
A reusable web hosting control
panel with billing system

Marc Aymerich Gubern

Universitat Politecnica de Catalunya

A thesis submitted for the degree of

Diploma in Computer Systems

Fall semester 2011-2012

Contents

1 Introduction 1

1.1 Project overview . 1

1.2 Context . 3

1.2.1 What is Pangea? . 4

1.2.2 Pangea members description 4

1.2.3 Pangea staff description . 5

1.2.4 Pangea software stack . 5

1.3 Requirements analysis . 7

1.3.1 Contacts management . 8

1.3.2 Services . 8

1.3.3 Advanced pricing configurations 10

1.3.3.1 Calculate the metric of the service 11

1.3.3.2 How to calculate the price 12

1.3.4 Billing System . 13

1.3.5 Payment gateway . 15

1.3.6 Resource limiting and accounting 15

1.3.7 Internationalization . 16

1.3.8 Target software to support . 16

1.3.9 Multi server support . 17

1.3.10 Easy to use for unskilled users 17

1.3.11 Easy to add new functionalities 17

1.3.12 Reusable . 17

1.3.13 Open source friendly . 17

2 State of the art 19

2.1 Current related software at Pangea 19

2.1.1 Members and billing management 19

2.1.2 User control panel . 20

i

2.1.3 Administration scripts . 21

2.2 Outstanding existing solution . 21

2.2.1 SysCP . 23

2.2.1.1 Requirements fit . 23

2.2.2 Domain Technologie Control (DTC) 25

2.2.2.1 Requirements fit . 25

2.2.3 ISPConfig 2 . 27

2.2.3.1 Requirements fit . 27

2.2.4 Summary . 28

2.3 Final decision . 29

3 Selected tools 31

3.1 Django framework . 31

3.1.1 Framework advantages . 31

3.1.2 Django advantages . 32

3.2 Celery distributed task queue . 34

3.3 Pisa PDF generator . 35

3.4 Django admin tools . 35

4 Design principles 37

4.1 Reusability . 37

4.1.1 Separation of Concerns (SoC) 37

4.1.2 Loose coupling . 38

4.2 Orthogonality . 39

4.3 Adaptability . 40

4.4 Extensibility . 41

4.5 DRY Don’t repeat yourself . 42

5 Architecture design and implementation 43

5.1 General considerations . 43

5.2 Common . 48

5.3 Daemons . 50

5.3.1 Daemons Model . 50

5.3.2 Daemons Admin . 53

5.4 Resources . 55

5.4.1 Resources Model . 55

5.4.2 Resources Admin . 58

ii

5.5 Contacts . 59

5.5.1 Contacts Model . 59

5.5.2 Scheduling cancellations and deactivations 61

5.5.3 Contact Admin . 63

5.6 Ordering . 68

5.6.1 Ordering Model . 68

5.6.2 Ordering Admin . 69

5.7 Billing . 72

5.7.1 Billing Model . 72

5.7.2 Billing Admin . 74

5.8 Service converter . 76

5.8.1 django.contrib.auth a succesfull example 76

5.9 Mail . 79

5.9.1 Mail Model . 79

5.9.2 Mail Admin . 80

5.10 Web . 81

5.10.1 Web Model . 81

5.10.2 Web Admin . 82

5.11 PHP Plugin . 83

5.11.1 PHP Plugin Model . 83

5.11.2 PHP Plugin Admin . 84

5.12 DNS . 84

5.12.1 DNS Model . 84

5.12.2 DNS Admin . 85

5.13 Jobs . 87

5.14 Jobs Model . 87

5.14.1 Jobs Admin . 87

5.15 Extra fields . 88

5.15.1 Extra fields Model . 88

5.16 Extra fields Admin . 89

5.17 Global interactions . 90

5.17.1 Create, update and delete a service 90

5.17.2 Bill a contact . 92

iii

6 Evaluation 93

6.1 Development effort . 93

6.2 Global economic analysis . 96

6.3 Evaluation and testing of the project implementation 97

6.4 Reusability evaluation . 98

6.5 Requirements compliance . 100

6.6 General evaluation . 101

6.7 Future work . 102

A Examples 105

A.1 Template example . 105

A.2 Invoice example . 105

A.3 Fee example . 105

B Manuals 109

B.1 Installation . 109

B.2 Create and install new service . 113

B.3 Admin use guide . 114

iv

List of Figures

1.1 Pangea software stack . 6

1.2 Caption for LOF . 7

1.3 Bill life cycle . 15

2.1 SysCP screenshot . 23

2.2 DTC screenshot . 25

2.3 ISPConfig 2 screenshot . 27

3.1 Celery architecture overview . 34

3.2 Django admin tools drag and drop detail 36

3.3 Django admin tools menu detail . 36

4.1 Django Model-Template-View overview diagram 40

5.1 Admin home page screenshot . 44

5.2 Admin change list screenshot . 45

5.3 Admin actions screenshot . 45

5.4 Admin change form screenshot . 46

5.5 Applications architecture overview . 47

5.6 Screenshot of list add form with default looking 50

5.7 Daemons application model . 51

5.8 Daemons admin change list . 53

5.9 Django-celery admin change list . 54

5.10 Daemons admin change form . 54

5.11 Resources application model . 55

5.12 Monitoring dynamic inline . 58

5.13 Monitor admin change list . 58

5.14 Monitor admin change form . 59

5.15 Contacts application model . 60

5.16 Contacts application model . 61

v

5.17 Diagrams legend . 62

5.18 Related contracts graph . 62

5.19 Related objects dependency graph . 62

5.20 Scheduling cancellation and deactivation structure 63

5.21 Contact link inserted on the service change list page 64

5.22 Contact and contract links inserted on the service change form 64

5.23 Filter objects by related contact . 64

5.24 Add service cycle . 65

5.25 Contact admin change list . 66

5.26 Contact admin change form . 66

5.27 Contract admin change list . 67

5.28 Pack contraction page . 67

5.29 Contract service page . 67

5.30 Ordering application model . 68

5.31 Service admin change list . 70

5.32 Order admin change list . 70

5.33 Service admin change form . 71

5.34 Billing application model . 73

5.35 Billing admin change list . 74

5.36 Billing admin change form . 75

5.37 Billing amend line page . 75

5.38 Admin login form . 77

5.39 User change list . 77

5.40 User change form . 78

5.41 Mail application model . 79

5.42 Mail admin change list . 80

5.43 Mail admin change form . 80

5.44 Web application model . 81

5.45 Web admin change form . 82

5.46 PHP Plugin application model . 83

5.47 PHP plugin dynamic form example 84

5.48 DNS application model . 85

5.49 DNS admin change form . 86

5.50 DNS admin change list . 86

5.51 Jobs application model . 87

5.52 Jobs app admin add form . 88

vi

5.53 Extra fields application model . 89

5.54 Extra fields app admin add form . 89

5.55 Extra fields dynamic form inserted on contacts change form 90

5.56 Apps interaction on save() service . 90

5.57 Apps interaction on bill() contact . 92

6.1 Loc and Churn . 94

6.2 Commit Activity Index . 94

6.3 File Count . 94

6.4 Test environment . 98

A.1 Invoice example . 106

A.2 Fee example . 107

B.1 Creating a chroot with deploy dev.sh 110

B.2 Configuring MySQL server with deploy dev.sh 111

B.3 Screenshot of the last deploy dev.sh steps 111

vii

viii

List of Tables

1.1 Price definition example . 12

1.2 Bill life cycle . 14

2.1 Main Linux web hosting control panels comparison 22

2.2 Requirements compliance summary 29

6.1 Requirements compliance summary (with our solution) 101

ix

x

Chapter 1

Introduction

This project report describes the development process of a reusable web hosting

control panel with billing system. The document reflects the chronological order

of the development steps followed such as identifying the requirements, checking if an

existing project fits these requirements and finally designing and implementing the

new solution.

This first introductory chapter describes the general goals of the project, explains

its context and presents an in deep requirements analysis.

1.1 Project overview

A web hosting control panel is a web-based interface provided by a hosting company

that allows customers to manage their hosted services accessing from a single web site.

It is also used by the hosting company as a support tool for their administrators, who

use it as a resource to facilitate their daily tasks.

The project is sponsored by pangea.org, a non-profit Internet hosting provider1.

They require this kind of system in order to help its staff and members to manage

their servers and hosted services. The most remarkable reasons that have lead Pangea

to decide on making use of a complete and integrated web hosting control panel are:

1. To ease sysadmin’s work by automating the most repetitive tasks.

2. To support on the accountancy operations by managing, in a centralized way,

all the members information, contracted services and other billing details.

1These organizations provide services that run on “Internet servers”, allowing other organizations
and individuals to serve content to the Internet. The most common kind of offered services are web,
email, DNS and database hosting.

1

3. To offer the members the ability to contract and manage their services on their

own.

4. To keep services and resources under control.

As we will see on chapter 2, State of the art, there are a lot of existing open source

control panels that Pangea could use in order to satisfy its needs. Unfortunately after

widely testing the three more promising panels none of them was convincing enough

so we have decided to implement our own solution.

The objective of this project is to provide a collection of independent and reusable

applications that cover, as much as possible, the needs of any hosting organization,

in such a way that each hosting organization can create its own control panel just

by picking and configuring a subset of these resuable applications. Django, the web

framework selected for this project, fits perfectly with this objective since its philos-

ophy and design encourages to split a software project into several reusable applica-

tions.

We have made an extra effort in order to ensure that this project can be reused by

others. The following key feature list gives a glance on the main reuse-based features

that have not been seen before in an open source control panel.

• Easy to extend. Services can be easily created and extended by means of in-

heritance. Also third party Django applications can be automatically converted

to new services of the control panel.

• Extremely modular. Any component of this project can be substituted by

another one providing the same kind of functionality, and no source code mod-

ification is needed.

• Dynamic resource control. There is no assumption on what kind of resources

are needed to be controlled for each service. This decision is entirely up to each

hosting organization. For instance, someone may need to only consider the

traffic consumption for a web site and other’s might need to take into account

the number of running fcgid2 processes as well as the disk, memory and CPU

usage.

• Dynamic service ordering. For each service the panel gives to each hosting

organization the decision of choosing, in a very generic way, what parts of its

services do they want to charge.

2fcgid is a persistent process that handles web CGI requests

2

• Multiplatform and multiserver. Our control panel is multiplatform because

it can be installed on any platform with Python3 support and it can control

servers with any operating system. We say that our control panel is multiserver

because it can control any type of service architecture; services centralized on

a single server, and decentralized or distributed over multiple servers.

• Multi-database support. The control panel database backend can be changed

at any time and without touching a single line of code.

• Easy to integrate with an existing servers infrastructure. The control

panel can be configured to match virtually any servers infrastructure.

Other remarkable and unique hosting control features that this project has, are:

• Featured billing and pricing systems. Allowing more low level billing

control and more pricing configurations than any existing open source control

panel.

• Message queuing for task execution. Crontab is not used for executing

task like other control panels do. Instead we take advantage of a message queue

component that provides a more reliable and scalable way to perform tasks on

background.

• Scheduling of service cancellations and deactivations. Our solution im-

plements an scheduling mechanism for future service cancellation or deactiva-

tion. This mechanism is fully compatible with our pricing system, allowing to

discount future cancellations or deactivation periods.

• Manage large number of customers. The existing control panel interfaces

are not designed to handle large number of customers.

1.2 Context

To properly understand the developed software it is necessary to introduce its con-

text, so that the reader can get a precise idea of which are the needs, priorities and

circumstances that have influenced and shaped this concrete solution. It will also

help to understand under which similar situations the control panel can be useful,

with or without modifications.
3Python is a general-purpose, high-level programming language whose design philosophy empha-

sizes code readability. Python is a remarkably powerful dynamic programming language that is used
in a wide variety of application domains.

3

1.2.1 What is Pangea?

Pangea.org or Pangea is a non-profit supporting organization, which has

been working for social change since 1993. It “facilitates communication”

through the use of information and communication technologies, such as

e-mail, web content, free software and any other Internet service. Al-

though it works with the Association for Progressive Communications in

international projects its activity is focused on Europe / Spain / Catalonia

following the principle of “act locally, think globally”.

This network began with an idea in early 1993 with the goal to enable elec-

tronic communication and information dissemination before the Internet

appeared in Spain. That was the time of modems, terminal emulators,

email, conferences, data networks. Later on, Pangea offered, promoted

and provided training on the use of Internet, Linux, free software, web

pages and applications to civil society organizations, social movements

and non-profits. Furthermore, Pangea promotes critical thinking about

the use, development, participation and politics of the Internet, ICT4D,

and the Information Society in general. Pangea offers is self-sustained by

the membership.4

Today Pangea is formed by a group of more than 700 members, including NGOs

and individuals, who contribute to this project and use their services. Its core is

composed by 10 employees and voluntaries who take care of the daily work, including

system administration, software developing, member support and entity’s accoun-

tancy.

1.2.2 Pangea members description

The Pangea’s members are persons and organizations like associations, NGO’s and

foundations. They usually work on the third sector, in topics such as development,

peace, ecology, cooperation, education and so on. They are people from all ranges of

age, including old people who usually has a huge lack of IT related basic knowledge,

so they appreciate the good support provided by Pangea as well as services with

simple and intuitive program interfaces.

4Source en.wikipedia.org/wiki/Pangea.org

4

1.2.3 Pangea staff description

Currently there are 4 persons working at Pangea who are affected by the control

panel subject in one way or another. Find below each person’s responsibilities, so

the reader will get a general idea on how a control panel can improve and ease its

everyday work.

• Support (Lorena). Responsible of the help-desk support for the members via

email and telephone. The usual members requests are changes on their services

or ask for aid in any IT related topic, such as configuring their mail client or

the best CMS choice for their new web space. She also manages their bills and

membership fees, and it is on this point were the control panel can be very

useful for she.

• System administrators (Carlos and I). Our responsibility is improve and main-

tain up and running all the IT infrastructure. Also we have the responsibility

of solving non trivial members requests that Lorena can not do by her own. For

example it could be configure the Apache server to fit the needs of a member or

create a new virtual machine. The control panel intends to change this situation

and make this part of our work easy enough to be done by Lorena.

• Accountant (Maite). She is responsible for reporting the Pangea’s financial

results, in accordance with government and regulatory authority rules. She

also measures, disclosure and provision assurance about financial information

that helps make decisions about allocating resources, like buying new servers or

reducing IT expenses.

1.2.4 Pangea software stack

The Pangea software architecture is all based on Open Source and it runs on top

of a Proxmox VE5 cluster composed by three physical servers (dell.pangea.org, sol-

.pangea.org and backup.pangea.org). Pangea uses OpenVZ6 for the virtualization

layer and all the services run on top of a Debian squeeze Linux distribution isolated

inside OpenVZ containers.

5Proxmox Virtual Environment is an easy to use Open Source virtualization platform for running
Virtual Appliances and Virtual Machines

6OpenVZ (Open VirtualiZation) is an operating system-level virtualization technology based on
the Linux kernel and operating system. OpenVZ allows a physical server to run multiple isolated
operating system instances, known as containers, Virtual Private Servers (VPSs), or Virtual Envi-
ronments (VEs).

5

Figure 1.1: Pangea software stack

Basically there are 3 containers that offer services directly to their members. These

containers are the main target of the control panel.

• web.pangea.org this server offers all the web-related functionalities providing

shared hosting services through Apache2, SuExec, fcgid, php4-cgi and php5-

cgi. There is a Wordpress and a Dokuwiki with multisite capabilities that allow

members create their own blogs or wikis. Also this server provides the web

interfaces of the services that are running on other servers, such as phpmyadmin

to manage the MySQL databases and two webmails clients: RoundCube and

Horde/IMP.

• mysql.pangea.org is the MySQL database server.

• mail.pangea.org is the main mail server of Pangea running with Postfix as a

MTA7 and MailScanner as an antipsam gateway. This server stores the mail-

boxes and provides IMAP and POP3 access through the Dovecot daemon. The

mailing list service lives on this server too, and it is offered by Mailman.

7Mail transfer agent (MTA) or mail relay is software that transfers electronic mail messages from
one computer to another using a clientserver application architecture.

6

1.3 Requirements analysis

Figure 1.2: Requirements analysis parody8

An accurate analysis of the requirements is important if we want to satisfy the ex-

pectations of the users. Also it is one of the most complicated tasks during the

development of a project since it involves identifying all the actors involved and un-

derstand their needs. So even for somebody, like in my case, that has been working

for Pangea the last 4 years, it has not been a trivial matter since there are many

underlying details which only the person who is daily working with them is aware of.

Most of the efforts on the requirements analysis have been made on the accoun-

tancy and billing related functionalities, since the ones related with the system admin-

istrator’s tasks are much simpler for me. The work described on the following lines

is the result of a lot of communication and discussions with the rest of the Pangea’s

team.

8From http://www.projectcartoon.com

7

Please notice that the presented requirements are not limited to Pangea’s context.

We have tried to identify them in a generic way, avoiding to exclude any potential use

case that other organizations could have. The presented requirements can be applied

to any commercial hosting company.

1.3.1 Contacts management

Contact management is about managing the information stored on the system re-

garding the members (customers in a business context) that make use of the service

provided. Typical information that is stored can be the phone numbers, email, post

address, postal code, national ID, and so on. Also it can be possible to provide

alternates contact information for technical contact and billing purpose. The basic

necessary operations are register and unregister a contact and maintains each regis-

tered service related with a contact.

1.3.2 Services

The most common hosting services that any hosting provider organization could offer

are:

1. Shared web hosting9 with optional SSL

2. Mail Accounts

3. MySQL databases

4. DNS10

5. Mailing Lists

6. Blogs and Wikis

7. Virtual Private Servers (VPS)

8. Internet transit consumption

9. Web development and maintenance

9Refers to a web hosting service where many websites reside on one web server connected to the
Internet. Each site ”sits” on its own partition, or section/place on the server, to keep it separate
from other sites. This is generally the most economical option for hosting, as many people share the
overall cost of server maintenance.

10http://en.wikipedia.org/wiki/Domain Name System

8

10. Training courses

11. Packs of services

The control panel must implement the mechanism that talks to the daemons11

behind these services (detailed ahead on requirement 8. target software to support)

as well as provide a web interface for creating and managing these different services.

These services can be differentiated based on two bussines model, (1) the subscrip-

tion model and (2) the one time model.

1. The subscription model is applied in a service like shared hosting, databases,

VPS or DNS. It implies that the customer must contract a subscription for a

certain amount of time and when it expires the subscription must be renewed in

order to keep using the service. For the subscription services it must be possible

to schedule future cancellations and deactivations.

2. The one time model is used on those services that are contracted just for

a one particular moment (eventual services). The services from the above list

that fall into this category are Web development and Training courses.

Two variants of the subscription services can be identified based on the service renewal

point (the future date when a subscription service should be renewed). The renewal

point can be (1) fixed or (2) variable.

1. A fixed renewal point means that the moment of renovation is fixed for all

services and, for example, it should be renewed every April of each year. Most

of the services offered by a hosting provider uses this approach since they used

to invoice their subscription services only once a month or once a year.

2. A variable point means the renovation should happens just one month (or

one year) after the moment when the service was contracted. Maybe DNS is

the only service that uses this variable point since most DNS providers use it.

There are some situations where it is desirable to be able to configure some dis-

counts for the subscription services :

• Discount on cancel or deactivation . In some service it is desired to dis-

count the canceled or deactivated proportional part of the subscription period.

For example we want to discount the time when a mail account was deactivated.

11A daemon is a computer program that runs as a background process, rather than being under
the direct control of an interactive user.

9

• Discount on register . For some services with a fixed renewal point it is

interesting to discount a quantity proportional to the time between the fixed

renewal point and the register date. For example if we order a new mail account

on February and the billing point is in April, maybe we want to discount April

to February part of the entire year.

We can identify two more variants of the subscription model depending if the service

should be payed before (prepay) or after their use/consumption (postpaid). An

example of postpaid service is the Internet transit consumption, since there is no way

to know in advance how much transit a member consumes in a month. For prepay

services such as shared hosting, databases or DNS it should be possible enable some

additional flags:

• When the subscription of the service is effective or scheduled for future cancel-

lation or deactivation we might want to refund the proportional part of the

payed period

• When a discounted future cancellation or deactivation has been revoked we

might want to recharge this proportional part

1.3.3 Advanced pricing configurations

The pricing configuration defines how a price is calculated for a particular service.

The hosting providers usually have multiple pricing options, most of them have (1)

hosting plans where a pack or group of services are available for a cheapest price than

picking these services one by one. (2) Tiered prices are other pricing option, with it

the unitary price of a service decays according to the total of services of the same

kind that a customer has contracted. The tiered price is useful to provide discounts

based on bulk service contracting. Another pricing option is (3) the flat rate where

a customer always pay the same price no matter how much resources consume.

Since we want to provide a highly flexible control panel, we have came up as a re-

quirement with a pricing mechanism that, even being pretty complicated, it will cover

almost any possible configuration that can be thought of. The following subsections

explain the different elements and parameters that should be taken into consideration

by the control panel when calculating the prices. First we introduce the metric con-

cept and how to calculate it for a given service, and then we will see how to calculate

the price using this calculated metric.

10

1.3.3.1 Calculate the metric of the service

A service can have two different metrics : (1) the number of contracted services

per customer or (2) the amount of resources consumed by a service. Also

we need to define which time period is relevant for calculating the metric, it can be

a month or a year. And the start point of the period can be fixed or variable (same

meaning as explained at the previous section).

1. In case it is a subscription service and the metric calculated is the number

of contracted services we can calculate the metric based on the state of the

service during the period. It can be:

• Active or disabled

• Registered (service registration moment)

• Renewed (service renovation moment)

• Registered and renewed

2. Otherwise in case we use the amount of resource consumed by a service we have

two options:

• Use the amount of resource for each order or,

• use the amount of resource of all the contact orders of the same type of

service.

Moreover with a subscription service two different approaches for calculating the

metric can be used:

• Split the entire billing period in small pricing pieces and calculate the price

based on the metric for each piece. For example this is possible with an annual

billing period and a monthly pricing period, so even it is an annual service the

metric used for calculate the price may vary each month.

• Just use the first month of each renovation to calculating the metric of the entire

billing period.

11

1.3.3.2 How to calculate the price

Apart from the calculated metric there is another factor used to determinate the

price of a service. It is the contracted hosting plans or packs that a customer or

member has. The contracted packs are used for make different prices depending on,

for example, the membership type. For instance the membership organization include

more services with price 0 than a personal membership account. Or the members can

contract for example 50GB Internet transit prepay pack, so with this pack the first

50GB of traffic are covered by the price of the pack.

Additionally we have considered three different rating algorithms to determinate

the price of a service based on its metric and the contracted packs. The different

algorithms are (1) the best price approach, (2) the progressive approach and (3) the

match price approach. The three different approaches are presented by examples

using the following price definition.

Table 1.1: Price definition example
Service Pack Metric Unitary price

Domain .ORG Default 1 - 4 15 e
Domain .ORG Default 5 - 9 10 e
Domain .ORG Default 10 - ∞ 5 e
Domain .ORG Organization member 1 0 e
Domain .ORG Organization member 2 - ∞ 10 e
Domain .ORG Personal member 1 - ∞ 10 e

Now lets imagine that we have contracted an Organization member pack, so we

need to consider the default pack and the Organization member pack. This is how

each algorithm should obtain the price for 10 domains:

1. Best price method returns the best total price considering the given metric (10).

It should return 1 at 0e and 9 domains at 5e

2. Progressive price returns the cheapest prices with accumulation of the pack

entries. It is easy to understand with an example: With 10 domains it should

return: 1 at 0e, and 9 at 10e. But notice that if we request 20 domains it

should return a completely different values: 1 at 0e, 4 at 15e, 4 at 10e and 11

at 5e (total price: 145e) because this path is cheapest than the more ’intuitive’

1 at 0e and 19 at 10e (total price: 190e)

12

3. Match price returns the cheapest price that match with the metric. For 10

domains it should return 10 at 5e, for 9 domains it should return 9 at 10e and

for 1 domain 1 at 0e.

1.3.4 Billing System

The billing system must be able to generate and manage five kinds of bill documents:

1. Invoice. It is a commercial document issued by the service provider (seller)

to the customer (buyer) related to their contracted services. This document

describes the contracted services, quantities, and agreed prices for the services.

The invoice indicates how much the buyer must pay to the seller, according to

some payment terms. The buyer has 60 days to pay for these services. The

invoice must implement support for the Spanish invoicing regulatory rules12,

but we need to provide hooks to allow future support for other regulations.

You can see an invoice example on Appendix A.1.

2. Membership Fee. It is a document issued by a non profit organization and

indicates that the receiver is a member of that organization and an amount of

money should be payed for that reason. The membership fees have an inde-

pendent numeration and no TAX should be applied. This kind of document

does not have any regulatory rules. You can see a membership fee example on

Appendix A.2.

3. Amendment Invoice. It is a document that indicates a rectification for a

previous issued invoice with incorrect information, such as errors in the price,

taxes, the services contracted or the contact information. An special request for

the accountant of Pangea is that the amendment invoices should be adapted to

the previous Spanish regulatory rules (RD 1496/200313) rather than the current

ones RD 87/200514. We will provide both of them.

4. Amendment Fee. It is a document that describes a rectification for a previous

issued membership fee, the amended error can be incorrect contact information

or incorrect price value. This kind of document does not have any regulatory

rules.

12descargas.sri.gov.ec/download/pdf/regfactura.PDF
13www.boe.es/boe/dias/2003/11/29/pdfs/A42537-42556.pdf
14www.boe.es/boe/dias/2005/02/01/pdfs/A03397-03401.pdf

13

5. Budget. It is a document requested by a customer (or potential customer)

which reflects the detailed prices that a group of service will cost if the member

contract it. This kind of document does not have any regulatory rule.

An independent numeration must be used for each type of bill. Also the numeration

must be correlative and must restart each financial year (1st of January).

For subscription services it can be possible to invoice multiple periods at once,

also it can be possible to ignore/discard some orders that for any reason we do not

want to bill. For the international bills the taxes should be excluded. Finally the

system should be able to create a PDF version of each document and handle its entire

life cycle.

Table 1.2: Bill life cycle

Status Performed process Available actions

Open Generate open ID1 Download as PDF
Generate creation date Move bill line

Add bill line
Delete

Closed Generate Q19 Discard
Change ID Modify HTML
Generate HTML2 Regenerate PDF
Generate PDF Send
Update creation date Download PDF
Generate due date Amend line

Send Send e-mail Mark as returned
Send Q19 Mark as payed

Amend line
Download as PDF

Payed Download as PDF

Returned Discard
Resend
Regenerate PDF
Amend line
Download as PDF

Discarded Undo (Close)
Download as PDF

1 Open ID is a provisional bill ID needed because until the bill is not
closed it can be deleted and a correlative ID must be guaranteed

2 An HTML version of the bill is stored in order to allow future mod-
ifications of the PDF

14

The presented table 1.3.4 and following figure 1.3 summarize the performed oper-

ations and the available actions for each bill status.

Figure 1.3: Bill life cycle

1.3.5 Payment gateway

There are lot of different available payment gateways, therefore we can not implement

all of them, instead we plan to implement the one used at Pangea and provide hooks

for future inclusion of new gateways. The payment methods currently available at

Pangea are two: (1) bank transfers and (2) direct debit. The direct debit is performed

through the Spanish Q19 bank procedure15. It is a communication mechanisms that

uses a text file where the bank operations are described in a regulated format. In the

case of bank transfer is performed by the member we only need to notify the member

by email when a new bill has been emitted attaching it, this way the client can go

directly to its bank and pay it through a bank transfer.

1.3.6 Resource limiting and accounting

Some of the services offered by a hosting company consume resources like CPU cycles,

memory or Internet traffic. The panel should be able to limit the consumption of these

resources and make a historical logging for posterior charge. Also the resources should

not be hardcoded to each service since each organization can have their own specific

needs for resource accounting and limiting.

15www.grupobes.es/auxfiles/aeb 19.pdf

15

1.3.7 Internationalization

Some users give high value on interfaces within their maternal language, for example

in our case the most common are Catalan, Basque, Galician or Spanish. Therefore the

control panel should be capable of supporting multiple languages. Also the control

panel should support multiple currencies in order to allow reusing for organizations

from countries outside the EU.

1.3.8 Target software to support

The priority target software to support is the software that is running right now

on Pangea’s servers, but we need to focus on the abstract functionalities provided

by these services rather than the software specifics, so switching to an alternative

software can be done easily. The control panel have to provide CRUD (Create, Read,

Update and Delete) operations for each one of the following services.

1. HTTP: Apache2-mpm-worker with SuExec and fcgid

Create, modify and delete virtual hosts.

2. MTA: Postfix with MailScanner

Create and delete mail accounts, and handle per account Spam-filter configura-

tion.

3. IMAP/POP: Dovecot with sieve

Create, modify and delete mail vacations, mail forwards and mail alias.

4. FTP: Vsftpd

Create and delete FTP accounts.

5. DB: Mysql

Create, modify and delete databases and database users, and their permissions.

6. DNS: Bind9

Create, configure and delete domain zones.

7. VPS: Proxmox (OpenVZ)

Create and delete virtual private servers and manage their resource limits.

8. MailingList: Mailman

Create and delete mailing lists.

16

9. Application as a service: Wordpress and Dokuwiki

Deploy new Wordpress, Dokuwiki or any other widely used open source web

application.

1.3.9 Multi server support

We have to consider three different server architectures, since some organizations have

(1) all the services in a single machine, others, like us, have (2) each services on a

different servers, see figure 1.1, and others can have (3) the same service distributed

over multiple machines. So in the worst case, for each service the panel must be

able to know in what specific server it is hosted and implements a mechanism that

allows remote task executions in order to perform the management operations over

the servers.

1.3.10 Easy to use for unskilled users

We like to provide a user interface suitable for unskilled users, but at the same time

feature rich enough that satisfies the more advanced users. Maybe the interface could

hide the advance options or we can allow multiple user interface implementations and

let the user chooses which one is more comfortable for them.

1.3.11 Easy to add new functionalities

In short periods of time new services may become available for the users. The control

panel must facilitate the integration of these new services as soon as possible.

1.3.12 Reusable

The design of the whole project must be focuses on reusability, making things as

generic as possible in order to ensure that other organizations or persons can use this

project for their own needs. Also in order to guarantee their reusability, the source

code must be clean and well structured to facilitate future developments.

1.3.13 Open source friendly

Due the Pangea’s philosophy and compromise with the open source16 community,

the adopted solution must be under an open source license and not dependent of

commercial products.

16Open source definition at http://opensource.org/docs/osd

17

18

Chapter 2

State of the art

Following section presents the current available solutions, both specifically developed

for (and by) Pangea and existing open source hosting control panels. Each tool is

analyzed and evaluated to decide whether it should be reused or integrated to the

final solution.

2.1 Current related software at Pangea

Pangea has been providing its services for 18 years, during which the same necessities

were already present. As expected, Pangea has developed different software solutions

along time in order to support its users and employees. Currently the used solution is

composed by three different pieces of software developed for and by Pangea that try

to cover up most of the functionalities that should be provided by a hosting control

panel.

2.1.1 Members and billing management

During two years (2004 and 2005) Pangea developed an account management and

billing system called GISP (Gestió ISP, ISP Management in English). But the project

has been disastrous because after all the work it lacks of basic Pangea’s requirements,

just a glance:

• GISP does not have any pricing configuration, so in most cases the price must

be calculated by hand by the sales personal

• Each new year the source code needs to be modified because the current year

is hard coded

• Does not make amended invoices nor amended fees

19

• Each year the state of the orders of the subscription service must be updated

via raw SQL queries

• Very poor search options. GISP can not perform search over bills, services or

anything else than contact information

• Q19 bank procedure is not fully support, GISP can not handle the Q19 file with

returned charges delivered by the bank entity

Moreover the poor design makes it nearly impossible to maintain or reuse. For

example these are some of the design principles applied on the GISP database (notice

the irony):

• Don’t trust on auto-incremental primary keys functionality of your database

engine, it is way better create your own tables to do the job

• If a relational database is ’not enough’ just create a text field and embed what

you need in XML format

• You don’t want an intermediary table for many-to-many relations, just use a

sequence of primary keys in a typical varchar field

2.1.2 User control panel

During 2006 a student, for his final thesis, tried to develop a control panel working

on top of GISP. The project is called AGEC1 (Auto Gestión de Clientes en Pangea,

which means clients self-management for Pangea). Unfortunately the only function-

ality provided by AGEC is allowing members to list their invoices and their contact

information. We tried adding new functionalities to this panel but in the end, only

some basic functionalities were implemented:

• Login system (the original release does not have a working one)

• Web form for creating automated mail responses during holidays (vacation)

using Sieve

• Web form for creating blog accounts that worked under Wordpress and wikis

with DokuWiki

1http://upcommons.upc.edu/pfc/handle/2099.1/5372

20

2.1.3 Administration scripts

Currently we are using a set of Perl scripts developed by previous system administra-

tors that helps Pangea’s work of creating and deleting accounts for FTP and email

services. And thats it, so most of the rudimentary work must to be done manually

by sysadmins.

As result of the analysis of the current tools, since their design is not clear and

extensible, we have considered that the best option is move forward with a completely

new approach. So the next logical step seems to take a look at the existing open source

control panels, which is detailed at the following section.

2.2 Outstanding existing solution

As a web hosting control panel is a common need of any hosting company, so before

deciding on implementing our own control plane, we should check out if there is an

existing solution that fits the requirements or can be easily extended to fit them. A

lot of control panels with different properties can be found with a quick search.

Table 2.1 shows a comparison with basic information of the most popular existing

control panels compatible with Linux servers.

We are principally interested in the ones that are focused on hosting management

(customers and billing support), support Linux servers and are released under an

open source license.

Among all of them we consider that there are 3 projects that stand out since they

satisfy more or less the Pangea’s requirements: (1) SysCP, (2) Domain Technologie

Control and (3) ISPConfig. We have installed these three candidates in our test

servers and during a few months we have been made an exhaustive evaluation of

them. The following sections detail the results and conclusions extracted after this

evaluation.

21

Table 2.1: Main Linux web hosting control panels comparison
Name License Billing

System
Language Plugin

Support
Multiserv
Support

Baifox GPL ? PHP,
SQLite

? ?

cPanel Proprietary Agora Perl Yes Partial

Direct Admin Proprietary No C++, PHP Yes ?

Domain
Technologie

Control

GNU
LGPL

Yes PHP ? No

Gnupanel GPL ? PHP ? ?

H-Sphere Proprietary Miva Java Yes Yes

HDE Controller X Proprietary ? PHP ? Yes

Hosting
Controller

Proprietary No .NET,
MSSQL

Yes ?

i-MSCP GPL ? PHP,
MySQL

Yes No

InterWorx Proprietary No PHP,
MySQL

Yes Yes

ISPConfig BSD No PHP, Perl Yes Yes

ispCP GPL Yes PHP,
MySQL

No No

Kloxo AGPL Planned PHP, C++ ? Yes

OpenPanel GPL Miva C++ Yes Planned

Plesk Proprietary Yes PHP,
MySQL

? ?

SysCP GPL Yes PHP,
MySQL

Yes Partial

Froxlor GPL Yes PHP,
MySQL

Yes Partial

Usermin BSD No PHP ? ?

Virtualmin GPL Yes Perl Yes Partial

Virtualmin Pro Proprietary No Perl Yes Partial

Webmin BSD No Perl Yes Yes

Main source from http://en.wikipedia.org/wiki/Comparison of web hosting control panels
More at http://web-hosting-top.com/directory.control-panels

22

2.2.1 SysCP

SysCP2 is an open source web hosting control panel written in PHP and with MySQL

as a storage backend. The project started in autumn 2003 by Florian Lippert, and

two more developers. On 2010 the founder and another core developer left the project.

The fact that only a single core-developer continues working on the project gives us

little certainty about the future developments of this project3.

Figure 2.1: SysCP screenshot

2.2.1.1 Requirements fit

1. Contacts management Ok

The contact system fits our requirements.

2. Services Partial

Supports most of the required services directly or indirectly through third-party

pluggins, except for the complete lack of VPS service support. Also there is no

support for shared services. A shared service is a property for some services

2Official SysCP web page http://www.syscp.org
3And we were right, no active development has seen since then.

23

that allows their use and exploitation for multiple different members. An ex-

ample of this sort of service could be pangea.org domain name, if pangea.org is

configured as shared service other members can create subdomains of it, like

member1.pangea.org or member3.pangea.org.

3. Advanced pricing configurations Fail

Syscp does not support all the pricing requirements.

4. Billing system Fail

Syscp can be extended through a patch developed by a third-party developer

that it supports billing. The billing system is very basic and does not support

membership fees and amendment that follow the Spanish regulatory rules.

5. Payment gateway Fail

There is no Q19 support.

6. Internationalization Ok

SysCP fits the internationalization requirements. It’s translated to 8 different

languages including Catalan and Spanish.

7. Resources limiting and accounting Ok

Good resource control support including Internet traffic, web and mail account

disk quota.

8. Target software to support Partial

Except OpenVZ, all the other required software is compatible with SysCP.

9. Multi server support Partial

Multi-server support is not natively supported in SysCP, but you can split

services among different servers with little modifications, unfortunately the same

service can not be split between multiple servers.

10. Easy to use for unskilled users Ok

The interface is clear and simple.

11. Easy to add new functionalities Partial

SysCP has a plugin system for including third-party plugins but it has some

limitations since is not posible to change the behaviour of existing parts.

24

12. Reusable Fail

The SysCP is designed for a very specific server’s architecture and could be

difficult to adapt in an existing infrastructure. Also most core developers com-

plain about the code quality (it is not object oriented) and at the time of the

decision they were considering to perform a complete code refactoring.

13. Open source friendly Ok

SysCP is released under GNU GPL licence.

2.2.2 Domain Technologie Control (DTC)

Domain Technologie Control (DTC)4 is a control panel aiming at commercial hosting.

DTC is free software released under the GNU LGPL v2.1 license. It is also the first

web hosting control panel that has reached inclusion in major distributions like Debian

(since Lenny in 2009), Ubuntu (since 2008) and FreeBSD.

Figure 2.2: DTC screenshot

2.2.2.1 Requirements fit

1. Contacts management Ok

The contact system features fits our requirements.

4DTC project page http://www.gplhost.com/software-dtc.html

25

2. Services Partial

Supports most of the required services except the installation of apps like Blogs

or Wikis, and support for shared services is missing too.

3. Advanced pricing configurations Fail

DTC does not support all the pricing requirements.

4. Billing system Fail

The billing system is very basic and does not support membership fees and fee’s

amendment according to Spanish regulatory rules.

5. Payment gateway Fail

There is no Q19 support.

6. Internationalization Ok

DTC is translated up to 11 languages including catalan and spanish.

7. Resources limiting and accounting Ok

The resource control support seems to be enough.

8. Target software to support Partial

As SysCP, OpenVZ support is missing on DTC.

9. Multi server support Fail

Due to the directory structure used on DTC it is not possible to have different

services distributed between multiple servers.

10. Easy to use for unskilled users Fail

Despite the interface is well designed it has too much options and it is too

complicated for most of Pangea’s members.

11. Easy to add new functionalities Fail

There is no plugin-like architecture on DTC.

12. Reusable Fail

DTC has strong server architecture needs and it is really hard to use in an

existing infrastructure. Also the source code is a complete mess and most of

the best practices on software development seems to be ignored: it is not object

oriented, the directory structure is messy and it is impossible to find any kind

of documentation oriented to developers.

26

13. Open source friendly Ok

Licensed under LGPL.

2.2.3 ISPConfig 2

ISPConfig 25 is a control panel for Linux server licensed under BSD license. The

current release of ISPConfig is ISPConfig 3 and it has a lot more functionalities and

it fits more or less the proposed requirements, unfortunately at the time of the decision

it was on early alpha development stage and we did not consider it as an option.

Figure 2.3: ISPConfig 2 screenshot

2.2.3.1 Requirements fit

1. Contacts management Ok

The contact system is quite complete.

2. Services Fail

Unfortunately, like the other valuated control panels, there is no support for

shared services.

3. Advanced pricing configurations Fail

DTC does not support all the pricing requirements.

5Official ISPConfig2 web page http://www.ispconfig.org/ispconfig-2

27

4. Billing system Fail

There is no billing system support on ISPconfig2.

5. Payment gateway Fail

Since there is no billing support, neither is payment gateway module.

6. Internationalization Partial

ISPConfig2 is translated up to 13 languages but it is not translated to Catalan.

7. Resources limiting and accounting Ok

The resource control is enough for most hosting providers.

8. Target software to support Partial

Missing support for OpenVZ containers, Mailman mailing lists, Wordpress and

Dokuwiki applications.

9. Multi server support Fail

There is no multi server support for ISPconfig2.

10. Easy to use for unskilled users Ok

One advantage of the lack of functionalities on ISPConfig 2 is that the user

interface can not be much complicated.

11. Easy to add new functionalities Fail

There is no plugin-like architecture.

12. Reusable Partial

It is difficult to install on an existing infrastructure but the source code quality

is pretty good and there is a lot of development documentation.

2.2.4 Summary

None of the presented solutions fits all or nearly all requirements, therefore in case

we decide on one of those solutions a lot of development should be done in order to

achieve the objectives of the project.

Table 2.2 summarizes how the requirements are fit by the reviewed control panels.

The easiest project to contribute seems to be ISConfig 2 because of the good quality

code and extensive development documentation, but instead is the solution with less

features implemented. On the other hand, we have SysCP, wich has most of the

functionalities already implemented but its future is completely uncertain because

28

two of three main core developers has left the project. Finally, DTC is the less

preferred solution since it does not support multi server architectures and because

the code is quite unfriendly.

Table 2.2: Requirements compliance summary
Requirement SysCP DTC ISPConfig2

1 Contacts management Ok Ok Ok
2 Services Partial Partial Fail
3 Advance pricing configurations Fail Fail Fail
4 Billing system Fail Fail Fail
5 Payment gateway Fail Fail Fail
7 Resource limiting and accounting Ok Ok Ok
8 Target software to support Partial Partial Partial
9 Multi server support Partial Fail Fail
10 Easy to use for unskilled users Ok Fail Ok
11 Easy to add new functionalities Partial Fail Fail
12 Reusable Fail Fail Partial
13 Open source friendly Ok Ok Ok

2.3 Final decision

As the current solutions implemented at Pangea are poor designed and difficult to

reuse, and at this point the available open source hosting control panels are not

convincing, we decide to develop a new control panel that fits all the presented re-

quirements and takes care of the common shortages of the reviewed panels, such

as:

• Limited pricing system

• Hard to fit on an existing server infrastructure

• No shared services

• Lack of multi-server support

• No membership fee support

• No Spanish billing regulatory rules

• Not scalable: not suitable for distributed architectures and no any interface

seems appropriate for organizations with more than 40 customers

29

30

Chapter 3

Selected tools

The developed control panel relies on a set of tools of different kinds. In this chapter

each of them is listed and described, as well as the reasons that has lead to the

selection of those concrete tools instead of other available ones.

This chapter is presented before the design principles section because Django

framework, which has an strong design philosophies behind1, has made an deep in-

fluence on my final design decisions. So in order to preserve the chronological order

of the events, let’s introduce the Django framework and their friends.

3.1 Django framework

Django2 is an open source web application framework, written in Python, which

follows the model-view-controller architectural pattern3. It was originally developed

to manage several news-oriented sites for The World Company of Lawrence, Kansas,

and was released publicly under a BSD license in July 2005.

3.1.1 Framework advantages

We decide on a framework instead of directly using a language and their libraries

because it is more easy and faster to create web sites with the correct framework. This

is because a web-related framework already integrates all the common parts needed

for building web sites and it also helps us on the decision taking of some critical and

difficult design decision. Another reason is that we can get new features for free in

each new framework release. Also a project developed using a popular framework is

1Django design philosophies http://docs.djangoproject.com/en/dev/misc/design-philosophies
2Official Django site http://djangoproject.com
3Discussed ahead on chapter 4 Design principles section 4.2 Orthogonality.

31

easy to maintain because it is possible to find developers that are already familiarized

with the parts of the project design which belongs to the framework.

3.1.2 Django advantages

Django’s primary goal is to ease the creation of complex, database-driven websites.

Django emphasizes on reusability and “pluggability” of components and rapid devel-

opment. Moreover, it comes with a pretty useful functionalities out of the box:

• Object-relational mapper

It allows to define your data models4 entirely in Python providing a rich, dy-

namic database-access API for free, but it is still possible to write raw SQL

queries if needed.

• Automatic admin interface

Django can create an admin interface based on the application model descrip-

tion. It is completely automatic and it is production-ready and very customiz-

able. We base our admin interface entirely on this feature.

• Elegant URL design

Allowing to design pretty and cruft-free URLs5 with no framework-specific lim-

itations. Giving you the possibility of being as flexible as you like.

• Template system

Use Django’s powerful, extensible and designer-friendly template language to

separate design, content and Python code. Apart from generating HTML pages,

this template system is interesting for create the PDF version of the bills as weel

as for dinamically generate shell scripts that performs the management tasks

on the hosting servers.

• Internationalization

Django has full support for multi-language applications, letting you specify

translation strings and providing hooks for language-specific functionality.

4Data models provide a structure for data used within information systems by providing specific
definition and format. The data model will normally consist of entity types, attributes, relationships,
integrity rules, and the definitions of those objects.

5Without the characters which are relevant or meaningful only to the people who created the site,
such as implementation details of the computer system which serves the page, such as the .php or
.html file extensions or internal organizational details such as /public/ or / users/john/work/drafts/.

32

• Reusable Apps

In Django context the projects are build putting different applications together,

normally an application encapsulates some kind of functionality, in our case

each app will implement an entire subsection of our 1.3 requirements analysis :

one app for 1.3.1 contacts management, another for 1.3.4 billing system, and

so on. A reusable application are those apps designed in such a way that it

could be directly used in any project that requires this kind of functionality.

There are plenty of open source reusable applications out there, so we can take

advantage of the existing third-party Django apps integrating them into our

project, avoiding reinventing the wheel.

• Multiplataform and multi-database support

With these features the control panel can run on any operating system that has

Python support and switch the database back-end without changing a single

line of code.

• Database transactions

A database transaction is a logical unit of database operations which are exe-

cuted as a whole to process user requests for retrieving data or updating the

database. Django provides a few ways to control how database transactions are

managed, if you are using a database that supports transactions. We can rely

on this Django feature in order to implement the, sometimes difficult, task of

ensuring data consistency in case of hardware or software failures.

• Extensive documentation

In contrast to other open source frameworks Django has a very detailed and

up-to-date documentation. Also, the Django users’ community is very active

on their own blogs or on the Django users mailing list, that is full of developers

sharing knowledge and helping others.

Finally you do not get tied to Django since it is extremely modular and any of

the components provided by the framework can be easily switched. The ORM or the

template system can be changed for other ones, such as SQLAlchemy6 or Jinja27.

Also Django can work together with other frameworks like jQuery8.

6SQLAlchemy is the Python SQL toolkit and Object Relational Mapper
7Jinja2 is a modern and designer friendly templating language for Python.
8jQuery is a cross-browser JavaScript library designed to simplify the HTML client-side scripting

33

3.2 Celery distributed task queue

Celery9 is an open source asynchronous task/job queue based on distributed message

passing10 used in production systems to process millions of tasks a day. It is focused

on real-time operation, but supports scheduling as well. Celery supports multiple

broker agents but it is specialy designed to work with RabbitMQ.

Celery is easy to integrate with Django using django-celery app. This application

uses the Django ORM and cache backend for storing results. Figure 3.1 represents a

high level overview of its architecture.

Figure 3.1: Celery architecture overview

Basically the broker delivers tasks to the worker nodes. A worker node is a net-

worked machine running celeryd. This can be one or more machines depending on

the workload. The result of the task can be stored for later retrieval11.

• Why do we need an asynchronous task queue?

The panel has to execute some tasks that are quite expensive computationally

speaking, such as executing scripts on the server side and gathering the results,

calculating prices and generating invoices. In order not to impact the user

9Celery web site http://ask.github.com/celery
10More at youtu.be/o3TuRs9ANhs Google I/O 2009 - Offline Processing on App Engine
11Source at http://ask.github.com/celery/getting-started/introduction.html

34

experience with long locks waiting for a task to end, we want to run those tasks

asynchronously.

• Why not using cron jobs?

The use of crontab for the execution of asynchronous tasks is widely used in

other control panels. They normally schedule a procedure that every 10 minutes

polls the database looking for changes and triggers specific scripts in order to

reflect these changes on the server. However this approach has some drawbacks:

– It is not trigged when changes happen

– It is not bundled on the application, there is a need to have some definitions

on the OS crontab

– If a cron job fails it is not repeated until the next schedule comes

– The tasks are performed on a single machine, therefore it is hardly scalable

– Less control: it is not possible to revoke pending operations and reschedule

faulty ones

3.3 Pisa PDF generator

Pisa12 is a HTML to PDF converter that uses the ReportLab Toolkit, HTML5lib and

pyPdf. Pisa is easy to use and well integrated with Django. We use Django templates

and HTML/CSS in order to define how the bills look like. Then the template is

rendered with an specific context13 and finally passed to the pisa.pisaDocument()

that creates a PDF version of it.

3.4 Django admin tools

Django-admin-tools14 is a collection of tools that improve some parts of the Django

administration interface, it includes:

• a fully featured and customizable dashboard

12Pisa web page http://xhtml2pdf.com
13A context is a “variable name”: “variable value” mapping that is passed to a template. A

template renders a context by replacing the variable ”holes” with values from the context and
executing all block tags.

14Django-admin-tools project page http://bitbucket.org/izi/django-admin-tools

35

Figure 3.2: Django admin tools drag and drop detail

• a customizable menu bar

Figure 3.3: Django admin tools menu detail

• tools to make admin user interface theming easier

36

Chapter 4

Design principles

In this section we describe the main design patterns and decisions on which the

implementation is based. As we early discuss in this document some of the design

decisions has been already taken by choosing the Django framework. The design

decisions have been made prioritizing the plugability and reusability of the system.

We have designed the project with the idea of creating a framework for the easy

creation of web hosting control panels more than designing a control panel itself.

4.1 Reusability

The control panel design is highly focused on reusability. We understand reusability

as the ability of the system, or some of their parts, to be used in other projects. We

implement reusability using two design patterns: (1) Separation of concerns and (2)

Loose coupling.

4.1.1 Separation of Concerns (SoC)

Django has well integrated this pattern on its project design. With Django you are en-

couraged to split your project into more specific and focused applications, commonly

known as a Django reusable applications.

A reusable Django app, is an application that is easily plugged into any project,

providing a very specific piece of functionality. They should be focused and follow

the Unix philosophy of “do one thing and do it well”. James Bennett1 likes to say

that an application encapsulates some particular feature2.

1James is Djangos release manager, and a big contributor to the Django documentation
2James Bennett at DjangoCon 2008: Reusable Apps. youtu.be/A-S0tqpPga4

37

4.1.2 Loose coupling

The different applications of the project should not know about others, unless it is

absolutely necessary, that is, loose coupling and tight cohesion. If we write applica-

tions with this principle in mind we ensure that each app will be independent from

each other. This independence gives us two potential benefits:

1. Easy development and future maintenance

2. Make it reusable for other projects

Some underlying patterns of this principle that we widely use on this project are:

• Signals (publish/subscribe)

Django includes a “signal dispatcher” which helps on allowing decoupled ap-

plications to get notified when actions occur elsewhere in the framework. In a

nutshell, signals allow certain senders (publishers) to notify a set of receivers

(subscribers) that some action has taken place. They are especially useful when

many pieces of code may be interested in the same events.

• Registration pattern

The registration pattern3 is used on an application in order to notify their

existence to other applications. That way the other application can take some

decisions based on this information. For example, with this pattern we can

enable or disable the admin interface for a certain application.

• Backend

The goal is to create a driver for an specific app that knows how to talk with the

API of another application. This is used normally to decouple two applications

that have a highly coupled behavior, such as, for example, Order and Billing

apps. With the purpose of bill an order the Order application must know how

to tell the billing system that it wants to create a bill, this should go on the

backend file. If you want to switch your billing application the only thing that

you should do is change the backend file in order to match with the new billing

API.

• Generic relations

Common foreign keys4 can only “point to” one other model, which means that

3More on http://charlesleifer.com/blog/looking-registration-patterns-django/
4In the context of Django, a foreign key is a referential constraint between two models. It is

implemented with a database field in a relational table that matches a candidate key of another
table

38

if a model uses a ForeignKey it would have to choose one and only one model

to point to.

The Django ContentTypes5 application provides a special field type (Generic-

ForeigKey) which works around this and allows a relationship to point to any

model.

• Modify the behavior of another app at runtime

Python is a language with a very high level dynamic classes, therefore it is

very easy to modify classes and their methods at runtime. One application can

deeply change the behavior of classes from another application, and without

knowledge of it.

The idea behind the reusability principle is to create a generic set of reusable

applications that covers the different needs of a web hosting control panel. Then

others can build their own control panel reusing a subset of these apps.

4.2 Orthogonality

“Orthogonality is a system design property facilitating feasibility and com-

pactness of complex designs. Orthogonality guarantees that modifying the

technical effect produced by a component of a system neither creates nor

propagates side effects to other components of the system.”6

The Django apps are designed using a variant of a model-view-controller (MVC)7

pattern called model-template-view (MTV). As the MVC patter does, MTV isolates

the business logic from the user interface, permitting independent development, test-

ing and maintenance of each part.

Figure 4.1 shows the Django representation of the MTV design pattern.

5Django includes a contenttypes application that can track all of the models installed in your
Django-powered project, providing a high-level, generic interface for working with your models

6http://en.wikipedia.org/wiki/Orthogonality#Computer science
7More at http://en.wikipedia.org/wiki/Model-view-controller

39

Figure 4.1: Django Model-Template-View overview diagram

• The Model layer implements a description of the database table, represented

by a Python class. It is the responsible of creating, retrieving, updating and

deleting records in the database using simple Python code rather than writing

repetitive SQL statements. This layer is the same as the MVC pattern and it

is implemented on the models.py application file.

• The View layer performs the business logic8 for the web pages. It is imple-

mented on the views.py application file.

• The Urls module is the responsible to map each URL to a certain view function.

It should be specified on the urls.py file. The Urls system together with View

layer does the same job as the controller on the traditional MVC pattern.

• The Template layer is implemented in different files within the template app

directory. These files describe the design of the page so this layer is the same as

the View layer on the MVC pattern. A template file uses the Django template

language with basic logic statements.

4.3 Adaptability

This project is designed with the philosophy of must be the control panel which suits

IT infrastructure instead of infrastructure fitting the panel. The downside of this ap-

proach is that in most cases the sysadmins will need to modify the server management

scripts in order to make it fully compatible with their software. This is not necessarily

8Business logic, or domain logic, is a non-technical term generally used to describe the functional
algorithms that handle information exchange between a database and a user interface

40

a big deal since most system administrators love writing their own shell scripts, and

moreover we will use the Django template system to ease this task.

4.4 Extensibility

The control panel is designed to provide the basic and generic functionalities by

default and move the specifics to extensions. Extensions can be through (1) the

modification of existing functionality or through (2) the addition of new function-

ality. “The central theme is to provide for change, atypically enhancements, while

minimizing impact to existing system functions.”9

(1) In systems architecture, extensibility means the system is designed to include

hooks and mechanisms for expanding/enhancing the system with new capabilities

without having to make major changes to the system infrastructure.

We have been implemented a plugin mechanism that allows to easy extend the

control panel services. For example, the web app only brings support for the basic

VirtualHost configuration, and support for mod php or mod proxy configuration can

be provided though a plugin. We provide two base classes that helps with the plugin

creation task: PluginServiceModel and PluginServiceAdmin.

Also the system must facilitate as much as possible the task of adding new services.

We provide an inheritance based approach that makes easier the task of implementing

support for new types of services. You only need to inherit from BaseService class

and define the service specifics, BaseService does the rest.

(2) Extensibility can also mean that a software system’s behavior is modifiable

at runtime, without recompiling or changing the original source code. Our control

panel has an admin interface that allows to modify the behavior of the control panel

without touching any single line of code. For example it is possible to describe the

resources used for a concrete service and the web interface forms will be modified at

runtime in order to reflect these resource descriptions. Another example is the ability

of our panel to dynamically add an arbitrary extra field to the services, useful when

an organization has a very specific need for a concrete service, like store an additional

field on the contact information.

9Quote from http://en.wikipedia.org/wiki/Extensibility

41

4.5 DRY Don’t repeat yourself

This software development principle aims at reducing repetition of information of all

kinds. The DRY principle is stated as “Every piece of knowledge must have a single,

unambiguous, authoritative representation within a system.”

When the DRY principle is applied successfully, a modification of any single el-

ement of a system does not require a change in other logically-unrelated elements.

Additionally, elements that are logically related all change predictably and uniformly,

and are thus kept in sync. This principle is especially useful on model-view-controller

architectures since both pursue guarantee that changes in one part of the system does

not affect others.

42

Chapter 5

Architecture design and
implementation

In this chapter we are going to see how we have implemented the control panel require-

ments reviewed on section 1.3 using the development tools that we have presented on

chapter 3 and following the design principles presented in the previous chapter.

As one of the design principle was to split the project into small applications this

chapter is also divided in the defined applications. Also an overview of different ap-

plications working together is presented on the last section: 5.17 Global interactions.

5.1 General considerations

Before dealing with the different applications that compose the project we want to

present some general points that are used on the implementation of several developed

apps.

• Commit on success. The views susceptible to perform any database change run

under a commit on success database transaction scope. It means that if all the

code runs successfully, the panel will commit the work done. Otherwise if the

code raises an exception then the panel will roll back the transaction.

• The admin interface relies entirely on django.contrib.admin. We reuse the

django.contrib.admin application for the web interface by subclassing its

ModelAdmin class. ModelAdmin class is very flexible, it has several options for

dealing with customizing the interface1. All the admin interface related code

lives on the app name/admin.py file. The automatic Django admin interface is

composed by three main parts:

1Check available configurations at https://docs.djangoproject.com/en/dev/ref/contrib/admin

43

1. The admin home page, figure 5.1. This page lists all the available types

of data (models) that can be edited through the admin site.

2. Admin change list, figure 5.2. Each type of data in the Django admin

site has a change list that displays all the available objects in the database.

The basic workflow of Djangos admin is “select an object, then change it.”,

so the change list page lets you to perform a certain action over a set of

selected objects as you can see on figure 5.3.

3. Change and add forms, figure 5.4. Used to modify existing objects and

create new ones. Each field defined in the application model appears here,

and fields of different types get different widgets. Also every change made

through the admin interface is logged. You can examine this log by clicking

the history link in the upper-right corner of the window.

Figure 5.1: Admin home page screenshot

44

Figure 5.2: Admin change list screenshot

Figure 5.3: Admin actions screenshot

45

Figure 5.4: Admin change form screenshot

• Each application has its own settings.py file where all the configuration

specifics are defined. This way we can provide generic applications that can

be reused by others after editing the settings file.

• We make extensive use of Django templates, not just for generating the HTML

web pages but also for the bills and the server side scripts. See appendix A.1.

• The dynamic forms are those web forms created at runtime because until then

we do not know how they should look like. We use Python metaclasses for

creating them. A metaclass is a class whose instances are classes. Just as an

ordinary class defines the behavior of certain objects, a metaclass defines the

behavior of certain classes and their instances.

46

• Usually each application is presented broken down into two subsections: (1)

Model of the application and (2) Admin interface of the application.

Figure 5.5 presents an overview diagram of the most visible applications that

compose the panel.

Figure 5.5: Applications architecture overview

First we are going to present the core application called common (not represented

on the diagram 5.5) responsible of sticking together the other project applications.

The next set of applications that we present are those with system related work:

daemons and resources. Then we dive into the accountant-related apps, such as

contacts, ordering and billing. Finally we will take a look at the services applications,

which includes the authentication system, mail, web, DNS, and jobs. Please notice

that we make references to this set of applications down the line using the term service

applications or service apps.

Generally speaking we think that documentation goes against DRY principle, since

the same concept is in two places at the same time (in the source code and in the

documentation). Therefore, documentation might easily become outdated because of

that. Also, considering that in software development the time is an scarce resource,

we think that it is worth spending more time creating a high quality code or tests than

spend it writing an extensive documentation, good code with good naming convention

does not need to be extensively documented. We’d like to just provide a high level

description of each module and leave the low-level details on the source code. If you

find this documentation too general please review the source code for more details.

Also you can use the python help() utility to review the API of each application.

47

5.2 Common

Common app is the core of the project, since it provides the common utilities for

creating the service applications and other tools commonly used by the different

panel apps. Therefore it is mandatory to install it if you want to reuse some other

project app.

This core application consists on:

• BaseService, which is a base model class2 for all service models

• BaseService, which is a base model class for all service plugin models

• ServiceAdmin and other base admin classes for service providing admin sup-

port through means of inheritance

• A collection of utilities and common functions used by multiple control panel

apps, for example the factory class that builds dynamic forms

BaseService and BasePlugin abstract models implement the plugin mechanism

that allows extending a service with new functionalities. The service activation and

deactivation feature is implemented by BaseService base class. Also inheriting from

BaseService is like labeling the subclass, because some applications rely on the fact

that if one of your parents is BaseService then you are a service and you should be

treated consequently.

ServiceAdmin model implements admin interface hooks for service applications.

A practical example can be the ServerName field from the add form when adding

a VirtualHost. By default Django shows a select widget with all existing domains,

but if you have the contacts application installed it overrides this behavior and shows

only the domains owned by the concerned customer.

ServiceAdmin model also provides some useful signals that alert other applications

that something has changed in the service through the admin interface:

• service created() Sent when a new service has been created, e.g. a new

e-mail account

• service updated() Sent when a service has been modified

• service deleted() Sent when a service has been deleted

2A superclass, base class, or parent class is a class from which other classes have been derived

48

How easy is to create a new service application using this classes?

1. Execute python manage.py startapp startapp lists in order to create the

skeleton of the new application, a mailing list in our example case

2. Edit lists/models.py and add the following lines:

from common.models import BaseService

from dns.models import Name

class List(BaseService):

name = models.CharField(max_length=32)

domain = models.ForeignKey(Name)

admin_password = models.CharField(max_length=16)

3. Create the file lists/admin.py with this content:

from django.contrib import admin

from lists.models import List

from common.admin import ServiceAdmin

class ListAdmin(ServiceAdmin):

pass

admin.site.register(List, ListAdmin)

These few lines of code just have created a new service with a full admin panel

integration. On figure 5.6 you can see how the admin interface for this new service

looks like. Please notice that this is the default appearance and it can be completely

customized with few lines of code3.

3docs.djangoproject.com/en/dev/ref/contrib/admin/

49

Figure 5.6: Screenshot of list add form with default looking

5.3 Daemons

The Django ORM uses two different data modification methods: save and delete.

This application performs these data modifications on the server side.

In a UNIX like operative system a daemon is a computer program that runs as a

background process. Practically all of the process running on the servers providing

services on a hosting company are daemons. So we have decided to name this appli-

cation daemons in order to avoid confusion with other usual names like services or

servers.

5.3.1 Daemons Model

The model of this application consists of:

• Daemon model, that is the representation of a running process that is responsible

of the service provisioning on the server side, so a Daemon defines how to perform

the panel save and delete operations on the servers

• Host model, which identifies the machine (remote or local) where Daemon is

running

50

Figure 5.7: Daemons application model

The workflow of this application can be defined by three steps: (1) detect save and

delete service operations, (2) identify the daemon and host based on service object

and (3) execute the scripts.

1. Detect save and delete service operations

The daemon application takes advantage of the signals that AdminService sends

every time that a service is created, deleted or modified through the admin

interface. When the daemons app receives a service inserted() or service -

update(), it is interpreted as a save operation, and when the signal is service -

deleted() as a delete operation.

2. Identify the daemon and host based on service object

We could have the web sharing hosting service split into 3 different servers. It

is the deamon application responsibility to identify in what server resides each

web, for example www.pangea.org is hosted on web.pangea.org and ucp.pangea-

.org is hosted on web3.pangea.org. To work around this the server lookup is done

using a combination of ContentType (Model level) framework and expressions

(Instance level).

51

• Model Level: The ContentType framework is used to identify which is the

service model represented by the Deamon, webs.VirtualHost for our web

hosting example.

• Instance Level: When we have a service distributed over multiple servers

multiple daemon instances must be defined too, one for each server. There-

fore the system must be able to identify in what server lives each service

instance. An expression approach is used to solve this problem. It gives

the flexibility to make rules by service instance attributes combined with

Python logical and arithmetic operations. Let’s introduce the expression

mechanism with an example:

O['pk']%3==0

O is a model instance converted to a Python dictionary so we have access to

their attributes using this syntax O[’attribute name’]. This expression

example will match all VirtualHosts with primary key (pk) mod 3. So with

other 2 daemons with expressions O[’pk’]%3==1 and O[’pk’]%3==2 we get

nothing more than a round-robin distribution between those 3 daemons.

3. Execute the scripts

This application performs the data modifications on the server side executing

the save template4 and the delete template. These Django templates can

be executed using three different methods:

(a) Execute as script over SSH.

99.92% of the *nix5 servers around have the SSH service installed. So we

take advantage of this, offering the ability to execute the scripts through

SSH without the need of installing anything on the server side. We use

paramiko6 for managing SSH connections with Python.

(b) Execute as python code.

This option is interesting if we want to run some Python code that wants

to access at the control panel model using Django ORM.

(c) Execute the template as local script.

This is useful if we want to run any other remote access different than SSH,

4See an example on Appendix A.1
5A Unix-like (sometimes referred to as UN*X or *nix) operating system is one that behaves in a

manner similar to a Unix system
6http://www.lag.net/paramiko/

52

or just run the script locally because the server that we want to manage

is localhost.

This approach is multi platform friendly because we can execute virtually any-

thing. Bash, Perl, Ruby, Python, C, .NET. The only thing we need to do is

to write the scripts using the Django template system, see appendix A.1. The

script must be idempotent, that is, written in such a way that you may run the

same operation more than once and achieve the same result. Otherwise you can

run in troubles if the script fails and it is running partially multiple times.

The execution of the templates is performed asynchronously using Django Cel-

ery message queue. So the user request does not get stuck waiting for the task’s

end and the administrator can easily manage this task execution via the control

panel interface [see figure 5.9].

5.3.2 Daemons Admin

The actions provided for the daemons are available on its admin change list page [fig.

5.8]:

• Delete selected daemons

• Enable selected daemons

• Disable selected daemons

Figure 5.8: Daemons admin change list

53

Figure 5.9: Django-celery admin change list

Figure 5.10: Daemons admin change form

54

5.4 Resources

This application is responsible of monitoring, recording and limiting the resource

consumption of an specific service on the IT infrastructure. A common resource

could be CPU cycles, memory usage, number of process, Internet transit or swap

space.

5.4.1 Resources Model

Figure 5.11: Resources application model

55

The resources application consist on two models:

• Monitor. Defines the properties of the resource (like if it is limited or which

is the algorithm used to postprocess the monitored data) and establishes how

and when the monitorization should be performed.

• MonitoringData. Maintains a record of the monitorization data.

The resource abstraction on a single application is something intuitive but seems

that it is not easy to come up with this concept, since there is no single existing

control panel that does it. The existing control panels have hard-coded resources for

each application susceptible to consume them, making the control panel more difficult

to reuse.

This lack of resource abstraction on the other control panels might be because a

classic relational model does not have the concept of generic foreign key that allows

us to have a model with foreign key relations with multiple models. Therefore we

have this powerful tool allowing us to manage all the resources as a single model.

The workflow of this application is: (1) execute the monitorization script periodi-

cally, (2) interpret and store monitorization data and (3) limit the resource consump-

tion, by running predetermined actions.

1. Execute the monitorization script periodically

We use django-celery for scheduling the execution of monitorization scripts,

allowing crontab like configuration: minute, hour and day of week.

Like daemons application we provide three methods for the template execution:

(a) Execute as a script over SSH. (Relies on Daemon SSH connection details)

(b) Execute as python code

(c) Execute the template as a local script

The templates are polled from ./resources/templates/scripts directory and

the server where the template will be executed is determined using the daemons

application.

2. Interpret and store monitorization data

The Monitor configuration provides customizations for the monitorization data

interpretation: (1) period, (2) algorithm and (3) block size.

56

• period. Is the time period used for calculating the current state of the

resource consumption.

• algorithm. Is the operation performed over the period. It can be:

– Last monitorization result

– Average during the period

– Sum of the period values

– Maximum or minimum of a period

• block size. Defines the allowed tolerance on the measured value to avoid

reiterative executions of the limit exceeded template when the measured

unit presents an oscillatory behavior, creating a hysteresis7 cycle for the

thresholds that trigger the scripts execution. This is specially useful for a

limit on monthly average disk usage.

3. Limit the resource consumption

We can define a monitor with or without a limit. If we define a monitor with

a limit two different ways of ensuring the resource limitation of a daemon are

provided: (1) with the resource limit exceeded template and (2) with the

Daemon save template execution.

(a) Resource exceeded template.

This approach is achieved by executing the exceeded template when a

resource reaches the given threshold limit. For example, this is useful for

limiting the monthly consumption of web traffic per VirtualHost. Imag-

ine that you only want to allow 1GB consumption per month for an specific

VirtualHost, so when at the middle of the month this VirtualHost has

reached the limit, the exceeded template is executed and the VirtualHost

is disabled. When a new month comes the recovery template will be ex-

ecuted and the VirtualHost will be reenabled.

(b) Daemon save template execution.

The limit is ensured by the daemon save template. As the resource ap-

plication acts as a plugin for a Service, the service knows which is its limit

value, so when we write the save template script of the related Daemon

we can perform the limitation. A use case would be the web file system

quota, because it is set by the command edquota.

7http://en.wikipedia.org/wiki/Hysteresis

57

5.4.2 Resources Admin

Python’s metaclasses are used to dynamically create the resource control forms since

their definition is stored on the database and we do not know how the monitors are

defined until runtime. The Django forms are based on classes. With metaclasses we

can create these classes only by defining how they look like. Once we have this form

class created we insert it into the admin change list page of the related service. Figure

5.12 shows how a resource dynamic form looks like, and figure 5.45 on page 82 shows

this form embedded on a service change form.

Figure 5.12: Monitoring dynamic inline

The available actions provided for the monitor on its admin change list page [fig.

5.13] are:

• Delete selected monitors

• Disable selected monitos

• Enable seleted monitors

Figure 5.13: Monitor admin change list

58

Figure 5.14: Monitor admin change form

5.5 Contacts

This application stores the contact information and provides mechanisms to keep each

service instance related to a certain contact.

5.5.1 Contacts Model

The contacts system consists on the following models:

• Contact information with optional BillingContact and TechnicalContact

• Contract relations between contacts and services

• Contract CancellationDate and DeactivationPeriod scheduling capabili-

ties

59

Figure 5.15: Contacts application model

Main contact information is stored on the Contact model class, and also there

are two auxiliary model classes that make possible to have an arbitrary number of

email and phone numbers per contact. Optional billing contact information is han-

dled by the BillingData model. Contract relations are managed by the Contract

model. This class uses generic relations provided by django.contrib.ContentType

application. This generic relationship allows us to decouple the contacts application

from the others, since it provides a Foreign Key emulation that can point to multiple

models. This Contract abstraction is pretty intuitive but there is no existing control

panel that takes a similar approach.

60

5.5.2 Scheduling cancellations and deactivations

The scheduling of cancellations and deactivations is supported by CancellationDate

and DeactivationPeriod models. Since services can depend on others, the data

structure is a n-tree, where the root of the tree is a object without dependencies.

This structure is generated and maintained by an algorithm that uses Django

introspection methods provided by meta8 attribute. The algorithm is able to discover

by itself the underlying relationships between the services and follows them detecting

which are the related services susceptible of being canceled or disabled.

We explain on the lines below how the algorithm works with a practical example.

Imagine that we have a Contact called Pangea that owns the Domain pangea.org

with their two subdomains: www.pangea.org and carlos.pangea.org. Also the

Contact Pangea has a VirtualHost that uses pangea.org and www.pangea.org and

a SystemUser called pangea that is member of a SystemGroup called equipo. The

figure 5.16 represents these relationships and figure 5.17 shows the legend of this and

following pictures.

Figure 5.16: Contacts application model
The green boxes are services and the blue boxes are plugins of these services

8 meta is a Django internal attribute used for model introspection

61

To cancel or disable a service, the algorithm must check the related services,

propagating on cascade the deactivation or cancellation of the services whose all

dependencies have been canceled (or deactivated). For instance, on the case of can-

cellation of the domain pangea.org, the algorithm will obtain the related contracts

[fig. 5.18] and objects [fig. 5.19] and will check if any of them is affected by the

cancellation. As we can see in these figures, in this case the two subdomains and the

VirtualHost will also be canceled. The result of the algorithm will be the creation

of a CancellationDate which points to the affected contract, as shown in figure 5.20

Figure 5.17: Diagrams legend Figure 5.18: Related contracts graph

Figure 5.19: Related objects dependency graph

62

Figure 5.20: Scheduling cancellation and deactivation structure

5.5.3 Contact Admin

The available actions provided for contacts through its admin change list page [figure

5.25] are:

• Delete selected contacts

• Send bulk email. Allows create and send an email to the selected contacts. This

is very useful combined with the allow ads filter

• Bulk service contracting. For those services suitable to be created in bulk mode

because do not have any specific configuration (like packs)

• Contract service. A single contact must be selected

• Unsubscribe selected contacts

• Bill selected contacts

The provided actions for contracts [fig. 5.27] are:

• Delete selected contracts

• Cancel selected contracts, which will delete the related service

• Disable selected contracts, which will disable the related service

• Schedule cancellation date

• Schedule disable period

• Bill selected contracts

63

Also, when the contact application is installed, it modifies the behavior of the

control panel by:

1. Inserting a contact link on each service change list page [Figure 5.21].

Figure 5.21: Contact link inserted on the service change list page

2. Inserting both, contract and contact links at the top of each service change form

[Figure 5.22].

Figure 5.22: Contact and contract links inserted on the service change form

3. Filtering automatically the related objects by contact. For example, if we want

to create a new e-mail account, the available domains will be those contracted

by the same contact [Figure 5.23].

Figure 5.23: Filter objects by related contact

Apart from allowing the management of contact information, the contacts applica-

tion must maintain the relations that identify the services belonging to each contact.

So the admin user must provide this information each time that a new service is

created.

64

The approach that we use to solve this problem without coupling with the service

applications is divided into two parts: (1) alter the ServiceAdmin class at runtime

and (2) creating the contract using the signals sent by ServiceAdmin.

1. Altering the ServiceAdmin class at runtime in such a way that each time an

admin user requests creating a new service this hook responds with an interme-

diary page with a list of possible contacts, and the admin user must select one

of them. This way the contract system knows to what contact belongs the new

service.

Figure 5.24: Add service cycle

The normal add service cycle is represented by the black arrow, when we want

to add a new service the add form should appear. The add service cycle with

the contacts app installed follows the blue arrow because a contact must be

provided before creating the service.

2. Create the contract using the signals provided by ServiceAdmin. Every time

that a service is created, updated or deleted using the admin interface Service-

Admin send a signal attaching the request and the related object. With that

information the contacts application is able to create or cancelate the related

65

contract. The ContactAdmin also sends its own signals in order to warn other

apps that something has happened, these signals are:

(a) contract created()

(b) contract updated()

(c) contract deleted()

Following we present some screenshots of the contact app admin pages:

Figure 5.25: Contact admin change list

Figure 5.26: Contact admin change form

66

Figure 5.27: Contract admin change list

Figure 5.28: Pack contraction page

Figure 5.29: Contract service page

67

5.6 Ordering

This application defines the different services that must be charged, keeps track of

them, and determines the cost of each one existing on the system in a flexible and

powerful way.

5.6.1 Ordering Model

Figure 5.30: Ordering application model

68

The ordering application implements all the requirements discussed on chapter 1

sections 1.3.2 Services and 1.3.3 Advance pricing configurations. This app consists

on the following data models:

1. Service, that defines precisely how a service is going to behave in terms of

pricing and billing

2. Order, which keeps track of the instances that are going to be be charged

3. Pack, that defines service bundles9 with included services and/or special offers

4. Rate defines the price of a service

The Ordering app is conceptually quite coupled with billing application, so to

solve this the backend approach has been used. In a file called billing backend.py

we define how and with which application we want to perform the creation of the bills.

Notice that it is not mandatory to use a Django related application for generating

the invoices, since we can define on the backend file how to create and retrieve an

invoice with any existing tool.

5.6.2 Ordering Admin

The available actions provided for orders through its admin change list page, figure

5.32, are:

• Ignore selected orders. The orders marked with an ignored bit will not be billed

• Bill orders

• Bill orders (default behavior). Will bill the orders with the behavior defined on

settings.py

• Budget selected orders. This will generate budgets of the selected orders. This

action does not perform any change on the order status

Actions provided for the services, figure 5.31:

• Delete selected services

• Disable selected services

9A services bundle is a package of services, it is used for offering several products for sale as one
combined product

69

• Enable selected services

• Check selected services, it update orders when a service has been updated or

created

Three screen-shots of the admin interface are presented below: (1) the service

change list page on figure 5.31, (2) the order change list page on figure 5.32, and

finally, (3) the figure 5.33 is an screenshot of the service add form. As you can see,

it contains all the configuration details discussed on chapter 1 section 1.3.3 Advance

pricing configuration. It has a lot of options, but, fortunately for the admin user, we

provide a bunch of predefined services that will suit most of the use cases, at most

only one or two parameters will need to be tweaked to precisely fit your needs: the

billing or pricing period.

Figure 5.31: Service admin change list

Figure 5.32: Order admin change list

70

Figure 5.33: Service admin change form

71

5.7 Billing

The Billing app generates and administrates budgets, invoices, membership fees and

their amendments. This application implements all the requirements presented on

chapter 1 section 1.3.4 Billing system.

5.7.1 Billing Model

The billing application consists on the following models:

• BaseBillLine, which is a bill line abstract model

• BudgetLine is a bill line for budget

• BillLine, which is a base class for the models above

• FeeLine is a bill line for fees

• InvoiceLine is a bill line for invoices

• AmendedBillLine is a base class for amended lines

• AmendedInvoiceLine, which is a amended line for invoices

• AmendedFeeLine is an amended line for fees

• BaseBill, which is a base bill abstract model

• Bill is a base class for the models above

• Invoice is an invoice

• AmendmentInvoice, which is an amended invoice

• Fee is a fee

• AmendmentFee is an amended fee

• Budget is a budget (inherit from BaseBill)

An aggressive inheritance pattern is adopted on the implementation of the billing

application models. We are not sure yet if this approach is better than one providing

a bill type field. At least the adopted solution works really well with the Django

automatic admin interface.

72

Figure 5.34: Billing application model

73

The billing system is heavily coupled with Contacts application because each bill

needs to have a foreign key relation with a contact. To work around with this issue

we provide a setting value allowing you to choose what is the model that you want

to use for storing the contact information, as with the ordering app. By default it

uses the Contact model from contacts application but the adopted approach lets you

use any other application that encapsulates the same contact concept, like the User

model from Django auth application.

A bill can be created from a subset of contacts, contracts or orders.

5.7.2 Billing Admin

The available actions on the admin change list page [fig 5.35] are:

• Delete selected bills

• Close selected bills

• Send selected bills

• Amend selected bills

• Merge selected bills, must be bills issued to the same contact

• Mark as returned

• Mark as payd

• Mark as irrecovrable

Follows a bunch of screenshots of the billing admin interface is presented.

Figure 5.35: Billing admin change list

74

The actions early described on table 1.3.4 are available on the billing change form

through links on the right corer of the page, see figure 5.36.

Figure 5.36: Billing admin change form

The bill amendment is performed through the page displayed on figure 5.37. It

supports two amend modes: (1) manual, that lets you specify the amended price

value for each line, and (2) automatic, assuming the amendment of the entire value.

Figure 5.37: Billing amend line page

75

5.8 Service converter

Service converter is an application with the aim of providing full integration for third

parties Django applications. That way we can pick up any interesting Django app

and use it as a new service of our control panel without the need of touching a single

line of code.

All you need to do is adding the new application through two configuration pa-

rameters of the Service converter app settings.py file. Just like we have done for

django.contrib.auth.User:

(module, class)

BASESERVICE_CONVERTER = (

("django.contrib.auth.models", "User"),

)

((model module, model class),

(modeladmin module, modeladmin class))

SERVICEADMIN_CONVERTER = (

(("django.contrib.auth.models", "User"),

("django.contrib.auth.admin", "UserAdmin"),),

)

At this point your new service application has the same control panel support

as any service application that we have developed, like DNS, mail, web... At this

moment this app will bring support for contacts, resources, daemons and orders, but

this system is fully compatible with any future features of the control panel.

5.8.1 django.contrib.auth a succesfull example

The control panel user accounting and authentication subsystem relies entirely on

django.contrib.auth application. Please notice that this is not an application de-

veloped by this project, but an official Django reusable application. We have con-

sidered very interesting to present this application on this subsection because it is a

successful example on how the control panel can perfectly integrate third-party apps

without modifying their code.

Screen-shots of the user interface are presented on the next two pages. Figure

5.38 shows the login form displayed when we try to access the panel without an

active session.

76

Figure 5.38: Admin login form

We can confirm that the UserAdmin class has been successfully adapted to the

ServiceAdmin looking at the contact link on user change list, figure 5.39. Apart

from this little detail of the contact support provided to the Auth application, other

service-related support are also provided, such as support for resources, daemons,

ordering and billing.

Figure 5.39: User change list

Finally on figure 5.40 we can see how the User support for SystemUsers and

VirtualUsers has been provided through two forms dynamically inserted on the User

change form, one (SystemUser) from web app and the other (VirtualUser) from mail

application.

77

Figure 5.40: User change form

78

5.9 Mail

This app provides mail account support for django.contrib.auth application.

5.9.1 Mail Model

Figure 5.41: Mail application model

The mail application is composed by two models:

• VirtualUser which is responsible for storing the mail account properties. No-

tice that it has a OneToOne relation with User model, that is because the

VirtualUser is an extension of an existing User. So rather than having inde-

pendent users for mail accounts we bring VirtualUser support to an existing

user, so each user uses only a single credential for accessing all the services.

• VirtualAlias, which is an alias table used in mail servers that rewrites re-

cipient addresses for local, virtual, and remote mail destinations. The main

applications of virtual aliasing are:

– To redirect mail to one address to another one or more addresses

– To implement virtual alias domains where all addresses are aliased to ad-

dresses in other domains

– To define a “catch all” of the emails addressed to a domain that do not

exist in the mail server

79

5.9.2 Mail Admin

Following two screen-shots of the mail app admin interface are provided. On figure

5.42 we can see how a message is displayed on the top of the page notifying that a

new virtual user has been successfully created.

Figure 5.42: Mail admin change list

On the next figure 5.43 the mail change form is displayed together with a disk

limit resource form.

Figure 5.43: Mail admin change form

Also remember that this application inserts a form on the user change form page,

just as we early saw on the previous user adapter section, on figure 5.40.

80

5.10 Web

This application implements the web shared hosting support for django.contrib-

.auth application.

5.10.1 Web Model

This web app consists of two models:

1. VirtualHost, which provides basic Apache-like virtual host configuration. It

supports ServerName, ServerAlias, DocumentRoot and Redirect directives.

2. SystemUser and SystemGroup Unix compatible definitions.

Figure 5.44: Web application model

81

5.10.2 Web Admin

Figure 5.45 is an screenshot of the Virtual Host change form with three dynamically

inserted forms two from the PHP plugin and one by the resource application.

Figure 5.45: Web admin change form

82

5.11 PHP Plugin

the PHP plugin app extends the web application providing PHP10 and SuExec11

support for Apache-like virtual hosts.

5.11.1 PHP Plugin Model

The PHP plugin models are composed by:

• PHPOption model class, which defines possible php.ini directives12 and allowed

values for them

• VirtualHostPHPOption model, which stores the custom values for each virtual

host

• PHPVersion model, that provides support for different PHP versions

Figure 5.46: PHP Plugin application model

10http://www.php.net/
11http://httpd.apache.org/docs/trunk/suexec.html
12List of php.ini directives at http://www.php.net/manual/en/ini.list.php

83

5.11.2 PHP Plugin Admin

Figure 5.47 shows in detail the form inserted on web change form, figure 5.45, when

the PHP plugin is installed.

Figure 5.47: PHP plugin dynamic form example

5.12 DNS

The DNS app is used to manage DNS zones and DNS server configurations.

5.12.1 DNS Model

The DNS model application is composed of:

• Domain, which is a main domain registered by a customer. It is usually is a

second-level domain, for example, in the domain www.mydomain.org it will be

mydomain.

• Subdomain, which is an extension of a Domain. www in our previous example.

• Name, which is the parent model class for Domain and Subdomain. The model

Name (domain name) can be a Domain or a Subdomain. This inheritance pattern

exists in order to allow no practical distinction between them. This is useful

to allow domains and subdomains be part of the ServerName or ServerAlias

statements of a VirtualHost definition.

• Record. A DNS resource record is the basic data element in the domain name

system. Each record has a type (A, MX, etc.), an expiration time limit, a class,

and some type-specific data. Configuring a default set of records that will be

created for each new domain is possible through dns/settings.py file.

84

Figure 5.48: DNS application model

5.12.2 DNS Admin

The admin change form of the DNS is represented on the figure 5.49. The DNS records

are filled automatically according to DOMAIN DEFAULT RECORDS settings value. Figure

5.50 shows the admin change list of the domains, notice that it is possible filter the

domain list using the filters located on the right part of the page.

85

Figure 5.49: DNS admin change form

Figure 5.50: DNS admin change list

86

5.13 Jobs

Jobs application provides support for those services that have no representation on

the IT infrastructure, such as courses, web maintenance, web development, complex

service installations and so on. This application is just for recording and accounting

purposes.

5.14 Jobs Model

Figure 5.51: Jobs application model

The jobs application models are:

• Category model, which allows creating and deleting jobs type definitions

• Job model, which are the job instances belonging to a category and composed

by a description and the number of hours that the job took

5.14.1 Jobs Admin

Figure 5.52 is how the jobs admin form looks like.

87

Figure 5.52: Jobs app admin add form

5.15 Extra fields

The extra fields application is used to add custom extra fields on your service apps.

Recall that the control panel service applications are designed with the philosophy of

implementing the basic functionality on a base application and move the specifics to

a plugin application. Extra fields is a plugin app that allows you to insert a custom

field to a base application.

This application uses dynamic forms pattern in order to insert the extra fields on

the corresponding service at runtime. As an interesting concept, this application is

not so far from an application that allows to entirely create new service applications

with the admin interface.

5.15.1 Extra fields Model

The extra fields application is composed by two models:

• ExtraField model, which is responsible of defining an extra field for a concrete

service. Letting to choose the field name, the description and the default initial

value.

• ExtraValue models, that stores the extra field instances.

88

Figure 5.53: Extra fields application model

5.16 Extra fields Admin

Figure 5.54 shows the admin add form page and figure 5.55 displays the form that

will be inserted on the change/add form page of the related application, in this case

the one related is the contacts app.

Figure 5.54: Extra fields app admin add form

89

Figure 5.55: Extra fields dynamic form inserted on contacts change form

5.17 Global interactions

This section provides an overall workflow overview in order to give a better under-

standing of how the different applications work together. Two use cases, or situations,

are presented (1) Create, update and delete a service and (2) Bill a contact.

5.17.1 Create, update and delete a service

Figure 5.56: Apps interaction on save() service

Considering that the global interactions performing a create, update or delete over a

service are very similar with each other, only an example of updating a VirtualHost

is analyzed. Figure 5.56 summarize this process.

As we have seen before a service can send 3 different signals depending on the

operation type:

1. service created()

2. service updated()

90

3. service deleted()

In our example case servide updated() is sent because the object vHost is changed

successfully using the web interface. At this point there are two applications listening

to these signals: (1) contacts and (2) daemons app.

1. The contacts application behaves a bit different depending on the kind of signal

that receives:

(a) service created(): creates a new contract and sends contract created()

signal

(b) service updated(): sends contract updated() signal

(c) service deleted(): cancels the related contract and sends a contract-

deteled() signal

These signals are sent basically for the ordering application who is listening to

them in order to keep track of possible changes on the contract related orders.

The ordering application will perform an update orders(contract) whenever

recieves one of those contract signals. This operation creates new orders and

cancels others depending on the changes performed on the service.

2. In the other hand when the daemons application recieves one of the service-

xxx() signals it makes a lookup in order to determine what is the hosting

server which manage the current service and then executes the save template

or the delete templete on the given server. The save template will be

executed on service created() and service updated() and the delete -

template on service deleted(). This operations on the servers are executed

asynchronously using django-celery, and in most cases over an SSH channel.

91

5.17.2 Bill a contact

Figure 5.57: Apps interaction on bill() contact

1. When the admin user performs the billing action over a set of contacts the

contacts application tells to the ordering application that some contacts must

be billed. The date parameter is provided by the admin user and it indicates

until what date wants to bill. This is useful to bill multiple periods in advance.

The ordering application asks to its billing backend (billing app on our case) to

create, first the bill lines, and then the bill with these bill lines.

2. Once the invoice is created the admin user can perform a send action over it.

This will (1) send a mail with an electronic copy of the bill to the contact and

(2) charge the bill value to the contact through the correct payment gateway.

This last step is not yet implemented.

It is planned to run all these operations with the task queue (celery).

92

Chapter 6

Evaluation

In this chapter an evaluation of the whole project is presented: the dedicated work in

terms of hours and economic costs, the implementation with tests and requirements

fit (special attention to the reusability since is the main requirement of this project)

and at the end of the chapter you can find the planned work to do beyond this thesis.

6.1 Development effort

In this section we are going to show the whole development process in terms of

dedicated work. From the very beginning a Subversion (SVN1) repository has been

set up for tracking all the changes on the source code and other related files of the

project. Now we can take advantage of this version control system creating some

graphs, using svnplot2, for visual representation of the activity on the repository. The

repository activity can show us different development phases, like learning, design,

coding, refactoring and documentation.

The presented graphs are:

1. Figure 6.1 Loc and Churn represents the lines of code (blue line) and code

churn (red lines, and it means the lines added, modified or deleted to a file from

one version to another). For instance, a high churn might be caused by a code

refactoring; or a high increase on the lines of code may indicate that a new

project branch has been created.

2. Figure 6.2 Commit Activity Index reflects the number of commits per day.

3. Figure 6.3 File Count shows the number of existing files. It might be the sign

of the start of a new code branch or the creation of a new Django application.

1http://subversion.tigris.org
2http://code.google.com/p/svnplot

93

Figure 6.1: Loc and Churn

Figure 6.2: Commit Activity Index

Figure 6.3: File Count

94

By analyzing the graphs we can differentiate the different phases of the project:

1. Learning Django and Python.

2. Design of the whole system.

3. Writing a prototype based on GISP requirements. I based my initial develop-

ment on GISP with the idea of implementing the rest of the requirements later.

At this point I realized how unfeatured GISP is and how hard was to imple-

ment the missing requirements. I spent few weeks asking a lot of questions to

my coworkers regarding billing and pricing issues.

4. Refactor with the aim of split behavior into applications.

5. Design refactoring adding contracts and resources concepts.

6. Code refactoring adding contracts and resources concepts.

7. Ordering application refactoring (in deep requirements analysis and design).

One of the hardest parts of the project is the ordering application and their

featured service definition. It took me few months to come up with a complete

and consistent solution.

8. Refactor ordering application (code).

9. Refactor billing design.

10. Code the new billing design and solve some general bugs before deliver a demo

version to Pangea.

11. Summer holidays.

12. Writing this report.

Django framework has a steep learning curve so it was very difficult to me to

get a deep knowledge of all the framework parts and concepts. Moreover I have not

attended any formal course related to software engineering, therefore I had to learn

those concepts by myself. It took me 4-5 months to learn Django, Python, design

patterns and coding best practices. After this initial learning time I spent most of

the time thinking and designing the different parts of the system rather than coding

it. Once you have the base knowledge on Django and Python writing the design in

code is really fast and fun.

95

Following the best practices on writing code, making it clean, modular and reusable

is fundamental for the success of any open source project. Making it right has a huge

long time benefits since it is easy to maintain and other developers can easily join to

the project. The downside of writing quality code is that it becomes multiple times

more difficult than writing messy code, at least in a short time point of view.

6.2 Global economic analysis

In order to estimate the economic resources needed for a software development project

we must consider two expenses. The salary of the developers and the resources needed

for them (workstations, repository servers, test servers, office space...). The software

licenses are excluded because one of the requirements is that it must be non dependent

of commercial solutions.

Our salary estimation is based on an average Spanish developer that works 30

hours a week during a year (including taxes and holidays).

1340e/month * 14 months (2 extra) = 18.900e

The cost of the resources are only 1 workstation valued on 400e with amortization

on 4 years, it is 100e year.

The total development cost of the fist year is up to 19.000e (deployment and

maintainability not included). The development cost may be expensive at the first

moment but in long term the facilitation to add new functionalities and the easy

maintainability should compensate and make this solution cheaper than others.

The benefits for the organization are on the automation of work and the billing

process that takes a high amount of hours from our personal, making it possible

to reduce them dramatically with this solution because it pretends to fit all the

requirements. I estimate that the panel could save 1 hour of work a day for Lorena,

Carlos and I, So as we work in Pangea 4 hours a day, the first year of development

should be amortized in the next 2 years.

Notice that the project is not production ready yet as described in the Future

work section, so I estimate that at least two more months of development should be

applied to the equation.

96

6.3 Evaluation and testing of the project imple-

mentation

We have made continuous testing during the development process. Each time that a

new commit was made on the source code we ensured its proper functions by exten-

sively testing the related components assuring that changes did not break anything

and new features worked proper. For those parts more tedious to test by hand we

have wrote tests with Python unittest3. Also before coding any decision the design

has been widely evaluated by Pangea’s team.

Maybe the more relevant tests are those tests that involve multiple applications.

This is a brief list of some remarkable tests that we have done:

• Install and uninstall applications. For example it is a critical test for the contacts

application since it deeply changes the behavior the whole control panel.

• Check the billing system by generating invoices, amendments... and checking

the result with Pangea’s accountant.

• Check if the services are correctly handled on save and delete operations. This

test involves:

1. Check if the contract is created or canceled.

2. Check if the correct daemon is trigged.

3. Check if the correct orders are created or canceled.

When the project was mature enough we have set up a test environment based on

clones4 of our production virtual machines at Pangea (see figure 6.4) with the idea

of making anyone with interest on the project able to test it and give us feedback.

The test infrastructure deployment details are: (1) create copies of our three main

machines (web.pangea.org, mysql.pangea.org and mail.pangea.org) using vzdump5

and (2) deploy these clones on our lab.

3Python test automation, more at http://docs.python.org/library/unittest.html#module-
unittest

4Exact machine copies of the original
5Vzdump is an utility to make consistent snapshots of running OpenVZ containers. It basically

creates a tar archive of the container private area, which also includes the container configuration
files.

97

Figure 6.4: Test environment

At this point anyone with a web browser, Internet access and the admin control

panel credentials is able to try it, just browsing django.pangea.org. But one more step

is needed if you want to really check the changes on the DNS zones, virtual hosts,

mail accounts and so on. To do that you must get access to our lab VPN6 and use

web.pangea.lab as a primary DNS server.

6.4 Reusability evaluation

The reusability is one of the main requirements of this project. In this section we are

going to summarize the reasons that make us believe that we have accomplished this

objective.

As we early discussed on this document the fact that this project is released un-

der an open source license, the consistent design, the internationalization already

provided by Django framework and the possibility of reuse existing Django applica-

tions can make it attractive for people and organizations to use it on their system.

In this section we are going to focus on analyzing why the different developed appli-

cations have achieved this point too.

Daemon application

1. It is compatible with any Django application out of the box, there is no need

to design or adapt an existing applications in order to provide daemon control

functionalities.

6Virtual Private Network using OpenVPN http://en.wikipedia.org/wiki/Vpn

98

2. The scripts are Django template-based so it is easy for a sysadmin to create or

adapt the templates in order to fit their systems.

3. We provide facilities to execute these scripts through SSH because it is widely

used on *nix environments. But nothing stops you to use any other remote

execution mechanism on your scripts.

Resource application

1. All the points given for the Daemon app are valid for this application too.

2. This app does not make any assumption on what a resource is, we provide the

configuration parameters needed to let each organization define each resource

in a generic way.

Contacts application

1. This app provides generic contact information that should be enough for most

organizations. In case of the contact fields provided by this application are not

enough to cover the needs of an specific organization the Extra field application

can be used in order to dynamically provide the missing fields.

2. This application can provide contract functionalities to any Django application

without the need of adapting the Django app.

Ordering application

1. This app does not make any assumption on what a service is, it lets you define

your services in a very flexible way, in such a way that anything stored on the

control panel database is susceptible to become a service.

2. We provide a huge number of configuration parameters in order to fit the max-

imum number of possible scenarios.

3. The settings file lets to each organization the ability to configure the default

value for these parameters.

4. If you do not want to use our Billing application you can still use any other

billing system by just editing the billing backend.py file.

Billing application

99

1. The billing system is designed to be compatible with Spanish billing regulatory

rules but all of these regulatory specifics are moved on the settings file and each

organization should be able to adjust these configuration parameters in order

to satisfy the regulations of their country.

2. Also for each bill type the following attributes can be configured on the settings

file: which billing template do you want to use, prefix and number of digits of

your bill id’s, due date in days and the directory where to store the PDF version

of your bills.

Service applications

• The overall reusable decisions for all the service applications is that we put the

generic attributes on the main service application and moved the extra stuff to

service plugins and the specifics to a settings file. This way we ensure maximum

reusability of each component.

• As we have seen in the 5.2 Common app section we have extremely reduced

the complexity of creating a new service in such a way that you do not need to

have advanced programing skills to be able to develop a new service or create

an extension. Also the fact that we have moved the common and basic service

functionalities on separate applications makes it not necessary to care about the

resource control of the new application, neither the contract feature nor billing

or ordering. You only need to focus on your application specifics.

• Third party Django applications can be easily reused as a new service for our

control panel by using our Service converter application, previously seen on

page 76 section 5.8.

6.5 Requirements compliance

The presented table 6.5 is an update of the requirements fit summary, table 2.2,

presented before on chapter 2, page 29. Our panel is included in order to have a

requirement compliance comparison with other existing open source solutions.

100

Table 6.1: Requirements compliance summary (with our solution)

Requirement SysCP DTC ISPConfig2 Our

1 Contacts management Ok Ok Ok Ok
2 Services Partial Partial Fail Ok
3 Advance pricing configurations Fail Fail Fail Ok
4 Billing system Fail Fail Fail Ok
5 Payment gateway Fail Fail Fail Fail1

7 Resource limiting and accounting Ok Ok Ok Ok
8 Target software to support Partial Partial Partial Partial2

9 Multi server support Partial Fail Fail Ok
10 Easy to use for unskilled users Ok Fail Ok ?3

11 Easy to add new functionalities Partial Fail Fail Ok
12 Reusable Fail Fail Partial Ok
13 Open source friendly Ok Ok Ok Ok
1 The Payment gateway is not yet implemented.
2 Some software still remains without support, like mailing lists or databases
3 The user interface is not yet implemented, so we can not say if it is easy to use or not :)

6.6 General evaluation

As we have seen on the previous section 6.4 Reusablity evaluation, we have came up

with a solution that can be reusable beyond Pangea organization. The solution can

be easily adopted in many different contexts, such as (1) corporations that provide

hosting services, (2) any non profit hosting organization like Pangea, e.g. Nodo507

or Greenet8, (3) for personal use and (4) also for reusing in other projects that have

nothing to do with hosting services (think about how many organizations need contact

management or a billing system).

During the development of this project we have used some powerful concepts that

have not been seen before on an open source web hosting control panel. Like dynamic

resource control, truly multi server support, extremely easy creation of new services,

message queuing for asynchronous tasks execution, oriented to be easy to integrate

on an existing IT infrastructure, a lot of pricing configurations and so on.

This project does not end with this thesis, I will continue working on it until the

control panel becomes production ready. In the next section we discuss the planned

work to do on the next months.

7http://info.nodo50.org/
8http://www.gn.apc.org/

101

6.7 Future work

Unfortunately it still remains some work to be done before releasing an stable version

of this software to the open source community. Below you can find a detailed list of

the work that is planned to be done on the short run and in long term too.

Planned work for the first stable release.

1. Some code and APIs should be re-factored and cleaned up before the release.

2. Write Python unittests for all applications.

3. Create the databases application which adds support for database management,

also for database user management and permissions.

4. Implement the payment application as an extensible payment interface for mul-

tiple payment gateways, implement the Q19 bank procedure and provide hooks

to reuse third party payment applications such as:

• django-paypal9, which is a pluggable application that implements PayPal

Payments Standard and Payments Pro.

• django-authorizenet10, which implements Django integration with Autho-

rize.NET payment gateway. Includes SIM and AIM implementations

• Satchmo11 payment application. Satchmo is an ecommerce framework

built on the Django framework, it includes a payment application with

support for several different payment modules including Authorize.net,

TrustCommerce, CyberSource, PayPal, Google Checkout, Sage Pay (For-

merly Protx) and Sermepa.

5. Implement the APPS app. This application should implements the concept

of SaaS “Software as a Service12” one click application installer. This appli-

cation should be able to automatically install any kind of software, previously

packaged. For example the packages provided by www.apsstandard.org.

6. Develop the Mailing lists app, which provides support for mailing lists.

9django-paypal project page http://github.com/johnboxall/django-paypal
10django-authorizenet project site http://github.com/zen4ever/django-authorizenet
11Satchmo project web page http://www.satchmoproject.com
12http://en.wikipedia.org/wiki/Software as a service

102

7. The VPS app, which provides support for creating and managing Virtual Private

Servers, also known as virtual machine service.

8. Asynchronous tasks on billing system.

9. Create the remaining daemons and resource control scripts.

10. Give a name to this project.

Long term interesting improvements.

1. Create an automatic interface for panel users like django.contrib.admin.

2. Integrate a ticket system.

3. Also it would be interesting to set up a web site for hosting the project and

some community tools, such as a ticket system, source code browsing, mailing

list, and so on. A sharing templates web page will be interesting too.

4. Reuse django-reversion which allow undo delete and change operations through

the admin interface.

5. Provide REST API using django-piston or django-rest-framework in order to

allow communication and management from other programs.

103

104

Appendix A

Examples

A.1 Template example

#!/bin/bash

echo "{{ object.name }}. IN SOA web.pangea.ORG. mail.pangea.ORG. (

{{ object.serial }}

{{ object.slave_refresh }}

’{{ object.slave_retry }}’

{{ object.slave_expiration }}

{{ object.min_caching_time }})

{% for record in object.record_set.all %}@

{{ record.type }} IN {{ record.value }}

{% endfor %}

{% for subobject in object.subobject_set.all %}

{% for record in subobject.record_set.all %}

{{ subobject }} {{ record.name }} IN {{ record.value }}

{% endfor %}

{% endfor %}" > /etc/bind/master/{{ object.name }}

if [[$(grep "^{{ object.name }}$" /etc/bind/primarios.conf]]; then

echo {{ object.name }} >> /etc/bind/primarios.conf; fi

rndc reload

A.2 Invoice example

A.3 Fee example

105

Figure A.1: Invoice example

106

Figure A.2: Fee example

107

108

Appendix B

Manuals

B.1 Installation

On our SVN repository you can find a bash script called deploy dev.sh1 that au-

tomatizes the tedious work of installing and setting up a software project and their

dependencies. Please notice that the deployment performed by this script is not

suitable for production, it is only for development and testing purpose.

As you can see on figure B.1 deploy dev.sh script provides support for three

different deployment types (only for Linux platforms):

1. Deploy on your local Debian like distribution, most common are: Debian,

Ubuntu and Linux Mint. This option will install the control panel on your

own system.

2. Deploy on a Debian chroot (recommended). The control panel and all its de-

pendencies will be installed inside a Debian chroot. A chroot jail is like a

virtualized machine but only ensuring filesystem isolation, this allows to install

a self contained environment where applications can run. This is useful when

you want to install some software with a lot of dependencies and you do not

want to mess your system.

With this option two additional and optional scripts can be installed on your

machine. One on /etc/init.d/ucp chroot that makes easier the task of start

and stop the chroot. The second will be installed on /usr/sbin/ucp, this is

useful to enter inside the chroot with all the environmental state ready.

1http://ucp.pangea.org/svn/ucp/trunk/ucp/scripts/deploy dev.sh

109

3. Deploy on a LXC container2. With this option all the environment is encap-

sulated inside a Debian LXC container. This option requires some background

knowledge of LXC in order to be able to configure the network and manage the

container life cycle.

One consideration to take into account is that the script only has support for

MySQL databases (Fig. B.2. Also it will install a useful init3 script on /etc/init.d-

/django server that starts the Django development server inside an screen. Screen

is a UNIX application that can be used to multiplex several virtual consoles, allowing

a user to access multiple separate terminal sessions inside a single terminal window

or remote terminal session.

Figure B.1: Creating a chroot with deploy dev.sh

2LXC (Linux Containers) is an operating system-level virtualization method for running multiple
isolated Linux systems (containers) on a single control host. It is similar OpenVZ that we have seen
early on chapter 1 section 1.2.4.

3Init (short for initialization) is a program for Unix-based computer operating systems that
spawns all other processes.

110

Figure B.2: Configuring MySQL server with deploy dev.sh

Figure B.3: Screenshot of the last deploy dev.sh steps

If you want to install the control panel on other platforms not supported by our

deploy dev.sh script, or you just like to take care of the installation by yourself, you

just have to follow these general steps:

1. Create a new database on your fabourit DB server officialy supported by Django:

• PostgreSQL

• MySQL

• SQLite

• Oracle

Or supported for third parties:

111

• Sybase SQL Anywhere

• IBM DB2

• Microsoft SQL Server 2005

• Firebird

• ODBC

• ADSDB

Additional note: to take advantage of the control panel transaction management

you must use a database engine with transaction support, like for example

PostgreSQL or MySQL with InnoDB tables.

2. Install the control panel dependencies by this order:

(a) Python ≥ 2.6, python-paramiko, python-pisa and python-reportlab

(b) RabbitMQ (or your favorite broker supported by Celery)

(c) Django framework4, python-reportlab and django-celery

3. Install the control panel from our SVN repository:

svn co http://ucp.pangea.org/svn/ucp/trunk/ucp

4. Configure PYTHONPATH and DJANGO SETTINGS environment variables:

export PYTHONPATH=/base_dir/ucp

export DJANGO_SETTINGS=ucp.settings

5. Go inside the installation dir : cd install dir

6. Configure the connection with your database through settings.py file.

7. Create the database tables with

python manage.py syncdb

8. Make sure that you have rabbitmq, celeryd and celerymon working.

9. Run the Django development server:

python manage.py runserver 127.0.0.1:8080

10. And try if it is working browsing http://127.0.0.1:8080/admin

4How to install Django https://docs.djangoproject.com/en/dev/topics/install/

112

B.2 Create and install new service

1. Execute python manage.py startapp startapp lists in order to create the

skeleton of the new application, a mailing list in our example case.

2. Edit lists/models.py and add the following lines:

from common.models import BaseService

from dns.models import Name

class List(BaseService):

name = models.CharField(max_length=32)

domain = models.ForeignKey(Name)

admin_password = models.CharField(max_length=16)

3. Create the file lists/admin.py with this content:

from django.contrib import admin

from lists.models import List

from common.admin import ServiceAdmin

class ListAdmin(ServiceAdmin):

pass

admin.site.register(List, ListAdmin)

Optionally you can customize the admin interface by defining ModelAdmin

attributes, see https://docs.djangoproject.com/en/dev/ref/contrib/admin/

4. Add the new applications to the INSTALLED APPS on project/settings.py.

INSTALLED_APPS = (

’djcelery’,

’admin_tools.theming’,

.....

’web’,

’php’,

’mail’,

113

’lists’,

.....

)

5. Run django syncdb command:

python manage.py syncdb

6. Create the daemon save and delete templates if needed.

7. Create the resource control templates if needed.

8. Restart your server

9. Ensure that all the steps on B.3 Admin use guide are applied for the new

application.

B.3 Admin use guide

We consider that the panel admin interface work-flow is intuitive enough so we only

are going to provide the description of the initial steps that maybe are not much

friendly.

After the installation and configuration the following steps should be followed, at

the same order as presented here.

1. Add the hosts that you want to control. Daemons.Hosts

2. Create or modify the daemon save and delete script templates.

3. Add the daemons that will be behind your hosting services.

4. Configure your resources and create or modify the resource template scripts if

needed.

5. Add extra fields to your services if you want some special information.

6. Create your non-hosted services with jobs applications.

7. Create packs (hosting plans and offers).

8. Configure the services for future billing.

At this point your control panel installation should be ready to add your contacts,

start creating new services for them and bill.

114

Bibliography

[1] Design Patterns: Elements of Reusable Object-Oriented Software. ErichGamma,

RichardHelm, RalphJohnson, and JohnVlissides (the GangOfFour) 0-201-63361-2,

November 10, 1994

[2] Clean Code: A Handbook of Agile Software Craftsmanship. Robert C. Martin

0132350882, August 11, 2008

[3] Code Complete: A Practical Handbook of Software Construction. Steve Mc-

Connell, 978-0735619678, 2on Edition, July 7, 2004

[4] The Pragmatic Programmer: From Journeyman to Master. Andrew Hunt and

David Thomas ISBN: 020161622X Published by Addison-Wesley, Oct 1999

[5] Pragmatic Thinking and Learning: Refactor Your Wetware. Andy Hunt ISBN:

978-1-93435-605-0 2008-09-15

[6] Django documentation. http://docs.djangoproject.com

[7] Django source code. http://code.djangoproject.com/svn/django/trunk

[8] Django book. Adrian Holovaty and Jacob Kaplan-Moss, http://djangobook.com

[9] DjangoCon speaks. http://blip.tv/djangocon

[10] Wikipedia. The Free Encyclopedia. http://en.wikipedia.org

115

	Introduction
	Project overview
	Context
	What is Pangea?
	Pangea members description
	Pangea staff description
	Pangea software stack

	Requirements analysis
	Contacts management
	Services
	Advanced pricing configurations
	Calculate the metric of the service
	How to calculate the price

	Billing System
	Payment gateway
	Resource limiting and accounting
	Internationalization
	Target software to support
	Multi server support
	Easy to use for unskilled users
	Easy to add new functionalities
	Reusable
	Open source friendly

	State of the art
	Current related software at Pangea
	Members and billing management
	User control panel
	Administration scripts

	Outstanding existing solution
	SysCP
	Requirements fit

	Domain Technologie Control (DTC)
	Requirements fit

	ISPConfig 2
	Requirements fit

	Summary

	Final decision

	Selected tools
	Django framework
	Framework advantages
	Django advantages

	Celery distributed task queue
	Pisa PDF generator
	Django admin tools

	Design principles
	Reusability
	Separation of Concerns (SoC)
	Loose coupling

	Orthogonality
	Adaptability
	Extensibility
	DRY Don't repeat yourself

	Architecture design and implementation
	General considerations
	Common
	Daemons
	Daemons Model
	Daemons Admin

	Resources
	Resources Model
	Resources Admin

	Contacts
	Contacts Model
	Scheduling cancellations and deactivations
	Contact Admin

	Ordering
	Ordering Model
	Ordering Admin

	Billing
	Billing Model
	Billing Admin

	Service converter
	django.contrib.auth a succesfull example

	Mail
	Mail Model
	Mail Admin

	Web
	Web Model
	Web Admin

	PHP Plugin
	PHP Plugin Model
	PHP Plugin Admin

	DNS
	DNS Model
	DNS Admin

	Jobs
	Jobs Model
	Jobs Admin

	Extra fields
	Extra fields Model

	Extra fields Admin
	Global interactions
	Create, update and delete a service
	Bill a contact

	Evaluation
	Development effort
	Global economic analysis
	Evaluation and testing of the project implementation
	Reusability evaluation
	Requirements compliance
	General evaluation
	Future work

	Examples
	Template example
	Invoice example
	Fee example

	Manuals
	Installation
	Create and install new service
	Admin use guide

