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Chapter 1

Introduction

1.1 Point Cloud: A 3D Representation of the world
A point pi, described by {xi,yi,zi}, is a primitive representation unit in a three-
dimensional Euclidean space. A collection of 3D points allows having a discrete
representation of the surrounding world. We will refer to such 3D points collection
as a point cloud P .

3D perception systems use point clouds as basic input data in order to store
the information (e.g. in .pcd files). Every point pi is given with respect to a fixed
coordinate system. In most of the cases, this coordinate system has its origin at
the sensing device used to acquire the data. For this reason, we can understand a
point pi as the distance on the three defined coordinate axes between the acquisition
viewpoint and the surface from where the point has been sampled on.

Storing the 3D-position only could be not enough information for many appli-
cations. Geometric processing steps are necessary in many cases in order to extract
meaningful information. For example, it is mandatory for partial alignment of two
different point clouds to process and convert the raw input data several times into
the representations and formats required by every individual processing step. More
details will be given about this process in chapter 4.

Other processing steps such as segmentation and clustering can provide new
properties as output to different points of a point cloud. For example, it is possible
to assign different colors to identified objects in order to classify to which object
pertains every point. Figure 1.1 represents a point cloud taken from a table, where
each point has been colored according to its received class label. In this example, ta-
bles are colored green, object clusters supported by them are colored with a random
color and remaining points are marked with black [Rus09].

Furthermore, RGB information can be used for a better understanding of the
point cloud or for keypoint extraction to improve the registration process [HKH+10].

1



1 – Introduction

Figure 1.1. Regions of interest in a point cloud dataset, represented using different
class labels and colors. (Source [Rus09])

A new definition of a point pi is needed. Instead of only represent a position
{xi,yi,zi} we will understand pi as a set of features representing position, color,
geometry, etc. A point pi is then defined by pi = {f1,f2 · · · fn}, meaning that it is
now an nD descriptor instead of 3D [Rus09].

1.2 Objectives
RGB-D cameras are new, low cost, sensors that provide depth information for every
RGB pixel acquired. Combining this information, it is possible to develop 3D per-
ception in an indoor environment. In this paper we investigate how this technology
can be used for building 3D maps. Such maps can gain more importance in the
context of mobile robotics, as it can be used for many applications such as robot
navigation.

In our work, we present 3D Localised Mapping (3DLM) an implemented algo-
rithm that, knowing the camera’s pose when acquiring the point clouds, is able
to build such maps. We will investigate on two different ways, a simpler one and a
more elaborate one, to process the reconstruction. In chapter 2 we will describe both
hardware and software tools used for this project. In chapter 3 we will investigate
on the point cloud acquisition process and in chapter 4 we will discuss about the
3D reconstruction process. Finally, in chapter 5 we will test 3DLM for a particular
environment and analyse the results obtained.

2



Chapter 2

Tools

In this chapter we describe the different tools used in this project to implement the
algorithm and run the tests. First, we will show the different hardware tools used
and then we will discuss about different software libraries on which we based our
work.

2.1 Hardware tools

2.1.1 RGB-D Kinect camera
RGB-D cameras are 3D sensing systems that acquire both RGB images and depth
information for every pixel. It is possible to build 3D point clouds using depth
information, which are well suited for 3D reconstruction and frame-to-frame align-
ment but ignore valuable visual information. On the other hand, RGB data can be
more appropriate for other processes such as loop closure detection [NSS+09, KA08,
MDH+09]. Combining both characteristics seems to represent an opportunity to
develop more on robotics navigation and object recognition. There are many ways
to obtain depth information in order to build 3D point clouds [N0̈9], and most of
the RGB-D cameras rely on Time-Of-Flight (TOF) sensing [Mes] or active stereo
[Kon10]. TOF systems estimates the true distance from the camera to a surface by
measuring the delay of an emitted signal returned to the receiver after hitting the
surface.

The sensor used in our work is a RGB-D Kinect camera as in Figure 2.1, devel-
oped by PrimeSense, which acquires 640x480 registered images and depth data at
30 frames per second. The technology used for depth information is Light Coding
which codes the scene volume with near-IR light. Then, a CMOS image sensor is
used to read the coded light back from the scene and a depth image of the scene is
produced after executing an algorithm to decipher the received light coding [Pri].
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2 – Tools

Kinect provides depth up to a limited distance of about 3.5 meters and its field of
view is about 60 ◦ (see Appendix A.1). Though the official distance limit is 3.5 me-
ters, Kinect actually acquires depth images of points being farther than this distance
but there is a decrease of the cloud’s accuracy.

Figure 2.1. Kinect camera

2.1.2 Wheeled robot P3-DX

Figure 2.2. Rover P3DX

The robot used in our work is a MobileRobotics Pioneer P3DX as in Figure 2.2
(see Appendix A.2). It has an on-board PC that controls its motion using data
acquired from a laser-range finder SICK LMS-200.
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2.1 – Hardware tools

2.1.3 Laser Rangefinder SICK LMS-200
SICK Laser Measurement Sensor (LMS) 200 is the distance measurement sensor
used (see Figure 2.3). It can provide distance measurements over a 180 degrees
area and up to 32 meters away. In our case, the infrared laser is set up in order
to realize 180 readings, so one measurement every degree, and has an operating
range of 5 meters. The laser does not consider obstacles farther away than 5 meters.
This laser is best for indoor environments as it can be dazzled by sunlight, causing
erroneous readings. It is used in order to perform localization as well as obstacle
detection (see Appendix A.3).

Figure 2.3. SICK Laser Measurement Sensor 200

Combining the three devices we obtain the operational rover of Figure 2.4 to run
3DLM.

Figure 2.4. Operational rover used to run 3DLM
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2 – Tools

2.2 Software tools

2.2.1 Point Cloud Library
The main library used in our work for point cloud’s processing is the Point Cloud
Library [RC11]. It contains many state-of-the-art algorithms implemented, such as
filtering, feature estimation, surface reconstruction, registration, model fitting and
segmentation. It allows saving depth images captured by Kinect into .pcd files and
processing point clouds.

2.2.2 Aria Library
MobileRobots’ Advanced Robot Interface for Applications (ARIA) is a C++ library
(software development toolkit or SDK) for MobileRobots/ActivMedia platforms, in
our case, a P3DX (see section 2.1.2). It provides an interface and framework for
controlling robot’s motion parameters such as velocity, heading or relative heading.
ARIA can also receive odometric position estimates and other operating data sent
by the MobileRobots platform. It provides also tools to integrate I/O with the robot
and its accessories, in our case a SICK LMS-200 laser-range finder (see section 2.1.3).
Furthermore, ARIA supports thread and network socket implementations, used in
our work as explained in chapter 3.3.

ARIA is the base library used by MMCL explained below in order to manage
P3-DX’s motion and localization.

2.2.3 Multirobot MonteCarlo Localization
Multirobot MonteCarlo Localization (MMCL) is a program implemented by the
Robotic’s Search Group at Politecnico di Torino that allows to control several robots’
motion and localise them. Based on a particle filter cooperative Monte Carlo Lo-
calization, it allows to localize different robots and track their position over time as
they are moving in a highly symmetrical area [AIR+09, ABI+08]. As in our work
there is only one robot, we do not take full advantage of this. However, our work is
based on MMCL as it manages both P3DX’s navigation and localization.

Navigation

P3-DX’s laser sensor allows the robot to move around an indoor environment avoid-
ing any obstacle bringing risk of collision. As explained in 2.1.3, the laser sensor has
a range of 180 ◦, taking one reading every degree and with an operating range of 5
meters. In order to manage robot’s navigation, MMCL allows to set its navigation
behaviour in three different status: Wander, Teleoperation and Path planning.
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2.2 – Software tools

Wander gives freedom of movement to the robot, going always straight until a
potential obstacle is detected and then turning around until the detected obstacle is
no longer more in its way. Teleoperation enables a complete control of its trajectory.
The user can decide at any time which direction to take. Finally, by Path planning
the user decides only the final position where the robot should go. The robot
calculates the complete trajectory to realize and once it founds the best one, starts
running toward the goal. Such calculations allows to have a smoother movement
than the previous navigation modes. For this reason, we chose to use Path planning
as navigation mode.

Localization

In order to be localized, the robot needs a 2D map of the environment. This map
has to be done before starting to acquire the point clouds. Since there is no previous
information about the environment before realizing the map, this task can be under-
stood as a SLAM (Simultaneous Localization and Mapping) problem. To obtain this
map, we have employed CoopSLAM, also implemented by Robotic’s Search Group
at Politecnico di Torino. CoopSLAM employs odometry to estimate its position
relative to its starting location. This is possible thanks to rotatory encoders present
in both robots’ wheels. The laser acquires the data necessary to build the map. To
reduce the error, it is mandatory to realize loop closure detection, which identifies
when the robot has reached a position that has already been explored. Figure 2.5
represents a 2D map of a corridor of Politecnico di Torino’s laboratory, obtained
using the techniques described.

Figure 2.5. 2D Map of a corridor of DAUIN’s laboratories

Once a 2D map is obtained, it is possible for the robot to localize its current
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2 – Tools

position in the map by comparing the current laser information with the laser in-
formation that should be detected in the estimated pose. The estimated position
is actualized every 1.5 seconds. Between every pose update, the robot estimates its
pose by using same odometry techniques than described above. Combining these
techniques, it is possible to bind the error, preventing so an indefinite augment of
it, characteristic of SLAM problems.
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Chapter 3

3D Localised Mapping
Implementation: Data Acquisition

The implemented algorithm 3D Localised Mapping (3DLM) consists of two main
and independent processes. This chapter describes the structure of its first, Data
Acquisition. Figure 3.1 shows the actual main structure of 3DML. In a first step,
the data is acquired by a RGB-D camera while the rover is moving. In a second
step, the data is processed, obtaining a 3D reconstruction of the environment.

Data Acquisition

Map Reconstruction

Point Clouds Pose (x, y, θ)

Kinect
P3DX

SICK laser

3D Map

Figure 3.1. Global structure of 3D Localised Mapping

In order to reconstruct a 3D map, it is mandatory to obtain several depth pictures
of the indoor environment and the pose from where they were acquired. Before,
starting acquiring any data, the rover has to be localised in the 2D map obtained
previously (see section 2.2.3). This means that an initial exploration has to be
done until MMCL has correctly localised it. Once Data Acquisition has started, two
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3 – 3D Localised Mapping Implementation: Data Acquisition

different processes run in a parallel matter. Figure 3.2 shows how Data Acquisition is
organised. Cloud Acquisition saves frames from Kinect camera and MMCL manages
both motion and localisation of the robot, registering the pose when it is required.

Cloud Acquistion MMCL

Initialize Localization

Wait Client

Send Pose

Save Cloud

Require Pose

Save Pose

Interprocess Communication

Kinect

P3DX
SICK laser

TCP/IP connection

Close Connection

Point Cloud Pi

(xi, yi, θi)

Figure 3.2. Data Acquisition structure

3.1 Cloud Acquisition
Kinect camera receives clouds at 30 frames per second. Therefore it is possible to
regulate the acquisition’s frame rate by setting Cloud Acquisition to save a cloud
every n frames available .

Once a new cloud is saved, Cloud Acquisition requires to MMCL to send back
the current robot’s pose. It waits until the message is completely received and saves
it in a text file, so that every new line corresponds to a new point cloud saved.
In order to realize this task, it has been necessary to set a way in which Cloud
Acquisition process and MMCL could communicate. Communication between both
threads has been configured using socket as it is explained below. After saving the

10



3.2 – Acquisition of robot’s pose

pose, the process sleeps until next n − 1 frames have been received and then starts
saving the following cloud.

3.2 Acquisition of robot’s pose
As explained in 2.2.3, MMCL estimates the position of the robot. When Cloud
Acquisition requires the pose, MMCL saves last estimated pose and sends it if the
robot is localized. If the rover is not yet localized, the pose is not sent.

3.3 Interprocess Communication
Sockets are I/O interface allowing communication between different processes even
if they are running through different computers. They use TCP/IP connection,
among others, to establish a link between them. Every machine running different
threads receives an IP address and every process can be associated to a port in order
to be identified. Assigning the correct IP, it is possible to identify a socket as coming
from a local machine, which allows connecting different threads running in the same
computer.

In our work, communication between both pose and point cloud acquisition’s
processes is of type server-client. We define MMCL as the server, waiting at every
instant for the client to request robot’s current pose. Point clouds’ acquisition
process is considered as client. Every time the client has acquired a new point cloud,
it connects to the server, who immediately saves the current estimated pose and
sends it back to the client. Once the message is completely received, the client closes
its connection with the server. Both client and server are considered synchronous
tasks as they block their processes until the communication is complete. This is not
a problem as the communication process delay is usually under 100 ms and there is
only one robot, so one client. However, if more than one client is required, a new
implementation of the server should be done in order to convert it to asynchronous,
giving it the ability to receive multiple clients at a time. Moreover, clients could be
implemented as asynchronous if a faster acquisition of the point clouds was required,
for example, to perform online the 3D reconstruction. This way, time wasted by the
client waiting for the server to respond could be used. In our case, as we acquire
2 clouds per second and Map Reconstruction is done offline, it is not necessary to
have this kind of client.

11
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Chapter 4

3D Localised Mapping
Implementation: Map
Reconstruction

Once the entire data is saved, Map reconstruction starts to process this data in
order to obtain the final map. This is done in two main processes. First, every
cloud is filtered in order to reduce its size. Second, clouds are added to the map by
registering them.

4.1 Cloud’s filtering
Clouds acquired with Kinect camera have around 300 000 points. Clouds of this size
require big computation times, use much memory but do not offer great advantages
as, in our case, such precised clouds are not required. Filtering Cloud is done in
order to reduce the use of resources and computational time. Figure 4.1 presents
the different processes made to this purpose. It involves four steps: Pass Through
filter, Down Sampling, Removing Outliers and Surface Reconstruction using Moving
Least Squares. These methods are implemented in [RC11]

4.1.1 Pass Through filter
This first filter is used to set a depth limit in the cloud. Kinect camera has an
operational range of 3.5 meters (see Appendix A.1). However, it actually acquires
points that are farther than this distance threshold. We have noticed that in order
to perform a correct reconstruction, it is necessary to use points being farther than
3.5 meters, even though depth’s precision decrease as the distance between points
and the camera grows. For this reason, Pass Through eliminates any point whose

13



4 – 3D Localised Mapping Implementation: Map Reconstruction

Passthrough: zk ∈ [0; 6]meters

Down Sample

Remove Outliers

Surface Reconstruction

Point Cloud

Filtered Cloud’s
size < 50 000 points

if Filtered Cloud’s
size > 50 000 points

Figure 4.1. Steps to filter a point cloud

depth is farther than 6 meters from the camera. So, once Pass Through is done,
all remaining points have zk ∈ [0;6] meters, zk being the axis in Kinect’s coordinate
system representing depth.

4.1.2 Down Sampling

Two points pertaining to a point cloud taken by Kinect can have a minimal distance
of about a few millimeters. In our case, mapping environments of several m2, it is
not mandatory to have such an accurate precision. It is so acceptable to lose some
precision in order to reduce all point clouds’ size, reducing considerably both com-
putational time and memory usage. Down sampling reduces the number of points
by using Voxel Grid. It divides a point cloud in boxes (“voxels”) with the desired
width. Then, all points within a box are reduced to an unique point corresponding
to their centroid. This way, it is possible to set the minimum distance between
points to the desired precision, reducing the number of points of a point cloud. In
our work, voxels adopted are cubes of 2 cm of side.

14



4.1 – Cloud’s filtering

4.1.3 Remove Outliers

Point clouds taken from Kinect can have measurement errors that create sparse
outliers. Such points can lead to errors while estimating local point cloud’s features
such as surface normals. Calculations of this kind usually require to investigate a
certain number of neighbours in the vicinity of a point, so it is necessary to ensure
that the neighbours are correct. Moreover, removing such points will contribute to
reduce processing time as it decreases the remaining point’s number, although its
effect in this matter is less important than Pass Through filter and Downsampling.

The method used to remove outliers is presented in [Rus09] and is based on
performing statistical analysis on each point’s neighborhood. Mean distance from
each point to all its neighbors is calculated. Assuming a Gaussian distribution, with
a mean and a standard deviation, all points having their mean distances outside a
certain interval are considered as outliers and are removed from the dataset.

In our work, 50 neighbours are used for each point to analyse its status, removing
all points having a distance larger than 1 standard deviation of the mean distance
to the analysed point.

4.1.4 Surface Reconstruction

Surface reconstruction is used in order to improve removal of data irregularities. It
is based on a Moving Least Squares (MLS) algorithm presented in [Rus09]. MLS
provides a reconstructed surface for a given set of points by interpolating higher order
polynomials between the surrounding local neighbors. Smoothing and resampling
a noisy cloud allows to obtain more accurate estimations of surface normals and
curvatures. Such estimations are used further to register point clouds (see section
4.2.4).

4.1.5 Filtering results

By performing these steps, the number of points within a point cloud is significantly
reduced. In our work we have determined to use point clouds with less than 50
000 points. This is generally obtained after following the whole filtering process.
However, in some cases point clouds still have a greater size than the accepted. In
these cases, a second filtering process is realized. Reducing the number of points to
such limits speeds up the time employed for alignment process, prevents from errors
and presents a sufficient precision at the same time.

15



4 – 3D Localised Mapping Implementation: Map Reconstruction

4.2 Registration process
Having robot’s pose would allow, in theory, to reconstruct the whole map applying
roto-translation to every cloud. However, the pose obtained by MMCL has an error
that cannot be ignored. Figure 4.2 shows how applying roto-tranlation only and
adding all clouds would leave to a map having plenty of errors.

(a) Direct sum (b) Sum after registration process

Figure 4.2. Map resultant of adding clouds after a single roto-translation process
(a) and after registration process using SAC-IA and ICP (b)

In order to improve the results, a registration process is required. We have stud-
ied two ways to realize this. A first process has been implemented using Iterative
Closest Point (ICP) as unique alignment process. Further, we have built a sec-
ond process applying two different registration processes, Sample Consensus Initial
Alignment (SAC-IA) and ICP. In both cases, the methods have a structure corre-
sponding to Figure 4.3. After initializing the map, for each new cloud we register it
with the previous map and decide if the registration is good enough to include it to
the map.

16



4.2 – Registration process

Initialize Map

Get Cloud

Register Clouds

Decide inclusion to map

First map

GPi

Fitness Score

Next Filtered
Cloud KPi+1

Previous Map

Figure 4.3. Registration process leading to a reconstructed map

4.2.1 Initialize Map
This process reads the first PCD file saved by Filtering Cloud (see section 4.1) and
its pose from the first line of the text file saved by Cloud Acquisition during Data
Acquisition (see section 3.1). It applies then a roto-translation as explained in 4.2.2,
transforming the cloud from its local reference to the global reference. We will
refer to KPi as the i-th point cloud in its local reference and to GPi as the same
cloud in the global reference. At this point, the cloud is ready to be set as the
first map with which any new acceptable cloud will be added. Figure 4.4 shows the
steps followed by this method. In addition, if SAC-IA is used, calculation of cloud’s
features explained in 4.2.4 is done.

17



4 – 3D Localised Mapping Implementation: Map Reconstruction

Read Cloud

Transform to global reference

Calculate Features

Insert First Cloud

If SACIA and ICP
registration process

Read Pose

robotPose.txtFiltered Cloud

KPi

GPi

{xi, yi, θ}

Figure 4.4. Structure of map’s initialization

4.2.2 Get new cloud
For every new registration process, a new cloud is obtained reading next filtered
cloud and the corresponding global pose of the camera from when the cloud was
acquired. Using this information, it is possible to convert this cloud to the global
reference.

From local to global reference

In order to combine different clouds and create a general map, they must all be in
the same reference. Using the pose given by MMCL, it is possible to transform all
points within a point cloud to a global reference. Figure 4.5 presents the two steps
composing transformation process.

Acquired point clouds are referenced to the Kinect camera’s coordinate system
Rkinect. Its origin is located at the camera’s sensor point and its axes xk, yk and zk

are defined as in Figure 4.6. It corresponds to a mobile coordinate system as the
rover moves around during the acquisition of different clouds, changing the position
of the camera. Robot’s reference system Rrobot, represented as well in Figure 4.6,
is also a mobile system. We consider that origins of both Rkinect and Rrobot are
coincidents.

In order to adapt the cloud to the rover’s reference system we apply the trans-
formation T R

K that allows to transform a cloud from Kinect’s coordinates system to
Rrobot.
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Correct Initial Offset

Global Transformation

KPi

GPi

(xi, yi, θi)

Figure 4.5. Transformation process of a point cloud referenced to Kinect KPi to
a Global reference obtaining GPi

Rrobot yr

zr

xr

yawr

Rkinectxk

yk

zk

pitchk

Figure 4.6. Coordinate systems of Kinect camera and rover

Once the cloud is in an appropriate local reference system, it is necessary to
transform the cloud to a global reference system that will allow to work with other
clouds. Rglobal is a fixed coordinate system that has the same origin and orientation
than Rrobot when rover’s pose is (x0,y0,θ0) = (0,0,0). P3DX has 3 degrees of freedom
as its zG coordinate and its pitchG and rollG do not change. This is due to the fact

T R
K =


0 0 1 0

−1 0 0 0
0 −1 0 0
0 0 0 1



Figure 4.7. Matrix transformation T R
K relates Kinect’s coordinate system to

the robot’s coordinate system
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that the rover moves around the floor, so the plane xG − yG, and that the camera
does not move with respect to Rrobot. Figure 4.8 shows the relation between the
three different coordinate systems.

Rrobot

yr

zr

xr

yawr

xk

yk

zk

Rkinect

pitchk

Rglobal

yr

yG

zG

xr
xG

θG

O(xG,yG,0)

Figure 4.8. Global coordinate system and relative robot’s and Kinect’s systems

To transform the cloud referenced from its relative pose system Rrobot to Rglobal

we apply T G
R transformation.

T G
R =


cos(θG) −sin(θG) 0 xG

sin(θG) cos(θG) 0 yG

0 0 1 0
0 0 0 1



Figure 4.9. Matrix transformation T G
R relates robot’s coordinate system to

the Global coordinate system

The resultant transformation matrix that converts clouds acquired from Kinect
to a global reference T G

K is then the product of T G
R and T R

K .

Initial offset

We have affirmed that camera’s and rover’s coordinate systems are oriented in a
way that xr always corresponds to zk. This might not always be correct. Kinect
has actually one degree of liberty that allows to change the orientation of zk. This
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T G
K = T G

R · T R
K =


sin(θG) 0 cos(θG) xG

−cos(θG) 0 sin(θG) yG

0 −1 0 0
0 0 0 1



Figure 4.10. Matrix transformation T G
K relates Kinect’s coordinate system

to the Global coordinate system

movement has to be done manually and consecutive orientation positions differ of
about 6 ◦. In case zk is not parallel to the floor, and so to xr, an initial correction
of this offset has to be realized. This correction corresponds to a simple rotation of
ωk degrees around xk and its transformation is defined as Toffset.

Toffset =


1 0 0 0
0 cos(ωk) −sin(ωk) 0
0 sin(ωk) cos(ωk) 0
0 0 0 1



Figure 4.11. Matrix transformation Toffset corrects possible initial offset

4.2.3 Register Clouds: ICP alignment
The first registration process designed is described by Figure 4.12. It consists of a
unique alignment between the current map and the new point cloud GPi willed to
be inserted in using the Iterative Closest Points (ICP) algorithm implemented in
[RC11].

Iterative Closest Point Alignment

New cloud: ICP source cloud

Previous map:
ICP target cloud

Fitness score

Figure 4.12. Registration process using only ICP
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Iterative Closest Points

The Iterative Closest Points algorithm is a well known process that aligns two point
cloud datasets by minimizing the Euclidean distance between their correspondent
points [BM92, Zha92]. It finds pairs of nearest 3D points in the source and the
target and defines them as correspondent if their distance is smaller than a specified
distance. It then estimates a rigid transformation that minimizes the distance be-
tween them and iterates until the difference between consecutive transformations is
smaller than the limit defined or until the maximum number of iterations is reached.

However, ICP can also have some problems as it converges to a local minima,
so might give not a good registration result and it can need a great number of
iterations.

The ICP function returns a parameter called fitness score that provides infor-
mation about the quality of the alignment done. Fitness score corresponds to a
calculation of the distance error between clouds aligned after the registration pro-
cess. This parameter will be useful to decide in which cases the alignment is good
enough to include it in the map.

4.2.4 Register Clouds: SAC-IA and ICP alignment
This second registration process attempts to obtain a more accurate alignment than
the explained previously. After aligning the new cloud using ICP as in 4.2.3, this
process realizes a second alignment process if the result is not acceptable. In this
case, it uses SAmple Consensus Initial Alignment (SAC-IA) to obtain an initial
alignment that will give a better first guess for ICP. After the second ICP is done,
the results are given in order to decide either to include or not the new cloud to the
map. Figure 4.13 presents the structure of the explained registration process.
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Iterative Closest Point Alignment

Decide

Calulate Features

SACIA alignment

Second ICP alignment

New cloud: ICP source cloud

Previous map:
ICP target cloud

Fitness score

If fitness score > minimum acceptable

New Cloud Features: SACIA source

New first guess

Previous Cloud Features: SACIA target

Fitness Score

If fitness score ≤ mini-
mum acceptable

Figure 4.13. Registration process using SAC-IA and ICP

Calculate Features

In order to realize a SAC-IA alignment it is necessary to calculate first some geo-
metrical features that will allow SAC-IA to proceed. Figure 4.14 shows the different
steps followed to obtain the necessary features.

Reduction of Point Cloud’s size

The time employed to realize features calculations and, more importantly, the SAC-
IA alignment itself increases considerably as the size of a point cloud GPi is greater.
SAC-IA alignment between two point clouds of about 50 000 points each can take
between 5 and 7 minutes, depending on the parameters used, while alignment of
point clouds of about 3000 points takes 5 seconds. For this reason, the first step
before calculating the desired features is to reduce its size. Moreover, instead of
registering a new cloud with the current map, we apply alignment between the new
cloud and the last cloud inserted in the map. This is done because as the map grows,
its size increases too, slowing the alignment.
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Down Sample

Remove Outliers

Moving Least Squares

Fast Point Feature Histogram

Reduced Point
Cloud Pfi

Normals Ni

Point Cloud Pi

FPFHi

Figure 4.14. Process to obtain features needed for SAC-IA alignment

To reduce a point cloud’s size, we apply the same operations than in 4.1: down
sampling, removing outliers and resampling to smooth its surfaces. In this case,
down sampling is set to use voxels of side 6 cm. The point clouds used for SAC-IA
have all less than 4000 points. Additionally, surface reconstruction allows to obtain
simultaneously more smoothed surfaces and the first feature needed, the normals
estimation.

Surface Normals estimation

To estimate the normal direction would usually be trivial if a surface was given.
However, a point cloud describes surfaces by a set of point samples of the real
surface. To estimate the normal at every point pq ∈ Pi, it is mandatory to analyse
its neighbors pk

q . Selecting pk
q correctly is an important step in order to obtain a

good estimation.
Two procedures are described in [Rus09] to determinate pk

q . The first one is to
determine the closest k neighbors to pq (k-search) and the second one is to specify
a certain radius r and include to pk

q any point being closer to pq than r (radius
search). In our work, we have used this second method because k-search needs to
estimate and order all distances from pq to all the other points pertaining to Pi and
so operates slower than radius-search. Moreover, using radius search will allow to
estimate features independently on the number of points sampled. In our work, as
we down sample the cloud up to 6 cm, we use a radius rnormals of 20 cm to find pk

q

to estimate pq’s normal.
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4.2 – Registration process

To estimate the normal of pq, the function used and explained in [Rus09] attempts
to determine the normal of a plane tangent to the surface formed by pk

q .

Fast Point Features Histograms (FPFH)

The actual feature used by SAC-IA to perform alignment is FPFH. This feature uses
the previously estimated normals to calculate some geometrical relations between a
point pq and its neighbors pk

q . FPFH is described in [RBB09, Rus09] and attempts
to create a multi-dimensional feature space that will allow to group in a same class
all points sampled from the same surface while points pertaining to different surfaces
would be assigned to different classes. FPFH estimation works as well with query
point’s neighbors pk

q but demands to have a radius search greater than the one used
for normal estimation. In our work, the second rF P F H used is so 30 cm.

SAmple Consensus Initial Alignment

SAC-IA is an algorithm that uses FPFH to realize a first alignment between two
different point clouds P and Q. It is presented in [RBB09] and is composed of three
principal steps.

It selects s sample points from P making sure that their pairwise distances are
greater than a certain minimum distance dmin. In our work, this distance is set to
40 cm. Then, it finds a list of points in Q whose FPFH histograms are similar to
the sample points’ histogram for each of the sample points. It selects one randomly
from the list and this point will be considered as that sample points’ correspondence.
Finally, it computes the rigid transformation defined by the sample points and their
correspondences and computes an error metric for the point cloud that allows to
find the quality of the transformation.

In our work, we set the maximum number of iterations up to 1000 times and
save the transformation giving the best error metric.

Final Alignment with ICP

After SAC-IA is done, the resultant transformation is used to transform the cloud
wanted to be aligned with the map. Thereby, a second initial guess has been founded
and ICP is computed again as in 4.2.3 in order to find an alignment that will give
an acceptable fitness score.

4.2.5 Decision of the inclusion
In this final step, Registration process decides whether to include or not the trans-
formed cloud to the map. To do so, we use a parameter given by ICP, registration’s
fitness score. We have found empirically that clouds having a fitness score minor
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than 0.01 are sufficiently well aligned to the map and are so included. The Decision
process is shown in Figure 4.15.

Add Cloud to Map

Final Process

Prepare next iteration

Decision

If Fitness Score ≤ minimum acceptable
OR Failed number > max failed

If Fitness Score > minimum acceptable
AND Failed number ≤ max failed

New Map
New Features

Fitness Score

Figure 4.15. Decision process to include a registered cloud to the map

As registration process uses overlapping areas between point clouds to perform
the alignment, such overlapping areas need to be always present. However this
might not always be possible. Indeed if many consecutive clouds are not accepted,
the next cloud might not have any common area with either the last cloud included
or the map, resulting in that new explored areas will no longer be included in the
3D reconstruction. We decide to include a cloud with an unacceptable fitness cloud
if the last 3 clouds have not been accepted. Instead of using the cloud transformed
by ICP, we insert the initial GPi in the map by simply adding its points to it. This
is done because we have noticed that bad alignment results are usually worse than
the initial guess. Therefore, we are assuming the risk of this cloud not being good
in order to not be blocked and always be able to expand the reconstruction.

Final Process

If a new cloud is included, all its points are added to the previous map. In this
case, overlapping areas will be more dense as it will contain two points for the same
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4.2 – Registration process

estimated position. It is not necessary to have such density and it can also provide
imprecision as the alignment between clouds is not without error. Therefore, a final
filtering process is needed in order to maintain the coherent density. The map is
down sampled using Voxel Grid again, setting it’s size to 2 cm. Thereby the map is
filtered to the same parameters as before the new cloud was added.

Prepare next iteration

As final step, 3DLM proceeds to set the next iteration. If a new cloud has been
added, it is set as target for next ICP registration process and failed clouds counter
is set to 0. If SAC-IA is used, local features of the last included cloud are calculated
and set as target for next SAC-IA alignment.

If the cloud has been rejected, nothing has to be done but increase the counter
of failed clouds that will allow to know if there have been too many consecutive
rejected clouds.
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Chapter 5

Experimental Test: 3D
Reconstruction of a corridor

The explained algorithm lead to a reconstructed map of the environment, though the
quality of it highly depends on the parameters used. We have designed a set of tests
in order to investigate in which cases 3DLM brings better results for a particular
environment.

5.1 Description of the test
The chosen environment for this section is a corridor of DAUIN’s department at
Politecnico di Torino. The experiment consists in reproducing the same trajectory
with the robot several times, changing the rover’s maximum speed (vRovmax), its
maximum rotational speed (vRotmax) and the saving cloud frame rate during the
acquisition process (fAcq). Table 5.1 shows the different values used.

vRovmax (mm/s) vRotmax (deg/s) fAcq (fps)
T1 100 20 1
T2 200 20 1
T3 100 40 1
T4 200 40 1
T5 100 20 2
T6 200 20 2
T7 100 40 2
T8 200 40 2

Table 5.1. Combination of parameters used for 3D reconstruction of a corridor

The path taken by the robot is shown in Figure 5.1 and represents a 30 meters
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5 – Experimental Test: 3D Reconstruction of a corridor

run in total. Four positions A, B, C and D, are defined in order to maintain the same
path and to analyse the influence of straight/rotational movement. A-B is a section
where the rover goes straight, so θG given by MMCL is almost invariable. B-C and
D-B combine forward movement and rotation while C-D is almost only rotational.
As explained in 2.2.3, Path planning brings a smoother rotational movement than
teleoperation while it allows to manage the direction taken by the rover. For this
reason all the tests will be done using Path planning.

A
B

C
D

Figure 5.1. Path taken by the robot during tests T1-T8

5.2 Overlapping Area: Previous Calculations
We estimate that it is important, in order to obtain good alignment results, to
have an acceptable initial guess. The quality of the initial guess relies on the data
acquisition process. Clouds being registered need to have a sufficient overlapping
area in order to obtain great results. Thus varying the speed of the rover/camera
can modify the distance between clouds and their overlapping areas.

5.2.1 Straight Movement
When going straight, the distance between the origin of two consecutive acquired
clouds δ is the distance between the positions from where the camera acquired them.
Such δ depends on both rover’s speed vRov and the acquisition frequency fAcq as we
can see in equation 5.1.

δ = vRov

fAcq

(5.1)

As in our test points farther than 6 meters from the camera are eliminated and
the path is always in the xG - yG plane, we can consider that the overlapping area
of two consecutive acquired clouds is characterized by σ = 6 − δ meters. Table
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5.2 – Overlapping Area: Previous Calculations

5.2 presents the values of σ for the chosen vRovmax and fAcq and the percentage of
overlapping area that this represents.

vRovmax (mm/s) fAcq (fps) σ (m) Overlapping Area (%)
T1,T3 100 1 5.9 98.3
T2,T4 200 1 5.8 96.7
T5,T7 100 2 5.95 99.2
T6,T8 200 2 5.9 98.3

Table 5.2. Percentage of a cloud overlapped by next acquired cloud

In every case overlapping area represents a high percentage of the cloud so the
influence of vRovmax seem not to be crucial.

5.2.2 Turning Movement
When turning, the camera remains at the same position, modifying only its orienta-
tion. The angle turned between two consecutive cloud acquisitions τ will influence in
the overlapped areas between them. τ can be calculated using the rover’s rotational
speed vRot and fAcq as in equation 5.2.

τ = vRot

fAcq

(5.2)

An observed surface being at a distance d from the camera will have a re-observed
area after turning τ around zG as in Figure 5.2.

Camera

Overlapped area
doverlapped

d

τ

29 ◦

Figure 5.2. Overlapped area after a rotation of the camera of τ
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Knowing that the Kinect has a field of view of 58 ◦ in the horizontal direction
(see Appendix A.1) it is possible to find the area’s width doverlapped of a surface,
present in both clouds.

doverlapped = d · (tan(29) + tan(29 − τ)) (5.3)

Table 5.3 presents the estimation of the overlapped area’s width between two
consecutive acquired clouds when turning at vRotmax.

vRotmax (deg/s) fAcq (fps) τ (deg) Overlapped Area (%)
T1,T2 20 1 20 64.3
T3,T4 40 1 40 32.5
T5,T6 20 2 10 81.1
T7,T8 40 2 20 64.3

Table 5.3. Percentage of overlapped area’s width between two clouds

Observing the analysis made for forward and turning movement, we can estimate
that rotation will have a stronger influence on the alignment results. We can also
estimate that T1 and T8 will have a similar behaviour as their σ is 5.9 and their τ
is 20 in both cases.

5.3 Parameters used
In order to investigate the influence of registering using ICP or a combination of
SACIA and ICP, we process all the data using both options. Moreover, instead of
doing twice the same path changing only fAcq, we decide to take all the data at
2 frames per second, skipping an acquired cloud of two during the reconstruction
process if the desired fAcq is 1 fps. Thereby, the possibility of different results due
to differences during data acquisition is avoided in these cases, allowing to obtain
safer conclusions.

The other parameters used for every process remain constant for every process
and can be found in appendix B

5.4 Results: Qualitative analysis
A first analysis can be done observing the maps obtained after every reconstruction.
Figures 5.3 and 5.4 presents the resultant maps after running 3DLM using SACIA-
ICP or only ICP respectively for two different tests. The shown results are from
tests T2 and T5 which are respectively the worse and the best maps obtained.
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(a) T2 using SACIA-ICP

(b) T2 using ICP

Figure 5.3. Reconstructed maps obtained for test T2 using SACIA-ICP and ICP

In Figures 5.5 and 5.6 we can observe some details of the different resultant maps.
For each case, Figure 5.6 shows the detail of a column being between position A and
B (so being seen from one side during A-B course and from the other side during B-
A course). Not a single test has succeed to completely reconstruct the column, but
we can see that the reconstruction of T5 is better than T2’s reconstruction. Figure
5.5 presents the room seen during C-D course, so almost only rotating. Again, the
alignment is not perfect but T5’s results are better. Furthermore we can see that
SACIA-ICP gave a better result than ICP.

We notice that in some cases, clouds having been inserted do not seem to be well
aligned with the rest of clouds. For example, Figure 5.7 shows two clouds inserted in
the map for test T2. The reason why the clouds of 5.7(a) are not aligned correctly
is that the cloud was inserted without any alignment because the last 3 clouds had
been rejected and its own alignment result was 0.80944 > 0.01. This error is assumed
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(a) T5 using SACIA-ICP

(b) T5 using ICP

Figure 5.4. Reconstructed maps obtained for test T5 using SACIA-ICP and ICP

in order to avoid a blockage of the registration process, where no new clouds would
be accepted because there would be no overlapping area anymore. The clouds of
5.7(b) are correctly aligned, having a fitness score of 0.00014 after ICP alignment.
We can see that the extinguisher and the fire hose are not blurry, meaning that even
small objects can be reconstructed if the registration is good enough.
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(a) T2 using SACIA-ICP (b) T2 using ICP

(c) T5 using SACIA-ICP (d) T5 using ICP

Figure 5.5. Details of a room seen while running C-D course for tests T2 and
T5 using SACIA-ICP and ICP
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(a) T2 using SACIA-ICP (b) T2 using ICP

(c) T5 using SACIA-ICP (d) T5 using ICP

Figure 5.6. Column details for tests T2 and T5 using SACIA-ICP and ICP

(a) Forced cloud (b) Accepted cloud

Figure 5.7. Clouds included in the map (a) after 3 previous clouds failed and (b)
after registration process ended with a fitness score = 0.00014
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5.5 Reconstruction sequence
In order to have a better understanding of how the reconstruction process is made, we
present in Figure 5.8 a sequence of the reconstruction made for T5 using SACIA and
ICP alignment. Starting from position A (defined in section 5.1) 49 clouds have been
accepted when 5.8(a) has been obtained and 145 clouds when 5.8(b). At this point,
position B has been reached. 5.8(c) presents the reconstructed map when B-C has
been covered and 259 clouds have been included. 5.8(d), 5.8(e) and 5.8(f) show the
map corresponding to 259, 318 and 430 clouds accepted respectively, corresponding
to travel C-D, D-B and B-A ways respectively. We observe that during the way
back, so D-B and B-A, the reconstruction gets more inaccuracy as clouds of same
objects but seen from a different point view do not succeed in aligning well.
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(a) 49 accepted clouds (b) 145 accepted clouds. A-B covered

(c) 214 accepted clouds. B-C covered (d) 259 accepted clouds. C-D covered

(e) 318 accepted clouds. D-B covered (f) 430 accepted clouds. B-A covered

Figure 5.8. Sequence of maps obtained during T5 reconstruction
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5.6 Results: Quantitative analysis
To realise a proper quantitative analysis, we understand that it would be convenient
to find the distance error with respect to a 3D model of the environment. Though
not having such 3D model, we will investigate on the percentage of clouds being
accepted, rejected or forced, the latter being the most significant to understand the
quality of it. We consider that alignments having a fitness score under 0.01 are
acceptable. Such clouds included in the map will be understood as accepted clouds.
Clouds not included in the map are defined as rejected while clouds included in the
map because the three previous clouds during the registration process were rejected
are considered as forced. We understand that forced clouds are source of maximal
error as we cannot ensure an acceptable alignment but are needed in order to avoid
a blockage of the reconstruction process. Tables 5.4 and 5.5 present the percentages
obtained for every test using SACIA - ICP and ICP respectively as registration
process.

T1 T2 T3 T4 T5 T6 T7 T8
Accepted (%) 78.4 51.7 75.1 50.4 89.0 78.8 86.0 75.8
Rejected (%) 16.6 36.7 19.6 37.6 8.3 16.2 10.9 18.6
Forced (%) 5.0 11.7 5.3 12.0 2.7 5.0 3.1 5.5

Table 5.4. Percentages of clouds accepted, rejected and forced to be included for
every test T1-T8 using SACIA and ICP

T1 T2 T3 T4 T5 T6 T7 T8
Accepted (%) 74.3 36.7 65.3 39.3 86.1 67.2 83.6 67.4
Rejected (%) 19.9 48.3 26.7 46.2 10.6 24.9 13.1 25.0
Forced (%) 5.8 15.0 8.0 14.5 3.3 7.9 3.3 7.6

Table 5.5. Percentages of clouds accepted, rejected and forced to be inserted for
every test T1-T8 using ICP only

A reconstructed map contains either accepted or forced clouds. Using only the
clouds included in the map, we have analysed the percentage of forced clouds in
order to understand better the influence of every factor in the quality of the resultant
map. Such factors are the frame frequency fAcq, the rover’s speed vRovmax, the rover’s
rotational speed vRotmax and the registration process used.

To facilitate the notation we will refer to:
f1 = 1 fps and f2 = 2 fps
vRov1 = 100 mm/s and vRov2 = 200 mm/s
vRot1 = 20 deg/s and vRot2 = 40 deg/s

pT i(%) ≡ percentage of forced clouds pertaining to a reconstructed map for test Ti.
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5.6.1 Influence of the saving cloud frame frequency fAcq

To analyse the influence of the saving frame rate we study the effect done between
tests having the same parameters except for fAcq. Furthermore, as we said in 5.3,
in order to have a safer understanding of fAcq’s influence, tests with f1 have exactly
the same data as their corresponding tests with f2 but skip one cloud of two .

The corresponding tests are shown in Table 5.6 and are T1-T5, T2-T6, T3-T7,
and T4-T8.

vRov1 vRot1 vRov2 vRot1 vRov1 vRot2 vRov2 vRot2
f1 T1 T2 T3 T4
f2 T5 T6 T7 T8

Table 5.6. Corresponding tests for fAcq

Figure 5.9 shows the percentage of forced clouds for fAcq corresponding tests us-
ing both SACIA-ICP (Figure 5.9(a)) and ICP (Figure 5.9(b)) registration processes.

We notice that for every corresponding test, the one having f2 brought less forced
clouds than the one having f1. Furthermore, we calculate in Table 5.7 both mean
and standard deviation of the difference between forced cloud’s percentage of fAcq

corresponding tests (for example, pT 1 − pT 5).
We can deduce that a faster acquisition of the clouds brings better results during

the registration process.

SACIA-ICP ICP
Mean (%) 7.8 11.5
Standard deviation (%) 4.7 6.3

Table 5.7. Statistical results of the differences of pT i between fAcq’s corresponding tests
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(b) ICP

Figure 5.9. Influence of fAcq in pT i for both (a) SACIA-ICP and (b) ICP
registration process
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5.6.2 Influence of rover’s maximum rotational speed vRotmax

To analyse the influence of the rover’s maximum rotational speed we study the effect
done between tests having the same parameters except for vRotmax.

The corresponding tests are shown in Table 5.8 and are T1-T3, T2-T4, T5-T7,
and T6-T8.

vRov1 f1 vRov2 f1 vRov1 f2 vRov2 f2
vRot1 T1 T2 T5 T6
vRot2 T3 T4 T7 T8

Table 5.8. Corresponding tests for vRotmax

Figure 5.10 shows the percentage of forced clouds for vRot corresponding tests
using both SACIA-ICP (Figure 5.10(a)) and ICP (Figure 5.10(b)) registration pro-
cesses. We have also calculated in Table 5.9 both mean and standard deviation of
the difference between forced cloud’s percentage of corresponding tests (for example,
pT 1 − pT 3).

SACIA-ICP ICP
Mean (%) -0.7 -0.4
Standard deviation (%) 0.1 2.1

Table 5.9. Statistical results of the difference of pT i between vRot’s corresponding tests

We observe that increasing vRotmax has not always decreased the quality of the
map as expected. Using SACIA-ICP, a little influence has been made, but using
ICP, we cannot affirm the same as the standard deviation is much bigger than the
mean and for T2-T4 and T6-T8, pT i decreased.

To deeply analyse these results, we have considered in table 5.10 the instanta-
neous rotational velocities vRoti obtained while saving the pose during the tests. We
observe that vRoti is between 3 deg/s during the tests while the maximum rotational
speed vRotmax is either 20 or 40 deg/s. Furthermore only 10.5 %, at the most, of
the instantaneous speeds are greater than 10 deg/s. This means that we cannot
conclude about the influence of rotational speed with this test as rotational speed
does not significantly vary.
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Figure 5.10. Influence of vRotmax in pT i for both (a) SACIA-ICP and (b)
ICP registration process

T1 T2 T3 T4 T5 T6 T7 T8
Mean (deg/s) 1.3 2.3 2.1 3.4 1.3 2.3 2.0 3.6
Standard deviation (deg/s) 2.5 3.2 4.4 5.8 2.6 3.4 4.2 6.0
vRoti > 10 deg/s (%) 2.9 5.0 4.9 10.1 2.7 0.4 4.9 10.5

Table 5.10. Statistical results of the instantaneous rotational velocity vRoti and
percentage of vRoti having a value greater than 10 deg/s
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5 – Experimental Test: 3D Reconstruction of a corridor

5.6.3 Influence of rover’s maximum speed vRovmax

To analyse the influence of the rover’s maximum speed we study the effect done
between tests having the same parameters except for vRovmax.

The corresponding tests are shown in Table 5.11 and are T1-T2, T3-T4, T5-T6,
and T7-T8.

vRot1 f1 vRot2 f1 vRot1 f2 vRot2 f2
vRov1 T1 T3 T5 T7
vRov2 T2 T4 T6 T8

Table 5.11. Corresponding tests for vRovmax

Figure 5.11 shows the percentage of forced clouds for vRov corresponding tests
using both SACIA-ICP (Figure 5.11(a)) and ICP (Figure 5.11(b)) registration pro-
cesses.

We notice that for every corresponding test, the one having vRov1 brought less
forced clouds than the one having vRov2. Furthermore, we calculate in Table 5.12
both mean and standard deviation of the difference between forced cloud’s percent-
age of corresponding tests (for example, pT 1 − pT 2). We can deduce that a slower
motion behaviour of the robot brings better results during the registration process.

SACIA-ICP ICP
Mean (%) -7.8 -12.7
Standard deviation (%) 4.7 6.5

Table 5.12. Statistical results of the difference of pT i between vRov corresponding tests

T1 T2 T3 T4 T5 T6 T7 T8
Mean (mm/s) 69,7 129,6 74,2 133,8 69,8 128,8 74,5 134,1
Standard deviation (mm/s) 39,3 83,0 36,6 80,7 39,1 82,9 36,5 80,7
vRovi > vRovmax/2 (%) 63,6 58,7 69,0 60,5 63,6 58,3 69,0 61,2

Table 5.13. Statistical results of the instantaneous velocity vRovi and percentage
of vRovi having a value greater than 50 mm/s or 100 mm/s, depending on if vRovmax

is 100 mm/s or 200 mm/s respectively

To deeply analyse these results, we have considered in table 5.13 the rover’s
instantaneous velocities vRovi obtained while saving the pose during the tests. We
observe that vRovi’s mean is of about 70 mm/s for tests having vRov1 and 130 mm/s
for tests having vRov2. Furthermore between 60 and 70 % of the instantaneous speeds
are greater than their vRovmax/2. This means that the robot is sufficiently close to
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5.6 – Results: Quantitative analysis
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Figure 5.11. Influence of vRovmax in pT i for both (a) SACIA-ICP and (b)
ICP registration process

its maximum speed during the test and so the conclusions made for vRov can be
considered.
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5 – Experimental Test: 3D Reconstruction of a corridor

5.6.4 Influence of registration mode: SACIA-ICP vs ICP
To analyse the influence of registration process used, we study the results obtained
by processing the tests with same parameters with both SACIA-ICP and ICP. As
both aligning processes are done with the same data, conclusions can be safely done.

Figure 5.12 shows the percentage of forced clouds obtained pT i for the same tests
processed using either SACIA-ICP or ICP.
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Figure 5.12. Influence of the registration process in the percentage of
forced clouds obtained

We notice that for every test, registering using SACIA-ICP brings less forced
clouds than aligning using only ICP. Furthermore, we have found that the differ-
ence between forced cloud’s percentage of same tests (for example, pT 1(SACIA-
ICP)−pT 1(ICP)) is of -4.1 % by mean and its standard deviation is 3.4 %. We can
deduce that combining SACIA and ICP aligns better the acquired clouds than using
only ICP.

5.7 Computing time analysis
We have seen that combining SACIA and ICP alignment processes, we can obtain
maps of higher quality than registering with ICP only. However this improvement
is not without cost. We have studied the computational time for both registration
processes in order to analyse their cost. Table 5.14 presents the resultant mean t̄
and standard deviation σt of the time spent. For SACIA-ICP, this time corresponds
to process ICP, calculate new cloud’s features if this one was included and, when
required, calculate features, process SACIA and perform ICP again. On the other
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5.7 – Computing time analysis

hand, for ICP alignment the time used corresponds to ICP alignment only. Figure
5.13 shows the variation of t̄ suffered by using a different alignment process. We
can observe that the time spent using SACIA-ICP is greater than using ICP only
as expected, and this augment is of 240 % by mean.

T1 T2 T3 T4 T5 T6 T7 T8

ICP t̄ (s) 1,18 0,76 1,15 0,78 1,60 1,16 1,68 1,26
σt (s) 0,61 0,56 0,80 0,58 0,80 0,73 1,01 1,03

SACIA-ICP t̄ (s) 3,22 4,32 4,11 4,47 2,89 3,20 3,78 3,35
σt (s) 2,94 3,27 3,66 3,58 1,95 2,58 3,27 3,05

Table 5.14. Mean t̄ and standard deviation σt of the computational time spent for
the registration process using ICP or SACIA-ICP
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Figure 5.13. Influence of the registration process in the computational time

We observe though that the dispersion is considerable. To understand the reason
of such variability, we observe in Figure 5.14 the time spent for each single alignment
of test T5 using SACIA-ICP or ICP. We observe peaks when using SACIA-ICP that
correspond to when SACIA alignment is done because ICP alignment has not achieve
with an acceptable score. Such peaks augment considerably the dispersion as they
suppose in some cases an augment of 400 % of the usual computational time.

Finally, we study in Figure 5.15 the evolution of the computational cost of Final
process. As the map includes new clouds, its size grows, increasing the cost of doing
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Figure 5.14. Time spent for every registration process of test T5

a Final process. This process is though necessary as if it were not done, the map’s
size would grow faster, increasing the registration’s computational time. In order to
maintain the computational cost of Final process bounded, it would be necessary to
modify 3DLM in order to filter only the region where the new cloud was included.
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Figure 5.15. Evolution of the Final process’ computational time for both ICP and
SACIA-ICP registration processes
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5 – Experimental Test: 3D Reconstruction of a corridor

5.8 Conclusions
Dense reconstructions of indoor environments can provide to robotic systems new
ways to navigate and interact with the surrounding world in an effective manner.
The arise of inexpensive RGB-D cameras enables to build rich 3D maps that can be
used for many applications such as navigation, manipulation or semantic mapping.

We introduced in this paper 3D Localised Mapping, a full algorithm that can
reconstruct 3D indoor environments. To do so, it is necessary to provide to 3DLM
the position and orientation of the camera. Furthermore, we have built two dif-
ferent variants on the registration processes being responsible for frame to frame
reconstruction.

We have tested 3DLM for a particular environment, finding that for this partic-
ular case, having a faster acquisition speed or a slower movement of the rover has
provided better 3D maps in a similar way. Furthermore, faster rotational speed has
not had a strong influence on the quality of the resultant map as the rover does
not turn as fast as expected due to the path defined. Finally, registration process
combining SACIA and ICP has brought better results than using ICP only and ap-
pears to be so a better framework despite it requires greater computational times.
Therefore, it is mandatory for a particular application to define its priorities in order
to decide the registration process mode.

However, in order to have a better understanding of the robustness of the pre-
sented algorithm, more tests could be done, experimenting the influence of having
more obstacles, being in larger or smaller environments, or changing registration
parameters. A new test could be designed also to investigate on the influence of
rotational movement. Furthermore, other issues remain to be tackled for future
research, such as using RGB data in order to improve the registration process or
optimizing the algorithm in order to obtain a real-time framework. To this purpose
it would be mandatory to maintain all processes bounded to a convenient compu-
tational time. Moreover, as the rover remains in a plane environment, which is a
common situation for indoor environments, it could be interesting to define a reg-
istration process that would find the best alignment using only x-y translation and
z rotation. Finally, as the algorithm MMCL, used to localise the camera, performs
better if several robots are operating together, 3DLM could be adapted to work with
several rovers.

We hope that despite important issues need to be solved in order to improve
3DLM, this can be an opening step toward accurate 3D reconstructions.
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Appendix A

DataSheets

A.1 PrimeSense Reference Design 1.08
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A – DataSheets

A.2 MobileRobots Pioneer 3DX

56



 
Adept MobileRobots, LLC    •    10 Columbia Drive    •    Amherst, New Hampshire 03031 

http://www.MobileRobots.com    •    sales@MobileRobots.com  
+1 603 881-7968    •    +1 603 881-3818 fax  

Pioneers 
are the world's most popular intelligent mo-
bile robots for education and research. 
Their versatility, reliability and durability have 
made them the reference platforms for ad-
vanced intelligent robotics. Unlike hobby and 
kit robots, Pioneers are fully programmable, 
as bundled with Pioneer SDK, and will last 
through years of tough classroom and labo-
ratory use.  

Pioneer 3-DX 
is a small, lightweight, two-wheel, two-
motor differential drive robot, ideal for 
indoor laboratory and classroom use. 
 

All Pioneers come complete with wheel 
encoders and a mobility microcontroller 
with ARCOS firmware, one lead-acid bat-
tery expandable to three hot-swappable, 
Pioneer SDK advanced mobile robotics 
development software and lifetime ac-
cess to updates and upgrades. Pioneers 
also provide user-accessible 12 and 5 
VDC power, as well as digital and serial 
I/O for customization. 
 

All Pioneers also support a plethora of 
fully integrated accessories, including 
SONAR, gripper, 6-DOF arm, laser-range 
finder with advanced localization and 
navigation software, onboard SBC, wire-
less Ethernet, mono and stereo vision, 
gyro/IMU, automated charging, bump-
ers, and many more... 

Pioneer 3-AT 
is a small, four-wheel, four-motor skid-steer 
intelligent robotics platform ideal for heavier 
payloads and all-terrain operation on uncon-
solidated surfaces (indoor wheels available 
for operation on carpets and other high-
friction surfaces). 
 
Additional accessories include outdoor ste-
reo vision, differential GPS, and more... 



Adept MobileRobots, LLC    •    10 Columbia Drive    •    Amherst, New Hampshire 03031 
http://www.MobileRobots.com    •    sales@MobileRobots.com  

Pioneer 3-DX and —AT Specifications 

 Pioneer 3-DX Pioneer 3-AT 

Physical Characteristics* 14 guage aluminum body and chassis 

Length (cm) 48.5 50.8 

Width (cm) 38.1 49.3 

Height (cm) 23.7 27.7 

Clearance (cm) 5.0 8.4 

Weight (kg) 9 14 

Payload (kg) 25 40 

Power 12VDC unregulated; 12 and 5VDC  regulated switched user auxiliary 

Batteries Up to 3 hot-swappable   12VDC@7.2 A-hr ea 

Run-time (hrs) 8-10 ; continuous with hot-swap 4-6 ; continuous with hot-swap 

Run:charge time ratio 0.9:1 0.9:1 

Mobility                                   Tires 2 foam-filled@19.5cm diam, 
 4.8cm wide; 7.5cm rear caster 

4 pneumatic@22cm diam, 9.5cm wide; 
knobby tread 

Turn:Swing radii (cm) 0:26.7 0:34 

Translate speed max (mm/sec) 1,400 700 

Rotate speed max (deg/sec) 300 140 

Traversable step:gap max (cm) 2.0:8.9 8.9:12.7 

Traversable slope (grade) 25% 40% 

Terrain Wheelchair accessible indoors Unconsolidated (no carpets!) 

Microcontroller 44.2368 MHz Renesas SH2 32-bit 
FLASH; ARCOS firmware  

RISC μC with 32KRAM and 128K  

Encoders (2 quadrature) 313,657 ticks per rev 135,465 ticks per rev 

SONAR Front and rear  (optional) arrays of 
degree intervals each  

8 multiplexed, 180-degrees @ 20- 

Switches and buttons Main power, AUX1 and AUX2 power,  μC reset, and MOTORS 

Ports SYSTEM serial, charger,  and joystick 

User I/O SYSTEM serial and 8 digital inputs  and outputs 

Systems Architecture Server in client-server; Pioneer SDK 
includes Linux and Windows® ARIA 

ware, MobileSim simulator, SonARNL 
Basic and MobileEyes™ configuration  

software bundled with every robot, 
C++ robotics client development soft-  
localization and navigation, Mapper3- 
and control GUI application. 

*    Based on standard configurations with single battery; no accessories. DX includes front SONAR array. 



A.3 – Laser Rangefinder SICK LMS-200

A.3 Laser Rangefinder SICK LMS-200
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Technical Description Chapter 12

LMS200 to LMS291

Technical Data

8008970/QI72/2006-12 © SICK AG · Division Auto Ident · Germany · All rights reserved 29

12 Technical Data

Type Indoor: LMS200, Outdoor: LMS211, LMS221, LMS291
Scanning angle (field of vision) 100°/180° (type-dependent, see Table 11-1, Page 27)
Motor speed 75 Hz
Angular resolution (response time) 0.25°1) (53.33 ms); 0.5° (26.66 ms); 1° (13.33 ms); selectable
Range Max. 80 m (type-dependent, see Table 11-2, Page 27)
Measurement resolution 10 mm
Measurement accuracy typical ±35 mm (LMS200-30106, LMS211/LMS221-30106: typical ±15 mm)

Systematic error2) LMS200-30106/LMS211-30106/LMS221-30106:
– mm-mode: typical ±15 mm at range 1 to 8 m
– cm-mode: typical ±4 cm at range 1 to 20 m
LMS211/LMS211-30206/LMS291/LMS221-30106/LMS2x1-Sxx:
– mm-mode: typical ±35 mm at range 1 to 20 m
– cm-mode: typical ±5 cm at range 1 to 20 m

Statistical error3) LMS200-30106/LMS211-30106/LMS221-30106:
mm-mode: typical 5 mm at range ≤ 8 m/ reflectivity ≥ 10 %/ light ≤ 5 klx
LMS211/LMS211-30206/LMS291/LMS221-30106/LMS2x1-Sxx:
mm-mode: typical 10 mm at range 1 to 20 m/ reflectivity ≥ 10 %/ light ≤ 5 klx

Laser diode (wavelength) Infra-red (λ = 905 nm)

MTBF of LMS2xx4) Indoor devices: 70,000 h
Outdoor devices: 50,000 h

Laser class of device Class 1 (eye-safe), to EN/IEC 60825-1 and to 21CFR 1040.10
Optical indicators 3 x LED (LMS200/LMS291 only)
Data interface RS 232 or RS 422 (selectable in the connector plug)
   Data transfer rate RS 232: 9.6 / 19.2 kbd 

RS 422: 9.6 / 19.2/ 38.4/ 500 kbd
   Data format 1 start bit, 8 data bits, 1 stop bit, no parity (fixed)
Switching inputs All LMS2xx except LMS2xx-S14 (LMS Fast):

1 x (“Restart“ or “Field set switching“), Uin = 12 to 24 V, Iin = 5 mA

Switching outputs (standard device) LMS200/LMS291/LMS211/LMS221:
3 x PNP (OUT A to OUT C), high, typical 24 V DC (“field OK“), short-circuit-proof, selectable 
restart delay after field infringement (0; 100 ms to 255 s)
– OUT A, OUT B (each max. 250 mA): “field infringement“
– OUT C (max. 100 mA): “field infringement/error indication (Weak)5)“

1) Angular resolution 0.25° not possible in the area monitoring mode 
2) Definition measurement accurcy:

Resolution:
The resolution of a measuring device is the smallest possible distance different from zero between two consecutive individual measurement values. 
The resolution can be reduced by using averaged values.
Systematic error:
Environmental conditions: good visibilty, Ta = 23 °C, reflectivity 10 to 10,000 %.
The systematic error is the sum of all the deviations over a defined excent of range and reflectivity, which cannot be reduced even using averaged values.

3) Statistical error:
Standard deviation 1 sigma. The standard deviation is calculated using at least 100 measuring values of a target (object) with a certain reflectivity at a certain distance 
with a certain amount of illumination.

4) at Ta = 25 °C
5) For indicating an error, the output pulses with 1 Hz/5 Hz and different pulse ratios depending on the error type, see Table 7-4, Page 21.

Special devices LMS211/221-S19/-S20:  indication of front window contamination (warning/error) additionally via OUT C switching output by statical signal

Table 12-1: Technical specifications of LMS200/LMS211/LMS221/LMS291



Appendix B

Parameters used for 3D
reconstruction of a corridor

B.1 Filtering process
The parameters used for all filtering processes are shown in table B.1

B.2 Features calculation
The parameters used for features estimation are shown in table B.2

B.3 SAmple Consensus Initial Alignment
The parameters used for SACIA are shown in table B.3

B.3.1 Iterative Closest Points
The parameters used for ICP are shown in table B.4

B.3.2 Decision and Final Process
The parameters used for ICP are shown in table B.4
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B – Parameters used for 3D reconstruction of a corridor

Passthrough Filter Limits (m) [0; 6]
Filter Filed Name z

Down Sampling Size Voxel Grid (m) 0.02

Remove Outliers Number of points k 50
Standard Deviation Multiplier Threshold 1

Surface reconstruction Radius search 0.6

Table B.1. Parameters used for Filtering process

Down Sampling Size Voxel Grid (m) 0.06

Remove Outliers Number of points k 50
Standard Deviation Multiplier Threshold 1

Normal estimation Radius search 0.2
FPFH estimation Radius search 0.3

Table B.2. Parameters used for calculating Features

Maximum Correspondence Distance (m2) 0.3 · 0.3
Minimum Sample Distance (m) 0.4
Maximum number of iterations 1000
Transformation epsilon 1e−5

Table B.3. Parameters used for SACIA

Maximum Correspondence Distance (m2) 0.15 · 0.15
Maximum number of iterations 500
Transformation epsilon 1e−5

Table B.4. Parameters used for ICP

Decide Minimum acceptable Fitness Score 0.01
Final process Size Voxel Grid (m) 0.6

Table B.5. Parameters used for Decision and Final process
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