelisation 33

ttttT Δ+Δ+ ρ, 0
ijr)()(

000
ttt jjij XXA =Δ+ Convergence,

stability and Δt Yes

No

),,(0 XTtt ρεε =Δ+

ttttT Δ+Δ+ ρ, 1−P
ijr

)(
1

tt
P

j Δ+
−

X
Convergence,
stability and Δt Yes

),,(1 XTP
tt ρεε =−

Δ+

…
.

N0

NP-1

)()(
111

ttt
P

j

P

j

P

ij

−−−
=Δ+ XXA

Decrease
Δt

MUMPS

MUltifrontal
Massively

Parallel
sparse
direct
Solver

Communication points

)(
0

ttj Δ+X

Decrease
Δt No

1

2 3 4

Fig. 18 Post-processing parallelisation strategy and processing stages

34 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

It is shown in Fig. 17 that the post-processing code consists of the following main
processing stages:

1. Parallel Initialisation: Initialisation of parallel structures needed for the parallel
computation.

2. Interpolation of Reaction Rates: Interpolate reaction rates at current temperature and
density.

3. Matrix Assembly: Build the system of time-dependent equations of nuclides
abundance.

4. Solution of the System of Equations: Solve the system of equations. Find new nuclides
abundance.

5. Convergence and Stability: Check convergence, stability and Δt.

6. Released Energy Computation: Compute energy generation at t+Δt.

The system of equations is solved using MUMPS (Amestoy et al. 2001a, and 2006, MUMPS
2001). MUMPS stands for MUltifrontal Massively Parallel sparse direct Solver, and it is a widely
used software application for the solution of large sparse systems of linear algebraic equations
Ax = b on distributed memory parallel computers. It represents one of the scarce professional
and supported public domain implementations of the multifrontal method, and supports the
solution of large linear systems with symmetric positive definite matrices, general symmetric
matrices, and general non-symmetric matrices.

As stages 3 and 4 are by far the most time consuming part of the simulation, all the

parallelisation strategy has been focused on providing the most efficient partitioning of the
matrix A , as required by the parallel solution of the system of equations performed by the
parallel solver. Detailed information on the specific partitioning and distribution of the parallel
construction of the matrix can be found in section 3.3.3. Fig. 17 shows the main parallelisation
strategy. Reaction rates, construction of the matrix, stability check and energy generation are
distributed amongst processors in a perfect parallel approach (see section 2.3.2). The
processors communicate at four specific points during the simulation:

1. Communication during the parallel solution of the system of equations (MUMPS).
2. Communication once the system of equations is solved, because the solution is kept

distributed (that is, every node holds only a portion of the solution vector), and therefore
the distributed solution has to be shared amongst all processors. This is necessary to
proceed with the second iteration of the Wagoner's two-step linearisation procedure
(Wagoner, 1969), where the processors need the complete solution vector to build the
new matrix A for the new iteration.

3. Communication to check convergence and stability of the solution and see whether the
simulation is permitted to proceed or if the Δt has to be decreased.

4. Communication to sum up energy contributions from the distributed reactions (every
node computes only the energy released by a subset of the reactions). This is tricky,
because nodes only have available those reactions that are relevant to them for the
distributed construction of matrix A . As the number of reactions cannot be evenly
distributed amongst processors, a specific procedure has been devised to even out (in
a probabilistic way) the work load amongst nodes in the computation of the energy
released.

In the following sections every processing stage is analysed in detail.

CHAPTER 3 - Post-Processing Parallelisation 35

3.3.1. Parallel Initialisation

The initialisation of a parallel program is an essential part of the code; it is where all parallel

structures and data partitioning strategy are defined, and where the root process (Process 0)
reads in all the configuration parameters from the simulation configuration file, sending
afterwards the relevant information to the rest of the processors. Amongst other parameters,
process root broadcasts information such as the number of reactions (NRE), the number of
isotopes (NIS), number of temperature grid points (NGRID), etc. Other data broadcasted are
the number of points in the temperature-density profile, the temperature-density profile itself, the
nuclear reaction network (isotopes involved in the reactions together with their Q value), the
initial chemical composition, and parameters to configure the solution, stability and
convergence of the system of linear equations.

Once the basic initialisation has taken place, it is necessary to set up the data structures that

will allow the processors to do their parallel computations at later stages of the simulation:

• Compute input data needed by the parallel MUMPS solver, and the parallel
processors.

• Set-up the distributed data local to each processor to build up the distributed
assembled matrix. We provide the structure of the matrix on the host (root) at
analysis, and MUMPS returns a mapping that we use afterwards to provide the
matrix distributed according to the mapping on entry to the numerical factorization
phase (see MUMPS user guide document 4.9.2.)

• Also, it is computed the number of reactions and reaction pairs that are relevant to
the current process, in the construction of the distributed matrix A .

Further details about the above data structures are given in the dedicated sections below.

3.3.2. Interpolation of Reaction Rates

All nodes have available the complete temperature grid points for all nuclear reactions, as

well as the complete reaction network. The key point here is that every node only performs the
interpolation of those reaction rates that it will be using afterwards in the construction of their
local partition of the matrix A . Given a matrix entry),(jiA , the node owner of this matrix entry
requires all nuclear reactions that have a partial contribution to that specific element (see
section 3.3.3 for details). Consequently, all nuclear reactions where elements i and j are
involved will be relevant for the node owner of matrix element),(jiA .

Due to the fact that several nuclear reactions might contribute to a single matrix entry, it will

not be possible to equally distribute the nuclear reactions amongst processors. For instance, in
a parallel execution with four nodes, 529 reactions are relevant to Process 0, 2389 reactions are
relevant to Process 1, 1469 reactions are relevant to Process 2, and 1053 reactions are relevant
to Process 3. This is depicted in Fig. 19, where the relevant reactions are shown as black pixels
in a two dimensional layout (53 x 67 = 3551) to ease the visualisation. Given a nuclear reaction

lkji),(there might be 8 possible reaction contributions pairs to the matrix A :),(iiA ,),(jiA ,
),(jjA ,),(ijA ,),(ikA ,),(jkA ,),(ilA , and),(jlA , according to the linearisation of

Wagoner (1969). Thus, the specific partition of the matrix elements amongst processors is
definitely the major determinant of the number of reactions that are relevant to each process.

36 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

It is evident that not all nodes get the same number of reactions, and additionally there is
some overlap as some of the reactions are relevant to several processors at the same time.
Nonetheless, the parallel execution of the interpolation of reaction rates yields significant
improvements in performance compared to the sequential execution, where all 3551 reactions
had to be interpolated by a single processor. For instance, in a parallel execution with four
nodes, the reaction rates are interpolated (in average) 2.5 times faster than the sequential
execution with a single node (see section 3.5 for further information).

Fig. 19 Nuclear reactions partitioning in a parallel execution with 4 processors

At this processing stage, each node interpolates all their relevant reaction rates, in order to

find the most accurate value given the current temperature and density. In order to do this,
suppose that the current temperature (currT) falls between two temperature grid points, 1T and

2T (where 12 TTT curr >>). We may define:

h
TT

bTTh curr 1
12 ;

−
=−= . (3.7)

From h and b the interpolation is carried out in two steps. First the interpolation is realised in
the logarithmic scale, so that a logarithm of the interpolated reaction rate is obtained:

CHAPTER 3 - Post-Processing Parallelisation 37

())(10log)(10log)(10log 121log TTbTV −+= . (3.8)

Secondly, the logarithmic interpolated reaction rate logV is transformed back to linear in order to

obtain the final interpolated reaction rate4:

log10VV = . (3.9)

This is a costly operation because on the one hand it makes use of the FORTRAN's 10log and

exponential X10 intrinsic functions, which are rather computationally expensive (Mahaffy, 1997),
and on the other hand this interpolation requires two computing steps.

An optimisation is proposed as part of this Thesis, aimed at improving the computational
efficiency of this calculation. It can be shown that the interpolation can be performed in a single,
linear step:

() === −+)(10log)(10log)(10log 121log 1010 TTbTVV

()
()

bb
b

b

bT

bTT

TT
T

TT −⋅=
⋅

== 1
12

1

21
)(10log

)(10log)(10log

1

21

10
1010

 (3.10)

Note the use of bb TTV −⋅= 1
12 instead of 1

1

2
−

= b

b

T
T

V , as FORTRAN multiplications are

significantly faster than divisions.

Even though the relative computational gain will be small for a single operation, the above

calculation is executed NRE times per iteration (3551 reactions in our network), with
approximately 50k iterations per simulation (depending on the model). The total amount works
out at roughly 177·106 reaction rates interpolations per simulation, which might provide for
significant savings at the end of the computation.

3.3.3. Matrix Assembly

One of the most time consuming stages of the computation is the construction of the matrix

A that arises from the linearisation of the set of differential equations describing the temporal
evolution of the network abundances:

0XXA =⋅ . (3.11)

4 Note that for the sake of conciseness, we have omitted the corrective factors eμρ / for electron

capture, and 1−nρ for n -particle reactions.

38 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

As shown in Fig. 20, matrix A is a sparse matrix with a rather simple geometry, as long as the
isotopes are ordered in terms of increasing atomic mass (Prantzos et al. 1987). This is owing to
the fact that isotopes are coupled only by light particle reactions. This structure can be
described in terms of an upper left square matrix, an upper horizontal band, a left vertical band,
and a diagonal band.

Fig. 20 Non-zero entries of matrix A

Matrix A contains 368,449 elements (607 elements squared matrix), out of which only 6,454

elements are non-zero (that is, the nuclear reactions only contribute to 6,454 entries of the
above matrix). It is therefore a very high sparseness factor; this fact will have to be taken into
account in the distributed construction of the matrix.

Given a nuclear reaction lkji),(there might be 8 possible reaction contributions pairs to the

matrix A :),(iiA ,),(jiA ,),(jjA ,),(ijA ,),(ikA ,),(jkA ,),(ilA , and),(jlA :

CHAPTER 3 - Post-Processing Parallelisation 39

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⎯⎯⎯ →⎯

ON

L

MM

L

MM

L

MM

L

NO

ljli

kjki

jjji

ijii

sContribute

AA

AA

AA

AA

lkjireaction A),(

where iiA , ijA , …, ljA are the partial contributions of the reaction lkji),(to the matrix

elements),(iiA ,),(jiA , …,),(jlA . The matrix elements are, according to the linearisation of
Wagoner (1969):

[]
()∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅

+⋅⋅
⋅⋅Δ

+= −

kji

N
j

N
ii

jiji

ki ji YYN
NNNN

ijNt
ii

,,

1

!!
1),(A

[]
()∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅

+⋅⋅

⋅⋅Δ
+= −

kji

N
i

N
jj

jiji

kj ij YYN
NNNN

ijNt
jj

,,

1

!!
1),(A

[]
()∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅

+⋅⋅
⋅⋅Δ

= −

kji

N
i

N
jj

jiji

ki ij YYN
NNNN

ijNtji
,,

1

!!
),(A

[]
()∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅

+⋅⋅

⋅⋅Δ
= −

kji

N
j

N
ii

jiji

kj ji YYN
NNNN

ijNt
ij

,,

1

!!
),(A

[]
()∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅

+⋅⋅
⋅⋅Δ

−= −

kji

N
j

N
ii

lklk

jk ji YYN
NNNN

lkNt
ik

,,

1

!!
),(A

[]
()∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅

+⋅⋅
⋅⋅Δ

−= −

kji

N
i

N
jj

lklk

jk ij YYN
NNNN

lkNt
jk

,,

1

!!
),(A

[]
()∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅

+⋅⋅
⋅⋅Δ

−= −

kji

N
j

N
ii

lklk

jl ji YYN
NNNN

lkNt
il

,,

1

!!
),(A

40 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

[]
()∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⋅

+⋅⋅
⋅⋅Δ

−= −

kji

N
i

N
jj

lklk

jl ij YYN
NNNN

lkNt
jl

,,

1

!!
),(A (3.12)

At initialisation time, MUMPS is provided with the sparseness pattern of the matrix describing

the temporal evolution of the network abundances (Fig. 20). The algorithm automatically
analyses the structure of the matrix on the host (root process), and returns a mapping structure
holding the optimised distribution of the matrix elements amongst the processors. Depending
of the sparseness distribution and the number of processors, MUMPS computes the optimum
distribution so as to minimise the factorisation and solution phases to be carried out afterwards.
In turn, each processor builds, at initialisation time, a local data structure containing the
coordinates of the matrix elements assigned to them, as well as the reactions and reaction
pairs that they need to totally calculate a specific matrix entry. It is prior to the factorisation and
solution phases that every processor will construct a local matrix A_loc that will be used in the
parallel numerical factorisation and solution phases. For instance, in Fig. 21 overleaf, it is
presented the elements distribution amongst a group of 4 processors. Note that the optimum
distribution is not an equitable split of the matrix, but certain processors have more elements in
A_loc than the others.

It is important to remark that there is no overlap between processors, that is, one matrix
element is assigned to one and only one processor. Note, however that the split of the matrix
does keep a pattern, having each processor hold matrix entries of a specific zone or area of the
matrix. This fact is easily seen in Fig. 21, where it is clear that process 2 holds most of the
elements in the top left area of the matrix, and process 3 holds most of the bottom right entries.
Process 0 and process 1 hold specific portions of the diagonal, horizontal and vertical bands, in
the mid section of matrix A. For processors 0 and 1, though, there is much more overlap in the
areas where they have responsibility, and their boundaries are more diffuse.

The matrix A_loc is stored in an assembled format (as opposed to elemental format). The

following components of the structure define the distributed assembled matrix input, and are
local to each of the processors (that is, the structures hold different values for every processor):

• NZ_loc : is the number of entries local to a processor. For instance, in the example
shown in Fig. 21 NZ_loc = 792 for process 0, NZ_loc = 1181 for process 1,
NZ_loc = 2613 for process 2, and NZ_loc = 1868 for process 3.

• JCN_locIRN_loc, : are integer arrays of length NZ_loc containing the row and
column indices, respectively, for the matrix entries.

• A_loc : is a double precision array of dimension NZ_loc .)(kA_loc is set to the
value in row)(kIRN_loc and column)(kJCN_loc .

In the parallel construction of the matrix, each process traverses its own local structure

holding the matrix entries and the relevant reaction rates (that have been interpolated locally,
see section 3.3.2), and fills the elements of their local matrix A_loc according to partial
contributions (3.12). Significant improvements in computation time are achieved in the parallel
construction of matrix A (see section 3.5). For instance, in a parallel execution with four nodes,
the matrix is constructed (in average) 6.5 times faster than the traditional sequential execution
with a single node. This is an extremely good speed-up accomplished in this phase of the
computation.

CHAPTER 3 - Post-Processing Parallelisation 41

Fig. 21 Parallel distribution of matrix A with four processors

42 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

3.3.4. Solution of the System of Equations

At this stage of the computation, each of the processors has already made up the structures

needed for the parallel solution of the system of equations using the MUMPS software. MUMPS
requires that at the solution phase, JCN_locIRN_loc,A_loc, must have been provided locally
to each processor. It must be noted that the right hand side (RHS) is not distributed, but has to
be provided centralised on the root process, this fact entails that the root process must have
the complete solution vector with the mass fraction abundances available from the previous
iteration.

The MUMPS package uses a multifrontal approach to factorize the matrix (Duff and Reid

1983). The principal feature of a multifrontal method is that the overall factorization is described
(or driven) by an assembly tree (see Fig. 22, left).

leavesleaves

root

P0 P1 P2 P3 P2

P3

P0+ P1 P1+ P2+ P3

P0+ P1+ P2+ P3

Fig. 22 Example assembly tree (left) and a possible distribution over four processors (right)5

At each node in the tree, one or more variables are eliminated using steps of Gaussian

elimination on a dense matrix; the frontal matrix. Each edge in the tree represents the
movement of data of a child node to its parent (which is the adjacent node in the direction of
the root). An important aspect of the assembly tree is that it only defines a partial order for the
factorization. That is, arithmetic operations at a pair of nodes, where neither lies on a path from
the other to a root node, are independent. For example, work can commence in parallel on all
the leaf nodes of the tree. Operations at the other nodes in the tree can proceed as soon as the
data is available from the children of the node. There is thus good scope for exploiting
parallelism, especially since assembly trees for practical problems contain many thousands of
nodes. For nodes far from the root, to keep communication to a minimum while maintaining a
high level of parallelism, MUMPS maps a complete sub tree onto a single processor of the
target machine (see Fig. 22, right).

On some networks with low bandwidth, centralizing the solution on the host processor might

be a costly part of the solution phase. As this is critical to the performance of the parallel

5 Source: MUMPS: A Multifrontal Massively Parallel Solver by Patrick Amestoy, Iain Duff, Jacko Koster,

and Jean-Yves L’Excellent. ERCIM News No.50, July 2002

CHAPTER 3 - Post-Processing Parallelisation 43

application, in this Thesis we have decided for the solution to be left distributed over the
processors6 after the system of equations is solved (MUMPS also allows the user to configure
the software so as to centralise the solution vector on the root processor once the system has
been solved). In this regard, each of the processors holds a non overlapping subset of the
elements of the solution vector (see Fig. 23), that is, a subset of the abundances for the new Δt.
It must be taken into account that in this case, the solution must then be exploited in its
distributed form; this fact requires that subsequent processing stages (e.g. stability and
convergence) must be also parallelised (see section 3.3.5).

Process 3

Process 2

Process 1

Process 0

Element number of the solution vector Y(i)

Fig. 23 Distributed solution vector with 4 processors

As with the distribution of matrix entries, the partition of the solution vector is not equitable;

for instance in our parallel implementation of the post-processing code with four processors,
process 0 keeps 58 elements of the solution vector, whereas process 1, 2 and 3 hold 140, 241,
and 167 elements respectively. Note that there exists a correlation between the number of
elements of the matrix A assigned to a specific processor and how many entries of the
solution vector are stored locally for that processor (nodes with more matrix elements, have
larger local solution vectors). Moreover, it is shown in Fig. 23 that also the location of the
elements of the solution assigned to each node, has a correlation with the location of the matrix
elements; process 2 and 3 hold most of the solution elements at the beginning and end of the
solution vector (as it were with the matrix entries - see Fig. 21), whereas process 0 and 1 keep
most of the solution elements around the middle indexes of the solution vector.

Unfortunately, it will be shown in section 3.5 that the parallel solution of the system of

equations takes (in the general case) considerably longer to calculate as compared to the
sequential execution. This disappointing result stems from the fact that the post-processing
nucleosynthesis application at hand is a loosely coupled application, where the time needed for
communications quickly dwarves not only the time spent in computation tasks, but only the

6 Note, however, that as the two-step method of Wagoner (1969) consists of two iterations (in both of

which the system of equations must be linearised and solved), it will be necessary to distribute the
solution vector to all processors at the end of the first iteration (all to all communication), since it will be
used in the construction of the matrix in the next iteration. It is only after the second iteration that the
distributed solution can be exploited in the parallel analysis of convergence and stability.

44 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

time saving accomplished in the parallelisation of the other processing stages (interpolation of
reaction rates and matrix assembly). We are hopelessly smack in the middle of the worst
possible scenario for parallelisation; a loosely coupled application with a very small computing-
to-communication time ratio.

3.3.5. Convergence and Stability

In the solution of the system of equations arising from the linearisation of the abundance

derivatives, it is necessary to check for convergence and stability of the solution. Convergence
and accuracy rely heavily on the chosen tΔ ; in this regard the variation of the mass fraction
abundances has to be kept below a limit. It has been found helpful to limit the time step by
changes in the chemical composition, assuming that the relative abundance variation of the
most abundant nuclei (i.e., Y > 10−14, with Y = X/A being the mole number) do not exceed 15%
(Wagoner 1969), that is:

1410%15 −
Δ+

>∀<
Δ

=
−

it
i

i
t

i

t
i

tt
i Y

Y
Y

Y
YY

 (3.13)

To determine the new tΔ using the largest abundance variation, the complete solution

vector obtained from the solution of the system of equations for the abundances derivatives,
has to be traversed and searched for the largest abundance variation amongst the most
important nuclei. If the largest abundance variation is too large, the results of the current step
are cancelled and the time step reduced. A new system of equations is constructed and solved
for the new time step, for which convergence and stability has also to be verified. It is worth
mentioning that since the nucleosynthesis code is implicit, we do not need to deal with other
restrictive conditions on the time step, such as the Courant- Friedrichs-Levy condition
(Kippenhahn et al. 1996).

In the parallel execution of the test of stability, every processor holds a portion of the solution

vector (see Fig. 23), and therefore all processors traverse their local solution vector looking for
the largest abundance variation with respect to the previous solution vector. At this point there
is no other alternative but to distribute all the largest variations amongst all processors (all-to-all
communication), so that every processor knows whether any of the nuclei as changed beyond
the maximum abundance variation. At this point there may be found two possible outcomes:

1. At least one relative abundance variation of the most abundant nuclei exceeds the

imposed limit: In this case, all processors reduce the time step, and proceed to build
and solve a new system of equations with the new time step.

2. All abundance variations are below the limit: In this case, all processors share their
local, partial solution vectors in an all-to-all communication scheme, so that every
processor obtains the complete solution vector. This is necessary, since the
processors need the complete solution vector to construct their local portion of
matrix A at the next iteration.

Note that since the several processors have to traverse only a subgroup of the nuclides, the

check of stability is performed much faster in the parallel version as compared to the sequential
code, where all nuclides' variations have to be analysed by a single processor. For instance,
with a parallel execution of 4 processors, the stability check is executed almost 3 times faster
than the sequential version (see section 3.5). It must be stressed, however, that this accounts

CHAPTER 3 - Post-Processing Parallelisation 45

only for the stability check itself, and it does not take into account the communication times of
solution vector and maximum relative abundance variations distribution. On top of that, the
stability check holds a rather small fraction of all computing time (0.06% in its sequential form),
therefore the little benefits in the parallel execution will have little to none impact on the overall
performance of the parallel execution.

3.3.6. Energy Released Computation

Once we have obtained how the different nuclear reaction rates have made the abundances

evolve at tt Δ+ , the calculation of the energy generation rate at this specific time step of the
computation can be obtained by summing the energy generated by all reactions in tt Δ+ . That
is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

= ∑
= sg

erg
NREi

itotal
,1
εε (3.14)

The parallelisation of this calculation might seem an easy task at first glance; that is, providing
an equal number of reactions to each of the processors and then having each node calculate
the partial nuclear energy generation rate for all the reactions assigned to it, which may
afterwards be aggregated to the values obtained by all processors, therefore yielding the total
energy generation rate.

However, a close scrutiny of the reaction rates that are available to each of the processors
(see section 3.3.2), reveals that the problem is actually far more complicated than that. Firstly
there is no such thing as an equitable distribution of reaction rates amongst processors (Fig.
19), and second, and more importantly, there exist reaction rates that are relevant to several
processors at the same time, which would cause that some of the reactions were included
more than once in the calculation of the nuclear energy generation rate, yielding wrong results
for totalε . Alternatively, if we have all processors keep all reaction rates available, we would

loose the benefit of parallelisation of the interpolation of the reaction rates, which, in our
parallelisation approach, is limited to the strictly necessary reaction rates in order for the
processor to be able to construct its portion of matrix .A

In order to overcome this hurdle, in this Thesis we have devised a probabilistic approach that

provides a nearly optimum distribution of the reaction rates amongst processors, with no
overlaps, and evening up (as much as possible) the partition of reaction rates for the parallel
released energy computation. Let NRE be the number of nuclear reaction rates used in the
simulation (3551=NRE in this Thesis), locNREi _ the relevant reactions7 available to

processor i , P the number of processors, locENREi _ the number of reactions assigned to

processor i for released nuclear energy calculation, therefore:

1. Sort processors in ascending order of locNRE _ .

7 The term relevant reaction refers to those reaction rates that are needed for a specific processor for

the construction of their parallel portion of matrix A , and are therefore calculated by the processor
during the parallel interpolation of reaction rates.

46 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

2. First assign all those processors with a number of relevant reactions below the
average PNRElocNRE /_ < . This avoids that processors with less relevant
reactions suffer from 'starvation' of reactions.

3. While there are still un-assigned reactions:

a. Pick-up randomly a nuclear reaction r

b. If the reaction r has not been assigned to any other processor, assign r to
the processor that:

i. Has reaction r as a relevant reaction, and

ii. Has the minimum locENRE _ .

Note the use of random numbers in the range [1:NRE] to achieve a more even distribution of
reactions. If reactions were checked linearly, processors with big chunks of contiguous relevant
reactions would get more reactions (hence more computing work) than the other processors.

Fig. 24 Partition of nuclear reactions to 4 processors for parallel nuclear energy calculation

In Fig. 24 it is shown the partition of nuclear reactions to four processors for the parallel

calculation of the released nuclear energy. Compare it with the relevant reactions distribution
depicted in Fig. 19; the former has no overlapping reactions amongst processors, and the

CHAPTER 3 - Post-Processing Parallelisation 47

A

number of reactions assigned to each processor has been levelled out. This will provide for a
more uniform distribution of the workload between nodes.

 Process 0 Process 1 Process 2 Process 3

Assigned reactions to calculate nuclear
energy generation (ENRE_loc) 529 2389 1469 1053

Relevant reactions to construct matrix A
(NRE_loc) 529 1079 1085 858

Table 1 Partition of nuclear reactions to four processors

Table 1 shows the precise values of locNREi _ and locENREi _ for the parallel execution

with four processors depicted in Fig. 24. It can be seen that those processors with less reaction
rates available than the average retain all their available reaction rates to calculate their
contribution to the energy generation (i.e. Process 0), whereas other processors with many
more reaction rates available (i.e. Process 1), reduce considerably the number of reactions that
have to take into account in their partial calculation of the released energy.

3.4. Validation of the Parallel Application

parallel application has to be validated both in performance and in the correctness of
their output results. There is no point in getting results much faster if at the end of the

day the parallel application yields biased, wrong or incomplete results. In this regard, the
baseline program provides a built-in mechanism for validating the results of the parallel
program (it has to yield the same results as the sequential code for all simulation inputs), as
well as a basis for calculating improvements in the performance (that is, how much faster is the
parallel version with regard to the sequential version).

The validation has been realised on the basis of the following: 1) Abundance evolution for
the most abundant nuclei (i.e. those with final abundance 410>iX), 2) Error in the solution of

the system of equations, and 3) Released Energy Calculation. These are described in the
following.

Fig. 25, Fig. 26, and Fig. 27 show accuracy comparison between the sequential and parallel

solver, in the solution of the system of equations

tttt XXA =⋅ Δ+ . (3.15)

Accuracy of the final solution is defined is terms of the Mean Absolute Error (MAE), the Mean
Square Error (MSE), and the Mean Relative Error (MRE), which we define as the average error
across all NIS (number of isotopes, NIS = 606 in our simulation) elements of the solution
vector:

48 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

()∑ Δ+−=
ji

ttijt iXAiX
NIS

MAE
,

)()(1
 (3.16)

()2
,

)()(1 ∑ Δ+−=
ji

ttijt iXAiX
NIS

MSE (3.17)

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= Δ+

ji t

ttijt

iX
iXAiX

NIS
MRE

,)(
)()(1

. (3.18)

The solution of the system has to be provided with sufficient precision, in order to provide
accurately the net flows of the nuclear reactions, both at high temperatures (when some nuclear
reactions proceed in both directions almost equally rapid), and also for those small net flows
resulting from reactions in equilibrium (Wagoner 1969). On top of that, it is important to
conserve the baryonic number, so that numerical errors are not propagated after a large
number of iterations (Prantzos et al. 1987).

Fig. 25 Mean absolute error comparison between sequential and parallel solvers

Fig. 25 and Fig. 26 demonstrate that both solvers (the sequential solver using a pseudo-

Gaussian elimination technique and the parallel solver using a parallel multifrontal
decomposition algorithm) achieve precisely the same level of accuracy in the solution of the
system of equations. It is shown that the temporal evolution of the error, suffers larger
fluctuations during the first stages of the simulation, only to get slightly more stable as the
computation proceeds. Note however the great variability of the error during the entire time-
span of the simulation. This behaviour is generalised across sequential and parallel solvers. In
turn, Fig. 27 shows the mean relative error. It is representative to compare both errors, and see

CHAPTER 3 - Post-Processing Parallelisation 49

how the several patterns are common between both solvers. Even though the smoothed line
(included as an aid for the average visualisation), fluctuates differently for the parallel and
sequential solvers, both are almost equivalent in terms of the average relative error obtained.
Differences in the behaviour are associated to the different algorithms used in the solution of
the system of equations with the temporal evolution of the abundances derivates.

Fig. 26 Mean squared error comparison between sequential and parallel solvers

Fig. 27 Mean relative error comparison between sequential and parallel solvers

50 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

A second and essential element of comparison between the solution of the sequential and
parallel versions of the nucleosynthesis post-processing code, is the time evolution of the
abundances. It is clear that the results of the parallel application shall be within controlled
bounds with respect to the sequential, baseline results. Again, comparison has been made for
those nuclei with final abundances above 410>iX .

Nuclei Final
abundance

SEQ

Final
abundance

PAR

Nuclei Final
abundance

SEQ

Final
abundance

PAR
H 1 1,99E-01 1,97E-01 MO 86 1,53E-02 1,58E-02
HE 4 2,13E-02 2,11E-02 NB 87 2,26E-03 2,42E-03
ZN 60 7,04E-03 6,98E-03 MO 87 1,02E-02 1,05E-02
GE 64 7,21E-02 7,06E-02 TC 87 2,04E-03 2,00E-03
SE 68 2,04E-01 2,00E-01 MO 88 6,08E-03 6,41E-03
SE 69 1,04E-03 1,08E-03 TC 88 3,72E-03 3,74E-03
BR 71 1,26E-03 1,32E-03 MO 89 2,91E-03 3,10E-03
KR 72 1,31E-01 1,29E-01 TC 89 7,74E-03 7,92E-03
KR 73 1,97E-03 2,09E-03 MO 90 2,31E-03 2,50E-03
KR 74 1,19E-03 1,28E-03 TC 90 4,34E-03 4,51E-03
RB 75 2,82E-03 2,96E-03 RU 90 6,58E-03 6,65E-03
RB 76 2,48E-03 2,65E-03 TC 91 5,65E-03 6,02E-03
SR 76 7,13E-02 7,07E-02 RU 91 5,06E-03 5,14E-03
SR 77 3,57E-03 3,78E-03 RU 92 8,63E-03 9,15E-03
SR 78 4,16E-03 4,38E-03 RH 92 1,14E-03 1,13E-03
Y 79 4,35E-03 4,52E-03 RU 93 3,68E-03 3,95E-03
Y 80 7,37E-03 7,79E-03 RH 93 5,48E-03 5,67E-03
ZR 80 3,38E-02 3,34E-02 RH 94 6,39E-03 6,80E-03
Y 81 1,21E-03 1,32E-03 PD 94 2,69E-03 2,73E-03
ZR 81 7,43E-03 7,65E-03 RH 95 4,30E-03 4,66E-03
ZR 82 2,18E-02 2,23E-02 PD 95 4,30E-03 4,47E-03
ZR 83 6,45E-03 6,85E-03 PD 96 1,04E-02 1,12E-02
NB 83 8,41E-03 8,43E-03 PD 97 1,56E-03 1,70E-03
ZR 84 3,31E-03 3,58E-03 AG 97 1,94E-03 2,03E-03
NB 84 1,19E-02 1,23E-02 AG 98 2,85E-03 3,07E-03
ZR 85 9,03E-04 9,91E-04 AG 99 1,86E-03 2,05E-03
NB 85 9,54E-03 1,00E-02 CD 99 1,34E-03 1,41E-03
MO 85 4,86E-03 4,86E-03 CD100 1,71E-03 1,86E-03
NB 86 3,30E-03 3,53E-03 CD101 1,05E-03 1,16E-03

Table 2 Results comparison of nuclei with resulting mass fraction abundance above 10-4

The abundances at the end of the simulation are shown in Table 2. All orders of magnitude

are the same for both the sequential and parallel codes, with a maximum variation of ~9% for
101CD and an overall average variation of 5%. Note that one of the reasons for the small
variations in final abundances shown in the above table is the different simulation times at
which they are obtained, since the sequential and parallel versions arrive at different simulation
end times when the computation completes. Whilst the parallel application final simulation time

CHAPTER 3 - Post-Processing Parallelisation 51

is 95.69 sec., the sequential application final simulation time is 94.94 sec. Difference is not
significant, since this time difference would only affect short-lived isotopes, whereas the
computation concludes at the tail of the burst (T~0.7 GK) where short lived isotopes have
mostly already decayed. This accounts for a fraction of the difference in the final abundance.
The rest of the small differences are directly attributable to the different methods used in the
solution of the system of equations, and to numerical round-off errors.

Fig. 28 Results comparison of mass fraction evolution of selected nuclei (1 ≤ Xi ≤ 10-4)

52 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

The comparison of the time evolution for mass fraction of selected nuclei (1 ≤ Xi ≤ 10-4) is
illustrated in Fig. 28. Results arising from the parallel application are drawn using solid coloured
lines (see legend in Fig. 29 below), whereas results from the sequential, 1-node application are
pictured as dark dashed lines. It is evident from this results that both applications yield the
same time evolution of the abundances along the time-span of the simulation. Even though
there are small variations when one zooms into the graphic, these are much less pronounced
for the most abundant nuclei (i.e. 1H, 68SE, and 72KR).

Fig. 29 Legend of selected nuclei (1 ≤ Xi ≤ 10-4)

CHAPTER 3 - Post-Processing Parallelisation 53

The last element of validation is the energy released in the simulated X-ray burst. Energy
contribution from all nuclear reactions taking place during the burst, are summed together to
produce the final energy released. A typical curve is obtained with a very rapid increase in
energy generation at the beginning of the burst, and a gradual decay as the burst proceeds;
this is shown in Fig. 30 below.

Fig. 30 Comparison of energies released in both sequential and parallel solvers

Note that the results obtained for the sequential and parallel versions of the code are almost
undistinguishable, following precisely the same time evolution. It is only when we zoom in to
see the detail, that some pikes and variations can be seen. These small differences are directly
attributable to numerical round-off errors between the two different approaches.

54 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

T
3.5. Results and Discussion

he performance of the parallel execution has to be compared with the performance of
the sequential application, in which the system of equations is solved by means of an

iterative technique. The sequential, baseline program provides a built-in mechanism for
validating the results of the parallel program, as well as a basis for calculating improvements in
the performance (that is, how much faster is the parallel version with respect to the sequential
version).

Fig. 31 Performance results: Total execution time

Being smack in the middle of the area of a loosely synchronous application (see section

2.3.3), parallelising a post-processing nucleosynthesis code poses a serious risk of obtaining
worst performances than the sequential version if the ratio between computation and
communication time is not properly maximised. Unfortunately, in our case the risk has
materialised, and the parallel application actually takes frustratingly longer to complete than its
1-node counterpart. This is depicted in Fig. 31, showing the total execution time for an
increasing number of nodes used in the simulation. The reference value (sequential version)
can be found at 1=P and the total execution time is depicted as the ratio between the parallel
and sequential execution times ()1(/)(tPt). Two different executions are provided, P2 and P4,
to designate an execution where the first two or four nodes, respectively, are physically located
on the same machine (that is, a multiprocessor machine). Execution P2 has been obtained
using only dual core workstations, whereas execution P4 has been run with one quad-core
workstation for the first four nodes and the rest of the processors being hosted on dual core
workstations.

CHAPTER 3 - Post-Processing Parallelisation 55

Fig. 32 Performance results: Partial execution times

56 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

It is clear that the execution time increases significantly when nodes physically separated
participate in the simulation (that is, on different workstations of the cluster), whereas when the
parallel application is run using nodes of the same machine, the execution time is kept at bay
with respect to the sequential execution time, and even small speed-ups are obtained when
using a quad core machine, for two, three and four nodes.

We set off to determine where is the parallel execution taking most of the time, and which

part of the simulation is to be blamed for the significantly longer execution times. Fig. 32 shows
the partial execution times of the rates calculation (upper left), matrix assembly (upper right),
stability check (bottom left), and energy released (bottom right) stages of the simulation (see
section 3.3). It is clear from these curves that the parallelisation strategy for these parts is
excellent and that significant speed-ups are obtained in all cases when the processing stage is
run in parallel. Execution times are shown as the ratio between the parallel and sequential
execution times ()1(/)(tPt). For instance, the matrix assembly runs almost five times faster
using five nodes in parallel than just one node taking care of all the matrix assembly work, and
completes almost seven times faster when using ten nodes in the assembly of the matrix. This
is very close to a nearly-ideal speed-up (see section 2.4).

Fig. 33 Performance results: Matrix inversion time

The stability check and energy released computation time also yield valuable increases in

performance (although smaller than the matrix assembly case). Both run consistently faster in
the parallel version than in the sequential application. Accordingly to the discussion held in
section 3.3.2 the interpolation of reaction rates gives the smallest benefits in terms of an
increase of performance (due to overlapping reaction rates being calculated by several nodes
at the same time). However, even in this case, the rise in performance execution is evident, for
instance, with a speed-up of 2.5 using 5 nodes in the parallel execution. Consequently, these
stages are not to be blamed in the performance lost when the total execution time is taken into
account.

CHAPTER 3 - Post-Processing Parallelisation 57

Fig. 33 shows the performance results for the matrix inversion time (see section 3.3.4). In this
case the behaviour bears little in common with the other computation stages; the solution of the
system of equations takes consistently longer for the parallel application for any number of
nodes used in the computation. Note that for the matrix inversion, we do not even get the small
improvements of using nodes physically located on the same machine. Even though the
execution time is more or less controlled up to four nodes (the simulation has been obtained
using a quad-core machine), the performance plummets dramatically for a higher number of
processors.

So the main responsible for loosing so much performance seems quite clearly the solution

phase of the system of equations. However, since the matrix A is perfectly distributed amongst
processors, with no overlapping entries (see section 3.3.3); it is conceivable to think that the
total time strictly devoted to computation in the parallel solution should not be much longer than
the time used to solve the system of equations in the sequential version. There might be an
overhead in the case of the parallel application, due to the multifrontal decomposition and task
assignment to the several processors, but by no means this increase in the computation time
accounts for all the loss in performance.

Fig. 34 Performance results: Communication time

There is still one more component to be investigated, namely the overall communication

time. In order to get an estimation of the evolution of the communication time for the parallel
application, the time spent on communication points 2, 3 and 4 (see Fig. 18) has been
measured and it is depicted in Fig. 34. It can be clearly appreciated the same pattern that
underlies the matrix inversion and total execution times; the communication time increases
slightly from one to four nodes (using a quad-core machine for the first four nodes), but soars
rapidly whenever physically separated nodes are incorporated into the parallel execution. This
result is consistent with the multiprocessor architecture described in section 2.3.1, where it was
claimed that communication times had to be shorter for nodes sharing resources (common

58 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

memory, communication buses, etc) than for those that were not physically located in the same
machine, due to network latencies, and the overhead posed by the communication protocol.
Also, implementations of the message passing interface (MPI) have been generally designed to
detect when the nodes are physically located on the same machine, therefore optimising the
buffering, synchronisation, and message passing mechanism for those nodes (MPI Forum
2009, and MPICH2 2011).

Note that in Fig. 34 it is not included the communication time spent within the matrix

inversion stage. This is due to the fact that MUMPS does not provide a mechanism to inform
the user of the time spent on message passing. Be that as it may, and in light of the behaviour
of the performance of the solution of the system of equations (Fig. 33), it will most possibly
follow the same pattern as the one shown in Fig. 34. We can hence safely arrive at the verdict
that the high communication costs, together with a relatively limited computation time, are the
main responsible for the loss in performance.

Fig. 35 Performance results: Aggregated simulation time (percentage)

It is still left the question of why the gains in performance in the stages of rates calculation,

matrix assembly, stability check, and released energy do not make up for the increase in
communication times. Fig. 35 shows the percentage of the total simulation time devoted to
initialisation, global communications (not including MUMPS internal communications during the
solution of the system of equations phase), rates calculation, matrix assembly, stability check,
energy generation, and matrix inversion (solver). The sequential execution spends most of the
time inverting the matrix (82%) and building (15%) the system of equations. Energy generation
accounts for just 1% of the total computation time. The relative time spent on the interpolation of
reaction rates is just a 0.44% of the total execution time, whereas only 0.06% of the time is
spent on stability check. With an increasing number of nodes participating in the simulation, the
time spent on global communications and in the solution of the system of equations gradually
tends to account for nearly all computation time, so the time spend in the other processing

CHAPTER 3 - Post-Processing Parallelisation 59

R

stages becomes virtually negligible with respect to the former. This is the reason why the
improvements in performance in matrix assembly, interpolation of reaction rates, stability check
and energy generation, are close to nothing when compared with the cost of global
communications.

Fig. 36 Performance results: Aggregated simulation time (absolute)

To put this in context, Fig. 36 shows the absolute aggregated simulation time8, where it is
seen that the time spent on stages other than global communications and solving the system of
equations that arises from the linearisation of the set of differential equations describing the
time evolution of the network abundances is negligible.

3.6. Discussion on the Chosen Solver

esults of previous sections reveal that the solution phase of the system of equations
takes up nearly all the execution time in the parallel version of the code. Having such a

loss in performance, it is compulsory to analyse whether the selection of MUMPS as a solver
has been appropriate. In other words, it must be analysed whether MUMPS is to be blamed for
the loss in the performance of the parallel application.

MUMPS (MUltifrontal Massively Parallel sparse direct Solver) is a software application for the

solution of large sparse systems of linear algebraic equations Ax = b on distributed memory
parallel computers. It was initially funded by LTR (Long Term Research) European project
PARASOL (1996-1999), and it is currently used widely by industries (Boeing, EADS, EDF,

8 For comparison purposes, a simulation with only 5000 models has been considered.

60 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

Petroleum industries, Buttari et al. 2010), and numerical simulations of fusion plasma (Åström
2009). It has been also integrated within commercial and academic packages, and on top of
that MUMPS represents one of the scarce professional and supported public domain
implementations of the multifrontal method.

Fig. 37 Alternatives for direct sparse solvers

There are other alternatives for direct sparse solvers, as shown in Fig. 37 (Li 2010). However,

some of them only work with symmetric positive definite matrices (DSCPACK, PaStiX, and
PSPASES); others are limited to working only with symmetric matrices (DMF, and SPOOLES).
SuperLU_DIST and S+ have only a slightly worst performance than MUMPS, but they are less
widely used by industry and researchers. Finally, WSMP (Gupta 2002) has reportedly a similar
performance to that of MUMPS (Gupta et al. 2001), but it is a commercial IBM solution (the fee
for a perpetual license is $16K for 512 - or unlimited - cores), and the extra cost does not pay
off for the very little increase in performance.

Fig. 38 MUMPS solver performance for large matrices

The MUMPS solver performance for large matrices is excellent (Fig. 38, Amestoy et al. 2000).

For matrices of order ≥ 100k, very good speed-ups are accomplished using MUMPS (e.g.
between 2.8 up to 3.7 with 4 processors). And even higher speed-ups are attained with higher
number of processors (e.g. between 7.1 up to 10.6 with 16 processors). Note that speed-ups
increase with matrix size, in a similar way as big images get higher compression rates than
smaller images.

CHAPTER 3 - Post-Processing Parallelisation 61

In the case of medium sized matrices, the solver performance is still very good (Fig. 39,
Amestoy et al. 2001b). For matrices of the order between 10k and 100k, good speed-ups are
accomplished using MUMPS (e.g. between 2.4 up to 3.1 with 4 processors, depending on the
matrix size). Again, higher speed-ups are attained with higher number of processors (e.g.
between 7.2 up to 8.4 with 16 processors).

Fig. 39 MUMPS solver performance for medium sized matrices

Not much data can be found in the literature with regards to the performance of the parallel

solvers for matrices of order ≤10k. This is due to the fact that as the problem dimension
shrinks, the distributed computation time is also reduced; whilst communication time
diminishes much less noticeably. This provokes that the accomplished speed-ups are greatly
affected. For instance, Fox (2007) reports speed-ups of 1 (i.e. no speed-up at all) with 4
processors, and a speed-up of 1.8 for 16 processors, in solving a system with 5.535 elements
using the MUMPS solver.

In light of these results, it seems clear that the performance of the MUMPS solver is not to be

put into question, but rather, the order of the nucleosynthesis matrix, which is too small to
maximise the ratio between computation time and communication time. A long story short; the
sequential application takes much shorter time in solving the system of equations, than the
time that the parallel application spends in communications. The linearised system of equations
of the network abundances derivatives is a small, sparse matrix whose order is limited by the
number of isotopes of the nucleosynthesis network (NIS = 606 in this Work). Even if we were to
increase the number of isotopes of the nucleosynthesis network, in an attempt to maximise the
computation to communication ratio, maybe we could increase the order of the matrix A up to
roughly a thousand nuclides. This is still too small a number so that the problem size can be
increased to a point where speed-ups are accomplished in the parallel solution of the system of
equations. The main conclusion to be drawn here is that the parallelisation of a post-processing
nucleosynthesis code is therefore not worth the effort.

As a next step, we will parallelise the fully coupled hydrodynamic code (which falls into the

category of a fully synchronous application), where better opportunities for parallelisation exist.
This will be dealt with in the following chapter.

This Page Intentionally Left Blank

CHAPTER 3 - Post-Processing Parallelisation 63

H

CHAPTER 4
PPAARRAALLLLEELLIISSAATTIIOONN OF A HYDRODYNAMIC CODE

"There are now three types of scientists: experimental, theoretical, and computational."

Silvan S. Schweber
Quoted by Victor F. Weisskopf, 'One Hundred Years of the Physical Review', in H. Henry Stroke, Physical

Review: The First Hundred Years: a Selection of Seminal Papers and Commentaries, Vol. 1, 13.

"Conversion of any code to parallel takes a few weeks, perhaps longer."

Ed Barsis
Quote collected by Steve Plimpton in the Massively Parallel Computing Research Laboratory

at Sandia National Laboratories.

4.1. Introduction

ydrodynamic calculations of type I X-ray bursts and their associated nucleosynthesis
have been extensively addressed by different groups (see for instance early models by

Woosley & Taam 1976, Maraschi & Cavaliere 1977, and Joss 1977), which shows the great
scientific interest that is posed onto determining the processes that trigger the thermonuclear
runaways as well as in the determination of the final composition of the neutron star surface
right after the explosion. In addition, several thermal, radiative, electrical, and mechanical
properties of the neutron star depend critically on the specific chemical abundance pattern of
its outer layers.

In order for this simulation to be as realistic as possible, it is necessary to make use of a
complete hydrodynamic code, coupled with a fully updated nuclear reaction network, so that
the model is capable of self adjusting both the temperature and density of the stellar envelope
according to the nuclear reaction processes that take place in the surface of the neutron star.
The scale of this fully coupled models, usually make the simulation computationally prohibitive
for large reaction networks, and therefore the scientific community often has to resort to using a
reduced nuclear reaction network truncated around Ni (Woosley & Weaver 1984; Taam et al.
1993; Taam et al. 1996 –all using a 19-isotope network), Kr (Hanawa et al. 1983 –274-isotope
network; Koike et al. 1999–463 nuclides), Cd (Wallace & Woosley 1984 –16-isotope network), or
Y (Wallace & Woosley 1981 –250-isotope network). On the other hand, Schatz et al. (1999,
2001a) have carried out very detailed nucleosynthesis calculations with a network containing
more than 600 isotopes (up to Xe, in Schatz et al. 2001a), but using a one-zone approach
(Woosley et al 2004, José et al. 2010, Fisker et al. 2006).

One of the main goals of this Master Thesis is to successfully parallelise the spherically
symmetric, Lagrangian, hydrodynamic code SHIVA (José 1996; José & Hernanz 1998), in
pursuit of significant speed-ups that allow for detailed hydrodynamic simulations with extended
nuclear reaction networks in affordable times. It was discussed in section 2.3.2 that this
problem architecture represents the so called fully synchronous parallelism, indicating that (at
least in principle) each computation is performed synchronously (or simultaneously) to all data.
The main point here is that all future calculations of decisions hinge on the results of the earlier,
preceding data calculations. Parallelisation can be achieved by having each node actually
cycling through a subset of the neutron star envelope shells (i.e. a number of contiguous
shells). If this group of shells, assigned to each processor, is not homogeneous, the workload

64 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

may vary across different nodes. Fig. 12 showed that this type of problem architecture is more
suitable for parallelisation, hence better results are expected than those obtained with the
parallelisation of the post-processing nucleosynthesis code (see 3.5 - Results).

4.2. Hydrodynamic Simulation Code: SHIVA

4.2.1. Application Description

The hydrodynamic simulation code to be parallelised in this Thesis is a modified version of

SHIVA, a one-dimensional (spherically symmetric), hydrodynamic code, in Lagrangian
formulation, built originally to model classical nova outbursts (José 1996; José & Hernanz
1998). A flow chart describing the basic structure of the SHIVA code is outlined in Fig. 41. The
code uses a co-moving coordinate system, where time derivatives of any variable are
calculated with respect to a grid attached to the fluid, as described in Kutter & Sparks (1972).
This formulation avoids the spurious generation of numerical diffusion, which causes many
problems in the attempt to model burning fronts.

Despite convective mixing has certainly a multi-dimensional nature, most of the main
observational features that characterize type I X-ray bursts (XRBs) can be reproduced by
spherically symmetric models. From a hydrodynamical viewpoint, nova outbursts and XRBs are
similar objects: both are powered by thermonuclear explosions driven by mass accretion on the
surface of a compact star (a white dwarf, in the case of a nova; a neutron star, for an XRB).
Although the basic stellar structure equations governing nova explosions and XRBs are
identical, the different surface gravity (much stronger in a neutron star) induces dramatic
differences in the physical conditions that define such cataclysmic events.

4.2.2. Shell Structure

In the simulations, the outermost layers of the neutron star are divided into N concentric
mass shells (with intershells labelled with a subscript i , ranging from 1, at the very centre -or
innermost shell- of the star, to 1+N at the surface; see Fig. 40). This structure defines a
Lagrangian grid, where the mass interior to the ith-intershell, im , and the star’s age, t , are taken

as the independent variables. The code computes the time evolution of several physical
variables, such as the luminosity, L , the radius, r , the velocity, v , the temperature, T , and the
density, ρ , for each shell. Following Kutter & Sparks (1972), L , r , and v are evaluated at the
intershells (and are denoted by subscripts i), whereas other variables, such as T , or ρ , are
shell-centred (i.e. evaluated at mass points defined by geometric averages, as

iii mmm ⋅= ++ 12/1 , and denoted by half-integer subscripts 2/1+i). The time step is defined

as nnn ttt −=Δ ++ 12/1 , where nt represents the time elapsed since the beginning of the
simulation.

CHAPTER 4 – Parallelisation of a Hydrodynamic Code 65

1st

2nd

ith

(N-1)th

Nth

Envelope shells

upper intershell

midpoint

lower intershelli

i+1

ith

iiii murL ,,,

1111 ,,, ++++ iiii murL

,2/12/12/12/1

2/1,2/12/12/12/1

,,,
,,,

++++

+++++

iiii

iiiii

mkE
qPVT

ε
ρ

Fig. 40 Shell structure and assignment of variables at grid points.

4.2.3. Computation Flow

From an initial converged model the software computes the EOS of matter, opacities and
artificial viscosity (t

iP 2/1+ , t
iq 2/1+ , t

iE 2/1+ , t
ik 2/1+ , t

i 2/1+ε). Using these variables, the linearised

system of equations for the physical values is constructed using the values at the current time t
(iL , ir , 2/1+iρ , iu , 2/1+iT)9. The solution to the system of N5 equations is obtained by means of

the Henyey's Method (Henyey et al. 1964), an iterative implicit technique because the structure
equations have to be solved in parallel with the energy transport equations. The solution to the
system of equations yields the new physical values at time tt Δ+ (tttt

ii
T Δ+Δ+

++ 2/12/1
,ρ). In particular,

the values of temperature and density for each of the shells of the envelope allow for the
computation of the nuclear abundances evolution and energy generation. This is computed for
each of the shells. The next step develops the accretion of matter, tM Δ⋅Μ=Δ & establishing a
new mass grid and computing a mass rezoning within the envelope preserving the total number
of mass shells. Finally the new variables have to be extrapolated due to the new mass grid and
accretion ()(tt

iL Δ+′ ,)(tt
ir

Δ+′ ,)(
2/1

tt
i

Δ+
+
′ρ ,)(tt

iu Δ+′ ,)(
2/1

tt
iT Δ+
+′ ,)(tt

i
X Δ+′) and a new iteration proceeds.

Note that in the flow chart of the SHIVA code shown in Fig. 41 overleaf, there appear many

other steps that have been omitted for the sake of conciseness. For a more detailed description
of the computing flow of the SHIVA code, see José 1996; José & Hernanz 1998, and Moreno
2009.

9 Values at current time ‘t’ are indicated without super index; i

t
i LL =

66 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

Fig. 41 Flow chart of the SHIVA code

CHAPTER 4 – Hydrodynamic Parallelisation 67

4.3. Hydrodynamic Parallelisation

4.3.1. Parallelisation Analysis

A first analysis of the flow chart of the SHIVA code reveals two main points where

parallelisation might be exploited; on the one hand the solution of the linearised system of
equations for the determination of the physical variables (Henyey's method) and on the other
hand the determination of the nuclear energy and nucleosynthesis, as these are computed
independently for each of the shells, given a value obtained for the temperature T and density
ρ for the shell. There are other stages that could be computed in parallel (e.g. construction of
the system of equations, extrapolation of variables, etc.), but the experience acquired in the
parallelisation of the post-processing code (Chapter 3) discourages us from tempting to
parallelise routines that are not computationally intensive or that do not fall into one of the
parallelisable problem architectures (perfect parallel, pipeline, or fully synchronous problem
architectures), as the risk of not obtaining speed-ups in the execution is considerably high.

It was discussed in section 3.6 that the parallel solution of a system of linear equations only
achieves acceptable performance for matrices of order ≥10k elements. As the problem
dimension shrinks, the distributed computation time is also reduced; whilst communication time
diminishes much less noticeably. This provokes that the speed-ups are greatly affected
because the communication times largely exceed the distributed computation time. In our case,
the order of the system of equations is N5 , being N the number of shells used in the
simulation. In our simulations we have used 200=N shells which generate a system of 1000
unknowns. In light of the results from the previous chapter, this is clearly not sufficient to
attempt the parallel solution of the linearised system of equations for the physical variables.
Consequently, the only candidate that we will consider for parallelisation is nucleosynthesis and
nuclear energy generation. This processing stage is a clear example of a perfect parallel
application since, given a value of T and density ρ for each shell, and a network of nuclear
reactions, the evolution of the mass fraction abundances can be calculated independently for
each shell.

4.3.2. Performance Prediction

As discussed in section 2.4 it is necessary to assess the application's potential for
parallelisation, and the kind of performance that is achievable for the application at hand, in
order to avoid wasting resources in the parallelisation of an application that is not going to yield
significant speed-ups. Performance estimates are based on timings of the baseline program,
so let ST be the total execution time of the serial application, ppT the serial execution time of

the potentially parallel portion of the code (in our case the total time spent in the nuclear
subroutine), inT and outT the initialisation and output times (see Fig. 42), and pN the number of

processors participating in the parallel computation. Assuming perfect parallelisation of the
potentially parallel portion of the code (that is, neglecting communication costs), the maximum
theoretical speed-up is given by the expression:

=
−+

=
++

≈

PPS
p

PP

S

out
p

PP
in

S

TT
N
T

T

T
N
T

T

T
up-Speed

68 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

=

⋅
+

=

pSp

PP

S

PP

N
pp-1

1

TN
T

T
T

-1

1
 (4.1)

Where we have defined the parallel content, p , as a proportion:

timecodewhole
 timeparallely potentiallp = (4.2)

Expression (4.1) results in the well known Amdahl’s law (Amdahl, 1967) which is applied to

calculate the theoretical speed-up as a function of the parallel content p and the number of

CPUs that will be used pN . One important conclusion of this law is that the maximum speed-

up accomplished is finite, that is, there is an upper bound for the speed-up that can be
achieved by the parallel program, regardless of the number of processors used; when

∞→pN , the maximum achievable speed-up is ()p-1/1 .

ST

Potentially parallel portionInitialisation Output

inT outTPPT

Whole code

Fig. 42 Timing the baseline program to estimate likely parallel performance.

Let us incorporate a more realistic approach for the calculation of the maximum speed-up

achievable. After the parallelisation of the nucleosynthesis at each of the shells, it is clear that
each processing node will distribute to the other processors the mass fraction abundances
obtained in the computation of their assigned shells. This represents an ALLGATHER
communication procedure (MPI Forum, 2009) where all processors get the data sent by the rest
of processing nodes. The information in this case is distributed by means of a ring algorithm
where in the first step of the algorithm, each node i sends its contribution to node 1+i and
receives the contribution from the processor 1−i (with wrap-around). From the second step
onwards, each process i forwards to process 1+i the data it received from process 1−i in
the previous step (Pacheco 1997). The time taken by this algorithm is given by (Thakur et al,
2002):

() ()
βα n

p

p
pcomm N

1N
1NT

−
+−= (4.3)

where n is the total size of the data to be received by any process from all other processors, α
is the latency (or start-up time) per message, independent of message size, and β is the

CHAPTER 4 – Hydrodynamic Parallelisation 69

transfer time per byte. With the incorporation of the communication time, the formula (4.1) can
be expressed as:

()
S

comm

p T
T

N
pp-1

1upSpeed

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

≈− (4.4)

It has to be noted that both the latency and the transfer time depend specifically on the

speed of the network and of the communications of the cluster of processors where the parallel
application is being executed. It will also depend on the heterogeneity of the nodes (e.g.
workstations with different processing power, or different Operating System), and ultimately on
how finely has been the cluster tuned to optimise data transfer and communications. They are
therefore difficult to be analytically predicted, and are usually measured using real data and
extrapolating communication times from observations (Foster, 1995).

Fig. 43 Estimation of the parallel performance of the parallel version of the SHIVA code

70 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

Executions of the serial, baseline version of the SHIVA code, have yielded a parallel content
coefficient of 0.991273=p . That means that the code spends the most part of the processing
time calculating the energy and nucleosynthesis. This is extremely fortunate, since as it turns
out, the processing stage that represents the main opportunity for parallelisation, is also where
the code spends most of the execution time (more than 99% of the time!). This excellent result
provides for very good theoretical speed-ups when used in formula (4.1), and definitely
encourages the parallelisation of the SHIVA code using this strategy. This is depicted in Fig. 43,
where the theoretical maximum achievable speed-up is depicted along with the ideal
(unreachable) pN (which reflects the idea that applying pN CPUs to a program should cause it

to complete pN times faster). It can be seen that the theoretical speed-up differs more and

more from ideal speed-up as the number of processors increases. This gap from the ideal to
the theoretical speed-up is a function solely of the program‘s serial content. The theoretical
estimation of the parallelisation of the SHIVA code yields nearly ideal speed-ups for 10N p ≤ ,

and very good speed-ups for a larger number of processors. For instance, using all 44
processors of the Hyperion cluster (see section 2.5), a theoretical speed-up = 32 is expected.
This is an excellent and promising result. We will see this result confirmed in the simulations, as
shown in the following sections.

4.3.3. SHIVA Code Parallelisation

As discussed in the parallelisation analysis in the previous section, the main strategy to be

adopted will be to parallelise only the nucleosynthesis and energy generation subroutines, as
these are executed independently on each of the shells, therefore conforming to almost a
perfect parallel problem architecture. The main design decision to be made here is what portion
of the non-parallelisable code the nodes will execute. There are two main options to be
adopted, namely:

• Option 1: Only process root executes all processing stages. When energy and
nucleosynthesis are to be calculated for the current time-step, process root broadcasts
to all other processors the necessary information to compute the nucleosynthesis for a
subset of shells. After the work has been split amongst processors, each CPU can
proceed forward with the computation, independently of the other processors. After all
processors have finished the processing stage, process 0 gathers the new abundances
and energy generated for all shells from all processors. Process root continues with the
simulation (mass accretion, mass rezoning, extrapolation of new physical variables, etc)
and goes on with a new iteration for a new converged model. In the meanwhile, all other
processors remain idle, waiting for the process root to broadcast the input data for the
energy and nucleosynthesis calculation of the next model.

• Option 2: All processors execute an instance of the SHIVA code, so that each process

computes all processing stages (equations of matter, opacities and artificial viscosity,
linearised system of equations for the physical values, solution of the system by means
of the Henyey's method, etc.). When it comes to the computation of the nucleosynthesis
and energy generated, each process performs the computation only on a subset of all
shells. After this, each process broadcasts to the rest of the processors the results of
the nucleosynthesis for their subset of shells. From here onwards, the simulation
proceeds redundantly on all nodes, all of them executing the same code with the same
input data.

CHAPTER 4 – Hydrodynamic Parallelisation 71

In light of the results for the parallel content of the SHIVA code (that is, the nuclear
subroutine consumes 99% of the computing time), is it safe to assume that the computation
time devoted to all the other processing stages will be small, compared to the time needed in
each iteration to broadcast to all processors the data needed to compute their subset of energy
and nucleosynthesis. As a matter of fact, we experienced this behaviour in the parallelisation of
the post-processing code (see section 3.5), where the communication time needed to distribute
the system of equations amongst the processors, was significantly exceeding the time needed
for one processor to solve the system of equations sequentially. A similar behaviour is expected
here; given the small percentage of time spent on the rest of processing stages, it is assumed
to be faster that each processor executes them sequentially (though redundantly) than to send
and receive data back and forth at each iteration. Consequently, in this Thesis we have
implemented Option 2. This choice has the added benefit that when the several processors
arrive to the nucleosynthesis and energy generation processing stage, they all have all
information needed to perform their computations (mainly temperature, density, and current
abundances), and therefore only a broadcast of the new calculated abundances and energy
released has to be executed afterwards.

The SHIVA code parallelisation strategy and processing stages are depicted in Fig. 44
overleaf. Vertical columns represent the several nodes participating in the parallel execution,
and execution time flows downwards. Note that there are only two points of communication;
once at the beginning of the simulation (where the root process broadcasts all initial information
and parameters to all the processors), and subsequently at each iteration model, after the
distributed computation of the nucleosynthesis has been done. Note that this design choice is
in line with the principles discussed in section 2.3, where it was shown that in order to maximise
parallel performance, the communication points had to be kept to a minimum or, in other
words, the computation to communication ratio had to be maximised. In Fig. 44, all tasks
spreading across the nodes are executed simultaneously by all processors. Note how all
reading and writing tasks (initialisation and output phases) are executed by the root process
only, which sends out the needed information to all processors. Information broadcast is kept to
a minimum, by sending only information relevant to the nodes for their execution, that is,
information relevant only to process 0 is not distributed (e.g. information only relevant to be
written to a file).

In order to distribute equivalent workloads to all processors, the total number of shells of the

neutron star envelope is split up into approximately equally sized groups. The shells assigned
to each node are consecutive, so that CPUs compute energy and nucleosynthesis for shells

j...1 , ij ...1+ , mi ...1+ , and so on. Being N the number of all shells, the last processor will
be assigned shells 1+m to N . It has to be pointed out that the current version of the SHIVA
code maintains constant the number of shells (N) used in the simulation (with a required mass
rezoning and physical variables interpolation). Be that as it may, it is envisaged for the near
future a modification of the code so as to include a variable, increasing number of shells (hence
not loosing resolution in the envelope as matter is accreted onto the neutron star in each
iteration).

72 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

P0 P1 P2 PNp-1
…

Initialisation

Initial
Model

After initialization is done by Process 0, broadcast all relevant information to all the processes.
1

t
iP 2/1+

t
iq 2/1+

t
iE 2/1+

t
ik 2/1+

t
i 2/1+ε

iL ir iu 2/1+iT2/1+iρ

EOS of matter, opacities
and artificial viscosity

Linearised system of equations
for the physical values

Solution of a 5N system
of linear equationsN5Henyey’s Method: equations bAx =

New values for physical
values at tt Δ+

tttt
NN

T Δ+Δ+
++ 2/12/1

,ρttttT Δ+Δ+
++ 2/112/11

,ρ tttt
ii

T Δ+Δ+
++ 2/12/1

,ρ… …

…

ALLGATHER of new Abundances and Energy
2

Accretion of Mass: tM Δ⋅Μ=Δ & Mass rezoning within the envelope
preserving the total number of mass shells

)(tt
iL Δ+′)(tt

ir
Δ+′)(tt

iu Δ+′)(
2/1

tt
iT Δ+
+′

)(
2/1

tt
i

Δ+
+
′ρ)(tt

i
X Δ+′

Extrapolation of
variables due to new

mass grid and accretion.

Finalisation

Writing of
results

Nucleosyn.
& Energy

shells m+1..N

tt
Nm

X Δ+
+ ..1

Nucleosyn.
& Energy

shells i+1…m

tt
mi

X Δ+
+ ..1

Nucleosyn.
& Energy

shells j+1…i

tt
ij

X Δ+
+ ..1

Nucleosyn.
& Energy

shells 1…j

tt
j

X Δ+
..1

No
Final Model

Yes

Fig. 44 SHIVA code parallelisation strategy and processing stages

CHAPTER 4 – Hydrodynamic Parallelisation 73

T

4.3.4. Validation of the Parallel Application

Contrary to the parallelisation of the post-processing nucleosynthesis code, the strategy

adopted for the parallelisation of the hydrodynamic SHIVA code does not require to change the
method of inversion of the nucleosynthesis matrix. In the parallel solution of the matrix arising
from the linearisation of the set of differential equations describing the temporal evolution of the
network abundances, it had to be used a parallel solver (MUMPS, see section 3.3.4), which
employed a different method for matrix inversion than the Gaussian elimination technique used
in the sequential version of the post-processing nucleosynthesis code. Since double precision
figures are employed in the computation of the abundances evolution, this change in the solver
implied that the results of the nuclear abundances did not tally with the results of the serial
version to the very last decimal (although, it was obviously very close). This required to set up a
validation procedure (3.4 - Validation of the Parallel Application) to ascertain that the parallel
version of the code actually yielded the same results as its sequential counterpart.

This procedure is not necessary in the case of the parallelisation of the hydrodynamic SHIVA

code. The stages being parallelised are still being executed sequentially on each of the nodes,
so the methods of matrix inversion and nucleosynthesis calculation do not change. As a result,
all output files resulting from the parallel execution have been found to be verbatim with respect
to the output files generated with the sequential execution. The validation has been therefore
carried out with a simple file difference comparator utility.

4.4. Results and Discussion

he theoretical performance predicted in section 4.3.2 has been successfully confirmed
by the simulations with the parallelised version of the SHIVA code. Fig. 45 shows the

excellent results of the speed-up factors accomplished in a simulation with 100 time-steps and
N=200 shells. Note that 100 time-steps constitute a very limited hydrodynamic simulation
(usually simulations can be run for about 200.000 time-steps), but it is representative enough to
calculate parallel execution times with respect to a serial execution with a single processor.
Simulations have been carried out with two different nuclear reaction networks; one with a
reduced network consisting of 324 isotopes and 1392 reactions, and another one with a far
more complete reaction network up to 606 nuclides and 3551 nuclear reactions (Moreno 2009).

 Number of
shells (N)

Number of computed
time-steps

Nuclides
Nuclear

Reactions

Reduced Simulation 200 100 324 1392

Extended Simulation 200 100 606 3551

Table 3 Simulations run for the performance evaluation of the parallel SHIVA code

Results of the reduced and extended simulations are shown in Fig. 45. It can be seen that a
speed-up factor of 26 is achieved with the reduced simulation when 42 processors are used in
parallel to execute the application. On the other hand, an excellent speed-up factor of 35 is
accomplished with the extended simulation when all 42 processors are used in the simulation.
Note that even though the Hyperion cluster is formed by 44 CPUs, there was a non operative
node that reduced the amount of available processors to distribute parallel work to. The results

74 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

obtained are so good that stop short of the results that could be obtained with a perfect parallel
application; this means that the computation to communication ratio is large enough so that
processing work can be distributed in an extremely efficient way amongst processors. As it was
discussed in section 4.3.3, a parallelisation strategy has been adopted, so that the global
communications have been reduced to a single point of information exchange per iteration.
Consequently, each node has a significant amount of processing work to complete before they
need to communicate with the rest of the processors. This leads to a considerable
improvement of the computation speed.

Fig. 45 Performance of the parallel SHIVA code for executions with 324 and 606 nuclides

In Fig. 45 there have also been included the theoretical speed-ups for both simulations.

These theoretical estimations do not take into account the communication or synchronisation
times (see section 4.3.2), as a result, the observed performance will always fall below the
theoretical, ideal speed-up. Overheads also have an impact on the execution time and
contribute to the deviation of the observed speed-up from the theoretical speed-up. This
overhead stems mainly from two sources, both of them out of our control: on the one hand the
additional CPU cycles devoted simply to the management of the parallelism, and the wasted
time or delays spent waiting for communications to complete. On the other hand, competition

CHAPTER 4 – Hydrodynamic Parallelisation 75

from the operating system or even other users using the cluster also can affect performance to
a certain degree. The reason for the theoretical speed-up not taking into account these factors
is that it would overcomplicate the model to predict performance of the parallel application.
Finally, some minima can be seen in the figure (e.g. 32 and 37 processors). They are caused by
an uneven distribution of workload for this specific number of processors. It is also possible that
the processors used at those points are connected with slower Ethernet connections to the
clusters, or that perform additional cluster management tasks that uses up part of their
computational resources.

Fig. 46 Performance of the parallel SHIVA code for different levels of compiler optimisation

Note the loss in performance when more processors are used than the physically available

CPUs (42 effective CPUs). For NP=43, and NP=44, approximately 100% and 200% worse
execution times are obtained respectively, as compared to the execution times of the parallel
application when using 42 processors. The fact that a single CPU has to interleave the work of
more than one node, introduces interruption, synchronisation, and prioritisation overheads that
extremely penalise the concurrent execution of the simulation. The maximum number of
physically available CPUs will constitute therefore an effective limit in the number of processors
used in the parallel execution.

76 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

As expected, considerably higher speed-ups are obtained when we increase the problem
size by using a nuclear reaction network with 606 isotopes and 3551 reactions. The speed-up
accomplished in this simulation exceeds in approximately 34% the performance of the
execution with a reduced nuclear network (26 versus 35 factors respectively). This is a
consequence of increasing the problem size, which is essentially equivalent to increasing the
amount of parallelisable computation (that is, the nucleosynthesis calculation), and therefore
the potential parallel content also increases (0.991273=p for the reduced simulation, whereas

0.997382=p for the simulation with an extended nuclear reaction network). This, in turn,
improves the curve of the modelled, theoretical speed-up, hence diminishing the gap from ideal
speed-up.

The effect of increasing the amount of parallelisable computation also occurs when different

optimisation options are used in the compilation of the parallel application code. Fig. 46 shows
the speed-up obtained for a simulation using a reduced network of 324 isotopes and 1392
reactions, with compiler optimisation options -01 and -02, respectively. Option -01 omits
optimisations that tend to increase the object size, and creates smallest optimised code. On the
other hand, option -02 (the default setting) enables many optimizations, including vectorisation
and creates a faster execution code than option -01 (Intel 2011). The code with the smallest
level of optimisation executes slower than the code compiled with a faster optimisation option.
This has the effect of increasing the computation time (while the communication times are
maintained), and therefore the speed-up accomplished increases. It is important to remark that
it is the speed-up that is increased because of the slower computation times, but the total
execution time is worse for the code compiled with option -01 than for the code compiled with
option -02. As an example, the default optimisation level (-02) runs the code with a single
node in 264.3 seconds, whereas if no optimisation is used (-01), the sequential version of the
code completes in 395.9 seconds (it takes a 50% longer to complete). It is obviously preferable
to use the default optimisation option to compile the code.

100 Time-steps execution NP =1 NP=10 NP=20 NP=42

Reduced Simulation
(324 isotopes, 1392 reactions)

264.3 sec. 32.3 sec. 17.5 sec. 10.2 sec.

Extended Simulation
(606 isotopes, 3551 reactions)

1237.8 sec. 120.6 sec. 64.5 sec. 35.2 sec.

Ratio 4.7 3.7 3.6 3.4

Table 4 Execution times for the reduced and extended simulations for different number of processors

In line with the above, execution times of the simulation with 324 and 606 nuclides are

depicted in Fig. 47, where execution times have been normalised to the sequential, single node
execution times of the simulation with the reduced nuclear reaction network. As the number of
nodes increases, execution time decreases faster for the extended simulation than for the
reduced one (i.e. larger speed-ups are accomplished, as shown in Fig. 45), but it obviously
takes more time to complete the simulation since the amount of data to be processed is
substantially larger. It is interesting to see that the ratio between the execution times for the
reduced and extended simulations, decreases almost monotonically, albeit slowly, as the
number of CPUs participating in the execution is augmented. This tendency brings us to think
that for a sufficiently high number of parallel processors, the ratio of execution times for the

CHAPTER 4 – Hydrodynamic Parallelisation 77

reduced and extended simulation may stabilise and converge to a specific, constant value.
Table 4 lists explicitly the execution times for the reduced and extended nuclear reaction
networks in a simulation with 100 time-steps. The ratio between execution times decrease from
4.7 with NP=1, down to 3.4 with NP=42.

Fig. 47 Ratio of execution time of the parallel SHIVA code with 324 and 606 nuclides

Amdahl's law (Amdahl, 1967) was introduced in section 4.3.2 and was shown to predict an

upper limit to the potential speed-up that can be accomplished by applying multiple CPUs to
the parallel solution of a complex problem. It was argued that this upper limit depends on the
amount of code that cannot be parallelised (the so-called, serial content of the program) and
that was independent of the number of processors being used in the simulation. A number of
authors have discussed the relevance of the Amdahl's law arguing that it is possible for NP
processors to execute a program in less than 1/ NP of the time that it takes to execute serially
(see for instance Venkatesh et al. 2005, Rao et al. 1998, and Sutter 2008). This is the so called
superlinear speed-up and it is mainly attributable mainly to differences in the parallel and serial
versions of the code, secondly to cache optimisation differences when more than one
processor are used (e.g. a better use of cache memory), and finally to small differences in the
initialisation or output phases of the execution. In our simulations we have achieved superlinear
speed-ups when executing a simulation with 606 isotopes and 3551 nuclear reactions network,

78 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

running in parallel with less than 10 processing nodes. Details of the speed-up shown in Fig. 45
are represented in Fig. 48 at a larger scale for a maximum of 6 CPUs. It is surprising that
superlinear speed-ups are accomplished, for instance for NP=2, 3, 4 ,5 and 6. For instance, the
execution of the simulation with 3 processors completes 3.25 times faster than the sequential,
one-node execution.

The reason for this surprising result is attributable to two different facts. On the one hand

there is a certain degree of standard deviation in the measurement of the execution times
accomplished throughout the simulation. Small variations in the synchronisations, overheads,
interruptions from the operating system, and even other users connecting to the cluster provoke
small deviations in the measured execution times from one simulation the other. This causes
that even if the number of CPU is kept constant, different executions may yield slightly different
execution times. Even though the deviation is expected to be small when compared to its
expected value, this fact adds a noise in the precise measurement of execution times. It must
be stressed that implementing the appropriate procedure to compute the speed-up would
require taking a statistically significant number of samples (for a fixed number of CPUs), and
computing afterwards the mean value. This is not necessary, as the uncertainty is considered to
be small enough so as not to affect substantially the result.

Fig. 48 Performance of the parallel SHIVA code. Detail for a reduced number of processors

CHAPTER 4 – Hydrodynamic Parallelisation 79

Having ruled out the aforementioned imprecision in the measurement of execution times,
other causes have to be contemplated as the main reason for this superlinear behaviour. One
of the main reasons for superlinear speed-ups is the differences in the serial and parallel
versions of the code. In section 3.3.2 it was described an optimisation implemented as part of
this Thesis, aimed at improving the computational efficiency of the interpolation of the reaction
rates. Additionally, with the aim of improving efficiency, partial values accumulators have been
used in the construction of the matrix A that arises from the linearisation of the set of
differential equations describing the temporal evolution of the network abundances. Also, it is
conceivable that the smaller computational workload that each CPU has to cope with,
generates a more efficient use of the processor resources (for instance, cache memory). All
these factors contribute to an increased efficiency and reduced execution times when executing
the parallel application. Note that this superlinear behaviour is not obtained in the parallel
execution of the reduced simulation with 324 isotopes and 1392 nuclear reactions network. The
computational intensity in this simulation is significantly smaller in this case and the benefits of
all these optimisations much less noticeable.

Fig. 49 Performance model of the parallel SHIVA code up to 200 processors

From equations (4.3) and (4.4), the model of the performance of the parallelised SHIVA

code, incorporating the communication time between nodes, can be expressed as:

80 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

()
() ()

S

p

p
p

p T

N
1N

1N

N
pp-1

1upSpeed

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

≈−

βα n

 (4.5)

where n and ST will depend on the simulation being executed, whereas the latency α , and the

transfer time per byte β will depend solely on the cluster communications network where the
simulations are being executed. Experimental measures in the GAA's Hyperion cluster have
yielded the values 5101 −⋅=α and 8105 −⋅=β . At the end of every iteration, all nodes have to
receive the result of the nucleosynthesis for all shells, with the addition of the total nuclear
energy generated and the new calculated tΔ at each of the shells. Taking all this into account
the total amount of bytes being transmitted works out at:

n =200 shells x (324 isotopes x 8 bytes/isotope +
8 bytes/shell (energy) + 8 bytes/shell (tΔ)) = 521.6 kb

n =200 shells x (606 isotopes x 8 bytes/isotope +

8 bytes/shell (energy) + 8 bytes/shell (tΔ)) = 972.8 kb

respectively for the reduced (324 isotopes) and extended (606 isotopes) simulations.

The performance model of the parallel SHIVA code (eq. 4.5) is depicted in Fig. 49 up to 200
processors. We have also included the experimental data obtained up to NP=42 processors in
the Hyperion cluster. It is interesting to note that there is still way for improvement and that the
maximum is not reached even when using all 42 available CPUs of the Hyperion cluster.
Maximum speed-ups of ~41 and ~85 are predicted by the model when using 200 processors,
for the reduced and extended simulations respectively. At this point it is important to be aware
that as a result of the parallelisation strategy that has been adopted (see Fig. 44), the number of
shells of the neutron star envelope constitute an effective upper limit for the maximum number
of CPUs that could be used in the parallel application. Any CPUs used above that limit would
be literally a wasted resource, since there would be no shells left for those processors to work
with. It must be stressed here that splitting the nucleosynthesis calculation of a single shell
amongst several processors is not a viable alternative; as it has been shown in section 3.5; the
nucleosynthesis computation stage constitutes a loosely coupled application that cannot be
parallelised.

The model of performance presented is valid on the Hyperion cluster, and cannot be
extrapolated to other cluster which may have different values for latency and communication
bandwidths. However this model can be taken as a reference for the capabilities of the
parallelised application. For instance, based on the above presented results, we may decide on
making an application for computation time at some supercomputing facility (e.g. at the Mare
Nostrum supercomputer at the Supercomputing Centre in Barcelona (BSC)), where latencies
and transmission bandwidth are highly optimised for parallel executions. In this case, even
better results should be expected than those presented here. Over and above, we would be
able to use as many processors as there are shells in the neutron star envelope, thus reaching
the maximum speed-up attainable with the parallel SHIVA code.

CHAPTER 4 – Hydrodynamic Parallelisation 81

I

CHAPTER 5
SUMMARY AND CONCLUSIONS

"It is not the possession of truth, but the success which attends the seeking after
it, that enriches the seeker and brings happiness to him."

 Max Planck (1858-1947)
German physicist. Nobel prize for physics, 1918.

n this Master Thesis, two numerical codes have been parallelised using the MPICH2
implementation of the Message Passing Interface (MPI) specification for the design of

parallel applications with clusters of distributed workstations. The first application being
parallelised has been a nucleosynthesis code suitable for extensive post-processing
calculations, with a network containing 606 nuclides (H to 113Xe) and more than 3500 nuclear
reactions (Moreno, 2009). This code requires (in its sequential, single-node version) about 9.1
CPU-months of calculating power to perform a sensitivity study of 50.000 post-processing
calculations of X-ray bursts nucleosynthesis (Chapter 3). The second application is the
hydrodynamic code SHIVA, a one-dimensional (spherically symmetric), hydrodynamic code, in
Lagrangian formulation, built originally to model classical nova outbursts (José 1996; José &
Hernanz 1998). A partial hydrodynamic simulation takes 147 hours (6.1 days) to run for 200k
time-steps using a reduced nuclear network with 324 isotopes and 1392 nuclear reactions. The
computation time soars to 688 hours (28.6 days) when using a network with 606 nuclides and
3551 nuclear reactions, with the same number of time-steps.

The main goal of the of the parallelisation has been to benefit from the 42-node Hyperion
Cluster that the Astronomy and Astrophysics Group (GAA) has at the EUETIB (UPC), hence
achieving significant speed-ups in the simulations. As a consequence, faster computations will
pave the way for better numerical approaches and finer approximations (e.g. more isotopes
and reactions, or more layers of the neutron star envelope's model) that were previously
prohibitive due to its high computational requirements. Another side effect is that GAA's
simulations and publications will benefit from a shorter time-to-publication, resulting from
simulations running faster with the parallelised application. With the simulation code being
parallelised, it will also be possible to take advantage, of parallel supercomputing facilities like
the Mare Nostrum at the Supercomputing Centre in Barcelona (BSC), for the most demanding
simulations.

The time dependent iterations of the nucleosynthesis post-processing code, places this

application in the worst possible category for parallelisation (a loosely synchronous
application), where all processors have to participate throughout the iteration, exchanging
intermediate results in a regular basis. Also, the resulting abundances have to be broadcasted
to all processors at the end of the iteration, so that they are readily available to every node at
the following time-step for the distributed construction of the system of equations describing the
temporal evolution of the network abundances. This is a serious bottleneck that provokes that
the simulation cannot proceed until all processors have received the results. The post-
processing nucleosynthesis code is a time-step loosely synchronous application with a very
small problem size (limited by the number of isotopes of the nuclear network). It is therefore the
worst possible scenario for parallelisation. As results have shown out, the performance of the
parallel application is much worst than the sequential, 1-node version of the

82 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

code. This stems from the fact that the communication and message passing times between
processors largely outgrow the computation time. It is therefore not possible to parallelise
efficiently a post-processing nucleosynthesis code, and efforts in this regard should be
avoided.

All the contrary, the parallelised version of the SHIVA code shows excellent performance

results, with significant speed-up factors accomplished in a simulation with N=200 shells.
Simulations have been carried out with two different nuclear reaction networks; one with a
reduced network consisting of 324 isotopes and 1392 reactions, and another one with a far
more complete reaction network up to 606 nuclides and 3551 nuclear reactions (Moreno 2009).
A speed-up factor of 26 is achieved with the reduced simulation when 42 processors are used
in parallel to execute the application. On the other hand, an excellent speed-up factor of 35 is
accomplished with the extended simulation when all 42 processors are used in the simulation.
The results obtained are so good that stop short of the results that could be obtained with a
perfect parallel application; this means that the computation to communication ratio is large
enough so that processing work can be distributed in an extremely efficient way amongst
processors. The parallelisation of the code has been realised in a way so as to reduce the
global communications to a single point of information exchange per iteration. Consequently,
each node has a significant amount of processing work to complete before they need to
communicate with the rest of the processors. This leads to a considerable improvement of the
computation speed. A parallel hydrodynamic simulation using 42 nodes, takes 5 hours and 39
minutes to run for 200k time-steps when using a reduced nuclear network with 324 isotopes
and 1392 nuclear reactions. The computation time goes up to 19 hours and 40 minutes when
using a network with 606 nuclides and 3551 nuclear reactions for the same number of time-
steps. These are excellent results that completely justify the time invested in the parallelisation
of the hydrodynamic simulation code. It is interesting to note that there is still way for
improvement and that the maximum is not reached even when using all 42 available CPUs of
the Hyperion cluster. Maximum speed-ups of ~41 and ~85 are predicted by the performance
model when using 200 processors, for the reduced and extended simulations respectively.

The scope of the Work presented in this Master Thesis is planned to be extended in the

forthcoming future, maybe by a PhD Thesis with special emphasis in the following aspects:

• Study of the dependence of XRB properties on the M-R relation obtained with
different EOS for the neutron star interior.

• Characterization of XRB properties in primordial stellar binaries.

• Modify the SHIVA code to the study of superbursts.

• Improvement of the accretion procedure (from a fixed number of shells to an
increasing number of shells as matter is accreted onto the envelope of the neutron
star).

• Incorporation of rotation and other phenomena.

• Inclusion of general relativity corrections to the equations of stellar structure (Ayasli &
Joss 1982), or transformation of the SHIVA code into a fully relativistic hydrocode
(May & White 1967).

• Multidimensional studies of point-like ignition and flame propagation in the
envelopes of accreting neutron stars.

Hydrodynamic Parallelisation 83

APPENDIX A
SOFTWARE TOOLS

The following sections describe the software tools that have been used in the development

of this Master Thesis. Only a brief description of functionality and availability is provided. In
order to obtain build, compilation, and utilisation information please refer in each case to the
indicated web pages.

A.1. MUMPS

MUMPS (“Multifrontal Massively Parallel Solver”) is a package for solving systems of linear

equations of the form bAx = , where A is a square sparse matrix that can be either
asymmetric, symmetric positive definite, or general symmetric. MUMPS implements a direct
method based on a multifrontal approach which performs a direct factorization

 LUA = (1)

where L is a lower triangular matrix and U an upper triangular matrix. If the matrix is

symmetric then the factorization

TLDLA = (2)

where D is a block diagonal matrix with blocks of order 1 or 2 on the diagonal is performed.

MUMPS exploits both parallelism arising from sparsity in the matrix A and from dense
factorizations kernels.

Source: http://graal.ens-lyon.fr/MUMPS/index.php?page=doc

A.2. GotoBLAS2

The GotoBLAS codes are currently one of the fastest implementations of the Basic Linear

Algebra Subroutines (BLAS). GotoBLAS2 uses new algorithms and memory techniques for
optimal performance of the BLAS routines. The BLAS routines and functions are divided into the
following groups according to the operations they perform:

• BLAS Level 1 Routines perform operations of both addition and reduction on

vectors of data. Typical operations include scaling and dot products.
• BLAS Level 2 Routines perform matrix-vector operations, such as matrix-vector

multiplication, rank-1 and rank-2 matrix updates, and solution of triangular
systems.

• BLAS Level 3 Routines perform matrix-matrix operations, such as matrix-matrix
multiplication, rank-k update, and solution of triangular systems.

Source: http://www.tacc.utexas.edu/tacc-projects/gotoblas2

84 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

A.3. BLACS

The BLACS (Basic Linear Algebra Communication Subprograms) project is an ongoing

investigation whose purpose is to create a linear algebra oriented message passing interface
that may be implemented efficiently and uniformly across a large range of distributed memory
platforms.

The length of time required to implement efficient distributed memory algorithms makes it

impractical to rewrite programs for every new parallel machine. The BLACS exist in order to
make linear algebra applications both easier to program and more portable. It is for this reason
that the BLACS are used as the communication layer of ScaLAPACK (see next section). Key
ideas in the BLACS include:

• Standard interface,
• Process grid and scoped operations,
• Contexts,
• Array-based communication,
• ID-less communication.

Source: http://www.netlib.org/blacs/

A.4. ScaLAPACK

The ScaLAPACK (or Scalable LAPACK) library includes a subset of LAPACK routines

redesigned for distributed memory MIMD parallel computers. It is currently written in a Single-
Program-Multiple-Data style using explicit message passing for interprocessor communication.
It assumes matrices are laid out in a two-dimensional block cyclic decomposition.

Like LAPACK, the ScaLAPACK routines are based on block-partitioned algorithms in order to

minimize the frequency of data movement between different levels of the memory hierarchy.
(For such machines, the memory hierarchy includes the off-processor memory of other
processors, in addition to the hierarchy of registers, cache, and local memory on each
processor.) The fundamental building blocks of the ScaLAPACK library are distributed memory
versions (PBLAS) of the Level 1, 2 and 3 BLAS, and a set of Basic Linear Algebra
Communication Subprograms (BLACS) for communication tasks that arise frequently in parallel
linear algebra computations. In the ScaLAPACK routines, all interprocessor communication
occurs within the PBLAS and the BLACS. One of the design goals of ScaLAPACK was to have
the ScaLAPACK routines resemble their LAPACK equivalents as much as possible.

Source: http://www.netlib.org/scalapack/

A.5. LAPACK

LAPACK (Linear Algebra PACKage) is written in Fortran 90 and provides routines for solving

systems of simultaneous linear equations, least-squares solutions of linear systems of
equations, eigenvalue problems, and singular value problems. The associated matrix
factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are
related computations such as reordering of the Schur factorizations and estimating condition
numbers. Dense and banded matrices are handled, but not general sparse matrices. In all

APPENDIX A – Software Tools 85

areas, similar functionality is provided for real and complex matrices, in both single and double
precision.

The original goal of the LAPACK project was to make the widely used EISPACK and

LINPACK libraries run efficiently on shared-memory vector and parallel processors. On these
machines, LINPACK and EISPACK are inefficient because their memory access patterns
disregard the multi-layered memory hierarchies of the machines, thereby spending too much
time moving data instead of doing useful floating-point operations. LAPACK addresses this
problem by reorganizing the algorithms to use block matrix operations, such as matrix
multiplication, in the innermost loops. These block operations can be optimized for each
architecture to account for the memory hierarchy, and so provide a transportable way to
achieve high efficiency on diverse modern machines. We use the term "transportable" instead of
"portable" because, for fastest possible performance, LAPACK requires that highly optimized
block matrix operations be already implemented on each machine.

Source: http://www.netlib.org/lapack/

A.6. METIS/ParMETIS

METIS is a set of serial programs for partitioning graphs, partitioning finite element meshes,

and producing fill reducing orderings for sparse matrices. The algorithms implemented in
METIS are based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint
partitioning schemes.

ParMETIS is an MPI-based parallel library that implements a variety of algorithms for

partitioning unstructured graphs, meshes, and for computing fill-reducing orderings of sparse
matrices. ParMETIS extends the functionality provided by METIS and includes routines that are
especially suited for parallel AMR computations and large scale numerical simulations. The
algorithms implemented in ParMETIS are based on the parallel multilevel k-way graph-
partitioning, adaptive repartitioning, and parallel multi-constrained partitioning schemes.

Source (METIS): http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
Source (ParMETIS): http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

A.7. MPICH2

MPICH2 is a freely available, portable implementation of MPI, the Standard for message-

passing libraries. It implements MPI-1, MPI-2, MPI-2.1 and MPI-2.2. MPI (Message-Passing
Interface) is a message-passing library interface specification. All parts of this definition are
significant. MPI addresses primarily the message-passing parallel programming model, in
which data is moved from the address space of one process to that of another process through
cooperative operations on each process. (Extensions to the "classical" message-passing model
are provided in collective operations, remote-memory access operations, dynamic process
creation, and parallel I/O.) MPI is a specification, not an implementation; there are multiple
implementations of MPI. This specification is for a library interface; MPI is not a language, and
all MPI operations are expressed as functions, subroutines, or methods, according to the
appropriate language bindings, which for C, C++, Fortran-77, and Fortran-95, are part of the
MPI standard. The standard has been defined through an open process by a community of
parallel computing vendors, computer scientists, and application developers.

86 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

The main advantages of establishing a message-passing standard are portability and ease
of use. In a distributed memory communication environment in which the higher level routines
and/or abstractions are built upon lower level message-passing routines the benefits of
standardization are particularly apparent. Furthermore, the definition of a message-passing
standard, provides vendors with a clearly defined base set of routines that they can implement
efficiently, or in some cases provide hardware support for, thereby enhancing scalability.

The goal of the Message-Passing Interface simply stated is to develop a widely used

standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message passing.

A complete list of goals follows:

• Design an application programming interface (not necessarily for compilers or a
system implementation library).

• Allow efficient communication: Avoid memory-to-memory copying, allow overlap of
computation and communication, and offload to communication co-processor,
where available.

• Allow for implementations that can be used in a heterogeneous environment.
• Allow convenient C, C++, Fortran-77, and Fortran-95 bindings for the interface.
• Assume a reliable communication interface: the user need not cope with

communication failures. Such failures are dealt with by the underlying
communication subsystem.

• Define an interface that can be implemented on many vendors' platforms, with no
significant changes in the underlying communication and system software.

• Semantics of the interface should be language independent.
• The interface should be designed to allow for thread safety.

Source (MPI): http://www.mcs.anl.gov/research/projects/mpi/
Source (MPICH2): http://www.mcs.anl.gov/research/projects/mpich2/

A.8. SCOTCH/PT-SCOTCH

SCOTCH and PT-SCOTCH are software package and libraries for sequential and parallel

graph partitioning, static mapping, and sparse matrix block ordering, and sequential mesh and
hyper-graph partitioning. Its purpose is to apply graph theory, with a divide and conquer
approach, to scientific computing problems such as graph and mesh partitioning, static
mapping, and sparse matrix ordering, in application domains ranging from structural
mechanics to operating systems or bio-chemistry.

The SCOTCH distribution is a set of programs and libraries which implement the static

mapping and sparse matrix reordering algorithms developed within the SCOTCH project. PT-
SCOTCH is a parallel version of SCOTCH that makes use of the MPI interface.

Source: http://www.labri.fr/perso/pelegrin/scotch/

Hydrodynamic Parallelisation 87

BIBLIOGRAPHY

Amdahl, G., 1967, Validity of the Single-Processor Approach to Achieving Large-Scale
Computing Capabilities Proc. AFIPS Conf., p 483

Amestoy, P. R., Duff, I. S., L’Excellent, J.–Y., and Koster, J., 2000, MUMPS: a general purpose

distributed memory sparse solver. Proceedings of PARA2000, Fifth International Workshop
on Applied Parallel Computing, Bergen, June 18-21, p 122

Amestoy P. R., Duff, I. S., and L’Excellent, J.–Y., and Li, X., 2001a, Performance and tuning of

two distributed memory sparse solvers, Proceedings of Tenth SIAM Conference on Parallel
Processing for Scientific Computing. Norfolk, Virginia from March 12th-14th

Amestoy, P. R., Duff, I. S., Koster, J., and L'Excellent, J.-Y., 2001b, A fully asynchronous

multifrontal solver using distributed dynamic scheduling, SIAM Journal of Matrix Analysis
and Applications 23, No 1, p 15

Amestoy, P. R., Guermouche, A., L'Excellent, J.-Y., and Pralet, S., 2006, Hybrid scheduling for

the parallel solution of linear systems, Parallel Computing 32 (2), p 136

Åström J., 2009, Solving linear sets of equations for fusion plasma codes, CSC magazine

archive

Audi, G., Wapstra, A. H., & Thibault, C., 2003, Nuclear Physics A 729, p 337

Ayasli, S., & Joss, P. C., 1982, ApJ 256, p 637

Belian, R. D., Conner, J. P., & Evans, W. D., 1976, ApJ 206, L135

Bhattacharyya, S., 2006, What Thermonuclear X-ray Bursts can tell us about Neutron Stars,

http://www.iiap.res.in/PostDocuments/SudipBhattacharyya_12Sept06-1.pdf

Bildsten, L., 1998, The Many Faces of Neutron Stars, ed. R. Buccheri et al. (Dordrecht: Kluwer),
p 419

Bildsten, L., Strohmayer, T., 1999, Physics Today, Feb., p 40

Bildsten, L., and Anthony L. Piro, 2007, Turbulent Mixing in the Surface Layers of Accreting

Neutron Stars, ApJ 663, p 1252

Brown, B. A., Clement, R. R. C., Schatz, H., & Volya, A., 2002, Phys. Rev. C, 65, 045802

Buttari, A., Amestoy, P., L'Excellent, J.-Y., Guermouche, A., Uçar B., November 23, 2010,

MUMPS: a Multifrontal Massively Parallel Solver, LyonGrenoble, Toulouse, Bordeaux
Workshop CIRA “Systèmes Linéeaires”

Duff, I. S., and Reid, J. K., 1983, The Multifrontal Solution of Indefinite Sparse Symmetric Linear,

ACM Transactions on Mathematical Software (TOMS) TOMS Homepage archive Volume 9
Issue 3, p 302

88 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

Fisker, J. L., Görres, J., Wiescher, M., & Davids, B. 2006, The Importance of 15O(α,γ)19Ne to X-
Ray Bursts and Superbursts, ApJ 650, 332

Flynn, M., 1972, Some Computer Organizations and Their Effectiveness, IEEE Trans. Comput.

C-21, p 948

Foster, I., 1995, Designing and Building Parallel Programs, http://www.mcs.anl.gov/~itf/dbpp/

Fox, G., 1991, Parallel Problem Architectures and Their Implications for Portable Parallel

Software Systems Tech. Report CRPC-TR91120, Center for Research on Parallel
Computation, Rice Univ., Houston, Texas

Fox, J.M., 2007, Fully-Kinetic PIC Simulations for Hall-Effect Thrusters. Thesis (S.M.)--

Massachusetts Institute of Technology, Computation for Design and Optimization Program,
2007

Gottlieb, A., Grishman, R., Kruskal, C. P., McAuliffe, K. P., Rudolph, L., and Snir, M., 1983, The

NYU ultracomputer: Designing a MIMD, shared memory parallel computer. IEEE Trans.
Computs., C-32(2), p 175

Grindlay, J., Gursky, H., Schnopper, H., Parsignault, D. R., Heise, J., Brinkman, C., & Schrijver,

J., 1976, ApJ 205, L127

Gropp W., Lusk, E., and Skjellum, A., 1995, Using MPI: Portable Parallel Programming with the

Message Passing Interface. MIT Press

Gupta, A., 2002 Recent Advances in Direct Methods for Solving Unsymmetric Sparse Systems

of Linear Equations, ACM Transactions on Mathematical Software 28, No. 3, September
2002, p 301

Gupta, A., Joshi, M., Kumar, V., 2001, WSMP: A High-Performance Shared- and Distributed-

Memory Parallel Sparse Linear Equation Solver, RC 22038 (98932) Computer
Science/Mathematics. IBM Research Report

José, J., 1996, Ph.D. thesis, University of Barcelona

José, J. & Hernanz, M., 1998, ApJ 494, p 680

José, J. & Iliadis, C., 2011, Nuclear astrophysics: the unfinished quest for the origin of the

elements, Rep. Prog. Phys. 74

Joss, P. C., 1977, Nature 270, p 310

Hanawa, T., Sugimoto, D., & Hashimoto, M. A., 1983, PASJ 35, p 491

Henyey, L. G.; Forbes, J. E.; Gould, N. L., 1964 A New Method of Automatic Computation of

Stellar Evolution, ApJ 139, p 306

Koelbel, C., Loveman, D., Schreiber, R., Steele, G., and Zosel, M., 1994, The High Performance

Fortran Handbook, MIT Press

Koike, O., Hashimoto, M., Arai, K., & Wanajo, S., 1999, A&A 342, p 464

Bibliography 89

Koike, O., Hashimoto, M., Kuromizu, R., & Fujimoto, S., 2004, ApJ 603, p 242

Kutter, G. S. & Sparks, W. M., 1972, ApJ 175, p 407

Iliadis, C., 2007, Nuclear Physics of Stars, Wiley-VCH (eds.)

in ’t Zand, J. J. M., Keek, A., Heger, A., Cumming, A., & Weinberg, N., 2009, Defining the

Neutron Star Crust: X-ray Bursts, Superbursts and Giant Flares, Santa Fe

Intel® Software Development Products, 2011, Quick-Reference Guide to Optimization with

Intel® Compilers. http://software.intel.com/sites/products/collateral/hpc/compilers/

Kippenhahn, R, Weigert, A, 1996, Stellar Structure and Evolution, ed. Springer, p 36

Lafferty, Edward L., 1993, Parallel computing: an introduction, ed. NOYD

Lattimer , J., M.,Prakash, M., 2004, The Physics of Neutron Stars, Science 304, 536

Lewin, W. H. G., Paradijs, J. V., Taam, R. E., 1993, X-Ray Bursts, Space Sci. Rev. 62, p 223

Li, X., March 2010, Direct Solvers for Sparse Matrices, Survey article for sparse direct solvers,

(http://crd.lbl.gov/~xiaoye/SuperLU/)

Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J., 2007, A&A 469, p 807

Mahaffy, J., 1997, Introduction to Fortran's Intrinsic Functions, CMPSC 201, Programming for

Engineers, Course notes

Maraschi, L., & Cavaliere, A. 1977, in Highlights in Astronomy, Vol. 4, ed. E. A. Müller

(Dordrecht: Reidel), p 127

May, M. M. & White, R. H., 1967, Hydrodynamic Calculations of General Relativistic

 Collapse, p 96

McGinn, S. F., and Shaw, R. E., 2002, Parallel Gaussian Elimination Using OpenMP and MPI

Proceedings of the 16th Annual International Symposium on High Performance Computing
Systems and Applications (HPCS'02)

McGraw, J.R., and Axelrod, T.S., 1988, Exploiting Multiprocessors: Issues and Options, in

Programming Parallel Processors, R.G. Babb, ed. Addison-Wesley, Reading, Mass., p 7

McKenney, P. E., 2010, Is Parallel Programming Hard, And, If So, What Can You Do About It?

Linux Technology Center, IBM Beaverton

MPI Forum, 2009, MPI: A Message-Passing Interface Standard, Version 2.2

MPICH2, 2011, Implementation of the Message Passing Interface (MPI) standard

http://www.mcs.anl.gov/research/projects/mpich2/

Moreno, F., 2009, Ph.D. thesis Accretion onto Neutron Stars: Hydrodynamics and

Nucleosynthesis, UPC

90 Models for Type I XRB Nucleosynthesis with Parallelisation and Improved Nuclear Physics

MUMPS, version 4.10.0 (2011) (MUltifrontal Massively Parallel sparse direct Solver),
http://graal.ens-lyon.fr/MUMPS/index.php

NASA, 2011, Imagine the Universe, http://imagine.gsfc.nasa.gov/index.html

Pacheco, P. S., 1997, Parallel Programming with MPI, ed. Morgan Kaufmann

Pancake, C. M. and Cook, C., 1994, What Users Need in Parallel Tool Support: Survey Results

and Analysis, Proc. Scalable High Performance Computing Conf., IEEE CS Press, Los
Alamitos, Calif., p 40

Pancake, C. M., 1996, Is Parallelism for You? Oregon State University, IEEE Computational

Science & Engineering, summer 1996, p 18

Parikh, A., Jose, J., Moreno, F., and Iliadis, C., 2008, The effects of variations in nuclear

processes on type I X-ray burst nucleosynthesis, ApJS 178, p 110

Prantzos, N., Arnould, M., & Arcoragi, J. P., 1987, Neutron capture nucleosynthesis during core

Helium burning in massive stars, ApJ 315, p 209

Rao, V.N. and Kumar, V., 1998, Superlinear speedup in parallel state-space search,

Foundations of Software Technology and Theoretical Computer Science (Springer, 1988)

Shapiro, S. L. and Teukolsky, S. A., 1983, Black Holes, White Dwarfs, and Neutron Stars. The

Physics of Compact Objects, Wiley-Interscience, New York

Schatz, H., Bildsten, L., Cumming, A., & Wiescher, M., 1999, ApJ 524, p 1014

Schatz, H., et al., 2001a, Phys. Rev. Lett. 86, 3471

 2001b, Nuclear Physics A 688, 150c

Snyder, L., 1986, Type architectures, shared memory, and the corollary of modest potential

Ann. Rev. Comput. Sci. 1, p 289

Sutter, H., 2008, Break Amdahl's Law! (DDJ, February 2008)

Taam, R. E., 1980, ApJ 241, p 358

Taam, R. E., Woosley, S. E., Weaver, T. A., & Lamb, D. Q., 1993, ApJ 413, p 324

Taam, R. E., Woosley, S. E., & Lamb, D. Q., 1996, ApJ 459, p 271

Tapia, R., Lanius, C, 2001, Computational Science: Tools for a Changing World,

http://ceee.rice.edu/Books/CS/index.html

Thakur, R. and Gropp, W., November 2002, Improving the Performance of MPI Collective
Communication on Switched Networks, Preprint ANL/MCS-P1007-1102

Venkatesh, T. N., Sarasamma, V. R., Rajalakshmy S., Kirti Chandra Sahu, and Rama

Govindarajan, 2005, Super-linear speed-up of a parallel multigrid Navier–Stokes solver on
Flosolver, Current Science 88, no. 4

Bibliography 91

Wagoner, R. W., 1969, Synthesis of the elements within objects exploding from very high
temperatures ApJS 18, p 247

Wallace, R. K. & Woosley, S. E., 1981, ApJS 45, p 389

Wallace, R. K. & Woosley, S. E., 1984, S. E. Woosley (ed.), New York: AIP

Woosley, S. E. & Taam, R. E., 1976, Nature 263, p 101

Woosley S. E., Heger A., Cumming A., Hoffman R. D., Pruet J., Rauscher T., Fisker J. L., Schatz

H., Brown B. A., and Wiescher M., 2004, Models For Type I X-Ray Bursts With Improved
Nuclear Physics, ApJS 151, p 75

Woosley, S. E., & Weaver, T. A., 1984, High Energy Transients in Astrophysics, AIP Conf. Proc.

115, ed. S. Woosley (New York: AIP), p 273

Zima, H., and Chapman, B., 1991, Supercompilers for Parallel and Vector Computers, ed.
Addison-Wesley

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

