
Web interface for semi-supervised key-frame
shot type identification

by Elisabet Carcel Folch

May 21, 2011

Directed by Xavier Giró and Xavier Vives

Web interface for semi-supervised key-frame
shot type identification

by Elisabet Carcel Folch

May 21, 2011

Directed by Xavier Giró and Xavier Vives

Web interface for semi-supervised key-frame
shot type identification

by Elisabet Carcel Folch

May 21, 2011

Directed by Xavier Giró and Xavier VivesRich Internet Application for
Semi-Automatic Annotation of Semantic

Shots on Keyframes

by Elisabet Carcel Folch

Directed by Xavier Giró and Xavier Vives

Escola d’Enginyeria de Terrassa (EET) - Spring 2011





Contents

1. Introduction 10

2. Requirements 12

2.1. Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2. Semantic Shot detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Working plan 17

I. Semantic shot detection 18

4. State of the art 19

4.1. Pattern recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2. Shot size and semantic shot detectors . . . . . . . . . . . . . . . . . . . . . 21
4.3. Evaluation measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5. Design 28

5.1. Classifier architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2. Classes definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6. Development 31

6.1. Development environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2. Features extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3. Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4. Trainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5. Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.6. Dataset partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7. Evaluation 39

7.1. Developed measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2. Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3



Contents

II. User Interface 51

8. State of the art 52

8.1. iPhoto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.2. GAMERA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.3. Lookapp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.4. IM3I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.5. GAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9. Design 60

9.1. Functionalities and layout needs . . . . . . . . . . . . . . . . . . . . . . . . 60
9.2. Work flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

10. Development 65

10.1. Development environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.2. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.3. Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.4. Features development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

11. Evaluation 86

11.1. GUI results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

III. Conclusions 88

12. Compliance of the requirements 89

12.1. Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
12.2. Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

13. Further work 91

13.1. Evoluting to an intelligent indexing tool . . . . . . . . . . . . . . . . . . . 92

A. Classifier parameters analysis 95

A.1. Minimum score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.2. Minimum number of elements and maximum radius . . . . . . . . . . . . . 96

B. Contributions to Bitsearch blog 98

B.1. Automatic video shot type identification by Wang et al . . . . . . . . . . 98
B.2. Supervised, unsupervised and semi-supervised learning . . . . . . . . . . . 99
B.3. Measures out of a confusion matrix . . . . . . . . . . . . . . . . . . . . . . 101
B.4. Web interface for shot type detection . . . . . . . . . . . . . . . . . . . . . 103
B.5. Dataset generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4



List of Figures

1.1. Semantic shot concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1. Classification system requirements . . . . . . . . . . . . . . . . . . . . . . 12
2.2. Digition features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3. Digition on the browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4. Soccer shot types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5. Parliament shot types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1. Weekly work schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1. Pattern recognition system based on a binary classifier . . . . . . . . . . . 20
4.2. Training data in different types of learning . . . . . . . . . . . . . . . . . . 21
4.3. Classification error rate depending on the classifier used . . . . . . . . . . 22
4.4. Shot classes based on experimental observation . . . . . . . . . . . . . . . 23
4.5. Proposed scheme for semantic shot classification . . . . . . . . . . . . . . . 24

5.1. Training architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2. Detection architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1. Logos from the tools used during development . . . . . . . . . . . . . . . . 31
6.2. Screenshot showing semantic shot annotation with GAT . . . . . . . . . . 33
6.3. ColorLayout sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4. Trainset and testset partition . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5. One iteration of a 3-Fold Cross-Validation . . . . . . . . . . . . . . . . . . 38

7.1. Soccer match F1 measures for 0.7 minimum score . . . . . . . . . . . . . . 44
7.2. Precision, recall and F1 measure bar graph for each soccer match class . . 45
7.3. Soccer match detection errors . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.4. Catalan Parliament F1 measures for 0.9 minimum score . . . . . . . . . . 48
7.5. Precision, recall and F1 measure bar graph for each Catalan Parliament class 49
7.6. Catalan Parliament detection errors . . . . . . . . . . . . . . . . . . . . . 50

8.1. iPhoto labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.2. iPhoto validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5



List of Figures

8.3. Gamera interface screenshot for Greek characters annotation . . . . . . . . 54
8.4. Retrieval analysis of the query “Sagrada Familia” screenshot . . . . . . . . 55
8.5. “Sagrada Familia” retrieval analysis screenshot . . . . . . . . . . . . . . . . 56
8.6. IM3I semi-automatic-annotations screenshot . . . . . . . . . . . . . . . . . 57
8.7. Screenshot showing the positive instances of a semantic class . . . . . . . 59

9.1. First layout proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2. Second layout proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.3. Definitive layout semantic shot view . . . . . . . . . . . . . . . . . . . . . 63
9.4. Interface work flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 64

10.1. Eclpse URL generation for development mode . . . . . . . . . . . . . . . . 65
10.2. Google Chrome developer mode . . . . . . . . . . . . . . . . . . . . . . . . 66
10.3. Google Chrome developer plug-in . . . . . . . . . . . . . . . . . . . . . . . 67
10.4. Domain drop box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.5. AssetID text box and search button . . . . . . . . . . . . . . . . . . . . . 75
10.6. Keyframes preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
10.7. Error message: the requested asset is not ingested in the database . . . . . 76
10.8. Keyframe dragging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.9. Minimum score drop box . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.10.Sort button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.11.Unsorted close-up semantic shot . . . . . . . . . . . . . . . . . . . . . . . . 80
10.12.Sorted close-up semantic shot . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.13.Page validation button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.14.Validated page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.15.Validated semantic shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.16.Semantic shot keyframes panel . . . . . . . . . . . . . . . . . . . . . . . . 83
10.17.Quality keyframes annotation . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.18.Pagination menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.19.Progress bar showing different percentages . . . . . . . . . . . . . . . . . . 85
10.20.Tooltip showing the keyframe’s title and score . . . . . . . . . . . . . . . . 85

11.1. GUI layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.1. 0.1 vs 0.8 minimum score on Socer matches classifier . . . . . . . . . . . . 95
A.2. 0.9 minimum score on Socer matches classifier . . . . . . . . . . . . . . . . 96
A.3. Maximum radius ribbons at 0.7 minimum score . . . . . . . . . . . . . . . 96

6



List of Tables

4.1. Perfect confusion matrix performance . . . . . . . . . . . . . . . . . . . . . 25
4.2. Confusion matrix example . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3. Confusion matrix for binary classifiers . . . . . . . . . . . . . . . . . . . . 26

5.1. Classes defined for the soccer match ontology . . . . . . . . . . . . . . . . 30
5.2. Classes defined for the Catalan Parliament ontology . . . . . . . . . . . . 30

6.1. Used Javadoc tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2. Labeled instances for the soccer match ontology . . . . . . . . . . . . . . . 35
6.3. Labeled instances for the Catalan Parliament ontology . . . . . . . . . . . 35

7.1. ConfusionMatrix methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2. Confusion matrix for multiclass classifiers . . . . . . . . . . . . . . . . . . 40
7.3. Best soccer match confusion matrix instances . . . . . . . . . . . . . . . . 45
7.4. Best Catalan Parliament confusion matrix . . . . . . . . . . . . . . . . . . 49

10.1. Keyframe class variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.2. KeyframeVectors class variables . . . . . . . . . . . . . . . . . . . . . . . . 74
10.3. KeyframeVectors Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.4. DragAndDrop class variables . . . . . . . . . . . . . . . . . . . . . . . . . 77
10.5. DragAndDrop Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7



Acknowledgements

I thank Professor Xavier Giró for his useful advice, paper corrections and opinions in our
numerous meetings.

I thank Xavier Vives, my advisor at the CCMA, and his team for supporting me during
this four months.

I also thank Manel for all the time he spent in this project and his friendly support.

8



Abstract

This thesis describes the graphical user interface developed for semi-automatic keyframe-
based semantic shot annotation and the semantic shot classifiers built. The graphical
user interface aims to optimize the current indexation process by substituting manual
annotation for automatic annotation and validation.

The system is based on supervised learning binary classifiers and web services. The
graphical user interface provides the necessary tools to fix and validate the automatic
detections and to learn from the user feedback to retrain the system and improve it.

Results of the classifiers evaluation, performed using cross-validation methods, show a
good performance in terms of precision and recall. The graphical user interface has been
described as complete and easy to use by a professional documentalist at a broadcast
company.
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1. Introduction

This is a cooperation project between the Technical University of Catalonia (UPC) and the
Catalan Broadcasting Corporation (CCMA). The CCMA1 offers a public broadcasting
service promoting the Catalan language and culture. The corporation is organized in
several audiovisual companies: Televisió de Catalunya (TVC), Catalunya Ràdio, CCRTV
Interactiva, CCRTV ASI and Activa Multimèdia Digital.

Companies related to audiovisual production have to deal with an incredible amount
of incoming data which has to be properly indexed into their repositories for retrieval
purposes. Nowadays the CCMA’s digital archive has stored up to 135.000 hours of video
with annual growth of about 25.000 hours. From these 135.000 stored hours only about 75
are daily retrieved for several purposes such as reusing fragments for summaries, content
selling or dubbing. As daily retrieved information involves only 0.06% of the total data,
narrowing down the search of video content by getting specific results is still a demanding
issue to suit the Documentation Department needs.

The Image Processing Group at the UPC has already worked with the company providing
prototype tools to be integrated into the company’s own content management system, the
Digition, in order to easier the retrieve process and to extend it to multimodal searches[1,
2, 3].

In like manner, this bachelor thesis is aimed at creating a web interface for keyframe-based
semantic shot annotation. A semantic shot provides information about the camera shot
size in terms of field of view (long shot, medium shot, clouse-up...) plus a subject in the
scene, as for example a player, the court or the audience in a soccer match. Image 1.1
shows a visual representation of the semantic shot concept.

1http://www.ccma.cat
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Semantic Shot

Player
+

Close Up 

Box
+

Close Up 

Semantic ConceptShot Size

Figure 1.1.: Semantic shot concept

Nowadays, semantic shot information is manually annotated by documentalists as a sto-
ryboard to explain what is going on in a video sequence. The new tool will reduce the
time taken to generate semantic shot metadata by substituting manual annotation for
automatic annotation and validation. This metadata will also provide further accuracy
in video retrieval when using it along with other semantic concepts in the textual search.

This work extends a research line developed at the Image Processing Group at the UPC,
which started with the implementation of C and C++ engines for feature extraction[15,
12] used for a semantic shot detector based on k-NN classifier[17] and in graphical anno-
tation tool for classifier evaluation[13].
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2. Requirements

The CCMA demands a semantic shot detector to automatically generate new labels for
the metadata. The results have to be supervised by a documentalist, validating the
detections or correcting them if necessary. Moreover, the system has to learn from the
user feedback allowing to train the system and improve it. To do so, a graphical user
interface is needed.

Figure 2.1.: Classification system requirements

2.1. Graphical User Interface

For a given domain and an asset (group of keyframes of that domain) the interface will
have to show the automatic shot type identification and provide the necessary tools for
validating the automatic detections or correcting them if necessary.

When defining the specific needs for the GUI there were several conditions that the
project had to accomplish in order to ease the integration with the existent software in
the company: the DigitionSuite.
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2.1. Graphical User Interface

2.1.1. DigitionSuite

The DigitionSuite[4] is the digital archiving and asset management system developed by
Activa31, which is one of the CCMA’s companies.

Digital Archiving and Asset Management System
DigitionSuite_Archive

DigitionSuite is Activa3®’s digital archiving and asset management system specially
designed for Audiovisual Archive Centres, such as Film Libraries, Audiovisual
Documentation Centres, Libraries, etc.

The system is based on standard open hardware and software.Its high-degree of
scalability makes it suitable either for large audiovisual production centres or smaller
ones. It is a highly-intuitive user-friendly system, whose functions are readily accessible
through a web browser, making it easy to work with.

DigitionSuite provides a complete solution because it allows Audiovisual Archive
Centres to digitalize, archive and range their documentation basis, and thus making
them available to the public.

www.activa3.net

activa3@activa3.net

Main office: Fructuós Gelabert, 6-8 3ª P.

08970 Sant Joan Despí · Barcelona

Tel:  +34 935 672 500

Fax: +34 935 672 520

CCRTV Serveis Generals, S.A.

Madrid: Gral. Martínez Campos, 21 2º B

28010 Madrid

Tel: +34 915 942 540

Fax: +34 915 940 017

Rates will be subject to budgeting

Videotapes, telecine, others... VIDEO INGEST
Ingest Management

Keyframes automatic creation

Low-Resolution (Format MPEG-1/MPEG-4)

High-Resolution (Format DV25)

ASSET MANAGEMENT ARCHIVE

PLAY - OUT

Actives Management

Documentation, indexing and cataloguing

VIDEO INGEST

DigitionSuite is able to ingest contents

from different sources: videotapes, links,

telecine, etc.

The content ingest is performed simulta-

neously in two resolutions:

· low-resolution copy (MPEG-1 format 

at 1.2Mb/s), which allows viewing of 

either all or part of the content from 

any point in a computer network.

· broadcast resolution ingest (DVCPro,

MPEG-2, DV, DVCam), which ensures

excellent quality for professional editing

and broadcast.

This system also catalogues every shot

change in real time using keyframe. This

makes it fast and easy to track down

content, thus saving both time and money.

ASSET MANAGEMENT

DigitionSuite includes tools to catalogue,

index-link, search, automatically copy,

delete and store assets so that users

can quickly find, consult and view stored

content either simultaneously or indivi-

dually.

Content search, location and retrieval

can also be performed through a story-

board created during the ingest process

and based on each shot change.

ARCHIVE

Video content is stored in high-resolution

broadcast quality on

· HD Raids, with different kinds of capaci-

ties depending on necessities, or

· Robotic tape library, for huge store ne-

cessities

The system keeps a low-resolution copy

of the video files on-line, allowing users

to quickly retrieve and review the clips

they want when searching for contents

in the archive.

Once users have made their selection,

the high-resolution version is retrieved

automatically. DigitionSuite also allows

users to retrieve partial contents, cho-

osing just selected sequences. This

approach optimizes the archive’s perfor-

mance and efficiency.

PLAY-OUT

DigitionSuite contains several optional

video content playout devices for either

recording on to tape or for its diffu-

sion/projection.

Figure 2.2.: Digition features

DigitionSuite is able to ingest contents from different sources: videotapes, links, etc. The
content ingest is performed simultaneously in low-resolution (MPEG-1 format at 1.2Mb/s)
and broadcast resolution (DVCPro, MPEG-2, DV, DVCam), which allows viewing of
either all or part of the content from any point in a computer network while ensuring
excellent quality for professional editing and broadcast.

This system also catalogues every shot change in real time using keyframes. This makes
it fast and easy to track down content and it is an essential feature for the developement
of this project, as it provides the images to work with.

DigitionSuite includes tools to catalogue, index-link, search, automatically copy, delete
and store assets so that users can quickly find, consult and view stored content either
simultaneously or individually. Content search, location and retrieval can also be per-
formed through a storyboard created during the ingest process and based on each shot
change.

2.1.2. Interface requirements

The story board section of the DigitionSuite is where the semi-automatic annotation will
be in the future. As the Digition has no semi-automatic annotation section, a new window
for annotation and training purposes has to be created and placed in the indexing section.

1http://www.activa3.net
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2. Requirements

The interface has to be flexible so the final user can adjust the sensibility threshold of
the system for validation tasks depending on the results. Other requirements are that it
has to be generic, as in the future they want to be able to train new models for detection
besides semantic shots.

The Digition is based on open software and its accessible through a web browser. To
make the GUI completely integrable into the Digition the programming language to be
used is Java Google Web Toolkit2 (GWT), a development toolkit for building complex
browser-based applications.

!"

!"#$%&'()*"+,-'$.%+/0)1,&/"2/(,%34)5667))))))))))))))))))))))))) #$

!"#$%&'()*"+,-'$.%+/0)1,&/"2/(,%34)5667))))))))))))))))))))))))) #%Figure 2.3.: Digition on the browser

2.2. Semantic Shot detection

One requirement of the semantic shot classification is that it has to be developed using
the binary classification tools that the Image Processing Group has developed.

2http://code.google.com/intl/es-ES/webtoolkit/
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2.2. Semantic Shot detection

The system has to be able to distinguish between different semantic shots. This has to be
done depending on the video topic, as the basics of the visual language and the subjects
of interest may differ from one domain to another.

All audiovisual content at the CCMA is organized in assets. An asset includes a video
sequence, keyframes with its specific time code, general information such as title or de-
scription of the content and some annotations about specific events in the sequence. The
domain information is assumed to be already indexed in the asset metadata. The Docu-
mentation Department at the CCMA has defined two different domains of interest: the
Catalan Parliament and soccer matches.

2.2.1. Soccer matches

In soccer matches most of the keyframes where the playground is shown are not of interest.
These general shots have to be differentiated from those which are of interest such as the
audience or the stadium overview. Other semantic shots to detect are close-ups showing
a specific player or people in the audience or the box.

These are the listed semantic shots for the soccer match domain: player medium shot,
player close up, stadium overview, audience, banner and box. Figure 2.4 shows two
keyframe examples for each semantic shot.

Player Medium Shot Player Close-Up Stadium Overview

Audience Banner Box

Figure 2.4.: Soccer shot types
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2. Requirements

2.2.2. Catalan Parliament

The parliament is a controlled environment where camera location and shot sizes remain
the same. This makes it easy to extract event information out of the shot size used in
each keyframe.

The subjects of interest in the Parliament are the chamber, the bureau, the parlamien-
tarians and the president of the Parliament. The semantic shots to be detected in the
Parliament domain are: president medium close up, medium close up, medium shot, gen-
eral Chamber shot and general Bureau shot. Figure 2.5 shows two keyframe examples for
each semantic shot.

President Close-Up Close-Up Medium Shot

General Chamber Shot General Bureau Shot

Figure 2.5.: Parliament shot types
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3. Working plan

FebruaryFebruaryFebruaryFebruary MarchMarchMarchMarch AprilAprilAprilApril May May May May JuneJuneJuneJune

Tasks

UPC

Classification state of the art

Environment familiarization

Hand-label annotation

Experiment development

Director meeting

CCMA

Labeling interfaces state of the art

Environment familiarization

Communications configuration

GWT learning demos

Inicial proposals

Selected design development

Design refinement

Client meeting

Demo recording

Thesis

Latex familiarization

Preamble configuration

Thesis redaction

1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Figure 3.1.: Weekly work schedule
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Part I.

Semantic shot detection

18



4. State of the art

The study of automatic systems for audiovisual data based on its content has been a
growing demand these last years. These systems are based on pattern recognition tech-
niques that will be introduced in this chapter for the correct understanding of the actual
system. The main metrics used to evaluate classifiers performance are also discussed.

4.1. Pattern recognition

Pattern recognition consists on automaticaly assigning a semantic label or class to an
input instance given its features. This process can be divided into data acquisition,
feature extraction and classification of the data based on features.

For pattern recognition of video images data acquisition consists on generating keyframes
out of the video. The keyframe generation can be done periodically by the timestamp,
when there is a change in the scene or when an specific event occurs, depending on the
needs and possibilities.

Several features can be extracted from the keyframes. These features are called visual
descriptors and can be divided in two main groups: general information descriptors (color,
texture, shape, motion) which are low level descriptor and specific domain information
descriptors (face detection or recognition).

Once a feature is associated with a keyframe, the system can proceed to classify it.
A classification problem consists of two stages: training and detection. For training
a classifier, instances of a semantic concept are manually annotated so their vectors of
features can be processed to generate a model for the detector. The detector compares the
model with the unlabelled instances and outputs a probability score for every modelled
class.
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Figure 4.1 shows a basic scheme of a binary classifier where parliament keyframes have
been labeled as positive and negative instances and which features have been extracted
in order to train the classifier. The model generated by the trainer is then used to
compute the score of unlabeled data features. This example adds a decision stage, where
a threshold determines the minimum score needed at detection.

Trainer

Detection

=
????

0.13

0.98

>threshold

Decision

Yes

No

?

?

?

?

Features extraction

Features 
extraction

Unlabeled 
data

Labeled data

Figure 4.1.: Pattern recognition system based on a binary classifier

4.1.1. Supervised, unsupervised and semi-supervised learning

Pattern recognition can use different machine learning techniques. The main machine
learning categories are: supervised learning, unsupervised learning and semi-supervised
learning. The main difference between them is whether the training data has been hand-
labeled or not.

Supervised learning assumes that a set of training data has been provided, consisting of
a collection of instances that have been manually labeled with the expected values.

On the other hand, unsupervised learning attempts to automatically find similar patterns
in unlabeled data.
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4.2. Shot size and semantic shot detectors

A combination of both supervised and unsupervised learning results inssemi-supervised
learning which uses a combination of labeled and unlabeled data as training data. The
classifiers iteratively update the models by progressively annotating the unlabeled data
with the already labeled data.

Figure 4.2 shows a diagram explaining the procedence of training data depending on the
learning type.

Figure 4.2.: Training data in different types of learning

4.2. Shot size and semantic shot detectors

Previous work has adressed shot size and semantic shot classification. This chapter pro-
vides an overview of the techniques developed for video analysis based on multiclass
classification.
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4.2.1. An Efficient Automatic Video Shot Size Annotation Scheme by Wang et al

This work describes a shot-type recognition system based on three possible categories:
Close-up, Medium shot and Long shot[8].

Two feature vectors are created, one corresponding to global features such as color, edge
and texture and the other one to local features involving regions and its features. Semi-
supervised learning is used in order to obtain valid data to train the system.

Each vector of features is sent to a different classifier (global and local) to decide which
shot size suits best the image among the three existent classes. A combination of both
classifiers’ results is used in order to improve its efficiency. Cost-sensitive decisions for
misclassifications are calculated to provide a better cost minimization based classifier.

Tests are made using 20 hours of video extracted from home video camcorders and then
divided into 1000 shots according to timestamps. As in this stage some shots may include
frames of different shot sizes, each shot is divided into 4000 sub-shots, assuming now
identical shot size within a sub-shot.

All detection results are generated as the average of 10 runs, where a run is an iteration
done by using 20% of the samples randomly selected as training data and the other 80%
to test the system.

Figure 4.3 shows how global descriptors work better in shot type identification, though it
can be pursued a better performance using a combined low level and mid level decision.

Figure 4.3.: Classification error rate depending on the classifier used
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4.2. Shot size and semantic shot detectors

4.2.2. A Unified Framework for Semantic Shot Representation of Sports Video by
Duan Xu et al

This paper presents a frame work for semantic shot classication of sports video[9]. The
proposed scheme has predefined a number of semantic shot classes for tennis, soccer
and basketball with a relevant semantic meaning and which cover most of the sports
broadcasting video.

A detailed table of the defined classes and its characteristics such as semantic meaning
and percentage of ratio among the other classes is shown in figure 4.4.

!"#$$%&%!#'%()*+ ,'+ %)!"-./$+ &(-0+ #$1/!'$2+ 345+ $1#'%#"+ 0/"#'%()$6%1+
#7()8+ 1"#9%)8+ &%/".:+ 1"#9/0$:+ #).+ #-.%/)!/:+ 3;5+ $/7#)'%!+
0/"#'%()$6%1+ </'=//)+ 0/$(">/.+ !#7/0#+ 7(>/7/)'+ #).+
16('(80#16/0?$+ 1-01($/:+ 3@5+ $/7#)'%!+ 0/"#'%()$6%1+ </'=//)+ '6/+
#11/#0#)!/+ (&+ 7#0A/0$+ #).+ '6/+ 1('/)'%#"+ (!!-00/)!/$:+ 3B5+
!(71-'#<"/+ >%$-#"+ &/#'-0/$+ '(=#0.+ '6/+ #)#"9$%$+ #<(>/*+C%'6+ '6/+
6/"1+(&+ .(7#%)+7(./":+=/+ $-77#0%D/+ '6/+>%./(+ $6('$+ %)+ $/>/0#"+
7#E(0+(0+%)'/0/$'%)8+!"#$$/$+&(0+#+$1/!%&%!+$1(0'+3F//+G%8-0/+;+#).+
H#<"/+ 45*+ I!!(0.%)8+ '(+ '6($/+ 10/./&%)/.+ $6('+ !"#$$/$:+ =/+ '09+ '(+
"/#0)+ '6/+ 0-"/$+ &(0+ $6('+ !"#$$/$+ %./)'%&%!#'%()*+ ,)+ '6/+ "/#0)%)8+
16#$/:+=/+ 0/$(0'+ '(+ '6/+ !(7<%)#'%()+(&+ /J1/0%7/)'#"+(<$/0>#'%()+
#).+ #+ $'#'%$'%!#"+ #110(#!6*+ ,'?$+ =(0'69+ (&+ )('/+ '6#'+ '6/+ "/#0)%)8+
10(!/.-0/+#).+'6/+&(""(=%)8+7%.."/K"/>/"+&/#'-0/$+&-$%()+#0/+<('6+
/J/!-'/.+ #'+ '6/+ $6('+ "/>/"+ %)$'/#.+ (&+ A/9+ &0#7/+ "/>/"*+ H6#'+ %$:+
'60(-86+"/#0)%)8:+=/+=#)'+ '(+!#1'-0/+'6/+.9)#7%!+!6#0#!'/0%$'%!$+
3/*8*+ 1/0$%$'/)'+ !#7/0#+ 1#))%)85+ #).+ .%$'%)8-%$6/.+ $'%""+
!6#0#!'/0%$'%!$+ 3/*8*+ #+ "#08/+ $A%)K'()/.+ 0/8%()+ &0(7+ !("(0K.0%>/)+
$/87/)'#'%()5+&(0+%./)'%&9%)8+$6('+!"#$$*+++

+
+
+ L%0.+

M%/=+
N(-0'+
M%/=+

+N"($/K-1++O"#9/0+
P/.%-7K
>%/=+

I-.%/)!/+Q/1"#9+

Q/1"#9+G(""(=%)8+R(#"++
M%/=+

P/.%-7++
F'%""+

N"($/K-1+N(0)/0++
S%!A+

G%/".+
+M%/=+

I-.%/)!/+

F'%""++
N(-0'+
+M%/=+

N"($/K-1+ G#$'++
L0/#A+

O/)#"'9+ L%0.K+
M%/=+

P/.%-7+
M%/=+

I-.%/)!/Q/1"#9+

G%8-0/+;2++O0/./&%)/.+F6('+N"#$$/$+&(0+H/))%$:+F(!!/0:+#).+
L#$A/'<#""+>%./($+

+
+
+
+
H91/+

+
N"#$$+

+
Q#'%(+
3T5+

+
P#E(0+N"#$$++
3H%!A+L/$%./$5+

+
O('/)'%#"+F/7#)'%!+
U%)A#8/+

N"($/K-1+ @V*W+ + L0/#A:+F/0>/+
N(-0'+M%/=+ ;X*Y+ + O"#9+
O"#9/0+P/.%-7KM%/=+ 4Z*Y+ + L0/#A+
I-.%/)!/+ X*;+ + I!'%>/+Q/#!'%()+
L%0.KM%/=+ 4*[+ + L/8%)+#+)/=+8#7/+
Q/1"#9++ B*@+ + \J!%'%)8+7(7/)'+

+
+
H/))%$+

])./&%)/.+ 4*B+ + +
N"($/K-1+ ;Z*[+ + L0/#A:+H60(=K%)+
G%/".+M%/=+ @@*Z+ + O"#9+
G(""(=%)8+ ;;*4+ + O"#9+
O"#9/0+P/.%-7+F'%""+ @*[+ + G0//+S%!A:+O/)#"'9+S%!A+
I-.%/)!/+ [*V+ + I!'%>/+Q/#!'%()+
N(0)/0+S%!A++ [*V+ + +
R(#"+M%/=++ B*Y+ + ^&&/)$/+
Q/1"#9++ B*4+ + \J!%'%)8+7(7/)':+G(-"+

+
+
+
F(!!/0+

])./&%)/.+ W*[+ + +
N"($/K-1+ B4*X+ + L0/#A:+O/)#"'9+
G#$'+L0/#A+ ;;*Z+ + O"#9+
N(-0'+M%/=+F'%""+ W*B+ + L/8%)+#+)/=+8#7/+
O"#9/0+P/.%-7+M%/=+ B*@+ + _%86"%86'+
O/)#"'9+ V*W+ + +
I-.%/)!/+ V*W+ + I!'%>/+Q/#!'%()+
L%0.KM%/=+ ;*;+ + L/8%)+(0+\).+#+8#7/+
Q/1"#9++ V*W+ + \J!%'%)8+P(7/)'+

+
+
+
L#$A/'<#""+

])./&%)/.+ 4*4+ + +

H#<"/+42+F6('+!"#$$/$+<#$/.+()+/J1/0%7/)'#"+(<$/0>#'%()+&(0+'/))%$:+$(!!/0:+#).+<#$A/'<#""

+

I$+ %""-$'0#'/.+ %)+ G%8-0/+ 4:+ '6%$+ &0#7/=(0A+ !()$%$'$+ (&+ &(-0+
6%/0#0!6%!#"+ "/>/"$2+ "(=K"/>/"+ &/#'-0/$+ /J'0#!'%():+ 7%.."/K"/>/"+
&/#'-0/$+ 10(.-!'%():+ &-$%()+ (&+ >#"%.+ 7%.."/K"/>/"+ &/#'-0/$:+
$/7#)'%!+ #))('#'%()*+ G%0$':+ =/+ ./0%>/+ "(=K"/>/"+ &/#'-0/$+ 3%*/*+
'/J'-0/:+7('%()+>/!'(0+&%/".5+.%0/!'"9+&0(7+!(710/$$/.+>%./(+.#'#+
#).+ &-""9+./!(710/$$+ ,K&0#7/$+ &(0+ &-0'6/0+ $/87/)'#'%()*+F/!().:+
=/+ /J1"(%'+ !#7/0#+ 7('%()+ #)#"9$%$:+ !("(0+ .0%>/)+ #).+ '/J'-0/+
.0%>/)+ $1#'%#"+ $/87/)'#'%()+ '(+ 10(.-!/+ #+ $/'+ (&+ 7%.."/K"/>/"+
&/#'-0/$+$-!6+#$+.(7%)#)'+(<E/!'+7('%():+!#7/0#+7('%()+1#''/0)$:+
#).+ 6(7(8/)/(-$+ 0/8%()$*+ H6%0.:+ =/+ #)#"9D/+ #).+ 0/(08#)%D/+
!(""/!'/.+ 7%.."/K"/>/"+ &/#'-0/$+ =%'6%)+ /#!6+ $6(':+ '6-$+ =/+ 7#1+
7%.."/K"/>/"+&/#'-0/$+'(+6%86K"/>/"+$/7#)'%!+>%./(+$6('+#''0%<-'/$*+
G%)#""9:+ =/+ !"#$$%&9+ /#!6+ $6('+ %)'(+ ()/+ (&+ '6/+ 10/./&%)/.+ $6('+
!#'/8(0%/$+#!!(0.%)8+'(+./!%$%()+0-"/$+3>#0%(-$+$-1/0>%$/.+1#''/0)+
!"#$$%&%!#'%()+#"8(0%'67$+!#)+</+-$/.5*++

,)+$-77#09:+'6/+10(1($/.+$9$'/7+=%""+./7()$'0#'/+'6#'+!(71#0/.+
'(+ !"-$'/0%)8+ #110(#!6/$:+ '6%$+ '(1K.(=)+ $/7#)'%!+ $6('+
!"#$$%&%!#'%()+ &0#7/=(0A+ =%""+ </+ >/09+ -$/&-"+ %)+ $/7#)'%!+ $1(0'$+
>%./(+#)#"9$%$*++

!"# $%$&'(#
H6/+10(1($/.+$/7#)'%!+ $1(0'$+>%./(+$6('+!"#$$%&%!#'%()+$9$'/7+%$+
./$%8)/.+ '(+ 10(>%./+ #+ &"/J%<"/+ #).+ $!#"#<"/+ $("-'%()+ =6%!6+
%)'/80#'/$+ &(-0+ 7#E(0+ !(71()/)'$2+ 345+ !(./!$+ =0%''/)+ &(0+ '6/+
PO\R+ !(710/$$/.+ .(7#%)+ %)&(07#'%()+ /J'0#!'%():+ 3;5+ /&&%!%/)'+
>%./(+ ./!(710/$$%()+ #).+ 0/)./0%)8+ '/!6)%`-/$:+ 3@5+
$9)!60()%D#'%()+ </'=//)+ '6/+ 7/.%#+ $#71"/+ 80#<</0+ #).+ '6/+
!(710/$$/.+ .(7#%)+ %)&(07#'%()+ $#71"/:+ #).+ 3B5+ #$9)!60()(-$+
&/#'-0/$+10(!/$$%)8+#).+!"#$$%&%!#'%()+#"8(0%'67$+%71"/7/)'#'%()*+
H(+ '6($/+ /).$:+ =/+ <-%".+ '6/+ $9$'/7+ -)./0+ '6/+ P%!0($(&'+
a%0/!'F6(=+ &0#7/=(0A*+ ,)+ '/07$+ (&+ $(&'=#0/+ #0!6%'/!'-0/:+ =/+
$-!!/$$&-""9+ -)%'/+ >%./(+ 10(!/$$%)8+ #"8(0%'67:+ >%$-#"%D#'%():+ #).+
&"/J%<"/+>%./(+$'0/#7%)8+=%'6+a%0/!'F6(=+'/!6)%`-/*++

)"# *+,*-.$/+,$#
C/+ ./7()$'0#'/.+ #+ $/7#)'%!+ $6('+ !"#$$%&%!#'%()+ $9$'/7+ &(0+ HM+
$1(0'$+ 10(80#7$*+ N(71#0/.+ '(+ '6/+ !"-$'/0%)8+ 7/'6(.$:+ '6%$+ '(1K
.(=)+ $6('+ !"#$$%&%!#'%()+ &0#7/=(0A+ !#)+ /&&/!'%>/"9+ 1/0&(07+
$/7#)'%!+>%./(+$6('+!"#$$%&%!#'%()+#).+#$$%$'+'6/+6%86K"/>/"+!()'/)'+
#)#"9$%$+#).+#))('#'%()+(&+ $'0-!'-0/.+>%./(*+ ,)+#..%'%():+=/+ '#A/+
#.>#)'#8/$+ (&+ a%0/!'F6(=+ '(+ 10(.-!/+ #+ &"/J%<"/+ #).+ $!#"#<"/+
$("-'%()+&(0+>%$-#"+()"%)/+>%./(+10(!/$$%)8+#).+#)#"9$%$*++

0"# 1*2,+3-'45'(',&#
H6/+#-'6(0$+'6#)A+a0*+a()88/+U%+#).+a0*,$6=#0+S*+F/'6%+&(0+'6/+
PO\R+a/>/"(1%)8+N"#$$/$+3PaN5+b@c*++

6"# 7'8'7',*'$#
b4c+N6()8KC#6+d8(:+H%)8KN6-/)+O()8:+ #).+_()8Ke%#)8+f6#)8*+
^)+ !"-$'/0%)8+ #).+ 0/'0%/>#"+ (&+ >%./(+ $6('$*+ ,)+ !"#$%& '()&
)*+,-./0-1:+1#8/$+W4KZ[:+;[[4*++
b;c+ e-08/)+I$$&#"8:+P#0!(+L/0'%)%:+ N#0"(+N("(7<(:+ #).+I"</0'(+
a/"+ L%7<(*+ F/7#)'%!+ #))('#'%()+ (&+ $1(0'$+ >%./($*+ 2333&
)*+,-./0-1:+>("-7/+X:+)(+;:+1#8/$+W;KZ[:+;[[;*+
b@c+a()88/+U%:+ #).+ ,$6=#0+S*+ F/'6%*+PaN2+I+ $(&'=#0/+ '(("+ &(0+
./>/"(1%)8+ PO\R+ #11"%!#'%()$*+ ,)+ !"#$%& 2333& 24,/"41,-#41+&
(#45/"/4$/& #4& )*+,-./0-1& (#.6*,-47& 140& 89:,/.::+ >("-7/+ 4+
1#8/$+BBWKBW[:+4XXX*++

420

Figure 4.4.: Shot classes based on experimental observation
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Note that each domain has an “Undefined” class, also known as clutter class (as these
kind of classes are refered in this project ). Having a clutter class means the classifier not
only has to idenfify instances belonging to the defined classes but also identify instances
that do not belong to any of the classes.

As in our approach, the proposed scheme makes use of domain knowledge (in this case the
specific sport among tennis, soccer or basketball) to perform the video shot classification.
For a given domain they construct middle level features (camera motion patterns, motion
entropy, shot pace, active regions etc) from low level features.

The relation between low-level and middle-level is defined by supervised learning meth-
ods. Once the middle-level shot attributes are defined, video shots are classified into the
predefined video shot classes using Bayesian classiers and support vector machines into
their defined semantic shots. The whole process is represented in figure 4.5.
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Figure 4.5.: Proposed scheme for semantic shot classification

The system has been build under the Microsoft DirectShow framework, using it for video
processing, visualization and flexible video streaming. In terms of performance, the sys-
tem achieved a 80~95% of precision.
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4.3. Evaluation measures

This section explains the most common measures to evaluate a classifier. One of them,
the confusion matrix, is aimed at evaluating multiclass classifiers while the other ones are
commonly used to evaluate binary classifiers.

4.3.1. Confusion matrix

A confusion matrix is used in supervised learning for comparing the outcome classification
of an item with the desired classification. Each row of the matrix represents the instances
that have been automatically predicted in a class, while each column represents the hand-
labeled instances in a class. In table 4.1 a perfect confusion matrix is shown in terms of
percentages, 100% of the predicted instances belong to the actual class.

Automatic

class1 class2 class3

class1 100% 0% 0%

Manual class2 0% 100% 0%

class3 0% 0% 100%

Table 4.1.: Perfect confusion matrix performance

This matrix is useful for observing which classes have miss-identified items as other classes.
A number different to ’0’ out of the confusion matrix diagonal would be a mistake. In
table 4.2 only twelve instances out of fifteen are labeled as class1, while the other three
are labeled incorrectly as class2. It has also mistaken one of the fourteen instances from
class2 to belong to class1. Class3 works fine with 0 mistaken instances.

Automatic

class1 class2 class3

class1 12 1 0

Manual class2 3 13 0

class3 0 0 20

Table 4.2.: Confusion matrix example
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4.3.2. Precision and Recall

Precision or specificity is a measure of the ability of a system to present only relevant
instances. It measures the exactness or fidelity of the system.

Precision =
amount of correct instances detected

total amount of instances detected
(4.1)

Recall or sensitivity is a measure of the ability of a system to present all relevant instances,
so it is used for evaluating the completeness of results.

Recall =
amount of correct instances detected

amount of instances in the collection
(4.2)

In predictive analysis a two row and two column confusion table is commonly used for
evaluating binary classifiers. It reports the number of true negatives, false positives, false
negatives, and true positives. True negatives and true positives are properly classified
items, while false positives and false negatives occur when obtained classification do not
match correct classification. This is illustrated in table 4.3.

Automatic

positive negative
positive true positive false positive

Manual tp fp
negative false negative true negative

fn tn

Table 4.3.: Confusion matrix for binary classifiers

This table is used to perform precision and recall metrics. Now equations 4.1 and 4.2 can
be defined as:

Precision =
tp

tp+ fp
(4.3)

Recall =
tp

tp+ fn
(4.4)

It is difficult to compare different systems in terms of precision and recall, as both mea-
sures are independent. Moreover, when recall increases precision tends to decrease: as
more relevant instances are retrieved, the more non-relevant instances are retrieved.
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4.3.3. F1 and Fß measure

F-measure considers both precision and recall providing a single measurement for a system
avoiding having two independent measures.

F = 2· precision · recall
precision+ recall

(4.5)

In order to give different weights to precision and recall, the F-measure was derived so
that Fß measures the effectiveness of retrieval with respect to a user who attaches ß times
as much importance to recall as precision[8].

Fß = (1 + ß2) · precision · recall
(ß2 · precision) + recall

(4.6)
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5. Design

There are two kinds of classifiers: binary and multiclass classifiers. Binary classifiers
decide whether a feature is present or not while multiclass classifiers deal with more than
one class rather than having a concept or not.

As semantic shot classification needs multiclass detection and the Image Processing Group
provides binary classification tools, a multiclass classifier has been implemented combining
binary classifiers. The strategy used has been training a binary classifier for each semantic
shot and then returning the class which has obtained the highest score.

5.1. Classifier architecture

5.1.1. Training stage

The training stage involves labeling positive and negative instances of each semantic shot
and extract visual descriptors to train as many classifiers as semantic shots (but the
clutter class) so one model per class is generated. The whole process can be seen on
Figure 5.1.

Training

Detection

>threshold

Decission

Yes

NoMaximum 
Score

?

Score 1

Score 2

Score N

Domain 
model

Max Score Class

Clutter 
Class

Trainer 2

Trainer 1

Trainer N

Class 1 
model

Class 2 
model

Class 3 
model

Figure 5.1.: Training architecture
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5.1.2. Detection stage

At detection stage, for a given set of visual descriptors of an unlabeled instance, each
semantic shot classifier would output a score using the models generated at the training
stage. As each instance can only belong to one of the classes the maximum score among
all classifiers corresponds to the most probable semantic shot.

The detection stage also includes a decision stage, where the classifier decides whether
an instance belongs to the class which has obtained a higher score or to the clutter class
depending on a threshold. This threshold is essential as instances that are not of interest
or do not belong to any of the classes have to be classified as clutter.

The detection procedure can be seen on Figure 5.2

Figure 5.2.: Detection architecture

5.2. Classes definition

An ontology is a representation of a set of concepts (classes) within a domain. In order to
annotate positive and negative instances for semantic shot detections at soccer matches
and the parliament domains, two different ontologies need to be defined with their respec-
tive semantic shots. The ontologies defined for soccer matches and the Catalan Parliament
and their respective classes are listed in Table 5.1 and 5.2 respectively.
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Soccer match Ontology

Class 1 Player Medium Shot
Class 2 Player Close-Up
Class 3 Stadium Overview
Class 4 Audience
Class 5 Banner
Class 6 Box
Class 7 Clutter

Table 5.1.: Classes defined for the soccer match ontology

Catalan Parliament Ontology

Class 1 President Close-Up
Class 2 Close-Up
Class 3 Medium Shot
Class 4 General Chamber Shot
Class 5 General Bureau Shot
Class 6 Clutter

Table 5.2.: Classes defined for the Catalan Parliament ontology

As it can be seen, the classes defined for each domain are the ones stated at the require-
ments plus an additional one corresponding to all the other shot-types that the CCMA
does not want to detect as any of the classes.

The clutter class containing all instances that are not of interest was not included at first
because the idea of generating a model out of images with no visual similarities between
them was desestimated.

The problem of not including it in the ontology is that the lack of annotations on this
class does not allow the estimation of the classifier model performance given an instance
that does not belong to any of the classes. In like manner, some parameters like the
minimum score at the decission stage had to be set depending on the evaluation of this
class, so the clutter class is included in the ontology, so instances can be labeled as clutter
class to be used at detection but not by the trainer.
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This chapter focuses on the development of the classifier, including the development
environment and all the steps necessary to build the classifier.

6.1. Development environment

This section briefly describes the technologies and programming tools used for the classi-
fier development and evaluation.

Figure 6.1.: Logos from the tools used during development

6.1.1. Eclipse

Eclipse1 is a development environment open source platform programmed mainly in Java.
It allows developing projects in Java, C, C + +, Python PHP and many others, providing
the necessary connectors for each programming language. For the classifier development
Eclipse has been used as an IDE.

6.1.2. Subversion

Subversion2 is an open source software configuration management (SCM) tool. This
version control system is integrated in the UPSeek Eclipse project with the Subclipse

1http://www.eclipse.org/
2http://subversion.tigris.org/
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connector. Each member of the UPSeek has a branch to develop their code. All branchs
are associated to a unique trunk that contains the shared version of the project.

These are the Subversion commands that have been used through the development of the
classifier:

– svn commit filename: checks-in local file, files or directory into the repository.

– svn update: migrates all updates from the repository to the user local copy.

– svn-rebase: updates the developer branch with the last trunk modification.

– svn-deliver: updates the trunk with the developer branch modifications

6.1.3. Java

Java3 is a programming language developed by Sun Microsystems, which is now subsidiary
of Oracle Corporation. Java is a general-purpose, concurrent, class-based, object-oriented
language. One of the advantage of using Java is that its applications are compiled to a
class file (bytecode) that can run on any Java Virtual Machine (JVM) regardless of the
computer operating system.

6.1.4. Javadoc

Javadoc4 is a documentation generator from Sun Microsystems for generating API doc-
umentation in HTML format from Java source code. The Javadoc format has been used
for documenting Java classes and methods so other UPSeek users can use them. Some
IDEs such as Eclipse automatically generate Javadoc HTML. Table 6.1 shows the used
tags for documenting the developed methods.

Tag & Parameter Usage Applies to

@param name description Describes a method parameter Method

@return description Describes the return value Method

Table 6.1.: Used Javadoc tags
3http://www.java.com/
4http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
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6.1.5. MATLAB

MATLAB5 is a numerical computing environment developed by MathWorks. This pro-
gram allows matrix manipulations, plotting of functions and data, implementation of
algorithms, creation of user interfaces and interfacing with programs written in other
languages, including C, C++ and Java. It has been used to performe mesh plots of the
experiments results.

6.1.6. GAT(Graphic Annotation Tool)

GAT6[14] provides an interface to create ontologies and to label positive, negative and
neutral instances for each ontology class given the visual descriptors of the images. GAT
generates an annotation file in XML referencing the descriptors of each labeled instance
in a class.

Though GAT is capable of labeling the regions of an image or annotate video sequences,
for this project each instances corresponds to a different image.

Figure 6.2.: Screenshot showing semantic shot annotation with GAT

5http://www.mathworks.com/products/matlab/
6http://upseek.upc.edu/gat/
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6.2. Features extraction

The first step in a classification process is the feature extraction. For this project MPEG-
7 image descriptors have been used to provide standardized descriptions of visual aspects
of the keyframes[12].

These descriptors have been automaticaly extracted for each keyframe and then stored
in a XML file. Image features have to be common for the elements contained in the same
semantic class and different from the other semantic classes.

The descriptors chosen to approach shot-type detection have been the following ones:

– Dominant Color Descriptor (DCD): allows specification of a small number of dom-
inant color values as well as their distribution or variance.

– Color Structure Descriptor (CSD): identifies localized color distributions using a
small structuring window.

– Color Layout Descriptor (CLD): captures the spatial layout of the representative
colors on a 8x8 grid superimposed on the image. Each block has the value of the
most representative color within the block.

Figure 6.3.: ColorLayout sample

– Edge Histogram Descriptor (EHD): represents local edge distribution in an image.
The image is divided into 4x4 sub-images and further divided into smaller blocks.
Each block represents the value of the most representative edge, being the possible
values having vertical, horizontal, diagonal or non-directional edges. Then an his-
togram is compute given the five possible edge types, obtaining a single histogram
coefficient for each block.
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6.3. Annotation

The ontologies and labeling have been done using GAT. As in semantic shot detection a
keyframe can only belong to one semantic shot, each positive instance in a class has to
be labeled as a negative instance of the other classes. So only positive labeling has been
done with GAT, adding the negative instances further on with a program that has been
developed in Java for this project.

Table 6.2 and 6.3 list the number of hand-labeled instances for each semantic shot of
soccer match and Catalan Parliament.

Soccer matches positive instances

Player Medium Shot 116
Player Close-Up 87
Stadium Overview 4
Audience 19
Banner 4
Box 6
Clutter 278
Total number of instances 514

Table 6.2.: Labeled instances for the soccer match ontology

Catalan Parliament positive instances

President Close-Up 16
Close-Up 63
Medium Shot 68
General Chamber Shot 13
General Bureau Shot 23
Clutter 84
Total number of instances 267

Table 6.3.: Labeled instances for the Catalan Parliament ontology

GAT generates an MPEG-7 XML file for each ontology, containing its classes name. It
also creates a new XML annotation file showing the different classes of the ontology
referencing the positive and negative instances that had been labeled in that class. This
annotation file is used by the trainer to generate a classification model.
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6.4. Trainer

The program used for training the system has been the B_TRAINER7, which implements
a clustering algorithm[3, 16] for determining which annotated instances will be used for
training. It has two parameters to be set: the minimum number of elements within a
cluster and the maximum radius of it.

– Minimum number of elements: defines the minimum elements inside the max-
imum radius.

– Maximum radius: defines the maximum distance of the cluster. Elements out of
the radius boundaries are not used for the training process.

It cannot be known beforehand which parameters works best, consequently a optimum
parameter search has been done through experiments.

A function that calls B_TRAINER for a minimum number of elements, maximum radius
value, the ontology path and the annotation files has been developed for this project in
order to generate the model to be used by the detector.

6.5. Detector

The program used for detection has been the B_DETECTOR8, which for a given un-
labeled test dataset and the model generated by the trainer is able to detect the class
with the highest score. The score is a float number compressed between 0 and 1, where 0
means null similarities with the model and 1 is the highest probability of having detected
the semantic concept.

As the trainer the detector has an input parameter that has been searched through ex-
periments:

– Minimum Score: determines the minimum score to consider a detection as valid.
If the score of an instance is lower than the specefied minimum score, the detector
leaves it undetected.

Finding the optimum minimum score is essential to properly detect instances that do not
belong to any of the classes.

7Program developed by the Image Processing Group at the UPC
8Program developed by the Image Processing Group at the UPC
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6.6. Dataset partition

For testing a classifier, the annotated positive and negative instances of all classes have to
be split into a trainset and a testset so the trainer and the detector use different sample
data for the experiment.

In this case, as there were few labeled instances, 80% of the each class sample data has
been used to train its classifier while the 20% left has been used for detection.

– Trainset: Each positive instance is then added as a negative instance of the other
classes. Note that there are no clutter positive instances in the trainset as this class
is not trained.

– Testset: only positive instances are used for detection, including the clutter class.

Figure 6.4 show an example with 80% of each class instances used for training and 20% for
testing after deleting the eight clutter class positive instances belonging to the trainset.

Figure 6.4.: Trainset and testset partition

There are different methods to split data into the mentioned datasets, for this project
two different ways have been developed and tested: K-fold cross validation and repeated
random sub-sampling.

6.6.1. Modified K-fold cross-validation

The K-fold cross-validation algorithm generates K different data subsets, making sure all
data is used for both training and detection for each iteration.

As a modification of the K-fold cross-validation[13], where data ara partitioned into K
equal parts and the ratio between the sizes of the different subsets is not defined by the
user, the parameter K has been calculated automaticaly to build the testset and trainset
for the given trainset percentage, allowing more flexibility.
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This procedure is repeated K times and the predictions of the K dataset are averaged.
The whole procedure can be done several times with aleatory data order for each iteration.

Figure 6.5 shows an example of one iteration of the K-Fold cross-validation using 3 folds.

Figure 6.5.: One iteration of a 3-Fold Cross-Validation

6.6.2. Repeated random sub-sampling

Random sub-sampling consists on sorting the data in an aleatory order and then dividing
it into the dataset and trainset for the given percentatges. For each iteration a single
trainset and dataset is build. As in the K-fold cross-validation the algorithm has been
applied separately to each class to train each classifier.

This method does not ensure all instances are both used for training and detection, but
in contrast to a full cross-validation procedure, random subsampling has been shown to
be asymptotically consistent[9]. Predictions using this method give a realistic estimation
of the classifier performance with external validation data, while K-fold cross-validation
usually gives overly optimistic estimations[10].

Because of the diversity of the datasets that already offers random sub-sampling and its
realistic estimation, the repeated random sub-sampling algorithm has been chosen for the
experiment dataset builder.
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Some of the input parameters of the trainer and the detector cannot have to be set, so a
performance evaluation of the semantic shot classification models need to be performed
first.

This chapter includes the different measures that have been developed in order to evaluate
the classifier performance, the method used for evaluating the classifiers and the obtained
results.

7.1. Developed measures

This section covers the metrics that have been developed in order to use the already
explained measures for evaluating binary classifiers to also evaluate multiclass classifiers.

There have been developed seven functions in order to allow computing multiclass eval-
uations out of a confusion matrix. Table 7.1 lists the implemented methods, their input
and output parameters and a general description. The explanation of each measure and
how is it compued is described in the following sections.

Method Input Output Description

measurePrecision int classID double Computes the recall of a class

measureRecall int classID double Computes the precision of a class

measureFBeta int classID double Computes the FB measure

double beta of a class

measureMPrecision - double Computes the mean recall

measureMRecall - double Computes the mean precision

measureMFBeta double beta double Computes the mean FB measure

plus ConfusionMatrix c2 ConfusionMatrix Computes the summation

of two confusion matrices

Table 7.1.: ConfusionMatrix methods
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7.1.1. Precision and Recall out of a confusion matrix

The problem about evaluating a multiclass system in terms of precision and recall from
a confusion matrix is that it only provides information about true and false positives
instances, so precision can be measured but recall is unknown.

The solution adopted in order to get the true and false negatives has been rearranging the
confusion matrix with an additional row and column for placing a negative class. This
class would contain all the instances that do not belong to any of the classes and will
provide the necessary information about the classifier performance when a shot type is
not of interest.

Each “No class” cell, except for the “true negative” one, is both false positive of a class and
false negative of the “No class”. This duality makes possible computing both precision
and recall for all classes. When computing each class precision but the clutter class the
false positive is used, while when computing recall the false negative is required. This
can be seen on Table 7.2.

Automatic

class1 class2 class3 No class

class1 tp1 fp2 fp3 fp

Manual class2 fp1 tp2 fp3 fp

class3 fp1 fp2 tp3 fp

No class fp1 fp2 fp3

fn fn fn tn

Table 7.2.: Confusion matrix for multiclass classifiers

Now precision and recall can be measured for every class. Precission will be expressed as
the true positive instances divided by the summatory of the class column instances while
recall will be the true positive instances among all the instances contained in the class
row.

Precision(i) =
x(i, i)

N�

n=1

x(i, n)

(7.1)
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Recall(i) =
x(i, i)

N�

n=1

x(n, i)

(7.2)

Where:

– “i” corresponds to the current class among the total number of classes “N”.

– x(i, n) and x(n,i) corresponds to the value in that position of the confusion matrix.

The mean precision and mean recall can be computed by averaging the precision and
recall results for each class:

MeanPrecision =
1

I

I�

i=1

�
x(i,i)/

N�

n=1

x(i,n)

�
(7.3)

MeanRecall =
1

I

I�

i=1

�
x(i,i)/

N�

n=1

x(n,i)

�
(7.4)

7.1.2. F1 and Fß measure out of a confusion matrix

As precision and recall out of the confusion matrix has been resolved, this is the expression
of the modified F1 and FB mesure in terms of the precision and recall:

MF1(i) = 2 · precision(i) · recall(i)
precision(i) + recall(i)

(7.5)

MFß(i) = (1 + ß2) · precision(i) · recall(i)
(ß2 · precision(i)) + recall(i)

(7.6)

To obtain the mean F1 and mean Fß measure, the average of all classes has to be com-
puted:

meanMF1(i) =
1

I

I�

i=1

�
2 · precision(i) · recall(i)

precision(i) + recall(i)

�
(7.7)
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meanMFß(i) =
1

I

I�

i=1

�
(1 + ß2) · precision(i) · recall(i)

(ß2 · precision(i)) + recall(i)

�
(7.8)

Because of the unified measure of precision and recall and the possibility to compute
a unique value to describe the classifier’s performance, the F1 measure has been the
reference measure for evaluating the semantic shot classifier and obtaining the optimum
results.

7.2. Evaluation methodology

The mentioned measures have been implemented to evaluate the semantic shot classifiers.
The main problem has been finding the optimum values for the input parameters of each
classifier .

The three parameters combinations has been computed within the specified ranges:

– Minimum score: from 0 to 1 in steps of 0.1.

– Minimum number of elements: from 1 to 5 in steps of 1.

– Maximum radius: from 0.1 to 1 in steps of 0.1.

For all possible combinations the minimum number of elements and the maximum radius
are used as input parameters to generate the model to be used by the detector. When
detecting, the minimum score value is used at the decision stage.

For each combination three iterations have been done using the repeated random sub-
sampling method, so the classifier has been tested with three aleatory trainsets and test-
sets for each combination. This is the measure that has been computed for each iteration:

– Confusion matrix: the confusion matrix has to be computed as all measures
are based on this matrix analysis. On each iteration all detected instances are
accumulated to the corresponent semantic shot with the already detected instances.

After all iterations, the following measures have been calculated out of the obtained
confusion matrix:

– Mean F1 measure: this measure is the one used as a classifier performance com-
parator so it is calculated in order to determine the optimum combination.

42



7.3. Results

– F1 measure for each class: each class is analyzed independently so it provides a
performance estimation of each semantic shot.

– Precision and recall for each class: for each class precision and recall are also
calculated to provied more accurate results on each semantic shot performance.

All results are stored in a .log file. After determining which is the parameters combination
with the highest mean F1 measure, all measures related to the optimum combination are
stated at the end of the file.

For each combination a bar graph showing the F1 measure, precision and recall of each
semantic shot is also performed by modifying an already developed UPSeek Java class
that uses JFreeChart1, a free chart library, to automatically generate bar graphs and store
them in a .PNG file.

Once all the process is done, a Matlab mesh plot is done using a matrix that stores all
possible combinations of minimum number of elements and maximum radius within the
optimum minimum score.

7.3. Results

This section shows the performance of both classifiers with the optimum values of the
three classifier parameters: minimum score, minimum number of elements and maximum
distance.

An analysis on how these parameters affect the classifier performance can be consulted
on Annex A.

1http://www.jfree.org/jfreechart/
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7.3.1. Soccer matches optimum results

The maximum mean F1 measure is 0.8599863416562412 and corresponds to the fol-
lowing values of the three variables:

– Minimum score: 0.7

– Minimum number of elements: 1

– Maximum radius: 0.8

Figure 7.1 shows the mean F1 measure for all combinations computed of minimum ele-
ments and maximum distance with 0.7 minimum score (optimum).

Min Max radius

elements 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.385 0.616 0.691 0.703 0.822 0.734 0.771 0.860 0.829 0.714

2 0 0 0.838 0.546 0.858 0.827 0.828 0.816 0.832 0.659

3 0 0 0.853 0.784 0.764 0.785 0.770 0.818 0.833 0.727

4 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

Figure 7.1.: Soccer match F1 measures for 0.7 minimum score
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The confusion matrix of the optimum combination can be seen on Table 7.3. From this
confusion matrix the F1 measure, precision and recall for each class are extracted and
represented on Figure 7.2.

Automatic

Class1 Class2 Class3 Class4 Class5 Class6 Class7
Class1 652 11 0 0 0 0 33

Class2 4 482 0 0 0 0 36

Manual Class3 1 0 20 0 0 0 3

Class4 0 0 0 94 0 0 20

Class5 0 0 0 0 18 0 6

Class6 0 1 0 0 0 21 14

Class7 461 3 0 0 0 0 1204

Table 7.3.: Best soccer match confusion matrix instances

Class1 Class2 Class3 Class4 Class5 Class6 Class7

Precision 0.58 0.97 1.0 1.0 1.0 1.0 0.91
Recall 0.93 0.92 0.83 0.82 0.75 0.58 0.72

F1 measure 0.72 0.95 0.91 0.90 0.86 0.74 0.81

Figure 7.2.: Precision, recall and F1 measure bar graph for each soccer match class
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When analizing the confusion matrix it can be seen which classes have been detected as
other classes. Figure 7.3 shows all classes which presents some detection problem, the
class that causes that problem and the percentage error of the confusion.

Manual Automatic % Error

Player close-up Player medium shot 0.76%

Player medium shot Player close-up 1.58%

Stadium overview Player medium shot 4.16%

Box Player close-up 2.77%

Clutter Player medium shot 27.63%

Clutter Player close-up 0.17%

All classes Clutter 7.9%

Figure 7.3.: Soccer match detection errors
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The highest percentage error (27.63%) corresponds to the clutter class being confused
with the player medium shot. It can’t be told the reason why this happens in advanced
but it is probably related to the dominant color descriptor, as in many player medium
shot labeled instances grass represents a high percentage of the shot.

A confusion which is more understandable is the one that affects the box class and the
player close-up class. As it can be seen both show a close-up of a person and as no face
recognition is applied the classifier cannot tell which one is a player or a VIP person.

The player close-up with the player medium shot confusion and viceversa are also quite
understandable as they are really similar and sometimes it is hard to tell wether the shot
size is a close up or a medium shot.

The stadium overview confusion has not a simple explanation, the most probable thing
is that the trainer does not have enough positive instances to generate a proper model,
as the stadium overview keyframes were really limited in number.
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7.3.2. Catalan Parliament optimum results

The maximum mean F1 measure is 0.9720188262233014 and corresponds to the fol-
lowing values of the three variables:

– Minimum score: 0.9

– Minimum number of elements: 3

– Maximum radius: 0.8

Figure 7.4 shows the mean F1 measure for all combinations computed of minimum ele-
ments and maximum distance with 0.9 minimum score (optimum).

Min Max radius

elements 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.718 0.962 0.952 0.949 0.958 0.970 0.957 0.957 0.949 0.946

2 0.715 0.962 0.955 0.952 0.952 0.962 0.951 0.951 0.966 0.965

3 0.769 0.948 0.968 0.960 0.960 0.957 0.959 0.972 0.944 0.958

4 0.763 0.955 0.965 0.962 0.956 0.963 0.968 0.966 0.954 0.964

5 0.719 0.970 0.966 0.947 0.958 0.959 0.958 0.961 0.953 0.967

Figure 7.4.: Catalan Parliament F1 measures for 0.9 minimum score

48



7.3. Results

The confusion matrix of the optimum combination can be seen on Table 7.4. From this
confusion matrix the F1 measure, precision and recall for each class are extracted and
represented on Figure 7.5.

Automatic

Class1 Class2 Class3 Class4 Class5 Class6
Class1 93 0 0 0 0 3

Class2 0 376 0 0 0 2

Manual Class3 0 0 405 0 0 3

Class4 0 0 0 75 0 3

Class5 0 0 0 0 135 3

Class6 0 39 0 0 0 465

Table 7.4.: Best Catalan Parliament confusion matrix

Class1 Class2 Class3 Class4 Class5 Class6

Precision 1.0 0.91 1.0 1.0 1.0 0.97
Recall 0.97 0.99 0.98 0.96 0.98 0.92

F1 measure 0.98 0.95 0.99 0.98 0.99 0.94

Figure 7.5.: Precision, recall and F1 measure bar graph for each Catalan Parliament class

When analizing the confusion matrix it can be seen which classes have been detected as
other classes. Figure 7.3 shows all classes which presents some detection problem, the
class that causes that problem and the percentage error of the confusion.
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Manual Automatic % Error

Clutter Close-up 7.73%

All classes Clutter 1.27%

Figure 7.6.: Catalan Parliament detection errors

The only confusions on detection are related to the close-up class as it is the semantic shot
with more visual diversity as each close up shot is taken with different camera position
and thus slightly different background.
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Part II.

User Interface
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8. State of the art

It has also been studied the state of the art of graphical interfaces that deal with an-
notation in terms of usability, specially those which include multiclass annotation and
those providing tools to automatically suggest annotations so the user has only needs to
validate them.

8.1. iPhoto

iPhoto is a sotware for Mac that allows viewing, organizing and editing photos. It has
interesting tools such as face detection and recognition.

iPhoto automatically detects faces on photographs so that the user can add a name to
each face. Once a name is introduced in the system it appears as a hint name when
labeling faces. This can be seen on Figure 9.2.

Figure 8.1.: iPhoto labeling
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8.1. iPhoto

Once the user labels a person and click on his/her face in the “faces section”, iPhoto
suggests lookalikes. Suggested faces have to be validated by clicking once to approve
them (green label) or twice to reject them (red label).

Figure 9.3 shows an example of suggested faces validation where one of the suggested
face doesn’t match the person. On the top of the panel the hand-labeled faces are shown,
while on the bottom of the panel are placed the suggested ones.

Figure 8.2.: iPhoto validation

After validation the system learns from these new labeled instances and suggests other
photos with the new information about the person.
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8.2. GAMERA

This interface is part of a Python-based toolkit for structured character recognition de-
veloped by the Johns Hopkins University[18].

It is intended to be used for training symbol recognition systems using supervised train-
ing. The main feature that speeds up the annotation task is the possibility of using the
currently labeled data in the database to automatically classify the unlabeled data as in
semi-supervised learning.

It also provides tools for symbol table creation, display of symbols lists, highlight symbols
in context within a document and other features such as automatic selection of symbols for
sequential classification that give flexibility to the interface, allowing the user to determine
which is the most efficient way to work.

The interface not only provides an annotation tool but can also be used to modify the
existing databases to change the classification model.

Figure 8.3.: Gamera interface screenshot for Greek characters annotation
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8.3. Lookapp

Lookapp1[19] is a system for the interactive construction of web-based concept detec-
tors. It uses uses YouTube videos as training source and its detector is based on cloud
computing platforms.

The application uses the user query to find similar tagged videos at YouTube2 to use
them as training sources. It uses Google App Engine 3 for parallelized feature extraction
and the Google Prediction API4 to construct the concept detector.

Figure 8.4 shows the lookapp retrieval analysis screen.

Figure 8.4.: Retrieval analysis of the query “Sagrada Familia” screenshot
1http://lookapp.appspot.com
2http://www.youtube.com/
3http://code.google.com/intl/en/appengine/
4http://code.google.com/apis/predict/
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On the left of the retrieval analysis view there is mosaic that displays the retrieved
keyframes for the currrent query. It also provides tag and category suggestions at the
right side of the interface so the user can find the concept he or she is looking for.

The “relevance feedback” view allows labeling the retrieved sets as positive or negative
instances in order to train the classifier. This labeling is done by selecting the positive
keyframe sets among the negative ones. Figure 8.5 shows a screenshot of a relevance
feedback example.

Figure 8.5.: “Sagrada Familia” retrieval analysis screenshot
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8.4. IM3I

The IM3I[20] is an adaptable multimedia repository software that derives semantic de-
scriptions from media assets. It was developed in 2008-2010 under the FP7 programme5.

IM3I offers a set of web services and rich internet applications developed in Adobe Flex
that allows:

– Automatic audio and video annotation.

– Semantic semi-automatic annotation based on ontologies

– Semantic searches.

– Authoring and publishing.

Figure 8.6 shows the web-based tool provided to validate automatic annotations, which
can be removed by clicking on the negative icon of each tag. Other tags for which no
concept detector has been trained yet can be introduced by clicking the positive icon and
writing the new concept in the text box.

Figure 8.6.: IM3I semi-automatic-annotations screenshot
5The FP7(7th Framework Programme for Research and Technological Development) is a European

Comission programme that offers research funding
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8.5. GAT

GAT6 is a manual annotation tool of still images at region and graphic level developed
in Java by the Image Processing Group at the UPC[14].

GAT provides a interface to create new binary or multiclass ontologies. It also provides
a graphic annotation interface of keyframes to create instances of the semantic class to
generate the semantic model. Instances can be positive, negative or neutral:

– Positive (green): keyframes are labeled as positive if the semantic concept in the
ontology does appear in the image.

– Negative (red): keyframes are labeled as negative if the semantic concept does not
appear.

– Neutral (yellow): keyframes are labeled as neutral when the image is neither pos-
itive or negative, as the concept may appear but not in the expected way (for
example an image containing the concept fading into another that does not contain
it.

To ease the annotation process, beyond labeling individual keyframes, it provides tools
that allow selecting all keyframes either as positive, negative or neutral and multiple
selection from one keyframe position to another. Validation is done by a clicking the
right mouse button.

Beyond generating semantic models, GAT is able to perform binary classifiers evaluation
using cross-validation and shows the true/false positive/negatives instances, the precision
and the recall of the classifier.

Figure 8.7 shows a screenshot of a multiclass ontology after annotation where the current
class has 22 positive instances.

6http://upseek.upc.edu/gat/
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Figure 8.7.: Screenshot showing the positive instances of a semantic class
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9. Design

This chapter covers all the design information related to the GUI developed at the CCMA,
from the features conception to its work flow and the layout needs.

9.1. Functionalities and layout needs

The GUI can be divided in two basic functionalities: semi-automatic annotation and
correction/validation. These functionalities are chronological and define the interface
work flow:

1. Semi-automatic annotation: each keyframe semantic shot is detected by the
classifier. A graphic way of showing the detections is needed.

2. Fix errors and validate: if the proposed semantic shots do not match the actual
ones, the user will have to interact with the GUI and fix it. When errors are fixed
then validation for the rest of the keyframes is required. A set of tools need to be
defined for this task.

The next subsections describe the designs proposed for each one of the mentioned func-
tionalities and the solution chosen for the development stage.

9.1.1. Semi-automatic detections

Two diferent layout proposals for showing the keyframes detected semantic shot were
presented to the Documentation Department at the CCMA in order to keep developing
the interface with the structure that better suit their needs.

The first proposal (Figure 9.1) was based on showing all keyframes with the same semantic
shot in the same tab, having as many tabs as semantic shots. Direct consequences of
working with this design are:
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– The number of keyframes on each tab is fixed but the number of pages for each tab
is variable as it depends on the quantity of keyframes detected for that shot-type.

– Keyframes can be labeled as positive (detection is ok) or negative (detection is
wrong) .

– Besides labeling as negative, the information of the correct shot-type needs to be
provided.

– Only one shot-type can be seen a time.

Figure 9.1.: First layout proposal

The second proposal (Figure 9.2), thought to be more effective when correcting errors,
included in the same tab as many keyframe rows as semantic shots has the current domain.
This made possible having in the same page all semantic shots classified.

These are some of its advantages and disadvantages:

– The columns of each row are fixed for all shot types. As not all shot types have the
same keyframes detected and pagination is shared by all shot-types, some of the
rows can run out of keyframes.

– This layout makes it suitable for drag and drop functionalities to easily correct
a keyframe shot-type detection, so there is no need of labeling any keyframe as
negative, just drop it to the right place.

– Once all keyframes are in the right place the page can be entirely validated.
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9. Design

Figure 9.2.: Second layout proposal

As this layout offered the possibility of working with functionalities such as drag and
drop, the second proposal was chosen by the CCMA.

9.1.2. Fix errors and validate

The drag and drop has been chosen to be the primary tool for fixing wrong detections.
These are all the possible drag and drop uses that have been thought for the interface to
be helpful:

– Drag a keyframe from a panel and drop it to another

– Drag multiple keyframes from the same panel and drop them to another using the
control key

– Drag multiple keyframes from several panels and drop them to a another panel
using the control key

Two different methods have been implemented to validate detections and both of them
have been implemented to give the user more flexibility:

– Validate page: this choice would validate the entire visible page.

– Validate semantic shot: this choice would only validate a specific semantic shot

After validation the Documentation Department at the CCMA was interested in having
the possibility of seeing all validated keyframes organized by semantic shots and being
able to mark some of them as top keyframes of interest. To do so additional tabs were
designed to show all validated detections.
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Figure 9.3.: Definitive layout semantic shot view

Another tools have been design to help rearranging the keyframes as needed:

– Sort by score: it allows to see detections sorted by score from higher to lower in
each semantic shot panel, so the first pages would ideally contain less errors and
thus would be easier to correct and validate.

– Set minimum score: setting a minimum score would make all keyframes with the
detection score under it, be placed in the clutter class panel (No class). This tool
can be used after sorting by score so it can be seen the minimum score at which the
classifier is working properly.

This tools need to be organized and allow the user to interact with them by configuring
parameters or raising events.

9.2. Work flow

When running the application at first, only the menu is shown and partially disabled so
the user is forced to choose a domain and then leads him or her to enter an asset ID by
activating and focusing the asset text box.

After an asset is chosen it must be checked wether the asset has already been ingested
into the database or not. If that asset is avaible in the database a preview of its keyframes
will be shown while if it is not avaible an error message would alert that the asset ID
introduced is not a valid one. After the preview the user can proceed to annotate by
clicking the “Accept” button choose another asset by clicking the “Cancel” one.
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When accepting to annotate the keyframes on the preview, semi-automatic annotation is
done. At this point, the user can use all tools provided to help fixing detection errors in
the order they want and as many times as it is needed.

After detecting, validation options are activated so the user can save the changes that has
made and this information can be used to retrain the system and to save annotations.

The explained GUI work flow can be seen on Figure 9.4.

Figure 9.4.: Interface work flow diagram
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10.1. Development environment

This chapter covers the primary tools needed for developing the GUI and the languages
that have been used.

10.1.1. GWT 2.2.0 - Eclipse Helios

GWT SDK allows programming in Java an AJAX front-end and then cross-compiles it
into optimized JavaScript that automatically works across all major browsers.

Google provides a plugin for Eclipse that can be installed by using the following update
site: http://dl.google.com/eclipse/plugin/3.6.

GWT allows working in two different modes:

– Development mode: this mode creates a Web Application launch configuration
and launches it. The web application launch configuration starts a local web server
and GWT development mode server. GWT provides the URL for the development
mode server as it can be seen on Figure 10.1. Then the URL has to be pasted into a
browser with the GWT Developer Plugin already installed as it is shown in Figure
10.2.

Figure 10.1.: Eclpse URL generation for development mode
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Figure 10.2.: Google Chrome developer mode

– Production mode: to run the application as JavaScript and HTML the GWT
the application needs to be compiled. The GWT compiler generates a number of
JavaScript and HTML files from the MyWebApp Java source code in the MyWe-
bApp/war/ subdirectory. To see the final application the MyWebApp/war/MyWebApp.html
file has to be opened in a web browser, with no need of having any plug-ins.

the development mode has been used for the development of the application as it allows
making changes just with saving the Java code without compiling it. On the other hand,
production mode has been necessary to check the real speed of the application as some
feautres such as drag and drop have a heavy delay in development mode and are optimized
to work in production mode.

The main languages used in the Eclipse project apart from Java GWT have been the
following ones:

– JavaScript: it has been used to create the overlay types to deal with JSON mes-
sages. This part is explained in the next chapter.

– CSS: it has been used to define the layout and appearance of the application.

– XML: it has been used to configure and map the proxy explained in the next
chapter.

10.1.2. Google Chrome

For developing the GUI the Google Chrome browser has been chosen as it is the browser
that the company recomended me to use as it is also from Google. However, other
browsers have been tested too in order to ensure the application is working in all of them.

The Google Web Toolkit development plug-in is needed to run the application in develop-

ment mode. Connections can be configured through this plug-in to allow cross-machine
debugging, though it only connects to local machine by deafault.

66



10.2. Communications

Figure 10.3.: Google Chrome developer plug-in

10.2. Communications

10.2.1. HTTP

HTTP (Hypertext Transfer Protocol) is a networking protocol for distributed, collabora-
tive, hypermedia information systems. HTTP functions as a request-response protocol in
the client-server computing model. The client submits an HTTP request message to the
server. The server, which provides resources, returns a response message to the client. A
response contains completion status information about the request and may contain any
content requested by the client in its message body. In our case this content is a JSON
message.

HTTP has different request methods, indicating the desired action to be performed on
the identified resource. For this project two different methos have been used:

– GET: requests a representation of the specified resource, used for retrieval infor-
mation.

– POST: submits the data to be processed to the identified resource. The data is
included in the body of the request.

A typical URL has the following structure:

http://server:port/path/program?parameter1=value1&parameter2=value2

A query string is the part of a URL that contains data to be passed to web applications
(all parameters and their value).
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10.2.2. JSON

JSON ( JavaScript Object Notation) is a text-based open standard designed for human-
readable data interchange. It is derived from the JavaScript scripting language for repre-
senting simple data structures and associative arrays, called objects.

SON is built on two structures:

– A collection of name/value pairs which are position-independent.

– An ordered list of values.

10.2.3. PROXY

The UPC provides a set of web services to be used by this GWT application that works as
the client. An HTTP request from the client is submited to get access to the web service
resources. The response from the server is recieved in a JSON format. To avoid cross-
domain problems related to security that casues using JSON from another domain, the
CCMA has configured a proxy in the client to make the call in the local application and
then redirecting it to the UPC through the main company’s proxy, getting the response
in the same application without any trouble.

As the call has to be done from the application client the server and port of the call has
to be the server and port where the application is running. Both of them can be get
automatically using these GWT funcitons:

//Get automatically the host and port of the client
String hostClient = Window.Location.getHost();
String portClient = Window.Location.getPort();

After getting both host and port of the client, a redirection needs to be done using a
servlet class that extends HttpServlet class and that includes in the path the server, port
and path at the UPC.

The call then has the following structure:

http://hostClient:portClient/remoteServer/remotePath/program?parameter1=value1&parameter2=

value2

Where the remoteServer is the server that redirects the call at the CCMA and the re-
motePath is the path to the UPC where the webservices are hosted: upseek.upc.edu:

8080/upseek/
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10.2.4. Web services

Three different web services are used. First the user introduces an asset and a call is made
in order to get all keyframes for that asset. Then a single call is made for every keyframe
in order to obtain their class. After keyframes classes are validated or corrected the user
can call the third service in order to retrain the classifier. The next scheme shows each
web service structure.

Get data stream

For a given asset returns the title and url of the thumbnails of all keyframes belonging to
that class.

– Direct call: http://127.0.0:8888/upc.edu:8080/upseek/getdatastream?source=

1008

– Redirected call: http://127.0.0:8888/cache.local/upc.edu:8080/upseek/getdatastream?

source=1008

– HTTP method: GET

– Response:

{ "results":[

{ "keyframe":"00_14_27_06",

"URL":"http://147.83.50.77:8080/.../i3mam:25165/thumbnail"

},

{ "keyframe":"00_09_44_20",

"URL":"http://147.83.50.77:8080/.../i3mam:25167/thumbnail”

}

{

...

}

],

"success":"success"

}

Detection

For a given keyframe and ontology returns the class obtained in the detection.
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– Direct call: http://upseek.upc.edu:8080/upseek/detection?source=1319&title=

00_00_25_16&ontology=football

– Redirected call: http://127.0.0:8888/cache.local/upc.edu:8080/upseek/detection?

source=1319&title=00_00_25_16&ontology=football

– HTTP method: GET

– Response:

{ "success":true,

"errorMessage":null,

"ontologyStr":null,

"detections":[

{ "cluster":0,

"source":null,

"title":null,

"score":0.9886459708213806,

"mask":null,

"classId":2,

"annotationLabel":false

}

],

"partsMaxDistance":0.0,

"partsMinAmount":0

}

Train

For a given JSON object with ClassifierSO.java structure containing all validated keyframes
and information about them, the server is able to retrain the system. The object that
the application sends to the server has the following attributes:

public boolean success;
public String errorMessage;
private Vector<RetornUpseek> detections;
private String ontologyStr;
private double partsMaxDistance;
private int partsMinAmount;

– Direct call: http://upseek.upc.edu:8080/upseek/train
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– Redirected call: http://127.0.0:8888/cache.local/upc.edu:8080/upseek/upseek/

train

– HTTP method: POST

10.2.5. Communications in GWT

When calling a web service a RequestBuilder instance has to be created in order to specify
the HTTP method (GET or POST for this project) and the URL of the web service.

Here there is an example of a GET HTTP call with code omited for clarity.

final String url = "http://hostClient:portClient/remoteServer/
remotePath/program?parameter1=value1&parameter2=value2”;

RequestBuilder req = new RequestBuilder(RequestBuilder.GET, UrlWebService));
try{

Request request = req.sendRequest(null, new RequestCallback(){
@Override

public void onResponseReceived(Request request, Response response) {

if (200 == response.getStatusCode()) {

//Response OK
} else {

//Response error

{

{
@Override
public void onError(Request request, Throwable exception) {

//No response

{

});

} catch (RequestException e) {

e.printStackTrace();

{
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On response recieved it has to be checked that the HTTP Status is 200 as this would
mean the request has succeeded, while getting other status code would mean there has
been any problem.

When the response is not even recieved due a limit of time exceeded or a connexion
problem an exception is thrown.

Overlay types

The JSON string has to be transformed into a JavaScript object to work with JSON in
GWT . Once the information is converted to a JavaScript object, there is free access to
any of the message fields through the eval() function already implemented in JavaScript.

If information does not only need to be read but manipulated, GWT allows using “overlay
types”, a subclass of a JavaScriptObject, to transform these JavaScript objects into Java
objects. The following lines of code are extracted of the overlay type developed for the
detection web service response.

public class DetectionResponse extends JavaScriptObject {

protected DetectionResponse() {

}

//Getters

public final native String getOntologyStr()/*-{

return this.ontologyStr;

}-*/;

public final native JsArray<Entry> getEntries()/*-{

return this.detections;

}-*/;

//Setters

public final native void setOntologyStr(String ontologyStr)/*-{

this.ontologyStr = ontologyStr;

}-*/;

public final native void setEntries(JsArray<Entry> detections)/*-{

this.detections = detections;

}-*/;

}
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10.3. Data structure

10.3.1. Keyframe class

The Keyframe is the basic object of the data structure of this project. It includes three
essencial information layers:

– Information related to the Image, as the URL, the time code, the asset number
where it belongs, etc.

– Semantic shot information got at the detection stage: score, semantic class.

– Validation information like if it has been validated or annotated as a quality keyframe.

Table 10.1 lists all keyframe attributes. The methods implemented in the keyframe class
corresponds to the getter and setter for each attribute.

Variable Type Description

thumbnail Image Keyframe URL image

asset String AssetId

title String Keyframe time code

score double Detection score

classId int Detected class

isValidated boolean Tells if it has been validated

isAnnotated boolean Tells if it has been annotated as a quality keyframe

Table 10.1.: Keyframe class variables

10.3.2. KeyframeVectors class

The KeyframeVector class organizes all keyframes detections so all changes from the
proposed semantic shot to the right one can be tracked. Every time an action that affects
the keyframe detections is done by the user, the KeyframeVectors have to be reorganized.
This structure is similar to the visual one, where all keyframes are arranged in a semantic
shot row depending on its class. This makes it easier to apply all visual changes to the
data structure.
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KeyframeVectors attributes and defined methods can be seen on table 10.2 and 10.3.

Variable Type Description

numShots int Total number of semantic shots

keyframeVectorArray ArrayList<Vector<Keyframe>> Arraylist with a vector of keyframes

for each semantic shot

trainingVectors ArrayList<Vector<Keyframe>> Arraylist with a vector of validated

keyframes for each semantic shot

Table 10.2.: KeyframeVectors class variables

Method Input Parameters Type Output

Constructor numPlans int void

sortKeyframes - - void

Table 10.3.: KeyframeVectors Methods

The KeyframeVectors constructor only needs a number of semantic shots to be entered
and generates the keyframeVectorArray with as many Keyframe vectors as number of
semantic shots.

The .sortKeyframes() method sorts each vector of the keyframeVectorArray indepen-
dently.

10.4. Features development

This section explains all features development, mentioning the widgets that have been
used and its visual result. In some of the features interesting implementations that have
been important for the developement of the GUI are also explained in detail.

10.4.1. Domain selection

To allow the domain selection a dropBox widget has been created with a “select domain”
message on it. When the box is dropped the two avaible domains appear in the list
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and one of them has to be selected. Figure 10.4 shows the drop box while choosing the
Parliament domain.

Figure 10.4.: Domain drop box

10.4.2. Search by asset

To allow the user selecting the asset that want to annotate a text box widget has been
created so the assetID can be written through the keyboard. Figure 10.5 shows the asset
menu where the asset ID 1749 is being introduced.

A custom button has been created in order to introduce that asset number to the system
and call the get data stream web-service to see if that asset is avaible and if so get all its
keyframes. An alternative to do so has been provided by pressing the Intro key while in
the text box.

Figure 10.5.: AssetID text box and search button

10.4.3. Asset preview

The preview panel has been made by creating a pop-up panel with a scroll panel in it
and a grid showing all keyframes. It also includes the “Accept” and “Cancel” buttons in
order to annotate or choose another asset respectively.
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Figure 10.6.: Keyframes preview

10.4.4. Error message

When the requested asset is not ingested in the database the web service response indicates
so with an error message. The error message is shown in a pop-up panel like the one in
Figure 10.7.

Figure 10.7.: Error message: the requested asset is not ingested in the database

The message has to be closed with the provided “Close” button so the user can introduce
a different asset ID.
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10.4.5. Drag and drop

Two different areas and drag and drop controllers have been created to allow drag and
drop. There is a single boundary drag area that includes all the panels, as multiple drag
in differents panels is allowed.

For each boundary panel a drag controller has to be set so draggable widgets can be
picked up and moved around. However, as drop is only allowed at one of the horizontal
panels at a time, each drop target within the boundary panel is associated to a drop
controller, so there would be as many drop controllers as semantic classes (including the
clutter class).

Drag and drop attributes can be seen on Table 10.4.

Variable Type Description

boundaryPanel AbsolutePanel Draggable area

targetPanels Vector<HorizontalPanel> Vector including all Droppable areas

dragController PickupDragController Controller to pickup&move keyframes

across the boundary panel

dropControllers Vector<DropController> Controllers to drop keyframes into the

target panels areas

classIdDrag Vector<int> From where is/are the keyframe/s dragged

classIdDrop int Where is/are the keyframe/s dropped

draggedKeyframes Vector<Keyframe> Vector of multiple dragged keyframes

Table 10.4.: DragAndDrop class variables

Two methods have been developed to ease the use of drag and drop features: the con-
structor and a makeDraggable method.

The DragAndDrop constructor has been implemented to automatically generate a unique
dragController and a dropController for each panel. Then it registers all the panels to
that dragController, allowing dragging any draggable widget inside the boundaryPanel
to any of the panels.

Having one dragController for each page caused problems at dragging (visual drag and
drop was allowed but the handlers attached to the dragController were not), so Horizontal
panels are always the same, and keyframes have to be added and removed from them,
allowing to create a unique dragController for all pages as needed.
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Besides the setter and the getter methods for each DragAndDrop variable, it has been set
the makeDraggable method, which gets the keyframe thumbnail and makes it draggable
from the boundaryPanel and droppable to any of the panels.

Method Input Parameters Type Output

Constructor boundaryPanel AbsolutePanel void

targetPanels Vector<HorizontalPanel>

makeDraggable keyframe Keyframe void

Table 10.5.: DragAndDrop Methods

Two handlers have been set to rearrange the keyframes on the panel, keeping the same
number of keyframes for each panel.

On drag start event:

– For each panel where a drag action starts as many keyframes as have been dragged
are added in order to fill the blanks with the keyframes in the next page (if there is
next page).

– The drag and drop draggedKeyframes vector is filled with the selected keyframes.

– The drag and drop classIdDrag vector is also filled with the classID of the dragged-
Keyframes.

– The draggedKeyframes are erased from the panel with its classIdDrag.

On drag end event:

– When a drag action ends if the panel is full as many keyframes as have been dropped
have to be moved to the next page in order to let the dropped keyframes fit in the
panel.

– The drag and drop draggedKeyframes vector is filled with the selected keyframes.

– The drag and drop classIdDrop is refreshed with the classID of the panel where
keyframes have been dropped.

– The draggedKeyframes are added to the classIdDrop panel and the keyframe classID
attribute is changed for the classIdDrop number.
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10.4. Features development

– Set all draggedKeyframes score to 100% and apply the validation CSS style, as the
keyframes are now validated.

– Add draggedKeyframes to the corresponent classIdDrop vector position of the train-
ingVectors.

Figure 10.8.: Keyframe dragging

10.4.6. Set the minimum score

The interface allows the user to set a minimum score value from 0% to 100% in 10%
steps for all detections as it can be seen in Figure 10.9. If the score of all semantic shot
detectors is under the minimum score then the class assigned would be the clutter class.
The default value of the minimum score is the experimentally found optimum value.

Figure 10.9.: Minimum score drop box

In order to allow users changing the minimum score once detections have been done, the
minimum score at the detector has to be set to 0.0, as it is important to know which class
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has been detected with the lowest score (0.0) so the user can set it to all values, otherwise
it would be impossible to know the detected class for a new minimum score lower than
the value set on the detection step.

After each detection, a keyframe is assigned to the detected class or the clutter class
depending on the minimum score value, keeping the information of the class and score
obtained at detection to allow new minimum score values. When a user changes this
value, then keyframes are rearranged depending on the new minimum score value.

10.4.7. Sort by score

To sort by score only a button is needed as there are no parameters to be given to the
application.

Figure 10.10.: Sort button

The following figures show a fragment of close-up Parliament keyframes before and after
sorting them.

Figure 10.11.: Unsorted close-up semantic shot

Figure 10.12.: Sorted close-up semantic shot

Figure 10.11 does not show any close-up as the order of the keyframes has nothing to do
with their score. Figure 10.12 contains the close-up keyframes with the highest score and
detections are right.
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The process for sorting all keyframes by score is done separately for each semantic shot
vector. To be able to compare keyframes between them in terms of score and use the
method .sort() that the Vector class provides, a Keyframe comparator has been imple-
mented:

public class CompareKeyframes implements Comparator<Object>{

@Override
public int compare(Object k1, Object k2) {

int order;
if ( ((Keyframe)k1).getScore() < ((Keyframe)k2).getScore()) {

order = +1;

}
else if ( ((Keyframe)k1).getScore() > ((Keyframe)k2).getScore()) {

order = -1;

}
else {

order = 0;

}
return order;

}

}

10.4.8. Validation

Validation is made within the visible page, so the user can control all the keyframes that
will be validated. This option avoids forcing the user to validate all keyframes of an
asset, he or she can validate as many pages as desired. The user can validate all visible
keyframes within the page, or only validate the visible keyframes belonging to a specific
semantic shot.

Figure 10.13.: Page validation button
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Figure 10.14.: Validated page

After validation, every keyframe score is changed to 100% as it is considered a hand
labeled instance to be used by the trainer, so it is added to the corresponent semantic
shot training vector to update the semantic shot tabs. A green border is also applied to
the image by setting a CSS style.

Semantic shot validation within the same page is provided by pressing the validation
button inside each of the semantic shot panels. The following figure 10.16 shows an
example of shot validation used when other semantic shots need too much errors to be
fixed.

Figure 10.15.: Validated semantic shot

10.4.9. Tag as best semantic shot keyframes

The tab panels corresponding to the already validated keyframes show all the keyframes
contained in each semantic shot of the TrainingVector. A Scroller object is contained
inside the tab so all keyframes can be shown independently of their number.
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Figure 10.16.: Semantic shot keyframes panel

A handler event on each keyframe allows keyframe selection, changing the keyframe CSS
style by adding a red border in order to allow the user to see which keyframes have been
selected. The keyframe annotation attribute is also changed from false to true.

To deselect a keyframe the image has to be clicked again, then the red border style is
removed and keyframe annotation attribute is set back to false.

Figure 10.17.: Quality keyframes annotation

10.4.10. Dynamic pagination

One of the features the user required was a pagination menu. The selected page and the
total number of pages have to be stored to make it possible. The main problem about
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pagination programming on this interface is the constant fluctuation of the total number
of pages.

A method that computes the total number of pages has been developed and called when
an event susceptible to change the number of pages occurs. The following list explains
which events can change the total number of pages and why.

– On detection response: When a detection is received, the keyframe is added to
the vector which semantic shot is the same as the detected one. As it can be seen,
there is no way to estimate how many keyframes will belong to each semantic shot,
so pages have to be added in a dynamic way.

– On drag end event: When there is a drag and drop operation one or some of the
keyframes are removed from a semantic shot and added to another. This event can
also make increase or decrase the total number of pages.

– On setting a new minimum score: When selecting a new minimum score some
of the clutter keyframes will be added to the other semantic shots and vice versa.
After rearranging all semantic shots the total number of pages has to be computed
again.

– On hide validation event: When the “hide validated keyframes” option is selected
only the non-validated keyframes are shown, so pagination has to be modified again
as it would decrease when having enough validations. After hiding validation the
current page is set to the first page so the user can continue validating all non-
validated keyframes.

– On validation event: When validating keyframes, as the first position of each
semantic shot is set to be a validated keyframe on each page, semantic shots with
at least one validation (drag and drop included) will only show 10 keyframes whereas
semantic shots with no validations will show 11 keyframes per page.

Figure 10.18.: Pagination menu

10.4.11. Progress bar

The progress bar layout has been done with two HorizontalPanel objects, one inside the
other, dynamically changing the width of the inner panel and applying a CSS style in
order to show the progress.
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Figure 10.19.: Progress bar showing different percentages

To compute the progress percentage it has been set a counter on each detection response
and used the total number of keyframes within that asset.

10.4.12. Tooltips

The tooltips have been implemented using the deafult tooltip system of each navigator.
This can be done by adding a title to the thumbnail. The title for each keyframe includes:

– Keyframe timecode

– Keyframe detection score

Figure 10.20.: Tooltip showing the keyframe’s title and score

This feature keeps the interface simple by not adding too much visual information on the
panels and letting the user to consult it in an easy way whenever they want to with just
moving the mouse over a specific keyframe.
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11. Evaluation

This chapter covers the first GUI impressions and a screen shot showing the final result
of all developed features explained in the previous chapter.

11.1. GUI results

This Graphical User Interface has been designed and developed to provide a good user
experience based on:

– Simplicity

– Flexibility

– Efficiency

– Completeness

The interface works properly in all tested browsers, which include: Google Chrome,
Mozilla, Internet Explorer 8 and Safari.

Figure 11.2 shows the GUI appearence after choosing the parliament domain the asset
number 1749.
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Figure 11.1.: GUI layout
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Part III.

Conclusions
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12. Compliance of the requirements

This project has been developed in full compliance with the requirements stated by both
the university and the company. The next two sections explain the achievements and
contributions made in the classifier and the interface.

12.1. Classifier

At the UPC the development of a Soccer match and a Catalan Parliament classifier was
required. All listed semantic shots for each domain works fine and the performance of
the classifiers has exceeded expectations: 0.97 and 0.86 of FB measure in the Parliament
and soccer matches respectively.

The most remarkable contribution of this project has been providing a structure to work
with multiclass classifiers, specially ones with a clutter class:

– Since now all annotations had to be done independently for each class and there
was no way of labeling all positive instances of a class as negative instances of the
other classes.

– There was no way the multiclass classifier could be evaluated in terms of precision
and record, only the confusion matrix was provided. I have implemented new met-
rics to compute precision, recall, F1 and FB measure out of a confusion matrix for
each class and the whole classifier.

– Beyond evaluating the classifier performance for both domains Soccer and the Par-
liament as required, I have also provided the UPSeek department with a generic
tool for automatically find the optimum parameters for a given classifier. This is
very handful as optimum parameters can only be known through experiments.

– I have also developed a new dataset partition method, repeated random sub-sampling,
which has been used for the experiments.
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12.2. Graphical User Interface

The first requirement the CCMA demanded was developing an interface that could be
integrated into the Digition. The interface has been developed using the same version
of the Google Web Toolkit as the Digition: GWT 2.2.0. The whole interface has been
designed using strictly GWT panels and widgets, avoiding other GWT-based frameworks,
so it is 100% compatible with the Digition.

The GUI is easy to use but complete at the same time, providing all necessary information
the user may need as image tooltips a progress bar and a complete pagination menu. It
also has enough flexibility to allow working in different ways so it easily adapts to each
user and situation. The efficiency is also a strength of this GUI, as it provides real time
experience with drag and drop and provide other tools to help fastening work while giving
more accuracy.

The most innovative and difficult part of the interface has been the implementation of
draggable and droppable keyframes in an efficient way so the user has a real time drag and
drop expirience. This task had never been done before in the company and the project
team has shown interest on implementing it in a near future. The handlers related to a
drag and drop events have also been essential to keep the designed interface, as all the
panels had to keep the same columns of keyframes after dragging and dropping.

The tools provided to work with the detections as sorting by detection score, changing
the minimum score or validating either the entire page or just a specific semantic shot
offers different ways of working, so the user can choose the tools that better suits his or
her needs at each moment. The required level of flexibility has been provided.

The dynamism of the interface, allowing different panels and tabs depending on the
domain and the dynamic pagination depending on many features such as number of
detections on each panel, drag and drop events or other menu options as hiding validations
has been a must to suit the interface needs. This makes it suitable for any domain or
multiclass classification application, so the requirement of developing a generic interface
has also been accomplished.

The only problem is that the interface still cannot use the training web service as the
UPSeek team still doesn’t know how to parse the JSON message with their server API
in a proper way.
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At this point, the first priority for the company is having the training system working by
implementing the JSON parser at the UPSeek. Another priority is efficiency as the CCMA
wants to speed the overall process. The tool has to be faster to suit their needs and the
UPC will have to work on that. Another problem to solved are the errors that generate
the internal queries to the Fedora Commons database and that make some detections fail.

The system as it works now, only computes the optimum parameters when bulding the
first model. The automatic classifier’s parameters selection developed for evaluating the
classifier is interesting for further application as the optimum parameters depends on the
labeled instances used for training and, as they increase when retraining the system, op-
timum parameters might change too. So when retraining the classifier, the new optimum
parameters would have to be found before generating the new model.

The automatic evaluation of the classifier could also be used to determine wether the
classifier improves by adding new labeled instances (when comparing results with the
previous model performance) in order to avoid the unnecessary growth of the training
dataset, which increases the time spent on generating the new model and decreases storage
capacity.

Some further work has to be done in the Digition. As the responsible for the Docu-
mentation Department expressed, when showing the keyframes within an asset, it would
be helpful for them to include the possibility to visualize them rearranged in terms of
semantic shots if that asset has been validated. A new drop box would also need to be
added on the main searching page to let the user search by a specific semantic shot within
a textual search.

Finally, to match the way metadata is created by the Documentation Department at TV3,
it would be required a temporal analysis of the asset as for the story board each semantic
shot needs a start and an end time code. Independent keyframe based systems just
give excessive and duplicated information. Having temporal analysis would also provide
the possibility of detecting other semantic shots such as replay shots or others involving
movement or still objects.
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13. Further work

13.1. Evoluting to an intelligent indexing tool

I believe this system can have many applications to provide a complete intelligent indexing
tool. It would be interesting to use the semantic shot information to make decisions about
what to annotate. Here there are some examples of decisions that could be done depending
on the semantic shots defined for this project:

– When a banner is detected in the soccer domain, the Digition’s text detector could
extract the text on the banner and add it as metadata.

– When detecting a close up or a medium shot (independently of the domain) it could
be used a face detector, a tool the CCMA still does not use but is interested in, to
identify the person in that shot and to avoid using the detector with images that
are not of interest or where no faces or too much faces are shown.

– When detecting a medium shot at the parliament (which means a parlamentarian
is standing up giving a speech), beyond using the face detector, another interesting
tool to develop would be one that could transcribe voice to text.

Possibilities are endless. I hope they find the way to exploit all the possibilities the
developed tool can offer when using it along with other technologies.
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A. Classifier parameters analysis

This appendix makes an overall analysis of the effects that the minimum score, the max-
imum radius and the minimum number of elements has on the classifier performance, so
the optimum values for each parameter can be understood.

This analysis also highlights the repercussions that inappropiate parameter values have
on the F1 measure and thus the importance of using a methodology to determine the
optimum values.

A.1. Minimum score

When observing the effects on increasing the minimum score there are two positive effects:
the recall of the clutter class (class 7) and the precision of all classes increase too.

On the other hand, recall of classes which detections are scored under the minimum score
will decrease as those detections would be considered as class7. This can be seen on
classes 3, 5 and 6 on figure A.1.

Figure A.1.: 0.1 vs 0.8 minimum score on Socer matches classifier
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Also notice that the precision of a class only increases if there are detections with a higher
score than the minimum score, otherwise no detections would be assigned to that class
and the performance of the classifier will decrease. This can be seen on figure A.2 when
setting a 0.9 minimum score.

Figure A.2.: 0.9 minimum score on Socer matches classifier

A.2. Minimum number of elements and maximum radius

Figure A.3 shows the maximum radius versus the minimum number of elements in Soccer
Matches with 0.7 minimum score. It has one ribbon for each maximum radius computed
and shows how F1 measure changes depending on the minimum number of elements.

Figure A.3.: Maximum radius ribbons at 0.7 minimum score
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A.2. Minimum number of elements and maximum radius

It can be seen that the F1 measure tends to decrease when the minimum number of
elements increases. It can also be observed that ribbons corresponding to 0.1 and 0.2
maximum radius have a lower F1 measure than the other ones, as the shorter the distance,
less elements would be contained in it.

The optimum value depends on the images that have been labeled, their number and
their similarity. The more instances labeled and the more similar, the higher minimum
number of elements can be possible.
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B. Contributions to Bitsearch blog

This appendix collects all posts that I have been made in the Bitsearch blog about the
project. Bitsearch can be visited at http://bitsearch.blogspot.com/.

B.1. Automatic video shot type identification by Wang et al

My name is Eli Carcel and this will be my first contribution to this blog. As I am now
starting my bachelor thesis on keyframe-based shot identification I have been studying the
state of the art. I found a related paper called "Automatic Video Shot Size Annotation
Scheme by Wang et al (2006)" which I will briefly describe.

The aim of the project is recognizing an image shot type pattern, assuming there are three
possible categories: Close-up, Medium shot and Long shot. The project steps include:
feature extraction, training, classification and decision.

Process

The first step is feature extraction where two feature vectors are created, one correspond-
ing to low level features such as color, edge and texture and the other one to mid level
features involving regions and its features.

Semi-supervised learning is needed in order to obtain valid data to train the system. Co-
training can help boosting the training process by offering semi-supervised annotation.
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Each vector of features is sent to a different classifier (low level and mid level) to decide
which shot size suits best the image among the three existent classes. A combination of
both classifiers’ results is used in order to improve its efficency. Cost-sensitive decisions
for misclassifications are calculated to provide a better cost minimization based classifier.

Experimental results

Tests are done using 20 hours of video extracted from home video camcorders and then
divided into 1000 shots according to timestamps. As in this stage some shots may include
images with several shot sizes, each shot is divided into 4000 sub-shots, assuming now
identical shot size within a sub-shot.

All results are the average of 10 runs, where a run is an iteration done by using 20% of
the samples randomly selected as training data and the other 80% to test the system.

The paper shows how low level descriptors work better in shot type identification, though
it can be pursued a better performance using a combined low level and mid level decision.

B.2. Supervised, unsupervised and semi-supervised learning

In this post I will discuss the pros and cons of some machine learning procedures and
how would they suit shot type detection at the CCMA (Catalan Broadcasting Corpora-
tion). I will focus on three main categories: supervised, unsupervised and semi-supervised
learning.
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The difference between these types of learning is whether the training data has been
hand-labeled or not to generate the classifier’s output. Supervised learning assumes that
a set of training data has been provided. On the other hand, unsupervised learning has no
labeled data. A combination of both labeled and unlabeled data results in semi-supervised
learning.

What does that imply?

In supervised learning, a qualified person would properly label by hand the set of instances
to be used for training. This means professionals at the documentation department would
be required for this task. The more labeled instances the classifier gets the more precise
will be the output, so the amount of hand labeling needed to reach a desired quality
is certainly time-consuming. The advantage is that the system can be controlled better:
shot types can be defined and it can be selected which images are of interest. For example,
pictures with no people can be avoided by labeling them as “not relevant shot type” so
not relevant shot type pictures will not be shown on a search.

Unsupervised learning, having no labeled data, attempts to find out similar patterns in
the data to determine the output. This type of learning needs nobody for the training
process but this also means no interactivity: the system has no clue on which shot types
are of CCMA’s interest and will define different classes clustering similar data depending
on the visual content. This kind of learning wouldn’t suit the CCMA needs as different
shot types have to be defined depending on the context: a soccer close-up shot would
have a different name than a parliament close-up shot.

Finally, semi-supervised learning is actually a supervised method that avoids labeling a
large number of instances. This is done by using some of the labeled data to help the
classifier labeling the unlabeled data. Then, this automatic labeled data is also used by
the training process. Another supervised method that helps mining labeled data is called
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B.3. Measures out of a confusion matrix

active learning. Basically, it decides which data should be labeled to improve the classifier
performance with less data. These two options are really interesting, as they have the
benefits of both supervised and unsupervised learning: interactivity and taking advantage
of unlabeled data. With a few labeled instances and the great amount of unlabeled images
at our disposal this system could perform well for shot type detection.

B.3. Measures out of a confusion matrix

A confusion matrix is used in supervised learning for comparing the outcome classification
of an item with the desired classification. Each row of the matrix represents the instances
that have been automatically predicted in a class, while each column represents the hand-
labeled instances in a class. This matrix is useful for observing which classes have miss-
identified items as other classes.

Automatic

class1 class2 class3

class1 12 1 0

Manual class2 3 13 0

class3 0 0 20

Precision and recall:

Precision or specifity is a mesasure of the ability of a system to present only relevant
instances. It measures the exactness or fidelity of the system.

Recall or sensitivity is a mesasure of the ability of a system to present all relevant in-
stances, so it is used for evaluating the completeness of results.
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It is difficult to compare different systems in terms of precision and recall, as both mea-
sures are independent. Moreover, when recall increases precision tends to decrease: as
more relevant instances are retrieved, the more nonrelevant instances are retrieved.

F and Fß measure:

F-measure considers both precision and recall providing a single measurement for a system
avoiding having two independent measures.

In order to give different weights to precision and recall, the F-measure was derived so
that Fß measures the effectiveness of retrieval with respect to a user who attaches ß times
as much importance to recall as precision.

Fß measure of a confusion matrix:

For my bachelor thesis I have had to write a function capable to compute the Fß measure
for a given confusion matrix. This is the equation that has been derived from the explained
measures:

Where "i" represents the class and "N" is the total number of classes.

102



B.4. Web interface for shot type detection

B.4. Web interface for shot type detection

In this post I will explain the evolution of the web interface I have to develop for my
bachelor thesis, which persues semi-supervised key-frame shot type identification. This
interface will be used to re-train a shot type classifier (already trained with manual labeled
examples) for a given domain by validating or correcting its automatic detections and then
adding them to the trainer to generate a new model.

So for a given domain and an asset (group of keyframes of that domain) the interface will
have to show the automatic shot type identification and provide the necessary tools for
validating the automatic detections or correcting them if necessary.

After one month of work, two diferent layout proposals were presented to the Docu-
mentation Department at the CCMA in order to keep developing the interface with the
structure that better suit their needs, these are the following ones:

1st Proposal:

– For each domain we have different tabs for each shot type.

– Each tab contains all the detected keyframes for that shot type.
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– The number of keyframes on each tab is fixed, the variable thing is the number of
pages for each tab, which depend on the quantity of keyframes detected for that
shot-type.

– Keyframes have to be labeled as positive (detection is ok) or negative (detection is
wrong)

– Besides labeling as negative a keyframe the information of the right shot-type has
also to be provided.

– Only one shot-type can be seen at once.

– To open another asset the already opened one has to be closed, cannot manage
working with different assets at the same time.

2nd Proposal:

– For each domain we have different tabs for each asset, so simultaneus working with
several assets is supported.

– For each asset tab there are as many keyframe rows as shot types in that domain.
So all shot types can be seen at once.
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– The columns of each row are fixed for all shot types. As not all shot types have the
same keyframes detected and pagination is shared by all shot-types, some of the
rows can run out of keyframes.

– This layout makes it suitable for drag and drop functionalities to easily correct
a keyframe shot-type detection, so there is no need of labeling any keyframe as
negative, just drop it to the right place.

– Once all keyframes are in the right place the page can be entirely validated.

– As when validating there are examples of all shot types within a domain, at training
the classifier would have similar number of examples for each one so it will improve
in a more homogenic manner (a class will not be undertrained as it can happen
with the firs proposal).

Current interface:

Because of its functionality and its visual component, the 2nd proposal was chosen by
the CCMA with additional requeriments as showing the title and the detection score for
each keyframe. This is its actual appearence
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B. Contributions to Bitsearch blog

B.5. Dataset generation

In this post I will discuss two different techniques for dataset generation that have been
studied and implemented for my project on semantic shot detection: modified K-fold
cross-validation and repeated random sub-sampling

For testing a multiclass classifier, the annotated positive and negative instances of all
classes have to be split into a trainset and a testset so the trainer and the detector use
different sample data for the experiment. Because of the arquitecture of the classifier
used in my project, based on binary classifiers, each class annotations are partitioned in
order to train and test each semantic shot classifier.

In this case, as there were few labeled instances, 80% of the each class sample data has
been used to train its classifier while the 20% left has been used for detection. As there are
classes with a few positive instances and much more negative instances (all the positive
instances of the other classes), each percentage has been applied separately to positive
and negative instances, ensuring at least positive instances to train the system.

All instances belonging to the trainset clutter class have been deleted so the trainer
does not include the class when generating the model, but the detector can measure its
performance when detecting.

Repeated random sub-sampling

Random sub-sampling consists on sorting the data in an aleatory order and then dividing
it into the dataset and trainset for the given percentatges. For each iteration a single
trainset and dataset is build. The algorithm has been applied separately to each class to
train each classifier.

Modified K-fold cross-validation

The K-fold cross-validation algorithm generates K different data subsets, making sure all
data is used for both training and detection for each iteration.

As a modification of the K-fold cross-validation, where data ara partitioned into K equal
parts and the ratio between the sizes of the different subsets is not defined by the user,
the parameter K has been calculated automaticaly to build the testset and trainset for
the given trainset percentage, allowing more flexibility.
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B.5. Dataset generation

This procedure is repeated K times and the predictions of the K dataset are averaged.
The whole procedure can be done several times with aleatory data order for each iteration.
The following picutre illustrates one iteration of the process:

Conclusions

Random-subsampling does not ensure all instances are both used for training and de-
tection, but more iterations can be done with less time, as random sub-sampling repre-
sents 1-fold iteration of our modified cross-validation. Predictions using this method give
a realistic estimation of the classifier performance with external validation data, while
cross-validation usually gives overly optimistic estimations.

Because of the time cost of the K-fold cross-validation, the diversity of the datasets that
already offers random sub-sampling and its realistic estimation, the repeated random
sub-sampling algorithm has been chosen for the experiment dataset builder.
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