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Abstract 

 

TITLE:  Optimization Analysis of the Number and Location of Holding Control Stops to 

Prevent Bus Bunching  

AUTHOR:  Ferran Mach Rufí 

TUTORS: Francesc Robusté Antón, Haris Koustopoulos 

KEYWORDS: Bus bunching, Holding Point, Optimization algorithm, Myopic algorithm, 

Genetic algorithm  

 

The growing congestion problems in big cities result in growing need for public 

transport services. In order to attract new users, public transport operators are looking 

for methods to improve their performance and level of service.  Service reliability is one 

of the main objectives of public transport operators. Various sources of service 

uncertainty can cause bus bunching: buses from the same line tend to bunch together 

due to a positive feedback loop, unless control measures are implemented. The most 

commonly used strategy for preventing service irregularity is  to define holding points 

along the bus route. The design of the holding strategy involves the determination of 

the optimal number and location of holding points, as well as the holding criteria. These 

strategies are classified to schedule- or headway-based. Previous studies showed that 

headway-based strategies have the potential to improve transit performance from both 

passengers and operators perspectives.  

This thesis analyzes the performance of optimization algorithms when solving the 

holding problem. The optimization process involves the determination of time point 

location for a given headway-based strategy. The evaluation of candidate solutions is 

based on a mesoscopic transit simulation. The input data for the simulation 

corresponds to the bus line number 1 in Stockholm city.  

The objective function is made up of the weighted sum of all time components that 

passengers experience: in-vehicle riding time, dwell time, waiting time at stop and on-

board holding time. The optimization was carried out by greedy and genetic algorithms.  
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In addition, a multi-objective function that incorporated the performance from the 

operator perspective was solved using a multi-objective genetic algorithm. 

The results demonstrate the potential benefits from optimizing the location of time point 

stops. The best solution results in an improvement of around 11% in the objective 

function value. Interestingly, the results indicate that wrongly chosen time point stops 

can yield transit performance that is worse off than having no holding control.  
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Resum 

 

TÍTOL:  Optimization Analysis of the Number and Location of Holding Control Stops to 

Prevent Bus Bunching  

AUTOR:  Ferran Mach Rufí 

TUTORS: Francesc Robusté Antón, Haris Koustopoulos 

PARAULES CLAU: Bus bunching, Holding Point, Optimization algorithm, Greedy 

algorithm, Genetic algorithm 

 

Els creixents problemes de congestió a les grans ciutats fan necessaris més serveis de 

transport públic. Per tal d'atreure a nous usuaris, els operadors de transport 

públic busquen mètodes per millorar i augmentar el seu nivell de servei. La 

fiabilitat dels serveis de transport públic és un dels objectius principals dels operadors. 

El fenomen d'aparellament d'autobusos (bus bunching en anglès), pot ésser causat per 

vàries causes lligades a la incertesa: busos consecutius de la mateixa línia tendeixen a 

aparellar-se degut a que es tracta d'un sistema intrínsicament inestable de manera 

retrocativa. Per evitar aquest efecte, s'implementen mesures de control: la més 

comuna és establir una sèrie de parades de control repartides al llarg de la ruta, en 

què l'autobús esperarà fins a recuperar l'estabilitat. El disseny d'aquest sistema 

de punts de control passa per determinar-ne el nombre i la localització òptima, així 

com el criteri d'espera. Aquestes estratègies es classifiquen en basades en horari 

(schedule-based) i basades en freqüència (headway-based). Estudis previs han 

demostrat que les últimes tenen un gran potencial per millorar el servei des del punt de 

vista de l'usuari i del de l'operador. 

Aquesta tesina analitza la idoneïtat d'una sèrie d’algoritmes d'optimització a l'hora de 

solucionar aquest problema. El procés d'optimització comprèn la determinació de la 

localització dels punts de control per a un criteri d'espera predeterminat. L'avaluació de 

les solucions es fa mitjançant un simulador mesoscòpic de trànsit. Les dades 

utilitzades per a la simulació corresponen a la línia urbana d'autobús número 1 a la 

ciutat d'Estocolm. 
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 La funció objectiu a optimitzar està composta per la suma ponderada de totes les 

components temporals experienciades pel passatger: temps d'espera a la parada, 

temps en marxa a bord del vehicle, temps per parada i temps d'espera als punts de 

control (si s'escau). Per tal d'optimitzar la funció objectiu s'han utilitzar dos tipus 

d’algoritmes: un tipus myopic i un genètic. D'altra banda, a aquest últim se li ha 

incorporat una segona funció objectiu (en aquest cas des del punt de vista de 

l'operador), convertint el problema en multi-objectiu. 

Els resultats demostren els beneficis potencials d'aquestes optimitzacions, arribant la 

millor solució aconseguida a millorar fins a un 11% el valor de la funció objectiu. És 

també remarcalbe la observació que s'extreu de l'anàlisi: una mala elecció de punts 

d'espera pot portar a un comportament pitjor del sistema que en el cas sense control. 
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I Introduction 

 

I.1 Overview and motivation 

Transit reliability is one of the most important characteristics of a successful and 

attractive public transportation system; hence it is important to describe reliability in a 

comprehensive way. Many authors have given different approaches to define “reliability” 

(i.e. Abkowitz et al. 1978, Ceder 2007), but all agree that it is a crucial feature of public 

transport in order to reach an acceptable level of service and building passengers’ loyalty 

to the mean of transport. Therefore, many traffic agencies have reliability as a main aim of 

improvement. But big interruptions or even small disruptions or in the traffic can affect 

the traffic flow and, therefore, bus punctuality. These disruptions can lead to a well-known 

disruption problem, called bus bunching. Bus bunching occurs due to variability in either 

travel times or dwell times at stops. 

Bus bunching is a classic theory to explain how a bus that runs late tends to get later and 

later, and the following bus tends to get earlier and earlier. Supposing that passengers 

arrive randomly at stops (which can be assumed in headway-based lines), a little 

disruption on a bus way that makes the bus run late translates into more passengers at the 

next stop. Consequently the dwell time is likely to be increased and the bus will be more 

delayed. However, the following bus, assuming that has not had any disruption, will be 

running on time, but is going to find less passengers at each stop, since the previous bus 

will have taken some of the passengers that were supposed to catch that second bus. The 

system will not stabilize for itself; like a chaos theory it will lead to the bunching problem. 

Due to random external conditions such as traffic, stoplights, number of passengers at 

each stop it is unlikely to predict which buses from an outset will be bunched; therefore it 

is certainly complicated to develop universal strategies to avoid the problem in every case.  

New implemented real-time information systems (e.g. automatic vehicle location (AVL), 

automatic vehicle identification (AVI), and automatic passenger counting (APC)) have 

allowed to transportation agencies to collect priceless data, which in many cases is 

underused. There is still research to be done about the implementation of real-time 

control systems. 
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The strategy applied for most transport agencies to avoid bus bunching and headway 

variability is defining holding points along the bus route. Holding is the process of 

intentionally delaying a vehicle at a station after passengers have alighted and boarded. 

Usually, it is unnecessary to hold vehicles at every station. Hence, transit operators must 

choose which are the most effective holding stations. There are some rules of thumb to 

determine where these points should be placed (Wirashinge et al. (1995)): 

 The first station is the most affective to hold the vehicles, since a vehicle hold at the 

beginning of the route has impact on the largest number of downstream stations 

 Locate holding points when there is enough space available  

 Place holding stations regularly for the passengers to be informed about the bus 

schedule (in case of scheduled routes). 

Since the decade of the seventies in the U.S. bus service reliability studies have been 

carried out. Nevertheless, concerning about holding strategies, only a few have faced the 

problem of determining the optimal number and location of holding points. Wirasinghe et 

al. (1995) developed a nonlinear dynamic algorithm to solve the problem that could never 

be applied and assumed schedule-based operation only. Eberlein (1995) formulated an 

algorithm to solve the holding problem with a rolling horizon (i.e. that when an operator 

decides whether or not to hold a vehicle, it considers the impact on a set of consecutive 

vehicles, called the impact set). Unfortunately the solution could never be contrasted. It is 

important to point out that both studies were analytical and had limitations in their 

application to real networks. 

The present study deals with the holding problem with a dynamic approach: the holding 

time is not predefined by the operator but calculated dynamically depending on the 

headways between buses in real-time. It differs from previous studies also the fact that the 

holding problem is not solved analytically but via simulation, using a real-world modeled 

transit line. 
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I.2 Problem description 

 The inherent stochastic nature of the urban bus public transport may have big 

destabilizing effects on bus lines, resulting in buses travelling in pairs instead of being 

evenly spaced. Even with a small disturbance, the stochastic nature of travel times, dwell 

times and passenger demand will cause buses to bunch gradually in an escalating process 

reinforced by the relationship between them, mutually reinforcing each other. A change in 

the headway will have an effect in the number of passengers waiting at stops, which will 

make dwell time increase or decrease accordingly and so will alter the scheduled headway. 

This phenomenon is referred as bus bunching. The explanation for bus bunching is the 

direct relationship between time spent at stops (dwell time) and number of passengers 

that need to board at that stop. Since there is a limitation in the space available for 

boarding and some interaction between the users and the driver or an automatic 

validation system is common the boarding operation is never instantaneous. The expected 

number of boarding passengers increases with the time between successive bus arrivals.  

If there is a disruption in a point of the route and a vehicle is delayed, the expected number 

of boarding passengers at the following stop will be increased, which means more dwell 

time needed and more delay accumulated. Similarly, supposing that the following bus does 

not suffer any disruption, it will be sped up since less and less boarding passengers are on 

the stops, because the preceding bus was running with delay. The effect grows over time 

until the space between buses decreases and they run as a pair. This effect is the bus 

bunching. 

Given a certain bus network or line, is neither clear nor obvious which the best holding 

strategy is at a guess. Transportation agencies base the holding strategies more due to 

internal management policies and rules of thumb than on real optimal solutions. However, 

they cannot be blamed for it, since is not trivial to optimize the location and number of 

holding points. 

Since the analysis will be focused on real lines application, the heuristic character of the 

data and the results have to be taken into account. For this reason it may not be possible to 

define a unique function that is valid in all cases, and may not be universal.  

With respect to the algorithm, there are different approaches to develop it. Dynamic 

programming or metaheuristic models are two different options. It is also basic the 



Optimization analysis of the number and location of holding control stops  
A simulation-based evaluation of line number 1, Stockholm  
 
 

 
16 

 
 
 

Ferran Mach Rufí 

definition of good enough first solution (taking the problem constraints into account), and 

a wise stop criterion. The definition of the algorithm and its parameters will have an effect 

on the solutions obtained; a relationship that should be studied. 
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I.3 Objectives and scope 

The holding problem is to determinate which vehicles should be held, when they should 

be held and for how long. The objective of this research is to develop a methodology to 

optimize the number and location of holding points for a given a bus line. The performance 

of candidate solutions is assessed using the dynamic traffic and transit simulation model 

BussMezzo, The evaluation takes into account both passenger and operator perspectives. 

The optimization procedure uses real-world bus line data from Stockholm. 

Following previous studies (Cats et al. 2010a), the holding strategy is  based on regulating 

the headway, with buses held based on the mean headway from the preceding bus and the 

next bus.  This strategy defines which buses to hold and for how long, based on real-time 

vehicle location data.  
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I.4 Thesis organization 

The current thesis contains seven sections described below: 

The first chapter contains general information to understand the motivation and 

objectives of the work. It introduces the holding problem to the reader, as well as the bus 

bunching theory to provide him with more insights into the need to optimize the solution 

of the holding problem. 

In the second section a review of some relevant literature about the problem is done. This 

past literature goes from the definition of the holding problem made by American 

researchers in the fifties and sixties from the 20th century until the latest optimization 

methods for dynamic real-time holding strategies. 

The third section introduces all theoretical concepts about transit modeling and an 

explanation about the most important features of the simulator used in this work: 

BusMezzo. The theoretical basis of the different holding strategies is given afterwards. 

Finally, a review of the optimization methods that will be used in the study is conducted.  

In the fourth section the case study of this work is presented: the blue bus line number 1 

in Stockholm city. The main characteristics of the line are described, as well as the model 

built in BusMezzo to represent the line adjusting the model parameters with the real data 

provided by the operator. 

The three different optimization algorithms that are implemented and assessed in this 

work are presented in chapter number five: a greedy algorithm, a genetic algorithm and a 

multiobjective genetic algorithm. In this chapter is also given the definition of the objective 

functions to optimize, depending on if the problem is approached from the user or 

operator perspective. 

The sixth section presents the most remarkable results obtained with the three 

optimization techniques and compares them with the current time-point locations and the 

situation with no holding control. The last section summarizes the main interesting 

findings of this thesis and proposes some recommendations about future research 

directions that might arise after reading the current work. 
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II Literature review 

First explained in Newell and Potts (1964), the theory of bus bunching is still nowadays a 

matter of interest for transportation researchers and agencies, and many different 

approaches have been made to the problem. However, not many studies have been carried 

out because of the difficult nature of the problem. 

The problem with a single holding point has been widely analyzed, e.g. Osuna and Newell 

(1972), Barnett (1974), Newell (1974), Hickman (2001) or Zhao et al. (2006) as some 

examples. Unfortunately, single-point control does not always perform well in long routes 

with frequent service. In these cases, the whole line has to be seen as a system. 

Some approaches to the problem have focused in indentifying the key parameters to apply 

the holding problem successfully. Lesley (1975) suggested that time points had to be 

located at bus stops where the coefficient of variance of headway is greater than twice the 

average over all bus stops. Abkowitz and Engelstein (1984) chose as time points stops 

where the product of the standard deviation of the bus travel time and the ratio of 

passengers that would subsequently board the bus along the route to the passengers of 

the bus was maximized.  Later, Abkowitz et al. (1986) proved the convenience of locating 

the holding points just prior to a group of stops where many passengers board. 

Wirasinghe and Liu (1995) developed an analytical model for the determination of 

number and locations of holding points, as well as the amount of slack time. The model 

employed dynamic programming to deal with trade-offs among various cost components 

and incorporates the existing rules of thumb. However, it is a simplified case with a single 

run with only one bus considered. 

A formulation of the holding problem as a deterministic quadratic program was developed 

by Eberlein et al. (2001). The problem formulation was oriented toward rail transit system. 

An analytical solution of the problem was found making some assumptions. One of the 

assumptions consisted in defining an impact set of vehicles that were affected by control 

strategies instead of considering only the impact that a control strategy has for one vehicle 

itself. The objective function to minimize was the total passenger waiting times. It was 

assumed that waiting times are more sensitive to holding policies than in-vehicle travel 

times. Even for the passenger point of view, studies suggest that users are more sensitive 
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to waiting time than to in-vehicle riding time (Kemp 1973, Ben-Akiva and Lerman 1985). 

The properties of the system were analyzed and a solution algorithm developed 

accordingly. The algorithm was tested using a transit simulator. 

Results showed how holding reduces the cost but also reduces dwell times and can result 

in earlier arrivals, even though it may seem counterintuitive at first glance. This is mainly 

because holding avoids interstation stops. Another result that is proved is the fact that the 

first station is always the most effective place to hold a vehicle, since it has an impact in 

the largest number of stations. It is also interesting the finding that the benefit of a second 

holding station in that case is less that a 1% reduction. 

An approach to solve the bunching problem developed by Pilachowski J.M. (2009) consists 

in solving the problem using GPS data to counteract the cause of bunching allowing 

vehicles to cooperate with each other and change their speed based on their relative 

position. The result is the elimination of bus bunching with a small reduction in the 

commercial speed of the bus. 

Delgado et al. (2009) developed a mathematical model of a bus fleet operating in a 

corridor with capacity constraints. The objective function to minimize is the total times 

experienced by passengers, from the waiting time at stop to alighting at the destination. 

Two different control policies are studied: vehicle holding at any station and boarding 

limits when passengers entering the bus.  

The objective function includes passenger waiting time at stops and in-vehicle waiting 

(holding time) only. Since the vehicle running times are assumed to be constant, it is not 

included. Likewise, dwell time is not considered. A particularity of the model is the 

introduction of the strategy that consists in restricting the number of passengers that can 

board at each stop. The objective function includes a term that takes into account the 

waiting time for passengers at stop that have to wait more than one bus because of this 

capacity constraint. 

The simulation was designed in three different high-demand scenarios: no control, only 

holding and holding plus capacity constraint. The case study developed consists in a one-

way loop transit corridor with 24 stops. The results obtained showed that the reduction in 

the objective function from no control to only holding was about 10%, and from no control 

to holding combined with capacity constraint more than 22%. 
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An interesting approach to the problem using a multi-objective optimization was carried 

out by Cortés et al. (2009). The aim of the study was to minimize a dynamic objective 

function using two control strategies: holding and station skipping. Station skipping is also 

referred as expressing problem and consists in speeding up buses by not serving certain 

stations. It is important to consider the extra waiting time that passengers waiting at 

skipped stations have to suffer, that is the reason the measure is not popular among 

passengers. The two dimensions of the problem are the regularization of bus headways on 

one hand, and the minimization of the impact of the applied strategies on the other. The 

first objective function reflects the total passenger waiting time at stops (which depends 

on the predicted headway along with the bus-stop load) and the regularization of bus 

headways to maintain the actual headway close to the desired one. The second objective 

function measures the passenger holding time and the extra waiting time for passengers 

whose stop is skipped. 

The problem is solved by a multi-objective genetic algorithm. At each stage of the 

algorithm, the Pareto set is found using the best individuals from the last iteration. The 

optimal Pareto set contains all the Pareto optimal solutions at the end of the routine. Since 

the strategy control is a real-time one, the best stopping criterion corresponds to the 

number of generations. 

A simulation is conducted for a case study, where only some pre-defined stops can be 

holding points, with only four possible holding time values. Skipping is allowed at every 

station. Results show how the two objective functions are opposed but there is certain 

overlapping because both functions improve the level of service regularizing the 

headways. Despite of the similarities a trade-off can be observed. 

 

Daganzo (2009) analyzed an adaptive control scheme to mitigate bus bunching, which 

dynamically determined holding times at control points based on real-time information. 

Seeing the bus line loop as a system with elements (buses) in equilibrium because of 

attractive and repelling forces it proposes a method to control and compensate the 

destabilizing forces dynamically (speeding up or retarding buses accordingly). 

 

Another approach to solve the holding problem was developed by Malzoumi et al. (2010) 

using the ant colony optimization (ACO) to find the optimal solution. The function to 

optimize includes four terms: waiting time at stops, holding time (only considered for 

through passengers), a lateness penalty and an operational cost term that is assumed to be 
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linear with the operation time and includes drivers’ wages, fuel, and bus maintenance. The 

algorithm is applied in a real-world bus route in Melbourne using the micro simulation 

package VISSIM to calibrate the parameters needed for the ACO. Only 10 bus stops out of 

the total of 24 that compound the line are considered as possible holding points. 

Furthermore, only three different slack times are considered: 0, 1 or 2 minutes. An 

analysis of all feasible solutions with these constraints is done and the results given by the 

ACO are compared with the real solution to assess the efficiency and accuracy of the 

algorithm. It is proved how an appropriate set of holding points and slack times can lead to 

a worse design with higher costs than the case with no control. One of the remarkable 

conclusions of the work is the suitability of heuristic algorithms to solve the holding 

problem and an approach to other heuristic models is recommended. 

 

Authors Problem Method 

Wirasinghe 
and Liu 
(1995) 

Determine the number and location of 
the holding points and slack time. 

Dynamic programming. One single run 
with one bus. 

Eberlein et al. 
(2001) 

Minimize the total passenger waiting 
time in a rail transit system. 

Definition of an impact set of vehicles 
affected by the control strategy. 
Analytical algorithm tested using a 
simulator. 

Delgado et al. 
(2009) 

Minimize the total time experienced 
by passengers (dwell and riding time 
not considered). 

A function that includes bus capacity 
constraints is considered. Three 
scenarios studied: no control, only 
holding and both holding and skipping. 
Deterministic travel times and 
passenger arrival process are assumed. 

Cortés et al. 
(2009) 

Minimize a dynamic objective function 
using two strategies: station skipping 
and holding. The objective functions 
represent the regularization of bus 
headways on one hand, and the 
minimization of the impact of the 
applied strategies on the other. 

Multi-objective optimization to assess 
the interaction between holding and 
skipping, defining a Pareto front. 

Malzoumi et al. 
(2010) 

Objective function including four 
terms: waiting at stops, holding time, a 
lateness penalty and an operational 
cost term. 

Ant colony optimization (ACO). The 
algorithm is applied in a real bus route 
in Melbourne using VISSIM simulator. 

Table II.1 Summary table of most relevant literature 
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III Methodology 

 

III.1 Transit modeling 

III.1.1 Transit operations modeling 

Models can be classified in analytical, where the solution is obtained from a set of 

equations using calculus techniques or simulation where the changes of traffic are 

reproduced by a model. 

Simulation models capture the dynamics of the system, which is an advantage to analytical 

models, since we can get a continuous view of the traffic state over the time. However, 

until recent time, the high computational cost of a comprehensive simulation was too high 

and unaffordable. Newer more powerful computers have solved this inconvenience.   

For the purpose of this thesis we are going to use a computer simulation. A simulation is a 

construction of a mathematical model for some process, situation, etc, in order to estimate 

its characteristics or solve problems about it probabilistically in terms of the model. It is 

an attempt to model a hypothetical or real situation to be studied for certain purposes, 

indentify the main variables and make predictions of the possible behavior of the system. 

Simulation models can have three levels of detail: from macroscopic via mesoscopic to 

microscopic. Macroscopic models represent traffic at a high level of aggregation as flow, 

without considering the small constituent parts (vehicles) and variables (individual speed 

of the vehicles, for example). Microscopic models describe the small details of the traffic 

state, from the smallest part (vechiles) and their interactions to the characteristics of the 

whole set making up the traffic steam. Mesoscopic models are an intermediate state, 

describing individual vehicles for example, but not their interactions.  

 

III.1.2 Model typologies 

Macroscopic models are widely spread nowadays, mainly because traffic measurement 

systems have been installed in urban areas and highways and the kind of aggregated data 

that these systems collect is appropriate for macroscopic simulators. The models describe 
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the evolution of traffic with differential equations that analogue the physical phenomena 

ºof fluid or gas flows. The solution of the equations can be obtained analytically (used only 

in segments of the road) or using the simulation (better to describe the whole network). 

Most of these models split the network as a bunch of cells and applies the law of the 

conservation of mass for the flows that travel between the different cells. Each cell has 

certain parameters (density, maximum speed, etc.) that define the behavior of the traffic 

flow inside the cell and the flows of the adjacent cells. 

These models are successfully applied to large scale networks for long time periods, where 

the shortcomings caused by a low level of detail are negligible. 

Microscopic simulation is useful to understand traffic at a more detailed level. In these 

models traffic is described at the level of individual vehicles, their interactions and the 

interaction with the road and infrastructure. The information needs is much more detailed 

(accelerations, decelerations, lane changes). The existing models can be divided in car-

following models, lane-changing models and route-choice models. Car-following models 

describe acceleration and slowing down patterns resulting from the interaction of each 

vehicle with the vehicle in front and the features of the road. Lane-changing models 

describe the variables that affect the decision of changing lane when driving. Finally, the 

route-choice models put attention on the origin and the destiny of the car trip, and how 

the path choices change along the way depending on the traffic state. 

The demand in these models can be described in one of two possible ways. The first one is 

divide the network to study in several zones with uniform characteristics and set the 

number of vehicles travelling from each zone to each other in an Origin/Destination 

matrix. Since the demand patterns vary with the time, a different OD matrix for each time 

slice is needed. The other method consists on focusing on the turnings (intersections) and 

analyzing the percentage of vehicles that turn or go ahead at each turning. Speeds, flows 

and densities are aggregated parameters in this kind of models. The main drawbacks in 

these kind of models is the large amount of data needed to model the network and the big 

effort to calibrate all the parameters, which is very time-consuming. Besides, the results 

from a calibration are usually not transferable to other locations apart from the original 

zone of study.  

Mesoscopic models are becoming more and more popular, since they try to cover the gap 

between macro and microscopic models. They combine the description of some of the 
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traffic elements in high and lower level of detail. For example, traffic entities can be 

described in a high level whereas interactions between vehicles in a lower level. There are 

different types of mesoscopic models.  

 Vehicles are grouped into packets that act as an entity, and in each link a speed-

density function is defined. The speeds and densities at the moment of entry are 

derived from that function. Lane changes and accelerations/decelerations are not 

modeled. (CONTRAM, (Leonard, et al. 1989)) 

 Vehicles are grouped into cells that can traverse links and vehicles can leave the 

cells, but there is no possibility of overtaking between cells.(DYNAMIT (Ben-Akiva, 

1996)) 

 Some other models use a queue-server approach where the road is modeled as a 

queuing and running part. The vehicles, which are modeled individually, drive 

through the section of the road at a certain speed according to the speed-density 

defined for that section until they reach a queue-server downstream that transfers 

vehicles to the connecting roads. Queue-servers can be either intersections or 

signal controlled intersections. Representing the vehicles individually allows 

modeling disaggregated route-choice, which is particularly useful when assessing 

en-route choices. (DYNASMART Jayakrishnan, et al. 1994), FASTLANE (Gawron, 

1998). Mezzo (Burghout, 2004a), the simulator used in this study, belongs also to 

this third group. 

 

III.1.3 Mezzo simulation model  

Mezzo is a mesoscopic traffic simulation model (Burghout, 2004a; Burghout et al., 2006), 

which models vehicles individually but does not represent lanes explicitly. The traffic 

network is represented by a joint of nodes and links. Nodes coincide with traffic join or 

diverge points (intersections, on/off ramps, origins or destinations), while links represent 

the road between nodes and are unidirectional (therefore a common two-way road is 

represented by two links, one per direction). 

Links are divided into two parts: a running and a queuing part. The queuing part starts at 

the downstream node and grows towards the upstream node when the incoming flow to 
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the node is higher than the outgoing flow. The boundaries between the queuing and the 

running part change dynamically depending on the extent of the queue. The running part 

contains the vehicles on their way to the downstream node that are not affected by the 

queue yet. It may happen that sometimes there is no queue or, on the contrary the queue 

occupies the whole link and there is no running part. Vehicles exit the queue in the same 

order they entered to it, overtaking maneuvers are not feasible. Earliest exit times of the 

link are considered a function of the density in the running part only. Travel times on the 

running part are calculated with the following speed-density function: 

 

     

 
 
 
 

 
 
 

                                                                                            

 
 

                      
      

         
 
 
 
 

                                            
 
 

                                                                                        
 
 
 

 
 
 

 (3.1) 

    

where Vfree and Vmin are the free flow and the minimum speeds. k is the density in the 

running part, kmax and kmin are the maximum and minimum densities thresholds. a and b 

are parameters. Therefore, if the density in the running part of the link is lower than kmin 

vehicles will move at the free flow speed or if the density exceeds kmax all vehicles will 

move at a constant minimum speed. 

A single queue is found at the downstream of the link, where vehicles wait to move out of 

it. Vehicle processing depends on the queue server, which can be defined for every single 

node depending on the capacity of each turning movement. The queue server captures 

lane channeling and connectivity. For each turning, the server looks backwards to find the 

number of queuing vehicles that intend to use every turning movement and processes 

them in sequence. The queue look-back for each turning movement represents the 

relationship between queue length and the blocking process that exists when a too long 

queue blocks access lanes to other turnings in the same node. 

III.1.4 BusMezzo transit operations tool  
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Mezzo was implemented using the object-oriented programming approach, which allows 

further enhancements and developments. Each entity (eg. node, queue, vehicle, OD pair) is 

represented as an object with its functions and variables. This programming mode allowed 

the development of BusMezzo, the tool used for transit operations simulation (Toledo T. et 

al. 2008).  

BusMezzo uses six different object classes: Bus Type, Bus Vehicle, Bus Line, Bus Route, Bus 

Trip and Bus Stop. 

1. Bus Type: Definition of the bus characteristics and attributes: length, number of 

seats and passenger capacity. It is a static class during the simulation. 

2. Bus Vehicle: Inherits the attributes of the specific bus type adding the 

characteristics and functions that are relevant for each vehicle during the 

simulation. A list of scheduled trips has to be defined for each vehicle and the 

model represents the trip-chaining including layover and recovery times. During 

the simulation the occupancy is updated and determines the maximum number of 

passenger that can board per stop. 

3. Bus Line: contains the definition of the line (origin and destination terminals and 

sequence of stops). It keeps track of all trips done. 

4. Bus Trip: maintains the schedule of expected arrival times at each stop for the 

specific trip. While running the simulation it calculates the actual departure time 

from the origin terminal and records arrival times at stops. 

5. Bus Route: a sub-class of the general Route object defines the route as an ordered 

sequence of links. 

6. Bus Stop: keeps the information about each bus stop (i.e. in which link is the stop 

located, length, type (lane or bay) and availability of traveler information) and 

holds the list of bus lines that use the stop. The objects holds information about 

dwell times, bus arrivals and departures and information on passenger waiting 

times. 

Mezzo is an event-based simulation model. Therefore, the simulation progresses from 

event to event chronologically. The initialization of the model consists in creating the Bus 

Line, Bus Route and Bus Type objects. When a scheduled trip is started a Bus Trip object is 

generated, and a Bus Vehicle assigned to this trip with the properties of a certain Bus Type. 

In case the trip is not the first trip of the vehicle and the recovery time from the previous 

trip is not completed, the departure is deferred until the vehicle is available.  
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When a vehicle enters a link on its route, it checks whether or not there are stops to be 

done for a certain route in the link. If there are no stops the bus crosses the link as any 

other vehicle, according to the travel time given for a certain traffic conditions. The events 

of entering and leaving a link are registered. If there are stops within the link, the stopping 

process is also registered: travel time to reach the stop, arrival time, dwell time (taking 

into account if holding strategies are implemented) and departure time are tracked. 

At the end of a line, the bus waits until the next trip if more trips are scheduled for that 

vehicle. If the scheduled departure time for a trip has passed, the bus leaves immediately 

after the recovery time. 

The simulation is designed to model the behavior of the vehicle if control strategies are set. 

For instance, if holding control is in place, the simulation checks for each stop if it is a 

holding point or not for the trip and for how long should the vehicle be held. 

Outputs of the model include stop level statistics (i.e. early and late arrivals, dwell times, 

boarding and alighting passengers, bus load and travel times between stops). Other 

aggregation measures like schedule adherence, headway and passenger waiting time 

distributions are also automatically calculated. 

The assumptions made about processes implemented in the model are determinant to 

understand and assess the results. The main models included in BusMezzo describe 

passenger demand (arrival and alighting), dwell time and trip chaining. 

 Passenger demand 

Passenger demand is composed of two variables: passenger arrival rates at stops for each 

line and alighting demand at each stop. The inputs are time-dependent and used as mean 

values in stochastic processes. Arrival processes are described by a Poisson distribution, 

tested by authors in other works (Fu and Yang, 2002; Dessouky et al., 2003). 

                               (3.2) 

Where Bijk is the number of passengers wishing to board line i et stop j on trip k. λijtk is the 

arrival rate for line i at stop j during the time period tk. hijk is the time headway between 

the preceding bus (on trip k-1) and the bus on trip k.  
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Passenger alighting process follows a Binomial distribution (Morgan, 2002; Liu and 

Wirasinghre, 2001). Alighting is modeled as a fraction of the on-board passengers arriving 

at each stop. 

                                (3.3) 

Aijk is the number of alighting passengers from line i at stop j on trip k. Lijk is the passenger 

load on arrival at stop j on the bus trip k of line i. Pijtk is the probability for a time period tk 

that a passenger will get off on line i at stop j. 

 Travel time 

Travelling time consists of running and dwell times. Dwell time is the sum of the time 

slices consisting in opening doors, boarding and alighting of passengers, closing the doors, 

and bus getting off the stop. The dwell time is calculated in BusMezzo adopting a model of 

the Transit Capacity and Quality Service Manual (Kittelson & Associates et al., 2003). Time 

needed for passengers to board and alight is calculated separately and overall dwell time 

is the one determined by the door that has the longest service time. It can also distinguish 

between in-lane stops and bay stops.. 

The model takes into account possible control strategies at stops. The departure time from 

a stop is calculated by: 

                                  (3.4) 

Where ETijk, ATijk and CTijk are the departure time, actual arrival time and the departure 

time resulting from the control strategy implemented for line i on trip k from stop j, 

respectively. 

 Trip chaining 

As mentioned before, vehicles are assigned origin and destination stations and a route 

between them. It is possible to model the effect of a vehicle doing trips in sequence (which 

is common in real world where each vehicle follows a schedule). The accumulated delay of 

a vehicle can affect the whole line and it is important to take this feature into account. The 

actual recovery departure time for a trip is calculated as the later between the scheduled 

departure time and the earliest time a bus is ready to depart after completing the previous 

trip and the compulsory recovery time: 
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                                      (3.5) 

Where DPTbk and STbk are the actual and scheduled departure time for trip k by bus vehicle 

b, respectively. ATb,k-1 is the arrival time of bus b from the previous trip at the terminal. 

RTmin is the minimum recovery time required between trips. εbk is a lognormal error term 

that captures stochastic departure delays. 

The capabilities of Mezzo as a tool for evaluation of transit operations were demonstrated 

with an application to a real high-demand line in Tel-Aviv (Toledo T. et al. 2009). The case 

study demonstrates the aptitude of BusMezzo to reproduce the phenomena of bus 

brunching and propagation of headway variability along the route. It is important to 

highlight the fact that the model needs a rigorous calibration and validation to be 

meaningful.  
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III.2 The holding problem 

Holding strategies can be designed in different forms, but there are two major bus control 

strategies, schedule-based and headway-based. The first one is focused on maintaining 

vehicles to a predetermined schedule and the second one consists in maintaining a 

constant headway between successive vehicles. 

However, in case of holding a vehicle, the holding time should not be too much. Barnett 

(1974) established that in frequent services a holding time longer than 60 seconds is not 

acceptable for passengers. 

 Schedule-based control strategy 

This scheme controls buses toward keeping a preplanned schedule. The location of the 

previous or following bus is irrelevant; hence, it is an easier control strategy tom 

implement than headway-based strategies. If all buses keep them attach to the schedule, 

bus bunching will be reduced. 

The formulation of a schedule-based strategy was given by Cats et al. (2010a): 

                                      (3.6) 

 

Where       is the exit (departure) time for line   on trip   from stop  ,        is the 

corresponding scheduled exit (departure) time and     is a non-negative slack size defined 

for line   at stop  .       is the actual arrival time and       is the dwell time.  

 

 Headway-based control strategy 

 

In this case the aim of the scheme is to maintain the headway between consecutive buses 

within a range, to avoid bus bunching and reduce passenger waiting time. It is assumed 

that vehicles cannot be sped up; therefore, the only strategy is to hold vehicles at stations. 

These strategies are more difficult to implement since real-time information systems are 

required. 

If the strategy only takes into account the headway from the preceding vehicle, the holding 

criteria is defined by a minimal headway requirement (Cats et al., 2010a): 
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                     (3.7) 

Where    −1, is the planned headway between trips  −1 and   on line  , and   is a 

threshold ratio parameter. This parameter defines the minimum allowed headway relative 

to the planned headway. Both analytical and simulation-based studies that searched for 

the optimal threshold parameter found it to be in the range of 0.6 to 0.8 (Turnquist and 

Blume 1980, Fu and Yang 2002, Cats et al., 2010a, Rossetti and Turitto 1998) proposed to 

choose the threshold value dynamically each time that holding strategy is actuated based 

on the number of passengers on-board.  

Headway-based strategies can incorporate into the holding criteria also the headway to 

the succeeding vehicle. This additional information can be utilized for keeping even 

headways by applying the following holding criteria:  

                   
                                            

 
              

             
                        

 
                 (3.8) 

 
Where   is the last stop that was visited by bus trip   1 and     , is the scheduled 

riding time between stops   and  . This strategy implies that buses are held only if the 

headway from the preceding bus is shorter than the headway to the succeeding vehicle. 

Note that this holding strategy is independent of the planned headway (Cats et al., 2010a). 

Nevertheless, it has been proved analytically by Daganzo (2009) that schedule deviation 

and planned headway deviation under a similar adaptive control strategy are realistically 

small. Koutsopoulos and Wang (2007) simulated urban rail operations and found out that 

headway-based strategy significantly benefits when applied at origin terminals. Cats et al. 

(2010c) implied that in order to implement this strategy at intermediate stops along the 

route accessing to real-time AVL data and bus vehicle-control centre communication 

network is required. Headway-based strategies defined by equations 3.7 and 3.8 can be 

integrated to form a strategy that keeps even headways while restricting the maximum 

allowable holding time by the minimum headway requirement (Cats et al., 2010a):  

 

                       
                        

 
          

                    (3.9) 
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III.3 The optimization problem 

III.3.1 Definition and typologies 

The optimization of a function or a set of functions according to some criteria belongs to 

the field of numerical analysis in applied mathematics. The most common form is the 

minimization of a real-valued function f in a parameter space          , respecting the 

constraints in the solution vectors. In many real-life problems, complicated functions with 

many variables have a lot of local minima and maxima. Finding local optima is relatively 

straightforward, but finding the global maximum or minimum might be practically 

impossible in some cases. The approaches to the problem can be deterministic or 

stochastic. Deterministic problems behave regularly (i.e. given an input always produce 

the same output) and are usually easier to handle and solve. On the other hand, stochastic 

problems behave randomly and output values of the objective function are not assumed as 

exact. 

Stochastic problems require stochastic optimization methods that use algorithms which 

incorporate probabilistic (random) elements, either in the data (the objective function, the 

constraints, etc.), or in the algorithm itself (random parameter values, random choices, 

etc.), or in both. In simulation-based optimization and real-time estimation and control 

operations, random “noise” arises and leads to the use of algorithms which incorporate 

statistical inference tools to estimate the real values or make statistically optimal decisions 

about the steps to follow to reach the global minimum or maximum. 

 

III.3.2 Metaheuristic algorithms 

An algorithm is a series of steps for solving a problem. Metaheuristic algorithms are 

computational methods to optimize a problem by improving a candidate solution with 

regard to a given measure of quality. Since there are few or no initial assumptions about 

the problem to optimize they can search a large space of candidate solutions. They are 

used in problems where a no-continuous space is explored, like in the Travelling Salesman 

Problem (TSP) where the search-space grows more than exponentially with the size. The 

most popular metaheuristics are simulated annealing (Kirkpatrick et al., 1983), genetic 

algorithms (Holland et al., 1975), ant colony optimization (Dorigo, 1992) and tabu search 

(Glover, 1989). 



Optimization analysis of the number and location of holding control stops  
A simulation-based evaluation of line number 1, Stockholm  
 
 

 
36 

 
 
 

Ferran Mach Rufí 

Metaheuristics are not guaranteed to find the optimum or even a near-optimal solution. In 

fact, depending on the type of problem different metaheuristics can work differently. It is a 

matter of experience and reviewing the written literature to know which the most 

appropriate metaheuristics for every problem are.  

 

III.3.3 Greedy algorithms 

A greedy algorithm is a sequence of steps in a routine that always chooses the best 

solution at each step, hoping that this choice will lead to the globally optimal solution. 

However, choosing the best solution at each step might not yield optimal solutions.  

In dynamic programming, a choice is made at each step, but it depends on the solutions to 

subproblems. Therefore, dynamic-programming problems are solved in a bottom-up 

manner, from smaller to larger subproblems. On the other hand, in greedy algorithms the 

best choice is done at the moment and the arising subproblem is solved afterwards. The 

choice may depend on the choices done so far, but neither on future choices nor solutions 

to subproblems. Thus, a greedy algorithm progresses in a top-down way, making the 

decisions one after another and reducing the problem instance to a smaller one. 

A general scheme to design greedy algorithms has the following steps: 

1. Cast the optimization problem as one in which a choice is made and a subproblem 

appears at every step 

2. Prove that there is always an optimal solution that makes the greedy choice, so 

that the technique is always safe. 

3. Prove that, once each greedy choice is done, a subproblem remains, with the 

property that if an optimal solution is combined to the greedy choice we have 

made, it converges to an optimal solution of the original problem. 

However, some of the principles cannot be proved when dealing with complicated 

problems, such as stochastic problems or when exhaustive search is impractical. These 

principles have to do with two properties that need to be proved if we want to be able to 

ensure that a greedy algorithm yields a globally optimal solution: the greedy-choice 

property and the optimal substructure. 
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The greedy-choice property says that a globally optimal can be arrived at by making a 

locally optimal greedy choice. A problem has an optimal substructure if an optimal 

solution contains within it optimal solutions to subproblems. 

Both features have to be demonstrated for the problem to be solved to ensure the 

applicability of greedy algorithms. 

 

III.3.4 Genetic algorithm (GA) 

III.3.4.1 Overview and development 

According to the natural selection theory stated by Charles Darwin for the first time in 

1859, biological organisms evolve over several generations based on the principle of 

“survival of the fittest”. In nature, each individual in a population competes with each 

other for limited resources. Individuals that perform poorly have fewer chances to survive, 

and the more adapted to the environment or the circumstances an individual is, the more 

probability to survive and produce a larger offspring. During the reproduction, the good 

characteristics of the ancestors can produce more adapted offspring and after a few 

generations the species evolve spontaneously adapting to the environment. A concept that 

works in nature could also be reproduced in optimization techniques. 

In 1975, John Holland developed this idea and described how to apply those principles to 

optimization problems, called Genetic Algorithms (GAs). His theory has been further 

developed and nowadays GAs are considered a useful and powerful tool to solve certain 

optimization problems. Genetics is the science that deals with the mechanisms responsible 

for similarities and differences in a species. Genetics helps us to differentiate between 

heredity and variations. GAs are based on the principle of genetics and evolution. 

GAs are an example of mathematical technology transfer; how mathematics can describe 

different natural phenomena to solve a wide variety of problems. Today, GAs are used to 

resolve complicated optimization problems like timetabling, job-shop scheduling, games 

playing. 

III.3.4.2 GA as an emulation of nature 
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John Holland published Adaptation in Natural and Artificial System in 1975 with a double 

aim: to improve understanding of the adaptation process and to design artificial systems 

with similar properties to natural systems. 

The basic idea was simple: the genetic pool of a population potentially contains an 

improvement to an adaptive problem. However, the solution may not be active because 

the genetic combination on which relies can be split between several individuals. Through 

crossover during the reproduction a subject can inherit the desired gene. 

Recombination is a key feature for evolution, consisting in taking two genotypes and 

mixing their genes to produce a new genotype. In biology, crossover is the most common 

recombination: two chromosomes are cut at one point and the halves are spliced. The 

child should inherit the best characteristics of the parents and surpass its ancestors.   

Mutation is the other technique applied in GAs. It consists in change the value of genes. 

Mutation is not very frequent in natural evolution and mostly engenders non-viable 

individuals but it is a good way to explore wider the search space. 

 

III.3.4.3 Properties of GA 

GA has a couple of important characteristics. First of all is a stochastic algorithm; therefore, 

randomness plays an essential role in both reproduction and selection procedures. 

Another important and advantageous point is that GA considers a population of solutions 

per iteration, so the algorithm can benefit from assortment recombining the different 

solutions to get better ones. GA can perform consistently well on a board range of problem 

types, hence it is considered robust and powerful. 

Because of the big success of the algorithm, many other similar algorithms aroused, based 

on the natural evolution principle. All those are called Evolutionary Algorithms.  

GAs are stochastic methods, therefore are not guaranteed to find the global optimum but 

an acceptably good solution to the problem. The general character of GA makes them very 

convenient when other techniques have failed or there is no much information about the 
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search space. They can be also hybridized with other optimization schemes, but must be 

applied on appropriate problems. 

 

III.3.4.4 Algorithm description 

In GA each solution is represented through a chromosome. To code all solutions into 

chromosomes is the first part. Then a set of reproduction operators has to be determined. 

Those are applied on the chromosomes to perform mutations or recombinations over 

solutions. The behavior of the GA is very dependent on these operators but in some cases 

it may be difficult to find a representation which respects the structure of the search space 

and the reproduction operators. 

The GA starts generating a population of individuals. Generally, the initial population is 

generated randomly, so that there is enough genetic diversity to ensure that any solution 

in the search space can be engendered. Afterwards, the GA loops over the following 

iterative process: 

 Selection: the first step is selecting individuals for reproduction. This selection is 

commonly random depending on the relative fitness of the individuals. The cost 

function to minimize has to be transformed into a fitness function that evaluates 

how good candidate solutions are. 

 Reproduction: offspring are bred by the selected individuals. Two or more parents’ 

genetic material is combined to create offspring. Recombination and mutation can 

be used to generate new chromosomes.  

 Evaluation: the fitness of the new chromosomes is evaluated. 

 Replacement: individuals from the old population are killed and replaced for the 

new ones. 

The algorithm is stopped when the population converges toward the optimal solution.  

The basic genetic algorithm is as follows: 

 [start] Genetic random population of n individuals (suitable solutions for the 

problem) 
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 [Fitness] Evaluate the fitness f(x) of each individual x in the population 

 [New population] Create a new population by repeating following steps until the 

New population is complete 

 — [selection] select two parents from a population according to their 

fitness (the better fitness, the bigger chance to get selected). 

 — [crossover] With a crossover probability, cross over the parents to form 

new offspring (children). If no crossover was performed, offspring is the 

exact copy of parents. 

 — [Mutation] With a mutation probability, mutate new offspring at each 

locus (position in chromosome) 

 — [Accepting] Place new offspring in the new population. 

 [Replace] Use new generated population for a further sum of the algorithm. 

 [Test] If the end condition is satisfied, stop, and return the best solution in current 

population. 

 [Loop] Go to step2 for fitness evaluation. 

 

 

III.3.4.5 Advantages and limitations of GA 

Comparing GA with other optimization methods, one of the main advantages is that the 

fitness function can be nearly anything; there are not any definite mathematical 

restrictions to the properties of the function (discrete, multimodal, interger, etc.) 

Genetic algorithm differs from conventional optimization techniques in following ways: 

1. GAs use coded parameters rather that parameters themselves. 

2. GAs does not search from a single point (most optimization strategies do) but from 

a population of points, which gives them more robustness. 

3. GA uses fitness function as a parameter to evaluate rather than derivatives. Hence, 

it can be applied to any continuous or discrete optimization problem if a proper 

decoding function is specified. 

4. GAs use probabilistic operates rather than deterministic. 
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Advantatges Limitations 

1. Solution space is wider 

2. The fitness landscape is complex 

3. Easy to discover global optimum 

4. The problem has multi objective 

function 

5. Only uses function evaluations. 

6. Easily modified for different problems. 

7. Handles noisy functions well. 

8. Handles large, poorly understood 

search spaces easily 

9. Good for multi-modal problems 

Returns a suite of solutions. 

10. Very robust to difficulties in the 

evaluation of the objective function. 

11. They require no knowledge or gradient 

information about the response surface 

12. Discontinuities present on the 

response surface have little effect on 

overall optimization performance 

13. They are resistant to becoming trapped 

in local optima 

14. They perform very well for large-scale 

optimization problems 

15. Can be employed for a wide variety of 

optimization problems 

 

1. The problem of identifying fitness 

function 

2. Definition of representation for the 

problem 

3. Premature convergence occurs 

4. The problem of choosing the various 

parameters like the size of the 

population, mutation rate, cross over 

rate, the selection method and its 

strength. 

5. Cannot use gradients. 

6. Cannot easily incorporate problem 

specific information 

7. Not good at identifying local optima 

8. No effective terminator. 

9. Not effective for smooth unimodal 

functions 

10. Needs to be coupled with a local search 

technique. 

11. Have trouble finding the exact global 

optimum 

12. Require large number of response 

(fitness) function evaluations 

13. Configuration is not straightforward 

 

 Figure III.1 GA advantages and limitations 

 

III.3.4.6 Terminologies 

GA uses a metaphor and considers feasible solutions as individuals living in an 

environment. Individuals made of are binary digits, which is convenient to be stored in a 

computer as a string of bits. 
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 Population  

It is a set of individuals currently involved in the search process. It consists of a number of 

individuals that are being tested at each generation. Two parameters that have to be 

considered are the population size and the initial population. 

The population size should depend on the complexity of the problem. Usually is a random 

initialization: in binary coding this means that each bit is initialized to a random 0 or 1. 

However, in some cases when we have known good solutions, preset initial populations 

can be used to converge faster. In all cases it is essential to make sure that the initial gene 

pool is large enough and there is diversity, so that all search space can be explored. 

There is a trade-off between GA efficiency and computational time to converge that 

depends on the population size. The larger the population is, the more likely is the GA to 

find the global optimum instead of local ones (Goldberg, 1987). On the other hand, the 

larger the population, the more computational cost, memory and time are required. In has 

been established that the time required by a GA to converge is O (N·logN) function 

evaluations where N is the population size. 

 

 

 

 

 
 Figure III.2 Population and individuals representation 

 

 Individual 

It is a single solution. Each individual is represented by a chromosome. A chromosome is a 

sequence of genes.The morphogenesis function associates each genotype with its 

phenotype. It is important to ensure that each chromosome defines a unique solution and 

not several. The function might probably be not bijective but should make sure that all the 
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candidate solutions of the problem must correspond at least one feasible chromosome, to 

ensure that the whole search space is explored. If the function is not injective, i.e., different 

chromosomes encode the same solution, the representation is called degenerated. Small 

degeneracy is not a problem, but a more serious degeneracy could add confusion in the 

search because the algorithm might not be able to spot the favorable genes. 

Chromosomes are encoded by bit strings:  

 

 

 Figure III.3 Chromosome representation 

 

 Genes 

 

Genes are the basic units of GAs. A gene is a bit string of arbitrary lengths. It is the GA’s 

representation of a single factor value for a control factor, where control factor must have 

an upper bound and lower bound.  

The structure of each gene is defines in a record of phenotyping parameters: instructions 

for mapping between genotype and phenotype. This mapping is necessary to convert 

solution sets from the model into a form that GA can recognize and work with, and for 

converting individuals from the GA into forms evaluable for the model. 

The genes are represented the following way: 

 

  Figure III.4 Genes representation 
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When dealing with a problem with binary variables, the length of each gene is a unit. 

Hence, there are as many genes as variables in the problem and each can have a value of 0 

or 1. No mapping between genotype and phenotype is necessary since both the problem 

variables and the chromosomes are binary values. 

 Fitness 

The fitness of an individual is the value of the objective function for its phenotype. The 

chromosome has to be decoded first and evaluated with the function afterwards. The 

fitness indicates how good a solution is and how close the chromosome is to the optimal 

one. 

 Data structure 

The main data structures in GA in binary problems are chromosomes, objective function 

values and fitness values. Using MATLAB, the chromosome population can be stored in a 

single array given the number of individuals and the length of their genotype 

representation. 

 

III.3.4.7 GA Operators 

 Encoding 

Encoding is the process of representing individual genes using bits, numbers, trees, arrays 

or other objects. Binary is the most common encoding technique and each chromosome 

encodes a binary bit string. Every bit represents some characteristics in the solution, but it 

differs from problem to problem. Coded strings with 0s and 1s can represent integers 

exactly, finite real numbers and obviously binary variables or decisions.  
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  Figure III.5 Binary coded bus line representation 

 

Breeding 

Breeding is the key process of GA to create fitter individuals. It consists of three steps: 

1. Parents selection 

2. Crossing parents to create new offspring 

3. Replacing the old individuals with the new ones 

 

 Selection 

Selection is the process of choosing two parents from the population for crossing. Once the 

encoding strategy is set, is has to be decided how to choose individuals that will create 

offspring and how many offspring to create. Emphasizing the fittest individuals, better 

offspring is expected. According to Darwin’s theory the best individuals will be the ones to 

survive and create offspring. 

 The selection method picks randomly chromosomes out of the population according to 

their evaluation function: the higher the value of the fitness function, the more 

possibilities an individual has to be selected. The selection can be more or less exigent, 

depending on the degree to which the better individuals are favored. We call this exigency 

selection pressure. This pressure drives the GA to improve the population fitness over 

generations. However, if the pressure is too low, the convergence rate will be slow and the 

GA will take unnecessarily longer time to approach to the solution. On the contrary, if the 

selection pressure is too high, the GA could converge prematurely to an incorrect (sub-

optimal) solution. 
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Additionally, selection techniques should preserve some population diversity to avoid 

undesirable premature convergence. 

 Scaling function 

The scaling function converts raw fitness obtained evaluating the individuals with the 

objective function into values in a range that is suitable for the selection function. 

Typically there are two types of scaling functions: proportionate functions and ordinal-

based functions. Proportionate-based pick out individuals based on their fitness relative to 

the other individuals. Ordinal-based schemes select individuals upon their rank within the 

population. 

 Rank: scales the raw scores of each individual and assigns each its position 

number in the sorted scores as its rank. The fittest individual has rank 1, the 

second 2, and so on. This strategy removes the effect of spread raw scores. 

 Proportional: the probability assigned to each individual is proportional to its 

raw score. It may be prejudicial if the scores are too spread. 

 Top: after ranking the individuals, only the best ones are selected for breeding. 

The size of the group has to be set between 1 and N (N is population size). All the 

individuals in the group have the same probability of reproducing while the rest 

have none. 

 Shift linear: the fitness range of the population is redistributed to adapt the 

selection pressure. 

 Selection 

Selection has to be balanced with variation form crossover and mutation. Too strong 

selection means sub optimal highly fit individuals will take over the population, reducing 

the diversity needed for change and progress; too weak selection will result in too slow 

evolution. The various selection methods are discussed as follows: 
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Roulette Wheel Selection 

It is one traditional GA technique that consists in selecting from the mating pool with a 

probability proportional to the fitness of each individual. The principle is a linear search 

through a roulette wheel, where the sizes of the wheel slots are weighted in proportion to 

the individual’s fitness values. A real-valued interval is determined as either the sum of the 

individuals’ expected selection probabilities or the sum of the raw fitness values over all 

the individuals in the current population. The operation of the technique is easy to 

imagine with the parallelism to a roulette wheel: the expected value of an individual is that 

fitness divided by the actual fitness of the population. Each individual is assigned a slice of 

the wheel proportional to the individual’s fitness. The wheel is spun N times, where N is ne 

number of individuals of the population, and on each spin the individual under the marker 

is selected to be in the pool of parents for the next generation.  

It is only a moderately strong selection, since fittest individuals are not guaranteed to be 

selected although they have a greater chance. 

 

Random Selection 

This process selects parents randomly from the population. On average is more disruptive 

than other techniques. 

 

Tournament Selection 

Tournament selection puts selective pressure by holding a tournament competition 

among Nu individuals, a number that has to be specified. Parents are chose randomly in 

groups of Nu, and the one with best fitness is the winner of the tournament. There are as 

many tournaments as population needed in the mating pool. At the end the mating pool 

contains all the winners from all the tournaments and therefore; has a higher average 

fitness. 
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Stochastic Universal Sampling 

It consists in mapping the individuals to contiguous segments of a line, and as in the 

roulette wheel selection each individual segment is equal in size to its fitness. Equally 

spaced pointers are placed over the line, as many as individuals are needed to be selected. 

Considering N pointers, the distance between them is 1/N and the position of the first one 

is randomly generated within the range [0 , 1/N]. This technique provides zero bias and 

minimum spread. 

 

 

 

   Figure III.6 Example of stochastic universal sampling choosing 6 individuals 

 

 

 Elitism 

Apart from reproduction processes, elitism significantly improves GA’s performance. It 

consists in transferring directly the best or the few best chromosomes to the next 

generation, otherwise they could be lost if they were not selected to reproduce or if 

crossover or mutation destroyed them. 

 

 Crossover (recombination) 

Crossover is the process of taking two parents and producing a child from them. It is 

applied after the selection and should produce fitter individuals by combining the most 

favorable genes of the parents. 
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Single Point Crossover 

 

It is the most traditional crossover, where two mating chromosomes are cut once at 

corresponding points and the sections after the cutting point are exchanged. The 

crossover point is selected randomly along the length of the individual. If an appropriate 

point is selected, better children will be obtained.  

  

 

 

 

 

 

 

Figure III.7 Single point crossover 
 

Two Point Crossover 

The idea of the two point crossover is the same as in the one point crossover, but with 

another cut point randomly chosen along the chromosome. Two crossover points are 

chosen and the contents between these points are exchanged between two mated parents. 

Having more crossover points blocks are more likely to be disrupted but on the other hand, 

the problem space might be more thoroughly searched. With one-point crossover both the 

head and the tail from one individual cannot be passed together to the offspring. However, 

using the two-point crossover avoids this drawback. In fact, genes that are close to each 

other have more chances to be passed together and in leads to a correlation between 

genes next to each other. Uniform crossover avoids this unwanted correlation. 

 

 

Parent 1 

Parent 2 

Child 1 

Child 2 
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Figure III.8 Two-point crossover 
 

 

Uniform Crossover 

Each gene of a child is taken from one or the other parent randomly, according to a 

random binary crossover mask of the same length as the chromosomes. If the gene in the 

mask is a 0, that gene is taken from the first parent, if it is a 1, from the second. The 

crossover mask is randomly generated with an equal probability to create 0’s and 1’s. 

Other crossover techniques are the multi-point crossover, three parent crossover, 

crossover with reduced surrogate, shuffle crossover or other more elaborated techniques 

like Precedence Preservative Crossover (PPX), Partially Matched Crossover (PMX). 

 

 

 

 

 

Parent 1 

Parent 2 

Child 1 

Child 2 
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 Figure III.9 Uniform crossover  

Crossover Probability 

A basic parameter in crossover is the crossover probability (Pc). If this probability is 100%, 

all offspring are made by crossover. However, it is always good to leave some population 

survive to next generation. 

 Mutation 

Mutation is applied after crossover, as a measure to prevent falling into local minimum 

and recovering the lost genetic materials. It is a simple operator and whereas the aim of 

crossover is to exploit the current solution to find better ones, mutation has the aim of 

exploring the whole search space. Randomly modifying some gens introduces new genetic 

structures and thus ensuring ergodicity. A search space is ergodic if there is a non-zero 

probability of generating any solution from any population state. 

Flipping 

Flipping consists in changing a 0 bit for a 1, or 1 to 0 based on a mutation chromosome 

generated. The mutation chromosome has the same length as the parent and is randomly 

generated according to a fixed probability of having ones in the string, which means that 

the corresponding bit in parent chromosome will be flipped. 

 

Parent 1 

Parent 2 

Mask 

Child 1 

Child 2 
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Figure III.10 Mutation flipping 

 

Interchanging 

Two random positions of the string are chosen and the bits corresponding to those 

positions are interchanged.  

 

 

 

Figure III.11 Interchanging 

 

Reversing 

A random position is chosen and the bits next to that position are reversed and child 

chromosome is produced.  

 

 

 

 

 
Figure III.12 Reversing 

 

Parent  

Mutation chromosome 

Child  

Parent  

Child  

Parent  

Child  
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Mutation Probability 

Is the parameter that decides how often mutation will happen. Mutation prevents GA from 

falling into local extremes, but it should not occur too often, otherwise GA would have no 

effect and the algorithm would be a random search. 

 Replacement 

Replacement is the last step of the breeding process. After parents two by two are drawn 

from the mating pool and breed two children, it should be decided if the parents should 

die and be replaced by the children. There are two kinds of methods: generational updates 

and steady state updates. 

Generational updates consist in producing as many children as parents, and replace the 

complete population of parents by children. 

In steady state update the individuals are inserted in the population as soon as they are 

created and each insertion means that the new individual replaces an old one. The old 

individual can be the worst one or the oldest one, for example. These techniques put a 

strong selection pressure. 

Some of the most common techniques are: 

 Random replacement: the two new children replace two random chosen 

individuals (the parents are also candidates). 

 Weak parent replacement: weaker parents are replaced by stronger children. For 

example, between two parents and their two children only the fittest two will 

return to population. 

 Both parents: is the case where each individual only breeds once and afterwards 

both parents are killed and the children survive. 
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III.3.4.8 GA convergence criteria 

The most common convergence criteria for GAs are: 

 Maximum number of generations: the algorithm stops when the specified 

number of generations is reached. 

 Elapsed time: the algorithm will stop after when a specified time has elapsed. 

 No change in fitness: if there is no change to population’s best fitness value for 

a specified number of generations the process will end. 

 Stall generations: stops if there is no improvement in the objective function for 

a sequence of consecutive generations of a chosen length. 

 Stall time limit: the process stops if there is no improvement in the objective 

function during a time interval with a predefined value. 

 Fitness limit: if the best fitness value is less than or equal to the specified value 

of Fitness limit, the algorithm stops. 

 

 Search refinement 

Parameters like selection, crossover and replacement might be very effective in the early 

stages of the search, but not necessarily towards the end of the search. In the beginning of 

the algorithm it is desirable to have spread points through the solution space in order to 

find at least the start of the various optima. Once the population is close to the optimum it 

might be better to reduce selection and replacement to cover that stringent region of 

space. 
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III.3.5 Multiobjective optimization 

It might be the case where problems have more than one objective, since a single objective 

function is not enough to represent the problem being faced. There is a vector of 

objectives to be traded off: 

F(x) = [F1(x), F2(x),...,Fm(x)]      (3.10) 

The relative importance of the different objectives is not known until the best capabilities 

are determined and tradeoffs are fully understood. 

Since F(x) is a vector, there is no unique solution to the problem. Instead, the concept of 

noninferiority (also called Pareto optimality or front) is used to characterize the objectives. 

Thus by using the Pareto front, a set of solutions can be found that are all optimal 

compromises between the conflicting objectives. Each solution in the Pareto front is not 

dominated by any other solution. 

To define the concept, consider a feasible region Ω in the parameter space. X is an element 

of the n-dimensional real numbers that satisfies all the constraints. The performance 

vector F(x) maps parameter space into objective function space, as represented in two 

dimensions in the figure. 

 

 

 

 

Figure III.13 Parameters and objective function spaces 

 

This allows definition of the corresponding feasible region for the objective function space 

Λ: 
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Figure III.14 Pareto front 

A and B are noninferior solution points because an improvement in one objective, F1, 

requires a degradation in the other objective, F2, i.e., F1B < F1A, F2B > F2A. 

Since any point in Ω that is an inferior point represents a point in which improvement can 

be attained in all the objectives, it is clear that such a point is of no value. Multiobjective 

optimization is, therefore, concerned with the generation and selection of noninferior 

solution points. 

Noninferior solutions are also called Pareto optima. A general goal in multiobjective 

optimization is constructing the Pareto optima.  

GAs have been applied to solve multi-objective optimization problems in the recent years. 

The multiple directionality and global search features of the GA make it very appropriate 

to solve multi-objective optimization problems. The main issues are how to determinate 

the fitness value of individuals according to all multiple objective functions. 

The genetic multiobjective function uses controlled elitist genetic algorithm, which favors 

not only individuals with better fitness (rank) but also individuals that can help increase 

the diversity even if they have a lower fitness value. This is done by controlling the elite 

members of the population as the algorithm progresses. Using a Pareto fraction function, 

the number of individuals on the Pareto front is limited (elite members) and using a 

distance function, diversity on the front is maintained. 
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IV Description of the Case Study 

 

IV.1 Description of the real line 

IV. 1.1 Public transport network in Stockholm  

The city of Stockholm has a multimodal public transport network that consists of bus, 

metro, regional/suburban rail, light rail, tram and archipelago boat.  The operator of bus 

and rail services is Storstockholms Lokaltrafik (literally: Great Stockholm Public 

Transport), SL, owned by the Stockholm Country Council. 

The operation and maintenance of the several bus lines is delegated to the contractors, 

while the management of the whole network is done from a control center. 

Stockholm’s bus lines are organized into a three-level hierarchy depending on their 

characteristics: 

 Inner-city blue bus lines: these trunk lines travel through the main areas in the city 

center, with high frequency service and articulated buses. There are a total of four 

blue lines in the city center, all of them with high demand profiles. 

 

 Suburban blue bus lines: a variant of the inner-city group that act as important 

feeder lines between the suburbs and public transports hubs in Stockholm, or 

providing crossway connections between suburbs.  

 

 Service bus lines: the regular buses of the city, with less frequency and less 

maximum occupancy. They are painted in red, in contrast to the other types that 

are blue. 
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IV.1.2 APTS/ITS 

World largest digital trunked radio is currently operating in Stockholm, with more than 

2000 buses equipped and 28 depots integrated. Advanced Public Transportation Systems 

(APTS) are those Intelligent Transportation Systems (ITS) applied to public transit to 

improve operational efficiency, cost savings, safety and quality of service or other transit 

measures of performance. These new technologies make possible improvements in 

managing and controlling the bus transit operations, providing benefits in terms of speed, 

security and convenience directly to the customer. These APTS have the potential of 

changing in the near future the way operators provide their transit services and the way 

customers use the service. Automated Vehicle Location (AVL), Automatic Passenger 

Counting (APC), Automatic Vehicle Identification (AVI) and Electronic Fare Payment (EFP) 

are already implemented in the city buses and are being increasingly studied by 

researchers as valuable information to improve transit lines operations.  

 

IV.1.3 Bus Line 1 characteristics 

The present study is based in the blue bus line number 1 in Stockholm. The line connects 

the city west to east from Stora Essingen, an island located at the west of the city, passing 

through Cityterminalen (main bus terminal) and Hötorget (city commercial center) 

heading to the north-eastern port of Frihamnen over 33 stops. The way back consists of 31 

bus stops and slightly different paths. 

 Bus stops 

Table IV.1 contains the stops in each direction and consecutive distances between them. 

For a matter of convenience, the route with 33 stops heading to Frihamnen will be called 

EF33 and the inbound direction heading to Essingentorget will be called FE31. 

The type of bus used in this line is an articulated one with 12 meters length, 55 seats and a 

maximum capacity of 110 passengers. 
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Index Stop name Distance to 

Next Stop (m) 

Index Stop name Distance to 

Next Stop (m) 

1 ESSINGETORGET 340 1 FRIHAMNEN 330 

2 FLOTTBROVÄGEN 460 2 FRIHAMNSPORTEN 260 

3 BROPARKEN 620 3 SEHLSTEDTSGATAN 210 

4 PRIMUSGATAN 380 4 ÖSTHAMMARSGATAN 300 

5 LILLA ESSINGEN 240 5 RÖKUBBSGATAN 180 

6 WIVALLIUSGATAN 240 6 SANDSHAMNPLAN 500 

7 FYRVERKARBACKEN 250 7 GÄRDET 540 

8 VÄSTERBROPLAN 460 8 KAMPEMENTSBACK. 230 

9 MARIEBERGSGATAN 290 9 STORSKÄRSGATAN 400 

10 FRIDHEMSPLAN 390 10 VÄRTAVÄGEN 490 

11 S:T ERIKSGATAN 320 11 JUNGFRUGATAN 380 

12 S:T ERIKS SJH 310 12 NYBROGATAN 350 

13 SCHEELEGATAN 240 13 HUMLEGÅRDEN  390 

14 KUNGSBROPLAN 430 14 STUREPLAN 190 

15 CITYTERMINALEN 180 15 NORRLANDSGATAN 310 

16 VASAGATAN 340 16 SVEAVÄGEN 210 

17 HÖTORGET 450 17 HÖTORGET 360 

18 NORRLANDSGATAN 210 18 VASAGATAN 440 

19 STUREPLAN 250 19 KUNGSBROPLAN 260 

20 LINNÉGATAN 260 20 SCHEELEGATAN 400 

21 HUMLEGÅRDEN  230 21 S:T ERIKS SJH 360 

22 NYBROGATAN 490 22 S:T ERIKSGATAN 290 

23 JUNGFRUGATAN 490 23 FRIDHEMSPLAN 850 

24 VÄRTAVÄGEN 390 24 VÄSTERBROPLAN 210 

25 STORSKÄRSGATAN 320 25 FYRVERKARBACKEN 300 

26 KAMPEMENTSBACK. 450 26 WIVALLIUSGATAN 320 

27 GÄRDET 470 27 LILLA ESSINGEN 340 

28 SANDSHAMNPLAN 320 28 PRIMUSGATAN 730 

29 RÖKUBBSGATAN 160 29 BROPARKEN 280 

30 ÖSTHAMMARSGATAN 150 30 FLOTTBROVÄGEN 240 

31 SEHLSTEDTSGATAN 270 31 ESSINGETORGET 0 

32 FRIHAMNSPORTEN 470    

33 FRIHAMNEN 0    

Table IV.1 Blue bus line number 1 stops 
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Figure IV.1 Blue bus line number 1 path 

 

In Figure IV.1 the path of line 1 is represented with the connections between the line and 

the metro and light rail networks. Nowadays the route for line 1 is operated under 

schedule-based holding control with three holding points in Fridhemsplan, Hötorget and 

Värtavägen, explicitly indicated in the figure. It has to be pointed out that all three time 

points coincide with transfer stations. The driver relief point is planned to be at 

Fridhemsplan in which bus drivers change their working shifts with each other. 

 Timetable 

Since the current operational strategy of the line is schedule-based, a timetable is 

published for line 1. The frequency for this line changes occasionally from 5 to 4 minutes 

which makes a frequency of approximately 13 buses per hour.  

 Demand profile 

To simplify the model only one demand profile will be used in the simulation, which 

corresponds to the peak hour profile. Apart from calculating the number of passengers 

that board and alight at each stop it is also important to know the through passengers, 

which neither board nor alight at a certain stop. The attribute is calculated by the formula: 

                        (4.1) 

Frihamnen 

Stora Essingen 

         Metro station 

           Tram station 

            Time point 
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Where TPi is sum of through passengers at given stop i. The bus load at stop i-1 is 

presented by Li-1 and AFi-1 is alighting fraction, which means the probability of a passenger 

to alighting at the given stop.  

Bus load represents the total passenger load after the alighting and boarding process at a 

stop and is calculated by the formula: 

                          (4.2) 

Where BPi stands for number of passengers who are boarding at stop i and OBPi 

represents the number of passengers who are already on-board at the same stop. 

 

 

 Figure IV.2 Load profile EF33  
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 Figure IV.3 Load profile FE31 
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IV.2 Model of the line in BusMezzo 

IV.2.1 Model implementation 

Using data provided by SL, the Stockholm public transport operator the bus line number 1 

will be modeled in BusMezzo. The data provided by SL contains observed arrival and 

departure time of the line at each stop, dwell time at each stop, aggregated number of 

passengers boarding and alighting per stop, distance between stops and other parameters 

of the line. 

To the purpose of studying and assessing the effects of the different optimization 

algorithms, the blue line number 1 has been adapted and implemented in BusMezzo. The 

first step is to define the whole network as a joint of nodes and links.  

The designed line has two directions, outbound (EF33) and inbound (FE31), with 33 and 

31 stops respectively. Each node acts as a queue server, assigning a capacity to every 

turning movement. Therefore, a node is placed before every stop to reproduce the 

stochastic effect of traffic conditions. Since in BusMezzo origin and destination nodes of 

each route have to be defined, four more nodes are needed: two origins and two 

destinations, for the outbound and inbound routes respectively. Hence, a total of 36 nodes 

are required, numbered from 0 to 35. 

Once the physical network is defined, the BusMezzo objects to model the bus transit lines 

have to be implemented, adjusting the variables and inputs of the model to the real data: 

 Bus Route: the designed line consists of two routes: outbound (EF33) and 

inbound (FE31). Outbound route runs from node 1 to 31, passing through nodes in 

between them and the links that are defined between them in that direction 

(Figure IV.4). Inbound runs from 35 to 0, passing again through all the nodes but in 

the backwards direction. Hence, different links have to be used (Figure IV.5). 
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Figure IV.4 BusMezzo line implementation EF33 

 

 

 

 

 

 

Figure IV.5 BusMezzo line implementation FE31 

 

 Bus Stop: there are a total of 64 stops, each situated within every link, 20 meters 

from the upstream node. The minimal dwell time per stop is one second. 

 Bus Line: the outbound and inbound directions are defined as two different lines, 

lines EF33 and FE31 with 33 and 31 stops respectively. The initial occupancy at 

the head of the line is considered to be zero. 

 Bus Trip: in concordance to the total travelling time per direction and the trip 

chaining, 42 trips are done in each direction within the two hours of the simulation. 

The scheduled time between stops is calculated from the empirical data and 

depends on the distance between stops. The scheduled headway is variable 

changing from 5 to 4 minutes at certain time slices. 

 Bus Type: the fleet is composed by standard buses of 12 meters, with 55 seats and 

a maximum capacity of 110 passengers. 

 Bus Vehicle: According to the designed schedule, 42 vehicles are needed to cover 

the service in both directions, considering that the total travelling time for each 
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direction is 40 minutes and 5 minutes at the end of the line are minimum recovery 

time. According to this, the trip chaining for vehicles can be modeled. 

 

IV.2.2 Replication estimation 

To obtain consistent results from the simulation it is necessary to define the number of 

replications to be done for each algorithm step. 

A measure of reliability is the standard deviation of the headway. According to Burghout 

W., 2004b, Cats et al. 2010b, the following equation can be used to limit the error 

depending on the number of replications: 

 

      
               

       
 
 

     (4.3) 

In which N(m) represents the number of replications while given m initial simulation runs, 

      and S(m) are mean and the standard deviation of the objective function value. In this 

thesis, an error of 5% was chosen, which means a total of 50 replications per run. The 

results shown in all the document correspond to the averages of the 50 replications. 
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V Optimization algorithms 

 

V.1 Optimization objective function 

V.1.1 Literature review 

The first step to define an optimization problem is to create an appropriate function or set 

of functions to be optimized. 

Referring to the literature on the topic, several authors have used different objective 

functions to optimize the holding problem. Eberlein et al. (2001) only considered the total 

passenger waiting times, justifying that waiting times are more sensitive to control 

policies than in-vehicle travel times. However, no consideration was made for passenger 

waiting or holding times. 

Delgado et al. (2009) used an objective function to minimize is the total times experienced 

by passengers, from the waiting time at stop to alighting at the destination. The objective 

function includes passenger waiting time at stops and in-vehicle waiting (holding time) 

only. Since the vehicle running times are assumed to be constant, it is not included. 

Likewise, dwell time is not considered.   

The multi-objective function used by Cortés et al. (2009) considers total passenger waiting 

time at stops and on the other hand passenger holding time and passenger extra holding 

time when a station is skipped. 

In the problem developed by Malzoumi et al. (2010) using the ant colony optimization, 

four terms define the objective function: waiting time at stops, holding time, a lateness 

penalty and an operational cost term. 

As it can be observed from the past literature, there is no agreement yet in which is the 

best objective function to minimize when solving the holding problem. There is a clear 

trend to analyze the passenger waiting time at stops and holding time, but not much 

regard is given to in-vehicle riding time or dwell time. However, the holding problem and 

its consequences can be analyzed from different perspectives. Hence, several objective 

functions can be defined, taking into account the appropriate variables that are relevant 

from the perspective the problem is treated. 
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V.1.2 Passenger perspective 

Since BusMezzo records all the events consecutively an objective function that takes into 

account all the different time components of a passenger bus trip can be defined. If we 

look at the different parts that comprise a bus trip from the traveler standpoint, we can 

classify them in basically three main types (four if we consider the holding strategy):  

 WT: passenger waiting time at the origin stop. 

 DT: total dwell time, which is the sum of all dwell times experienced by a 

passenger along his route. 

 RT: total in-vehicle riding time; the sum of all the time slices in which the bus is 

travelling between stops, experienced by a passenger along his route. 

 HT: total holding time is the sum of all time slices in which the bus is held at a stop 

because of the control strategy. 

To take into account the overall line behavior, the different time components have to be 

aggregated for all passengers. Some studies (Kemp 1973, Ben-Akiva and Lerman 1985) 

suggest that users are more sensitive to waiting time than to in-vehicle riding time 

because of the uncertainty generated for the waiting. Therefore, different weights have to 

be assigned to each time components depending on the level of unreliability that the 

traveler perceives. The objective function is defined as: 

 

                                                  (5.1) 

 

Where      is the number and layout of holding points along the line and    the different 

weights for the different time components. The vector of variables    contains as many 

variables as stops and each position in the vector represents the corresponding stop 

according to their sequence in the line. Using binary system every stop can be either set as 

a time point assigning the value 1 to that position of the vector or a non-holding station 

assigning a 0 in the corresponding position. 
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V.1.3 Operator perspective 

An important issue from the operator perspective is to optimize the fleet size and ensure a 

reliable service once that size is set. Wrong or non-optimal decisions made at this point 

can represent an increase in operational costs such as labor wage, depots cost and 

depreciation. The variable used by SL to assign fleet size is the 90th percentile of the total 

travel time (TTT). 

Percentiles are specified using percentages, from 0 to 100. For an n-element vector X, 

percentiles are calculated as follows: 

 The sorted values in X are taken to be the 100(0.5/n), 100(1.5/n), ..., 100([n-0.5]/n) 

percentiles. 

 Linear interpolation is used to compute percentiles for percent values between 

100(0.5/n) and 100([n-0.5]/n). 

 The minimum or maximum values in X are assigned to percentiles for percent 

values outside that range. 

Since only the outbound direction EF33 is studied, the total travel time considered will be 

the time from the departure from the first stop in that direction in Essingetorget to the 

arrival at Frihamnen at the end of the line. Therefore, the function to optimize from the 

operator perspective will be as follows: 

                       (5.2) 
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V.2 Algorithms definition 

V.2.1 Greedy algorithm 

The first approach to solve the holding problem for the given modeled case will be using a 

greedy algorithm. This algorithm will start from the base case (no holding points), and by 

adding one more holding point per loop will pursuit an improvement of the objective 

function       . A flowchart of the algorithm running scheme is showed in Figure V.1. 

As shown in the flowchart the algorithm starts initializing the model parameters, which is 

setting the number of time points in zero to run the base case (no time points). Once 

simulated the base case with BusMezzo the output data is read and stored. Immediately 

afterwards a loop is initialized that adds one holding point to the current case. This time 

point is tried iteratively in every feasible position until all combinations are tried. An 

internal subprocess changes the input for BusMezzo, runs the application and extracts the 

output data for every case within the loop. Once all the possible N layouts are simulated, 

their output is compared to choose the case with the lowest objective function value as the 

optimal one. Afterwards, the stopping criteria is checked: if the current best objective 

function value is lower than the objective function value obtained in the last loop (i.e. if 

there has been an improvement in the objective function by adding one more time point), 

the algorithm goes to the next loop. Before entering to the next loop and adding a new 

time point, the best time point layout from the current iteration is fixed. Hence, the new 

time point in the next iteration will have N-1 feasible positions. 

On the contrary, if the new objective function value is higher than the best of the last loop 

(i.e. there is no improvement by adding a new time point), the algorithm stops and takes 

as optimal value and optimal time points layout the one obtained in the last loop.  
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 Figure V.1 Greedy algorithm flowchart 
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V.2.2 Genetic algorithm 

A more elaborated approach to optimize the holding problem that takes into account the 

stochastic character of the data by using a metaheuristic approach is using a genetic 

algorithm. The function to optimize will be also      . A flowchart of the algorithm running 

scheme is showed in Figure V.2. 

When the algorithm starts, the parameters of the genetic algorithm have to be defined. 

These parameters include: number of individuals, initial population, scaling function, 

selection function, crossover and mutation functions and stopping criteria. In this study 

defining a maximum number of generations will be the stopping criterion. 

An initial population is created from a predefined creation function. In the current 

algorithm a function that created population with a specified probability for every stop to 

be a time point was selected. 

The initial population, as well as all other individuals that are created along the 

generations is evaluated with the same internal process of the previous algorithm: an 

internal subprocess that changes the input for BusMezzo, runs the application and extracts 

the output data for every case within the loop. 

After the population members are evaluated the individuals are bred to create offspring, 

using the typical techniques of GA (fitness scaling, selection, crossover and mutation in 

this order). The offspring becomes the new population and the loop is repeated again until 

the chosen number of generations is reached. 

The individuals in every generation will converge progressively to a space of solutions 

where the optimal solution should be found. However, because of the stochastic character 

of the data, it cannot be assured that the best value of the objective function will be found 

in the last generation. The best individuals will survive through generations because of the 

elitism technique but their objective function value will vary because they are evaluated 

again in every generation. 

 

 

 



Optimization analysis of the number and location of holding control stops  
A simulation-based evaluation of line number 1, Stockholm  
 
 

 
73 

 
 
 

Ferran Mach Rufí 

V.2.3 Multi-objective genetic algorithm 

In this approach to the problem the two objective functions        and        will be 

minimized, generating a Pareto front as explained in III.3.5. The multiobjective 

optimization used is based on the GA; therefore, the scheme of the algorithm is almost the 

same as in the GA (Figure V.2). The few differences are the fact that two objective 

functions are evaluated per individual instead of only one and the introduction of the 

Pareto fraction function and distance function, both with the aim of guaranteeing diversity 

in the individuals and avoiding premature convergence. 
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 Figure V.2 Genetic algorithm flowchart
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VI Results and discussion 

The results obtained from the use of the three implemented algorithms are discussed and 

explained in this section of the thesis. All the algorithms return the value of the defined 

objective function as an output (the values of both objective functions in the case of the 

multi-objective optimization). The way these algorithms are implemented, not exclusively 

the total value of the objective function in the different scenarios is calculated, but also the 

components of the function, which represents more interesting data to analyze when 

discussing the results. Obviously, another desired output is the list of stops where a 

holding strategy will be applied (the holding points): it is a matter of study in this work to 

analyze their position in the line and the total number of them. 

VI.1 Greedy algorithm results 

The first results to assess will be the ones given by the complete run of the algorithm 

without stopping criteria, to fully reproduce the behaviour of the algorithm and contrast 

the output with the latter solution when the stopping criteria is considered. 

Figure  VI.1 shows the value of the objective function using the greedy algorithm, when no 

stopping criterion is used. As the algorithm works, in every iteration one more holding 

point is added in the position where the objective function is lower among the feasible 

positions. It can be seen how from the moment the first time point is added, the objective 

function value decreases almost an 11%. For less than ten time points, the value of the 

objective function remains low and similar to the value introducing the first time point. 

However, from the 11th time point on, the value increases more rapidly until the 

introduction of the last time point. Around the 20th time point approximately the objective 

function reaches the value of the base case with no holding control. The case with control 

in all stops represents a 14,7% increase comparing with the no holding strategy. 
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Figure VI.1 Objective function value for the complete run of the greedy algorithm 

In order to thoroughly understand the behaviour of the function, its four components need 

to be studied separately. In figure VI.2 a representation of in-vehicle riding time and dwell 

time shows the very similar trend those two variables have. If the trend lines are observed, 

it can be noticed that the minimal values for riding time and waiting time are obtained for 

the cases of 2 and 3 time points, respectively. The values for these time components for 

the case with no time points and holding in all stops are very similar. Comparing the best 

and worst values for each function, a maximum improvement of 7,7% can be achieved in 

riding time and an improvement of a 12,6% in dwell time. Comparing the best values with 

the no control case, it exists an improvement of a 6,8% in riding time and a 7,6% in the 

dwell time. It is remarkable that the total passenger experienced dwell time is on average 

as much as an 85% of the riding time.  
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Figure VI.2 Dwell and riding time values for the complete run of the greedy algorithm 

 

The other two components of the objective function are shown in figure VI.3, without the 

effect of their respective weights. As expected, holding time increases with the number of 

time points, although the value is quite stable from introducing one to ten holding points. 

From the tenth time point the increasing trend becomes clearer. On the contrary, the 

range of waiting time values is very limited since the moment the first time point is 

introduced to the case of all stops as holding points. The maximum improvement that can 

be obtained in the waiting time is for ten time points, and represents an improvement of 

the 23,4% in comparison with the no time points case. 
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Figure VI.3 Holding and waiting time values for the complete run of the greedy algorithm 

 

 

 

Figure VI.4 Total passenger waiting time vs. average SD of the headway for the 1st iteration 

 

It is interesting to have a look at the first iteration results (choosing the most optimal 

position for the first holding point) in Figure VI.4 . If we look at the results of the average 

standard deviation of the headway and the passenger waiting time we realize that their 

trends are almost equal. In BusMezzo the two components are calculated separately; the 

simulator registers all the events sequentially in time and waiting time is calculated from 
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disaggregate data. The similar behavior of the functions can be explained with the 

following relationship:  

      
 

 
      

        (6.1) 

Where E(WT) is the expectation of waiting time and CVh is the coefficient of variation of 

the headway. The coefficient of variation of the headway is used to reflect bus line 

reliability. The coefficient is defined as: 

 

    
   

  
      (6.2) 

Hence, looking at the two functions behavior it can be concluded that the simulator 

captures the relationship between the two variables. 

To evaluate the best location of the time points that can be obtained with the algorithm, 

Figure VI.5 shows the location of the chosen time point per iteration. To clarify the plot, in 

the first iteration the 13th stop becomes a time point and in the second iteration the 1st 

stop is added as a time point. This process is repeated until all 33 stops have become time 

points. Analyzing the locations along the iterations, it is remarkable the fact that in the 

first 10 iterations, the time points are allocated in the first half of the line, basically 

between stops 1-15.  The fact that stops at the end of the line are also selected (31 and 33) 

is not as much because their improvement in the objective function, but mostly because 

since these stops are at the end of the line and not many passengers board, introducing 

these stops as time points does not affect much the value of the objective function. 

It seems clear then, that using the greedy technique the most favorable stops to be time 

points are the ones located within the first half of the line and the ones located in the 

second half are not introduced as time points until the last iterations of the algorithm. 
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Figure VI.5 Best location of TPs per iteration in the greedy complete run 

 

The use of more time points means more control which can be understood lower 

coefficients of variation. Figure VI.6 represents the evolution of this coefficient with the 

number of iterations. It is especially important the improvement that can be achieved 

when introducing the first time point; a reduction of almost a 50%. From that moment, the 

general trend is to lower the coefficient with the increase of time points as expected. 
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Figure VI.6 Evolution of the coefficient of variation of the headway for the complete run 

 

 Stopping criteria 

 

When the stopping criterion is introduced in the algorithm, it stops when the objective 

function cannot be improved by adding one more time point. In the case of the greedy 

algorithm run, this point is after the third iteration. Three time points have been set until 

that moment: 13th, 1st and 7th, in this order. It happens that the value of the objective 

function at that point corresponds to the minimum value of the objective function that the 

greedy algorithm can achieve along all iterations. Therefore, it can be concluded that the 

stopping criterion is successful. With the chosen combination of time points the value of 

the objective function is improved by a 11,3% comparing to the case of no time points. 

Although the chosen layout by the algorithm are the three stops (1, 7 and 13), there is no 
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A penalty function could be added, which penalizes the introduction of more time points, 

because of the extra operation complexity that means having more holding points.  
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VI.2 Genetic algorithm results 

The genetic algorithm implemented was run with the following parameters: 

 An randomly generated initial population with a probability for each stop to be 

time point of 0,15. 

 A population of 20 individuals per generation. 

 A proportional scaling function 

 Roulette wheel selection 

 Elitism of two individuals per generation 

 Uniform crossover with probability of 0,8. 

 Flipping mutation with probability of 0,2. 

 Generational updates for replacement 

 A stopping criteria based on the number of generations. In this case, 25 

generations plus the initial population. 

 

 

 

Figure VI.7 Average, SD and minimum objective function value for generation 
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Generating a random initial population with a probability of 0,15 will generate on average 

almost five holding points per population; an initial first approximation that exceeds the 

number of optimal time points according to the greedy algorithm. According to figure VI.7, 

very good individuals are created even in the initial population, according to the minimum 

value of the objective function for one of the individuals. With the progress of the 

algorithm, the average value of the objective function decreases until the 15th generation 

approximately. However, it can be noticed how from that point the average increases 

again, and so does the standard deviation. The reason for this behavior is the algorithm 

itself, which after some generations where crossover played a major part in the creation of 

new individuals falls into a minimum with little variability among the individuals. From 

that point, instead of coming to a standstill, mutation starts playing a major role, creating 

new genotypes which perform well and the algorithm continues exploring in those new 

directions. 

Studying the components of the objective function, Figure VI.8 shows the evolution of the 

average waiting time per generation and its standard deviation. Although there is not 

much decrease in the average value it can be observed that it exists a trend to decrease 

slightly until the 11th generation, almost a 4% comparing that value with the one obtained 

from the initial population. 

 

Figure VI.8 Average and standard deviation of the total passenger waiting time per generation 
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Focusing in the total passenger holding time (Figure VI.9), the decreasing trend of the 

average value is more marked than in the previous case, until the 15th generation 

approximately, where the algorithm starts exploring new solution spaces with mutation. 

This more marked decrease is up to a 19%, comparing the value of the initial population 

and the 14th one. Accordingly, the standard deviation decreases until the same point and 

increases again after then. The trend is consistent with the fact that the improvement in 

the objective function is mainly due to improvement in the holding time component, 

rather than waiting time. 

 

 

Figure VI.9 Average and standard deviation of the total passenger holding time per generation 
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Figure VI.10 Frequency of time points in 0, 5, 10 and 15th generations 
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Ranking 

position 
Time points 

Number 

of TP 

1   13    1 

2   13   21 2 

3 6  13    2 

4  7 13    2 

5  7 13  15  3 

6   13 14   2 

7    14   1 

8 6 7 13    3 

9 6 7 13  15  4 

10 6   14  21 3 

Table VI.1 Rank of the 10 best GA individuals within all generations 

 

Figure VI.11 Evolution of the individuals’ average number of TP per generation 
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Taking all individuals created by the algorithm along all generations, and analyzing their 

number of time points and their performance can be useful to judge the influence of the 

number of holding points. In Figure VI.12, four histograms corresponding to all the 

individuals with a total of one, two, three and four time points are plotted. Despite the 

different number of time points, the trend is similar in all cases, slightly shifted to the right. 

It is clear that there is higher variability of the objective function within a given number of 

time points than variability between different number of time points, which implies that 

location is more important than the number of time points. 

 

 

Figure VI.12 Histograms of the objective function value for different number of TP 
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VI.3 Multiobjective GA results 

With the use of the multiobjective GA optimization the aim is to find the Pareto front of the 

two functions. Figure VI.13 contains a representation of all individuals from generations 0, 

3, 6, 9, 12 and 15. The algorithm pursuits to create new individuals that are closer to the 

Pareto front in every generation. In the current run of the algorithm only two points are in 

the Pareto front, and both correspond to the same time point layout: both solutions come 

from different evaluations for the individual with a single time point in the 13th stop. 

Therefore, it can be concluded that there is no trade-off between the two objective 

functions, but a direct relationship that allows improving both values simultaneously. As a 

result, optimizing the function from the passenger perspective, also optimizes the function 

from the operator point of view, and vice versa. 

 

 

 Figure VI.13 Individuals obtained by the multiobjective GA for different generations 
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VI.4 Comparison of the solutions 

In this section, the results obtained with the different algorithms are compared with the 

current situation and with the case with no control. The Figure VI.14 shows the values of 

the four different time components for those cases. The greedy solution has three time 

points (1,7 and 13) and the genetic solution only one time point (13). It is noticeable the 

higher value of holding time of the current situation compared with the rest of the cases. 

However, the passenger waiting time is very similar for the three cases where holding is 

applied, independently of the time points. 

 

Figure VI.14 Time components for the best found solutions 
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lies in the right part of the histogram, by the 75th percentile of the values for two time 

points, approximately. As mentioned before, the current time point location objective 

value is very close to the no control value; therefore it can be considered that 

approximately a 75% two-point combinations are better than the current location. The 

histogram illustrates how important the location of the time points is, for example, 

showing how some solutions are worse than the no-control case or that the current 

location of the time points is worse than some random layouts. 

Comparing the algorithms efficiency in terms of computational time, which depends 

mostly in the number of simulations required, the greedy algorithm with the stopping 

criterion reached the solution in the third iteration. Hence, the algorithm stopped after 

evaluating the possible layouts for the fourth iteration, evaluating in total 127 cases. 

On the other hand, we considered that the genetic algorithm reached the best solutions in 

the fifteenth generation, with 20 evaluations per generation. This means a total of 320 

individuals evaluated. 

Because most of the computational time is due to the time needed to make the number 

of replications needed for the simulation, we can establish a direct relationship between 

the number of assessments and total computational time. Considering this, the time 

needed to reach the best solution of the genetic is 2,5 times the time required for the 

greedy. The total time of execution for a run (with 50 replications) was 25 seconds on a PC 

Intel Core 2 Duo, 2,13GHz, 4GB RAM running windows 7. 
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 Figure VI.15 Histogram for all 1 TP (33) and 2 TP (528) combinations 

 

In the last table (Table VI.2), the values for the time components of the objective function, 

the value of the objective function itself and the 90th percentile of the total travel time are 

given explicitly. The cases included are the current situation, the no control case, the best 

solutions given by the greedy (1st, 7th and 13th), genetic (13th) and another solution that 

corresponds to one of the best individuals of the genetic algorithm (6th, 14th and 21st stops 

as time points). The output of this last layout is solid with the rest, since is neither best 

than the best solutions found by the algorithms, nor worse than the current or no control 

situation. However, as one of the best solutions of the genetic, the results are closer to the 

best solutions than to the other cases. 

The value of the last column corresponds to the total standing time per passenger, a 

crowding measure to assess how do different holding strategies and time point locations 

affect the total time on average a passenger is standing in the bus. Is calculated the 

following way: 

    
                             

                        
     (6.3) 

where RT and DT are riding and dwell times respectively, c the capacity of the vehicle, L 

passenger load and TP through passengers. 
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Looking at the total standing time it can be observed how regularity affects crowding and 

how less regular lines represent more crowded buses (the no control case has the higher 

value, for example). 

 
RT 

(pass. x h.) 
DT 

(pass. x h.) 
WT 

(pass. x h.) 
HT 

(pass. x h.) 

Objective 
function 

(pass. x h.) 

90th perc. 
TTT 

(min.) 

TST/pass. 
(sec.) 

 
Current 

 
753.86 634.41 531.14 231.27 2797.45 39.2 95 

 
No control 

 
798.77 667.85 674.92 0.00 2816.46 34.5 103 

 
Greedy 

 
745.10 617.23 531.99 47.61 2497.72 34.6 89 

 
Genetic 

 
740.20 622.98 525.75 47.93 2486.58 34.7 88 

 
6-14-21 

 
747.20 624.23 526.84 59.70 2514.67 35.6 94 

 Table VI.2 Numerical results  
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VII Conclusions 

 

VII.1 Summary of the main results  

This thesis presents several optimization algorithms to optimize the number and location 

of time points in a bus line, given a headway-based holding strategy.  To limit the scope of 

the problem, only one the holding problem in one direction is studied, although both 

directions are simulated and the trip chaining between the out- and ingoing directions is 

considered. The optimization is based in the output given by a mesoscopic transit 

simulator, BusMezzo, and the line modeled is a real-world one; more concretely the bus 

blue line number 1 of the city of Stockholm. 

The optimization algorithms used are a greedy one, a genetic algorithm and a 

multiobjective genetic algorithm. With the first two, a function that represents the total 

travelling (riding, dwell and holding) and waiting times experienced by the passengers is 

optimized, taking into account a weight factors for the waiting and holding times, which 

are perceived as having more disutility or discomfort for the passenger. The 

multiobjective genetic optimization is used to optimize that function, which takes mainly 

into account the performance of the service from the travelers’ perspective, and another 

function that optimizes the operation from the operator perspective. This latter function 

considers the 90th percentile of the total travel time for each bus trip, a measure that can 

be used for the operator to plan the fleet and trip chaining for the line to ensure certain 

levels of reliability. 

The developed greedy algorithm achieved an improvement of the objective function 

higher than an 11% with the optimal solution having three time points. However, the 

difference between adding only the first time point and the solution with the three holding 

points is not significant. The introduction of more holding points means more complicated 

management of the line, for this reason; despite of the result of the greedy algorithm, it 

might be better to introduce only the first holding point obtained by the algorithm. 

The optimization using the greedy algorithm leads to a best solution with only one time 

point. However, looking at the best individuals, it is possible to identify some dominant 

positions that appear more frequently among the individuals along the generations, and 
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the difference between the best individual and those alternative good solutions is less than 

1,5%. Between those individuals there is a trend to locate mostly all time points in the first 

half of the line, almost evenly spread. The layouts resembles the current time point 

location slightly shifted.   

When comparing the solutions found and the rules of thumb used by agencies nowadays it 

can be observed in the load profile that after the 13th stop there is a sequence of stops with 

important boarding numbers. This is consistent with a common rule of thumb. The other 

rule of considering the first stop as a time point is already implemented by default in 

BusMezzo with the dispatching from the origin terminal subject to schedule control and 

vehicle availability.  

It arises the question then, about which factor is more decisive: the number of time points 

used or the location of the time points. To answer these questions, the best solutions given 

by the genetic algorithm have been analyzed to finally determine that among the best 

solutions brought by the algorithm there is some variability in the number of holding 

points between one and four time points, but not as much variability in the positions these 

time points are located. 

 

VII.2 Future research recommendations 

Some different research directions might come out from this thesis. From the point of view 

of the optimization algorithms, a more accurate study could be conducted about the two 

algorithms used: different greedy algorithms with different choosing criteria or a 

sensitivity analysis about the genetic algorithm parameters and operators could lead to 

more accurate solutions in less number of iterations (or generations), exploring a wider 

parameter search space. Because of the many parameters, operators and techniques 

applicable to the genetic algorithm, many possible combinations of these variables are 

possible, all of them with different efficiency. An analysis in depth of them, according to 

the problem conditions is also recommended.  

It might be interesting to analyze the relationship between line characteristics such as 

load profiles, bus stop distances or headway variability and the results of the algorithms. A 

sensitivity analysis about how these parameters affect the best solution given, in terms of 
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number and location of time points, could allow to reformulating or reinforcing the rules 

of thumb used by public transport agencies nowadays and to enable to generalize the rules 

for determining their layouts. 

As mentioned in the literature review, different authors have used different objective 

functions, choosing the parameters depending on the approach studied in their works. The 

variables and weights used in this thesis could be changed to study how much does the 

optimal solution vary with them. It might be advisable to introduce new components to 

the objective function, lik e a penalty for increased number of time points because of 

operating complexity, or a variable to take into account passenger comfort, for example. 

This work took into account only one direction of the line, supposing no holding in the 

other direction but the problem of optimizing the number and location of time points in 

both directions should be studied to analyze how the solution changes because of the 

interaction of considering both ways. 
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