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Abstract

The aim of image-based video navigation is essentially to achieve a continuous
change in the viewpoint without the need of a complete camera coverage of
the space of interest. By making use of image interpolation, the need for video
hardware can be reduced drastically by replacing them, in the desired view-
points, with virtual video cameras. In this work, based on previously published
approaches, an algorithm for time and space image interpolation is developed
with a video application perspective, where human-eye image interpretation is
taken as a priority over exact geometry construction of the image sequences.

L’objectiu de la v́ıdeo navegació basada en imatges és, principalment, acon-
seguir múltiples vistes d’un mateix escenari sense la necessitat de cobrir comple-
tament l’espai d’interès amb l’ús de càmeres de v́ıdeo. Fent us de la interpolació
d’imatges, la necessitat de hardware de v́ıdeo pot ser redüıda dràsticament al ser
reemplaçat, en els punts de vista desitjats, amb càmeres de v́ıdeo virtuals. En
aquest treball, basat en aproximacions publicades anteriorment, desenvolupem
un algoritme per a la interpolació d’imatges en temps i espai amb una perspec-
tiva d’aplicació de v́ıdeo, on la interpretació des del punt de vista de l’ull humà
es pren com a prioritat sobre la construcció exacte de figures geomètriques en
les seqüències d’imatges.

El objetivo de la video navegación basada en imágenes es principalmente lograr
un cambio continuo de perspectiva sin la necesidad de cubrir completamente
el espacio de interés con el uso de cámaras de video. Haciendo uso de inter-
polación de imágenes, la necesidad de hardware de video puede ser reducido
drásticamente al ser remplazado, en los puntos de vista deseados, con cámaras
de video virtuales. En este trabajo, basado en aproximaciones publicadas an-
teriormente, desarrollamos un algoritmo para la interpolación de imágenes en
tiempo y espacio con una perspectiva de aplicación de video, donde la inter-
pretación desde el punto de vista del ojo humano se toma como prioridad sobre
la construcción exacta de figuras geométricas en las secuencias de imágenes.



Prologue

We are human, and we feel.

Communicating our feelings has always meant a challenge for both men and
women throughout the history of Mankind. Art is the space that functions as
a means to express what sometimes cannot be expressed through dialogue.

Art is expression of feelings. It is the opportunity of using the body to give
an intimate message to possible spectators of the work. Great artists are distin-
guished by having the ability to achieve the connection between what is in the
heart and what is in the exterior through some particular tool; whether it be a
pencil, a musical instrument, clay, or perhaps a canvas. Those artworks which
succeeded in moving the feelings of those who contemplate them, transmitting
and sharing what the artist has felt at the time of creation, have achieved their
goal.

We are human, and we reason.

In the matter of reducing the complexity of living, or rather of surviving,
Humans have made use of their reasoning abilities to create technology. From a
simple sheet of paper to the most complex aircraft, every technological invention
is characterized as being a resort to adapt to the environment in which men and
women live, according to their needs and concerns. The paradigmatic case, in
the context of the Information Age, is that of computers.

Day after day life experiences are more influenced by the incessant improve-
ment of information and computing technologies. The processing of algorithms
through computers is, as time moves on, less and less limited to the resolution
of theoretical problems, which may be beyond the reach of the five senses of
ordinary people, and influence, in a more perceptible way, daily life experiences.
The speed of operation resolution that computers currently reach, and the ad-
vantage that this gives regarding time and resource savings, has allowed that
they affect every, or almost every field of knowledge nowadays.

We are human, and we imagine.

Throughout history, art and technology have found ways to compliment one
another. Sometimes their coexistence has proven to be a way of reinforcing each
other. I think of architecture as a clear example for this approach; however, it
is also usual to hear people refer to a Formula 1 engine as artwork.

However, the dehumanization of technological tools, which could be under-
stood as the misunderstanding of how these tools work, given the increasing
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complexity throughout their evolution, makes it difficult to conceive machines
as vehicles for the expression of feelings. It is, in itself, already a challenge to
express them! Why should we further complicate our lives by making use of
new technologies?

But some environments exist in which the convergence of both fields is not
inconceivable. On the one hand, an image can be defined depending on the angle
from which it is interpreted. It may be a graphical representation on paper, it
can be a drawing, a photograph or a painting from an artistic approach. On the
other hand, an image may also be defined as a two-dimensional spatial signal,
if done from an engineering perspective.

Images represent an area of reconciliation between art and technology, be-
tween art and engineering. Advances in the signal processing field have al-
lowed great versatility in the manipulation of images, and as a consequence,
the opportunity to venture into this activity with an artistic vision. The use of
computational tools for graphical design is, for example, increasingly common.

The whole computer art scene, which represents a community of people in-
terested and active in the creation of computer-based artwork, has found in this
reconciliation one more occasion to strengthen bonds between arts and technol-
ogy; between creativity and ingenuity; between feelings and reasoning. All this
through the use of imagination.

Based on algorithms that take into account, as an efficiency factor, plausi-
bility of the results from a visual perception point of view over merely numeric
parameters, this Master thesis is simply an additional contribution in the use
of information technologies to reinforce the artistic virtues of image process-
ing; making it a possible motivation for filmmakers, video creators or people
interested in imagery arts in general.

Our specific topic, free-viewpoint navigation systems, which have the objec-
tive of rendering photo realistic views of the real world scenes from arbitrary
perspectives, offers the opportunity to create physically impossible effects such
as frozen-time scene exploration and extreme slow motion.
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Introduction

On the research paper titled Perception-Motivated Interpolation of Image Se-
quences by Stich et al. [4] an approach for image-based interpolation is pre-
sented based on a series of algorithms focused primarily in plausibility from
a human perception perspective. This Master Thesis uses Stich’s work as a
base-point for achieving once again convincing interpolated images, which work
as a starting point for free-viewpoint video navigation, but experimenting with
different strategies and using Matlab as programming language and numerical
environment.

Objective

If anyone is asked to analyse Figure 1 which corresponds to a stereo-vision scene,
where the space difference between viewpoints is no more than 10 degrees, and
to tell which parts in the first image correspond to the ones in the second, he
or she would not have any difficulty in answering. Anyone can easily match
every part of the dancer’s body (shoes, hair, hand, etc) between both images,
match every figure in the background and tell which parts of the image have
been occluded or which figures are new in the distinct view-point. We know that
at the edges of the images we will be able to see things from one perspective
which are invisible to the other. Our brains are trained to understand about
changes in perspective and we have previous knowledge about the objects in the
pictures, e.g we know how an arm or a leg moves, and we have a clear idea of how
color tones behave in a human face. Depth perception is also an important tool
that allows us to know in advance if an object will cover a farther one if we, as
observers, move left or right, up or down. As humans, we are able to make these
”logical” statements about the two images in Figure 1, but computers cannot.
Computers do not see a dancer, computers see a two-dimensional discrete signal
that, in principle, has independent elements. Which criteria will a computer use
to know how perspective behaves? Or, if instead of space difference we analyse
time difference, which criteria will a computer use to match an arm that has
moved? The intention of this work is to process two images from a same scene
but from different perspectives and/or different time instants, in a way that
computed correspondences between both may be as close as the ones anyone
would point out with her or his finger. By achieving this it will then be possible
to synthesize a plausible intermediate view of the scene (interpolation of images).
It can also be seen as an endeavour to decoratively reduce the abysmal distance
between human and computer image interpretation.

The goal of this thesis is, therefore, to generate an algorithm that, by taking
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(a) (b)

Figure 1: Stereo vision scene

advantage of some previous work done in the field, is able to synthesize these
interpolated images and afterwards use them for video navigation applications.
Visual effects such as bullet time and slow motion, are the intended aims to
be reached with the procedures shown in this work. It is an effort to improve
post-processing techniques in order to reduce the costs that this kind of video
experiences represent. The goal is also to obtain results that may be evaluated,
by comparing them with real intermediate images. This will help to know which
aspects of the strategy deserve more attention for students who may be willing
to improve the algorithm in the future.

It should be taken into account that even if a real-time solution is, without
a doubt, of great interest in this field of knowledge, the developed algorithm
does not offer a solution of this kind. The main goal is centered in finding a
correct implementation of image processing algorithms that will construct the
desired interpolations. Although a great effort has been injected in improving
the efficiency of the code, this by itself is not a major objective. Also, it is worth
saying that in what refers to Matlab, real-time is not precisely its strongest
quality.

Related work

Even though video navigation is to be the goal of the algorithm designed in this
work, it is mostly concentrated in the generation of the interpolated images.

The Computer Graphics Lab at TU Braunschweig in Germany has been
working in this area for some years now. Besides the interpolation paper, based
on perception by Stich et. al. [4], a lot of effort has been dedicated to the study
of different mechanisms for the optimization of video navigation. Lipski et. al.
put together previous work done on image interpolation based on dense corre-
spondences and post processing methods to achieve some interesting results in
their article titled “Virtual Video Camera: Image-Based Viewpoint Navigation
Through Space and Time” [5].

Another contribution from Lipski et. al. [6], is dedicated to the optimization
of the estimation of the dense correspondences, which is, in fact, one key step
for the interpolation of the images. This article is focused on several video post-
processing maneuvers such as image morphing, optical flow estimation, stereo
rectification, disparity/depth reconstruction and baseline adjustment.

In the movie industry, algorithms such as the ones presented by Beier and
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Introduction

Neely [7] are often used to create visual effects in order to smooth transitions
between actor appearances during the film. This is known as image morphing,
where determined objects in the images are interpolated based on user-defined
correspondences; and it is also a concept closely related to this work.

In what refers to topics related with image perception, Vangorp et. al. [8]
worked on the influence of material of objects to shape perception showing inter-
esting dependencies between differentiability of material properties and surfaces.
One year later, Ramanarayanan et. al. [9] published an article titled “Percep-
tion of complex aggregates” where they worked on user studies focused on visual
equivalence of rendered images, and the equivalence of the rendering of groups
of objects depending on shape and texture.

Divergences with the original approach

In general, the approach followed in this work is very similar to Stich et al. [4],
but some important differences are worth mentioning. In relation to the dense
correspondence computation, which basically relates both images to be interpo-
lated by means of the edges of the figures in the scene, Stich’s approximation
is based on finding the gradient of the image using the Compass operator [10],
and afterwards relating the pixels of the edges marked by the gradient (edglets)
with regions computed by an algorithm proposed by Felzenszwalb and Hutten-
locher [11], essentially based on neighboring pixel similarities. In this approach,
edglets and homogeneous regions are found using a segmentation process called
the Watershed algorithm, which is fully explained in a later chapter. Edglets
are therefore defined directly as the edges of the regions computed by the algo-
rithm itself. Another difference is that Stich’s approach makes use of additional
manual corrections once the edge correspondences are computed, assuring extra
accuracy in this stage. While manually corrected interpolations do offer better
quality results, this approach aims at no human intervention during the compu-
tation. Notorious differences are found in the rendering stage, mainly because
in this approach no real-time processing is needed. These, together with other
minor processes, alternative to the original approach, will be mentioned during
the description of the whole strategy.

Structure of the thesis

This thesis is mainly divided into four chapters:
Chapter 1 is dedicated to describing the algorithms and concepts used to achieve
our goal. The most important algorithms used are the Watershed, the Shape
Context descriptor, the Auction algorithm, the RANSAC process and Inpaint-
ing. All these algorithms are used to play with and handle translets which will
more deeply be defined later, but that consist of a determined image segment
and its corresponding homography. Homographies are then a basic concept that
is also described in detail in this chapter.
Chapter 2 is dedicated to explaining how these tools and algorithms are imple-
mented in order to obtain the desired results. Some figures are used to show the
procedure and how the algorithms interact with the images to be interpolated.
Chapter 3 shows the results after the whole algorithm is applied to several pairs
of images. The issues encountered in the results are explained in detail making
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emphasis in the possible reasons for their existence and the different solutions
that can be implemented to face them.

Finally, in Chapter 4 I try to give certain guidance to future intentions on
the continuation of this line of work, focusing on what needs to be improved
from the code and from the strategy itself.
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Chapter 1

Concepts and tools

The basic idea used for the computation of the interpolation of the images
is to consider the second image as a geometrical deformation of the first one,
as a consequence of a different projection of the 3D space. Both images are
segmented into regions which respond to determined area homogeneities. Based
on each region’s position and shape, a correspondence between each one of
them is found from one image to the other. The tool that will help us model
the deformation of the corresponding regions is called homography. The key
for a plausible interpolation will therefore rely on the accurate computation of
these homographies, which in turn rely on an accurate determination of the
correspondences of the edge pixels between the two images. To achieve this
task, a series of algorithms are employed. These, and some other basic concepts
used throughout the Master Thesis, are described in this chapter.

1.1 Homography, the basic tool

Hartley and Zisserman [12] define a homography as the projective transforma-
tion that takes each point xi in P2 to its corresponding x′

i likewise in P2. In a
practical situation, the points xi and x′

i are points in two images, each image
being considered as a projective plane P2. Put in other words, the homography
describes what happens to the perceived positions of observed objects when the
point of view of the observer changes.

So the problem relies on estimating this 2D projective transformation. A set
of point correspondences xi ↔ x′

i between two images will be considered as a
starting point. The problem is to compute a 3× 3 matrix H such that

Hxi = x′
i (1.1)

for each i.
The Direct Linear Transformation (DLT) is a simple linear algorithm for

the determination of matrix H. Expressing Equation 1.1 in terms of the vector
cross product will enable a simple linear solution for H to be derived:

x′
i ×Hxi = 0.

Consider that each point is represented as a homogeneous 3-vector, i.e.
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xi = (xi, yi, wi)
T

and x′
i = (x′i, y

′
i, w

′
i)

T
, being wi and w′

i the scale factor. Then,
if the j -th row of the matrix H is denoted by hjT:

Hxi =

 h1Txi
h2Txi
h3Txi

 , (1.2)

the cross product may be given explicitly as

x′
i ×Hxi =

 y′ih
3Txi − w′

ih
2Txi

w′
ih

1Txi − x′ih
3Txi

x′ih
2Txi − y′ih

1Txi

 . (1.3)

Since hjTxi = xT
i hj for j = 1, ..., 3, this gives a set of three equations in the

entries of H, which may be written in the form 0T −w′
ix

T
i y′ix

T
i

w′
ix

T
i 0T −x′ixT

i

−y′ixT
i x′ix

T
i 0T

 h1

h2

h3

 = 0. (1.4)

Although there are three equations in (1.4), only two of them are linearly
independent (since the third row is obtained from the sum of x′i times the
first row and y′i times the second). Thus each point correspondence gives two
equations in the entries of H, and the set of equations becomes

[
0T −w′

ix
T
i y′ix

T
i

w′
ix

T
i 0T −x′ixT

i

] h1

h2

h3

 = 0. (1.5)

These equations have the form Aih = 0, where Ai is a 2× 9 matrix, and h
is a 9-vector made up of the entries of the matrix H:

h =

 h1

h2

h3

 , H =

 h1 h2 h3
h4 h5 h6
h7 h8 h9

 (1.6)

with hi the i -th element of h.
Remember that the equations hold for any coordinate representation (x′i, y

′
i, w

′
i)

T

of the point x′
i. If w′

i = 1 is chosen, it means that (x′i, y
′
i) are the coordinates

measured in the image [12].
At least four point correspondences xi ↔ x′

i have to be specified in order
to fully constrain H. If these four correspondences are given exactly, then an
exact solution for the matrix H is possible. However, since in practice points are
measured inexactly (noise), if more than four correspondences are given, they
may not be fully compatible with any projective transformation. Therefore, it
is necessary to determine the best H from the obtained data. This will be done
by minimizing a determined cost function. Hartley and Zisserman [12] present
several cost functions and the methods for minimizing them. For this work the
Gold Standard algorithm was used, which is optimal in the sense that the H
that minimizes it gives the best possible estimate of the transformation under
certain assumptions.
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1.2 The Watershed Algorithm

A good computation of the projective transformation will depend on the accu-
racy of the determination of the point correspondences. In the following sections
the algorithms that work in order to achieve this objective are presented.

1.2 The Watershed Algorithm

The first step is to define edges and homogeneous regions. The Watershed
algorithm is a morphological approach to image segmentation through a region
growing method which uses the gradient value of the image and interprets it as
a topographic map (Fig. 1.1(b)). Image segmentations consist of partitioning
the image into regions which are homogeneous with respect to some property.
In the watershed case gray value is taken as the criterion. Gray level in the
gradient image (Fig. 1.1(a)) will define high topographic areas for high gradient
values, which correspond to edges in the original image. Catchment basins in
the image are therefore generated by low gradient magnitude intensity limited
by the high gradient pixels. The concept of watershed is used because region
growth behaves as water floods beginning from predefined local minima in the
image (Fig. 1.1(c)). Wherever the floods of each basin meet, dams are built and
when the water reaches the highest peak, the process is stopped. These dams
that separate the basins or regions of the image are called Watersheds.

Once the gradient of the image is computed, local minima must be found to
perform the initial floods. The pixel with the gray value closest to the flooded
level is assigned to its corresponding catchment basin. If no preprocessing of
the image is done in order to simplify the image, over-segmentation can be
encountered. In a typical real image, gray level variations exist, there where
for the human eye it may seem as a flat area. This generates into a creation of
multiple catchment basins in the regions that would be considered homogeneous.
Simplification of the image consists of smoothing the image, eliminating noise
in homogeneous regions, but without losing the edges of interest.

After the location of local minima in the gradient of the simplified image
is carried out, flooding takes place. As mentioned before, pixels with the clos-
est value to the flooded level are assigned to the basin, either considering 4-
connectivity, or 8-connectivity. In this work 8-connectivity was chosen for the
Watershed algorithm.

Different watershed results will be obtained depending mainly, besides pixel
connectivity, on the image simplification method, the criterion for local minima
determination, and the gradient computation method employed.

1.3 Shape Context Descriptor

Figure 1.2 is an example of a known character (letter A) but represented with
different shapes. For a person who reads Latin characters, both images have
the same meaning and could draw the edge correspondences that would help
computing the homography between (a) and (b) considering that the latter is a
deformation of the prior. For a computer this task is not necessarily trivial.

The shape context descriptor is a strategy proposed by Belongie et al. [2]
where precisely each pixel of an image is described by its shape context, i.e.

9



(a)

(b) (c)

Figure 1.1: Example of a Watershed algorithm procedure. (a) Gradient of an image.
(b) Topographic representation of (a). (c) Flooding process and watershed determi-
nation. Images have been taken from [1]

.

(a) (b)

Figure 1.2: Example of two different shapes for a same character
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1.4 The Auction Algorithm

by the shapes that surround the pixel. This is achieved by computing distance
and direction histograms for each pixel. The information is then used for shape
matching.
Let us see how it works. Considering a shape with n number of edge pixels, for
a point pi on the shape, a coarse histogram hi of the relative coordinates of the
remaining n− 1 points is computed:

hi(k) = # {q 6= pi : (q − pi) ∈ bin(k)} (1.7)

This histogram is defined to be the shape context of pi. The descriptor must
be more sensitive to differences in nearby pixels, therefore a log-polar coordinate
system is used as in Figure 1.3(c). Once the histograms are computed for every
edge pixel, the matching decisions are made using a determined cost function.
Consider an edge point pi from the first shape, and an edge point qj from the
second one. Let Cij = C(pi, qj) denote the cost of matching these two points:

Cij =
1

2

K∑
k=1

[hi(k)− hj(k)]
2

hi(k) + hj(k)
(1.8)

where hi(k) and hj(k) denote the K -bin normalized histogram at pi and qj ,
respectively.
Given the set of costs Cij between all pairs of points i on the first shape and
j on the second shape, we want to minimize the total cost of matching subject
to the constraint that the matching be one-to-one. This is an instance of the
weighted bipartite matching problem which, in this thesis is solved using the
algorithm proposed by Bertsekas [13]. The input to the assignment problem is
a square cost matrix with entries Cij . The result is a permutation π(i) such
that the sum

∑
n Ci,π(i) is minimized.

When the number of edge points on two shapes is not equal, the cost matrix
can be squared by adding ”dummy” nodes to each point set with a constant
matching cost of εd. This can be also used, even when having the same number
of edge points, to allow a better handling of outliers. In this case, a point will
be matched to a “dummy” whenever there is no match available at smaller cost
than εd. Thus, εd is used as a threshold parameter for outlier detection. The
cost Cij for matching points can include an additional term based on the local
appearance similarity at edge points pi and pj . This is particularly useful when
we are comparing shapes derived from gray-level images instead of line drawings,
as in the case of this work, where real-life images are used. For example, one
can add a cost based on color or texture similarity.

1.4 The Auction Algorithm

As proposed in [4], the term edglet will be used in this work to refer to those
pixels belonging to the predefined edges of the image. In this case, pixels that
separate the regions after the Watershed algorithm has been applied.
The Shape Context descriptor sets a cost for matching each edglet with every
other from the second image. Once these costs have been computed, an optimal
matching has to been chosen for each one of the edglets. This kind of problem is
known as a weighted bipartie graph matching problem and the Auction algorithm
proposed by [13] has proven to perform very efficiently in solving them.

11



(a) (b) (c)

(d) (e) (f) (g)

Figure 1.3: Shape context computation and matching. (a,b) Sampled edge points
of two shapes. (c) Diagram of log-polar histogram bins used in computing the shape
contexts. In this example 5 bins for log(r) and 12 bins for θ. (d-f) Example shape
contexts for reference samples marked by ◦, �, / in (a,b). Each shape context is a
lo-polar histogram of the coordinates of the rest of the point set measured using the
reference point as the origin (dark = large value). There is a clear similarity between
the ◦ and the � histograms, which were computed for two relatively similar points in
each shape. On the other hand, the shape context for / is notoriously different. (g)
Correspondences found using bipartie matching, which will be explained in the next
section. Images taken from [2].
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1.4 The Auction Algorithm

So again, the objective is to find optimal one-to-one assignments between
edglets from both images. An intuitive way of understanding the functionality
of the Auction algorithm is in an economic context. Each edglet i from the first
image needs to pay a price pj to be assigned with another edglet j from the
second image (which we will call object). A benefit aij exists when matching i
with j. Therefore the value for each matching is aij − pj . The edglet will be
happy if it can obtain the maximal possible value:

aiji − pji = maxj=1,...,n{aij − pj}. (1.9)

However, considering that the interest of the algorithm is to find global sat-
isfaction and fair wealth distribution, the objective will be to obtain the maxi-
mum total benefit

∑n
i=1 aij , and prices will be in equilibrium when all edglets

are happy or almost happy ; as will be explained later on.

The Auction algorithm consists of performing iterations starting with any
set of assignments at any set of prices. If every edglet is happy, the process
terminates. Otherwise, some edglet i that is not happy is selected, and finds an
object (edglet from the second image) ji which offers maximal value:

ji ∈ maxj=1,...,n{aij − pj}. (1.10)

It then exchanges objects with the edglet assigned to ji at the beginning of
the iteration, and sets the price of the best object ji to the level at which it is
indifferent between ji and the second best object, that is, the edglet sets pji to

pji + γi, (1.11)

where

γi = vi + wi. (1.12)

vi is the best object value,

vi = maxj{aij − pj}, (1.13)

and wi is the second best object value,

wi = maxj 6=ji{aij − pj}, (1.14)

that is, the best object value other than ji.
γi is the largest increment that the edglet i can do to the best object price
pji , having object ji still as the best option. This is why it is called auction
algorithm. Once an edglet (bidder) finds the object with the best value, it raises
its price (by a bidding increment γi) up to a maximum it is willing to pay, that
is, just below the price of the second best option. Iteratively, edglets will be
increasing prices, losing objects, winning others, until a one-to-one assignment
is reached and everybody is happy.

However, this iteration process does not always work. The problem arises
when the bidding increment γi is zero because of the existence of more than one
best object. As a result, a never ending cycle happens when several edglets are
interested in a lower number of objects without increasing their prices. This
is why we talked about almost happy edglets previously. To break such never
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ending cycles, an extra minimum increment ε is imposed to the price of the
object that has been bid for, as it happens in real auctions. Therefore, it is said
that an edglet i is almost happy with an assignment if the value of its assigned
object ji is within ε of being maximal:

aiji − pji ≥ maxj=1,...,n{aij − pj} − ε. (1.15)

So now we will have a set of almost happy edglets at the end of the process.
This way we avoid having several best options for a single edglet. The whole
process is the same as described before, with the exception that the bidding
increment γi is now:

γi = vi − wi + ε, (1.16)

rather than Eq. 1.12.
Once the process has finished for each and every edglet, a one-to-one assign-
ment will be achieved. These matches will then be used in the computation of
the homographies. However, some outliers may be obtained from the Auction
algorithm. The RANSAC algorithm is used to respond to this issue.

1.5 RANSAC

As said before, some of the edglets will be matched to dummy pixels, which
represent, by definition, an outlier. These matches must and will be immediately
discarded from the set used to compute the corresponding homography. But not
only these matchings will behave as outliers. Many correspondences calculated
by the auction algorithm will not be accurate. While discarding the dummy
correspondences may not present a hard challenge, getting to know which of
the rest of them are outliers is not easy. Marco Zuliani [14] defines an outlier as

a datum that does not fit the “true” model instantiated by the
“true” set of parameters within some error threshold that defines
the maximum deviation attributable to the effects of noise.

But, which is the “true” model in our case? The homography, of course.
Nevertheless, considering that the deformation of each region, which can be
seen as a 2D geometrical figure that changes its shape, depends on a change of
vision perspective and/or random movement of the objects in the image, getting
to know which of the matchings are outliers and which are inliers is not trivial.
Fortunately, in 1981, Fischler and Bolles [15] introduced the Random Sample
and Consensus (RANSAC) algorithm, which basically consists of a method to
estimate the parameters of a determined model, starting from a set of data which
is originally strongly contaminated (it can be larger than 50%) with outliers.
For a better understanding of how RANSAC works, a simple example is shown
in Figure 1.4. In this case, the purpose of the data is to define the model of a
straight line. The existence of outliers, which exceed the error threshold, will
influence towards a wrong determination of the line’s model and therefore must
be removed. In this work’s case, our models are the homographies, and bad
assignments between edglets will translate into their wrong computation.
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1.6 Inpainting

Figure 1.4: Example of a data set for the determination of the model of a straight
line, contaminated with outliers

The RANSAC algorithm is essentially composed of two steps which are re-
peated iteratively [14]:

• Hypothesis. First minimal sample sets (MSSs) are randomly selected
from the input dataset and the model parameters are computed using
only the elements of the MSS. The cardinality of the MSS is the smallest
sufficient to determine the model parameters (as opposed to other ap-
proaches, such as least squares, where the parameters are estimated using
all the data available, possibly with appropriate weights).

• Test. In the second step RANSAC checks which elements of the entire
dataset are consistent with the model instantiated with the parameters
estimated in the first step. The set of such elements is called consensus
set (CS).

RANSAC terminates when the probability of finding a better ranked CS
drops below a certain threshold. It is important to take into consideration that
the first MSS is selected randomly. This means that for different RANSAC
processes for the same dataset, we may obtain different results. This is why, as
it will be shown in the next chapter, it is important to priorly filter some of the
correspondences computed by the Auction algorithm, which are clearly outliers,
in order to reduce the divergence in the different possible results obtained from
RANSAC.

The last CS obtained will represent the set of assignments that will be con-
sidered to compute the homography for each region.

1.6 Inpainting

One of the main issues to deal with in image interpolation, especially when the
interest is focused on generating a new viewpoint between two different perspec-
tives of a determined scene, are occlusions. When changing view perspective,
closer objects in the scene move faster than farther objects. This means that
between two different views, we may cover or uncover part of the background
with the foreground. These particularities are called occlusions. It is a two-
sided problem then; one is to solve fold-overs, i.e. covered regions or simply any
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case where more than one pixel end up in one same location, and the second
is deciding what information must be used to fill in the missing regions, i.e.
the uncovered or disoccluded areas. For the latter a possible solution is using
Inpainting.

The concept inpainting comes from the practice of restoration of damaged
paintings, murals and other kind of artistic creations over a surface, e.g. mosaics.
However, this principle has been applied also to photography and film. The aim
is to retouch the image in a naturally extended way that it is non-detectable by
an observer who does not know the original version [3].

With the interest in photographic and film restoration, digital techniques find
their niche. Removing scratches, publicity, subtitles, or entire undesired objects
from the images have replaced the artistic objective of reverting deterioration
when talking about digital methods (see Figure 1.5).

Since the issue we are interested in solving is occlusions, we will be dealing
with texture and structures. This means that the inpainting algorithm will not
only be limited to filling desired regions by means of pattern repetition, as could
happen with textures.

Inpainting is, of course, a subjective procedure. There is no “correct” way of
doing it. But as it is stated in the objective of this Master thesis, the whole pro-
cedure is focused on human perception, and therefore, if all these rectifications
are not too notorious, we will be satisfied.

It is not the purpose of this work to deeply explain, step by step, how the
algorithm works, but to give a general idea of the principles on which it is based.
For a detailed explanation refer to Bertalmio et al. [3].

The basic idea is the following. Let Ω represent the region intended to
be inpainted, and ∂Ω its boundary. The algorithm will prolong the lines of
equal gray values arriving at ∂Ω, while maintaining the angle of “arrival”. The
drawing from ∂Ω proceeds inwards in this way, while curving the prolongation
lines progressively to prevent them from crossing each other.

This algorithm is also based on performing iterations of a determined pro-
cess. This process consists mainly of the following:

1. The structure of the surrounding area Ω is continued into the gap. Contour
lines are drawn via the prolongation of those arriving at ∂Ω

2. The different regions inside Ω, as defined by the contour lines, are filled
with color, matching those of ∂Ω

Simultaneous iterations are performed, which will progressively shrink the
gap Ω by inwardly prolonging, in a smooth manner, the lines arriving at the
boundary ∂Ω.
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1.6 Inpainting

Figure 1.5: Example of photography inpainting. Image taken from [3].
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Chapter 2

Implementation

Now that the basic theory of some algorithms has been explained in Chapter 1,
we are ready to give a detailed explanation of the implementation of the needed
tools in order to achieve the objective of this thesis.

The starting point consists of two images of a determined scene, seen from
different but close (not more than 10 degrees angle between cameras) viewpoints
(Figure 2.1), or different (consecutive) time instants (Figure 2.2). We aim to
generate a deformation field between these two images that, by scaling it, may
help to synthesize an intermediate (in time or space) view of the scene, i.e.
interpolating the two images. The result of the interpolation does not necessarily
need to be a middle position; the scalability property of the deformation field
will let us move arbitrarily in this aspect. The computation of the deformation
vector field, together with the rest of the procedure, will be illustrated in the
following sections.

2.1 Edges and homogeneous regions

The first step is to extract from both images the components that will be used
to define a correspondence between them: edges and homogeneous regions. The
hypothesis in which we rely on is that the movement behaviour of these com-
ponents is similar between the two images; similar enough to be modelled. If

(a) (b)

Figure 2.1: Example of two images of the same same scene, same time instant, but
different views.
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(a) (b)

Figure 2.2: Example of two images of the same same scene, same view, but different
time instants.

(a) (b)

Figure 2.3: (a) Figure 2.1(a) oversegmented. (b) Figure 2.1(b) oversegmented. This
is a case of a wrong simplification of the images. Finding a match between regions
would be quite difficult.

we are capable of modelling this behaviour, an accurate object match between
images can be made. Once images are matched, the deformation field can be
calculated and the interpolation computed.

For this first step we will make use of the Watershed algorithm. As explained
in the previous chapter1, this segmentation process will divide the image into
homogeneous regions with a set of edge pixels delimiting each one of them called
edglets. It is of our interest that the defined regions are the most similar possible
between both images. This way, the correspondences will be computed more
accurately. In order to make this possible, special attention must be paid to
the image simplification process. Even if both input images represent a same
scene, differentiated by some few angle degrees or by a fraction of a second, noise
components make that same objects differ meaningfully at pixel level. There-
fore, because of the nature of the Watershed algorithm, without a careful image
simplification, segmentation can vary just too much between the two images,
making the matching process an impossible task. Figure 2.3 shows an example
of this possible problem.

Different image simplification methods may be used. Figure 2.42 shows some

1Section 1.2
2The adaptive noise-removal filter was applied using Matlab function wiener2.m with pa-

rameters M = 3, N = 3
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2.2 Edglet matching

(a) (b)

(c)

Figure 2.4: Watershed image segmentation using different image simplification pro-
cedures: (a) opening by reconstruction filter, (b) anisotropic diffusion followed by an
opening by reconstruction filter, (c) adaptive noise-removal filtering followed by an
opening by reconstruction filter.

examples of how the Watershed algorithm offers different results depending on
variations in the simplification stage. Morphological operation filters are helpful
tools for this kind of necessities. For this work an opening by reconstruction filter
was employed. This technique flattens the image by eliminating local3 minima
and maxima; homogeneous regions are simplified, and therefore we get rid of an
important amount of noise that may alter the object matching.

2.2 Edglet matching

Once the segmentation is done using the Watershed algorithm, the next step is
to match the edglets between both images. Euclidean coordinates for each and
every one of the edglets are found, and with this information the shape context
descriptors4 are computed for the whole set of them. For the interest of this
work, with respect to determining the shape context histograms for each edglet,
8 bins were used for log(r) and 14 bins for θ (refer to Figure 1.3(c) to get a clear
idea of what the histogram bins are).

Histograms for each edglet are afterwards utilized for the computation of
matching costs described by Equation 1.8. Since costs for every possible edglet
matching between images is calculated, we obtain a matrix of size N ×N , being
N the number of edglets from the image which has the most. To square the

3The local aspect will be given by the size of the structuring element employed in the
morphological operations.

4The shape context descriptor is explained in detail in Section 1.3
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matrix, in case of a difference in the number of edglets in each image (normal
case), dummy pixels are used for the padding. These dummy pixels may be
later used as matches for outliers.

The best matching combination will be that which offers the lowest cost.
To know which one it is, the matching matrix is subjected to the Auction
algorithm5. A first assignment matrix is obtained, which is then submitted to
several processes in order to be optimized.

In practice, not all possible edglet matchings are considered. To reduce com-
putation time, knowing that an object can move only up to a certain distance
from one perspective (or time instant) to another, the search for each edglet’s
matching is limited to a determined surrounding area where it may be possible
to find it. This searching area will depend, in the case of a change in perspec-
tive, on the angle difference between cameras, and the distance from these to
the object. In the case of a time difference between images, the searching area
will depend on the speed of the moving objects in the scene. Since this is not
an easy task and the intention is not knowing the exact limits, we consider that
using our own criteria is enough for determining a reasonable size of the search-
ing area. For the aim of this work a squared area of 50 × 50 pixels was used,
with the pixel to be matched in the center.

2.2.1 Sub-imaging

Depending on the scene and on the size of the image, between 2,000 and 20,000
of the pixels are edglets. This means that the matching matrix will have a
considerable size, enough to represent a problem (in a computation time aspect)
when submitted to the Auction algorithm.

To mitigate this inconvenience, after the edglets are detected, the image is
divided into several smaller images called sub-images which are analysed sepa-
rately. This is a delicate procedure considering that, even though the Auction
algorithm is computed locally in each sub-image and that an assignment ma-
trix is obtained for each one of them, the possible matchings for each edglet in
the sub-image must take into account the global set of edglets. This has to be
considered particularly for the case of edglets near the edges of each sub-image,
whose match may be located in the adjacent sub-image. To deal with this prob-
lem, half-superimposed sub-images are also used. This way, we consider up to
four possible matches for each edglet (one for each sub-image to which it may
belong to) and assure that the partitioning of the global image does not rep-
resent an issue in order to find the best match. Of course, this means that a
later study must be done in order to decide which of the different matches is
the correct one.

With all, sub-imaging represents an important computation time saving. If,
for example, the image is divided into 12 sub-images (Figure 2.5) plus another
8 that act as the superimposed ones, the Auction algorithm computation time
(for the whole image) is reduced from a factor of N2 to 20× (N/12)2 (being N
the order of the matrix) which translates into a huge saving, considering that
we are dealing with matrices with orders of several thousands6.

5The Auction algorithm is explained in detail in Section 1.4
6For example, in the case of having 10,000 edglets, the time factor reduces from 100 × 106

to less than 14 × 106.
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2.3 Matching optimization

(a) (b)

Figure 2.5: Sub-imaging example. (a) Edglets computed from the original image,
taken from the Watershed algorithm result, (b) 12 sub-image division.

Besides finding the best matching for each edglet between the superimposed
sub-images, the fact of performing local analysis instead of a single global one
involves dealing with some other issue whose nature and solution are explained
in the next section.

2.3 Matching optimization

Since matches are found from each one of the several sub-images into which the
whole image is divided, a one-to-one assignment cannot be guaranteed. Some
of the edglets from the second image will have more than one assignment, and
therefore, some of them will have none. These are called bad assignments. To
deal with them the images are put into an iterative process which basically
consists of repeating the following two steps:

1. The edglets which have good assignments, i.e. one-to-one assignments, are
found and removed from both images.

2. The new image (without the good assignments) is then processed again
with the Auction algorithm, using the same original cost matrix, but with
bigger sub-images.

The procedure is repeated until the image is no longer divided into sub-
images and analysed globally. Up to this point, enough good assignments have
been removed and the number of edglets is sufficiently low for the Auction
algorithm not to last too much. For this work, four iterations are done before
finding a global one-to-one assignment.

2.4 Local homography computation

The purpose of finding the edglet matching is to use this information to compute
local homographies. In Section 1.1 we defined a homography as the projective
transformation that takes each point xi in P2 to its corresponding x′

i likewise
in P2. For our purpose, the points xi and x′

i are points in the two images,
respectively, each image being considered as a projective plane P2.
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We now talk about local homographies because we will compute a projective
transformation for each image segment. Each segment (homogeneous regions
calculated with the Watershed algorithm) and its corresponding homography is
what Stich et al. [4] define as a translet.

It is important to consider that because of occlusions and other “noise” fac-
tors, the assignment matrix will contain between 20 and 40% of outliers. These
must be removed from the set of matchings that will be used for the homogra-
phy computation. I will now present the whole process for the computation of
the homographies, including some filtering procedures to get rid of the previ-
ously mentioned outliers. Remember that these are local homographies, so the
following steps are taken for each one of the homogeneous regions:

• Cost filter. As said in Section 1.3 when a difference in the number
of edglets between the two images exists, the cost matrix is squared by
padding it with “dummy” pixels that act as possible occlusions. The
cost for matching with these pixels will always be higher than a certain
threshold εd defined in the cost filter. These “dummy” matchings, together
with the rest of matchings that overpass cost εd are rejected (see Figure
2.6(b)).

• RANSAC filter. With the remaining matches, the RANSAC algorithm7

is applied. Remember that this algorithm includes some random processes;
this means that we will not always obtain the same results from the same
set of assignments. Figure 2.6(c) shows the remaining assignments after
cheap and RANSAC filtering.

• First homography computation. Using the matches left, after apply-
ing the first two filters, a first local homography is computed:

Hxi = x′
i,

where xi corresponds to the remaining edglets from the first image, and
x′
i to the set of remaining edglets from the second image.

• Distance filter and second homography computation. Any pixel
Hxi that lies farther than 3 pixels away from its corresponding x′

i will be
filtered out, and the matrix H computed again (second local homography).
This is called the distance filter.

• Possible extra iteration. Considering that for different RANSAC fil-
tering, we may obtain different results, an extra iteration of the whole
process (from cost filtering to distance filtering), may be applied again to
those regions which reach a determined percentage of outliers (specified by
the user), or whose inliers are not enough to calculate H. It is a trade-off
between computation time and the effort for obtaining the most amount
of translets possible. It is important to point out that when the matrix
H is not found in the first iteration, only in about 5% of the cases the
algorithm will succeed in finding it in a second iteration.

7Refer to Section 1.5 for more information about this algorithm
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2.4 Local homography computation

(a) (b)

(c)

Figure 2.6: Example of edglet matching for a specific homogeneous region; in this
case the face of the dancer. Blue crosses correspond to edglets in the first image,
and yellow crosses correspond to the edglets that have been assigned to them from
the second image. Correspondences have been represented with green lines. (a) Initial
assignments, (b) after cheap filter has been applied, (c) after cheap filter and RANSAC
have been applied.
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Figure 2.7: Example of the transformation of a determined region in the first image
(greenish area) into the synthesized region (redish area) by means of the homography.
These areas correspond to the face of the dancer from previous examples shown.

2.5 Selective translet merging

As detailed in Section 1.1, at least four point correspondences xi ↔ x′
i have to

be specified in order to fully constrain H. Match filtering may lead to a situation
in which not enough correspondences remain for the computation of matrix H.
This problem is addressed by a selective translet merging. Every translet that
does not succeed in having enough inliers for the second computation of its
homography, is merged with the neighbouring translet with which it shares the
highest number of edglets. This can be done because one same edglet may be
part of up to four sets of edglets that delimit different translets (most frequently
of only two).

Once the translets are merged, the one that does not count with a transfor-
mation matrix H is automatically provided with the one from its neighbouring
translet. This way it is guaranteed that every homogeneous region has a corre-
sponding transformation matrix.

2.6 Deformation vector field and interpolation

The deformation vector field will be the tool that allows making the whole
transformation of the first image and synthesizing the different viewpoint. This
is done on a per-pixel basis. Since translets partition the image, each pixel in
the image is uniquely associated with a translet t. The deformation vector for
a pixel x is thus computed from the translet’s homography Ht as

d(x) = Ht · x− x. (2.1)

Figure 2.6 shows an example of how the deformation vectors work for each
pixel. The synthesized image may contain cracks due to the deformation of each
translet.

This deformation field will therefore synthesize the second image (alternative
viewpoint or time instant). In order to generate the desired interpolation, the
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2.7 Inpainting

(a) (b)

Figure 2.8: Once the interpolated image has been computed, black areas may appear
due to occlusions or translet “cracks” (a). To solve this issue, the Inpainting algorithm
is employed (b).

deformation vectors must be scaled depending on the position (in time or space)
desired by the user and added to their corresponding pixels xi:

xint = x + (a · d(x)) , (2.2)

where a is the scalable constant.

If, for example, the interpolated result is desired to be at a mid-position, a
must be equal to 0.5. A value of a = 1 will synthesize the viewpoint from the
original alternative perspective, i.e. synthesizing the second image.

2.7 Inpainting

In Section 1.6 I mentioned that one of the toughest issues to deal with, when
computing correspondences, are occlusions. When having a different perspective
of a scene, or when an object in this scene moves, occlusions inevitably occur.
These areas in the image (behind a moving arm for example), in which edglet
matching cannot exist since they can be seen from only one of the viewpoints
(or time instants), have to be filled with information taken from either two
images, or by a post-processing stage carried out in the synthesized one. We
opted for this second option applying the Inpainting algorithm8 directly in the
interpolated image.

Missing regions due to occlusions and other kind of imperfections, as those
of the translet cracks, are fixed using the Inpainting algorithm. Figure 2.8 shows
an example of the performance of this strategy. The example is the result of
a time-interpolated image. Notice in the figure that occlusions happen mainly
around the object that is moving; in this case the dancer.

8More information about Inpainting can be found in Section 1.6.
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Chapter 3

Results

In the following chapter the objective is to show the results obtained from the
whole algorithm designed which, of course, takes into account the series of tools
presented in the two previous chapters. Errors and inaccuracies in the results
will be treated with special emphasis in order to understand their origin and to
be fixed by anyone who possibly takes the staff to give continuity to this work.
The first three sections are dedicated to show interpolation results first in space,
then in time and finally in both, space and time, done simultaneously. The last
section is devoted to numerically evaluate the results.

3.1 Space interpolation

Space interpolation refers to the interpolation of two images obtained from the
same scene, but from different perspectives. As mentioned in Chapter 2, the
angular distance between the cameras that capture the images should not exceed
10 degrees.

In the following pages I will show some figures with some information that
precedes the final interpolation result. These various images will help us to
better expose a judgement on the final output by visually analysing each step
of the algorithm. Let us proceed:

• Figure 3.1 shows the two input images for this example. Observe, at the
edges of each image, the zones of the scene that are not visible in both
images because of the switch of perspective (e.g. the left white column in
3.1(a) is invisible in 3.1(b)). These areas, together with occlusions, will
represent the biggest challenge for the interpolation process. Occlusions,
as described in previous chapters, are those areas in the image that cannot
be seen from the alternative viewpoint because they are covered by other
objects (e.g. the right side of the dancer’s face in 3.1(b) cannot be seen in
3.1(a), covered by the rest of the face because of the change in perspective).

• Figure 3.2 displays the Watershed results. These images contain the
edglet information and the segments that will define the translets. Every
white pixel surrounding the homogeneous regions represents an edglet.
The objective will be to match every edglet in image 3.2(a) with an edglet
in image 3.2(b). If more edglets exist in the first image, those which do not
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find any low cost match will be matched with dummy pixels that represent
possible occlusions or other kind of outliers.

The Watershed algorithm is not a linear system, therefore any slight dif-
ference, between stereo images in the supposed homogeneous regions, may
result in important differences in the algorithm output. Even if images
from Figure 3.1 may seem identical in certain areas, at pixel level differ-
ences exist mainly because of unavoidable noise which comes from the very
moment the images are taken (i.e. from the video camera itself), to any
post-processing or manipulation of them (e.g. any compression or resizing
procedures).

These differences can be clearly observed on the upper left part of the
images. Even though original images show a clear similarity in the area
behind the white column left to the white screen, and which the correspon-
dences between both images could be pointed out easily, the algorithm fails
in segmenting equally. The problem arises more clearly when less contrast
exists between regions. This phenomenon, as will be shown later, will
drive to some significant errors, based on the simple fact that edglets from
the first image will not be able to find good matches.

Alternatively, we have very similar segmentations in the area of the dancer,
for example. In these cases, edglets will have no issue in finding accurate
matches.

• Figure 3.3 shows the edglets from the two images. Each edglet has a
different value, represented in these images as different colors. A delimited
area (depending on the angle distance between cameras and the distance
from these to the closest object) around each edglet in 3.3(a) is defined,
and costs in order to match them with every edglet from 3.3(b) inside
this area, are computed. Based on these costs, by means of the Auction
Algorithm (explained in Section 1.4), matches are found for each edglet.
Image 3.3(c) shows where each edglet from 3.3(a) would move, depending
on the computed matches. This image, even if it does not exactly tell
about the correspondences, it does help in giving an idea (thanks to the
colors of the eglets) of the behaviour of the matching process. Matches
that exceed a user-determined cost, are not shown in the image.

• Figure 3.4 represents the merging process. Image 3.4(a) shows how some
translets have merged according to the criterion explained in Section 2.5.
Those translets which have too many outliers, and therefore which cannot
compute their corresponding transformation matrix H, will merge with
the selected neighbour translet. These merging processes are very likely to
happen (when performing space interpolation) at the edges of the images,
where accurate object correspondences cannot be made. In this example
the number of translets has reduced from around 90 to approximately 30.

Image 3.4(b) shows the segmentation of the first image once the merging
has been done and the edglets added to their corresponding translet. Ed-
glets will add to the translet which represents a better transformation, i.e.
where its average distance ||Htei − e′

j || is lower.

• Figure 3.5 displays the deformation vector fields. Image 3.5(a) represents
the deformation in the x axis and 3.5(b) in the y axis. Deformation is
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3.1 Space interpolation

computed in a per-pixel level, i.e. each pixel takes the transformation
matrix H that has been calculated for the translet to which it is part of,
and determines its new position in the alternative viewpoint. These two
images are quite illustrative to show the particular areas which have a bad
determination in their transformation. Particularly, image 3.5(b) helps in
this way by highlighting pixels that move distances out of normal ranges
for this example (e.g. redish and bluish areas that represent 60 and -60
pixels of transfer respectively).

• Figure 3.6 are the final results. Image 3.6(a) shows the results once the
total deformation field has been applied to the first image. Pixels have
moved to their new positions according to the deformation vectors com-
puted using the corresponding transformation matrix H. As it is evident,
blank areas exist where no pixels have moved. These areas are due to
disocclusions or to errors in the transformation computation.

Image 3.6(b) shows the final result once the Inpainting algorithm has been
applied. Cracks due to the translet transformation are corrected very
well without leaving any trace. Also, missing regions due to disocclusions
around the dancer are treated in a very plausible way according to this
work’s motivation: in the perception manner.

However, areas which had been anticipated as problematic, in the Wa-
tershed computation and the deformation field images, have noticeable
errors. The white column in the left side of the image is a clear example
of the inaccuracy in the estimation of the transformation process. Other
than this and some other close regions, the final image has achieved plau-
sible results, especially with respect to the important object in the scene
which is the dancer.
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(a)

(b)

Figure 3.1: Original stereo images. Input images for the space interpolation process;
I will refer to them as first image (a), and second image (b).
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3.1 Space interpolation

(a)

(b)

Figure 3.2: Watershed images. Results from images from Figure 3.1 when processed
by the Watershed algorithm.
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(a)

(b)

(c)

Figure 3.3: Edge correspondence. (a) and (b) show the edglets from the first and
second original images respectively, and (c) shows where has each edglet from the first
image moved to the second according to their matches.
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3.1 Space interpolation

(a)

(b)

Figure 3.4: Translet merging. These two images show the results after merging the
translets that have a considerable number of outliers. Image (b) has included the
edglets into the homogeneous regions so they can be processed with their respective
transformation matrix H.
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(a)

(b)

Figure 3.5: Deformation vector fields. (a) and (b) show the deformation fields for the
x and y axis respectively. Scale is represented in number of pixels.
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3.1 Space interpolation

(a)

(b)

Figure 3.6: Final interpolation results. Image (a) shows the output before the inpaint-
ing algorithm has been applied. Image (b) shows the final result once the inpainting
algorithm has been applied.
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3.2 Time interpolation

The following images show the interpolation process for two images from dif-
ferent consecutive time instants. The video was taken at a rate of 25 frames
per second, so the period between both images is reduced to 40 ms. Generating
time interpolation images allows us to synthesize slow motion video effects.

As we will see, it is noticeable that in a time interpolation task, the prob-
lem reduces mainly to obtain the accurate transformation information in the
objects which are moving (in this case, for example, the background does not
move). This is different from the space interpolation process where, since a
change in perspective exists, every object in the scene moves and a deformation
computation is essential for the whole image.

Previous Space Interpolation section has described the general characteris-
tics of each of the algorithm steps as well as the particularities for the space
case. In this section I will only concentrate on pointing out and describing the
particularities for the time interpolation case, and comparing them, whenever
it helps the analysis, with the results shown in the preceding section. Let us
analyse the results:

• Figure 3.7 refers to the two input images. These have been taken in
consecutive time instants. Notice that the differences between images
reduce to the movement of the dancer; the background, of course, does
not move.

• The background does not move, but this does not mean that the objects
in it are identical between the two input images. This can be seen in Fig-
ure 3.8, where the Watershed algorithm results offer a slightly different
segmentation in the background. Once again, as stated in the previous
section, this is due to noise acquired from the moment the images are
generated with the video camera and if any other kind of later image
manipulation was done afterwards.

• Figure 3.9(a) displays the result after translet merging, once the edlets
have also been added to their corresponding translets. It is clearly evident
that the merging process is almost unnecessary for this case, for only about
3 pair of translets have been merged in this example. Compared to the
two thirds of translets having been merged in the space interpolation case,
it represents a significant difference. This is merely due to the similarity
in the image segmentation between both images done with the Watershed
algorithm.

• Figures 3.9(b) and 3.9(c) show the deformation vector fields. Notice
that in this case, except for one translet computed inaccurately, movement
concentrates in the dancer’s regions. The rest of the image maintains
motionless since it only acts as a still background.

• Figure 3.10 shows the results before and after applying the Inpainting
algorithm. As it was expected, the missing regions are limited to the areas
around the moving object (dancer) due to disocclusions. The final image
has very plausible results. We have an interpolated image that allows a
slow motion effect when submitted to video sequence. The translet that
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3.2 Time interpolation

had been detected in the deformation vector field as a possible error has
no important consequences in the final interpolated image.
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(a)

(b)

Figure 3.7: Original time consecutive images. Input images for the time interpolation
process.
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3.2 Time interpolation

(a)

(b)

Figure 3.8: Watershed images. Results from images from Figure 3.7 when processed
by the Watershed algorithm.
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(a)

(b)

(c)

Figure 3.9: Translet merging and deformation fields. Image (a) is the selective translet
merging result; images (b) and (c) represent the deformation vector fields in the x and
y axis respectively. Scale is represented in number of pixels.
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3.2 Time interpolation

(a)

(b)

Figure 3.10: Final interpolation results. Image (a) shows the output before the
inpainting algorithm has been applied. Image (b) shows the final result once the
inpainting algorithm has been applied.
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3.3 Space and Time interpolation

So far we have discussed space interpolation and time interpolation separately.
In this section I present the case where interpolation is computed in both, time
and space. Once again, the challenge is to achieve an accurate matching of the
background, since the viewpoint will change, but also objects in the scene will
have movement. As in the previous section, I will only mention the particulari-
ties for this special case. For general descriptions on the results please remit to
the analysis done for space interpolation in Section 3.1.

• Figure 3.11 displays input images for the space and time interpolation
case. Cameras are separated no more than 10 degrees and the time differ-
ence between frames is equal to 40 ms.

• Figure 3.12 shows the Watershed algorithm results. Notice that, as in
the case of space interpolation, some areas have been segmented differently
one from the other. This will lead to problems for edglet matching in those
specific regions.

• Figure 3.13(a) is the selective merging result. One particularity of this
result is that the background, which does not have any moving object
between time frames, has merged into practically only two translets. As we
will see in the final results, the two minor translets that have not merged
into the main background translets, will show some inconsistencies.

• Figures 3.13(b) and 3.13(c) are the deformation field vectors. These
images are quite interesting since they clearly show the difference between
both camera positions. The deformation fields tell how the movement of
the cameras must be in order to navigate from one viewpoint to the other.

Image 3.13(b) represents the deformation in the x axis. Notice that the
background has higher values when moving away from the center. This
has total sense considering that the focus of both cameras coincide in the
dancer in the middle of the image, and therefore any object farther than
her will move faster when changing the perspective.

Image 3.13(c) represents the deformation in the y axis. This image is even
more interesting. It clearly shows that rotation exists in the difference of
position between viewpoints. The behaviour of the colors in the image (i.e.
the distance each pixel moves from one perspective to the other), tells us
that a rotation in the plane perpendicular to the floor exists when moving
from one camera position to the other. This can be seen also in the x
deformation field (image 3.13(b)), since also the values are not constant
from top to bottom, and therefore existing also a slight rotation in the
plane parallel to the floor. However, in this second case the rotation is
more evident.

Also, in both deformation fields, the movement of the dancer, due to the
interpolation done in time, can be seen in the middle of the images. The
particularity of the region at the right side of the graphs, where the value
is zero in the two outputs, is because the algorithm has been programmed
in a way that, in an extreme case, it totally discards the display of those
regions where the error in the calculation of the transformation process is
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3.3 Space and Time interpolation

bigger than a user-determined threshold. This threshold normally repre-
sents a limit where the display of that particular region would notoriously
affect the perception of a natural interpolation.

• Figure 3.14 are the final results, before and after the Inpainting algorithm
has been applied. Missing regions at the edges of the image are visible as
well as some other errors such as translet cracks that could not be fixed
with the Inpainting due to fold-overs, i.e. overlapped regions. However,
in the central area of the image, we obtain good interpolation results that
lead to plausible object movement.

In the next section, where another case of time interpolation is analysed,
we will have the opportunity to compare the results with ground truth by in-
terpolating images A and C and comparing the result with image B from a
consecutive image sequence in time A < B < C. This is rather difficult to do
in space because of the inaccuracy on the information on the exact position of
the cameras.
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(a)

(b)

Figure 3.11: Original stereo and time consecutive images. Input images for the time
interpolation process.
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3.3 Space and Time interpolation

(a)

(b)

Figure 3.12: Watershed images. Results from images from Figure 3.11 when processed
by the Watershed algorithm.

47



(a)

(b)

(c)

Figure 3.13: Translet merging and deformation fields. Image (a) is the selective
translet merging result; images (b) and (c) represent the deformation vector fields in
the x and y axis respectively. Scale is represented in number of pixels.
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3.3 Space and Time interpolation

(a)

(b)

Figure 3.14: Final space and time interpolation results. Image (a) shows the output
before the inpainting algorithm has been applied. Image (b) shows the final result
once the inpainting algorithm has been applied.
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3.4 Evaluation of the results

Considering that the interpolation strategies are perception-motivated, results
are quite difficult to evaluate. The natural way of doing so would be by means of
user studies that would, in fact, evaluate the aimed characteristic of the results:
plausibility to human eyes. This, of course, would have required more human
and time resources which were out of scope considering the objectives of this
work.

A quantitative way for evaluating the quality of the results is computing the
PSNR (peak signal-to-noise ratio) between ground-truth and the interpolation
result. PSNR is usually used as a measure of fidelity of compressed video or
image signals. It is defined as:

PSNR = 10 · log10

(
max2

MSE

)
, (3.1)

where the MSE (mean squared error) is defined as:

MSE =
1

m · n

m∑
i=1

n∑
j=1

[I(i, j)−K(i, j)]
2
. (3.2)

These equations apply for two images I and K of size m × n, where one
of them is considered as the noisy approximation; in our case, the interpolated
image. max is the maximum possible value of the pixels. Since pixels are
represented using 8 bits, max = 255.

The PSNR is not a very accurate evaluation method for our experiments.
This can be understood if we think of an object in the interpolated image that
has moved some few pixels less than the position of it in the ground-truth
image. This difference, while being completely imperceptible for the human eye
(for perception), will significantly affect the PNSR.

Nevertheless the PSNR values may give us an idea of the performance of
the algorithm. When submitting images 3.15(a) and 3.15(b) to the time inter-
polation strategy, we obtained a PSNR equal to 30 dB. In image compression
good quality is considered above 45 dB and bad quality under 30 dB. However,
the PSNR tends to be less representative of the error near 30 dB and more
representative near 45 dB, where the error is minimum. Image 3.15(c) helps
adding substance to this number. Error concentrates in the periphery of the
moving object. This is important to be clarified since, as mentioned before,
small object displacements may be insignificant for our interest and not for the
PSNR measurements.

An interesting phenomenon occurs in this example which deserves attention:
Between both images, besides other parts of the body, the leg of the dancer
moves. This movement results in missing regions because of the disoccluded
area behind the leg. Missing regions are solved using the Inpainting algorithm;
however, in this case it does not perform very well. This can be noticed in error
image 3.15(c) where a white stripe follows the contour of the dancer’s leg. The
problem lies in the edglets’ decision for merging with a specific translet. When
the Watershed algorithm does the segmentation process, regions are separated
by lines of pixels (edglets) which may clearly correspond to one of the regions
they are separating. This is more evident when a high contrast exists between
adjacent regions. In our example, edglets were part of the dark region (the leg),
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3.4 Evaluation of the results

(a) (b)

(c)

Figure 3.15: Final result and difference to ground truth. (a) is the final interpolation
result, (b) is the real in-between image, and (c) represents the difference between the
interpolation result and (b).

but when the decision had to be made, they were merged into the clear region
(white screen). Therefore, in the result, the missing region was surrounded by
leg pixels and filled inaccurately with dark pixels with the Inpainting algorithm
instead of filling them with the background screen pixels. In the next chapter
(Future Improvements) I will talk more about this issue and possible ways of
solving it.

The graph in Figure 3.16 shows the PSNR results of 25 interpolated images
taken from a video sequence. Values oscillate between 26 and 37 dB, where
the lowest values were obtained from instants where objects in the scene have
moved faster as it was expected. The average value is 31.2 dB, with a standard
deviation equal to 3.

It is important to consider that for these experiments, interpolation has
been done for non-consecutive time images. As in the rest of the experiments,
image 3.15(b) is two time instants later than 3.15(a). This has been done so
the result could be compared with the available actual in-between image. Since
the difference between images is larger than a normal case, higher errors are
expected.
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Figure 3.16: Interpolation PSNR. These values have been obtained from 25 time
interpolation images.
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Chapter 4

Future Improvements

This brief chapter is dedicated to any student who may be interested in giving
continuity to the work presented in this thesis. The idea is to offer guidelines
wherein to concentrate any future contributions in order not to duplicate ef-
forts and to accelerate possible improvements. I hope that readers find this
information helpful. The following are the points which I considered to be the
immediate issues to be resolved.

1. The first thing to consider for future improvements is the evaluation of the
performance of Watershed algorithm as the segmentation technique. One
of the advantages of this method is that the segmentation process defines,
besides the homogeneous areas, the edglets as limits of these areas. In
Stich et al. [4], the procedure is different. The definition of edglets and
homogeneous areas is done separately; the first is done by using edge
detection methods, particularly in their case the Compass operator ([10]),
and the latter with a segmentation strategy different from the Watershed
([11]). This means that the way of relating edglets with translets changes
between their method and ours.

The issue with the Watershed algorithm is, as stated in Chapter 3, its
high sensitivity to noise, which forces to rely on a previous simplification
stage which, in turn, has plenty of difficulties in assuring that the images
to be interpolated will be segmented sufficiently similar. This segmenta-
tion similarity is crucial for the performance of the whole interpolation
algorithm.

Either efforts are focused in finding a methodology for an accurate seg-
mentation using the Watershed algorithm, which basically means concen-
trating on the simplification stage, or maybe trying with different segmen-
tation strategies.

2. Finding accurate dense correspondences between the two images is a fun-
damental step in the interpolation algorithm. Stich et al. [4] suggest an
extra step after the edglet matching determination procedure to optimize
the correspondences: user interaction. In an ideal case this should not be
necessary; actually one of the objectives of this strategy was to avoid user
interaction. However, it may be interesting to take a look at the Klose
et al. article titled ”Flowlab - an interactive tool for editing dense image
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correspondences” ([16]), where an interactive tool that allows the user to
modify and correct dense correspondence maps between the two given im-
ages is presented. Supervised correspondence matching may be worth it
if the time the user consumes in doing so is not counterproductive.

3. The selective translet merging is another crucial step in the algorithm. Up
to now, the merging condition is limited to the number of edglets both
translets share. In other words, a bad translet will merge with the good
translet around it with which it shares the most number of edglets. I
consider this condition not to be the best way to make the decision. A
better option, and it would need some experimental stage to prove that it
really improves the algorithm, would be to consider gray-level similarity
(less contrast) between regions to determine merging. Another option
could also be texture analysis. It has to be considered that, theoretically,
merging must be limited to those regions which are part of the same object
or that share similar flow between images.

4. Once the deformation field has been computed, the synthesize of the in-
terpolated image is done at a pixel level, but translet by translet. Up to
now, there is no criterion that determines the order in which each translet
is put into the canvas. This order has an impact on the result, considering
that fold-overs (superimposed pixels) exist. Which translet should be in
front of the other? That is not an easy question to answer. The objective
is then to know the distance of the objects from the camera and this way
knowing which translet should be above when fold-overs exist.

When changing perspective, objects in the scene will move faster according
to the distance from the rotation center defined by the movement between
the two cameras (the point where their optical axes coincide). If both
cameras look parallel at the scene, optical axes coincide in the infinite and
therefore, distance from the cameras is inversely proportional to the speed
of the objects.

So, if the speed of the translets is used to determine their proximity to
the cameras and this way be able to solve fold-overs, extensive informa-
tion about the position of the cameras and their optical characteristics is
needed. Even then, proximity is a difficult measurement, for a fast mov-
ing object could be in front or behind the camera rotation center. In the
examples used in the previous chapter, the rotation center is aimed to be
found in the dancer, therefore any object closer or farther from her will
move faster and fold-overs would be difficult to overcome.

One first quick solution is to decide putting the fastest translet in the top,
since optical axes tend to be parallel and therefore coinciding many times
farther than any object in the scene. But it is important to know that it
is not a general solution.

5. One problem that we faced when displaying the results was that translet
cracks were not able to be fixed by the Inpainting algorithm (which per-
forms very well in this matter) when facing fold-overs. Inpainting acts on
missing regions, so any translet crack that falls over another translet will
not be taken into account to be fixed. A possible solution to this issue
is to apply the Inpainting algorithm each time a translet is placed in the
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interpolated image. This way, if fold-overs exist, the translet cracks will
already be solved.

6. In Section 3.4 a problem related with edglet merging was encountered. At
a certain point of the interpolation algorithm, after dense correspondences
have been computed, edglets must merge with translets so they can obtain
its transformation matrix H and define their deformation vectors. Up to
now edglets will choose the translet where its average distance ||Htei−e′

j ||
is lower. This leads to inaccuracies in some occasions as it was pointed
out from Figure 3.15(c). Since it is difficult to know beforehand to which
region each edglet really belongs to (it will depend on the gradient compu-
tation technique among other factors), one possible solution is to change
the edglet merging criterion to gray-level similarity (as I proposed also for
translet merging).

7. For the time interpolation case, if the moving objects cover a relatively
small area of the scene (as it happens in the example shown in Section
3.2), dense correspondence computation could be limited to the moving
objects. This means that motionless background areas, considering that
they do not change between images, would be directly taken from either
image without submitting it to the whole interpolation algorithm. This
way inaccuracies could be avoided in these regions. This may not be
an easy task, but I considered it to be an interesting mechanism for time
interpolation optimization. Computing the deformation vectors for regions
that are known to be immobile in advance seems to be an unnecessary
waste of energy.

8. Finally, another aspect which future work should pay attention to is in
the algorithm computation time. My programming skills are not specially
sharp, so I am sure that the code could be optimized to run faster. Some
parts of the code spend much more time than others and my intention is to
point out those which last too long and that I consider could be improved.

Two parts of the code must be the first to be treated if less computa-
tion time wants to be consumed. One is the Auction algorithm function
(auction.m) and the other is the cost matching computation function
(costs matching.m). The time these two functions spend is considerably
large to invest some effort in optimizing them.
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Conclusions

The goal of this work was to develop an alternative to the dependence of mere
hardware resources for the creation of video navigation in space and time, where
viewpoints are not limited to the position of the cameras, and therefore offering
better navigation flexibility. Instead of the need of a wide video camera infras-
tructure to cover every desired viewpoint of the scene, just a few cameras are
distributed along the observer plane. Video navigation is then generated with
post-processing methods applied to the images taken from the video sequences.
This allows a greater flexibility of the navigation, where viewpoints are not lim-
ited to the position of the cameras.

The algorithm has not yet reached the capacity of an imperceptible replacement
of real ground-truth images. However, I am firmly convinced that the followed
scheme has the potential to entirely achieve the aimed goal. The results ob-
tained in the interpolated images are quite good, under the understanding of
this work as a first phase for a wider project. Chapter 4 points out the strate-
gies to be carried out in order to considerably improve the interpolation process.

Since video navigation is the aimed application for this algorithm, it has been
motivated to respond to perception plausibility. As mentioned in Chapter 3, a
representative evaluation of the results offers a challenge under this condition;
the employment of user studies should be considered for the evaluation at future
stages.

Video navigation tests have been carried out using our approach. The ap-
pearance of some artifacts in the interpolated images does not allow a totally
smooth navigation. This happens especially in the space interpolation case, in
the areas at the edges of the images. In the case of time interpolation, image
sequences offer quite good slow motion effects. Almost no artifacts are detected
in this case.

The application of the algorithm in video navigation has been done merely
by placing the interpolated images between the original images of the sequence.
This is a very robust approach; some other considerations have to be taken
into account to optimize the video navigation experience. Lipski et al. [5] have
worked to accurately apply the interpolated results for this matter in their arti-
cle “Virtual Video Camera: Image-Based Viewpoint Navigation Through Space
and Time”. They introduce a concept known as spacetime tetrahedralization to
explain the mechanism for the synthesizing of the video effects. It is made clear
that the process is not only a matter of uniformly inserting the interpolated im-
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ages in the sequence. Also, the article “High Resolution Image Correspondences
for Video Post-Production” citeLipski10hires is an interesting contribution for
the optimization of the correspondences when working with high resolution im-
ages. As I stated before, an accurate edglet matching is the fundamental link
to the whole algorithm.

Although totally plausible interpolated images have not yet been achieved, and
that still, from a perspective point of view, real images cannot be fully replaced
at this phase of the developed algorithm, this work has shown that the use of
image processing tools as an alternative for the deployment of extremely sophis-
ticated video camera infrastructures to generate video navigation experiences is
feasible. And this leads to drastically lower costs.

I encourage future students to give continuity to this project.
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