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Physical unclonable functions (PUFs) have great promise as hardware

authentication primitives due to their physical unclonability, high resistance

to reverse engineering, and difficulty of mathematical cloning. Strong PUFs

are distinguished by an exponentially large number of challenge-response pairs

(CRPs), in contrast with weak PUFs that have a smaller CRP set. Because

the adversary cannot create an enumeration clone by recording all CRPs even

when in physical possession of a PUF, strong PUFs enable secure direct au-

thentication, that does not require cryptography and are thus attractive to

low-energy and IoT applications.

The first contribution of this dissertation is the design of a strong sil-

icon PUF resistant to machine learning (ML) attacks. For a strong PUF to

be an effective security primitive, the CRPs need to be unpredictable: given

a set of known CRPs, it should be difficult to predict the unobserved CRPs.

Otherwise, an adversary can succeed in an attack based on building a model

of the PUF. Early strong PUFs have shown vulnerability to ML based attacks.
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We take advantage of the strongly nonlinear I −V property of MOSFETs op-

erating in subthreshold region to introduce a highly unpredictable PUF. The

PUF, termed the subthreshold current array PUF (SCA-PUF), consists of a

pair of two-dimensional transistor arrays, a circuit stabilizing the PUF output,

and a low-offset comparator. The proposed 65-bit SCA-PUF is fabricated in

a 130nm process and allows 265 CRPs. It consumes 68nW and 11pJ/bit while

exhibiting high uniqueness, uniformity, and randomness. It achieves bit error

rate (BER) of 5.8% for the temperature range of -20 to +80◦C and supply

voltage variation of ±10%. A calibration-based CRP selection method is de-

veloped to improve BER to 0.4% with a 42% loss of CRPs. When subjected to

ML attacks, the prediction error stays over 40% on 104 training points, which

shows negligible loss in PUF unpredictability and about 100X higher resilience

than the 65-bit arbiter PUF, 3-XOR PUF, and 3-XOR lightweight PUF.

The second contribution is the application of a strong PUF in a secure

key update scheme. Side-channel attacks on cryptographic implementations

threaten system security via the loss of the secret key. The adversary can

recover the key by analyzing side-channel analog behavior of a cryptographic

device, such as power consumption. Fresh re-keying techniques aim to mitigate

these attacks by regularly updating the key, so that the side-channel exposure

of each key is minimized. Existing key update schemes generate fresh keys by

processing a root key using arithmetic operations. Unfortunately, such tech-

niques have been demonstrated to also be vulnerable to side-channel attacks.

We propose a novel approach to fresh re-keying that replaces the arithmetic

key update function with a strong PUF. We show that the security of our

scheme hinges on the resilience of the PUF to a power side-channel attack and

propose a realization based on the SCA-PUF. We show that the SCA-PUF is
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resistant to simple power analysis and a modeling attack that uses ML on the

power side-channel. We target an insecure device and secure server encryption

scenario for which we provide an efficient and scalable method of PUF enroll-

ment. Finally, we develop an end-to-end encryption system with PUF-based

fresh re-keying, using a reverse fuzzy extractor construction.

The third contribution is the implementation of a strong PUF prov-

ably secure against ML attacks. The security is derived from cryptographic

hardness of learning decryption functions of semantically secure public-key

cryptosystems within the probably approximately correct framework. The

proposed PUF, termed the lattice PUF, compactly realizes the decryption

function of the learning-with-errors (LWE) public-key cryptosystem as the core

block. The lattice PUF is lightweight and fully digital. It is constructed using a

weak PUF, as a physically obfuscated key (POK), an LWE decryption function

block, a pseudo-random number generator in the form of a linear-feedback shift

register (LFSR), a self-incrementing counter, and a control block. The POK

provides the secret key of the LWE decryption function. A fuzzy extractor is

utilized to ensure stability of the POK. The proposed lattice PUF significantly

improves upon a direct implementation of LWE decryption function in terms

of challenge transfer cost by exploiting distributional relaxations allowed by

recent work in space-efficient LWEs. Specifically, only a small challenge-seed is

transmitted while the full-length challenge is re-generated by the LFSR result-

ing in a 100X reduction of communication cost. To prevent an active attack in

which arbitrary challenges can be submitted, the value of a self-incrementing

counter is embedded into the challenge seed. We construct a lattice PUF that

realizes a challenge-response pair space of size 2136, requires 1160 POK bits,

and guarantees 128-bit ML resistance. Assuming a bit error rate of 5% for
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SRAM-based POK, 6.5K SRAM cells are needed. The PUF shows excellent

uniformity, uniqueness, and reliability. We implement the PUF on a Spartan

6 FPGA. It requires only 45 slices for the lattice PUF proper and 233 slices

for the fuzzy extractor.
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Chapter 1

Introduction

1.1 Physical Unclonnable Functions

Physical unclonable functions (PUFs) have great promise as hardware

authentication primitives due to their attractive security properties including

physical unclonability, high resistance to reverse engineering, and difficulty of

mathematical cloning. PUFs are made possible by the imperfections in the

fabrication technology that make cloning of a chip with the same device char-

acteristics impossible. As a result, PUFs provide better security compared to

conventional key storage based on non-volatile memory that is vulnerable to

reverse engineering attacks. PUFs can be used in chip identification, authen-

tication, lightweight encryption, and protection of intellectual property.

Several silicon-based PUFs have been proposed [50, 76, 75, 33, 15, 54,

48, 10, 61, 92, 6]. The amount of entropy in the PUF allows a distinction

between strong and weak PUFs. Strong PUFs are defined by an exponentially

large number of challenge-response pairs (CRPs), in contrast to weak PUFs

that have a small CRP set. Because the adversary cannot create an enumer-

ation clone even when in physical possession of a PUF, strong PUFs enable

secure direct authentication that does not require cryptography, and are thus

attractive for low-energy and IoT applications.
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1.2 Strong PUF based on Subthreshold Current Array

For a strong PUF to be an effective security primitive, the CRPs need to

be unpredictable: given a set of known CRPs, it should be difficult to predict

the unobserved CRPs. Otherwise, an adversary can succeed in an attack based

on building a model of the PUF. Unfortunately, early strong PUFs [50, 76,

74, 92] have shown vulnerability to being attacked through a construction of a

mathematical model via machine learning (ML). The most well-known strong

PUF is a delay arbiter PUF in which two multi-stage paths with the same

nominal delay are set up [50]. Due to variation in device properties, the two

paths have slightly different delays and the arbiter identifies a faster path,

producing a 1-bit output. However, because a path delay can be expressed

as a linear function of individual stage delays, the arbiter PUF can be easily

attacked via ML.

Several ways of injecting nonlinear behavior have been proposed [28,

50, 76, 59]. In a feed-forward PUF [50], configuration of the later stages

is determined by the results of the earlier stages. Yet, advanced ML attacks

utilizing evolutionary optimization can still be effective in building an accurate

model [73]. Another way to introduce nonlinearity is to use the XORed result

of multiple arbiter outputs as the final PUF output [28]. However, combining

outputs from multiple arbiters leads to higher noisiness of the output. And

with properly selected model, the XOR PUF can still be successfully attacked

(using logistic regression) [73].

The concept of a highly nonlinear ML resistant PUF based on the

subthreshold current array (SCA), termed as the SCA-PUF, was proposed by

Kalyanaraman et al. [39]. The basic building block of SCA-PUF is a pair of

nominally identical n × k two-dimensional transistor arrays with all devices
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subject to stochastic variability operating in subthreshold region. The output

voltage difference between the two arrays is digitized via a comparator, and

thus a PUF response is generated. The principle feature of the circuit is that it

has a highly nonlinear boundary between the regions of PUF 1-outputs and 0-

outputs in the nk-dimensional space of threshold voltage. This makes existing

ML methods fail in predicting the responses of the SCA-PUF which achieves

high security.

We present a practical realization of the SCA-PUF [89]. The offset volt-

age of the comparator is required to be removed through calibration. Since the

comparator offset depends on the input common-mode voltage, it is necessary

to ensure that the output common-mode voltage of the two SCAs remains con-

stant under different challenge inputs. We designed a common-mode feedback

circuit that ensures the comparator to produce a correct result after foreground

offset calibration. The comparator is designed based on a Strong-Arm latch

and has low noise and offset. Specifically, we report a fabricated strong PUF

in 130nm CMOS that has 265 CRPs. When subjected to a suite of ML at-

tacks, the PUF shows resilience that is ∼100X higher than that of the 65-bit

arbiter PUF, 3-XOR PUF, and 3-XOR lightweight PUF, with negligible loss

in PUF unpredictability. When used in conjunction with a reliability-driven

CRP selection method, the BER of only 0.4% is achieved for temperature -20

to 80◦C and supply voltage ±10%. The SCA-PUF also shows good uniformity

and uniqueness.

1.3 Fresh Re-Keying via Strong PUFs

Side-channel attacks are a crucial threat for cryptographic schemes run-

ning on embedded devices. The adversary can recover secret information by
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analyzing side-channel analog behavior of a device, such as power consumption,

during the execution of a cryptographic algorithm [47]. Traditional counter-

measures against power-based side-channel attacks include masking and hid-

ing. Masking adds randomness to key-dependent computations to remove

correlations between the key and the intermediate values [30], and hiding adds

redundant activity into the circuit to achieve constant power consumption [83].

Although these methods improve the security of the system by increasing the

number of traces required to extract the key, they do not fully eliminate the

side-channel threat [94, 87].

To remove above side-channel vulnerabilities, Medwed et al. proposed

a new scheme called fresh re-keying that regularly updates the key to limit

per-key side-channel exposure [62]. A key update function is used, along with

a master key, to generate fresh secret keys for cryprographic primitives. Un-

fortunately, the adversary can still apply differential power analysis (DPA) on

the key update function to extract the master key, and thus obtain all fresh

secret keys. Hence, the key update function needs to be carefully designed to

be secure against both SPA and DPA attacks. Several re-keying constructions

were shown to be vulnerable to such side-channel attacks [67, 84, 20]. These

vulnerabilities motivate our search for a fundamentally different approach to

designing the key update function.

We propose to replace the algorithmic (mathematical) key update func-

tion with a physical object, namely, the PUF, in a way that the construction

becomes more secure against the side-channel vulnerabilities of earlier designs

[88]. The desired properties are achieved by adopting a strong PUF. For our

purposes, such a strong PUF can be abstracted as a hardware hash function

with a random key, defined by the unique physical instantiation of process
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variation values (e.g., gate delays or threshold voltages). The strong PUF

accepts an input challenge and generates responses used to produce a fresh

secret key. Specifically, a reverse fuzzy extractor (RFE) is used to produce a

high-entropy key along with helper data [21, 85].

Similar to algorithmic re-keying, PUF-based re-keying needs to elimi-

nate the vulnerability to side-channel analysis, such that observing PUF chal-

lenges and the power of the PUF does not reveal the secret process variation

values. However, Becker et al. [8] showed that it is possible to derive those

values, for some PUFs, by utilizing power side-channel information. We first

hypothesize that a PUF that is constructed to be intrinsically resilient against

a CRP-only modeling attack is also resilient against ML attacks utilizing side-

channel information. Indeed, if the side-channel does not reveal any informa-

tion beyond what is already contained in CRPs, then it cannot supply any

additional information to the learning algorithm, and thus, a side-channel ML

attack is also likely to fail. With this objective in mind, we investigate the use

of the SCA-PUF since it is explicitly constructed to be resilient to CRP-based

attacks. As our experiments show, it remains secure against the attack used

by Becker et al. [8].

Because it is undesirable for the server to store PUF CRPs directly, our

scheme relies on a model of the PUF. The server performs a one-time extraction

of the process variation values during enrollment and uses it later to generate

fresh keys. The extraction is made possible via a one-time interface, such as

a fuse that is disabled after enrollment, so that the extraction cannot be done

after the device is deployed [71, 14]. We provide an enrollment method and

evaluate the accuracy of the extracted PUF model.

5



1.4 A Strong PUF Provably Secure against Machine
Learning Attacks

As stated in Section 1.2, in order to be an effective security primitive,

a strong PUF needs to be resilient to modeling attacks. The SCA-PUF in-

troduced in Section 1.2 has empirically-demonstrated resistance to some ML

algorithms. But empirical demonstrations of ML resistance are not fully satis-

factory since they can never rule out the possibility of other more effective ML

algorithms. Previous work on ML resistant PUFs [29, 11, 38] also indicates

that to design a lightweight provably ML-secure strong PUF is very hard [86].

We propose a strong PUF that is lightweight and provably secure against ML

attacks with both classical and quantum computers. The main insight is the

mapping of ML attack resistance in a PUF to hardness of learning a decryp-

tion function of a cryptosystem within the probably approximately correct

(PAC) framework. The proposed PUF is developed based on the earlier proof

that PAC-learning a decryption function of a semantically secure public-key

cryptosystem entails breaking that cryptosystem [44, 45, 46].

Specifically, we develop a PUF for which the task of modeling is equiva-

lent to PAC-learning the decryption function of a learning-with-errors (LWE)

public-key cryptosystem. LWE cryptosystems are based on the hardness of

LWE problem that ultimately is reduced to the hardness of several problems

on lattices [70]. The LWE decryption function is the core module of the lattice

PUF, generating response (plaintext) to each submitted challenge (ciphertext).

We develop a measure of ML security in terms of the total number of operations

needed to learn the model of the PUF. Such concrete hardness is established

by the analysis of state-of-the-art attacks on the LWE cryptosystem [52, 63]

and evaluated by the estimator developed by Albrecht et al. [3]. Using this

6



estimator, we say that a PUF has k-bit ML resistance if a successful ML attack

requires 2k operations.

The theoretical security guarantee assumes that the inputs to the LWE

decryption function are generated by an encryption function operating on the

uniformly random plaintexts: we call such allowed queries “challenges gener-

ated by a ciphertext distribution”. However, we found that a direct imple-

mentation of lattice PUF, in which the server fully generates ciphertext, is

inefficient due to the well-known high ratio of ciphtertext to plaintext. We

solve this problem by exploiting distributional relaxations allowed by recent

work in space-efficient LWEs. First, our approach replaces the component

of ciphertext, dominating transmission cost, by a uniformly sampled random

vector, such that the resulting distribution is statistically close to the original

ciphertext distribution [2]. The advantage of the above replacement is that,

as shown by Galbraith et al. [25], multiple simple pseudo-random number

generators (PRNGs), including those based on a linear-feedback shift register

(LFSR), are capable of producing it. Specifically, Galbraith et al. shows that

input challenges generated by PRNGs provide similar concrete security guar-

antees against standard attacks on LWE [25]. The proposed strategy allows

introducing a low-cost PRNG based on an LFSR and transmitting only a small

seed. This results in a dramatic reduction of the effective challenge size. In

the improved design with the same parameters chosen above, only 928 bits are

needed to produce a 100-bit response. This is a 100X reduction of communi-

cation cost in authentication, in contrast to the direct PUF implementation

as LWE decryption function.

The focus of the paper is a PUF that is secure against passive attacks

in which the observed challenges can be used to derive an internal model of the
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PUF. However, the LWE decryption function is vulnerable to an active attack

that supplies arbitrary input challenges. (As we show, this risk also carries into

an LFSR-based variant). We overcome the risk of such an attack by adopting

the technique used by Yu et al. [93]: we introduce a self-incrementing counter

to embed the counter value into a challenge seed. This makes the attack

impossible as the counter restricts the attacker’s ability to completely control

input challenges to the LWE decryption function.

We implement the PUF on an FPGA which requires a 1160-bit secret

key while guaranteeing 128-bit ML resistance. The secret key is generated from

POK bits. We use an FE with concatenated codes to reconstruct stable POK

bits. The random source of the POK can be any weak PUF. The SRAM PUF

power-up states are used in our paper. Assuming an average bit error rate

(BER) of 5% for raw SRAM cells, the total number of raw SRAM bits needed

is 6.5K, in order to achieve a key reconstruction failure rate of 10−6. The

LFSR utilizes a 256-bit seed. The self-incrementing counter produces a 128-bit

output. Additional 128 bits are concatenated with the counter output to form

the input seed to the LFSR. Thus, the resulting lattice PUF is able to achieve a

CRP space of size 2136. The mean BER (intra-class Hamming distance (HD)) is

4.43%. The lattice PUF also shows excellent uniformity and uniqueness. The

hardware implementation on a Xilinx Spartan 6 FPGA utilizes only 45 slices

for the lattice PUF logic and 233 slices for the concatenation-code-based FE.

Compared to several known strong PUFs, the proposed PUF is significantly

more resource-efficient.
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1.5 Dissertation Outline

The rest of the dissertation is organized as follows: Chapter 2 intro-

duces design details of the SCA-PUF and reports sillicon test results. Chapter

3 discusses the fresh re-keying scheme based on the SCA-PUF. Chapter 4 in-

troduces the theory and design details of the lattice PUF. Chapter 5 concludes

this dissertation with a discussion of limitations of the current methods and

possible future improvements.
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Chapter 2

Strong Subthreshold Current Array PUF

Resilient to Machine Learning Attacks

2.1 Introduction

1 Physically unclonable functions (PUFs) have great promise as hard-

ware authentication primitives due to their attractive security properties in-

cluding physical unclonability, high resistance to reverse engineering, and dif-

ficulty of mathematical cloning. PUFs are made possible by the imperfections

in the fabrication technology that make cloning of a chip with the same device

characteristics impossible. As a result, PUFs provide better security compared

to conventional key storage based on non-volatile memory that is vulnerable

to reverse engineering attacks. PUFs can be used in chip identification, au-

thentication, lightweight encryption, and protection of intellectual property.

Several silicon-based PUFs have been proposed [50, 76, 75, 33, 15, 54,

48, 10, 61, 92, 6]. The amount of entropy in the PUF allows a distinction

between strong and weak PUFs. Strong PUFs are defined by an exponentially

large number of challenge-response pairs (CRPs), in contrast to weak PUFs

that have a small CRP set. Because the adversary cannot create an enumer-

ation clone even when in physical possession of a PUF, strong PUFs enable

1Contents of this chapter are based on [89] in which the author made substantial contri-
butions to the development and design of the main idea.
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secure direct authentication that does not require cryptography, and are thus

attractive for low-energy and IoT applications.

However, for a strong PUF to be an effective security primitive, the

CRPs need to be unpredictable: given a set of known CRPs, it should be diffi-

cult to predict the unobserved CRPs. Otherwise, an adversary can succeed in

an attack based on building a model of the PUF. Unfortunately, early strong

PUFs [50, 76, 74, 92] have shown vulnerability to being attacked through a

construction of a mathematical model via machine learning. The most well-

known strong PUF is a delay arbiter PUF in which two multi-stage paths with

the same nominal delay are set up [50]. Due to variation in device properties,

the two paths have slightly different delays and the arbiter identifies a faster

path, producing a 1-bit output. However, because a path delay can be ex-

pressed as a linear function of individual stage delays, the arbiter PUF can be

easily attacked via machine learning.

Several ways of injecting nonlinear behavior have been proposed [28,

50, 76, 59]. In a feed-forward PUF [50], configuration of the later stages is

determined by the results of the earlier stages. Yet, [73] advanced modeling

attacks utilizing evolutionary optimization can still be effective in building an

accurate model. Another way to introduce nonlinearity is to use the XORed

result of multiple arbiter outputs as the final PUF output [28]. However, com-

bining outputs from multiple arbiters leads to higher noisiness of the output.

While the XOR PUF is more difficult to learn, with enough computation it can

still be attacked (using logistic regression) [73], though the cost of an attack

increases exponentially.

The concept of a highly nonlinear machine learning resistant PUF based

on the subthreshold current array (SCA) was proposed by Kalyanaraman et
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al. [39]. In this project, we show a practical design and post-silicon test results

of the SCA-PUF. In SCA-PUF design, the offset voltage of the comparator

is required to be removed through calibration. But the comparator offset de-

pends on the input common-mode voltage, and therefore it is necessary to

ensure that the output common-mode voltage of the two SCAs remains con-

stant under different challenge inputs. We designed a common-mode feedback

(CMFB) circuit that ensures the comparator to produce a correct result after

foreground offset calibration. The comparator is designed based on a Strong-

Arm latch and has low noise and offset. Specifically, we report a fabricated

265 CRP strong PUF in 130nm CMOS. When subjected to a suite of machine

learning attacks, the PUF shows resilience that is ∼100X higher than that of

the arbiter PUF, with negligible loss in PUF unpredictability. When used in

conjunction with a reliability-driven CRP selection method, the BER of only

0.4% is achieved for temperature -20 to 80◦C and supply voltage ±10%. The

SCA-PUF also shows good uniformity and uniqueness.

2.2 Subthreshold Current Array PUF: Security Princi-
ples and Design

The overall architecture of the proposed strong PUF is shown in Figure

2.1. It consists of two nominally identical two-dimensional transistor arrays

selectively subjected to maximum amount of stochastic variability. Each array

is composed of k columns and n rows of unit cells, Figure 2.2.

2.2.1 Source of Nonlinearity: Subthreshold Current

Realizing a secure strong silicon PUF requires making the output func-

tion nonlinear in random variables. The SCA-PUF utilizes the strongly non-
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SCA_a

SCA_b

CMFB

Vout_a

Vout_b Comparator

Bias
C11
C12

Cnk

Figure 2.1: The architecture of SCA-PUF consisting of a pair of arrays, a
comparator, and a common-mode feedback (CMFB) circuit.

linear I-V behavior of MOSFETs operating in subthreshold region. Consider

the equation defining subthreshold current to FET terminal voltages:

Ids = µCox
W

L
(m− 1)

(
kT

q

)2

e
q(Vgs−Vth)

mkT

(
1− e−

qVds
kT

)
(2.1)

where m is the subthreshold slope factor. The critical feature of Equation (2.1)

is that the current is exponentially dependent on the threshold voltage Vth.

Further, the SCA-PUF utilizes the fact that Vth exhibits large and spatially-

uncorrelated variability due to random dopant fluctuation [81, 65] to ensure

uniqueness of individual PUF instances as well as unclonability.

2.2.2 Subthreshold Current Array Structure

A unit cell is composed of two transistors. We use the term stochastic

transistor to refer to a device with maximized amount of Vth variability which

is achieved by using a minimum-sized transistor. In each unit cell, with a

row index i and a column index j, a stochastic transistor Mij is in parallel

with a non-stochastic switch Mijx, Figure 2.2. The non-stochastic switch is

sized to make its variability negligible compared to that of a stochastic device.

The bias of each array is chosen such that regardless of the input controls,

the currents in each branch keep the diode-connected stochastic transistors in
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Vout_a Vout_b

X

RG

Vb Vb

M11M11x
C11
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C21

Mn1Mn1x
Cn1

M12M12x
C12

M22M22x
C22

Mn2Mn2x
Cn2

M1kM1kx
C1k

M2kM2kx
C2k

MnkMnkx
Cnk

C11C21...Cn1 C12C22...Cn2 C1kC2k...CnkM1y M2y Mky

Figure 2.2: The subthreshold current array consists of controllable unit cells.
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Vb Mc1

M21M21x
C21

M11
C11 M12M12x

C12

M22M22x
C22

C11C21 C12C22M1y M2y

Vout

VX

M11x

Figure 2.3: An example 2×2 SCA.

subthreshold region. The subthreshold region is ensured via current sources

Mc1 and Mc2. When Cij = 0, the stochastic transistor is shorted by the switch

which removes its impact on the output voltage. When Cij = 1, the stochastic

transistor operates in subthreshold region and contributes to determining the

output voltage. A header transistor Mjy is at the top of each column, avoiding

a direct up-down path when all the switches are shorted in one column.

The currents through Mc1 and Mc2 are equal and constant. Because

both arrays are driven by the same input bits Cij, in the absence of device

mismatch, the two arrays produce identical output voltages. However, the

randomness of Vth leads to the difference between the output voltages which
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Figure 2.4: A nonlinear curve of constant Vout for the 2×2 SCA-PUF produces
the hard-to-learn behavior.

is converted to a binary response by the comparator. Because all values of Cij

are allowed, the size of the CRP space is 2nk, making it a strong PUF.

The defining characteristic of the SCA-PUF is the highly nonlinear

boundary between the regions of PUF 1-outputs and 0-outputs in the nk-

dimensional space of Vth. This makes existing machine learning methods fail

in predicting the response of the PUF. We use a 2× 2 SCA of Figure 2.3 for a

concrete example. Utilizing Equation (2.1) to analyze Figure 2.3 several curves

of constant output voltage in terms of threshold voltages Vthij are produced,

Figure 2.4. The figure shows a significant nonlinearity of output voltage. Be-

cause the degree of nonlinearity may be hard to appreciate visually, we also

compute the derivative of the curve in Figure 2.4:

dVth22/dVth11 ≈ −e
Vth12+Vth22−Vth11−Vth21

2kT/q (2.2)
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It can be clearly seen that even the slope of the hypersurface varies

exponentially with Vth. It is this behavior that makes the SCA-PUF resilient

to modeling attacks, as we empirically demonstrate later.

2.2.3 Common-Mode Feedback Circuit

As shown in Figure 2.1, the output voltage difference between the two

arrays is digitized via a comparator. The offset voltage requirements on the

comparator are quite stringent, as detailed in the next section, requiring the

offset to be removed through calibration. Since the comparator offset depends

on the input common-mode voltage, it is necessary to ensure that the output

common-mode voltage of the two SCAs remains constant under different chal-

lenge inputs. Otherwise, even if the comparator is calibrated and offset-free

at a given common-mode voltage, the offset would re-appear as the common-

mode voltage varies.

In the original PUF circuit of Figure 2.2, the node X is directly con-

nected to VDD. The common-mode voltage Vout CM ≡ (Vout a + Vout b)/2 is

highly sensitive to the SCA input Cij, as it alters the pull-up strength of the

SCAs, causing Vout CM to vary from 300 mV to 900 mV. Such a large varia-

tion makes the comparator offset calibration ineffective. To maintain a stable

Vout CM , we insert Mf5 to separate the node X from VDD and control its gate

voltage Vf by a common-mode feedback (CMFB) circuit, Figure 2.5. If Vout CM

deviates from the desired common-mode voltage Vref , the error amplifier ad-

justs the pull-up strength of the SCAs by changing Vf to keep Vout CM close

to Vref .

The simplest way to sense the common-mode voltage is to use resistor

averaging [68]. This method is not suitable here because the SCAs operate
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Figure 2.5: Complete PUF circuit with common-mode feedback.
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ΔI

ΔI

ΔV2

ΔV1
Vg=Vref

Figure 2.6: I − V curve of MOSFET.
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in the subthreshold region with low bias current and high output resistance.

Therefore, we would need very large resistors (in GΩ) to avoid attenuating the

SCA differential-mode output signal ∆Vout ≡ Vout a − Vout b. Such a solution

would be costly in terms of chip area. To obviate this problem, we choose

to use transistors Mf1 and Mf2 to perform the current averaging as shown in

Figure 2.5. The merit of this approach is that because the input impedance

of Mf1 and Mf2 is very high, the differential output ∆Vout is not attenuated.

We should also note that Mf1 and Mf2 act as an accurate averager

only when ∆Vout is small because of the intrinsic nonlinearity of I-Vgs of a

transistor. When ∆Vout = 0, the CMFB circuit makes Vout CM equal to Vref ,

where the comparator is well calibrated. When ∆Vout is a small value, Vout CM

equal to Vref is still guaranteed. However, when ∆Vout is sufficiently large

(small signal analysis is no longer valid), Vout CM will deviate from Vref . This

deviation can be calculated using the MOSFET I-V curve in Figure 2.6:

Vg f1 = Vout a = Vref + ∆V1 (2.3)

Vg f2 = Vout b = Vref −∆V2 (2.4)

∆V1 � ∆V2 (2.5)

where Vg is gate voltage. As a result,

Vout CM =
Vout a + Vout b

2
< Vref (2.6)

This equation shows how Vout CM deviates from Vref . According to the mea-

surement result, when ∆Vout = 50mV, Vout CM deviates by about 10mV, mak-

ing the comparator offset (several mV) re-appear. But this comparator offset

is much smaller than 50mV ∆Vout, so the comparison result is still correct. In

summary, the proposed CMFB circuit ensures that the comparator produces

a correct result after foreground offset calibration.

19



2.2.4 Comparator

The PUF response can be influenced by the offset and noise of the

comparator. A large offset would significantly deteriorate randomness and

inter-die Hamming distance (HD) of the PUF while large noise would degrade

the intra-die HD. The allowable offset and noise of the comparator depend on

the statistics of the comparator’s input differential voltage. The measured dif-

ferential SCA output voltage |∆Vout| has the distribution of µ = 17.9 mV and

σ = 13.6 mV (Figure 2.10). Therefore, the input offset Vos of the comparator

needs to be below 100 µV to ensure that 99.6% of the CRPs are correctly

resolved. Similarly, the input referred rms noise should be below 100 µV.

The proposed comparator is based on a strong-arm latch with some

modifications, as shown in Figure 2.7. The tail transistor which connects to

the clock in the Strong-Arm latch is replaced by M5 and M6. Since the source

nodes of the input transistors M1 and M2 are always connected to the ground,

the kick-back noise of the proposed comparator is one half of the noise of the

Strong-Arm latch. Although the kick-back noise is reduced, the drain nodes

of M1 and M2 are at ground during the comparator reset period. Therefore,

when the comparator is fired on the rising edge of the clock, M1 and M2 may

operate in the linear region, causing a large comparator offset and noise [69].

To address this issue, two large capacitors C1 and C2 are added. During reset,

the capacitors C1 and C2 are discharged. When the comparator clock CKcomp

rises, both VP and VQ are pulled to a high voltage Vmax via capacitive coupling

of C1 and C2, as shown in Figure 2.8. This ensures that M1 and M2 work in the

saturation region, which reduces the comparator offset and noise. Moreover,

C1 and C2 elongate the dynamic integration time of the input transistors,

further reducing comparator noise.
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Figure 2.7: Proposed comparator with low offset and noise.
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Figure 2.8: Voltages at nodes P and Q in comparator.
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In summary, the proposed comparator has three operation phases:

• Reset phase: CKcomp is 0; nodes P and Q are reset to GND; and voltages

across C1 and C2 are 0.

• Amplification phase: VP and VQ follow CKcomp to go high and reach

Vmax. After that, VP and VQ go down slowly, because M1 and M2 draw

current from P and Q. Simultaneously, VE and VF also go down slowly,

because M5 and M6 are turned on.

• Regeneration phase: The comparator works in the same way as the

Strong-Arm latch.

To calibrate the comparator offset, transistors M3 and M4 are adopted.

The offset calibration process is as follows. We first turn on switch S1 in

Figure 2.5 to ensure ∆Vout = 0. Then, we adjust Vcalp and Vcaln to ensure

that the comparator output topples between 1 and 0 (i.e., stays close to the

metastability region).

2.3 Test Chip Measurement Results

The test chips of the SCA-PUF have been fabricated in the IBM 130nm

CMOS process. Figure 2.9 shows the die photograph. Each chip contains three

65-bit-input PUF instances.

2.3.1 Analog Outputs Measurement

We first measure the distribution of |∆Vout|, which is directly related to

the PUF robustness. When |∆Vout| is large, the PUF response is less sensitive

to the comparator offset and noise, thus improving PUF robustness. |∆Vout|
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Figure 2.9: Chip micrograph and layout.

is measured across all the 50 PUFs on 17 chips. Figure 2.10 shows that the

measured |∆Vout| distribution has µ = 17.9mV, σ = 13.6mV. Because our

comparator has low offset of less than 100µV after calibration, only 0.35% of

the CRPs are impacted.

We also investigate how Vout CM varies with |∆Vout|. This is important

because Vout CM can affect the comparator offset. Vout CM vs. |∆Vout| is mea-

sured for 500 challenges for one PUF instance; the results are in the scatter

plot of Figure 2.11. When |∆Vout| is zero, Vout CM is about 463mV: this is the

point at which the comparator is calibrated. When |∆Vout| is 50mV, Vout CM

deviates from 463mV by about 10mV: as explained above, this small deviation

will not produce an incorrect result.
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Figure 2.10: Output voltage difference distribution.

Figure 2.11: Dependence of Vout CM on |∆Vout| in a single PUF instance.
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2.3.2 PUF Robustness Measurements

We first investigate the impact of noise by repeatedly measuring PUF

outputs under nominal conditions (25◦C and VDD = 1.2V ). As shown in

Figure 2.10, |∆Vout| can be as small as several µV, which makes only a very

small fraction of PUF responses sensitive to noise (e.g. for |∆Vout| < 100µV ,

the fraction of CRPs is 0.35%). We randomly choose 200 CRPs from one PUF

instance to evaluate response 100 times. The measurement result shows that

only 1 of 200 response bits is unstable.

We then investigate the PUF response robustness against VDD varia-

tion. The comparator is calibrated only once under the nominal conditions.

Bit error rate (BER) is used to quantify the PUF robustness. In what follows,

BER is defined identically with intra-die HD, measuring a fraction of response

bits of a PUF that change across different environmental conditions. The sup-

ply voltage is varied 1.08 to 1.32V VDD with VDD = 1.2V as a reference. As

shown in Figure 2.12, the BER measured for 5 PUFs and 500 challenges is less

than 4% in the worst case.

Next we investigate the robustness against temperature variation. The

comparator is also calibrated only once under the nominal conditions. As

shown in Figure 2.12, the measured BER is 12% in the worst case, across

−20∼80◦C for 5 PUFs and 500 challenges. This indicates that our PUF is

more sensitive to temperature than VDD, as further illustrated in Figure 2.12.

The overall BER across both −20∼80◦C and 1.08∼1.32V VDD is also mea-

sured. The result is shown in Figure 2.14: the average BER (intra-die HD) is

µ =0.058 and the standard deviation is σ =0.038.

One effective way to improve PUF robustness is to identify unstable
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Figure 2.12: PUF robustness against VDD and temperature.

Figure 2.13: BER and the fraction of discarded CRPs at different calibration
voltages ∆Vcal.
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bits and discard (mask) them. The masking information can be stored in

nonvolatile memory (NVM). Because the unstable bits are characterized by

small |∆Vout|, the value of |∆Vout| can be used for masking, with bits below a

threshold being masked. However, it is difficult to directly measure |∆Vout| in
real applications since adding pins for SCA analog outputs is undesirable.

We propose a solution that uses comparator offset as the indirect way

of identifying unstable bits. First, for any given set of challenges, the refer-

ence responses are identified as responses produced by the optimally-calibrated

comparator. Such a comparator is characterized by a pair of calibration volt-

ages Vcaln and Vcalp, see Figure 7. Next, while Vcalp is unchanged, the responses

are recorded again after modifying only Vcaln by ∆Vcal. All bits that have

changed compared to the reference set are marked as unstable (discarded).

The procedure is repeated, this time keeping Vcaln at its optimal setting, and

modifying only Vcalp by ∆Vcal. All bits that have flipped in this case are also

marked as unstable (discarded). Figure 2.13 shows the average BER and the

fraction of discarded CRPs as a function of ∆Vcal. As ∆Vcal increases, more

CRPs are marked as unstable and discarded which reduces the average BER.

The experimental results indicate that our method can greatly reduce the av-

erage BER to 2.6% with a 10% loss of CRPs or 0.1% (0.4% in the worst case)

with a 42% loss of CRPs. Since the 65-bit PUF has 265 available CRPs, even

if 42% of all CRPs are discarded, we still have ∼ 264 CRPs to use.

2.3.3 Uniqueness, Uniformity and Randomness Measurement

Several metrics are widely used to ascertain the quality of a PUF [57].

Ideally, each PUF produces a unique set of responses to the same challenge

set. Uniqueness, that is typically quantified as inter-die HD, is the measure
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Figure 2.14: Inter-die and intra-die Hamming distance distributions.

of how different two arbitrary PUF instances will be. The ideal inter-die HD,

when normalized to the total number of output bits, is 0.5. The measured

normalized inter-die HD of the SCA-PUF has average of µ = 0.499 and the

standard deviation of σ = 0.043, the distribution is shown in Figure 2.14.

Further, for an ideal PUF, the fraction of “1”s and “0”s among the

response bits should be equal. This measure of uniformity is defined as Ham-

ming weight (HW) of the PUF output string. The randomness metric also

quantifies uniformity but in min-entropy form. The ideal uniformity and ran-

domness are both 0.5. The measured average uniformity is µ = 0.528 (σ =

0.109), and the average randomness is µ = 0.528 (σ = 0.062).

2.3.4 Resilience to ML attacks

An adversary may attempt to overcome the authentication guaran-

tees offered by a PUF using machine learning attacks. The PUF challenge-
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(a)

(b)

Figure 2.15: Machine learning attacks on the 65-bit SCA-PUF and arbiter
PUF: (a) prediction error and (b) secrecy capacity results.
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response behavior results from an underlying function with a limited number

of unknown parameters, so this behavior can be learned by machine learning

through observing a small set of CRPs (i.e. training set). The ability of a

PUF to withstand machine learning attacks is a critical measure of strong

PUF’s security. Here, a suit of standard machine learning attacks is applied,

including support vector machines, logistic regression, and neural networks.

We ran these attacks on our SCA-PUF with the collected CRP dataset. We

also ran the same attacks on 65-bit arbiter PUF, 3-XOR PUF [73], and 3-

XOR lightweight (LW) PUF [73] for comparison. As shown in Figure 2.15a,

the prediction error for a 65-bit SCA-PUF stays over 40% for the training set

of 104 samples. This is ∼100× higher than for the 65-bit arbiter PUF, 3-XOR

PUF, and 3-XOR LW PUF.

ML-attack vulnerability affects the usability of a PUF in a Secure Key

Generation (SKG) algorithm [34]. In such a setting, PUF responses serve

as source of entropy from which secret keys can be extracted. The secrecy

capacity S(X) of a fuzzy secret X is defined as the theoretical maximum

number of secure key bits that can be extracted from X. For a vector of N

PUF response bits XN = (X1, X2, ..., XN) with Xi as a single response bit, the

secrecy capacity can be upper bounded as S(XN) ≤∑N
i=1 h(SR(i− 1))−N ·

h(pe). Here SR(i−1) is the prediction success rate of machine learning attack

after observing (i − 1) CRPs, pe is the average BER of PUF responses. h(p)

is the binary entropy function: h(p) ≡ −p log2 p− (1− p) log2(1− p). Figure

2.15b shows that the secrecy capacity increases linearly with the number N of

CRPs for SCA-PUF while it saturates for the arbiter PUF, 3-XOR PUF, and

3-XOR LW PUF. This indicates that SCA-PUF has a much higher secrecy

capacity (∼265 gap between SCA and the other three PUFs).
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2.3.5 Area, Operating Frequency, and Power Consumption

As shown in Figure 2.9, the entire SCA-PUF design, including current

mirrors, SCAs, the CMFB circuit and the comparator, occupies 44700µm2.

Each single SCA occupies 6240µm2. Notice that when the number of challenge

bits increases, only the SCA area increases.

The operating frequency is limited by the settling time of the SCA

output voltage. The average frequency across 50 SCA-PUFs is measured to

be 6Kb/s at VDD = 1.2V. The average power consumption and energy/bit are

68nW and 11pJ/bit, respectively.

2.3.6 Comparison with State of the Art

In Table 2.1, the proposed SCA-PUF is compared with state-of-the-art

strong PUFs, including delay PUFs [92, 54, 50], ring orsillator (RO) PUFs [76],

and SRAM-based PUFs [37]. The most important advantage of SCA-PUF is

the resilience to machine learning attacks and large secrecy capacity. Previous

arbiter delay PUFs have been shown to be vulnerable to machine learning

attacks and thus have quite small secrecy capacity. The BER obtained after

the calibration-based CRP selection is also much lower than in previous works,

which reduces post-processing cost of error correction. The uniqueness and

uniformity of SCA-PUF are excellent compared to previous work. The power

consumption is lower than previous work. The operating range of SCA-PUF

is wide enough to tolerate temperature and supply variations.
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Table 2.1: State-of-the-art strong designs.
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Chapter 3

Fresh Re-Keying with Strong PUFs: a New

Approach to Side-Channel Security

3.1 Introduction

1 Side-channel attacks are a crucial threat for cryptographic schemes

running on embedded devices. The adversary can recover secret information

by analyzing side-channel analog behavior of a device, such as power consump-

tion, during the execution of a cryptographic algorithm [47]. Traditional coun-

termeasures against power-based side-channel attacks include masking and

hiding. Masking adds randomness to key-dependent computations to remove

correlations between the key and the intermediate values [30], and hiding adds

redundant activity into the circuit to achieve constant power consumption [83].

Although these methods improve the security of the system by increasing the

number of traces required to extract the key, they do not fully eliminate the

side-channel threat [94, 87].

3.1.1 Basic Fresh Re-keying Scheme

To remove above side-channel vulnerabilities, Medwed et al. proposed

a new scheme called fresh re-keying that regularly updates the key to limit per-

key side-channel exposure [62]. Figure 3.1a shows the fresh re-keying scheme

1Contents of this chapter are based on [88] in which the author made substantial contri-
butions to the development and design of the main idea.
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Figure 3.1: (a) The original re-keying scheme; (b) Our proposal: re-keying
with a strong PUF.

used in a symmetric-key encryption scenario between a device and a server.

We are specifically interested in applications where the device is deployed in

the field and hence is the target of physical side-channel attacks while the sever

operates in a physically-secured location. Internet-of-Things applications are

a typical example of this scenario where a leaf-node device needs to send data

to a cloud server. The system needs to transmit information confidentially

from the device to the sever by encrypting it with a key. The device and

the server rely on a pre-shared master key k to achieve this goal. Both the

device and the server contain two blocks: the key update function g and the

encryption function f (e.g., the AES block cipher). The key update function

g generates a fresh key k∗ using the master key k and a public nonce r. The

encryption function f uses the fresh key k∗ to encrypt a plaintext message p

into a ciphertext output c. The device then sends r and c to the server. The

server uses this information first to compute the fresh key and then to decrypt
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the ciphtertext.

Unfortunately, fresh re-keying does not eliminate the problem of side-

channel vulnerability but rather defers it to another block. Differential Power

Analysis (DPA) on function f becomes impractical because, in the worst case,

every plaintext can be encrypted with a different k∗. Therefore, f only needs

to be secure against Simple Power Analysis (SPA), which is relatively easier

to achieve. The adversary, however, can still apply DPA on function g to

extract the master key k and thus obtain all fresh secret keys. Hence, g needs

to be carefully designed to be secure against both SPA and DPA attacks.

Unfortunately, several re-keying constructions were shown to be vulnerable

to such side-channel attacks [67, 84, 20]. These vulnerabilities motivate our

search for a fundamentally different approach to designing the key update

function g.

3.1.2 New Approach: Re-keying with Strong PUFs

In this project, we propose to replace the algorithmic (mathematical)

key update function g with a physical object, namely, the PUF, in a way that

the construction becomes more secure against the side-channel vulnerabilities

of earlier designs. The desired properties are achieved by adopting a strong

PUF, that is, a PUF capable of producing an exponentially large number of

challenge-response pairs (CRPs). For our purposes, such a strong PUF can be

abstracted as a hardware hash function with a random key, kp, defined by the

unique physical instantiation of process variation values (e.g., gate delays or

threshold voltages).

Figure 3.1b shows the operation of the proposed fresh re-keying scheme.

The strong PUF accepts an input challenge r and generates a response xR. A
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reverse fuzzy extractor (RFE), consisting of two functions, Gen and Rec, is

used to produce a high-entropy key along with helper data [21, 85]. Specifically,

Gen receives the PUF response xR and generates a key k∗ and helper data h.

The server generates the enrolled response xM based on a pre-stored model of

the PUF (Mpuf ). The response xM is used by Rec, along with helper data h,

to recover k∗.

We now analyze the requirements for ensuring the higher security of

PUF-based re-keying. Algorithmic re-keying using a digital implementation

of g is vulnerable because observing r and power of g allows an attacker to

recover the master key k. Therefore, PUF-based re-keying needs to eliminate

this vulnerability, such that observing r and the power of the PUF does not

reveal the key kp. However, Becker et al. showed that it is possible to derive

kp, for some PUFs, by utilizing power side-channel information [8]. We first

hypothesize that a PUF that is constructed to be intrinsically resilient against

a CRP-only modeling attack is also resilient against machine learning (ML)

attacks utilizing side-channel information. Indeed, if the side-channel does

not reveal any information beyond what is already contained in CRPs, then it

cannot supply any additional information to the learning algorithm, and thus,

a side-channel modeling attack is also likely to fail. With this objective in

mind, we investigate the use of the SCA-PUF which is introduced in Section

2 and is explicitly constructed to be resilient to CRP-based attacks. As our

experiments show, it remains secure against the attack by Becker et al. [8].

Because it is undesirable for the server to store PUF CRPs directly,

our scheme relies on a model of the PUF. The server performs a one-time

extraction of kp during enrollment and uses it later to generate fresh keys k∗.

The extraction is made possible via a one-time interface, such as a fuse that
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is disabled after enrollment, so that the extraction cannot be done after the

device is deployed [71, 14].

3.2 Background

3.2.1 Previous Work on Re-Keying

Several proposals for designing the key update functions have appeared

[1, 66, 23, 80, 78]. Abdalla et al. [1] proposed a re-keying scheme which uses

pseudo-random functions (PRFs) in a tree-based approach where the root node

is the master key. Since the standard HMACs are not suitable for re-keying

[24] [79], Pereira et al. [66] developed a new construction based on a leakage-

resilient MAC. Dziembowski et al. [23] formulated a fresh re-keying method

with hard learning problems and gave two constructions based on Learning

Parity with Leakage and Learning with Rounding. Most recently, Taha et al.

[80] showed a fresh re-keying scheme using a non-linear feedback shift register

(NLFSR) to generate a stream of fresh keys based on a secret seed. It was

later enhanced via the use of a stateless function for improved side-channel

resistance [78].

Unfortunately, several re-keying constructions were shown to be vul-

nerable to side-channel attacks [67, 20, 84]. Pessl et al. [67] used side-channel

information by casting the key recovery problem as Learning Parity with Noise

(LPN) problem. Unterluggauer et al. [84] showed that the frequent re-keying

in leakage-resilient streaming modes can cause constant plaintexts to be vul-

nerable to DPA. The NLFSR-based approach of Taha et al. [80] was also

broken by DPA attacks [20].
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3.3 Side-Channel Security Analysis of PUF-based Re-
Keying

To achieve our security objectives — of being secure against the attack

by Becker et al., — we propose to use a strong PUF explicitly designed to

be secure against CRP-only modeling attacks. The SCA-PUF was introduced

by Kalyanaraman et al. [39] and further developed by Xi et al. [89] who

demonstrated an ASIC implementation in a 130nm CMOS process. In this

section, we first analyze the power consumption of SCA-PUF and show that

it is infeasible for the attacker to read out PUF responses directly from power

traces. We then analyze the security of SCA-PUF against power side-channel

attack by Becker et al. [8]. We also analyze the security of other components

in the system against SPA attacks.

3.3.1 Security of SCA-PUF against Simple Power Analysis

We first evaluate information leakage of a standalone SCA-PUF via

the power side-channel within the framework of SPA. We need to ensure that

it is infeasible for the adversary to directly read out a PUF response from

the power traces obtained during a PUF evaluation. SCA-PUF has a largely

data-independent power consumption: the currents through the two PUF ar-

rays and the control block CMFB are constant, and the comparator uses two

identical registers to store complementary outputs. This makes power drawn

in generating a 1 and a 0 nearly identical.

We evaluate the possibility of a direct read-out via a statistical exper-

iment. The power traces are generated by a running SPICE simulation of

the 65-bit SCA-PUF in 130nm. Fig 3.2 shows the distribution of 2000 power

values of both 0- and 1-responses at the time point of maximum power dif-
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ference. We evaluate the probability of an attacker successfully classifying a

just-observed power sample given the shown distribution. In a scenario favor-

able to an adversary, we assume that the attacker has a complete view of the

distribution, namely, that it knows whether each trace is due to 0/1. We show

that the probability of a correct identification is close to random guess.

Let N0 represent the Gaussian distribution of power for response 0, N1

for response 1, and T for the joint distribution. Let x represent a power value

and zx the label of it (whether it is due to 0 or 1 output). We denote as z̃x

the label decided by the adversary. According to the maximum a-posteriori

probability rule, the following Bayesian classifier produces the smallest labeling

error [22]:

z̃x =

{
0, if Pr[zx = 0|x ] > Pr[zx = 1|x ]

1, otherwise
(3.1)

We use Pr[N0 ] = 0.472 to represent the uniformity of the SCA-PUF. For a

given x, the probability that zx = 0 is

Pr[zx = 0|x ] =
Pr[zx = 0, x ]

Pr[x] ]
=

Pr[N0, x ]

Pr[x ]

=
Pr[N0 ] · Pr[x|N0 ]

Pr[N0 ] · Pr[x|N0 ] + Pr[N1 ] · Pr[x|N1 ]

Pr[zx = 1|x ] =
Pr[N1 ] · Pr[x|N1 ]

Pr[N0 ] · Pr[x|N0 ] + Pr[N1 ] · Pr[x|N1 ]
. (3.2)

The probability that the adversary correctly chooses the label of x is

pcorr(x) = Pr[z̃x = 0|x ] · Pr[zx = 0|x ] +

Pr[z̃x = 1|x ] · Pr[zx = 1|x ] . (3.3)

Using the above we calculate the joint distribution T and pcorr(x), Fig 3.3.

The expectation of pcorr(x) is E [pcorr(x)] = 0.584. We use the probability
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of a correct guess to bound the min-entropy of the SCA-PUF output for the

purpose of subsequent fuzzy extractor construction. We use the bound on

min-entropy of the PUF output Y proposed in [18]

H̃∞(Y ) ≤ − log2(Accuracy(Y )) (3.4)

where Accuracy(Y ) is the probability of an accurate bit identification, which

we estimate by E [pcorr(x)]. With that, we compute the upper bound on min-

entropy of the SCA-PUF response bit, subjected to the simple power analysis,

to be 0.776.

3.3.2 Security of SCA-PUF against Power-Based Modeling Attack

Above, we established that it is infeasible for the attacker to directly

read out PUF responses from individual power traces. However, an attack

that uses power side-channel to first build a model of the PUF and then use

it to generate outputs, has been described by Becker et al. [8]. This attack

uses Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and power

measurements to extract the secret delay parameters (kp) of an arbiter PUF

[8]. The attack is presented in a controlled PUF setting where the arbiter PUF

response is hashed with a cryptographic function. Although hashing disables

modeling-based attacks on the hash output, the power side-channel enables an

attack before the hashing stage, directly on arbiter PUF responses. The key

idea is that an accurate model of the PUF generates (accurate) responses that

exhibit high correlation with the power measured during response generation.

The degree of correlation reflects the accuracy of the PUF model. The attack,

therefore, starts from a random PUF model and eventually converges to an

accurate one by checking the model response through power consumption and

evolving towards the one yielding higher correlation.
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(b)

Figure 3.4: (a) Power side-channel modeling attack based on Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES); (b) Result of the power side-
channel modeling attack on SCA-PUF with CMA-ES. Vulnerability of con-
trolled PUF is shown as reference.
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We first validate our experimental setup by applying the power side-

channel attack by Becker et al. [8] on the arbiter PUF in a controlled PUF

setting and then test the security of SCA-PUF using the same methodol-

ogy. The responses of SCA-PUF are generated via a DC SPICE simulation of

SCA-PUF. We assume that the adversary has access only to a generic SPICE

device model for a certain generation of silicon technology, e.g., a Predictive

Technology Model. To model the arbiter PUF, we use a linear function of

mapped inputs [59]. Because of the exceedingly high computational cost of

doing SPICE simulations of a large PUF on a scale required by an evolutionary

algorithm, we perform the experiment on a 15-bit version of controlled PUF

and SCA-PUF.

Figure 3.4a shows the flow of the side-channel attack on a PUF with

measured power traces provided to the adversary. Here we denote as v the

random parameters in the PUF model Mpuf (v). We calculate the set of cor-

relation values between the measured power traces of a PUF instance p and

the corresponding responses x from the PUF model Mpuf (r,v), and select the

maximum correlation value as the best measure of correlation between them.

We denote this correlation as Corr(p,x) and use it as the measure of model

accuracy Accu(v). The parameters v are updated on each iteration of CMA-

ES. The target is to maximize the correlation Corr(p,x) and thus obtain the

optimal v (i.e. the gate delays in the arbiter PUF or the Vth values in the

SCA-PUF).

We use the cma 2.3.1 library [31] to implement the CMA-ES algo-

rithm. We use a growing number of CRPs for training the model and use 1000

CRPs for testing. Figure 3.4b shows the result of CMA-ES attack on arbiter

PUF and SCA-PUF. The attack can predict the responses of the controlled
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arbiter PUF successfully while failing to build an accurate model of the SCA-

PUF. From Figure 3.4b we see that the residual error probability after 1600

power traces is perr = 0.382 for SCA-PUF. For the controlled arbiter PUF, the

error is about 0.05. We repeat the calculation of min-entropy of the SCA-PUF

output Y , based on the definition by Delvaux et al. [18], using the residual

error of the model that predicts a PUF response:

H̃∞(Y ) ≤ − log2(Accuracy(model)) (3.5)

where Accuracy(model) is the accuracy of the model produced by the CMA-

ES above at the end of the training phase. With that, we compute the upper

bound on min-entropy of the SCA-PUF response bit, subjected to a modeling

attack with ML, to be − log2(1− perr) = 0.694.

3.3.3 Security of Other Components against Power Side-Channel
Attacks

In any re-keying scheme, while the key update function should be secure

against side-channel attacks with multiple measurements, other components

should be secure against SPA attacks. Therefore, in addition to SCA-PUF,

other modules inside our system such as the fuzzy extractor [41] can also be

targeted with SPA-style attacks. Since this problem is orthogonal to the se-

curity requirements of the PUF core, we do not address them in this paper.

Generic countermeasures to prevent single measurement attacks include shuf-

fling or randomizing the data flow [82].

3.4 Enrollment Modeling of SCA-PUF

In this section, we develop an efficient method to extract the model of

SCA-PUF during the enrollment phase and test its robustness on the fabri-
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cated SCA-PUF instances. Since the server needs to enroll each unique PUF

instance, the model of the PUF should be easy to store. The behavior of

SCA-PUF is pre-dominantly impacted by the variations of the threshold volt-

ages of a subset of transistors (the so-called stochastic transistors). Thus, the

modeling challenge reduces to building a procedure for extracting and storing

Vth values of SCA-PUF.

3.4.1 Efficient PUF Enrollment

Step I: Population-Based PUF Pre-Characterization: The premise of

the end-to-end encryption is that at enrollment time, privileged access to the

PUF, that allows easy characterization and model-building, exists but is dis-

abled after enrollment to disallow such modeling in the field. The SCA-PUF

behavior is uniquely characterized by a set of threshold voltages. However,

measuring them directly is not possible. We developed a flow based on mea-

suring the analog output of the PUF and deducing the value of the threshold

voltages from the pre-characterized population-based models.

In Step I, the goal is to extract a population-based model relating

threshold voltages of each transistor in the SCA array to the analog output

voltage. That set of relations is captured in the form of a look up table.

The model is extracted via a circuit (SPICE) simulation of the SCA-PUF

circuit using the true device models of a manufacturer. Figure 3.5a illustrates

the characterization flow. Circuit simulation is used to get Vout vs. Vth for

each stochastic transistor. During extraction, only one stochastic transistor

at a time is connected into the SCA network by setting the challenge bit

controlling this transistor to be 1. Figure 3.6 shows the Vout-Vth model for a

65-bit SCA-PUF with a 5× 13 array.
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Step II: Per-Device Vth Extraction and Modeling : To enroll a unique

PUF device on the server side, we need to extract the Vth values of each

stochastic transistor in the SCA network. This is realized by measuring Vout a

and Vout b for a unique input and using the Vout-Vth model to determine the

corresponding Vth. After enrollment, the direct accesses to Vout a and Vout b

are disabled (by burning a fuse) preventing the adversary from repeating the

process in the future. Figure 3.5b illustrates Step II. As in Step I, for each mea-

surement, only one stochastic transistor is connected within the SCA network.

For a t-bit input SCA-PUF (t = mn in Section 3.2), the procedure is carried

out for all the 2t stochastic transistors. The 2t Vth values are then stored in

the server database (DB). We define the responses generated by SCA-PUF at

the enrollment step as xE.

Step III: Model-Based CRP Generation: The server regenerates CRPs

using the Vth values stored in DB (Figure 3.5c). Importantly, accurately pre-

dicting CRPs requires running a circuit (SPICE) simulation and our assump-

tion is that the server-side authenticator is equipped with the PUF netlist, the

SPICE models, and a circuit simulator. The server only runs DC simulation to

get the PUF responses. Since the server can run simulations in a distributed

manner, the simulation time can be made small. We denote the responses

generated by the SCA-PUF model as xM , and evaluate the accuracy of the

model by comparing the modeled response (from the server) with the PUF

response values directly produced by the proving (client) device. We denote

the device response as xR. Note that because the responses of SCA-PUF on

the device are produced in the field, they may be impacted by temperature

and supply voltage variation, and thus xR is, in general, different from xE.
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Figure 3.8: FHD(xE,xM) and IntraHD(xR,xM) for several ADC resolutions.

3.4.2 Evaluation of SCA-PUF Enrollment Modeling

First, we evaluate the accuracy of the procedure to estimate Vth values.

The Monte Carlo simulation of the SCA-PUF circuit obtains the Vth values of

the stochastic transistors. The extracted LUT and the measured Vout are then

used to estimate Vth. Figure 3.7 plots the estimated Vth vs. the actual Vth.

The root min square error (RMSE) is 3.5mV (roughly, 1%).

We then test the accuracy of the CRP prediction via a simulation study.

We evaluate the fractional Hamming distance (FHD) between the enrolled

PUF responses xE and the responses generated by the model (xM) at the

nominal conditions (25◦C and 1.2V VDD) using 500 challenges. The value of

FHD(xE,xM) is 2%. We also evaluate the intra-class HD (IntraHD) between

xM and the reconstructed responses xR across the temperature range from -
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20◦C to 80◦C and ±10% VDD. The mean value of IntraHD(xR,xM) is 4.5%.

The resolution of measurement equipment is also a source of inaccuracy

of the responses generated from the PUF model. We also evaluate the accuracy

of the model with different levels of resolution of the measurement equipment.

We denote the step size of an ADC as ∆. Since the supply voltage VDD = 1.2V ,

the minimal voltage difference of an 8-bit ADC is ∆ = VDD
28

= 1.2
28
≈ 4.7mV.

The result of FHD(xE,xM) and IntraHD(xR,xM) vs. ∆ from 0mV to 10mV

is shown in Figure 3.8.

We further validate the practicality of the proposed flow using the

silicon SCA-PUF chip fabricated in 130nm. The 8-bit ADC has a reso-

lution of 4.7mV. According to Figure 3.8, we expect FHD(xE,xM) to be

5%-6%, and IntraHD(xR,xM) to be 6%-7%. The silicon test shows that

FHD(xE,xM) is 6.0% and IntraHD(xR,xM) is 7.9%. Thus, silicon results

are consistent with simulation predictions. We also measured the intra-class

HD between the enrolled PUF responses xE and the reconstructed responses

xR across the temperature range from -20◦C to 80◦C and ±10% VDD: the

mean of IntraHD(xR,xE) is 5.1%. While IntraHD(xR,xM) is larger than

IntraHD(xR,xE) due to the inaccuracy of xM , this difference is acceptable

because of error-correction embedded in the reverse fuzzy extractor.

3.5 PUF-based Re-Keying System Design

In this section, we discuss the design of an end-to-end encryption system

using the proposed re-keying scheme. We also discuss implementation details

of the system.
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3.5.1 End-to-End Encryption

Fuzzy extractors are a common method to address PUF noise and to

generate stable entropy from noisy PUF responses [21]. To reduce device-side

complexity of the system, we use a reverse fuzzy extractor (RFE) that moves

the complex error correction process from the device to the server [85].

Figure 3.9 shows the building blocks of the proposed re-keying scheme.

The device contains an SCA-PUF, a true random number generator (TRNG), an

RFE generation block (RFE.Gen) and an encryption function (e.g. Advanced

Encryption Standard (AES)). The server has a database (DB) to store PUF

enrollment data, an RFE reconstruction block (RFE.Rec), and the decryption

function to recover the plaintext message.

Our threat model assumes that the DB storing Vth values and the PUF

model is secret. We assume that the device operates in the field and hence is

the target of power side-channel attacks. By contrast, we consider server to

be in a physically secure location so our threat model does not include side-

channel attacks on the server. The adversary can eavesdrop on r, c, and h.

The RFE construction ensures that there is sufficient left-over entropy on the

PUF response (using the pessimistic (n− k) bounds) so disclosing helper data

h is secure even against state-of-the-art attacks [19].

Figure 3.10 lists the operations of the proposed end-to-end encryption

method with PUF-based re-keying. During the enrollment phase, the server

measures Vout values through a one-time interface, extracts Vth value of each

stochastic transistor from the Vout-Vth model, and stores them in the server

DB. During each encryption, TRNG generates a challenge set r1...n for the SCA-

PUF, where r1, r2, ..., rn are the t-bit challenges. The SCA-PUF generates

noisy responses xR. The error correction follows the code-offset construction
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Table 3.1: Required BCH code parameters and PUF response bits.

Profile ×BCH nBCH kBCH tBCH log10EER Entropy nPUF

A1 1 2047 760 153 -6.23 134.28 2047

A2 1 4095 1496 293 -9.01 244.25 4095

A3 4 4095 1328 313 -12.14 304.98 16380

of RFE with BCH coding. The secret key k∗ is a nonce, which is encoded into

a codeword s, and then XORed with the PUF responses to compute the helper

data h. The server then reverses these steps using the modeled PUF responses

xM . If the Hamming distance between xM and xR is within the error-decoding

capability of the BCH error decoder, the server reconstructs the correct k∗.

Finally, the server uses the decryption function with k∗ to turn the ciphertext

c into the correct plaintext p.

3.5.2 System Design: Details

Based on the analysis in section 3.3.1 and 3.3.2, we use the more conser-

vative bound on min-entropy of the SCA-PUF response available to us. Thus,

min-entropy of the PUF outputs in our design is, at most, 0.694. Given 5%

BER of the SCA-PUF response, Table 3.1 provides a set of BCH parameters

to meet the desired false rejection rate (FRR) and the overall entropy for three

application profiles [53]: A1–128-bit key with 10−6 equal error rate (EER) [53],

A2–128-bit key with 10−9 EER, and A3–256-bit key with 10−12 EER. nPUF

in Table 3.1 is the source response bit number of the PUF. In all cases, the

SCA-PUF can generate a stable key for the desired entropy and reliability by

using a proper BCH code.

The proposed system uses an SCA-PUF that has a CRP space of 265
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bits, which may not be considered large enough for cryptographic purposes.

Our main motivation in selecting this PUF is the validation of enrollment mod-

eling (hence scalability) on the fabricated SCA-PUF instances. The methods

we provide in this work can be extended to SCA-PUF circuits having a signif-

icantly larger CRP set.
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Chapter 4

Implementation of A Lightweight Strong PUF

Provably Secure to Machine Learning Attacks

4.1 Introduction

As discussed in Section 2, in order for a strong PUF to be an effec-

tive security primitive, the associated CRPs need to be unpredictable: given

a certain set of known CRPs, it should be hard to predict the unobserved

CRPs with high probability. In other words, strong PUFs are required to be

resilient to modeling attacks. However, the effectiveness of modeling attacks

via machine learning (ML) on many strong PUFs has been widely demon-

strated [35, 72]. Most proposed modifications of the original arbiter PUF

aimed to strengthen ML resistance, including the XOR arbiter PUF and the

feed-forward PUF [51, 60, 77, 91], have also been broken via various ML attacks

[7, 26, 27, 72]. By exploiting higher intrinsic nonlinearity, some strong PUFs

[49, 89] exhibit empirically-demonstrated resistance to some ML algorithms.

But empirical demonstrations of ML resistance are not fully satisfactory since

they can never rule out the possibility of other more effective ML algorithms.

No theoretical support for their ML resistance has been provided yet. The

so-called controlled PUF setting [29] attempts to ensure the ML resistance

via cryptographic primitives such as hash functions. However, the use of hash

functions inside a PUF endangers the promise of a strong PUF as a lightweight

structure. Strong PUF constructions using established cryptographic ciphers,
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such as AES [11], have similar challenges. An additional challenge our paper

addresses is that an ideal ML resistant PUF should exhibit security against

both classical as well as quantum algorithms. In summary, the question of

whether it is possible to engineer a provably ML secure lightweight strong

PUF has been a long-lasting challenge [86].

In this project, we propose a strong PUF that is secure against ML at-

tacks with both classical and quantum computers. The security is guaranteed

by engineering a PUF for which modeling is, provably, a computationally hard

problem. The main insight is the mapping of ML attack resistance in a PUF

to hardness of learning a decryption function of a cryptosystem. As a for-

mal framework, we adopt the probably approximately correct (PAC) theory of

learning [64]. The specific insight, which allows us to build a novel strong PUF,

is our reliance on the earlier proof that PAC-learning a decryption function of

a semantically secure public-key cryptosystem entails breaking that cryptosys-

tem [44, 45, 46]. The PAC non-learnability of a decryption function implies

that with a polynomial number of samples, with high probability, it is not pos-

sible to learn a function accurately by any means. Specifically, we develop a

PUF for which the task of modeling is equivalent to PAC-learning the decryp-

tion function of a learning-with-errors (LWE) public-key cryptosystem. LWE

cryptosystems are based on the hardness of LWE problem that ultimately is

reduced to the hardness of several problems on lattices [70]. The input-output

mapping between the PUF and the underlying LWE cryptosystem can be

briefly summarized as follows: challenge⇐⇒ ciphertext and response⇐⇒ de-

crypted plaintext. Notably, LWE is believed to be secure against both classical

and quantum computers. Because of the intrinsic relation between the pro-

posed PUF and the security of lattice cryptography we call our construction
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the lattice PUF.

The lattice PUF is constructed using a POK, an LWE decryption func-

tion block, a linear-feedback shift register (LFSR), a self-incrementing counter,

and a control block. The entire implementation is lightweight and fully digital.

The LWE decryption function block is the core module of the lattice PUF, gen-

erating response (plaintext) to each submitted challenge (ciphertext). Design

parameters of the LWE decryption function in the lattice PUF are chosen by

balancing the implementation costs, statistical performance, and the concrete

hardness of ML resistance. We develop a measure of ML security in terms of

the total number of operations needed to learn the model of the PUF. Such

concrete hardness is established by the analysis of state-of-the-art attacks on

the LWE cryptosystem [52, 63] and evaluated by the estimator developed by

Albrecht et al. [3]. Using this estimator, we say that a PUF has k-bit ML

resistance if a successful ML attack requires 2k operations. We implement the

LWE decryption function that takes 1168-bit input challenges while guaran-

teeing 128-bit ML resistance.

The likely deployment model for strong PUFs presumes a clear distinc-

tion between a device being authenticated (a PUF proper) and an authenti-

cating server sending challenges to the PUF and analyzing its responses. It is

natural to assume that the server is less resource-constrained than the PUF.

It is thus desirable to place the computationally-costly part of challenge gen-

eration, that utilizes a relatively more expensive encryption function of LWE,

on the server.

The theoretical security guarantee, cited above, assumes that the in-

puts to the LWE decryption function are generated by an encryption function

operating on the uniformly random plaintexts: we call such allowed queries
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“challenges generated by a ciphertext distribution”. However, we found that

a direct implementation of the lattice PUF, in which the server fully gener-

ates ciphertext, is inefficient due to the well-known high ratio of ciphertext to

plaintext: a PUF with a 128-bit concrete ML hardness requires transmitting

116.8K challenge bits in order to produce a 100-bit response string.

We solve this problem by exploiting distributional relaxations allowed

by recent work in space-efficient LWEs. First, our approach replaces the com-

ponent of ciphertext, dominating transmission cost, by a uniformly sampled

random vector, such that the resulting distribution is statistically close to the

original ciphertext distribution [2]. The advantage of the above replacement

is that, as shown by Galbraith et al. [25], multiple simple pseudo-random

number generators (PRNGs), including those based on a linear-feedback shift

register (LFSR), are capable of producing it. Specifically, Galbraith et al. [25]

shows that input challenges generated by PRNGs provide similar concrete se-

curity guarantees against standard attacks on LWE. The proposed strategy

allows introducing a low-cost PRNG based on an LFSR and transmitting only

a small seed. This results in a dramatic reduction of the effective challenge

size. In the improved design with the same parameters chosen above, only

928 bits are needed to produce a 100-bit response. This is a 100X reduc-

tion of communication cost in authentication, in contrast to the direct PUF

implementation as LWE decryption function.

The focus of the paper is a PUF that is secure against passive attacks

in which the observed challenges can be used to derive an internal model of the

PUF. However, the LWE decryption function is vulnerable to an active attack

that supplies arbitrary input challenges. (As we show, this risk also carries into

an LFSR-based variant). We overcome the risk of such an attack by adopting
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the technique used by Yu et al. [93]: we introduce a self-incrementing counter

to embed the counter value into a challenge seed. This makes the attack

impossible as the counter restricts the attacker’s ability to completely control

input challenges to the LWE decryption function.

We implement the PUF on an FPGA which requires a 1160-bit secret

key. The secret key is generated from POK bits. We use an FE with con-

catenated codes to reconstruct stable POK bits. The random source of the

POK can be any weak PUF. The SRAM PUF power-up states are used in our

paper. Assuming an average bit error rate (BER) of 5% for raw SRAM cells,

the total number of raw SRAM bits needed is 6.5K, in order to achieve a key

reconstruction failure rate of 10−6. The LFSR utilizes a 256-bit seed. The

self-incrementing counter produces a 128-bit output. Additional 128 bits are

concatenated with the counter output to form the input seed to the LFSR.

Thus, the resulting lattice PUF is able to achieve a CRP space of size 2136. The

mean BER (intra-class Hamming distance (HD)) is 4.43%. The lattice PUF

also shows excellent uniformity and uniqueness. The hardware implementation

on a Xilinx Spartan 6 FPGA utilizes only 45 slices for the lattice PUF logic and

233 slices for the concatenation-code-based FE. Compared to several known

strong PUFs, the proposed PUF is significantly more resource-efficient.

4.2 LWE Decryption Functions Are Hard to Learn

This section formally defines ML resistance of strong PUFs via the no-

tion of PAC learning and shows why LWE decryption functions are attractive

for constructing post-quantum ML-resistant PUFs. In this section, we focus

on passive attacks in which the attacker can observe the challenges sent to the

verifier but is unable to generate challenges of his or her choice.
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4.2.1 ML Resistance as Hardness of PAC Learning

A strong PUF can be modeled as a function f : C → R mapping

from the challenge space C (usually {0, 1}n) to the response space R (usually

{0, 1}). We call f the true model of a strong PUF since it captures the exact

challenge-response behavior.

ML attacks are usually performed by relying on a functional class of

candidate models, collecting CRPs as the training data, and running a learning

algorithm to obtain a model from the candidate class which best approximates

the true model. In addition to the approximation quality, the criteria of eval-

uating the effectiveness and efficiency of the learning algorithm also include

the sample and time complexity. To claim that a strong PUF is easy to learn,

one can propose a learning algorithm which finds a CRP model with good

approximation quality using a small number of sample CRPs and terminates

in a short time. The converse is difficult: to claim that a PUF is hard to learn,

one must show that all possible learning algorithms fail to provide models with

good approximation quality, or they require a large number of CRPs or a long

running time.

We argue that the only known framework for seeking a provable notion

of ML resistance with a formal analysis of approximation quality, sample size,

and time complexity is the PAC learning model [64]. We now formalize the

passive modeling attack scenario in the context of PAC learning. A PAC-term

for a true model f of a strong PUF is a concept. Denote as F the set of all

possible PUF-realized functions (every instance of a PUF creates its unique

functional mapping f). The set of candidate models used in the learning

algorithm is the hypothesis set H. The goal of a learning algorithm is to

select a candidate model that matches the true model well. Importantly, as
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shown later, the proof of PAC hardness guarantees that H does not have to

be restricted to be the same as F of true models. This generalization permits

a stronger representation-independent PAC-hardness proof. While not always

possible, representation-independent hardness can be proven for PAC-learning

of decryption functions ensuring that no matter how powerful and expressive

the chosen H is, PAC learning decryption function requires exponential time.

Within the PAC model, CRPs in a training set are assumed to be

independent and identically distributed (i.i.d.) under a certain distribution

D.

We say a set F of strong PUFs is PAC-learnable using H, if there exists

a polynomial-time algorithm A such that ∀ε > 0, ∀δ > 0, for any fixed CRP

distribution D, and ∀f ∈ F, given a training set of size m, A produces a

candidate model h ∈ H with probability of, at least, 1− δ such that

Pr
(c,r)∼D

[f(c) 6= h(c)] < ε.

In conclusion, our strategy is to say that a strong PUF is ML-resistant

if it is not PAC-learnable (i.e., that it is PAC-hard). PAC-hardness implies

that any successful ML attack requires at least an exponential running time.

4.2.2 Decryption Functions Are not PAC Learnable

What is critically important is that there exist functions that are known

to be not PAC-learnable. Specifically, a class of decryption functions of secure

public-key cryptosystems is not PAC-learnable, as established by Kearns et al.

[44] and Klivans et al. [46]. We outline their proof below.

A public-key cryptosystem is a triple of probabilistic polynomial-time

algorithms (Gen,Enc,Dec) such that: (1) Gen takes n as a security parameter
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and outputs a pair of keys (pk, sk), the public and private keys respectively;

(2) Enc takes as input the public key pk, encrypts a message (plaintext) r

to return a ciphertext c = Enc(pk, r); (3) Dec takes as input the private key

sk and a ciphertext c to decrypt a message r = Dec(sk, c). We only need to

discuss public-key cryptosystems encrypting 1-bit messages (0 and 1).

One of the security requirements of a public-key cryptosystem is that it

is computationally infeasible for an adversary, knowing the public key, pk, and

a ciphertext, c to recover the original message, r. This requirement can also

be interpreted as the need for indistinguishability under the chosen plaintext

attack (also often referred to as semantic security requirement) [43]. Given the

encryption function Enc and the public key pk, the goal of an attacker is to

devise a distinguisher A to distinguish between encryption Enc(pk, r) of r = 0

and r = 1 with non-negligible probability:

|Pr[A(pk,Enc(pk, 0)) = 1]− Pr[A(pk,Enc(pk, 1)) = 1]| ≥ ε.

A cryptosystem is semantically secure if no polynomial-time attacker can cor-

rectly predict the message bit with non-negligible probability.

The connection between the above-stated security of a public-key cryp-

tosystem and the hardness of learning a concept class associated with its de-

cryption function was established by Kearns et al. [44] and Klivans et al. [46].

The insight is that PAC-learning is a natural result of the ease of encrypt-

ing messages with a public key. Since the encryption function Enc and the

public-key pk is known, the distinguishing algorithm can sample independent

training examples in the following way: (1) picking a plaintext bit r uniformly

randomly from {0, 1}, (2) encrypting r to get the ciphertext c = Enc(pk, r).

(We later refer to the resulting distribution of ciphertext as the ”ciphertext
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distribution”.) Next, the distinguishing algorithm passes the set of train-

ing examples ((c, r)’s) into an algorithm for learning the decryption function

Dec(sk, ·). The PAC learning algorithm returns a model h(·) that aims to

approximate Dec(sk, ·). Using h(·), one could distinguish between ciphertexts

stemming from r = 0 and r = 1 with non-negligible probability. This would

entail violating the semantic security of the cryptosystem. Technically, this

can be summarized as follows [44, 46].

Theorem 1. If a public-key cryptosystem is secure against chosen plaintext

attacks, then its decryption functions are not PAC-learnable (under the cipher-

text input distribution).

4.2.3 LWE Is Post-Quantum Secure

According to the cryptographic hardness above, decryption functions

of any secure public-key cryptosystem, such as RivestShamirAdleman (RSA)

and elliptic-curve cryptography (ECC), can be used to construct ML-resistant

PUFs. However, integer-factoring-based cryptosystems, including RSA and

ECC above, become insecure with the development of quantum computers.

Among all post-quantum schemes [9], the LWE cryptosystem based on hard

lattice problems appears to be most promising due to its implementation effi-

ciency and stubborn intractability since 1980s.

A lattice L(V) in n dimensions is the set of all integral linear combi-

nations of a given basis V = {v1,v2, . . . ,vn} with vi ∈ Rn:

L(V) = {a1v1 + a2v2 + . . . anvn : ∀ai ∈ Z}.

The LWE problem is defined on the integer lattice L(V) = {(a, 〈a, s〉)}
with a basis V = (I; s), in which I is an n-dimensional identity matrix and
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s is a fixed row vector (also called the secret) in Znq . Throughout this pa-

per, vectors and matrices are denoted with bold symbols with dimension on

superscript, which can be dropped for convenience in case of no confusion. Un-

less otherwise specified, all arithmetic operations in the following discussion

including additions and multiplications are performed in Zq, i.e. by modulo q.

For the lattice L(V) = {(a, 〈a, s〉)} with dimension n, integer modulus

q and a discrete Gaussian distribution Ψ̄α for noise, the LWE problem is defined

as follows. The secret vector s is fixed by choosing its coordinates uniformly

randomly from Zq. Next ai’s are generated uniformly from Znq . Together with

the error terms ei, we can compute bi = 〈a, s〉+ei. Distribution of (ai, bi)’s over

Znq × Zq is called the LWE distribution As,Ψ̄α . The most important property

of As,Ψ̄α is captured in the following lemma:

Lemma 2. Based on hardness assumptions of several lattice problems, the

LWE distribution As,Ψ̄α of (a, b)’s is indistinguishable from a uniform distri-

bution in Znq × Zq.

Solving the decision version of LWE problem is to distinguish with a

non-negligible advantage between samples from As,Ψ̄α and those generated uni-

formly from Znq × Zq. This LWE problem is shown to be intractable to solve,

without knowing the secret s, based on the worst-case hardness of several lat-

tice problems [70]. Errors e are generated from a discrete Gaussian distribution

Ψ̄α on Zq parameterized by α > 0: sampling a continuous Gaussian random

variable with mean 0 and standard deviation αq/
√

2π and rounding it to the

nearest integer in modulo q. Notice that error terms are also essential for guar-

anteeing the indistinguishability: without noise (a, b) becomes deterministic

and the secret s can be solved efficiently via Gaussian elimination methods.
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We now describe a public-key cryptosystem based on the LWE problem

above, developed by Regev et al. [70]:

Definition 3. (LWE cryptosystem)

• Private key: s is uniformly random in Znq .

• Public key: A ∈ Zm×nq is uniformly random, and e ∈ Znq with each

entry from Ψ̄α. Public key is (A,b = As + e).

• Encryption: x ∈ {0, 1}m is uniformly random. To encrypt a one-bit

plaintext r, output ciphertext c = (a, b) = (ATx,bTx + r bq/2c).

• Decryption: Decrypt the ciphertext (a, b) to 0 if b − 〈a, s〉 is closer to

0 than to bq/2c modulo q, and to 1 otherwise.

Notice that each row in the public-key (A,b) is an instance from the

LWE distribution As,Ψ̄α .

Correctness of the LWE cryptosystem can be easily verified: without

the error terms, b−〈a, s〉 is either 0 or bq/2c, depending on the encrypted bit.

Semantic security of the LWE cryptosystem follows directly from the indistin-

guishability of the LWE distribution from the uniform distribution in Znq ×Zq.

Ciphertexts (a, b) are either linear combinations or shifted linear combination

of LWE samples, both of which are indistinguishable from the uniform distri-

bution. This is true because shifting by any fixed length preserves the shape

of a distribution. Therefore, an efficient algorithm that can correctly guess

the encrypted bit would be able to distinguish LWE samples from uniformly

distributed samples. This allows Regev et al. [70] to prove that:
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Theorem 4. Based on the hardness assumptions of several lattice problems,

the LWE cryptosystem is secure against the chosen-plaintext attacks using both

classical and quantum computers.

When the error terms ei’s are introduced:

b− 〈a, s〉 =
∑

i∈S

bi +
⌊q

2

⌋
r − 〈

∑

i∈S

ai, s〉

=
∑

i∈S

(〈ai, s〉+ ei)−
⌊q

2

⌋
r − 〈

∑

i∈S

ai, s〉

=
⌊q

2

⌋
r −

∑

i∈S

ei,

in which S is the set of non-zero coordinates in x. For a decryption error

to occur, the accumulated error
∑

i∈S ei must be greater than the decision

threshold bq/4c. The probability of the error is given by [63]:

ErrLWE ≈ 2(1− Φ(
q/4

αq
√
m/2/

√
2π

)) = 2(1− Φ(

√
π

2α
√
m

)),

in which Φ(·) is the cumulative distribution function of the standard Gaussian

variable. We later use this expression to find the practical parameters for the

lattice PUF.

4.3 Design of Lattice PUF

A strong PUF is a function f that maps input challenges c to out-

put responses r in such a way that its physical instantiations are unique,

robust, and show good randomness. We now show how to realize a PUF

whose challenge-response behavior is defined by the decryption function of the

LWE cryptosystem so that its ML resistance is guaranteed. Such a PUF is

achieved by implementing the LWE decryption function using a POK-derived
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Figure 4.1: Top-level architecture and data flow of the lattice PUF.

Figure 4.2: Architecture of LWE decryption function.

secret as the private key. In such a PUF, ciphertexts and decrypted plain-

text bits are treated as PUF challenges and responses respectively. However,

such a direct implementation results in a very large challenge word, making

challenge-transfer costs prohibitive. We overcome this problem by exploiting

distributional relaxations allowed by recent work in space-efficient LWEs, dra-

matically reducing the challenge transfer cost.

The top-level architecture of the proposed lattice PUF is shown in

Figure 4.1.
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4.3.1 LWE Decryption Function

Figure 4.2 shows the core component of the proposed lattice PUF: the

LWE decryption function. It takes a binary challenge vector c = {c0, c1, . . . , cN−1}
of size N = (n+1) log q which maps to a ciphertext (a, b) in the following way:

ai =

log q−1∑

j=0

c(i−1) log q+j2
j, ∀i ∈ {1, 2, . . . , n},

b =

log q−1∑

j=0

cn log q+j2
j.

Here ai denotes the i-th element of the integer vector a ∈ Znq . In this paper,

without specification, log(x) refers to log2(x). Similarly, the private key s for

the corresponding LWE decryption function is realized by a binary secret key

W = {W0,W1, . . . ,Wn log q−1} of size n log q:

si =

log q−1∑

j=0

W(i−1) log q+j2
j, ∀i ∈ {1, 2, . . . , n}.

A modulo-dot-product b−〈a, s〉 is computed using the modulo-multiply-accumulate

unit. It can be implemented in a serial way using n stages. Recall that all

additions and multiplications are performed in modulo q. Since q is a power

of 2 in our construction, modulo addition and multiplication can be naturally

implemented by integer addition and multiplication that keep only the last

log q-bit result. Finally the response r is produced by a quantization opera-

tion r = Q(b− 〈a, s〉):

Q(x) =

{
0 x ∈ [0, q

4
] ∪ (3q

4
, q − 1],

1 x ∈ ( q
4
, 3q

4
].

The computation above can be directly implemented as a strong PUF

with 2N CRPs since it maps a challenge vector c ∈ {0, 1}N into a binary re-

sponse r ∈ {0, 1}. We now discuss parameter selection for the LWE decryption
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function. In general, we seek to find design parameters such that (1) the result-

ing PUF has excellent statistical properties, such as uniformity, uniqueness,

and reliability, (2) successful ML attacks against it require an un-affordably

high time complexity in practice, and (3) its hardware implementation costs

are minimized.

Prior theoretical arguments establish the impossibility of a polynomial-

time attacker. To guarantee practical security, we need to estimate the number

of samples and the actual running time (or a number of CPU operations)

required for a successful ML attack. Regev et al. shows that a small number

of samples are enough to solve an LWE problem, but in an exponential time

[70]. Thus, we refer to runtime as concrete ML resistance (or ML hardness)

and say that a PUF has k-bit ML resistance if any successful ML attack

requires at least 2k operations. We adopt the estimator developed by Albrecht

et al. [3] to estimate concrete ML hardness. The concrete hardness of an

LWE problem increases with the increase of LWE parameters n, q, and α

for all types of attacks. Recall that n represents the lattice dimension, q

represents the range of integer for each dimension, and α reflects the noise level

in CRP (ciphertext) generation. For a given set of parameters, the estimator

compares the complexity of several most effective attacks, including decoding,

basis reduction, and meet-in-the-middle attacks [16, 36, 52]. We utilize the

estimator in a black-box fashion to find the set of parameters with the target

of 128-bit concrete ML resistance.

We consider two metrics of implementation cost, both of which scale

with n: the number of challenge and secret bits needed (n log q), and the

number of multiply-accumulate (MAC) operations (n). This motivates the

need to decrease n.
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For conventional PUFs, such as arbiter PUF and SRAM PUF, an out-

put error is due to environmental noise, e.g. delay changes in arbiter PUF and

FET strength changes in SRAM PUF with both voltage and temperature. In

contrast, output errors of the lattice PUF come from two sources: (1) envi-

ronmental errors of secret bits, and (2) errors of decryption during response

generation. The former can be thought as the failure of key reconstruction

in POKs. Since a single bit-flip completely changes the challenge-response

behavior of LWE decryption function, the failure rate of key reconstruction

needs to be low, e.g. 10−6 (as widely adopted in other PUF applications [56]).

Section 4.4 describes how the target failure rate can be achieved via a conven-

tional FE based on the error-correcting codes. The latter corresponds to the

decryption error and is orthogonal to errors in the secret key s. Recall that

in CRP generation of the lattice PUF, a bit of plaintext r is sampled and the

ciphertext c is produced by a noisy encryption function c = Enc(r). Given

ciphertext c as input challenge, the decryption function can output a wrong

response r′ 6= r when the accumulated error
∑

i∈S ei in the encryption function

exceeds the decision boundary.

The model for evaluating the decryption error rate is shown in Section

4.2. In order for a strong PUF to be used in direct authentication, its decryp-

tion error rate should be small enough for reliable distinguishability of long

strings. Following the work of Yu et al. [93], we set the target at 5%. Figure

4.3 explores the trade-off between the number of secret bits and the decryption

error rate needed for 128-bit concrete ML hardness. It shows that, at fixed

concrete ML hardness, the decryption error rate decreases super exponentially

with the number of secret bits.

Considering the design metrics above, a feasible set of parameters is
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Figure 4.3: Super-exponential decrease of decryption error rate with the in-
crease of secret bits. The analysis is done for 128-bit concrete hardness.

found using the estimator [3]. By setting n = 145, q = 256, m = 256 and

α = 2.77%, we achieve a lattice PUF with 128-bit concrete hardness and a

decryption error rate of 4.55%.

In order to get a 1-bit response, (n + 1) log q = 1168 bits need to be

sent to the lattice PUF as a challenge. For direct authentication applications,

usually around 100 bits of responses are required. Therefore, the direct im-

plementation described so far would require C = 116.8K challenge bits. This

high ratio of challenge length to response length limits its practical use in many

scenarios when communication is expensive. We next describe an improved

design that overcomes this limitation.
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4.3.2 Challenge Compression through Distributional Relaxation

We introduce a challenge compression method that employs a suitable

distributional relaxation to improve the efficiency of challenge transfer. The

basic design described in the previous section requires a challenge c in the

form c = (a, b) to be sent to the PUF. To represent vector a ∈ Znq requires

n log q bits while to represent scalar b ∈ Zq requires only log q bits. Thus, the

major cost of transmission is in sending a. We wish to avoid sending a directly

and, instead, to send a compressed (shorter) version of a and re-generate its

full-size version on the PUF. Our approach is enabled by the recent results on

the distributional behavior of a = ATx [2] and the concept of space-efficient

LWE [25]. We describe these two results below and show that the improved

PUF design is still able to maintain concrete ML hardness against practical

attacks.

Recall that b is given by:

b = bTx + r bq/2c = (As + e)Tx + r bq/2c = (ATx)T s + eTx + r bq/2c .

First, we show that the term a = ATx, in the challenge, can be replaced by

a uniformly random vector a∗ ∈ Znq . That allows us to represent challenge

c = (a, b) as c∗ = (a∗, b∗) in the following way:
{

a = ATx

b = (ATx)T s + eTx + r bq/2c
→
{

a∗

b∗ = a∗T s + eTx + r bq/2c
.

Akavia et al. [2] proved: (1) the true ciphertext distribution c = (a, b) is

statistically close to (a∗, b∗); (2) such statistical closeness ensures that the ML

hardness of the lattice PUF is maintained.

Second, we show that the uniformly random a∗ can be approximated

by a PRNG-generated a′, so that the PUF design allows for sending (seeda′ , b
′)
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as challenge. Here seeda′ is the seed of a lightweight PRNG, such as an LFSR,

needed to re-generate the n-dimensional vector a′. b′ follows as

b′ = (a′)T s + eTx + r bq/2c = LFSR(seeda′)
T s + eTx + r bq/2c .

Several state-of-the-art LWE cryptosystems adopt the theory by Galbraith

et al. [25] and use efficient PRNGs to generate public values. For example,

TESLA uses the ChaCha8 stream cipher [4], NewHope [5] and Frodo [12] pro-

pose to use AES-128 or SHAKE-128. We find that a more lightweight PRNG

is needed for a resource-constrained device. Galbraith et al. showed that it

is not necessary to use strong PRNGs based on block ciphers or hash func-

tions [25]. The desired properties of a lightweight PRNG are: (1) it requires

only a few clock cycles to generate each public value; (2) on-device storage

requirements are low. We find that the LFSR is a suitable PRNG. Figure 4.4

shows the structure of a k-bit LFSR. A k-bit LFSR is composed of k serially

connected registers and a small number of XOR gates. A k-bit seed is first fed

into the registers as the initial state. On a clock edge, the register bits prop-

agate one position to the left. Feedback computes the XORed value of some

bits and writes them into the right most bit. Figure 4.5 shows a lightweight

FPGA implementation of a 256-bit LFSR. The 256 register cells are realized

using 16 on-chip registers and one shift register LUT (SRL) with 1-bit data

width and 240-bit depth. We use the LFSR to generate multiple log q-bit a′.

The security of the new scheme is guaranteed because a′ maintains

needed properties to resist the standard attacks on LWE such as CVP reduc-

tion, decoding, and basis reduction, as proven by Galbraith et al. [25]. These

properties include:
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z0
<latexit sha1_base64="4HsrfYkp5GyN0Q0jFFbEm8Jthx4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWNF+wFtKJvtpl262YTdiVBDf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTS/VPf7ZfKbsWdg6wSLydlyNHol756g5ilEVfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGupohE3fjY/dUrOrTIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tO0YbgLb+8SlrVindZqd7VyvVaHkcBTuEMLsCDK6jDLTSgCQyG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gAKUI2X</latexit>

z1
<latexit sha1_base64="FpSqVf7JXzuKc0Yx0/tReGOAVzo=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWNF+wFtKJvtpF262YTdjVBDf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6f+p7/VLZrbhzkFXi5aQMORr90ldvELM0QmmYoFp3PTcxfkaV4UzgtNhLNSaUjekQu5ZKGqH2s/mpU3JulQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtO0YbgLb+8SlrVindZqd7VyvVaHkcBTuEMLsCDK6jDLTSgCQyG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAL1I2Y</latexit>

z2
<latexit sha1_base64="4ml1G0z9G8vcNKOgyVH1A66osQI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LHgxWNF+wFtKJvtpl262YTdiVBDf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTS/VO/2i+V3Yo7B1klXk7KkKPRL331BjFLI66QSWpM13MT9DOqUTDJp8VeanhC2ZgOeddSRSNu/Gx+6pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadog3BW355lbSqFe+yUr2rleu1PI4CnMIZXIAHV1CHW2hAExgM4Rle4c2Rzovz7nwsWtecfOYE/sD5/AENWI2Z</latexit>

zk�1
<latexit sha1_base64="AHvf1ngmtmONy9xjItiPTsHE8kA=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4sSS1oMeCF48V7Ae0oWy2k3bpZhN2N0IN/RFePCji1d/jzX/jts1BWx8MPN6bYWZekAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6LSPJYPZpKgH9Gh5CFn1Fip/dTPxpfetF8quxV3DrJKvJyUIUejX/rqDWKWRigNE1Trrucmxs+oMpwJnBZ7qcaEsjEdYtdSSSPUfjY/d0rOrTIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCW/8jMskNSjZYlGYCmJiMvudDLhCZsTEEsoUt7cSNqKKMmMTKtoQvOWXV0mrWvGuKtX7Wrley+MowCmcwQV4cA11uIMGNIHBGJ7hFd6cxHlx3p2PReuak8+cwB84nz8FCY9Q</latexit>

…

…

Figure 4.4: Construction of a k-bit LFSR.
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<latexit sha1_base64="woUv7R4Dn/K/Z/bfxUJ9RxpZr3s=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4Kkkt6LHgxWMV+wFtKJvtpF262YTdiVhCf4YXD4p49dd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxvZn77EbQRsXrASQJ+xIZKhIIztFK3h/CE2T0Mp26/VHYr7hx0lXg5KZMcjX7pqzeIeRqBQi6ZMV3PTdDPmEbBJUyLvdRAwviYDaFrqWIRGD+bnzyl51YZ0DDWthTSufp7ImORMZMosJ0Rw5FZ9mbif143xfDaz4RKUgTFF4vCVFKM6ex/OhAaOMqJJYxrYW+lfMQ042hTKtoQvOWXV0mrWvEuK9W7Wrley+MokFNyRi6IR65IndySBmkSTmLyTF7Jm4POi/PufCxa15x85oT8gfP5A2JEkUU=</latexit>

Reg1
<latexit sha1_base64="mxIcj4FjT8OCZolj0eQeCCvIQxE=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4Kkkt6LHgxWMV+wFtKJvtpF262YTdiVhCf4YXD4p49dd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxvZn77EbQRsXrASQJ+xIZKhIIztFK3h/CE2T0Mp16/VHYr7hx0lXg5KZMcjX7pqzeIeRqBQi6ZMV3PTdDPmEbBJUyLvdRAwviYDaFrqWIRGD+bnzyl51YZ0DDWthTSufp7ImORMZMosJ0Rw5FZ9mbif143xfDaz4RKUgTFF4vCVFKM6ex/OhAaOMqJJYxrYW+lfMQ042hTKtoQvOWXV0mrWvEuK9W7Wrley+MokFNyRi6IR65IndySBmkSTmLyTF7Jm4POi/PufCxa15x85oT8gfP5A2PIkUY=</latexit>

Reg2
<latexit sha1_base64="34OhnuaS7sXmjqBR89aBMev6qNM=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ4Kkkt6LHgxWMV+wFtKJvtpF262YTdiVhCf4YXD4p49dd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqDk0ey1h3AmZACgVNFCihk2hgUSChHYxvZn77EbQRsXrASQJ+xIZKhIIztFK3h/CE2T0Mp9V+qexW3DnoKvFyUiY5Gv3SV28Q8zQChVwyY7qem6CfMY2CS5gWe6mBhPExG0LXUsUiMH42P3lKz60yoGGsbSmkc/X3RMYiYyZRYDsjhiOz7M3E/7xuiuG1nwmVpAiKLxaFqaQY09n/dCA0cJQTSxjXwt5K+YhpxtGmVLQheMsvr5JWteJdVqp3tXK9lsdRIKfkjFwQj1yROrklDdIknMTkmbySNwedF+fd+Vi0rjn5zAn5A+fzB2VMkUc=</latexit>

Reg15
<latexit sha1_base64="rZCt2F8yLmx7qssrJZ/A3ktfDuw=">AAAB83icbVDLSgNBEJyNrxhfUY9eBoPgKezGiB4DXjxGMQ/ILmF20psMmX0w0yuGJb/hxYMiXv0Zb/6Nk2QPmljQUFR1093lJ1JotO1vq7C2vrG5Vdwu7ezu7R+UD4/aOk4VhxaPZay6PtMgRQQtFCihmyhgoS+h449vZn7nEZQWcfSAkwS8kA0jEQjO0Eiui/CE2T0Mp85lv1yxq/YcdJU4OamQHM1++csdxDwNIUIumdY9x07Qy5hCwSVMS26qIWF8zIbQMzRiIWgvm988pWdGGdAgVqYipHP190TGQq0noW86Q4YjvezNxP+8XorBtZeJKEkRIr5YFKSSYkxnAdCBUMBRTgxhXAlzK+UjphhHE1PJhOAsv7xK2rWqc1Gt3dUrjXoeR5GckFNyThxyRRrkljRJi3CSkGfySt6s1Hqx3q2PRWvBymeOyR9Ynz/dfJGF</latexit>

SRL 240 ⇥ 1
<latexit sha1_base64="FWRYsu4OUjYg+Dv34Hc9pmtjBAU=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPJWkFvRY8OLBQ/1oKzShbLabdulmE3YnYgkF/4oXD4p49Xd489+4bXPQ1gcDj/dmmJkXJIJrcJxvq7C0vLK6VlwvbWxube/Yu3stHaeKsiaNRazuA6KZ4JI1gYNg94liJAoEawfDi4nffmBK81jewShhfkT6koecEjBS1z7wgD1CdntzhcfVmuMBj5h2u3bZqThT4EXi5qSMcjS69pfXi2kaMQlUEK07rpOAnxEFnAo2LnmpZgmhQ9JnHUMlMVv8bHr+GB8bpYfDWJmSgKfq74mMRFqPosB0RgQGet6biP95nRTCcz/jMkmBSTpbFKYCQ4wnWeAeV4yCGBlCqOLmVkwHRBEKJrGSCcGdf3mRtKoV97RSva6V69U8jiI6REfoBLnoDNXRJWqgJqIoQ8/oFb1ZT9aL9W59zFoLVj6zj/7A+vwBGs6U4A==</latexit>

Figure 4.5: FPGA implementation of a 256-bit LFSR.

• it is hard to find “nice” bases for a lattice with basis from LFSR-

generated a′;

• given an arbitrary vector in Znq , it is hard to represent it as a binary

linear combination of LFSR-generated a′’s;

• it is hard to find a short vector w that is orthogonal to LFSR-generated

a′’s.

The ability to rely on an LFSR to produce a′ allows a dramatic re-

duction in challenge transfer cost. We developed the lattice PUF scheme with

LFSR, as shown in Figure 4.6a. With LWE parameters chosen as Section 4.3.1,

using a seed of length 256 is able to reduce the challenge length from 1168 to

256 + 8 = 264 per one bit of response. The improvement of efficiency becomes

more pronounced for generating multiple responses: This is because a′1 . . . a
′
t

can be generated sequentially from the l-bit seed, so that only the seed and

b′1, . . . , b
′
t ∈ Zq are required to be sent to the PUF side. 100 bits of responses
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now require only transmitting 128 + 100 × log 256 = 928 bits for challenges,

compared to 100 × (145 + 1) log 256 = 116.8 Kbits without the LFSR. The

challenge transfer cost is reduced by about 100X.

4.3.3 Countermeasure for Active Attack

In this section, we introduce a simple defense to protect our PUF

against a standard attack on the LWE decryption function. The attack is

premised on the ability to supply arbitrary challenges (ciphertexts) as inputs

to the decryption function. The attack proceeds as follows. The attacker fixes

a and enumerates all possible b ∈ Zq for challenge c = (a, b). As b increases

from 0 to q− 1, the response r = Q(b− 〈a,b〉) changes from Q(b− 〈a, s〉) = 0

to Q(b+ 1− 〈a, s〉) = 1 exactly when b satisfies

b− 〈a, s〉 = q/4.

We denote this specific value of b as b̂. The exact value of 〈a, s〉 can then

be extracted by 〈a, s〉 = b̂ − q/4. By repeating this procedure n times, the

attacker is able to set up n linear equations (without errors):

〈a0, s〉 = b̂0 − q/4,

〈a1, s〉 = b̂1 − q/4,

· · ·

〈an−1, s〉 = b̂n−1 − q/4.

Gaussian elimination can then be used to solve for s. The reason the attack

succeeds is that attackers are able to fix a and use it for multiple values of

b. For the variant with the LFSR, shown in Figure 4.6a, this standard attack

still applies: the attacker now fixes seeda′ , calculates a′i values from the LFSR,

and uses the same procedure to extract s.
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(a) (b)

Figure 4.6: (a) Basic scheme and (b) counter-based scheme of challenge gen-
eration with LFSR.

Preventing this attack requires that the attacker is not able to arbi-

trarily choose the PUF challenge. This can be achieved by embedding a self-

incrementing counter into the system design, in a way similar to the work of

Yu et al. [93]. As shown in Figure 4.6b, the concatenation of the counter value

t and the challenger-provided seeda′ becomes the seed of LFSR to generate a′.

The counter value is public and increments by 1 for each response generation.

In this way, the attacker cannot enumerate all b′ values while keeping a′ un-

changed. Therefore, it is infeasible to derive the linear equations and solve

for s. (Note that we cannot use the XORed value of t and seeda′ , which is

another possibility, as the seed of LFSR. The reason is that if the PUF uses

t ⊕ seeda′ as the seed, the attacker can control the value of seeda′ to make

the seed constant. For example, let us assume that the attacker sends seeda′ ,

when the counter value is t1. When the counter value becomes t2, the attacker
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can send seeda′ ⊕ t1 ⊕ t2 to keep the seed unchanged.)

4.4 Experimental Results

In this section we evaluate statistical properties of the lattice PUF,

including uniformity, uniqueness, and reliability with parameters chosen in

Section 4.3. We also present the implementation cost on the FPGA platform

and compare it with prior work.

4.4.1 Statistical Analysis

Uniformity of a PUF characterizes unbiasedness, namely, the pro-

portion of ‘0’s and ‘1’s in the output responses. For an ideal PUF f , the

proportion needs to be 50%. We adopt the definition of uniformity by Maiti

et al. [58] based on the average Hamming weight HW(f) of responses r to

randomly sampled challenges c’s:

HW(f) = IEc[HW(r)] = IEc[HW(f(c))].

Here IEX represents expectation over random variable X. Note that c follows

the ciphertext distribution rather than the usual uniform distribution [58].

Figure 4.7 shows uniformity obtained using 1000 randomly selected challenges.

The distribution is centered at 49.92%, the standard deviation is 1.58%.

Uniqueness measures the ability of a PUF to be uniquely distin-

guished among a set of PUFs. We define this metric to be the average inter-

class HD of responses (ri, rj) under the same challenges c for a randomly picked

PUF pair (fi, fj) [58]:

HD(fi, fj) = IEc[HD(ri, rj)] = IEc[HD(fi(c), fj(c))].
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Figure 4.7: Uniformity of lattice PUF output.
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Figure 4.8: Uniqueness and reliability of lattice PUF.
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Figure 4.9: POK uses an FE to ensure stability of the secret key.

For ideal PUFs, responses under the same challenges are orthogonal, namely,

HD(fi, fj)’s are close to 50%. Uniqueness is also evaluated under the ciphertext

distribution.

Uniqueness is shown in Figure 4.8, evaluated for 1000 PUF instances.

The lattice PUF achieves near-optimal uniqueness: inter-class HD is centered

at 50.00%, its standard deviation is 1.58%.

Reliability of a PUF f is characterized by the average BER of outputs

with respect to their enrollment values [58]:

BER = IEf ′ [HD(f, f ′)] = IEf ′,c[HD(f(c), f ′(c))].

As discussed in Section 4.3, the overall BER of the lattice PUF is due to two

components: the failure rate of key reconstruction and LWE decryption error

rate. Intra-class HD in Figure 4.8 reflects the result of decryption errors by

assuming a perfect key reconstruction.

4.4.2 Hardware Implementation Results

We present the details of implementing the lattice PUF, shown in Figure

4.1:
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Table 4.1: Configuration of error-correcting codes.

Raw BER
(%)

Error-Correcting Code
Raw POKs

Outer code Inner code
1 [236, 128, 14] N/A 2,360
5 [218, 128, 11] [3, 1, 1] 6,540
10 [220, 128, 12] [5, 1, 2] 11,000
15 [244, 128, 15] [7, 1, 3] 17,080

• The design was synthesized, configured, and tested on a Xilinx Spartan-6

FPGA (XC6SLX45), a low-end FPGA in 45nm technology.

• The core block implements the LWE decryption function (LWEDec in-

cludes an 8-bit MAC and a quantization block, as shown in Figure 4.2).

• A 256-bit LFSR is implemented using 1 SRL240 × 1, 16 registers, and

3 XOR gates, and is used to generate public a′. The seed needs to be

loaded only once to generate multiple response bits.

• A 128-bit self-incrementing counter is implemented. The 128-bit counter

value t is public and stored in nonvolatile memory (NVM). The concate-

nation of t and the challenger-provided 128-bit seeda′ is used as the seed

of the LFSR.

• A controller block controlls the operation flow of the lattice PUF.

We use SRAM cell power-up states as the raw POK bits, and use an

FE to generate a secret key of 1160 bits with the failure rate of reconstruction

targeted at 10−6. As shown in Figure 4.9, the FE uses helper data to produce a

reliable secret key s. We adopt the homogeneous error assumption, i.e., all cells

have the same BER [13]. Prior work shows that intrinsic BERs of the various
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Table 4.2: (a) Area consumption and (b) runtime of our reference lattice PUF
implementation on Spartan-6 FPGA.

(a)

Module Size [slices]
LFSR 27

LWEDec 2
Controller 16

Total 45

(b)

Step Time [µs]
Seed seeda′ ||t load for LFSR 8

1-bit decryption from LWEDec 39
Total @ 33 MHz 47

POKs range from 0.1% [42] to 15% [55]. We study the POK designs under

four levels of raw BER: 1%, 5%, 10%, and 15% to explore design costs. We use

concatenated error-correcting codes, with a repetition code as the inner code,

and a shortened BCH code as the outer code. Concatenated codes are typically

more efficient than single codes in terms of code length and hardware cost [13].

Table 4.1 lists the configuration of error-correcting codes used at different BER

levels. At the raw BER of 5%, 6.5K cells are needed to construct the secret s

of length 1160 bits at the target failure rate 10−6.

The total size of the lattice PUF (without FE) for the Spartan-6 plat-

form is 45 slices, most of which is taken up by the LFSR and the controller.

Table 4.2a shows the breakdown of resources needed to realize the various

modules. The total latency (at 33.3MHz clock) to generate a 1-bit PUF re-

sponse is 47µs, and the total time to generate a 100-bit PUF response is,

approximately, 8µs+ 100× 39µs ≈ 3.9ms since seed loading is only executed

once. Table 4.2b lists the latency of each step of response generation.
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Table 4.3: Hardware implementation costs of strong PUFs.

Design Platform PUF Logic [Slices]
POK+AES [11] Spartan 6 80

Controlled PUF [29] Spartan 6 127
CFE-based PUF [32, 38] Zynq-7000 9,825

Lattice PUF Spartan 6 45

Table 4.4: Hardware utilization in FE design on Spartan-6 FPGA.

Raw BER
(%)

Outer Code Inner Code Total
Reg LUT Slice Reg LUT Slice Reg LUT Slice

1 905 893 276 0 0 0 905 893 276
5 730 688 232 0 1 1 730 689 233
10 785 740 243 0 3 2 785 743 245
15 973 913 326 0 7 3 973 920 329

We compare the implementation cost of the lattice PUF against estab-

lished strong PUF designs [11, 29, 38] in Table 4.3. The original strong PUF

based on AES [11] is implemented as an ASIC. Here, we adopt the design by

Chu et al. [17] as an FPGA alternative to estimate the implementation cost

of AES. Notice that the design by Bhargava et al. [11] uses no error correc-

tion since it guarantees reliability via dark bit masking. Similarly, the FPGA

implementation of SHA-3 [40] is adopted to estimate the cost of a hash func-

tion for the controlled PUF [29]. The FPGA utilization result of the strong

PUF based on the computational FE (CFE) is shown via the number of LUTs

presented by Jin et al. [38]. We estimate the corresponding slice count accord-

ing to the Zynq-7000 SoC Data Sheet [90]. We find that the implementation

cost of the lattice PUF (without FE) is cheaper than that of AES on POK,

controlled PUF, and CFE-based PUF.

Detailed costs of error correction in POKs for the lattice PUF with
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different raw BERs are presented in Table 4.4. Assuming raw POK BER of

5%, the FE design of the lattice PUF requires 233 slices. This is cheaper

than the linear solver block used in the CFE-based strong PUF [32, 38] which

requires 65, 700 LUTs and 16, 425 slices.
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[72] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas De-

vadas, and Jürgen Schmidhuber. Modeling attacks on physical unclon-

able functions. In Proceedings of the 17th ACM conference on Computer

and communications security, pages 237–249. ACM, 2010.
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