
Copyright

by

Shounak Dhar

2019

The Dissertation Committee for Shounak Dhar
certifies that this is the approved version of the following dissertation:

Modern FPGA Placement Techniques with Hardware

Acceleration

Committee:

Zhigang (David) Pan, Supervisor

Mahesh A. Iyer, Co-supervisor

Nur A. Touba

Andreas Gerstlauer

Derek Chiou

Christopher Rossbach

Modern FPGA Placement Techniques with Hardware

Acceleration

by

Shounak Dhar

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2019

Acknowledgments

I would like to express my deepest appreciation to my adviser, Profes-

sor David Z. Pan at the University of Texas at Austin and my co-adviser, Dr.

Mahesh A. Iyer at Intel Corporation for their fundamental role in my doctoral

work. David is a great mentor who properly manages research projects and

encourages me to pursue important research problems. He gave me the aca-

demic freedom to pursue many different projects while contributing valuable

feedback, advice, and encouragement. Mahesh is also a great mentor who has

helped me grow as a researcher. He has introduced me to the real-world prob-

lems that are most important to industry and has provided me with ample

resources needed for working on those problems. This dissertation would not

have been possible without their unfailing guidance, support, and encourage-

ment.

I would like to extend my sincere thanks to Dr. Saurabh Adya and

Dr. Love Singhal, who were my colleagues at Intel. I had the opportunity

to work closely with them and learn about EDA tools from the industry’s

perspective. Their vision and experiences helped shape my ideas into actual

implementations worthy of inclusion in industrial-strength EDA tools.

I would also like to extend my gratitude to my other colleagues from

industry. I would like to thank Dr. Aravind Dasu from Intel who has helped

iv

me get access to the resources I needed for conducting my research.

I would also like to extend my sincere thanks to the rest of my com-

mittee members. I am grateful to Professor Nur A. Touba, Professor Derek

Chiou, Professor Andreas Gerstlauer and Professor Christopher Rossbach for

their feedback and support.

In addition to my advisor, committee members and colleagues from

industry, I am grateful to my colleagues from UT Design Automation Lab-

oratory for their help and feedback. I would like to thank Wuxi Li, Yibo

Lin, Subhendu Roy, Xiaoqing Xu, Meng Li, Bei Yu, Jiaojiao Ou, Derong Liu,

Biying Xu, Wei Ye, Zheng Zhao, Mohamed Baker Alawieh and Che-Lun Hsu.

Last but not the least, I would like to thank my family. I am deeply in-

debted to them for their love, support, understanding and sacrifices. Without

them, this dissertation would never have been written.

I would also like to express my gratitude towards Intel Corporation

for partially supporting the research work in this dissertation through Intel

Strategic Research Alliance.

v

Modern FPGA Placement Techniques with Hardware

Acceleration

Publication No.

Shounak Dhar, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Zhigang (David) Pan
Co-supervisor: Mahesh A. Iyer

In deep sub-micron technology nodes, Application-Specific Integrated

Circuits (ASICs) are becoming expensive to design and manufacture. For this

reason, Field Programmable Gate Arrays (FPGAs), which are general purpose

and flexible programmable hardware, are gaining more design wins in low vol-

ume and fast evolving applications. Modern FPGAs are becoming popular in

high performance data analytics, search engines, autonomous cars, commu-

nication and networking applications. FPGAs are also accompanied with a

complete Computer-Aided Design (CAD) toolchain, that is used to optimally

map and fit the design applications or workloads onto the underlying target

FPGA device. These design applications mapped onto the FPGA demand

high maximum achievable clock frequency (Fmax) and low power consump-

tion while maintaining a low compilation time, which is a major hindrance in

widespread adoption of FPGAs.

vi

The focus of this Ph.D. dissertation is the placement problem for FP-

GAs, which takes a major portion of the FPGA CAD tool runtime. A new

algorithm for spreading cells during FPGA global placement is proposed, which

achieves better wirelength and routing congestion and takes less runtime than

the algorithm used in the state-of-the-art academic FPGA placer. We also

propose FPGA acceleration of various subsystems of an analytic global place-

ment algorithm, including wirelength gradient computation and spreading,

which achieves significant speedup over the multi-threaded CPU version.

A new detailed placement algorithm is proposed, which offers better

tradeoff between quality and runtime compared to existing methods. This

algorithm is also accelerated on a GPU and an FPGA, achieving significant

speedup over multi-threaded CPU implementation. Another detailed place-

ment algorithm is also proposed which physically re-aligns timing critical paths

and improves Fmax with minimal runtime overhead. Both of these algorithms

for detailed placement have shown good results on industrial benchmarks and

have been integrated into an industrial FPGA CAD tool flow.

vii

Table of Contents

List of Tables xii

List of Figures xiv

Chapter 1. Introduction 1

1.1 FPGA Architecture . 2

1.2 FPGA Design Implementation Flow 3

1.3 FPGA Placement and its Evolution 4

1.4 Challenges of FPGA Placement 7

1.5 Summary of Contributions . 9

Chapter 2. Global Placement 11

2.1 FPGA Acceleration of Wirelength Gradient Computation . . . 13

2.1.1 Problem Statement for Upper-and-Lower-Bound Nonlin-
ear Global Placement 15

2.1.2 Wirelength Gradient Computation 19

2.1.2.1 CPU implementation 20

2.1.2.2 FPGA Acceleration: Method 1 22

2.1.2.3 FPGA Acceleration: Method 2 26

2.1.3 Results . 29

2.2 Spreading Cells in Global Placement using Linear Programming 35

2.2.1 Placement Shapes . 37

2.2.2 Min-Cost Flow based spreading 43

2.2.2.1 Formulation 1: Diagonal Flows 44

2.2.2.2 Formulation 2: Knight’s moves on a chessboard 48

2.2.3 Flow Realization . 52

2.2.4 Results for the new Spreading Algorithm 56

2.3 FPGA Acceleration of Spreading 59

viii

2.3.1 Flow-based Spreading 61

2.3.1.1 Discrete Flow Computation 65

2.3.1.2 Flow Realization 66

2.3.1.3 Flow Correction Algorithm 67

2.3.2 FPGA Acceleration . 74

2.3.3 Results . 77

2.3.3.1 Quality of Results 77

2.3.3.2 Runtime . 78

Chapter 3. Detailed Placement 83

3.1 Detailed Placement using Dynamic Programming 85

3.1.1 Problem Statement for Dynamic Programming based De-
tailed Placement . 88

3.1.2 Dynamic programming in 1 dimension 90

3.1.2.1 Subproblem definition 91

3.1.2.2 DP cost matrix computation 95

3.1.2.3 Keeping track of nets 99

3.1.3 Complexity analysis . 100

3.1.3.1 Special case: no bound on d: 100

3.1.3.2 Exact solution 101

3.1.3.3 General case: d is finite: 102

3.1.4 DP in two dimensions 103

3.1.5 Results . 107

3.2 GPU Acceleration of Dynamic Programming 113

3.2.1 Overall Flow . 115

3.2.2 CUDA basics . 116

3.2.2.1 Data structures 118

3.2.2.2 Tasks . 119

3.2.3 Kernels . 121

3.2.3.1 Fill Cost Matrix 121

3.2.3.2 Get Nets . 126

3.2.3.3 Preprocess Nets 126

3.2.3.4 Preprocess Sets 127

ix

3.2.3.5 Initialize Nets 129

3.2.3.6 Trace Solution 129

3.2.4 Complexity analysis . 130

3.2.4.1 Independent sub-flow: 130

3.2.4.2 Combined sub-flow: 132

3.2.5 Results . 132

3.3 FPGA Acceleration of Dynamic Programming 138

3.3.1 Hybrid CPU-FPGA Implementation 143

3.3.2 Results . 144

3.4 Timing-Driven Detailed Placement 146

3.4.1 Problem Formulation for Timing-Driven Detailed Place-
ment . 150

3.4.1.1 Timing Model 150

3.4.1.2 Setting up the Optimization Problem for a Crit-
ical Path . 151

3.4.1.3 Classification of Tnets 154

3.4.1.4 Shortest Path Problem 155

3.4.2 Components of our Timing-Driven Detailed Placement
Algorithm . 158

3.4.2.1 Selecting a Critical Path 158

3.4.2.2 Slack Allocation 159

3.4.2.3 Neighborhood Extraction 160

3.4.2.4 Finding the Shortest Path 162

3.4.3 Complexity Analysis . 165

3.4.3.1 Extracting the critical path from a tnet 165

3.4.3.2 Extracting the neighborhood from a path 165

3.4.3.3 Generating the graph given the neighborhood . 166

3.4.3.4 Solving for shortest path 166

3.4.4 Parallelization Schemes 166

3.4.5 Results . 168

Chapter 4. Conclusion 171

Bibliography 176

x

Vita 187

xi

List of Tables

2.1 Benchmark Statistics and Wirelength 30

2.2 FPGA Resource Usage by Type and Fmax 31

2.3 Efficiency and Runtimes in seconds for various parts of Global
Placement . 32

2.4 Normalized wirelength and angle of resultant force 44

2.5 Wirelength after flat global placement in multiples of 103 . . . 57

2.6 Placement wirelength, congestion and runtime 58

2.7 Benchmark Statistics and Wirelength 78

2.8 Runtimes in seconds and Speedup for ISPD 2016 contest bench-
marks . 79

2.9 FPGA Resource Usage and Fmax 80

3.1 Benchmark set details . 108

3.2 Comparison with [37] . 109

3.3 Effect of changing window length for k=3 and I=16 109

3.4 Effect of changing number of partitions for N=25 and I=16 . . 110

3.5 Effect of changing number of iterations for N=25 and k=16 . . 110

3.6 Runtimes . 110

3.7 DP with new timing cost and selective LAB optimization . . . 111

3.8 Kernels for various tasks . 119

3.9 Benchmark Statistics . 133

3.10 Runtimes in milliseconds for ISPD 2016 contest benchmarks . 134

3.11 Runtimes in milliseconds spent on computation for ISPD 2016
contest benchmarks . 135

3.12 Runtime breakdown for various tasks for full GPU flow 136

3.13 Runtimes of Kernels in milliseconds vs blockDim 136

3.14 Runtimes in milliseconds and Speedup 145

3.15 FPGA Resource Usage and Fmax for DP kernel 145

xii

3.16 Benchmark set details . 168

3.17 Results for our Algorithm . 170

xiii

List of Figures

1.1 Floorplan of Intel R© Arria10 R© FPGA. Image courtesy of Intel
Corporation. 3

1.2 FPGA tool flow . 4

2.1 Sample netlist . 15

2.2 HPWL, weighted average and log-sum-exponent wirelengths in
x direction for a 2-pin net with one pin fixed at 0. 16

2.3 Progression of placement with alternate optimization and
spreading. Each bin here is 2x2 sites and holds at most 2 cells. 18

2.4 Gradient computation on CPU 19

2.5 Gradient computation on CPU+FPGA. Some of the data de-
pendencies are shown by arrows. 21

2.6 Term generator . 22

2.7 Multi-output adder tree. Each oval denotes a 2-input adder.
Labels of the form a b denote summations of inputs a,a+1,...,b.
There are 34 labelled outputs, which are fed to various adder
result selectors (Figure 2.8). Any path in this tree goes through
at most 4 adders (depth=4). 23

2.8 Adder result selector for index 3. Labels of the form a b are the
outputs of the corresponding adders in Figure 2.7 24

2.9 Combiner. Implements Equation 2.4 25

2.10 Net wirelength calculator (Equation 2.2a) for adder tree output
a b. 34 of these are instantiated, each corresponding to an adder
tree output. 26

2.11 Part of a pipeline for computing gradient from equation 2.4.
Computation is shown for the first two terms only to reduce
clutter. The circuit for the remaining two terms is similar. We
instantiate 16 such pipelines which operate in parallel. 27

2.12 Functioning of a queue for 5 consecutive clock cycles 28

2.13 Runtime breakdown for FPGA Accelerated Global Placement 33

2.14 Wirelength calculation for an arbitrary shape 38

2.15 Wirelength calculation for rectangle, diamond and circle . . . 39

xiv

2.16 |x|1.8 + |y|1.8 = 1 . 41

2.17 Force at the boundary and its angle with the normal 42

2.18 Deviation of resultant force from the normal 43

2.19 Diagonal and Knight edges. Knight edges shown for only one
bin to reduce clutter. 46

2.20 Contours for diagonal and knight flows 47

2.21 Replacing a flow path by a collection of cheaper flow paths . . 50

2.22 Possible non-monotonic combinations (black) and their replace-
ment with monotonic ones (grey) 51

2.23 Converting non-manhattan flows into manhattan flows 52

2.24 Flow realization: each shade of grey denotes a level obtained
from topological sort. 53

2.25 Moving buckets across bins . 54

2.26 Possible locations of cell1 w.r.t cell2 for preserving relative order. 55

2.27 A grid containing RxC bins. Bins are numbered in a row ma-
jor fashion. Arrows indicate channels between bins, which are
bidirectional. The direction of an arrow denotes the direction
in which flow is considered positive. 62

2.28 Flow of fluid across reservoirs connected by channels. The chan-
nel diameter is very small compared to the reservoir dimensions.
Fluid does not flow through a channel if the fluid levels on both
sides are below the level of the channel. 62

2.29 Examples of non-monotonic patterns 68

2.30 Terminology of flows used in Algorithm 1 68

2.31 Replacing U shaped patterns for a section of the rows in Figure
2.30 . 69

2.32 A top-to-bottom pass cannot create new U shaped patterns.
Hypothetical U shaped patterns are shown in grey. The bottom
row shows the flows before the inverted U shaped pattern was
replaced. 73

2.33 Part of the hardware for computing flows. There are 5 memory
systems implemented using on-chip RAMs: demand, xflows,
yflows, d45flows and d135flows. demanddiff is implemented
with registers. All black connectors denote buses. Control sig-
nals for the multiplexers are shown in grey. For each time step,
r goes from 0 to 159. 75

2.34 Incremental flows between rows r and r+1 calculated by the
FPGA in one clock cycle. 75

xv

2.35 The shape of placement produced by our spreading algorithm
can be inferred from the above heat map of #cells in each bin.
This example has 85400 cells and no net. Maximum bin utiliza-
tion is set to 84% . 77

2.36 Runtime breakdown of the spreading algorithms. 81

3.1 This placement would retain the initial configuration (local min-
ima) unless the two pink cells are moved together 86

3.2 An instance which cannot be optimized by 2 partition DP . . 86

3.3 Sometimes we only need to adjust spaces during detailed place-
ment . 87

3.4 Interleaving example; The top row shows the placement before
interleaving. The bottom row is the placement after interleaving 87

3.5 Computing cost[3][2][2] in the DP matrix - it depends on
cost[2][2][2], cost[3][1][2] and cost[3][2][1]. Here, k=3 and N=12 91

3.6 Sections of nets included in partial cost 94

3.7 Filling the DP matrix hyperplane-by-hyperplane in 2 and 3 di-
mensions; Each color represents a hyperplane 95

3.8 Solutions which are unlikely 96

3.9 Limiting the solution space explored 98

3.10 Various components in the HPWL cost: extending, starting,
ending and continuing. 100

3.11 2D DP: cells in the same row stay in one row, cells in the same
column stay in one column. 105

3.12 2D DP as applied on a window; In this example, the cells in the
white region are assumed to be stationary. Instead of moving a
whole row or column, we move parts of rows or columns. . . . 106

3.13 Selecting columns for 2D DP: We reject columns where macros
don’t fit in the window . 107

3.14 Serial(light blue) and parallel(dark blue) runtimes(in seconds)
vs design size; #CBEs = #LABs + #DSPs + #RAMs 111

3.15 % Wire change (sorted from smallest to largest) for all designs 111

3.16 % Fmax change (sorted from smallest to largest) for all designs 112

3.17 CPU, hybrid (CPU+GPU) and GPU flows. Orange parts exe-
cute on CPU, green parts execute on GPU and memory trans-
fers between CPU and GPU are shown in red. 117

3.18 Flattened data structures. 118

xvi

3.19 Filling the cost matrix for a single problem. This operation is
performed on one block. Different nodes in a hyperplane are
assigned to different threads in the block. Threads are synchro-
nized after each hyperplane is filled. 123

3.20 Independent sub-flow: Different problems are assigned to dif-
ferent blocks which run independently. 123

3.21 Combined sub-flow: Hyperplanes from different problems are
grouped together. This example has blockDim=7 124

3.22 Two different memory access strides for processing nets on the
same block for an example netlist with 1000000 nets. 128

3.23 Constructing the placement solution after the cost matrix is filled.131

3.24 Runtime for computation (blue) in milliseconds on left axis
and speedup (red) over single-threaded CPU implementation
on right axis for the design FPGA09 for multi-threaded CPU,
hybrid and GPU implementations 137

3.25 Various levels of parallelization within the dynamic program-
ming algorithm. Each level is highlighted by a rectangle. . . . 139

3.26 Dynamic programming recurrence and memory dependency. . 139

3.27 Various types of nets encountered while solving a subproblem 139

3.28 Computations involved in filling a matrix entry highlighted by
rectangles. 140

3.29 Separating out computations involved in filling a matrix entry. 140

3.30 FPGA grid with a critical path 152

3.31 Neighborhood chosen around a critical path 152

3.32 Placement of other cells in the neighborhood 153

3.33 Classification of tnets . 153

3.34 Shortest path problem; All outgoing edges for only some of the
nodes are shown. Note that BC2 in B’s layer does not have an
edge to BC2 in C’s layer. This is necessary to prevent overlaps.
Similar case with CD1 and DE2 157

3.35 Extracting neighborhood around a critical path 162

3.36 Assignment of locations to critical path nodes 163

3.37 A solution to the shortest path problem 164

3.38 Changing placement to reflect the shortest path 164

3.39 % Logic utilization (y-axis) for all designs 169

3.40 % Fmax change (y-axis) for all designs 169

3.41 % Wirelength change (y-axis) for all designs 169

xvii

Chapter 1

Introduction

In deep sub-micron technology nodes, Application-Specific Integrated

Circuits (ASICs) are becoming expensive to design and manufacture. For this

reason, Field Programmable Gate Arrays (FPGAs), which are general purpose

and flexible programmable hardware, are gaining more design wins in low vol-

ume and fast evolving applications. Modern FPGAs are becoming popular in

high performance data analytics, search engines, autonomous cars, commu-

nication and networking applications. FPGAs are also accompanied with a

complete Computer-Aided Design (CAD) toolchain, that is used to optimally

map and fit the design applications or workloads onto the underlying target

FPGA device. The aforementioned applications mapped onto the FPGA re-

quire data processing with very low latencies, which is difficult for CPUs and

GPUs. Nevertheless, a high maximum achievable clock frequency (Fmax) is

required to meet the latency and throughput targets. Some of these applica-

tions also demand low power consumption as that translates to huge energy

savings in data centers.

1

1.1 FPGA Architecture

FPGAs typically consist of logic array blocks (LABs), digital signal

processors (DSPs), RAMs and Input-Output (IO) blocks in a rectangular grid

(Figure 1.1), with interleaved routing resources. FPGAs usually have a sepa-

rate clock routing network for distributing the clock signal(s) to the registers

and other memory elements. Conventionally, specific columns are assigned

to RAMs, DSPs, LABs and IOs. Special regular structures like carry chains

are implemented using LABs placed contiguously. LABs consist of Adap-

tive Logic Modules (ALMs), which consist of lookup tables (LUTs), flip-flops

(FFs), multiplexers (MUXes) and routing resources. Combinational logic can

be implemented using LUTs. LUTs in an FPGA usually have a small number

of inputs (4 to 6), so larger blocks of combinational logic are implemented

using multiple LUTs. Some FPGAs allow LUTs to be configured as mem-

ory (MLABs in Intel R© FPGAs). Some FPGA architectures have special fast

connections from the output of a LUT to the FF located next to it.

FPGAs may also have analog components like Analog-to-Digital Con-

verters (ADCs) and Digital-to-Analog Converters (DACs) to handle applica-

tions such as signal processing. Other hard blocks include transceivers, em-

bedded processor cores, ethernet controllers, PCI(e) controllers, etc. Some

FPGAs have block RAMs which can be configured as dual port RAMs with

different clocks. Modern FPGAs from leading providers like Intel and Xilinx

contain millions of logic elements.

2

Figure 1.1: Floorplan of Intel R© Arria10 R© FPGA. Image courtesy of Intel Cor-
poration.

1.2 FPGA Design Implementation Flow

FPGA vendors usually provide their own Computer-Aided Design

(CAD) tools, which take a description of the design in a high-level language

like OpenCL or behavioural description like verilog or VHDL and optimally

map and fit the design onto the underlying FPGA device, thereby creating a

bitstream that describes the configuration of each logic and routing element in

the FPGA. High level synthesis is applied to transform the design from a high

level language to a Register-Transfer Level (RTL) description. Logic synthesis

is then applied to transform the behavioural description into a netlist with

components like LUTs, FFs, RAMs, DSPs, IOs, etc. This netlist has to honor

the target FPGA’s architectural constraints like number of inputs per LUT,

maximum size of a RAM, etc. Then, flat global placement is performed to

3

get locations of netlist components to aid in packing, which involves clustering

LUTs and FFs into ALMs and clustering ALMs into LABs. Some LUTs inside

a LAB can share inputs. FFs may have different clocks and control signals

and there are restrictions on the number of different clocks and control signals

and their combination within a LAB. Next, LAB-level global placement and

legalization are performed to place the LABs, RAMs, DSPs and IOs on the

FPGA grid. This is followed by legalization and detailed placement.

NetlistSynthesis Mapping

Flat global placementClustered global placement Packing

Detailed placement Bitstream

HDL

Legalization

Signoff timing analysisRouting

Figure 1.2: FPGA tool flow

The final steps in the flow are routing and signoff timing analysis. Phys-

ical synthesis is also performed during various stages of the placement and

routing process, where parts of the netlist are re-synthesized to improve tim-

ing and resource utilization. The overall CAD tool flow is shown in Figure

1.2.

1.3 FPGA Placement and its Evolution

Placement is an important part of the CAD tool flow. Placement deter-

mines the physical locations of various components of the netlist and affects

metrics like wirelength, timing and routing congestion. Placement can be

broadly classified into three stages - global placement, legalization and de-

4

tailed placement. Global placement determines rough locations of the cells on

the chip with approximate models of the aforementioned metrics. Generally

speaking, the objective of global placement is to distribute the cells across the

floorplan such that the aforementioned metrics are globally optimized with

some level of approximation. This makes it amenable and easy for detailed

placement algorithms to fine-tune the placement to get the best quality of

results.

Simulated-annealing-based approaches [30,53] were popular in the early

days of FPGA placement. Simulated annealing involves making numerous

moves (like swapping two cells or moving multiple cells in a chain-like fash-

ion). There is a cost associated with each move and moves with high cost are

accepted with some probability which depends on a parameter called temper-

ature. The temperature is initially set to a high value, which favors locally

suboptimal moves but helps in escaping local minima. The temperature is de-

creased gradually during the annealing process. Simulated annealing worked

for small designs but the quality vs runtime tradeoff grew worse with increas-

ing design size. Researchers subsequently investigated min-cut approaches [54]

using graph and hypergraph partitioning techniques like [55], which placed

netlist components by recursively partitioning the netlist. These approaches

performed better than simulated annealing.

Most of the modern global placers employ an analytical technique [2,4,

18,19,21,22], where metrics like timing, wirelength and routing congestion are

modeled as continuous functions of cell locations and optimize these functions

5

using some well-known optimization algorithm. To remove cell-overlap, the

placement region is divided into bins and the density of cells in each bin is

constrained to some value. Analytical placement can be broadly classified

as quadratic [3, 21] and nonlinear [18, 19, 64] based on the choice of objective

function(s). Quadratic placement models the objectives as quadratic functions

of cell locations while nonlinear placement uses more complicated but more

accurate functions. The non-homogeneity in the distribution of resources on

the FPGA floorplan make global placement for FPGAs more challenging than

ASICs.

Global placement is followed by legalization, which places cells on le-

gal sites while minimizing some cost like total displacement. The legality

constraints depend on the FPGA architecture and the target device. Most le-

galization algorithms are based on network flows [23–26]. Bipartite matching

based legalization is used in [21]. Other methods like dynamic programming

and linear programming are also used [23].

Detailed placement is applied after legalization to reduce wirelength, fix

timing errors and improve routability. Detailed placement refinement improves

these metrics by accounting for irregularities and discreteness in the underlying

FPGA architecture that may have caused modeling difficulties during global

placement. Another objective of detailed placement is to recover from any

large displacements caused during legalization. Prior work on detailed place-

ment can be categorized into the following broad classes: 1) Greedy [32] [35]

2) Simulated Annealing [30] [31] [36] 3) Network flow/ matching [33] [34] 4)

6

Mixed Integer Linear programming [28] [29] 5) Interleaving or Dynamic pro-

gramming [37] 6) Branch-and-bound [39]. These techniques are discussed in

detail in chapter 3. Historically, variations of greedy algorithms have been the

most popular methods for detailed placement.

1.4 Challenges of FPGA Placement

FPGA vendors are trying to enable fast development of applications

from a software developer’s point of view. An important drawback of using

FPGAs is that it takes a long time to compile a design from RTL/high-level

description to a bitstream that can be loaded onto the FPGA. FPGA CAD

consists of numerous NP-hard problems which are hard to solve optimally.

The best industrial FPGA CAD tools available today take several hours on

average to compile a large design on state-of-the-art FPGA devices. This is

extremely slow compared to compiling code for GPU or CPU. Reduction in

the compilation times along with improvements to the quality of the CAD

tools could encourage higher adoption of FPGAs and FPGA based solutions.

The growing size and complexity of modern FPGAs and the designs

mapped onto them imposes tough requirements on the quality of the CAD

tools. Global placement quality affects metrics like wiring usage, timing, power

and routing congestion to a great extent. Many researchers have focused on the

numerical optimization part of global placement and this is fairly mature both

in ASIC and FPGA design flows. Optimizing the aforementioned metrics alone

would lead to overlaps among cells, which need to be removed by spreading

7

the cells. Spreading algorithms have significant room for improvement since

research in spreading algorithms has not been as thorough. To the best of our

knowledge, there is no previous work studying the relationship between the

shape of placement after spreading and wirelength. Most existing works do

not consider optimal placement shapes for spreading; instead they indirectly

spread the cells in rectangular, diamond, or circular shapes. We need to study

placement shapes in order to find the best way to spread cells. Also, the

spreading algorithm should be parallelizable and should try to preserve the

relative order among cells obtained from numerical optimization.

In recent times, artificial intelligence (AI) and machine learning (ML)

have found various interesting applications like autonomous vehicles, internet

search, etc. The scale of the algorithms in AI and ML demands extreme com-

pute efficiency, both for training and inference, This has necessitated the use

of hardware acceleration for these advanced applications using platforms like

GPUs, FPGAs and custom ASICs. To enable the acceleration requirements

of these advanced applications on FPGAs, we need to improve the compute

efficiency and quality of results of the FPGA CAD flow. Given this, ideally,

we need to design global placement algorithms for numerical optimization and

spreading that are easily acceleratable on the FPGA itself.

There has been extensive research on detailed placement for ASICs.

The resource constraints and the multitude of legality rules on an FPGA make

the detailed placement problem harder for an FPGA than an ASIC. To cope

with these difficulties, we need to develop new FPGA detailed placement al-

8

gorithms. These algorithms also need to be highly parallelizable and ideally,

also hardware acceleratable to meet runtime constraints.

Timing is an important metric for detailed placement because it is hard

to model timing accurately during global placement. The high number of pins

per LAB in an FPGA imply that a large number of timing paths can pass

through one LAB. So, traditional timing driven placement techniques used in

ASICs perform poorly when applied to FPGAs. Hence, we need to develop

timing driven placement techniques that are targeted to FPGAs. Traditional

timing driven placement approaches consist of net based and path based op-

timizations. Net-based algorithms optimize delays on individual nets while

path-based placers optimize timing on entire paths. Both net-based and path-

based optimizations are needed as they offer different benefits and complement

each other.

1.5 Summary of Contributions

This dissertation presents new algorithms for both global placement

and detailed placement, that show significant improvement over the state-of-

the-art with respect to wiring usage, timing and runtime. We also propose

techniques to hardware accelerate several parts of these new placement algo-

rithms on FPGA and GPU.

Chapter 2 explores new global placement algorithms and their hard-

ware acceleration. This chapter proposes hybrid CPU-FPGA acceleration of

wirelength gradient computation, which is a major bottleneck in global place-

9

ment. A study is performed on the effect of placement shapes on wirelength

and a new shape-driven spreading algorithm is also proposed. The spreading

problem is formulated as a min-cost flow problem and is solved using linear

programming. We also propose a new fluid-flow based spreading algorithm

which is highly parallelizable and accelerate it on FPGA.

Chapter 3 explores new detailed placement placement algorithms and

their hardware acceleration. A dynamic-programming-based detailed place-

ment algorithm is proposed, which has a parameter to control the tradeoff

between quality and runtime. Optimal solutions to the single row placement

problem can also be obtained by simply setting the parameter to the appropri-

ate value. GPU acceleration of this detailed placement algorithm is also pro-

posed, which achieves significant speedup compared to multi-threaded CPU

versions. We compare hybrid CPU-GPU acceleration and full GPU accelera-

tion and show that the full GPU accelerated detailed placer is faster. We also

propose FPGA acceleration of the same detailed placement algorithm. A new

timing-driven placement algorithm is also proposed, which focuses on critical

paths and is tailored towards high connectivity netlists like those for FPGAs.

Timing improvements from this algorithm complement the improvements from

our dynamic-programming-based detailed placer.

Chapter 4 concludes this dissertation and discusses potential future

directions for FPGA placement and its acceleration.

10

Chapter 2

Global Placement

Placement is an important part of any CAD tool flow (Figure 1.2) which

consumes a large portion of the runtime, of which global placement is a major

part (for example, flat and clustered global placement together take 60.1% of

the runtime in [21]). Placement determines the physical locations of cells on a

chip and affects important metrics like timing, power and routing congestion.

The current state-of-the-art placers take the analytic approach, where

metrics like wirelength, timing etc. are modelled as continuous functions of cell

locations [3,18,19,21,64] and optimized through well-known optimization algo-

rithms. Analytical placement can be broadly classified as quadratic [3,21] and

nonlinear [18, 19, 64] based on the choice of objective function(s). Quadratic

placement models the objectives as quadratic functions of cell locations and

This chapter includes work from the following publications:
[8] S. Dhar, L. Singhal, M. A. Iyer and D. Z. Pan, “FPGA Accelerated FPGA Placement”,
International Conference on Field-Programmable Logic and Applications, 2019.
[1] S. Dhar, L. Singhal, M. A. Iyer and D. Z. Pan, “A Shape-Driven Spreading Algorithm
using Linear Programming for Global Placement”, Asia and South Pacific Design Automa-
tion Conference, 2019.
[9] S. Dhar, L. Singhal, M. A. Iyer and D. Z. Pan, “FPGA Accelerated Spreading for Global
Placement”, IEEE High Performance Extreme Computing conference, 2019.
In all of these publications, the first author was responsible for developing and implementing
the main ideas and conducting experiments.

11

the optimization process for these functions usually reduces to solving a sys-

tem of linear equations. For nonlinear placement, the functions are optimized

using variants of gradient descent. Nonlinear placement usually performs bet-

ter than quadratic placement, although the difference in quality is small [3].

Optimizing metrics like wirelength, timing and routing congestion alone leads

to overlaps between cells which need to be removed. The chip is usually di-

vided into a grid of bins and the density of cells in each bin serves as a rough

measure of cell overlap. The state-of-the-art global placement techniques can

be broadly classified into two groups on the basis of techniques used to remove

cell overlap: i) Continuous ii) Upper-and-lower-bound. Continuous methods

like [19], [18] and [2] usually add a smooth density function to the objective

and use the resultant gradients to spread the cells gradually. Upper-and-

lower-bound methods like [20] and [21] find a placement which satisfies the

bin density constraints after each iteration of optimizing the objective func-

tion. The cells are anchored to their new locations after each spreading step

and a penalty function for displacement from these locations is added to the

objective function for the next placement iteration. The penalty is increased

every iteration, ensuring that the gap between the numerical optimization

and spreading steps reduces at each iteration, making the placement converge.

Spreading or rough legalization greatly impacts the quality of the final solu-

tion. In this dissertation, we use the upper-and-lower-bound technique.

12

2.1 FPGA Acceleration of Wirelength Gradient Com-
putation

It’s not uncommon for state-of-the-art academic and industrial place-

ment engines to run for tens of minutes on large designs, even with multi-

threading enabled. Recently, researchers have started investigating GPU ac-

celeration of placement [11–13]. Some of these works have achieved decent

speedups over multi-threaded CPU implementations.

The leading FPGA vendors have their own tools which run on CPUs. In

this section, we investigate acceleration of placement on an FPGA itself, which

is a more sensible option for a customer who already has FPGA(s), rather

than having to use a GPU just for the purpose of programming the FPGA.

Modern FPGAs are complex SoCs which have processor cores [68, 70]. Intel

recently announced a CPU+FPGA on the same package [67]. We investigate

the possibility of using these SoCs/hybrid systems to accelerate the CAD tools

without relying on any additional hardware.

FPGAs have outperformed CPUs and GPUs on performance per watt

for many important applications [16]. EDA vendors offering CAD tool services

on the cloud [69] might be interested in saving power, thus making a stronger

case for choosing FPGAs over GPUs for accelerating CAD algorithms.

Many of the analytical placement algorithms involve computation of

expensive functions like exponents that are good candidates for FPGA accel-

eration. Pipelined computation of these functions gives high throughput.

13

Designing an application for FPGAs poses unique challenges, the most

important being the switch from a control flow to a data flow paradigm. FP-

GAs are capable of supporting very deep pipelines, so the application has to

be designed to maximize uninterrupted data flow through the pipeline, i.e,

without stalls and dependencies. Applications involving random accesses over

a large memory space are not particularly suitable for FPGAs, so we have to

engineer our applications to avoid such access patterns.

Researchers have recently looked into acceleration of nonlinear analyt-

ical placement on GPUs [11,12]. Runtime of nonlinear analytical placement is

usually dominated by gradient computation. Gradient refers to the gradient

of the objective function which models metrics like wirelength and timing. To

minimize overlap between cells, the placement region is usually divided into

bins and a constraint is put on the maximum area of cells in each bin.

Hardware acceleration of a placement algorithm involving cell moves

has been proposed in [7]. However, that is mostly applicable to detailed place-

ment. In this section, we present a solution to accelerate analytical global

placement on FPGAs [8]. To the best of our knowledge, this is the first work

on acceleration of analytical global placement on FPGAs. The key contribu-

tions in this section are as follows:

• We propose hybrid CPU-FPGA acceleration of wirelength gradient com-

putation, leveraging unique capabilities of each device and mapping the

right kind of computation on them.

14

• We propose a stall-free pipelined hardware architecture to accelerate pin

gradient computation on FPGAs. Our proposed design accesses memory

in a simple streaming fashion, eliminating the overhead associated with

random accesses.

• Our proposed hardware architecture also computes the objective function

being optimized with no runtime overhead, unlike CPUs and GPUs.

2.1.1 Problem Statement for Upper-and-Lower-Bound Nonlinear
Global Placement

Almost all placers incorporate wirelength as one of the optimization

metrics. Half-Perimeter Wirelength (HPWL) is a commonly-used metric for

wirelength. The total HPWL is the sum of HPWLs of all nets. HPWL of a

net can be defined as follows:

xHPWLnet = max
u∈net

(xu)− min
u∈net

(xu) (2.1a)

yHPWLnet = max
u∈net

(yu)− min
u∈net

(yu) (2.1b)

HPWLnet = xHPWLnet + yHPWLnet (2.1c)

0

1

2

6

5

3

4
net0

net1

net2
net3

(x0,y0)

(x1,y1)

(x2,y2) (x3,y3)

(x4,y4)

(x5,y5)

(x6,y6)

Figure 2.1: Sample netlist

Where xu and yu denote the x and y locations of pin u of the net.

15

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	11

-10 -5 	0 	5 	10

abs(x)
x*exp(x)/(1+exp(x))-x*exp(-x)/(1+exp(-x))

log(1+exp(x))+log(1+exp(-x))

Figure 2.2: HPWL, weighted average and log-sum-exponent wirelengths in x
direction for a 2-pin net with one pin fixed at 0.

Analytical placement approaches using gradient descent require that

the wirelength function be differentiable, which is not the case with HPWL

because of the min(.) and max(.) functions. Nonlinear analytical placers solve

this problem by approximating HPWL by a differentiable function. Weighted

average (WA) and log-sum-exponent (LSE) are two such mathematical approx-

imations that previous nonlinear placers have used [18, 19, 64]. The weighted

average wirelength for a net can be defined as:

xWAnet =

∑
u∈net

xue
γxu∑

u∈net
eγxu

−

∑
u∈net

xue
−γxu∑

u∈net
e−γxu

(2.2a)

16

yWAnet =

∑
u∈net

yue
γyu∑

u∈net
eγyu

−

∑
u∈net

yue
−γyu∑

u∈net
e−γyu

(2.2b)

WAnet = xWAnet + yWAnet (2.2c)

The log-sum-exponent model is defined as:

xLSEnet =

log

(∑
u∈net

eγxu
)

+ log

(∑
u∈net

e−γxu
)

γ
(2.3)

where γ is a parameter used to control the smoothness of the approximation. A

higher γ means the model is less smooth but more accurate. The weighted av-

erage model has a lower error of approximation, as mentioned in [19]. Hence,

we choose to use the weighted average model for our work. Also, weighted

average wirelength is strictly less than HPWL, approaching HPWL asymptot-

ically as shown in Figure 2.2. The partial derivative of the wirelength of a net

for the weighted average model is given by (assuming cellj ∈ net):

∂(xWAnet)

∂xj
=

(1 + γxj)e
γxj∑

i∈net
eγxi

−
γ

(∑
i∈net

xie
γxi

)
eγxj(∑

i∈net
eγxi
)2

−(1− γxj)e−γxj∑
i∈net

e−γxi
−
γ

(∑
i∈net

xie
−γxi

)
e−γxj(∑

i∈net
e−γxi

)2

(2.4)

The partial derivative for LSE model is given by:

∂(xLSEnet)

∂xj
=

eγxj∑
i∈net

eγxi
− e−γxj∑

i∈net
e−γxi

(2.5)

17

The total wirelength gradient can be obtained by summing up the individual

gradients for each pin (connection) of each cell.

binsite

1
5 6
34200

15
6

34
2

0 1 5 6 3 4

2

anchor

optimize spread optimize

Figure 2.3: Progression of placement with alternate optimization and spread-
ing. Each bin here is 2x2 sites and holds at most 2 cells.

The placement region is usually divided into bins and a constraint is

put on the maximum area of cells in each bin. We use a rough-legalization

approach like [3,21] where cells are spread out after a phase of optimizing the

objective function. For the next phase of optimization, the cells are ‘anchored’

to the new locations obtained after spreading and a penalty is applied for

displacement from these anchor locations (Figure 2.3). Analytical placement

with the weighted average model can then be formulated as an optimization

problem:

min
x,y

(∑
n∈nets

WAn + λ
∑
c∈cells

(xc − x′c)2 + λ
∑
c∈cells

(yc − y′c)2

)
(2.6)

Where (x′c, y
′
c) is the anchor location of cell c and (xc, yc) is the location we

want to solve for. WAn is the weighted average wirelength for net n. The

parameter λ controls the balance between spreading and optimization. A lower

value of λ favours less cell overflow and a higher λ favours more wirelength

optimization. We initialize it to a low value and increase it gradually for

18

subsequent placement iterations.

2.1.2 Wirelength Gradient Computation

We present two different methods to accelerate wirelength gradient

computation on FPGA. We first simplify our formulation to make it hard-

ware friendly. All occurrences of γx in equation 2.2a can be replaced by x̂:

xWAnet =

∑
u∈net

x̂ue
x̂u

γ
∑
u∈net

ex̂u
−

∑
u∈net

x̂ue
−x̂u

γ
∑
u∈net

e−x̂u
(2.7)

The λ in equation 2.6 can be scaled up by γ so that the optimal solution

remains unchanged. Thus the effect of changing γ can be captured instead by

scaling x (and y), which eliminates many multiplication operations.

x0 x1 x2 x3 x4 x5 x6

t0 t1 t2 t3 t4 t5 t6

calculate
terms

t0 t1 t1 t2 t1 t5 t6 t6 t3 t4

copy terms
to pin

coordinate
arrays

calculate pin
gradients

g0 g1 g2 g3 g4 g5 g6

sum pin
gradients

net0 net1 net2 net3

Figure 2.4: Gradient computation on CPU

We only accelerate the gradient computation for nets with ≤ 16 pins

as high-fanout nets are harder to handle on an FPGA and the degradation in

maximum operating frequency and FPGA resource usage outweigh the ben-

efits. The number of large nets in real benchmarks is relatively small. For

19

example, in design FPGA12 of the ISPD 2016 FPGA placement contest bench-

marks [71], nets with more than 16 pins account for <0.25% of all nets. Our

global placer produces slightly better result on average than [21] even though

we ignore larger nets.

There are many ways of handling large nets. One way is to compute

their gradients on CPU. An alternative way is to apply simple clustering and

break them up into smaller nets with ≤ 16 pins with a common driver. This

is a good choice since HPWL grossly underestimates the routed wirelength for

large nets. Timing is usually modelled through 2-pin nets for each driver-to-

load connection, so this approach does not interfere with correct modeling of

timing.

2.1.2.1 CPU implementation

Before we discuss hardware acceleration, we would like to describe our

baseline multi-threaded CPU implementation and identify the runtime bot-

tlenecks. Gradient computation can be divided into 3 steps: calculating ex-

ponents, computing the gradient for each pin of each net and computing the

gradient w.r.t cell locations by adding the corresponding pin gradients. Fig-

ure 2.4 shows the calculations involved in gradient computations step-by-step.

First, 4 kinds of terms (exi , e−xi , xie
xi , xie

−xi) are computed for each xi. Then,

we copy these terms into 4 expanded arrays. Each entry in an array corre-

sponds to a pin of a net. For example, in Figure 2.1, cell 1 is connected to

nets 0, 1 and 2, so ex1 , e−x1 , x1e
x1 and x1e

−x1 each appear at indices 1, 2 and

20

x0 x1 x2 x3 x4 x5 x6

x0 x1 x1 x2

x1 x5 x6 x6 x3 x4

16 term generators

16 combiners

FPGA

CPU

block1

block2

block1

block2

g0 g1 g2 g3 g4 g5 g6

CPU

terms

4 multi-output adder trees

4x16 adder result selectors

zero padding

Figure 2.5: Gradient computation on CPU+FPGA. Some of the data depen-
dencies are shown by arrows.

21

4 in their corresponding expanded arrays in Figure 2.4.

Computation of the terms is parallelized in a straightforward way. Pin

gradient computation is parallelized by assigning groups of nets to different

threads. Cell gradient computation is parallelized by assigning groups of cells

to different threads, where, for each cell, a thread iterates over the correspond-

ing entries in the pin gradient array and sums them up.

2.1.2.2 FPGA Acceleration: Method 1

Iterating over pins of a net causes irregular memory accesses over a large

chunk of memory, which is not suitable for FPGAs (random access over small

chunks is ok as that can be mapped to on-chip RAM). Hence, we rearrange

the computations and assign the parts involving random memory accesses to

the CPU and the rest to the FPGA. Our hybrid CPU+FPGA implementation

is a 3 step process (Figure 2.5): First, we copy the coordinates(x/y) to special

arrays of pin coordinates (slightly different from our CPU implementation).

Then we calculate gradient for each pin on the FPGA. Finally, we sum the

gradients on CPU.

exp

invmult

mult

xi

exp(xi)

xi exp(xi)

exp(-xi)

xi exp(-xi)

Figure 2.6: Term generator

22

We sort the nets by degree when we read in the netlist. This is a simple

bucket sort, as the number of pins can be 2,3,...16. We use the same hardware

to process nets of different degrees. We divide the nets into blocks containing

16 pins each, with zero padding, if necessary. Nets in a block are of the same

degree. For example, in Figure 2.5, block 1 contains nets 0 and 1 and block

2 contains nets 2 and 3. A block can accommodate up to 8 2-pin nets or 5

3-pin nets or 2 6-pin nets, etc. Each entry in a block stores the coordinate (x

or y) for the corresponding pin. Note that x and y gradients are computed

separately. For each of these 16 entries, we calculate the following terms in

parallel using term generators (Figure 2.6) : exi , e−xi , xie
xi and xie

−xi .

0

0_1

1 2

2_3

3 4

4_5

5 6

6_7

7 8

8_9

9 10

10_11

11 12

12_13

13 14

14_15

15

0_2 3_5 6_8 9_11 12_14

0_3 4_7 8_11 12_15

0_4 5_9 10_14

0_5 6_11

0_6 7_13

0_7 8_15

0_8 0_9 0_100_11

0_12

0_13 0_140_15

Figure 2.7: Multi-output adder tree. Each oval denotes a 2-input adder. Labels
of the form a b denote summations of inputs a,a+1,...,b. There are 34 labelled
outputs, which are fed to various adder result selectors (Figure 2.8). Any path
in this tree goes through at most 4 adders (depth=4).

Next, we have 4 adder trees, one for each kind of term. These adder

trees calculate partial sums of terms for the 34 possible cases of contiguous net

segments (8 2-pin + 5 3-pin + 4 4-pin + ... + 1 15-pin + 1 16-pin). Figure

23

2.7 shows a generic adder tree that can be used for any type of term. Consider

the example of net 3 in Figure 2.1:

∂(xWA3)

∂x6

=
(1 + x6)ex6

ex6 + ex3 + ex4
− (x6e

x6 + x3e
x3 + x4e

x4)ex6

(ex6 + ex3 + ex4)2

− (1− x6)e−x6

e−x6 + e−x3 + e−x4
− (x6e

−x6 + x3e
−x3 + x4e

−x4)e−x6

(e−x6 + e−x3 + e−x4)2

(2.8)

The adder tree for exi terms has ex6 + ex3 + ex4 as one of its outputs. The

adder trees enable sharing large portions of logic in the entire kernel, which

leads to a smaller area than would have been possible with implementing a

separate kernel for each net degree (2,3,...16).

8 9 10 11 12 13 14 15 162 3 4 5 6 7

2_3

3_5

0_3

0_4

0_5

0_6

0_7

0_8

0_9

0_10

0_11

0_12

0_13

0_14

0_15

MUXnet
degree

Figure 2.8: Adder result selector for index 3. Labels of the form a b are the
outputs of the corresponding adders in Figure 2.7

The correct adder output required for computing a pin’s gradient is

selected through an adder output selector depending on the degree of nets in

the block being processed (Figure 2.8). Each such selector takes 15 of the 34

outputs from an adder tree. Selectors for different indices (pins) may take

different subsets of the 34 outputs. Some of these selectors may be the same

(for example, we can use the same selector for indices 0 and 1). The selector

in Figure 2.8 corresponds to index 3. The possible arrangements of inputs for

this selector are: (i) A 2-pin net spanning indices 2 and 3 (ii) A 3-pin net

spanning indices 3, 4 and 5. (iii) A k-pin net spanning indices 0, 1, ... k-1

24

with 3<k≤16. Going back to Equation 2.8, we see that the selector in Figure

2.8 would select the sum of terms at indices 3, 4 and 5 in the exi terms array,

which is ex6 + ex3 + ex4 . The same applies for the other 3 kinds of terms.

add

exp(xi) xi exp(xi) exp(-xi) xi exp(-xi)

Σ exp(xi) Σ xi exp(xi) Σ exp(-xi) Σ xi exp(-xi)

div

div div

mult

sub

div

div div

mult

sub add

sub

from term
generators

from adder
result

selectors

Figure 2.9: Combiner. Implements Equation 2.4

Finally, we compute the individual pin gradients using combiners (Fig-

ure 2.9). Each combiner takes as input 4 terms and 4 outputs of adder result

selectors (sums of terms). We have arranged the operations to minimize float-

ing point overflow. For example, instead of multiplying two numerically large

expressions together and then dividing by some other expression, we do the

division first. The same applies for small expressions in the denominator.

Since we club all the nets with the same degree together, we do not have

to provide input regarding the degree for each block. We only need to change

it when we start processing a block with a different degree. We can also build

a max-tree structure similar to the adder tree to normalize the coordinates of

pins for each net with respect to the largest coordinate. However, in practice,

we found that it has very little impact on solution quality. We also calculate

the wirelengths for the nets in each block using net wirelength calculators

25

(Figure 2.10) and add them using a simple 34-to-1 adder tree. The total

wirelength is available as soon as computation on all the blocks are done (plus

a few clock cycles to flush the pipeline). This is different from a CPU or GPU

implementation where we need additional passes to sum the wirelength for all

nets. Our implementation does not require any additional runtime.

exp(xi)xi exp(xi) exp(-xi)xi exp(-xi)ΣΣ ΣΣ

div

MUX

0

deg==a-b?

from multi-
output

adder trees

div

sub

Figure 2.10: Net wirelength calculator (Equation 2.2a) for adder tree output
a b. 34 of these are instantiated, each corresponding to an adder tree output.

Note that using∼ 100% of all 16 slots in a block (i.e, no zero-padding) is

possible only for certain net degrees (2-pin, 4-pin, 8-pin and 16-pin), assuming

there is a large number of nets for each such degree. Degrees 9, 10 and 11

lead to <75% efficiency. However, in the benchmark suite that we tested, the

average efficiency was 90.6%.

2.1.2.3 FPGA Acceleration: Method 2

Like method 1, this method also computes pin gradients on FPGA

and computes their sums on CPU to get cell gradients. The basic building

block for this implementation is a pipeline, which reads in pin coordinates

sequentially and also writes pin gradients sequentially at a rate of one pin per

clock cycle. We insert markers in the pin coordinate array to denote the end

of a net (Figure 2.12). A marker can be a special value like -1 which the cell

26

delay

+ delay-1

e()

X

X

+

+

1

reset
to 0

reset
to 0

+
reset
to 0

1

stream out

stream in

queue

queue

delay by 16

delay by 16

divide

divide
-divide

X

Figure 2.11: Part of a pipeline for computing gradient from equation 2.4.
Computation is shown for the first two terms only to reduce clutter. The
circuit for the remaining two terms is similar. We instantiate 16 such pipelines
which operate in parallel.

coordinates will never take. The total number of elements in this array is

number of pins + number of nets. Like method 1, we compute exponents of

the incoming coordinates. Appropriate delay blocks are inserted to match the

delay of the exponentiation block. The sum of the exponents is calculated and

stored in a single-cycle accumulator which resets on encountering a marker.

A schematic for a pipeline is shown in Figure 2.11. We instantiate 16 such

pipelines on the FPGA to increase throughput.

While calculation of exponents and their sums is straightforward, it is

nontrivial to divide each of the individual exponents by the calculated sum

since the number of division operations depends on the number of pins of a

net which can vary. We tackle this problem by using queues. The individual

exponents are stored in a shift register of sufficient length (“Delay by 16” in

Figure 2.11) and the calculated sum is put in a queue with a counter equal to

27

x1 marker x2 x1x5

x1 exp(x1) x2 exp(x2) x1 exp(x1)

S1

3

Net 1
S1 = x1 exp(x1) + x2 exp(x2)

Net 2
S2 = x1 exp(x1) + x5 exp(x5)

+ x6 exp(x6)

x6

garbage

S1

x5 exp(x5) x1 exp(x1) x2 exp(x2) x1 exp(x1)

S2 S1

4 2

x1 exp(x1)

S1

x6 exp(x6) x5 exp(x5) x1 exp(x1) x2 exp(x2)

S2 S1

4 1

x2 exp(x2)

S1

x6 exp(x6) x5 exp(x5) x1 exp(x1)

S2

4

garbage

S2

x6 exp(x6) x6 exp(x6) x5 exp(x5) x1 exp(x1)

S2

3

x1 exp(x1)

S2

x5 exp(x5)

x6 exp(x6)

x6 exp(x6)

x3 exp(x3)

marker

pin
coordinate

array

Figure 2.12: Functioning of a queue for 5 consecutive clock cycles

28

one plus the number of pins for that net. The queue reads the sum and count

values whenever it detects that the next element in the pin coordinate array

is a marker. Once a sum gets to the beginning of the queue, it stays there for

the same number of cycles as the number of pins in the net. This is enforced

by the counter, which decrements every cycle once the sum is at the beginning

of the queue. The sum is popped from the queue when the counter reaches 0

(Figure 2.12). The pipeline needs to be flushed with a dummy 16-pin net at

the beginning in order to initialize the queue(s) to the correct state(s).

Note that we need one marker per net in this implementation, so a

k-pin net will be represented by k+1 entries in the input stream. The overall

efficiency for a k-pin net is k/(k+1). This is inefficient for small nets (ex: 2-pin

net: efficiency 2/3; 3-pin net: efficiency 3/4) but is efficient for larger nets.

The maximum degree of nets this implementation can support depends on the

depth of the queue. Deeper queues require more resources on the FPGA and

also result in low Fmax. We have synthesized logic for up to 16 pin nets only.

Like method 1, this implementation can also calculate wirelength with

no additional runtime penalty. HPWL for each net can be accumulated on

encountering a marker, which denotes the end of the net.

2.1.3 Results

We tested our implementation on the International Symposium on

Physical Design (ISPD) 2016 FPGA placement contest benchmarks [71]. The

benchmark details are given in Table 2.1. We implemented a global placer

29

Table 2.1: Benchmark Statistics and Wirelength

Design #cells
103

#nets
103

Wirelength/103

[21] Ours
FPGA01 105 105 304 267
FPGA02 166 167 655 583
FPGA03 421 428 2654 3338
FPGA04 423 430 4903 5351
FPGA05 425 433 8767 8087
FPGA06 704 713 4351 4926
FPGA07 707 716 8040 7441
FPGA08 717 725 7608 6672
FPGA09 867 876 9542 8816
FPGA10 952 961 4294 4628
FPGA11 845 851 9260 8291
FPGA12 1103 1111 4998 4802

Ratio 1 0.979

similar to the one in [21] (which is an improved version of the placer that won

the contest) except that we use weighted average wirelength model instead of

the quadratic wirelength model. We also implemented a parallelized spreading

algorithm. We use Nesterov’s accelerated gradient descent to optimize the ob-

jective function. We compared the wirelength numbers after global placement

with [21]. Our placement bins are of the same dimensions as [21] and we use

the same algorithm to place the cells within each bin. Table 2.7 shows that

our placer produces 2.1% better wirelength on average after global placement.

RAMs, DSPs and IOs are placed on legal sites in both these cases.

We ran our experiments on a machine with a 14 core, 28 thread Intel R©

Xeon R© processor and an Intel R© Arria10 R© FPGA on the same package. This

setup allows allocation of shared memory and low latency communication be-

30

tween the CPU and the FPGA. All our reported runtimes include the time

for moving data to and from the FPGA. Our FPGA kernels were written in

OpenCL and compiled using Altera Offline Compiler version 16.0, which uses

Quartus for synthesis, placement, routing and timing analysis. The compiler

inserts extra pipeline stages as necessary. We use 32-bit floating point num-

bers for cell coordinates. The compiler for our CPU code uses SSE instructions

wherever they are beneficial. We also disassembled the binary to verify SSE

instruction usage.

Table 2.2: FPGA Resource Usage by Type and Fmax

Kernel(s) Logic Register RAM DSP Fmax
Method1 38% 32% 25% 84% 227 MHz
Method2 60% 57% 55% 68% 205 MHz

The total resource utilization and maximum frequency (Fmax) are

shown in Table 2.2 for the two different kernels. The queues in method 2

are responsible for the high register and RAM usage. We decided not to pur-

sue method 2 due to the lower Fmax. Note that part of the FPGA is reserved

for “blue bitstream”, which is responsible for communicating with the CPU

and maintaining cache coherency.

Table 2.3 shows the runtimes for different parts of the global placement

flow. Our placement algorithm has two major parts - numerical optimization

and spreading. Numerical optimization is done using Nesterov’s accelerated

gradient descent method, which involves computing gradient and taking gradi-

ent steps with Nesterov momentum. Wirelength gradient computation for our

31

T
ab

le
2.

3:
E

ffi
ci

en
cy

an
d

R
u
n
ti

m
es

in
se

co
n
d
s

fo
r

va
ri

ou
s

p
ar

ts
of

G
lo

b
al

P
la

ce
m

en
t

D
es

ig
n

E
ffi

ci
en

cy
W

ir
el

en
g
th

G
ra

d
ie

n
t

G
lo

b
a
l

P
la

ce
m

en
t

K
er

n
el

O
p

ti
m

iz
a
ti

o
n

%
C

P
U

F
P

G
A

S
p

ee
d

u
p

C
P

U
F

P
G

A
S

p
ee

d
u

p
F

P
G

A
F

P
G

A
M

et
h

o
d

1
M

et
h

o
d

2
1
T

4
T

2
8
T

+
C

P
U

1
T

4
T

2
8
T

+
C

P
U

+
C

P
U

F
P

G
A

0
1

9
0
.4

7
7
.6

6
5

2
3
.5

5
.9

2
.7

6
2
.1

4
1
0
2

3
7
.5

1
5
.3

1
2
.3

2
1
.2

4
1
.6

9
3
.1

1
F

P
G

A
0
2

8
8
.6

7
8
.7

1
8
9

6
4
.1

1
3
.7

4
.3

1
3
.1

8
2
2
9

8
0
.8

2
4
.3

1
4
.9

1
1
.6

3
2
.6

3
4
.8

2
F

P
G

A
0
3

8
9
.6

7
8
.4

6
3
0

2
2
5
.7

4
1
.6

1
3
.4

5
3
.0

9
6
8
1

2
5
4
.6

5
6
.6

2
8
.3

6
2
.0

0
6
.1

3
1
5
.0

9
F

P
G

A
0
4

8
9
.4

7
8
.9

6
9
2

1
8
3
.8

4
4
.0

1
4
.2

9
3
.0

8
7
4
5

2
0
5
.5

5
9
.1

2
9
.8

4
1
.9

8
6
.3

5
1
5
.9

2
F

P
G

A
0
5

9
0
.0

7
8
.9

7
0
4

1
8
8
.6

4
5
.5

1
4
.5

3
3
.1

3
7
5
8

2
1
0
.6

6
0
.7

3
0
.1

2
2
.0

2
6
.3

9
1
6
.3

8
F

P
G

A
0
6

9
1
.4

7
7
.9

1
0
2
8

3
2
8
.2

7
1
.5

2
3
.4

9
3
.0

5
1
0
9
2

3
5
7
.3

9
0
.0

4
3
.0

6
2
.0

9
9
.5

2
2
7
.4

5
F

P
G

A
0
7

9
1
.7

7
7
.9

1
0
7
3

3
2
9
.5

7
2
.6

2
3
.3

2
3
.1

1
1
1
3
7

3
5
9
.2

9
1
.2

4
2
.1

0
2
.1

7
9
.5

3
2
6
.3

8
F

P
G

A
0
8

8
8
.9

7
9
.1

1
1
4
1

3
3
9
.4

8
0
.0

2
6
.0

5
3
.0

7
1
2
0
4

3
6
7
.5

9
7
.8

4
4
.6

6
2
.1

9
1
0
.5

1
3
0
.1

1
F

P
G

A
0
9

9
0
.0

7
8
.8

1
4
1
9

4
2
9
.3

9
8
.2

3
1
.2

6
3
.1

4
1
4
8
9

4
6
0
.6

1
1
9
.2

5
2
.5

8
2
.2

7
1
2
.4

2
3
5
.3

3
F

P
G

A
1
0

9
4
.4

7
6
.0

1
2
5
4

3
7
8
.4

8
9
.3

2
7
.4

5
3
.2

5
1
3
2
4

4
1
1
.9

1
1
0
.3

4
9
.2

6
2
.2

4
1
1
.2

2
3
2
.0

5
F

P
G

A
1
1

9
0
.4

7
8
.6

1
3
6
4

4
0
3
.7

9
3
.3

2
9
.9

6
3
.1

2
1
4
3
3

4
3
5
.2

1
1
3
.9

5
0
.9

6
2
.2

3
1
1
.8

9
3
4
.0

0
F

P
G

A
1
2

9
2
.6

7
7
.2

1
3
8
0

4
5
7
.6

1
1
4
.4

3
5
.7

7
3
.2

0
1
4
5
6

4
9
1
.6

1
3
5
.4

5
8
.3

7
2
.3

2
1
3
.9

2
4
1
.4

4

G
eo

m
ea

n
9
0
.6

7
8
.2

7
0
8

2
2
0
.2

5
0
.3

1
6
.6

0
3
.0
3

7
8
6

2
5
1
.5

6
9
.3

3
4
.5

8
2
.0
0

7
.3

4
1
8
.8

8

32

CPU+FPGA implementation has two parts - computing pin gradients using

the FPGA kernel and computing sums of pin gradients on the CPU to get cell

gradients. The anchor gradient computation is fused with the Nesterov step.

Our CPU+FPGA implementation uses all 28 threads on the CPU. We get an

average speedup of 3.03x using CPU 28 threads + FPGA vs CPU 28 threads

for wirelength gradient computation. The speedup for the overall global place-

ment flow is 2x. Note that in the CPU+FPGA implementations discussed so

far, only one device was being used at a time (either the CPU or the FPGA). If

we use both at the same time, for example, by calculating some pin gradients

on the CPU and some on the FPGA, we can achieve even more speedup.

Figure 2.13 shows the average runtime breakdown for global placement.

Numerical optimization comprises the dark blue, light blue and green parts.

The dark and light blue parts together represent the time spent on computing

wirelength gradient (48%). Adding the green part gives the time for numer-

ical optimization (54.6%). “Others” includes time spent on updating anchor

weights, legalizing RAMs, DSPs and IOs, initializing data structures, etc.

Others
13.7%

Spreading
31.7%

Nesterov step
6.6%

Kernel
21.2%

Gradient sum
26.8%

Figure 2.13: Runtime breakdown for FPGA Accelerated Global Placement

Table 2.3 also shows the time spent on the FPGA kernels. We used

33

method 1 since it is faster in theory by a large margin. Both method 1 and

method 2 access memory in a streaming fashion and are guaranteed to be stall

free. Both of them read 64 bytes from memory and write 64 bytes to memory

every clock cycle, which is the optimal arrangement for our Xeon+Arria10

system. With all these parameters same between the two methods, the kernel

execution time is determined only by Fmax and the amount of data read from

/ written to memory. Table 2.3 shows the memory efficiency numbers for the

two methods, which is defined as useful data
total data transferred

. On an average, the kernel

for method 2 would be 227×0.906
205×0.782

= 1.28x slower than the kernel for method 1.

Our CPU implementation is much faster than that in [11] for bench-

marks of similar sizes. Note that [11] uses the LSE model, whose gradient

is easier to compute than weighted average (Equations 2.5 vs 2.4). We have

cross-checked the runtimes with [19], which uses the weighted average model.

Following the runtime analysis in [19], one can deduce the runtime for one it-

eration of gradient computation for a benchmark with 1M cells on one thread

to be ∼ 0.48s. Our placer computes gradient 4800 times in total, so the time

for each gradient computation can be obtained from Table 2.3 by dividing by

this number. The single-threaded runtime claimed in [11] is 1.619s for bench-

mark mgc superblue 11a with 925k cells and 935k nets. Our CPU+FPGA

runtimes (using one device at a time) for gradient computation are compa-

rable to the GPU runtimes in [11] for benchmarks of similar sizes. For ex-

ample, mgc superblue11 a with 925k cells and 935k nets in [11] takes 5.67ms

while FPGA10 with 952k cells and 961k nets for us takes 5.7ms. Hence, even

34

though [11] claims 93x speedup for gradient computation and we show 3.03x,

the absolute runtime numbers are very close, that too with a more complicated

gradient expression.

2.2 Spreading Cells in Global Placement using Linear
Programming

Spreading or rough legalization is an important part of upper-and-

lower-bound placement and greatly impacts the quality of the final solution.

The most common method of spreading is bipartitioning, which has been suc-

cessfully used in [20] and [21]. [20] produces results which are close in quality

to [19] and [18], thus validating the effectiveness of the technique. Another

method of spreading and/or legalization involves a flow formulation where cells

‘flow’ from overutilized to underutilized bins [17,22–26]. The most commonly

employed cost for such formulations is manhattan displacement [17,24–26]. [23]

uses an approximation of total squared movement. Modeling squared move-

ment accurately requires an edge from each overutilized bin to each underuti-

lized bin (similar to bipartite matching), which significantly increases runtime

if the number of bins is large. A method of clustering cells and solving a

bipartite matching problem for assigning clusters to regions is used in [22]

with the cost for moving a cluster being the change in HPWL(Half-Perimeter

WireLength). This has the same scalability problem with the added runtime

penalty of computing HPWL change for the assignment of each cluster to each

region. Pruning possible cluster to region assignments might reduce the run-

35

time, but limits the solution space exploration and may even fail to find a legal

solution. Our work [1], on the other hand, uses a cost that is different from

total or maximum displacement but can be computed as fast as these two. A

key feature of our new cost is that it produces better placement shapes while

maintaining relative order between cells, thereby producing better results.

In flow-based formulations, a key aspect is to realize the flow of cells

across bins. Some variation of successive augmenting paths is used in [23], [24]

and [25] to realize the flow. This involves moving cells from one bin to the next

along a path, which requires the cells to be sorted with respect to distance

from the destination bin. [24] maintains this order using a balanced binary

tree, which has O(logN) insertion and deletion time, where N is the number

of cells. Although this may seem fast, it becomes slow when the number of

bins is large. Our work, on the other hand, decouples the flow computation

from the flow realization. We use a well-known and highly optimized solver

for computing the flows. We propose a new flow realization algorithm to move

cells according to the flows.

One important question that previous works overlook is what should be

the best shape to spread the placement for minimizing wirelength. Changing

the spreading function while keeping the same wirelength function can pro-

duce placements with different wirelengths. In this section, we address this

question and also propose a linear-programming-based spreading algorithm

with parameters to control the resultant placement shape while maintaining

relative order among cells to a great extent. Our main contributions can be

36

summarized as follows:

• We show that different cost functions in spreading produce different

placement shapes. We analytically express the wirelengths of various

shapes with some simplifying assumptions and empirically find a shape

which is close to optimum.

• We propose a linear-programming-based spreading algorithm which can

control the shape for spreading cells in overlap hotspots through some

parameters.

• We propose a flow realization algorithm which can work on any generic

flow that does not have cycles. Moreover, if the flow obeys certain condi-

tions (as in our linear programming formulation), our algorithm preserves

the relative order between cells to a great extent.

2.2.1 Placement Shapes

We develop an analytical expression for the total wirelength of a place-

ment in terms of the function expressing its boundary or external shape. We

make the following assumptions:

• The wires are routed horizontally or vertically or as a combination of the

two

• We have a large number of cells and that the maximum allowed density

is C cells per unit area of the chip

37

• Every cell has the same area and is connected to every other cell by a

net and that all nets have exactly 2 pins

Finding the best placement shape even under these restrictive assumptions is a

nontrivial problem. Intuitively, one would think that the placement should be

in one connected shape and not broken into pieces since there would be many

nets crossing the separation but we don’t need that assumption for calculating

wirelength.

Figure 2.14: Wirelength calculation for an arbitrary shape

We can impose an x-y coordinate system on the placement shape and

express the boundary of the shape as a collection of functions of x. For ex-

ample, in Figure 2.14, the lower boundary is fl(x) and the upper boundary is

fu(x). For non-convex shapes, we might need multiple functions as the inter-

section of the shape with a vertical line can be a collection of disjoint segments.

Consider a narrow strip of width dx as shown in Figure 2.14. Let the area of

the shape to the left of this strip be A1(x) and the area to the right be A2(x).

The number of cells to the left and right are CA1(x) and CA2(x) respectively.

The total number of nets crossing the strip in the x direction is C2A1(x)A2(x).

38

The contribution of all these nets to the x wirelength is C2A1(x)A2(x)dx. The

contribution of cells within the strip are very small and that ratio approaches

0 in the limit dx→ 0. The total x-wirelength can be expressed as:

WLx =

∫
C2A1(x)A2(x)dx

. A similar expression can be derived for the wirelength in the y-direction.

The total wirelength can be expressed as the sum of x and y wirelengths.

Figure 2.15: Wirelength calculation for rectangle, diamond and circle

We calculate wirelengths for some common placement shapes. We can

choose appropriate units for distance such that C = 1. We start with a

rectangle. We position the origin at the centre of the rectangle. A1(x) =

b(a
2

+ x) and A2(x) = b(a
2
− x). Figure 2.15 shows the dimensions. The

x-wirelength can be obtained as follows:

WLx =

∫ +a
2

−a
2

b
(a

2
+ x
)
b
(a

2
− x
)
dx =

a3b2

6

Similarly, the wirelength in y direction is a2b3

6
. Hence, the total wirelength

is a2b2 (a+b)
6

. If we minimize this function with respect to a keeping the total

39

area constant (thus b becomes a dependent parameter), we get a = b, in other

words, the shape is a square. The total wirelength then becomes a5

3
= A2.5

3

where A is the area of the square.

For a diamond, A2(x) = area of the triangle to the right of the dx strip

= 1
2
× base× height = 1

2
× 2b

a
(a

2
− x)× (a

2
− x) = b

a
(a

2
− x)2 for x ≥ 0. A1(x) =

area of the diamond−A2(x) = ab
2
− b

a
(a

2
−x)2. The wirelength can be obtained

as follows:

WLx = 2

∫ a
2

0

(
ab

2
− b

a

(a
2
− x
)2
)
b

a

(a
2
− x
)2

dx =
7a3b2

240

Similarly, the y-wirelength is 7a2b3

240
and the total wirelength is 7a2b2(a+b)

240
. Min-

imizing this while keeping the area constant leads to a = b and a total wire-

length of 7a5

120
= 7A2.5

15
√

2
where A = ab

2
is the area.

For a circle, we use polar coordinates. Setting x = rcosθ gives dx =

−rsinθdθ. The wirelength equation can be re-written as:

WLx = −r
∫ 0

π

A1(θ)A2(θ)sinθdθ

A2(θ) = area of a segment = area of a sector − area of an isosceles triangle

= θr2 − 1
2
× 2rsinθrcosθ = r2(θ − sin2θ

2
). A1(θ) = area of the circle−A2(θ) =

r2(π − (θ − sin2θ
2

)). The x-wirelength is:

r5

∫ π

0

(
π −

(
θ − sin2θ

2

))(
θ − sin2θ

2

)
sinθdθ =

128

45
r5

The y-wirelength is same as this. The total wirelength evaluates to 256
45π2.5A

2.5 =

0.325201A2.5 where A = πr2.

40

We see that for the same area, circle is better than diamond which is

better than square.

Lemma 1 Wirelength is proportional to A2.5 if every cell is connected to every

other cell.

Proof: Scaling by a factor s in both x and y dimensions scales A1(x) and

A2(x) by s2 and the width of the strip (in Figure 2.14) scales by s so the

wirelength in the strip scales by s2s2s = s5. Area scales as s2, so wirelength

scales as A2.5. Q.E.D.

We define normalized wirelength NWL as WLx+WLy
A2.5 .

Figure 2.16: |x|1.8 + |y|1.8 = 1

The three shapes we considered occur in commonly used spreading

functions. Minimizing manhattan displacement produces diamond shape, min-

imizing maximum x or y displacement produces a square and a bell-shaped

potential function produces a circle.

Next, we consider the family of curves:

|x|n + |y|n = 1

where n is a positive real number. Note that diamond and circle are members

of this family with n=1 and n=2 respectively. The shape approaches a square

41

as n→∞. Closed form expressions for the area of this shape are not known, let

alone the complicated wirelength function. So, we computed A1(x), A2(x) and∫
A1(x)A2(x)dx numerically. We swept n from 1 to 100. The results are shown

in Table 2.4. Note that the values for circle, diamond and square(approximate,

n=100) are very close to the ones obtained analytically. The best shape in this

family appears to be somewhere between a circle and a diamond(Figure 2.16),

with the value of n ∼1.84

Figure 2.17: Force at the boundary and its angle with the normal

Although we are not able to find the best shape, we derive some con-

ditions which that shape should satisfy. To do this, we assume that our

placement shape is a mass of fluid in 2 dimensions. It will be in equilib-

rium only if forces balance out at each point on the mass. The total wire-

length can be thought of as the energy of the configuration of this mass. Since

work done (or energy change) is
∫
force.dx, we can differentiate the energy

to obtain force on a small element dA (Figure 2.17). This evaluates to a

constant amount of force per net. So, the total force in the x direction is

#nets pulling right −#nets pulling left. The total force in the y direction

42

is #nets pulling up − #nets pulling down. For the shape to be in equilib-

rium, the resultant force at any point on the boundary should be perpendicular

to the tangent of the boundary at that point. Otherwise there is a compo-

nent of force along the tangent which would make dA move in its direction.

The component of force perpendicular to the tangent would be balanced by

the pressure inside the mass of fluid. One can verify that circle, diamond or

square (Figure 2.18) are not equilibrium shapes.

Figure 2.18: Deviation of resultant force from the normal

We numerically compute the maximum angle φ between the normal at

the boundary and the resultant force direction. This is shown in Table 2.4.

We see that n=1.84 gives a small deviation, hinting that this shape is “close

enough” to optimal.

2.2.2 Min-Cost Flow based spreading

We present some min-cost flow based spreading techniques in this sec-

tion. We formulate the min-cost flow problem as a linear program. Let’s

suppose there are N cells to be placed on a chip, which has been divided into

B bins. Different cells may have different areas. The maximum permissible

total area of cells in bin bi is Si. The initial locations of the cells are such that

each bin bi has a resultant area demand Di. Cells ‘flow’ from overutilized to

43

Table 2.4: Normalized wirelength and angle of resultant force

n NWL max |φ| n NWL max |φ|
1.0 0.32998 45.00◦ 2.1 0.32529 5.089◦

1.1 0.32833 32.11◦ 2.2 0.32540 6.566◦

1.2 0.32718 24.08◦ 2.3 0.32554 7.924◦

1.3 0.32639 18.08◦ 2.4 0.32568 9.174◦

1.4 0.32585 13.35◦ 2.5 0.32584 10.32◦

1.5 0.32549 9.500◦ 3.0 0.32665 14.97◦

1.6 0.32528 6.302◦ 4.0 0.32812 20.96◦

1.7 0.32516 3.640◦ 5.0 0.32923 24.73◦

1.8 0.32512 1.523◦ 10 0.33172 33.12◦

1.84 0.32512 0.875◦ 20 0.33281 38.14◦

1.9 0.32514 1.826◦ 50 0.33323 41.75◦

2.0 0.32520 3.493◦ 100 0.33330 43.18◦

underutilized bins through ‘edges’ among bins. More formally, the edge set

E is a collection of unordered pairs of the form {bi, bj}. This set E will be

different for the different formulations we present below:

2.2.2.1 Formulation 1: Diagonal Flows

In this formulation, we only allow edges between adjacent and diag-

onally adjacent bins (Figure 2.19a). The cost of sending a unit of flow in a

manhattan direction is 1 and that for a diagonal flow is α. We impose certain

restrictions on α:

• α < 2 otherwise there is no benefit of using a diagonal edge as it would

be cheaper to send flow using two manhattan edges.

• α > 1 as the diagonal bins are farther than the bin to the left or right

44

or up or down.

So, 1 < α < 2. Let fij be the flow from bi to bj. fji = −fij. Let cost(bi, bj)

be the cost of sending a unit of flow from bi to bj, which is 1 if bi and bj are

adjacent and α if they are diagonally adjacent. Let E be the set of edges

between adjacent and diagonally adjacent bins. The edges can be oriented

arbitrarily. The formulation can be expressed as a linear program:

min
∑

{i,j}|{bi,bj}∈E

cost(bi, bj)f̂ij

f̂ij ≥ fij and f̂ij ≥ −fij ∀{i, j} ∑
j | {bj ,bi}∈E

fji

+Di ≤ Si ∀i

f̂ij = |fij| is realized by the two inequalities f̂ij ≥ fij and f̂ij ≥ −fij. Note

that we do not need to constrain the total outflow of bi to be less than its

current demand Di as the LP objective ensures that this will never happen.

This formulation has O(B) variables.

Lemma 2 If all cells are initially placed in one bin, the placement after spread-

ing will resemble an octagon (Figure 2.20a).

Proof: We can analyze this by extension from the discrete to the continuous

case. Suppose we have to send a unit of flow from the origin to a point (x, y).

The flow can be any combination of line segments, each parallel to one the

lines x = 0, y = 0, y = x and y = −x. The cost per unit of flow per

45

unit distance(euclidean) is 1 for manhattan directions and α√
2

for diagonal

directions. Consider side 1 of the octagon in Figure 2.20a, in which y > x,

x ≥ 0 and y ≥ 0. The minimum cost flow path from origin to (x, y) can consist

of some diagonal segments whose total length sums to x
√

2 and some vertical

segments whose total length sums to y − x. Two such representative paths

are shown in grey lines. The cost for sending a unit of flow through any of

these paths is αx + (y − x) = y + (α − 1)x. Thus, we obtain a portion of a

contour line: y+ (α− 1)x = c, where c is a constant. For side 2, the minimum

cost flow path consists of diagonal and horizontal segments. The equation is:

x+(α−1)y = c. Similar analysis can be applied to the other six sides. Q.E.D.

Figure 2.19: Diagonal and Knight edges. Knight edges shown for only one bin
to reduce clutter.

We can change α to tune the angles of the octagon. When α → 1,

this shape resembles a square. When α → 2, it resembles a diamond. Going

back to our analysis of shapes, we set c = 1 and calculate the area: A = 4
α

.

The octagon intersects the line y=x at (1
α
, 1
α

) in the first quadrant. A1(x) and

46

A2(x) can be defined piecewise from 0 to 1
α

and 1
α

to 1. The wirelength can

be expressed by:

WL = 4

∫ 1
α

0

(
2

α
+ 2x− (α− 1)x2

)(
2

α
− 2x+ (α− 1)x2

)
dx

+4

∫ 1

1
α

(
3α + 1

α2
+

1

α− 1

(
2x− x2 +

1− 2α

α2

))
(
α− 1

α2
− 1

α− 1

(
2x− x2 +

1− 2α

α2

))
dx

=
68α2 + 84α + 8

15α4

NWL
(
= WL

A2.5

)
for this shape is 17

√
α

120
+ 21

120
√
α

+ 1
60α
√
α

, whose minimum value

is

√
5481+283

√
849

3
= 0.32545 which occurs at α = 21+

√
849

34
= 1.474635. This

minimum value is less than the normalized wirelengths for square and diamond.

Figure 2.20: Contours for diagonal and knight flows

47

2.2.2.2 Formulation 2: Knight’s moves on a chessboard

In order to further improve our approximation of the shape, we intro-

duce edges between bins that are situated a knight’s move away from each

other (Figure 2.19b). More formally, there is a ‘knight’ edge between bins lo-

cated at (x1, y1) and (x2, y2) iff (|x1−x2| = 1 and |y1−y2| = 2) or (|x1−x2| = 2

and |y1 − y2| = 1). We set the cost per unit of flow on these edges to β. Like

α, there should also be constraints on β for the formulation to be reasonable

(examples given w.r.t Figure 2.19b):

• β > 2 as a knight flow should be more expensive than going two bins

up/down/left/right. ((3,3)→(4,5) vs (3,3)→(3,4)→(3,5))

• β < 1 + α as a knight flow should be cheaper than a diagonal + a

horizontal/vertical flow. ((3,3)→(4,5) vs (3,3)→(4,4)→(4,5))

• 2β > 3α as two knight flows should be more expensive than three diag-

onal flows. ((3,3)→(4,5)→(6,6) vs (3,3)→(4,4)→(5,5)→(6,6))

• 1 + β > 2α as two diagonal flows should be cheaper than one knight +

one horizontal/vertical flow. ((3,3)→(4,5)→(5,5) vs (3,3)→(4,4)→(5,5))

Note that 2α − 1 < 3α
2

for α < 2, so the constraint 1 + β > 2α is redundant.

Hence, we end up with the following constraints on β: max(2, 3α
2

) < β < 1+α.

Lemma 3 If all cells are initially placed in one bin, this formulation will

produce a hexadecagonal shape (Figure 2.20b).

48

Proof: We can analyze the contours in the same manner as before. For side

1 in Figure 2.20b, x > 0, y > 0 and y ≥ 2x. A representative least cost

path from origin to (x, y) consists of a knight segment and a vertical segment

(shown in grey). The cost is y + (β − 2)x. For side 2, x > 0, y > 0 and

x ≤ y < 2x. A representative least cost path consists of a knight segment and

a diagonal segment. The cost is (β − α)y + (2α − β)x. Hence, the contour

has parts of the lines y + (β − 2)x = c and (β − α)y + (2α− β)x = c where c

is a constant. The equations for sides 3 and 4 are (β − α)x + (2α − β)y = c

and x + (β − 2)y = c respectively. The other twelve sides can be analyzed in

a similar manner. Q.E.D

The area of the shape is 4(1+α)
αβ

. The normalized wirelength is: WL
A2.5 =

1
(1+α)2.5

(β
√
β

60α
√
α

+ 23
√
β

120
√
α

+ 41
√
α

120
√
β

+
√
αβ
6

+ α
√
α

20β
√
β

+ 7α
√
α

12
√
β

+ α
√
αβ

6
+ 1

20β
√
β

+ 7α2√α
24
√
β

+

17α2
√
αβ

120
)

whose minimum value is 0.325161 which occurs at α = 1.4933, β =

2.3092. This is less than circle, diamond and square and is close to the best

wirelength in Table 2.4.

This formulation also has O(B) variables.

Definition: A flow path of length n is a sequence of n edges {ei}

from bsi to bti , each with some positive flow (the flow values need not be the

same) such that bti = bsi+1
except for i = n.

Definition: A flow path is said to be monotonic if the sequence of

the coordinates {(xi, yi)} of its constituent bins b0 . . . bi . . . bn is monotonic,

49

Figure 2.21: Replacing a flow path by a collection of cheaper flow paths

that is, {xi} is nonincreasing or nondecreasing and {yi} is also nonincreasing

or nondecreasing.

Lemma 4 All flow paths in the solutions of formulations 1 and 2 are mono-

tonic.

Proof: Assume the contrary, that is, there exists a flow path which is non

monotonic. Without loss of generality, we can assume that the sequence {xi}

of x-coordinates is non monotonic (the y-coordinates can be monotonic or non-

monotonic). There must exist a contiguous subsequence of {xi} of length l:

xa, xa+1, xa+2, . . . , xa+l−2, xa+l−1 such that either xa < xa+1 = xa+2 = · · · =

xa+l−2 > xa+l−1 or xa > xa+1 = xa+2 = · · · = xa+l−2 < xa+l−1 with l ≥ 3.

Let the minimum flow among the edges in the sub-path {(xa, ya) to

(xa+l−1, ya+l−1)} be f . We can decompose the sub-path into one path p with

flow f on its edges and another set of paths with flows fi − f where fi is the

original flow on edge ei (Figure 2.21). We can replace p with another path p′

50

Figure 2.22: Possible non-monotonic combinations (black) and their replace-
ment with monotonic ones (grey)

which has a strictly lower cost than p without changing the resultant demand

of any bin, which would contradict the optimality of the LP. We can first

rearrange p by moving the vertical segments in the middle to the end with-

out changing its cost: (xa, ya), (xa+1, ya+1), (xa+l−1, ya+1 + ya+l−1 − ya+l−2),

(xa+l−1, ya+2 + ya+l−1− ya+l−2), . . . , (xa+l−1, ya+l−1). Next, we can replace the

edges {(xa, ya), (xa+1, ya+1)} and {(xa+1, ya+1), (xa+l−1, ya+1 +ya+l−1−ya+l−2)}

with cheaper ones to get p′. Figure 2.22 shows the degenerate cases for pos-

sible combinations of the edges. All other combinations can be obtained by

reflections of these edges about the lines x = 0, y = 0, y = x and y = −x

and/or reversing the direction of flow. One can verify that the cost of the

replacement edges is strictly lower than the original edges in each case due to

the geometry of the edges and the constraints on α and β. Q.E.D.

Corollary: Flow paths do not form cycles.

51

2.2.3 Flow Realization

Although we add diagonal and knight edges, we do not move cells di-

rectly along those edges. Those are conceptual edges introduced for obtaining

a good shape. The flow along each diagonal edge is decomposed into two man-

hattan paths, each with half the flow. Each knight edge can be decomposed

into 7 manhattan edges. The amount of flow to send on each edge is calculated

through analogy to a resistor network (Figure 2.23). We round the resulting

flows as close as possible to a multiple of the most common cell area keeping

the total flow same. Once we have replaced all flows by manhattan flows, we

apply our flow realization algorithm described below to spread the cells.

Figure 2.23: Converting non-manhattan flows into manhattan flows

We divide each bin into a grid of buckets (64x64=4096 in our case). We

move buckets instead of cells. In other works, the cells in each bucket move

together. We realize the flow in a manner similar to breadth first search. We

can think of the bins and edges as a graph, with the bins being nodes and the

edges being edges in the graph. Since there are no cycles in the graph , we can

do a topological sort on the graph and assign levels to the nodes. We start

from the nodes(bins) with the lowest level and push out the required number

of buckets along the edges with nonzero flow. We then proceed to the next

52

level. This process continues until all levels have been processed (Figure 2.24).

Figure 2.24: Flow realization: each shade of grey denotes a level obtained from
topological sort.

Buckets with no cells are discarded. We maintain a pointer to the

corresponding bin for each remaining bucket. A bucket can belong to exactly

one bin at any point of time during the execution of our algorithm. Each bin

maintains a vector of vectors of buckets indexed by x-coordinates of the buckets

and a similar vector of vectors indexed by y-coordinates. Each bin also stores

the maximum and minimum x and y coordinates for all the buckets assigned

to it. For a bin, we calculate a score for pushing buckets out along each of its

edges with nonzero flow. The score is defined as distance to boundary
flow on that edge

. We then

find the edge with the lowest score (Figure 2.25) and the corresponding vector

of buckets which is closest to that boundary. We then push buckets out one

by one from the vector to the adjacent bin. We stop if the total area of cells

pushed out is about to exceed the flow on that edge. We update the score once

we have finished processing a vector. We then select the vector corresponding

53

to the lowest score and repeat the process until no more buckets can be pushed

out (either all flows have been realized or pushing a bucket out from the current

vector would cause excess flow).

Figure 2.25: Moving buckets across bins

Note that if a bin has nonzero flow along some edge, then all the buckets

assigned to that bin are on the bin’s side of the corresponding bin boundary.

For example, if there is a flow towards the left, then all the buckets assigned

to that bin are to the right of the left edge of the bin. This is because all flow

paths are monotonic. A bucket could not have come from a bin to the left of

the boundary.

It may not be possible to realize the exact amount of flow in theory as

the areas of buckets may not sum up to the exact value. Bipartitioning also

suffers from the same drawback. However, in practice, we have seen that this

algorithm is able to realize close to exact flows in most of the cases and exceeds

bin capacity by 1 or 2 cells in some cases. These are handled by a chain move

algorithm. Scaling the bin supply down by ∼1% can also mitigate this issue.

Each bin maintains a list of incoming buckets from adjacent bins. After

54

we are done pushing flows of bins in a level, we update the following variables

for the bins in the next level to which flows have been pushed out: min and max

x and y coordinates of buckets, the vector of vectors for x and y directions.

When we are done processing all the levels, we collect cells for each bin by

iterating through the buckets assigned to them. The cells are then sorted

by their original (solution of wirelength/timing/congestion optimizer) x and y

coordinates and distributed evenly inside the bin along each coordinate. This

procedure is same as the one used in [20] and [21].

Figure 2.26: Possible locations of cell1 w.r.t cell2 for preserving relative order.

Let the initial coordinate of a cell c before spreading be (xc, yc) and

that after spreading be (x′c, y
′
c).

Definition: Relative order between two cells c1 and c2 is said to be

preserved if one of the conditions hold:

i) xc1 = xc2 and (y′c1 − y
′
c2

)(yc1 − yc2) ≥ 0

ii) yc1 = yc2 and (x′c1 − x
′
c2

)(xc1 − xc2) ≥ 0

iii) xc1 6= xc2 and yc1 6= yc2 and at most one of (y′c1 − y
′
c2

)(yc1 − yc2) and

55

(x′c1 − x
′
c2

)(xc1 − xc2) is ≤ 0. Figure 2.26 shows some examples.

Lemma 5 The following hold for two cells c1 and c2 if chain move is not

applied:

i) If c1 and c2 are in the same bin after spreading, then relative order

between c1 and c2 is preserved.

ii) If c1 and c2 are initially in the same bin before spreading and xc1 6=

xc2 and yc1 6= yc2 and c1 remains in that bin after spreading, then relative order

between c1 and c2 is preserved.

Proof: i) Easy to see since final location assignments within a bin are done

by sorting with respect to initial x and y coordinates.

ii) If xc1 < xc2 and yc1 < yc2 , c2 can only move up or to the right. If it

moves right, it cannot move left later as flow paths are monotonic. Similarly,

if it moves up, it cannot move down later. So, c2 cannot end up to the left and

below c1 at the same time. The other three cases with combinations of xc1 >

or < xc2 and yc1 > or < yc2 can be handled in a similar fashion. Q.E.D

2.2.4 Results for the new Spreading Algorithm

We tested our algorithms on the ISPD 2016 FPGA placement con-

test [71] benchmarks. We integrated our spreading algorithm into [21]. The

baseline bi-partitioning based spreading algorithm in [21] is similar to the

one in [20]. Table 2.5 shows the wirelengths after LUT-and-FF-level global

56

T
ab

le
2.

5:
W

ir
el

en
gt

h
af

te
r

fl
at

gl
ob

al
p
la

ce
m

en
t

in
m

u
lt

ip
le

s
of

10
3

D
es

ig
n

#
c
e
ll
s

1
0
3

#
n
e
ts

1
0
3

[2
1
]

D
ia

g
o
n

a
l

(α
)

K
n

ig
h
t

(α
,β

)
α

=
↓

α
=

1
.2

5
;
β

=
↓

α
=

1
.3

5
;
β

=
↓

1
.2

5
1
.3

0
1
.3

5
2
.2

2
2
.2

0
2
.1

8
2
.3

0
2
.2

0
2
.1

0
F

P
G

A
0
1

1
0
5

1
0
5

3
0
4

2
5
7

2
5
7

2
5
7

2
5
8

2
5
6

2
5
7

2
5
6

2
5
6

2
5
8

F
P

G
A

0
2

1
6
6

1
6
7

6
5
5

5
5
5

5
5
5

5
5
7

5
5
2

5
5
2

5
5
4

5
5
7

5
5
5

5
5
7

F
P

G
A

0
3

4
2
1

4
2
8

2
6
5
4

2
6
7
7

2
6
5
7

2
6
7
1

2
6
5
5

2
6
6
5

2
6
4
9

2
6
6
6

2
6
5
7

2
6
6
1

F
P

G
A

0
4

4
2
3

4
3
0

4
9
0
3

4
6
8
1

4
6
6
9

4
7
0
2

4
6
5
9

4
6
6
1

4
6
7
1

4
6
5
2

4
6
3
3

4
6
4
0

F
P

G
A

0
5

4
2
5

4
3
3

8
7
6
7

8
8
5
0

8
8
0
5

8
8
4
9

8
6
9
0

8
7
0
2

8
6
9
8

8
6
7
4

8
6
6
2

8
7
0
1

F
P

G
A

0
6

7
0
4

7
1
3

4
3
5
1

3
9
4
9

3
9
3
3

3
9
5
3

3
9
5
1

3
9
4
5

3
9
7
1

3
9
4
1

3
9
6
1

3
9
7
1

F
P

G
A

0
7

7
0
7

7
1
6

8
0
4
0

7
5
1
1

7
4
6
3

7
4
7
7

7
5
0
8

7
5
3
7

7
5
0
7

7
5
1
5

7
5
3
1

7
5
1
7

F
P

G
A

0
8

7
1
7

7
2
5

7
6
0
8

7
0
1
1

6
9
9
9

7
0
2
4

7
0
1
1

7
0
0
2

6
9
8
7

6
9
8
8

6
9
8
4

6
9
8
1

F
P

G
A

0
9

8
6
7

8
7
6

9
5
4
2

9
3
1
8

9
3
2
9

9
2
9
2

9
2
2
5

9
2
3
1

9
2
2
9

9
2
1
4

9
2
0
1

9
2
2
1

F
P

G
A

1
0

9
5
2

9
6
1

4
2
9
4

4
0
0
4

4
0
2
0

3
9
8
4

4
0
6
5

4
0
4
9

4
0
6
6

4
0
4
2

4
0
3
7

4
0
3
2

F
P

G
A

1
1

8
4
5

8
5
1

9
2
6
0

9
1
9
8

9
2
3
3

9
2
6
5

9
1
6
4

9
1
2
9

9
1
4
4

9
1
2
3

9
1
3
5

9
0
9
2

F
P

G
A

1
2

1
1
0
3

1
1
1
1

4
9
9
8

4
7
2
7

4
7
3
4

4
7
4
1

4
8
1
4

4
7
8
5

4
7
8
5

4
7
7
5

4
7
8
0

4
7
5
6

R
a
ti

o
1

0
.9

3
8
2

0
.9
3
6
7

0
.9

3
8
5

0
.9

3
7
0

0
.9

3
6
0

0
.9

3
6
7

0
.9

3
5
4

0
.9
3
4
9

0
.9

3
5
7

57

Table 2.6: Placement wirelength, congestion and runtime

Design
[21] Ours

WL/103 Time (s) WL/103 Time(s)
FPGA01 294 193 284 201
FPGA02 569 333 549 350
FPGA03 2700 944 2608 796
FPGA04 4784 924 4716 894
FPGA05 8761 1016 8633 1087
FPGA06 4858 2115 4784 1713
FPGA07 8227 2102 8232 1704
FPGA08 7088 2049 7047 1727
FPGA09 10074 2941 9811 2549
FPGA10 6805 3889 6617 3038
FPGA11 8688 2390 8696 2080
FPGA12 5686 3165 5627 2834

Ratio 0.9821 0.8990
Congestion

Peak #sites Peak #sites
FPGA05 0.8426 5730 0.8316 5288
FPGA07 0.7539 5 0.6910 0
FPGA11 0.7938 497 0.7773 221

Ratio 1 0.96

58

placement for some settings of α and β. All of these settings produce bet-

ter wirelength than [21] on average. For the best setting in the table, we get

6.51% less HPWL.

Table 2.6 shows wirelength and routing congestion (peak and number

of congested sites obtained from smoothed results from a global router) after

detailed placement for α=1.35 and β=2.20. We see that some of the wire im-

provement after global placement carries through later stages (packing, post-

packing global placement, legalization and detailed placement) to give a final

placement wire improvement of 1.79%. The peak routing resource utilization

after detailed placement improves for all the three highly congested designs in

the suite, with an average improvement of 4%. As shown in Table 2.6, our new

spreading algorithm improves the total placement runtime by 10.1% over [21].

2.3 FPGA Acceleration of Spreading

We proposed a spreading algorithm in the previous section which per-

forms better than other spreading algorithms. This algorithm uses linear pro-

gramming to compute flows of cells across bins. The flows are then realized by

traversing a graph in a topologically sorted order. This flow realization method

can yield large speedups through parallelization as all the nodes on the same

topological level can be processed in parallel. The linear programming solver

consumes the bulk of the runtime but is hard to parallelize. To solve this

problem, we propose a new algorithm to compute flows that is highly paral-

lelizable, coupled with a parallelized version of the flow realization algorithm

59

described in the previous section.

As speedups obtained through multi-threaded implementations have

achieved maturity, researchers have started investigating hardware acceler-

ation of placement using GPUs [11–15] and FPGAs [7]. Acceleration of

simulated-annealing-based placement is proposed in [13], [14] and [15]. A

GPU-accelerated upper-and-lower-bound placer is described in [12]. This work

implements the recursive partitioning and cell assignment steps for a single

window on GPU. Our flow-based spreading algorithm produces better wire-

length than bipartitioning. In a placement system where the numerical solver

is accelerated on FPGA, the spreading part takes a significant portion of the

runtime. To eliminate this runtime bottleneck, we need to accelerate the

spreading algorithm. We accelerate the flow computation stage of our spread-

ing algorithm on FPGA. The main contributions of our flow based spreading

formulation [9] are:

• We propose a massively parallel algorithm for flow computation which

can be used in a flow-based spreading algorithm. Our algorithm mimics

the flow of a fluid across reservoirs due to pressure differences.

• We mathematically prove that the flows obtained from the solution of

differential equations describing the above system do not form cycles.

• We propose a flow correction algorithm which can modify flows generated

by any flow computation algorithm to produce flows that are monotonic

(definition and significance discussed later). This algorithm reduces the

60

total cell displacement but does not change the resultant density of any

bin.

• Although our continuous-time formulation guarantees acyclic flows, our

discretization process may introduce some cycles. We analyze the com-

plexity of our flow correction algorithm and show that we can use it to

remove such cycles, mush faster than other cycle finding algorithms for

a general graph [10].

• We accelerate our flow computation algorithm on FPGA.

2.3.1 Flow-based Spreading

We formulate our spreading problem in a fashion imitating the flow of

a fluid across different reservoirs driven by pressure difference. The placement

grid is divided into a grid of R×C bins, as shown in Figure 2.27. The bins are

numbered in a row-major fashion in the 2D grid. Each bin Bi has a supply

value Si (maximum number of cells it can hold) and an initial demand value D0
i

(the number of cells placed in that bin after an iteration of global placement).

We change the supply values of all bins to the max supply value and adjust the

initial bin demands by adding dummy cells. More formally, it can be described

by the following two equations:

S ′ = max
i

Si (2.9a)

S ′i = S ′ ∀i (2.9b)

61

D′0i = D0
i + S ′ − Si (2.9c)

0 C-11 2

C

2C

(R-1)C (R-1)C+1 (R-1)C+2 RC-1

2C-1

3C-1

Figure 2.27: A grid containing RxC bins. Bins are numbered in a row major
fashion. Arrows indicate channels between bins, which are bidirectional. The
direction of an arrow denotes the direction in which flow is considered positive.

S’

reservoir channel

Figure 2.28: Flow of fluid across reservoirs connected by channels. The channel
diameter is very small compared to the reservoir dimensions. Fluid does not
flow through a channel if the fluid levels on both sides are below the level of
the channel.

Each bin can be thought of as a reservoir and the demand (D′i) of cells

in each bin corresponds to the fluid level in that bin. There are channels be-

tween adjacent and diagonally adjacent bins which allow fluid to flow through

them. More formally, the rate of flow of fluid through a channel is directly

62

proportional to the pressure difference across it:

dfi j
dt

= σ.(max(D′i, S
′)−max(D′j, S

′)) (2.10)

Where fi j is the cumulative fluid flow through the channel between bins Bi

and Bj. fi j = −fj i. fi j, D′i and D′j change over time. σ is a constant that

controls the rate of flow and we refer to it as ‘conductance’ of the channel.

We set σ < 0.125. Figure 2.28 shows a 1-dimensional case of this model. In a

realistic scenario, the fluid flow through a narrow cylindrical tube is given by:

df

dt
=
πr4P

8ηl
(2.11)

Where P is the pressure difference across the tube, r is the radius of the tube,

η is the viscosity of the fluid and l is the length of the tube. In our case, σ

serves the same purpose as the term πr4

8ηl
. The channels are located at a height

corresponding to the supply value S ′ (which is same for all bins). There is

no flow in a channel if the fluid levels on both sides are less than the supply

value (Figure 2.28). The process of fluid flow through all the channels can be

described by a system of first-order differential equations:

df0 1

dt
= σ.(max(D′0, S

′)−max(D′1, S
′))

df0 C

dt
= σ.(max(D′0, S

′)−max(D′C , S
′))

df0 (C+1)

dt
= σ.(max(D′0, S

′)−max(D′C+1, S
′))

. . .

63

dD′0
dt

= −df0 C

dt
−
df0 (C+1)

dt
− df0 1

dt

dD′1
dt

=
df0 1

dt
− df1 C

dt
−
df1 (C+1)

dt
−
df1 (C+2)

dt
− df1 2

dt

. . . (2.12)

Note that a bin may have 3, 5 or 8 neighbors. For example, B0 has

3 neighbors: BC , BC+1 and B1. All fi js are initialized to 0 and D′is are

initialized to D′0i s. Eventually, for each bin Bi, D
′
i will either be ≤ S ′ or

approach S ′ in the limit t → ∞ as total demand < total supply. The total

flow across each channel can be obtained by simulating the above system for a

sufficiently long time t so that the error is low. The demand values follow an

exponentially decaying function and the system convergence fast in practice.

We now prove an interesting property of the flows generated by the above

system of equations:

Lemma 6 The total flows in the limit t→∞ do not form cycles.

Proof : Observe that once the demand Di of a bin Bi reaches S ′, it is always

≥ S ′ afterwards. Also note that if there is net a positive outflow through a

channel i j from bin Bi, then D∞i = S ′. Assume there is a cycle of length

l: Bi0 → Bi1 → · · · → Bil−1
→ Bi0 in the flows. At any instant of time, if

there are one or more bins with D′ < S ′, the cycle can be decomposed into

a collection of paths where the beginning and ending bins of each path have

D′ < S ′ and all other bins in the path have D′ ≥ S ′. Consider one such path

Bim → Bim+1 → · · · → Bin with D′m < S ′, D′n < S ′ and D′ik ≥ S ′ for k=m+ 1

64

to n− 1. The flows along this path can be described by:

dfim im+1

dt
= σ.(S ′ −D′m+1)

dfim+1 im+2

dt
= σ.(D′m+1 −D′m+2)

. . .

dfin−1 in

dt
= σ.(D′n−1 − S ′)

We see that the net change in flow through this path is 0:

dfim im+1

dt
+
dfim+1 im+2

dt
+ · · ·+

dfin−1 in

dt
= 0

Arguing similarly for all other paths in the collection, we conclude that the

net change in flow through the cycle is 0. Since the initial flows at time t = 0

are 0, the sum of flows for all paths in the cycle is 0, which means that not all

of those flows can be positive. This also holds if all D′s in the cycle are ≥ S ′.

Hence, such a cycle does not exist. Q.E.D.

2.3.1.1 Discrete Flow Computation

The max(.) functions in the system of equations (2.12) make it hard

to solve the system analytically. Hence, we simulate the system with discrete

time steps. The amount of incremental flow through a channel at each time

step is given by:

∆f ti j = f t+1
i j − f ti j = σ.(max(D′ti , S

′)−max(D′tj , S
′)) (2.14)

65

We now have a system of difference equations:

∆f t0 1 = σ.(max(D′0, S
′)−max(D′1, S

′))

∆f t0 C = σ.(max(D′0, S
′)−max(D′C , S

′))

∆f t0 (C+1) = σ.(max(D′0, S
′)−max(D′C+1, S

′))

. . .

D′t+1
0 −D′t0 = −∆f t0 C −∆f t0 (C+1) −∆f t0 1

D′t+1
1 −D′t1 = ∆f t0 1 −∆f t1 C −∆f t1 (C+1) −∆f t1 (C+2) −∆f t1 2

. . . (2.15)

We start with f 0
i j = 0 and compute the above values for sufficient number

of steps t that gives a low error. We can control the rate of convergence by

changing the value of σ. At each time step, we first compute the incremental

flows in parallel. We then update the demands in parallel using the incremental

flows.

2.3.1.2 Flow Realization

We follow the flow realization procedure in [1]. We only move cells up,

down left or right from a bin. We do not move cells diagonally. The flow along

each diagonal channel is decomposed into two manhattan paths, each with

half the flow. We round the resulting flows as close as possible to a multiple

of the most common cell area keeping the total flow same. Each bin is divided

into a grid of buckets and cells in each bucket move together. We construct a

66

directed graph with bins as nodes and channels as edges. The direction of an

edge corresponds to the direction in which total flow in the channel is positive.

Since there are no cycles in the graph , we can do a topological sort on the

graph and assign levels to the nodes. We start from the nodes(bins) with the

lowest level and push out the required number of buckets along the edges with

nonzero flow. We then proceed to the next level. Flows for bins at the same

topological level are processed in parallel.

2.3.1.3 Flow Correction Algorithm

The discrete-time simulation used to solve for the demand and flow

values in every time step as modeled in equation 2.15 can lead to cycles in

the flow. However, the magnitude of flow on those cycles would depend on σ

and would be small. The flows can also be made monotonic (defined below),

which helps in preserving relative order between cells during flow realization.

Preserving relative order leads to better wirelength.

Definition: A flow path of length n is a sequence of n+1 bins Bi0 to

Bin , such that there is a channel between bins Bj and Bj+1 with positive flow

∀ 0 ≤ j < n.

Definition: A flow path is said to be monotonic if the sequence of

the coordinates {(xi, yi)} of its constituent bins B0 . . . Bi . . . Bn is monotonic,

that is, {xi} is nonincreasing or nondecreasing and {yi} is also nonincreasing

or nondecreasing.

Monotonicity implies absence of cycles.

67

U shaped Inverted U shaped

C shaped Inverted C shaped

Figure 2.29: Examples of non-monotonic patterns

2

5 2

1

3

3 2

5

4
4

4

2

2353

row0_flows row1_flows cross_flows

Figure 2.30: Terminology of flows used in Algorithm 1

We now present an algorithm that can take a feasible flow solution as

input and produce another feasible flow solution without changing D′ for any

bin. This algorithm also guarantees that the sum of magnitudes of all flows

(after all diagonal flows have been converted to manhattan flows) would not

increase.

cost =
∑
i,j

|fi j| (2.16)

This cost serves as a proxy for total cell displacement.

Our flow correction algorithm runs in multiple iterations, each consist-

ing four passes. Part of the pseudocode for one such pass is shown in Algorithm

1. Consider two adjacent rows of bins as shown in Figure 2.30. We call these

rows row0 and row1 for simplicity. They may correspond to any two adjacent

68

2

1

3

3 2

5

4

5 3 2

1

1

1 1

1

1 1 1

1 2

3 2

4

3

4 4 3

2

2 2

2

2 2

1

1 2

2

1

4 6 5

1

1

1

1

1

1 1

1

4 6 6

initial flows U shaped pattern replacement

after one step U shaped pattern replacement

after two steps U shaped pattern replacement

after three steps

Figure 2.31: Replacing U shaped patterns for a section of the rows in Figure
2.30

69

rows in the bin grid. We look for U shaped patterns as shown in Figure 2.31

and replace them by the corresponding pattern, which results in a lower cost

according to equation 2.16. Note that this process of replacing patterns does

not change D′ of any bin.

We apply one pass of this algorithm starting from the bottom row and

ending at the top row proceeding one row at a time to remove all U shaped

flow patterns(Figure 2.29). We apply another pass from the top row to the

bottom row to remove all inverted U patterns. We apply one more pass from

the leftmost column to the rightmost column, replacing C shaped patterns and

one more pass from the rightmost to the leftmost column replacing inverted

C shaped patterns.

Lemma 7 A top-to-bottom pass will not create U shaped patterns if applied

right after the bottom-to-top pass.

Proof: Assume this is not true. Then, a new section of horizontal flow must

have been created. Figure 2.32 shows the three possible cases. In case (i) we

see an inverted U shaped pattern that should have been removed by Algorithm

1 first, which is a contradiction. In case (ii), we see that there is a preexisting

U shaped pattern which should have been removed by the bottom-to-top pass.

In case (iii) we see both types of contradictions from cases (i) and (ii). Q.E.D.

This lemma can be extended to the right-to-left pass also. Also, similar

lemmas can be obtained by changing the order of the passes.

70

Algorithm 1 Flow Correction for two Consecutive Rows

for i = 0 to C-2 do
if row0 flows[i]*cross flows[i]≥0 then

continue;
end
continuous=true;
continuous min abs=abs(row0 flows[i]);
if row0 flows[i]==0 then

continuous=false;
end
j=i+1;
while continuous do

if row0 flows[j-1]*cross flows[j]>0 then
//non-monotone path found
min abs=min(abs(cross flows[i]),abs(cross flows[j]),
continuous min abs);
decrease flows along path by min abs;
increase flows along substitute path by min abs;

end
if cross flows[i]==0 then

break;
end
continuous min abs-=min abs;
if continuous min abs==0 then

continuous=false;
end
j++;
if j==C then

break;
end
if row0 flows[j-2]*row0 flows[j-1]≤0 then

continuous=false;
end
continuous min abs=min(abs(row0 flows[j-1]),continuous min abs);

end

end

71

Note that a horizontal (left-to-right or right-to-left) pass can create

new U or inverted U shaped patterns and a vertical (bottom-to-top or top-to-

bottom) pass can create new C or inverted C shaped patterns. Even though

this is the case, we can devise a scheme to apply these passes for a finite number

of iterations and guarantee that the resultant flows would be monotonic. First,

we can round all flow values to the nearest multiple of 0.5. Cells usually take

certain discrete area values, so this is not a problem. The rounding error would

be ≤0.25, so each bin can have an excess area of at most 1 (4 sides * 0.25)

which can be handled by setting a lower supply value in the first place. Every

time a pattern is replaced, it reduces the cost in equation 2.16 by 2*0.5=1.

Since this cost is finite (depends on the number of cells), this process will

run for a finite number of iterations. In practice, we have observed that one

iteration gives sufficiently good wirelength and it is unnecessary to apply more

iterations.

Lemma 8 Applying any one of the four passes is sufficient to remove all

cycles.

Proof: Consider the sequence of coordinates (x0, y0), (x1, y1), . . . ,

(xn−1, yn−1), (x0, y0) of a cycle of length n. Let ymin = min
i
yi. There should

be at least one range of indices [p, q] of maximal length with p < q s.t.

yi = ymin ∀ p ≤ i ≤ q. This is the lowest part of the cycle. The sequence

(xp−1, yq−1), (xp, yp), . . . , (xq, yq), (xq+1, yq+1) is a U shaped pattern. Simi-

larly, the rightmost part is an inverted C shaped pattern, the highest part is

72

an inverted U shaped pattern and the leftmost part is a C shaped pattern. A

cycle cannot exist if any one of these patterns does not exist. Q.E.D.

Complexity analysis: The bottom-to-top and the top-to-bottom passes (Al-

gorithm 1) take O(RC3) time. Similarly, the left-to-right and the right-to-left

passes take O(R3C) time. Hence, the total time for removing all cycles is

O(min(RC3, R3C)) which is O(N2) where N = RC is the number of bins.

Cycles in a general graph can be removed using [5] or [6]. [6] has a

complexity of O((N + E)(C + 1)) where E is the number of edges and C is

the number of cycles. For a rectangular grid, E is O(N) and C is O(N2).

Our algorithm is specialized for a rectangular grid graph and is faster than [5]

and [6].

case (i) case (ii) case (iii)

Inverted U shaped pattern Replacement pattern

contradiction contradiction contradiction

Figure 2.32: A top-to-bottom pass cannot create new U shaped patterns.
Hypothetical U shaped patterns are shown in grey. The bottom row shows
the flows before the inverted U shaped pattern was replaced.

73

2.3.2 FPGA Acceleration

We accelerate the flow computation part (simulation of fluid flow) on

FPGA. A schematic of the hardware is shown in Figure 2.33. Our bin grid has

56x160=8960 bins, each having 3x3 sites. We first copy the bin demand values

from the CPU to the FPGA and store them on the block RAMs. We have five

2-dimensional arrays implemented using the FPGA block RAMs - demand,

xflows, yflows, d45flows and d135flows. xflows and yflows are flows along the

x and y directions respectively. d45flows and d135 flows are flows along the

45o and 135o diagonal directions respectively. These arrays are stored in row

major format. Each of them is padded such that each row in the array has 64

entries instead of 56.

We compute the flows using integer variables instead of floating point.

This has two benefits: i) It saves resources as integer computations require less

resources than floating point. ii) It reduces latency as integer computations

take less number of cycles than floating point computations. This leads to

less replication of block RAMs and reduces block RAM usage. Block RAM

replication is necessary to ensure that the arrays can be accessed in a stall-free

fashion. The actual flow values are scaled by 256 so that small flow values can

be computed with negligible loss in accuracy. We have empirically determined

that this produces insignificant difference in result from the original version

using floating point. The memory system for each array is constrained to have

one bank of width 128 bytes.

At each clock cycle, the hardware reads 2 consecutive rows from the

74

demand
max(.,S’)

max(.,S’)

shift_add

shift_add

-
xdiff ydiff d45diff d135diff

- - -

xflows

+

0

init

yflows

+

0

init

d45flows

+

0

init

d135flows

+

0

init

copy

+-
row r

row r+1

demanddiff

+-

0
r==R-1
|| init

from global memory

to global memory to global memory to global memory to global memory

r==R-1

block RAMs

block RAMs block RAMs block RAMs block RAMs

flip-
flops

Figure 2.33: Part of the hardware for computing flows. There are 5 memory
systems implemented using on-chip RAMs: demand, xflows, yflows, d45flows
and d135flows. demanddiff is implemented with registers. All black connectors
denote buses. Control signals for the multiplexers are shown in grey. For each
time step, r goes from 0 to 159.

rC rC+1 rC+2

(r+1)C

rC+3 (r+1)C-1

(r+1)C+1 (r+1)C+2 (r+1)C+3 (r+2)C-1 xdiff

ydiff

d45diff

d135diff

Figure 2.34: Incremental flows between rows r and r+1 calculated by the
FPGA in one clock cycle.

75

demand array. It then computes the flow for one time step along 55 hori-

zontal channels (xdiff), 56 vertical channels (ydiff), and 110 diagonal chan-

nels (d45diff and d135diff) (Figure 2.34). The xflows, yflows, d45flows and

d135flows for the corresponding row are updated. The demand values of the

current row are updated by appropriate addition/subtraction of xdiff, ydiff,

d45diff and d135diff computed during the current clock cycle and adding the

demand differences (demanddiff), which are flow values along the vertical and

diagonal channels coming from the row below. These demand differences were

calculated during the previous clock cycle and were stored in flip-flops. The

demand differences for the next row are calculated by adding the correspond-

ing vertical (ydiff) and diagonal flows (d45diff and d135diff) from the current

row. On reaching the top row, the demand difference values are reset to 0.

This is because flow computation for the next time step would start again

from row 0 and row 0 does not have any flow coming from below. To ensure

that the ydiff, d45diff and d135diff values computed for the top row (159) are

0, we have a multiplexer stage which substitutes a version of the current row

for the next row. Row 160 (does not actually exist) would be the same as row

159 for ydiff. Row 160 would be row 159 offset by one place to the right for

d45diff and one place to the left for d135diff.

Computing the flow for one time step along a channel requires multipli-

cation by σ, which is < 0.125. To save hardware resources, we represent σ by

its 4 most significant bits and perform the multiplication using bitshifts and

additions. Instead of performing this shift-add operation for every channel,

76

we perform this when we read the two rows from the demand array. Thus,

we only have to perform subtractions for computing xdiff, ydiff d45diff and

d135diff. This reduces the number of shift-add operations.

2.3.3 Results

2.3.3.1 Quality of Results

We tested our algorithm on the ISPD 2016 FPGA Placement Con-

test [71] benchmarks. Using the same numerical solver for global placement,

we compared our fluid-flow-based spreading algorithm with the bipartitioning

based spreading algorithm in [21] and the linear-programming-based spreading

algorithm in [1]. The final placement wirelengths using each of these spreading

techniques are shown in Table 2.7. Our algorithm produces 1% worse wire-

length than the linear-programming-based algorithm in [1] but is still 0.8%

better than [21]. The 1% loss is a good tradeoff for the significant gains in

runtime that we get using our new spreading algorithm. Our fluid-flow based

spreading algorithm produces a shape (Figure 2.35) which is slightly different

from the one derived in the previous section (Figure 2.16).

	0

	50

	100

	150

	200

	250

Figure 2.35: The shape of placement produced by our spreading algorithm can
be inferred from the above heat map of #cells in each bin. This example has
85400 cells and no net. Maximum bin utilization is set to 84%

77

Table 2.7: Benchmark Statistics and Wirelength

Design #cells
103

#nets
103

Wirelength/103

[21] [1] Fluid
FPGA01 105 105 294 284 291
FPGA02 166 167 569 549 555
FPGA03 421 428 2700 2608 2615
FPGA04 423 430 4784 4716 4711
FPGA05 425 433 8761 8633 8635
FPGA06 704 713 4858 4784 4840
FPGA07 707 716 8227 8232 8421
FPGA08 717 725 7088 7047 7059
FPGA09 867 876 10074 9811 9994
FPGA10 952 961 6805 6617 6616
FPGA11 845 851 8688 8696 8887
FPGA12 1103 1111 5686 5627 5694

Ratio 1 0.982 0.992

2.3.3.2 Runtime

The runtime of most global placers is dominated by the numerical

solver. So, to demonstrate the true potential of our new fluid-flow-based

spreading algorithm, we need a fast numerical solver for global placement. The

placer in [21] is single-threaded and uses a quadratic wirelength model. The

algorithm for optimizing this model is difficult to accelerate on an FPGA. To

overcome this difficulty, we use the global placer [8] described at the beginning

of this chapter which has a weighted-average wirelength model and is highly

parallelized and executes parts of the gradient computation step required for

numerical optimization on an FPGA.

The second placer runs for 19 iterations and takes a total of 4800 gradi-

78

T
ab

le
2.

8:
R

u
n
ti

m
es

in
se

co
n
d
s

an
d

S
p

ee
d
u
p

fo
r

IS
P

D
20

16
co

n
te

st
b

en
ch

m
ar

k
s

O
v
er

a
ll

G
lo

b
a
l

P
la

ce
m

en
t

S
p

re
a
d

in
g

A
lg

o
ri

th
m

G
ra

d
ie

n
t
→

C
P

U
F

P
G

A
F

P
G

A
F

P
G

A
F

P
G

A
F

P
G

A
F

P
G

A
S

p
re

a
d

in
g
→

L
P

C
P

U
L

P
C

P
U

F
lu

id
C

P
U

F
lu

id
F

P
G

A
L

P
C

P
U

F
lu

id
C

P
U

F
lu

id
F

P
G

A
D

es
ig

n
↓

ti
m

e
ti

m
e

sp
ee

d
u

p
ti

m
e

sp
ee

d
u

p
ti

m
e

sp
ee

d
u

p
ti

m
e

ti
m

e
sp

ee
d

u
p

ti
m

e
sp

ee
d

u
p

F
P

G
A

0
1

3
1
.0

3
2
7
.7

6
1
.1

2
1
2
.5

4
2
.4

7
9
.3

4
3
.3

2
2
2
.8

8
7
.7

6
2
.9

5
4
.3

6
5
.2

5
F

P
G

A
0
2

4
0
.8

2
3
1
.1

4
1
.3

1
1
4
.9

1
2
.7

4
1
1
.8

1
3
.4

6
2
4
.4

4
8
.1

9
2
.9

8
4
.7

4
5
.1

6
F

P
G

A
0
3

7
7
.3

5
4
8
.3

6
1
.6

0
2
8
.2

4
2
.7

4
2
5
.7

1
3
.0

1
2
9
.6

6
9
.4

1
3
.1

5
6
.0

7
4
.8

9
F

P
G

A
0
4

8
2
.8

1
5
4
.2

0
1
.5

3
2
9
.7

8
2
.7

8
2
7
.2

6
3
.0

4
3
4
.1

4
9
.7

8
3
.4

9
6
.3

7
5
.3

6
F

P
G

A
0
5

8
4
.6

3
5
3
.9

6
1
.5

7
3
0
.4

4
2
.7

8
2
7
.8

0
3
.0

4
3
2
.9

8
9
.6

9
3
.4

0
6
.3

3
5
.2

1
F

P
G

A
0
6

1
1
7
.4

4
7
0
.6

0
1
.6

6
4
2
.9

8
2
.7

3
4
1
.7

3
2
.8

1
3
8
.6

4
1
1
.1

4
3
.4

7
7
.6

2
5
.0

7
F

P
G

A
0
7

1
2
2
.0

0
7
1
.4

1
1
.7

1
4
2
.3

8
2
.8

8
4
1
.0

3
2
.9

7
4
0
.5

2
1
1
.2

4
3
.6

1
8
.3

2
4
.8

7
F

P
G

A
0
8

1
2
2
.8

9
7
0
.7

3
1
.7

4
4
4
.8

1
2
.7

4
4
2
.5

1
2
.8

9
3
7
.0

6
1
1
.5

4
3
.2

1
7
.8

7
4
.7

1
F

P
G

A
0
9

1
5
1
.0

2
8
5
.7

6
1
.7

6
5
2
.4

0
2
.8

8
5
1
.3

7
2
.9

4
4
5
.2

0
1
2
.5

1
3
.6

1
9
.2

0
4
.9

1
F

P
G

A
1
0

1
6
0
.7

6
9
4
.0

5
1
.7

1
4
8
.9

3
3
.2

9
4
7
.5

6
3
.3

8
5
7
.3

1
1
2
.3

5
4
.6

4
8
.8

5
6
.4

7
F

P
G

A
1
1

1
4
3
.2

0
8
4
.0

4
1
.7

0
5
0
.9

1
2
.8

1
4
9
.5

2
2
.8

9
4
5
.5

2
1
2
.4

3
3
.6

6
9
.0

5
5
.0

3
F

P
G

A
1
2

1
6
8
.8

8
9
1
.9

2
1
.8

4
5
7
.8

8
2
.9

2
5
5
.1

5
3
.0

6
4
8
.1

0
1
3
.9

4
3
.4

5
9
.8

0
4
.9

1

G
eo

m
ea

n
9
7
.1

8
6
1
.1

2
1
.5

9
3
4
.6

1
2
.8

1
3
1
.7

3
3
.0
6

3
6
.7

9
1
0
.6

8
3
.4
4

7
.1

6
5
.1
5

79

Table 2.9: FPGA Resource Usage and Fmax

Kernel(s) Logic Register RAM DSP Fmax
gradient + spread 48% 47% 37% 67% 201 MHz

gradient 37% 32% 22% 67% 227 MHz

ent steps for optimizing wirelength. We ran this fast placer on a machine with

a 14 core, 28 thread Intel R© Xeon R© processor and an Intel R© Arria10 R© FPGA on

the same package [67]. The tightly coupled CPU and FPGA can share virtual

memory and communicate with very low latency. The multi-threaded parts of

our placer use all 28 threads. Our FPGA kernels were written in OpenCL and

compiled using Altera Offline Compiler version 16.0, which uses Quartus for

synthesis, placement and routing. The second placer can be configured to run

the fast numerical solver from [8] with either the linear-programming-based

spreading algorithm in [1] or our new fluid-flow-based spreading algorithm.

The comparison of these two spreading algorithms in our accelerated global

placement system is shown in Table 2.8.

Table 2.8 shows the runtimes for the two spreading algorithms as well

as that for the overall global placement. For our new fluid-flow-based spread-

ing algorithm, we show the 28-threaded CPU runtime as well as the FPGA

accelerated runtime. “LP” refers to the linear-programming-based spreading

algorithm in [1]. “Fluid” denotes our new fluid-flow-based spreading algo-

rithm. Compared to the linear-programming-based spreading algorithm, our

new fluid-flow-based spreading algorithm is 3.44x faster and the FPGA accel-

erated version is 5.15x faster. Our new global placer with FPGA-accelerated

numerical solver and FPGA-accelerated fluid-flow-based spreading is 3.06x

80

faster overall than the placer with CPU implementation of the same solver

and the linear-programming-based spreading algorithm.

As shown in Table 2.8, the average runtime of the CPU implementation

of our fluid-flow-based spreading algorithm is 10.68s and the corresponding

overall global placement takes 34.61s. This suggests that the multi-threaded

CPU implementation of our new spreading algorithm takes 31% of the global

placement runtime in our accelerated global placer, which is significant. The

CPU implementation of the fluid-flow-based flow computation takes 34.7% of

the spreading runtime. The corresponding FPGA implementation accelerates

this flow computation by 31x leading to an overall speedup of 1.5x just for the

spreading algorithm.

3.44x 5.15x

1.5x

Figure 2.36: Runtime breakdown of the spreading algorithms.

Figure 2.36 shows the runtimes for different parts of the spreading al-

gorithm(s). Computing the flows using linear program takes 80.9% of the

runtime for the linear-programming-based spreading algorithm. Our multi-

threaded fluid-flow-based algorithm reduces this time by 8x and FPGA accel-

eration reduces it further by 31x to a total of 248x. The multi-threaded flow

81

realization algorithm is the same across all variants of the spreading algorithms

shown in Figure 2.36. This step involves many memory allocation and deallo-

cation operations and is hard to accelerate on the FPGA unless all the data

structures used in spreading can fit on the on-chip RAMs. Flow processing

involves conversion of flows from diagonal to manhattan and running the flow

correction algorithm to remove cycles. This part consumes negligible runtime.

“Others” includes time for data structure initialization and computation of

anchor weights.

The FPGA resource usage and Fmax for our kernels is given in Table

2.9. We made some improvements to the gradient computation kernel in [8]

to reduce resource usage. Adding the spreading kernel degrades the Fmax for

both kernels and increases the runtime for the numerical optimization part by

a small amount. However, accelerating the flow computation part on FPGA

provides enough speedup to make up for this loss.

82

Chapter 3

Detailed Placement

Detailed placement in general (for both ASICs and FPGAs) can be

categorized into the following broad classes:

• Greedy [32] [35]

• Simulated Annealing [30] [31] [36]

• Network flow/ matching [33] [34]

• Mixed Integer Linear Programming (MILP) [28] [29]

• Interleaving or Dynamic programming (DP) [37]

• Branch-and-bound [39]

This chapter includes work from the following publications:
[41] S. Dhar, S. Adya, L. Singhal, M. A. Iyer and D. Z. Pan, “Detailed Placement for
Modern FPGAs using 2D Dynamic Programming”, International Conference on Computer
Aided Design, 2016.
[43] S. Dhar and D. Z. Pan, “GDP: GPU Accelerated Detailed Placement”, IEEE High
Performance Extreme Computing conference, 2018.
[42] S. Dhar, M. A. Iyer, S. Adya, L. Singhal, N. Rubanov and D. Z. Pan, “An Effective
Timing-Driven Detailed Placement Algorithm for FPGAs”, International Symposium on
Physical Design, 2017.
In all of these publications, the first author was responsible for developing and implementing
the main ideas and conducting experiments.

83

Historically, variations of greedy algorithms have been the most popular meth-

ods for detailed placement. Some representative examples are: i)moving a

cell(LAB/DSP/RAM/IO in case of FPGAs) to an empty legal site within

some neighborhood of its current location ii)identifying and swapping pairs of

cells that are in close proximity to each other. iii)ripple movements - shifting

neighboring cells by a small amount in order to accommodate a cell at a given

location. However, these greedy algorithms are susceptible to local minima.

The number of nets per LAB in FPGAs is high (∼50), so the optimal re-

gion for each cell is small, since moving a LAB affects many nets. Thus, the

chances for finding good greedy moves decreases with increasing design size

and complexity.

Simulated annealing is another important detailed placement algo-

rithm. It is similar to greedy algorithms, except that it accepts suboptimal or

hill-climbing moves with some probability depending on temperature that is

determined by the annealing schedule. However, like greedy algorithms, sim-

ulated annealing has diminishing chances of finding good moves in reasonable

runtime with increasing design size and complexity.

A different flavor of detailed placement algorithms involves network

flows and bipartite matching. Typically, a bipartite graph is formed with cells

representing one set of vertices and sites representing the other. Assigning

each cell to a site incurs some cost. If one allows all cells to go to all locations,

there is no good way to estimate the cost. Approximate cost functions work

well when there are sufficient spaces, but they tend to perform poorly when

84

utilization approaches 100%.

Next, we consider Linear and/or Integer Programming approaches.

MILP can find the exact minimum for half-perimeter wirelength (HPWL) and

some other cost functions, but it has exponential time complexity and is not

scalable. This necessitates the use of smaller window sizes and more iterations,

which outweighs the advantage of such algorithms.

In [37], the authors propose a dynamic programming algorithm which

partitions an ASIC row into two sets of cells and optimally interleaves them,

keeping the relative order of cells within each partition constant. Interleaving

is done using dynamic programming, which constructs a placement solution by

selecting cells from the partitions one at a time and keeping the best option at

each step. This is less susceptible to local minima than greedy approaches and

allows more movement than network flow/matching. However, partitioning

into two sets only is quite restrictive and DP on rows only would explore

limited solution space. In the next section, we propose a new DP algorithm

with multiple partitions and apply it to a rectangular grid to address these

concerns.

3.1 Detailed Placement using Dynamic Programming

We illustrate the limitations of state-of-the-art detailed placement al-

gorithms with some examples:

• Consider the placement problem in Figure 3.1. In case of row-by-row DP,

85

Figure 3.1: This placement would retain the initial configuration (local min-
ima) unless the two pink cells are moved together

Figure 3.2: An instance which cannot be optimized by 2 partition DP

row1 and row2 are stuck in their respective local minima, as would also

happen with greedy algorithms. Finding the optimal placement requires

two cells in two adjacent rows to be moved simultaneously. ILP can

solve this particular instance but it is not scalable. Simulated annealing

might find the optimal solution, but it is not guaranteed. Network flow

cannot model the net costs accurately in such a short range. Matching

with independent sets is infeasible as the cells are connected.

• Consider the placement problem in Figure 3.2. It can be verified that

DP with just two partitions [37] will get stuck with a solution that has

HPWL of 10, independent of how the cells are partitioned. We need at

least 3 partitions to solve this instance. Other approaches also suffer

from similar drawbacks.

• Consider the placement problem in Figure 3.3. In many cases after global

placement, just spaces need to be shifted without changing the relative

order of the cells significantly. DP and network flow/matching are good

86

choices for such placement refinements. However for dense cases like in

Figure 3.4, network flow/matching perform poorly and the DP approach

in [37] offers limited scope for pairwise swaps among cells.

Figure 3.3: Sometimes we only need to adjust spaces during detailed placement

Figure 3.4: Interleaving example; The top row shows the placement before
interleaving. The bottom row is the placement after interleaving

The key contributions in this section [41] are as follows:

• A dynamic programming (DP) algorithm for single row placement is

proposed which has a parameter to tune quality vs runtime tradeoff. It

can also find the optimum solution with the right paramemter setting.

Moreover, another parameter is offered to restrict maximum displace-

ment which improves runtime significantly.

• Our approach performs DP in a rectangular grid as opposed to the single

row/column based approaches known previously. This circumvents local

minima problems faced with single row/column based techniques and

also allows macros (multi-row cells) to move.

87

• We prove that our DP algorithm runs in Θ(p.k.(N
k

+ 1− d).((d + 1)k −

dk) + dk) time, which is tractable for reasonable values of k, where N is

the number of cells, p is the average degree of a net, k is the number of

partitions and d is a parameter that controls maximum displacement of

cells. As a special case, we can solve the single row placement problem

optimally in Θ(p.N.2N) time instead of the naive Θ(p.N !). (Magnitude

comparison: 20.220 = 20971520 whereas 20! = 2432902008176640000)

• We propose new parallelization schemes for our DP algorithm. In cases

where we increase the complexity by increasing number of partitions,

we demonstrate that a single problem instance can be solved in paral-

lel in reasonable runtime. Our formulation also exploits the fact that

x and y components of HPWL are decoupled and does 2-dimensional

optimization in parallel.

3.1.1 Problem Statement for Dynamic Programming based De-
tailed Placement

Our two main objectives are maximum frequency (Fmax) and wire-

length optimization. Of the many wirelength representations, Half-Perimeter

WireLength (HPWL) is the most widely used and it usually correlates well

with actual routed wirelength. Different weights are used for nets with differ-

ent number of pins to make it correlate better with actual wirelength. Also,

HPWL is simple to express in terms of the coordinates of the net end points

(pins/cells). To improve route correlation, the fanout of a net is also used as

88

a weighting factor in its HPWL calculation.

For incorporating timing information, we introduce timing nets(tnets),

which are virtual 2-pin nets representing timing arcs. They connect every load

to its driver. Timing weights on tnets are generated using slack information

obtained from a static timing analysis tool, as in [40]. Lower slack (higher

timing violation) connections get higher weights. We update timing weights

at fixed intervals. Our problem formulation includes all the original nets in

the design and the new virtual nets (tnets) along with all net weights. We

assume the following inputs and constraints for our problem:

• Given: Hypergraph H with set of vertices V, set of nets/hyperedges E,

set of sites S on which the vertices can be placed. V is the set containing

all the LABs, IOs DSPs and RAMs in the current window in which DP

is being applied. E contains all the nets among elements in V and also

the new timing nets (tnets) that we introduce. E does not contain nets

that are fully absorbed within a LAB.

• Each vertex is a unit square. Each site is also a unit square.

• Each net has a weight. Each net is connected to a vertex by a pin. Pin

locations are specified by offset from the lower left corner of the vertex.

Some nets have pins connecting to vertices not in V, which can be treated

as fixed pins with respect to the current problem.

• Not all vertices can be placed on all sites (example: a RAM cannot be

placed on a DSP site).

89

• Sites in S need not be contiguous.

• Number of vertices = number sites = N (blank spaces are treated as

dummy vertices with no nets)

Objective: Assign vertices to sites such that the sum over all nets of

weighted HPWL is minimized:

min
x(v),y(v) ∀v∈V

{
∑
net∈E

weight(net)×HPWL(net)} (3.1)

Where HPWL is defined as:

HPWL
of net

= max
v∈net

x(v)− min
v∈net

x(v) + max
v∈net

y(v)− min
v∈net

y(v) (3.2)

Where x(v), y(v) are coordinates of the pin on vertex v connecting to the

corresponding net. We can also have independent x and y weights for HPWL

of each net. In that case, the objective becomes:

min
x(v),y(v) ∀v∈V

{
∑
net∈E

weighted HPWL(net)} (3.3)

Where weighted HPWL is:

weighted HPWL
of net

= x weight× {max
v∈net

x(v)− min
v∈net

x(v)}

+ y weight× {max
v∈net

y(v)− min
v∈net

y(v)}
(3.4)

3.1.2 Dynamic programming in 1 dimension

For cells in a set of sites (row or a column or monotonic pattern),

we partition the set of vertices (cells to be placed in those sites) into k sets

90

S1, S2, S3, . . . , Sk with N1, N2, N3, . . . , Nk vertices respectively. Note that N1 +

N2 + N3 + · · · + Nk = N , and the relative order among the vertices in each

set must be preserved. Only interleaving among sets is allowed. For example,

Figure 3.4 shows 3 partitions in 3 different colors, and the rearrangement of the

cells in the same row maintains the relative order of cells within each partition

(color).

Figure 3.5: Computing cost[3][2][2] in the DP matrix - it depends on
cost[2][2][2], cost[3][1][2] and cost[3][2][1]. Here, k=3 and N=12

3.1.2.1 Subproblem definition

We extend the formulation used in [37] from two partitions to k parti-

tions. We define a k-dimensional matrix cost[][] . . . []. Each dimension in the

matrix corresponds to a partition and is of size Ni + 1, where the partition

91

contains Ni elements. Thus the cost of placing the first i1 cells from S1, the

first i2 cells from S2, the first i3 cells from S3, . . . , the first ik cells from Sk

is represented in the entry of the matrix indexed as cost[i1][i2][i3] . . . [ik]. This

cost represents the best solution for this subproblem that essentially occupies

the first m = i1 + i2 + i3 + · · · + ik sites. When this subproblem is solved,

the remaining N − m sites are still empty as the solution for the remaining

N − m cells have not yet been determined. This is required to ensure that

the new placement of the cells satisfies the relative ordering of cells within

each partition. We use special rules to compute the weighted HPWL cost for

subproblem solutions, since all pins of the net may not have been visited in

the partial solution. We discuss these rules later in this section. For nets that

are affected by the cells in the subproblem, and for which not all pins have yet

been considered, we assume that the nets end on the boundary of the last site

in the subproblem. Figure 3.6 illustrates this situation. As the cost matrix

gets incrementally computed during dynamic programming, we can conclude

that the final minimum cost will be indexed as cost[N1][N2]...[Nk].

92

The entries of the cost matrix are computed as follows:

cost[0][0]...[0] = 0;

cost[i1][i2]...[ik] =min{

cost[i1 − 1][i2] . . . [ik] + cost of placing S1[i1]
at end

cost[i1][i2 − 1] . . . [ik] + cost of placing S2[i2]
at end

.

.

.

cost[i1][i2] . . . [ik − 1] + cost of placing Sk[ik]
at end

}

(3.5)

We illustrate this cost computation using an example. Consider a row

of 12 cells with three partitions as shown in Figure 3.5. When computing the

minimum cost for the subproblem indexed as cost[3][2][2], we consider three

cases: (i) The optimal cost of the subproblem cost[2][2][2] + the cost pf placing

S1[3] at the end (ii) The optimal cost of the subproblem cost[3][1][2] + the cost

of placing S2[2] at the end (iii) The optimal cost of the subproblem cost[3][2][1]

+ the cost of placing S3[2] at the end. The minimum cost among all these

three cases becomes cost[3][2[2]. It is worth noting that the costs are additive,

and the cost of a subproblem depends on the pre-computed costs of smaller

adjacent subproblems. If a site cannot be occupied because it is occupied by

a cell whose placement is fixed, or the site is dedicated to special cells like

RAMs, DSPs, etc. we set the cost of placing one of our cells in such a site as

93

infinity. This ensures that such illegal solutions are never considered.

Lemma 9 This recurrence relation yields the optimal result satisfying the

constraints of preserving relative order of vertices within each set. (Note that

this is not the global optimum in general)

Proof: When N = 1, we trivially obtain the optimal solution. When com-

puting the solution for N = 2, we use the optimal solution from the N = 1

subproblem and add the minimum cost of placing the next cell at the second

site location. Our costs are strictly additive, since we compute the HPWL

costs only for the pins of the affected nets that are considered in any subprob-

lem. As more pins of a net are considered in future solutions, the HPWL cost

for the net may only monotonically increase. This ensures that the solution

with N = 2 is optimal. Through induction, we can conclude that optimal so-

lutions are computed for N = 3, N = 4, etc. That is, for any N , the placement

solution computed is optimal. Q.E.D.

It can also be inferred that the optimal arrangement of the first s sites

is independent of the arrangements of the next N − s sites for any s ≤ N .

However, the placement of a cell on the q-th site depends on the placements

of all cells in sites < q.

Figure 3.6: Sections of nets included in partial cost

94

Figure 3.7: Filling the DP matrix hyperplane-by-hyperplane in 2 and 3 dimen-
sions; Each color represents a hyperplane

3.1.2.2 DP cost matrix computation

The cost matrix in the above DP formulation is a k-dimensional matrix,

with sizes N1 + 1, N2 + 1, . . . , Nk + 1 in the corresponding dimensions. Each

entry in the matrix stores the minimum cost for the corresponding subproblem

and some other details (omitted due to page limit) for tracing the optimal

arrangement. This matrix can be visualized as a k-dimensional hypercube.

Each entry in the hypercube is computed from the k entries adjacent to it

in the lower dimensions. For example, in the 2-dimensional(square) matrix

of Figure 3.7, the dark grey entry depends on the two light grey entries. In

the 3-dimensional matrix (cube), the brown entry depends on the three yellow

entries.

There are two different ways of filling the cost matrix:

1. Dimension-wise: Order the dimensions. Start filling from the lowest

dimension. When it is full, move to the next dimension. This is like

filling a square matrix row by row. For a cube, it is like filling plane by

plane. Each plane(square matrix) is filled row by row. This approach is

95

the simplest to implement.

2. Hyperplane-wise: We can imagine a set of k−1 dimensional hyperplanes

cutting through the k dimensional hypercube. For a 2 dimensional case,

hyperplanes are lines of the form x+ y = constant. For 3D, hyperplanes

are planes of the form x + y + z = constant. We can generalize for kD

as x1 + x2 + · · · + xk = constant. Varying this constant from 0 to N

touches upon all the points in the hypercube. For each hyperplane, the

entries in the cost matrix can be computed using the cost matrix entries

computed earlier for an adjacent hyperplane. For example in Figure

3.7, the entries for the purple hyperplane can be computed using the

pre-computed entries for the blue hyperplane above it. This makes the

computation of all entries in a hyperplane independent of each other,

thereby enabling parallelization.

Figure 3.8: Solutions which are unlikely

We see that many of the entries in the aforementioned cost matrix

correspond to solutions which are unlikely. Consider, for example, the scenario

96

in Figure 3.8. The subproblem with 4 cells from the first partition, 0 cells from

the second partition and 0 cells from the third partition has a solution where

the cell at site number 10 moves to site number 4. In practical scenarios, large

displacements like this are unlikely. We would like to have more control over

the maximum displacement of each cell and reduce runtime by eliminating

unlikely solutions. We introduce an additional constraint for this purpose:

max (i1, i2, . . . , ik)−min (i1, i2, . . . , ik) ≤ d (3.6)

where (i1, i2, . . . , ik) are the indices of the subproblem and d is a constant

parameter. This constraint greatly reduces the number of subproblems solved.

Note that merely visiting all subproblems (entries in the matrix) and then

deciding whether to solve or discard them is not an efficient solution as the

number of matrix entries can be large for large values of k. Instead, we only

traverse the subproblems that we intend to solve.

Definition: A partitioning of the set of cells in the initial placement

is said to be fine if the cell at site i is in partition i mod k ∀i

Lemma 10 The constraint in equation 3.6 limits maximum displacement for

each cell to (k − 1).(d+ 1) in case of fine partitioning.

Proof: Consider cell ij in partition j and the subproblem i1, i2, ..., ij, ..., ik.

The lowest numbered site on which this cell can be placed is ij − 1 + (k −

1).max(0, ij − d) + 1 ≥ k.ij − (k − 1).d. The term ij − 1 corresponds to

placing all cells in partition j that are before cell ij as relative order has to be

97

maintained within each partition. The terms max(0, ij − d) are the minimum

number of cells that have to be taken from each of the other k − 1 partitions

in order to satisfy the condition in equation 3.6. The highest numbered site

on which cell ij in partition j could have been in the initial placement is

k.ij. The maximum left displacement is k.ij − (k.ij − (k − 1).d) = (k − 1).d.

The highest numbered site on which cell ij can be placed is i1 + i2 + ... +

ik. The lowest numbered site on which this cell could have initially been is

k.min(i1, i2, ..., ij, ..., ik)− k+ 1. The maximum right displacement is i1 + i2 +

... + ik − k.min(i1, i2, ..., ij, ..., ik) + k − 1 ≤ k.min(i1, i2, ..., ij, ..., ik) + (k −

1).d− k.min(i1, i2, ..., ij, ..., ik) + k − 1 ≤ (k − 1).(d+ 1). Q.E.D.

Figure 3.9: Limiting the solution space explored

An example for the constraint in equation 3.6 is shown in Figure 3.9.

98

There are 6 cells and 3 partitions, each containing 2 cells. The figure shows

all possible subproblems (matrix nodes) which are arranged in the form of

a lattice. If we set d = 1 in equation 3.6, only the entries colored red are

computed, which are significantly less in number than the total number of

entries.

3.1.2.3 Keeping track of nets

For computing the cost while placing a vertex v at the ith site, we

encounter 3 types of nets (Figure 3.10):

1. Nets which start at v (i.e, no vertex of the net has been considered yet)

2. Nets which end at v (i.e, remaining vertices for the net have already been

considered)

3. Continuing nets. These may or may not be connected to v.

Finding which nets start at v is easy. For each net, we know the vertices

connected to it and their position in their respective sets. From the subproblem

index (i1, i2, . . . , ik), we check if the lowest index of any vertex connected to the

net is greater than the i′s (i1, i2, . . . , ik) for the corresponding set. Similarly,

we can find the nets ending at v. For continuing nets, we don’t really need to

track them individually. We just store the sum of the weights of the continuing

nets, since the width of each site is 1. While calculating the cost of placing v

at site i1 + i2 + · · ·+ ik − 1, we first extend the nets from the previous site to

99

the current site (take the distance between the sites and multiply by sum of

weights of continuing nets). This is required because the site locations may not

be contiguous due to blockages. Next, we add the costs for the starting and

ending nets (nets may start/end at different points within the unit square).

We also add the cost of the continuing nets (nets which started before and did

not end at v). This incremental handling of nets ensures that the HPWL cost

for a net can only remain constant or monotonically increase as more pins for

an affected net get considered during the dynamic programming.

Figure 3.10: Various components in the HPWL cost: extending, starting,
ending and continuing.

3.1.3 Complexity analysis

3.1.3.1 Special case: no bound on d:

The k-dimensional cost matrix has (N1 + 1)× (N2 + 1)× · · ·× (Nk + 1)

entries. This is (N
k

+ 1)k if the set sizes are roughly equal (This is an upper

bound; this number will be lower if set sizes are unequal). For filling each

entry, we look at the k entries in the dimensions immediately below. So, the

complexity is lower bounded by k.(N
k

+ 1)k. Next, consider cost computation.

For each of the k choices we consider for filling an entry, we have to compute

net costs. For this we have to go through all the nets connected to the vertices

100

being placed. There is an upper bound on the nets connected to a vertex(each

LAB/DSP/RAM has a fixed number of pins). Hence, this can be treated as

a constant. For determining which nets start/end at v, one might think that

the time complexity is k, but is is very unlikely that all nets will be connected

to vertices in k different sets for large k. If we take the sum over all matrix

entries, this would lead to Θ(p.k.(N
k

+ 1)k) operations, where p is the avg.

number of pins per net, which can be practically bounded by a constant for

realistic benchmarks. (This can be further reduced to min(p, k).k.(N
k

+ 1)k

operations)

3.1.3.2 Exact solution

Lemma 11 If we set k = N , we will have the optimal solution.

Proof: We already know that our algorithm gives optimal solution within our

setting. We need to show that the setting allows exploration of the full solution

space. If k = N , each vertex is in its own partition and preserving relative

order does not apply. We will proceed by induction. For N = 1, it is trivial as

we have only one choice in placing one vertex. Induction assumption: suppose

our algorithm can arrange M vertices optimally. For a problem of size M + 1,

the last site can take any of the M + 1 vertices. For each choice of the last

site, the previous M must be arranged optimally. Our algorithm does so by

the induction assumption. Since we take the optimum among all the possible

M + 1 choices, our algorithm gives the optimal solution for M + 1 vertices.

Q.E.D.

101

The complexity for the exact solution is Θ(p.N.(N
N

+1)N) = Θ(p.N.2N).

One may think that this problem requires checking all the N ! possible

enumerations(Θ(p.N !)), but it’s actually not so. To see why, let’s consider

a simple case - 6 vertices 1, 2, 3, 4, 5, 6. Suppose we already found that 3, 1, 2

is the best arrangement for vertices 1, 2, 3 when they are placed in the first

half. Knowing this, we don’t have to consider permutations 1, 2, 3,−,−,− ,

2, 1, 3,−,−,− at all (Since the cost is additive; total cost = cost for 1st half

+ cost of 2nd half; the 2 halves can be optimized independently). It is worth-

while noting that N.2N is orders of magnitude less than N ! for even moderately

large N . N ! is ∼ (N/e)N . For an idea of the magnitudes: 20.220 = 20971520

whereas 20! = 2432902008176640000.

3.1.3.3 General case: d is finite:

We assume fine partitioning of the initial placement. We further assume

that N is a multiple of k so that each partition has N
k

cells for the sake of

simplicity. This assumption does not change the complexity bounds derived

here.

The number of matrix entries computed is the number of tuples of

the form (i1, i2, ..., ik) where max(i1, i2 , ..., ik) −min(i1, i2, ..., ik) ≤ d with

0 ≤ ij ≤ N
k
∀ 0 ≤ j ≤ k. This number is (N

k
+1−d).((d+1)k−dk)+dk, which

can be calculated in the following way: The number of tuples (i1, i2, ..., ik)

such that 0 ≤ i1, i2, ..., ik ≤ d is (d + 1)k. The number of such tuples for 1 ≤

i1, i2, ..., ik ≤ d+1 is the same, and the number of tuples for 1 ≤ i1, i2, ..., ik ≤ d

102

is dk. Combining these 3 values, we can get the number of tuples (i1, i2, ..., ik)

such that 0 ≤ i1, i2, ..., ik ≤ d+ 1 and max(i1, i2, ..., ik)−min(i1, i2, ..., ik) ≤ d

as 2.(d+1)k−dk. (Tuples of the form 1 ≤ i1, i2, ..., ik ≤ d were double-counted

first and then subtracted.) We continue in this fashion for 2 ≤ ... ≤ d+2, 3 ≤

... ≤ d + 3, ... , N
k
− d ≤ ... ≤ N

k
and sum these numbers up, which amount

to (N
k

+ 1− d).(d+ 1)k − (N
k
− d).dk = (N

k
+ 1− d).((d+ 1)k − dk) + dk.

Each matrix node requires Θ(p.k) computation, so the overall com-

plexity is p.k.((N
k

+ 1− d).((d + 1)k − dk) + dk). Sanity check: setting d = N
k

gives a complexity of p.k.(N
k

+ 1)k, which was our result for the special case.

p.k.((N
k

+ 1− d).((d+ 1)k− dk) + dk) = p.k.((N
k

+ 1− N
k

).((N
k

+ 1)k− (N
k

)k) +

(N
k

)k) = p.k.((N
k

+ 1)k − (N
k

)k + (N
k

)k) = p.k.(N
k

+ 1)k

If we apply DP to the whole chip in windows of size N , the overall

runtime is C.p.k.((1
k

+ 1−d
N

).((d+ 1)k − dk + dk

N
)) where C is the total number

of cells/sites considered. An interesting observation is that this complexity

decreases with increasing N for d = 1.

3.1.4 DP in two dimensions

Interleaving within a single row/column has its own limitations

- it can get stuck in a local minima due to bad ordering of cells

(LABs/DSPs/RAMs/IOs etc.) in adjacent rows/columns as was shown with

example in Figure 3.1. It is therefore necessary to optimize locations of cells

in 2-dimensions all at once. This has been tried in the network flow / bipar-

tite matching and Mixed Integer Linear Programming approaches as discussed

103

before. However, in case of network flow / bipartite matching, the cost func-

tion becomes inaccurate if we try to move many cells at once. On the other

hand, MILP can give good solutions but the feasible problem size is too small.

Hence, we devised another algorithm to tackle this problem.

Extending our 1-dimensional DP formulation to 2 dimensions is non-

trivial because the costs in the 2 dimensions are not additive. When placing

a cell at a particular site, the cost of placing it cannot be directly added to

the optimal solution for all cells below it, as some of the unfinished nets in

the optimal solution of the subproblem may have different range of x or y

coordinates. In 1D, we could say that all those nets were to the left and ended

at the boundary of the last site in the subproblem, but it is not the case in 2D.

We introduce additional constraints to make 2-dimensional DP formulation

feasible:

1. cells in the same row will stay together

2. cells in the same column will stay together

For simplicity, we show a problem formulation with just 2 partitions for rows

(Sr1,Sr2) and 2 partitions for columns (Sc1,Sc2). This easily generalizes for

multiple partitions. cost[i][j][k][l] = min cost considering i rows from Sr1, j

104

rows from Sr2, k columns from Sc1 and l columns from Sc2:

cost[i][j][k][l] =min{

cost[i− 1][j][k − 1][l] + (Sr1[i], Sc1[k])
at ends

cost[i− 1][j][k][l − 1] + (Sr1[i], Sc2[l])
at ends

cost[i][j − 1][k − 1][l] + (Sr2[j], Sc1[k])
at ends

cost[i][j − 1][k][l − 1] + (Sr2[j], Sc2[l])
at ends

}

(3.7)

We start from (i, j, k, l) = (0, 0, 0, 0) and go till (|Sr1|, |Sr2|, |Sc1| ,|Sc2|). We

can simplify our formulation with the following lemma:

Figure 3.11: 2D DP: cells in the same row stay in one row, cells in the same
column stay in one column.

Lemma 12 Cost of placing (Srm, Scn) and the ends = cost of placing Srm at

row end + cost of placing Scn at column end.

Proof: HPWL of a net = horizontal span + vertical span. Since all cells

in the same column stay together, the y components of HPWLs of all nets

incident on that column will be invariant w.r.t column movement (does not

105

change vertical span), only row movement will affect them. Similarly, since all

cells in the same row stay together, the x components of HPWLs of all nets

incident on that row will be invariant w.r.t row movement (does not change

horizontal span), only column movement will affect them. Q.E.D.

Figure 3.12: 2D DP as applied on a window; In this example, the cells in the
white region are assumed to be stationary. Instead of moving a whole row or
column, we move parts of rows or columns.

Figure 3.11 illustrates the main idea. Cells 1, 7 and 13 are initially in

the same column, and they stay together in one column, even if they move to

different rows. Similarly, cells 1, 2 and 3 stay together in one row, even if they

move apart in columns. Observe that we need not move all the cells in the grid.

We can choose some rows/columns for interleaving. Figure 3.12 illustrates the

procedure in a small window. Here, we move sections of rows/columns instead

of entire rows/columns. The cells in the white regions may be assumed to

be stationary for this example. We would vary the window height and width

to ensure that cells have sufficient opportunity to move with respect to each

other. A whole row/column may not want to move cohesively but parts of

it may be pulled in different directions. Setting width and height of window

106

= width and height of chip respectively enables optimization of the whole

chip at once. Setting width or height to 1 would reduce this approach to

the previously discussed column or row DP respectively. Observe that the

x and y components of HPWL are now independent, so interleaving of rows

and columns can be done in parallel. Another advantage of our 2-dimensional

formulation is that it allows macros to move as demonstrated in Figure 3.13.

Here, we set the window height equal to or slightly greater than the macro

height. Here, we don’t interleave rows(otherwise relative positions of LABs

within a macro would change), only columns. For a fixed window, some macros

may be protruding out and those columns are discarded from the current

optimization problem. Those macros will be included when the window slides

up/down.

Figure 3.13: Selecting columns for 2D DP: We reject columns where macros
don’t fit in the window

3.1.5 Results

We tested our algorithm on an industrial benchmark set whose details

are given in Table 3.1. We used the output of an industrial strength global

placer and legalizer as starting point for all experiments in this subsection.

107

For 2D, we present the results for column section interleaving. We vary the

window height in steps and it is same for all the experiments. We update

timing weights after every four iterations. In all the data presented in this

subsection, we report the geometric average across all benchmarks that have

high statistical confidence.

Table 3.1: Benchmark set details

Design size # LABs, RAMs and DSPs
Minimum 4156
Maximum 40889
Average 14850

Number of designs 86

For our experiments, we have 3 parameters: N (window length), k

(number of partitions) and I (number of iterations). We set d=∞ for these

experiments. One iteration consists of one pass of row DP, one pass of column

DP and one pass of 2D DP.

We compare our results with an implementation of the row-based DP

algorithm in [37], with window size of 25 and 16 iterations. Each DP iteration

for this implementation has 3 rounds of row optimization to be comparable in

terms of number of moves attempted. On the average, our algorithm improves

wirelength by 3.46%, and the maximum clock frequency (Fmax) by 0.45%.

Since our algorithm is designed with parallelism in mind, we observe that

the parallel runtime of our algorithm is 5.66x lower than the serial runtime

of [37]. For the same number of partitions, our results indicate that applying

DP on rows, columns, and rectangular grids improves wirelength by 2.6%,

108

while improving Fmax by 0.2%.

Table 3.2: Comparison with [37]

Parameters ∆Wirelength(%) ∆Fmax(%)
[37], N=25, I=16 -1.11 1.14

ours, N=25, k=3, I=16 -1.97 1.39
row DP only

ours, N=25, k=3, I=16 -4.57 1.59
row + column + 2D DP

We run separate experiments by varying N, k and I individually to see

their effect on wirelength and Fmax. The results are shown in Tables 3.3, 3.4

and 3.5.

Table 3.3: Effect of changing window length for k=3 and I=16

Parameter ∆Wirelength(%) ∆Fmax(%)
N=10 -4.04 1.48
N=25 -4.57 1.59
N=50 -4.98 2.24
N=100 -5.11 1.89

From Table 3.3, we see that increasing window length yields better

improvement in wire and Fmax on average. A longer window allows larger

cell displacement. Since we use tnets and weights on nets, it is important

that they actually correlate with the net criticality in order to model timing

correctly. If we move a cell too far in one step, some other nets may become

critical. This can explain the slight dip in Fmax improvement for N=100. The

optimum N for Fmax improvement appears to be between 50 and 100.

Table 3.4 shows an interesting result. Increasing number of partitions

109

Table 3.4: Effect of changing number of partitions for N=25 and I=16

Parameter ∆Wirelength(%) ∆Fmax(%)
k=3 -4.57 1.59
k=5 -4.93 1.28
k=7 -5.02 0.71

improves wire but decreases Fmax improvement. Wire improvement is related

to cell displacement, and bigger k allows more displacement (less number of

relative order constraints). However, large displacement steps are not good for

Fmax, for the same reason as stated before.

Table 3.5: Effect of changing number of iterations for N=25 and k=16

Parameter ∆Wirelength(%) ∆Fmax(%)
I=10 -4.38 0.98
I=16 -4.57 1.59
I=25 -4.70 2.28
I=40 -4.81 3.23

Table 3.6: Runtimes

Experiment Runtime(seconds)
1 Serial, N=25, k=3, I=16 113.12
2 Parallel(16 threads), N=25, k=3, I=16 14.28

Parallel speedup = 7.92
3 [37] serial, N=25, I=16 80.89

Table 3.5 shows that iterating more with same N and k consistently

improves both wire and Fmax. From these experiments, we learn that making

many small moves is better than making a few abrupt moves for increasing

Fmax. In general, running more iterations also allows our algorithm to work

110

Table 3.7: DP with new timing cost and selective LAB optimization

Parameter ∆ Fmax(%) ∆ Wirelength(%)
geomean 7.352 0.594

confidence 13.534 2.245

Figure 3.14: Serial(light blue) and parallel(dark blue) runtimes(in seconds) vs
design size; #CBEs = #LABs + #DSPs + #RAMs

Figure 3.15: % Wire change (sorted from smallest to largest) for all designs

111

Figure 3.16: % Fmax change (sorted from smallest to largest) for all designs

with more accurate timing information since the timing weights are updated

after every four iterations.

Table 3.6 shows the runtime improvement our algorithm gets by par-

allelizing. Experiments were run on 2.7 GHz, Intel R© Xeon R© 2680, 16 core

machines with 16 threads. Runtime vs. design size is shown in Figure 3.14.

Sorted %Fmax and %wirelength changes are shown in Figures 3.15 and 3.16.

As we discussed before, our linear timing cost with tnets and net weights may

not be accurate for very large displacements. However, we can always cache

the initial placement and discard our changes if Fmax degrades. By doing

this for N=25, k=3 and I=16, we get 2.51% better Fmax and 3.60% better

wirelength over our starting point (legalized global placement). Running more

iterations will in general cost more runtime, but can improve wirelength and

Fmax as shown in Table 3.5.

We also implemented an enhanced timing cost and ran DP selectively

on LABs in critical paths and observed significant improvement in Fmax (as

shown in Table 3.7) with placer worst case time increase of 13.428% and ex-

112

ternally measured total time increase of 3.096%

3.2 GPU Acceleration of Dynamic Programming

Detailed placement takes a significant part of total placement runtime,

especially after global placement has been accelerated, as described in chapter

2. Reducing detailed placement runtime through parallelization and accelera-

tion can yield considerable runtime improvements. However, not all detailed

placement algorithms are amenable to parallelization / acceleration. It is im-

portant to devise the right algorithm that can run fast and yet produce good

quality results.

Prior work on detailed placement can be classified into the following

broad classes:

• Greedy [32] [35]

• Simulated Annealing [30] [31] [36]

• Network flow/ matching [33] [34]

• Mixed Integer Linear Programming (MILP) [28] [29]

• Interleaving or Dynamic programming (DP) [37]

• Branch-and-bound [39]

Among these, greedy / simulated annealing techniques are the easiest to accel-

erate on a GPU as demonstrated in [14] and [15]. They involve evaluating and

113

performing numerous moves and can be parallelized in terms of move calcula-

tions but they require synchronization steps to find the best move and resolve

conflicting moves. In some cases, good moves are uncovered only when certain

other moves have been performed that interfere with each other and need to

be serialized.

Network flow/ matching, mixed integer-linear programming and

branch-and-bound techniques typically solve many small instances of the re-

spective problems and can be parallelized by assigning different problems to

different threads or workers. However, parallelization within the problem itself

is limited for these techniques. Moreover, the number of variables and con-

straints needed for linear / integer programs increases rapidly with increas-

ing problem size, leading to unfavorable runtime. Interleaving or dynamic

programming, on the other hand, offers fine-grained parallelism within the

problem. The core of the algorithm involves creating a dense solution matrix,

which can be easily accelerated on a GPU.

The key contributions of our work towards accelerating detailed place-

ment on a GPU [43] are as follows:

• We propose several optimizations to the dynamic programming algo-

rithm described in the previous section to enable it to run fast on a

GPU, which include restructuring the algorithm to improve memory ac-

cess patterns, grouping similar work together, managing threads, etc.

• We propose a flow which performs the entire detailed placement on a

114

GPU, thus eliminating the memory transfer overhead between CPU and

GPU.

• We analyze the complexity for the slowest component of our algorithm

and show that the speedup of our proposed method is linear in the

number of workers or threads available.

3.2.1 Overall Flow

The dynamic programming algorithm is applied by dividing the chip

floorplan into non-overlapping windows which are sufficiently far apart and

solving an independent DP problem in each window. Each set of windows

generates a batch of DP problems (∼126 in our case) for the GPU and multiple

such sets are required for covering the entire chip.

We have 2 different flows with GPU acceleration: hybrid and full GPU

(Figure 3.17). Recall that DP involves filling a matrix (Equation 3.5). In the

hybrid flow, the DP problems are first formed using multi-threaded CPU code.

We then offload the work of filling the matrix entries (Equation 3.5) to the

GPU. Once the matrix is filled, we copy the solution back from the GPU and

update the object (cell) locations using CPU. In the full GPU flow, we transfer

the entire netlist and floorplan data to the GPU memory at the beginning of

detailed placement stage. All subsequent iterations of detailed placement take

place on the GPU. We copy the location data back from the GPU at the end

of detailed placement.

We discuss the details of the GPU implementation of the dynamic pro-

115

gramming algorithm for k=3, which has the best QoR/runtime tradeoff ac-

cording to the results published in [41]. Deciding the value of k at runtime on

a GPU would incur significant performance impact as it would add an extra

level of iteration. It is better to have a separate implementation for each de-

sired value of k as it allows us to manually unroll loops and optimize our code.

It is also possible to experiment with multiple implementations for different

values of k on several GPUs and dynamically pick the best solution,

3.2.2 CUDA basics

We briefly discuss some relevant details of CUDA as described (sub-

ject to change) in [65]. Computations in CUDA are organized into kernels.

The workload in each kernel is distributed into a number of blocks (can be

specified at kernel launch time). Each block consists of a number of threads

(can also be specified). CUDA blocks run on streaming multiprocessors in the

GPU. The blocks are scheduled independently depending on the availability of

streaming multiprocessors. Threads within a block are bundled into groups of

32 called warps. Threads in a half-warp run in lockstep with each other. Any

divergence of control flow in the half-warp (ex: some threads executing an if

condition while others executing the corresponding else condition) results in

sequential execution of the two divergent paths. Warps themselves may not

run in lockstep with each other. Hence, it is sometimes necessary to explicitly

synchronize threads in a block.

There are multiple levels of memory with caches. There is a maximum

116

Figure 3.17: CPU, hybrid (CPU+GPU) and GPU flows. Orange parts execute
on CPU, green parts execute on GPU and memory transfers between CPU and
GPU are shown in red.

117

of 64kB shared memory per block (at least for our device, TITAN Xp). Mem-

ory accesses should be coalesced for best performance. Unaligned accesses and

memory bank conflicts cause multiple reads. One exception for bank conflicts

is when all threads in a block access the same address in a bank, in which

case the data is broadcast to all threads. These features also depend on the

compute capability of the device.

Figure 3.18: Flattened data structures.

3.2.2.1 Data structures

We use flattened data structures in the form of arrays of fields as they

lead to better coalescing of memory accesses. For example, the cells for each

net and nets for each cell are stored in compressed sparse row format (Figure

3.18). The data for all the DP problems are stored sequentially in arrays.

Since we cannot use data structures similar to stl (C++ standard tem-

plate library) vectors, sets or maps due to the inefficiency of dynamic memory

allocation, we adapted the algorithms to use arrays. This introduced some

complications like extra memory requirement. Example: For collecting nets

(without duplicates) connected to a set of objects in a DP problem, we main-

118

tain an array of size number of nets × number of problems resembling an

adjacency matrix between nets and problems.

Table 3.8: Kernels for various tasks

Task Kernel(s)
Initialize variables Init Cluster Variables, Init Cluster Net Variables,

Init Net Variables
Get objects Init Objects

Get nets Parallel scan to calculate cumulative #nets,
Get Nets

Process nets Parallel scan to get net starting locations,
Preprocess Nets, Preprocess Sets, Init Nets

Fill cost matrix Fill Cost Matrix
Update locations Trace Solution, Update Locations

3.2.2.2 Tasks

Our GPU flow can be loosely grouped into a set of tasks (Figure 3.17).

Each task (Table 3.8) calculates some variables of interest using the kernels

that we developed and/or existing libraries like Thrust [66]. We list the tasks

below:

• Initialize variables: All variables used by all kernels are initialized for

each iteration of detailed placement.

• Get objects: The chip floorplan is divided into windows on which DP

problems are solved. We need to collect the movable objects in each

window and the sites on which those objects can be placed.

119

• Get nets: All the nets connected to the objects in each DP problem are

collected and duplicates are removed. A net in the netlist may belong

to multiple DP problems.

• Process nets: We have to calculate data for each net in each problem

like first and last objects connected to it in each set and the bounding

box of the external pins (pins which are not in the current problem).

• Fill cost matrix: Cost matrices for all DP problems are filled with

data such as partial minimum cost, partial solution for the minimum

cost, and partial sum of net weights for each matrix entry.

• Update locations: The solution to each DP problem is constructed by

traversing the cost matrix from end to beginning and the locations of

the objects are updated.

Using too many threads on one CUDA block can sometimes slow the

program down due to various factors like irregular memory access, scarcity of

registers, etc which also depend on the architecture of the GPU being used.

So we decided to test two versions of our matrix filling kernel: one which

separates out different DP problems into different CUDA blocks (we call it

independent sub-flow) and one in which all the blocks (except the last one)

have the same number of threads and may solve parts of multiple DP problems

at any given time (we call it combined sub-flow).

120

3.2.3 Kernels

We describe some of the important kernels in this section. For the sake

of simplicity, we only list the important variables and operations within the

kernels and omit all other details. The number of threads per block (blockDim)

and number of blocks are specified at the beginning of kernel descriptions.

3.2.3.1 Fill Cost Matrix

Independent: blockDim = 1024, #blocks = #problems

Combined: blockDim = 1024, #blocks = d#nodes onhyperplane×#problems
1024

e

The main workload of the DP algorithm is filling the cost matrix. We

fill the matrix hyperplane-by-hyperplane as this offers the most amount of

parallelism. Each thread in a block fills at most one entry in each hyperplane.

For our implementation, we chose N=84 which is more than sufficient

as wirelength improvement saturates at higher N. We also require that all

partitions be of the same size, which is the case for N=84. This ensures

that we have to compute which nodes belong to which hyperplane and the

interdependence between hyperplane nodes only once, which saves a lot of

time as this kind of computation is hard to accelerate on a GPU.

Since we have a fixed problem size (84), we introduce dummy objects

and sites at the end if our actual problem is smaller. Note that this does

not alter the solution space explored as the since we ensure that the dummy

objects are placed only at the dummy sites at the periphery of the window.

121

Algorithm 2 Fill Cost Matrix (independent sub-flow)

for i = 1 to N do
//shared variables: matrix offset, sitegap
if threadId == 0 then

calculate matrix offset and sitegap
end
syncthreads;
//per-thread variables: cost1, cost2, cost3
cost1=∞; cost2=∞; cost3=∞;
if threadId < # nodes on hyperplane then

determine id using matrix offset, blockId and threadId ;
if # objects taken from set 1 > 0 & site is legal then

for net ∈ last object taken from set 1 do
determine if net starts, ends or continues;
cost1 = cost1 + cost of net ;

end

end
if # objects taken from set 2 > 0 & site is legal then

for net ∈ last object taken from set 2 do
determine if net starts, ends or continues;
cost2 = cost2 + cost of net ;

end

end
if # objects taken from set 3 > 0 & site is legal then

for net ∈ last object taken from set 3 do
determine if net starts, ends or continues;
cost3 = cost3 + cost of net ;

end

end
matrix cost[id]=min(cost1,cost2,cost3);
matrix argmin[id]=argmin(cost1,cost2,cost3);

end
syncthreads;

end

122

Figure 3.19: Filling the cost matrix for a single problem. This operation
is performed on one block. Different nodes in a hyperplane are assigned to
different threads in the block. Threads are synchronized after each hyperplane
is filled.

Figure 3.20: Independent sub-flow: Different problems are assigned to different
blocks which run independently.

123

Figure 3.21: Combined sub-flow: Hyperplanes from different problems are
grouped together. This example has blockDim=7

Independent sub-flow: We assign each DP problem to a block (Fig-

ure 3.20) to avoid synchronization between blocks. This assignment implies

that all the threads within a block are not fully utilized. The sizes of different

hyperplanes are different, with the max size near the middle of the hypercube

and minimum near the corners. For DP with three partitions, the average

size of a hyperplane is Θ(N2). In general, for a k-partition DP, it is Θ(Nk−1).

Note that our choice of mapping one DP problem to one block also limits the

problem size as each block can have at most 1024 threads. For k = 3, the

maximum hyperplane size is ∼ N2

4
√

3
≤ 1024. Hence, N ≤ 84, which is more

than sufficient.

Algorithm 2 describes the process of filling matrix entries for a DP

problem for the independent sub-flow. Each block (DP problem) iterates over

124

hyperplanes indexed from 1 to N. Each iteration of the loop proceeds as follows:

First, shared variables like matrix offset and sitegap (distance of the current

site from the previous site) are calculated by thread0. We synchronize all

threads in the block after this to ensure that they all receive the right value

for these shared variables. Each thread then independently checks if its id is

less than the number of nodes on the current hyperplane. If this condition is

satisfied, then it evaluates three different cases of appending an object from

a set to the end of the current placement and selects the best one. All the

threads in the block are then synchronized so that computation on the current

hyperplane is completed. Figure 3.19 shows the execution of the algorithm for

one block (problem).

Combined sub-flow: We utilize all the threads in each CUDA block

(except the last one) in this sub-flow. This approach also fills the matrix

hyperplane-by-hyperplane, except that we club all the matrix nodes for the

corresponding problems into one combined hyperplane and fill that with one

kernel call (Figure 3.21). Each thread has to determine which DP problem it

is working on and also the corresponding matrix node. One disadvantage of

this approach is that we have to iterate over the hyperplanes outside of the

kernel. We do it using a loop in the CPU code. We maintain a pointer to the

current hyperplane on the GPU memory which is passed as a variable to the

kernel and also increment it in the loop. The rest of the kernel is similar to

the kernel in the independent sub-flow.

125

3.2.3.2 Get Nets

blockDim = 1, #blocks = #problems

This kernel (Algorithm 3) finds the ids for nets for each DP problem.

Each block maps to a DP problem. Each block iterates over all objects in

the problem and all nets for each object (nested iteration) and assigns a serial

number to a net if it has not been visited before. To do this, we need to

maintain an array of the size number of nets × number of problems. Even

though this may seem large, it is manageable (400000 nets and 126 problems:

∼200MB of memory). We only use one thread per problem to do all the work

as using more threads can increase runtime due to irregular memory accesses

from the nested iteration.

Algorithm 3 Get Nets
count = 0;
for i = 1 to N do

for net ∈ objecti do
if net not marked for this problem then

mark net for this problem;
id of net in this problem = count;
count++;

end

end

end
nets in this problem = count;

3.2.3.3 Preprocess Nets

blockDim = 1024, #blocks = #problems

126

This kernel (Algorithm 4) collects all the nets incident on objects in a

DP problem and stores them in an array without duplicates. Each DP problem

is mapped to a block. Each block iterates over all the nets in the netlist and

checks if a net is incident on some object in the problem (using id of a net in

a problem computed by Get Nets kernel). Each thread iterates on a subset of

nets. We have observed that the runtime of this kernel depends heavily on the

policy of allocating nets to threads. A stride of 1024 runs in 1ms whereas a

stride of 1 runs in 36ms for one set of problems in one test case (Figure 3.22).

Algorithm 4 Preprocess Nets

if threadId==0 then
calculate offset for this problem in expanded net array;

end
syncthreads;
//offset used in constructing subsets of nets
for net ∈ subset of nets do

if net ∈ this DP problem then
add net to this problem using id computed in kernel Get Nets;
set problem id for this instance of net ;

end

end

3.2.3.4 Preprocess Sets

blockDim = N, #blocks = #problems

This kernel (Algorithm 5) finds the nets connected to objects in each of

the three sets for each problem. Each DP problem maps to a block and each

thread in the block maps to an object in the problem. Each thread iterates

over all nets connected to the object and fills net ids for the set to which the

127

Figure 3.22: Two different memory access strides for processing nets on the
same block for an example netlist with 1000000 nets.

128

object belongs.

Algorithm 5 Preprocess Sets

for net ∈ objectthreadId in current problem do
if objectthreadId ∈ set1 then

add net to set1 net ids;
end
if objectthreadId ∈ set2 then

add net to set2 net ids;
end
if objectthreadId ∈ set3 then

add net to set3 net ids;
end

end

3.2.3.5 Initialize Nets

blockDim = 64, #blocks = d total#nets for all problems
64

e

This kernel (Algorithm 6) finds the first and last objects in each set

and external bounding box for all the nets collected for all the DP problems.

All the collected nets are split among blocks and threads. We have empirically

determined the best block dimension to be 64. Each thread maps to a collected

net in a problem. The same net can belong to multiple problems so there can

be multiple instances of the same net in the array. Hence, we need an array to

store which problem that particular instance of a net belongs to. Each thread

iterates over all cells connected to a net.

3.2.3.6 Trace Solution

blockDim = 1, #blocks = #problems

129

Algorithm 6 Initialize Nets

calculate net id using blockId and threadId;
if net id < total #nets for all problems then

for object ∈ netnet id do
find the problem to which object belongs;
find the set to which object belongs;
update first and last objects for netnet id in set ;
update external bounding box of netnet id using x/y location of object ;

end

end

This kernel traverses a filled cost matrix from the last entry to the first

and finds the set from which the best solution for each site has been taken

(Figure 3.23). Each DP problem maps to a block. Each block has to iterate

over N matrix entries only, so 1 thread per block is a reasonable choice.

3.2.4 Complexity analysis

As stated in the previous section, filling the cost matrix (which is the

main bottleneck) involves Θ(p.k.M.(N
k

+1)k) operations, where p is the average

number of pins per net and M is the number of problems.

3.2.4.1 Independent sub-flow:

Assume that we have T threads. The total amount of work for filling

the cost matrix is divided among those T threads roughly evenly (there is an

upper bound on work per thread which varies linearly with k). However, wait-

ing for threads to synchronize within blocks leads to some under-utilization of

threads. For our implementation with k=3, this contributes a constant factor

130

Figure 3.23: Constructing the placement solution after the cost matrix is filled.

131

to the runtime. We can roughly calculate this factor by extension from dis-

crete to continuous domain. The number of matrix entries to be filled can be

thought of as the volume (N
3

27
) of a cube with side N

3
. In our GPU implemen-

tation, the number of threads that we require per block is proportional to the

maximum cross section area of the cube perpendicular to the main diagonal,

which corresponds to a hexagon of side N
3
√

2
. This hexagon is swept over the

diagonal of the cube whose length is N√
3
. This leads to a total volume of N3

12
.

The constant factor in our runtime is the ratio of the two volumes which is

27
12

= 2.25. Hence, runtime = p × 3 × max(
2.25×M.(N

3
+1)3

T
, N). There is a

lower bound on the parallel runtime because in the best case we have to fill N

hyperplanes one after another but each of them would take constant time.

3.2.4.2 Combined sub-flow:

In this case, all the blocks are fully utilized except the last block in

each hyperplane. The number of blocks grows linearly with problem size as

the maximum number of threads per block is a constant. The effect of the last

block can be accounted for by pessimistically adding one extra block for each

hyperplane which adds up to a constant multiple of N. runtime = p × 3 ×

max(
M.(N

3
+1)3+c.N

T
, N), where c is a small constant.

3.2.5 Results

We tested our algorithm on the ISPD 2016 FPGA Placement Contest

[71] benchmarks. We used the packing, global placement and legalization flow

132

of UTPlaceF [21], which is in improved version of the placer that secured the

first place in the contest. Table 3.9 shows some benchmark statistics (post

packing).

The output of our implementation of the DP algorithm is same for

CPU, CPU+GPU and GPU flows. We ran our experiments on a machine

with an Intel R© i9-7900X CPU @ 3.3GHz, 10 cores and 20 threads and an

NVIDIA R© TITAN Xp GPU. Table 3.10 shows the runtimes for multi-threaded

CPU, hybrid (CPU+GPU) and GPU flows. The CPU part in our hybrid

implementation uses 20 threads. The runtimes are reported for one iteration

of DP over the whole chip. We observe that the GPU flow provides speedups

in the range of 3-5x over 20-threaded CPU implementation for large designs.

Table 3.9: Benchmark Statistics

Design #cells #nets
FPGA01 8315 44933
FPGA02 13504 67118
FPGA03 42523 180499
FPGA04 43041 209852
FPGA05 43038 244844
FPGA06 65626 310637
FPGA07 65530 360837
FPGA08 64164 319900
FPGA09 67023 389237
FPGA10 66129 449126
FPGA11 66489 372202
FPGA12 68183 405376

Table 3.12 shows the runtime breakdown for various tasks. As expected,

a major portion of the runtime is spent in filling the cost matrix. Table 3.13

133

T
ab

le
3.

10
:

R
u
n
ti

m
es

in
m

il
li
se

co
n
d
s

fo
r

IS
P

D
20

16
co

n
te

st
b

en
ch

m
ar

k
s

D
e
si
g
n

M
u
lt
i-
th

re
a
d
e
d

C
P
U
;
T
=
th

re
a
d
s

H
y
b
ri
d

G
P
U

1
T

2
T

4
T

6
T

8
T

1
0
T

1
2
T

1
4
T

1
6
T

1
8
T

2
0
T

in
d
e
p
.

c
o
m
b
.

in
d
e
p
.

c
o
m
b
.

F
P
G
A
0
1

2
4
6
7

2
1
2
0

1
3
8
2

1
3
7
5

1
1
3
9

9
3
8

8
5
4

7
7
5

7
2
2

6
9
3

6
2
5

3
9
4

4
2
4

2
7
6

3
2
4

F
P
G
A
0
2

3
4
9
8

3
1
5
2

1
9
0
3

1
9
3
2

1
6
3
7

1
2
0
8

1
2
1
3

1
1
0
3

9
9
0

9
3
9

8
1
6

4
3
7

4
6
6

2
8
2

3
2
7

F
P
G
A
0
3

1
0
7
7
6

8
0
3
9

4
4
6
2

3
1
6
0

2
4
4
3

1
9
9
5

1
6
7
6

1
5
6
7

1
4
5
9

1
5
0
5

1
4
7
1

7
2
7

6
9
9

3
9
5

3
8
5

F
P
G
A
0
4

1
1
8
5
8

7
8
9
2

5
0
9
7

3
5
2
1

2
7
7
9

2
3
1
7

1
9
3
6

1
7
1
6

1
7
6
5

1
7
6
2

1
6
7
1

7
6
6

7
7
4

4
3
1

4
2
2

F
P
G
A
0
5

1
4
3
6
6

1
0
8
3
7

5
8
3
9

4
1
0
1

3
1
7
6

2
5
8
8

2
2
3
5

2
0
1
9

2
0
5
5

2
0
7
0

1
9
7
8

8
5
5

8
7
9

4
6
3

4
5
8

F
P
G
A
0
6

1
7
7
1
4

9
6
7
3

5
1
3
4

3
6
5
9

2
7
6
0

2
3
3
4

2
6
0
2

2
3
3
5

2
2
3
9

2
0
9
1

1
9
4
1

9
5
9

9
3
6

4
9
9

5
0
1

F
P
G
A
0
7

2
0
5
3
7

1
1
1
2
9

6
1
6
7

4
3
0
4

3
3
5
0

2
7
0
3

2
9
6
1

2
7
2
6

2
5
5
5

2
4
2
7

2
2
2
9

1
0
3
1

1
0
4
1

5
4
5

5
5
8

F
P
G
A
0
8

1
8
7
9
5

1
0
9
8
1

5
8
0
6

4
0
1
0

3
0
9
2

2
4
8
9

2
7
4
0

2
5
5
7

2
3
8
9

2
1
9
8

2
0
5
9

9
1
5

9
1
0

4
8
4

4
9
7

F
P
G
A
0
9

2
2
4
8
9

1
3
1
8
6

7
0
1
0

4
8
6
2

3
7
8
7

3
1
5
1

3
3
8
8

3
1
1
9

2
9
2
4

2
7
6
2

2
5
5
4

1
1
0
7

1
1
5
8

5
8
0

6
2
9

F
P
G
A
1
0

1
9
0
3
5

1
0
0
4
1

6
2
7
1

4
2
0
7

3
4
3
4

2
7
7
3

2
6
3
5

2
6
8
3

2
5
6
4

2
4
4
0

2
2
8
7

1
0
2
8

1
0
2
4

5
6
0

5
6
7

F
P
G
A
1
1

2
0
4
1
8

1
0
9
3
2

6
0
1
5

4
2
2
8

3
2
3
1

2
6
6
0

3
0
1
6

2
7
7
1

2
6
2
5

2
4
8
7

2
2
7
0

9
7
7

1
0
1
1

5
5
5

5
8
1

F
P
G
A
1
2

1
8
5
7
1

9
4
3
7

5
2
9
6

3
7
0
3

2
9
2
8

2
4
5
0

2
5
8
5

2
3
7
7

2
2
9
2

2
1
3
4

1
9
3
5

9
8
1

9
5
8

5
4
0

5
5
6

134

T
ab

le
3.

11
:

R
u
n
ti

m
es

in
m

il
li
se

co
n
d
s

sp
en

t
on

co
m

p
u
ta

ti
on

fo
r

IS
P

D
20

16
co

n
te

st
b

en
ch

m
ar

k
s

D
e
si
g
n

M
u
lt
i-
th

re
a
d
e
d

C
P
U
;
T
=
th

re
a
d
s

H
y
b
ri
d

G
P
U

1
T

2
T

4
T

6
T

8
T

1
0
T

1
2
T

1
4
T

1
6
T

1
8
T

2
0
T

in
d
e
p
.

c
o
m
b
.

in
d
e
p
.

c
o
m
b
.

F
P
G
A
0
1

2
4
4
8

2
1
0
0

1
3
6
3

1
3
5
5

1
1
1
9

9
1
8

8
3
4

7
5
5

7
0
2

6
7
4

6
0
6

2
2
9

2
5
1

1
1
1

1
6
3

F
P
G
A
0
2

3
4
7
9

3
1
3
3

1
8
8
4

1
9
1
2

1
6
1
8

1
1
1
8

1
1
9
3

1
0
8
3

9
7
0

9
1
9

7
9
7

2
6
9

2
9
0

1
1
4

1
6
5

F
P
G
A
0
3

1
0
7
5
7

8
0
2
0

4
4
4
3

3
1
4
0

2
4
2
3

1
9
7
6

1
6
5
7

1
5
4
7

1
4
3
9

1
4
8
5

1
4
5
2

5
5
5

5
1
9

2
1
5

2
0
4

F
P
G
A
0
4

1
1
8
3
9

7
8
7
2

5
0
7
7

3
5
0
2

2
7
6
0

2
2
9
8

1
9
1
7

1
6
9
7

1
7
4
5

1
7
4
3

1
6
5
1

6
0
0

5
9
2

2
4
6

2
4
2

F
P
G
A
0
5

1
4
3
4
6

1
0
8
1
8

5
8
2
0

4
0
8
1

3
1
5
7

2
5
6
8

2
2
1
5

2
0
0
0

2
0
3
5

2
0
5
0

1
9
5
8

6
8
8

7
0
3

2
7
8

2
7
5

F
P
G
A
0
6

1
7
6
9
4

9
6
5
3

5
1
1
5

3
6
4
0

2
7
4
1

2
3
1
4

2
5
8
3

2
3
1
6

2
2
1
9

2
0
7
2

1
9
2
1

7
8
3

7
6
1

3
0
7

3
1
0

F
P
G
A
0
7

2
0
5
1
8

1
1
1
0
9

6
1
4
8

4
2
8
5

3
3
3
0

2
6
8
3

2
9
4
1

2
7
0
7

2
5
3
6

2
4
0
8

2
2
1
0

8
6
4

8
6
4

3
4
8

3
6
2

F
P
G
A
0
8

1
8
7
7
6

1
0
9
6
2

5
7
8
7

3
9
9
0

3
0
7
3

2
4
7
0

2
7
2
1

2
5
3
8

2
3
7
0

2
1
7
9

2
0
4
0

7
4
6

7
2
9

2
9
1

3
0
2

F
P
G
A
0
9

2
2
4
7
1

1
3
1
6
7

6
9
9
1

4
8
4
3

3
7
6
7

3
1
3
2

3
3
6
9

3
1
0
0

2
9
0
5

2
7
4
3

2
5
3
5

9
3
5

9
7
9

3
8
0

4
2
8

F
P
G
A
1
0

1
9
0
1
6

1
0
0
2
2

6
2
5
2

4
1
8
8

3
4
1
5

2
7
5
4

2
6
1
6

2
6
6
3

2
5
4
5

2
4
2
1

2
2
6
8

8
5
7

8
4
6

3
6
1

3
6
7

F
P
G
A
1
1

2
0
3
9
9

1
0
9
1
3

5
9
9
6

4
2
0
9

3
2
1
1

2
6
4
1

2
9
9
7

2
7
5
2

2
6
0
7

2
4
6
9

2
2
5
1

8
0
4

8
3
1

3
5
6

3
8
2

F
P
G
A
1
2

1
8
5
5
4

9
4
1
9

5
2
7
9

3
6
8
6

2
9
1
0

2
4
3
3

2
5
6
8

2
3
6
0

2
2
7
4

2
1
1
6

1
9
1
9

7
4
3

7
7
6

3
3
8

3
5
4

135

Table 3.12: Runtime breakdown for various tasks for full GPU flow

Task
%Runtime

indep. comb.
Initialize variables 2.63 2.39

Get objects 0.13 0.12
Get nets 1.39 1.26

Process nets 4.48 4.07
Fill cost matrix 91.26 92.07

Update locations 0.07 0.06

shows variation of runtimes for various kernels with respect to blockDim. The

runtimes are reported for one set of DP problems (∼126). The kernel ‘Initialize

Nets’ takes exceptionally high runtime for blockDim = 1024. We suspect that

this is due to high register demand for the kernel as it computes many variables.

Table 3.13: Runtimes of Kernels in milliseconds vs blockDim

blockDim Initialize Nets Fill Cost Matrix (comb.)
1 19.0 126.1
2 15.0 150.3
4 15.2 98.6
8 15.5 70.7
16 15.2 53.0
32 14.5 41.3
64 14.5 40.3
128 14.5 39.8
256 14.5 38.6
512 14.7 41.1
1024 53.5 42.6

We see that the runtimes for the combined sub-flow are slightly higher

than those for the independent sub-flow. This confirms our hypothesis that

utilizing all threads in each block creates other problems like irregular memory

136

access, unavailability of registers, etc. which offset the benefits of paralleliza-

tion. The fact that reducing blockDim from 1024 to 256 reduces the time

taken to fill the cost matrix further supports our conclusion.

Figure 3.24: Runtime for computation (blue) in milliseconds on left axis and
speedup (red) over single-threaded CPU implementation on right axis for the
design FPGA09 for multi-threaded CPU, hybrid and GPU implementations

Since there is significant runtime penalty for transferring data between

CPU and GPU, it is reasonable to move major parts of the tool flow like global

placement (as demonstrated in [11]), packing and legalization to GPU. In such

a case, the memory allocation overhead can be hidden by previous operations

So, we report runtimes without the data transfer part for GPU in Table 3.11.

We have also excluded memory allocation times for the CPU part. We see

that we can get up to 7.01x speedup for large benchmarks like FPGA08.

Note that in both Tables 3.10 and 3.11, data transfer from CPU to GPU

137

happens only once in the GPU flow and the data is reported for one iteration.

If we increase the number of iterations (for example, to 16, as in [41]), the ratios

between Table 3.10 and Table 3.11 values would asymptotically converge to 1.

Hence, speedups of ∼6x seem plausible.

3.3 FPGA Acceleration of Dynamic Programming

Detailed placement takes a significant portion of the overall placement

runtime, even when it is parallelized and run on multi-threaded CPUs. Hence

it is desirable to accelerate detailed placement on hardware. Section 3.2 de-

scribes GPU acceleration of the dynamic-programming-based detailed place-

ment algorithm in section 3.1. In this section, we describe FPGA acceleration

of the same dynamic programming algorithm. This is an attractive option to

customers who already have FPGAs because it would not be necessary to buy

additional devices like GPUs just to help program the FPGAs.

We briefly summarize the tasks involved in our dynamic-programming-

based detailed placement algorithm:

• Initialize DP problems. This step involves finding movable objects in

each window, assigning sets to those objects, collecting nets connected

to those objects and finding endpoints of all such nets.

• Compute matrix entries. This step involves computing solutions to sub-

problems and saving the best solution for each matrix entry.

• Trace best solution through the matrix and update cell locations.

138

Figure 3.25: Various levels of parallelization within the dynamic programming
algorithm. Each level is highlighted by a rectangle.

Figure 3.26: Dynamic programming recurrence and memory dependency.

Figure 3.27: Various types of nets encountered while solving a subproblem

139

Figure 3.28: Computations involved in filling a matrix entry highlighted by
rectangles.

Figure 3.29: Separating out computations involved in filling a matrix entry.

140

Filling the matrix entry takes majority of the runtime, as discussed in the

previous section. Each matrix entry represents the best solution to a subprob-

lem in which a certain number of the cells are placed and the rest are not

yet placed. For computing the cost while placing a cell v at the ith site, we

encounter 3 types of nets, as shown in Figure 3.27:

1. Nets which start at v (i.e, no cell of the net has been considered yet)

2. Nets which end at v (i.e, remaining cells for the net have already been

considered)

3. Continuing nets. These may or may not be connected to v.

For each net, we know the vertices connected to it and their position in their

respective sets. From the subproblem index (i1, i2, . . . , ik), we can check if low-

est index of any vertex connected to the net is greater than the i′s (i1, i2, . . . , ik)

for the corresponding set. This tells us whether the net starts at v. Similarly,

we can find the nets ending at v. For continuing nets, we don’t really need to

track them individually. We just store the sum of the weights of the continuing

nets. While calculating the cost of placing v at site i1 + i2 + · · ·+ ik−1, we first

extend the continuing nets from the previous site to the current site(take the

distance between the sites and multiply by sum of weights of continuing nets).

Next, we add the costs for the starting and ending nets(nets may start/end

at different points within the unit square). We also add the cost of the inter-

mediate continuing nets (nets which started before and did not end at v). We

141

subtract the ending nets’ weights from the previous sum of continuing weights.

To this, we add the weights of starting nets to get the new continuing nets’

weight’s sum.

Since FPGAs and GPUs have different strengths and weaknesses, the

FPGA implementation of dynamic programming is very different from the

corresponding GPU implementation. There are three main levels of paral-

lelization in our DP algorithm:

• Solving different problems in parallel (brown rectangle in Figure 3.25).

• Computing different matrix entries in parallel (orange rectangle in Figure

3.25).

• Parallelizing iteration over nets for each cell (yellow rectangle in Figure

3.25).

Solving an entire DP problem on FPGA requires that all the data

associated with that problem to be present on the on-chip RAMs (M20ks or

MLABs in Intel FPGAs). Random accesses to the main memory is slow and

would otherwise become the runtime bottleneck. The device that we have

access to has limited on-chip memory, hence solving an entire problem on

the FPGA is infeasible. We can fill multiple matrix entries in parallel as we

did for GPU acceleration in Section 3.2. However, the matrix is large (24389

entries for a window of size 84). Multiple concurrent read and write accesses

lead to replication of the memory by the compiler which leads to high block

142

RAM usage. Hence, parallelizing iteration over nets is the best option for

FPGA acceleration. This would require replication of the nets array but that

is smaller compared to the matrix for a problem.

3.3.1 Hybrid CPU-FPGA Implementation

Our flow initializes the DP problems on CPU, fills the matrix entries

using both CPU and FPGA and updates the placement using CPU. We accel-

erate parts of the matrix entry computation on FPGA. Computing a matrix

entry can be decomposed into two tasks, as highlighted by the purple and blue

rectangles in figures 3.28 and 3.26. The purple rectangle denotes iteration over

all the nets connected to a cell and determining if a net starts, ends or contin-

ues. This step also computes the sum of weights of the continuing nets and the

incremental cost for placing the cell under consideration at the current site.

This step is independent of other matrix entries. The blue rectangle denotes

iteration over possible solutions the subproblem (at most k) corresponding to

the current matrix entry and selecting the best solution. This step depends

on other matrix entries, as shown in Figure 3.26.

We separate the computation of each matrix entry into two different

loops as shown in Figure 3.29. The first loop executes on FPGA and the

second one executes on CPU. The memory dependency on the second loop

causes it to be launched every 13 cycles if implemented on the FPGA, hence

we chose to run it on the CPU.

For our FPGA implementation, we limit the maximum number of nets

143

per cell to 64. If a cell in a DP problem has more than 64 nets, we can either

solve that problem on the CPU or run the kernel multiple times on the FPGA

and pass a different set of nets each time. We also insert dummy nets if the

actual number of nets connected to a cell is less than 64.

We use 8 and 16-bit integers wherever possible to reduce memory us-

age. For example, the starting and ending cells for a net for each set can be

represented by 8 bits as our window size is 84. The external endpoints (no

connected to any cell in the window) can be represented by 16-bit integers as

our floorplan measures 168x480 sites.

We fully unroll the loop highlighted by the blue rectangle in Figure

3.29. We choose k = 3, as that gives the best tradeoff for QoR vs. runtime.

Incremental costs for 3 possible subproblems are calculated at each clock cycle.

Thus 64x3=192 entries are read from the nets array at each clock cycle. This

implementation allows us to process one matrix entry at each clock cycle.

3.3.2 Results

We tested our algorithm on the ISPD 2016 FPGA Placement Contest

[71] benchmarks. We used the packing, global placement and legalization flow

of UTPlaceF [21], which is in improved version of the placer that secured the

first place in the contest. We implemented a row based dynamic programming

algorithm as a proof of concept.

We ran our experiments on a machine with a 14 core, 28 thread Intel R©

Xeon R© processor and an Intel R© Arria10 R© FPGA on the same package. This

144

setup allows allocation of shared memory and low latency communication be-

tween the CPU and the FPGA. All our reported runtimes include the time for

moving data to and from the FPGA.

Table 3.14: Runtimes in milliseconds and Speedup

Design CPU CPU+FPGA speedup
FPGA01 3475 1142 3.04
FPGA02 4256 1592 2.67
FPGA03 6105 3304 1.85
FPGA04 7142 3465 2.06
FPGA05 9689 4378 2.21
FPGA06 8500 5001 1.70
FPGA07 9723 5227 1.86
FPGA08 8157 4522 1.80
FPGA09 11536 5391 2.14
FPGA10 9060 5861 1.55
FPGA11 9986 5258 1.90
FPGA12 9628 4898 1.97
Geomean 2.03

Table 3.15: FPGA Resource Usage and Fmax for DP kernel

Logic Register RAM DSP Fmax
51% 47% 66% <1% 225 MHz

Table 3.14 shows the runtimes and speedups for individual designs. We

achieve a speedup of 2.03x on average using our hybrid CPU-FPGA implemen-

tation vs. the CPU implementation. Portions of our that run on CPU code

are multi-threaded and vectorized wherever possible. We use all 28 threads

on the CPU. Also, in the CPU-FPGA implementation, only one device (either

the CPU or the FPGA) is actively involved in computations at any given time.

145

We can achieve even more speedup by using both devices simultaneously.

Table 3.15 shows the resource usage and Fmax for our DP kernel. We

are limited by the amount of available RAMs. We can implement multiple

kernels on an FPGA with more RAMs. We use very few DSPs as most of

our operations are on integers and those are implemented using carry chains

instead of DSPs.

3.4 Timing-Driven Detailed Placement

The high flexibility of FPGAs comes at the cost of performance. De-

signs typically run much slower on FPGAs compared to ASICs. Improving the

maximum frequency (Fmax) for a design on an FPGA can have a profound im-

pact in certain markets. Detailed placers can provide significant improvements

in timing as they are able to model delays more accurately compared to global

placers. Timing-driven detailed placement for ASICs is relatively mature.

There are a few important differences for timing-driven detailed placement

between FPGAs and ASICs:

• LABs in FPGAs have many more pins (∼50) compared to standard cells

in ASICs (2-5)

• LABs in FPGAs have multiple output pins, hence can be start-points of

multiple timing paths whereas most standard cells have one output, and

generally have fewer number of different output paths

146

• Routing resources in an FPGA are fixed. Hence, wirelength and delay

estimation for a net cannot be done by simple steiner routes but have

to take routing resources in the underlying FPGA target device into

account

Timing-driven detailed placement has two aspects - (i) the objective

function or ‘metric’ that we are directly trying to optimize (ii) how we explore

our solution space. The objective function can be loosely classified as net-

based [44, 46–48, 59], path-based [49, 52, 56, 57] or a hybrid of the two [45, 51].

The general theme of net-based objective functions is to run timing analysis,

generate slacks and criticalities for nets and use those values to generate net

weights (more critical nets get higher weights). Then, placement is performed

to minimize weighted wirelength. They do not optimize critical paths explic-

itly. In a linear weighted model, nets with higher weights dominate nets with

lower weights. This necessitates the use of constraints on length or delay, or

slack for nets ([61], [62]). Some algorithms count the number of critical paths

passing through a net and/or the number of end-points affected by a net, and

use this information for generating weights [46]. Generally speaking, net-based

approaches work well in a global perspective. They tend to converge when the

placement is close enough to optimal from the global perspective. While these

approaches optimize for total negative slack, they leave significant room for

improvement as they do not optimize the most critical paths, and may create

new critical paths while trying to reduce delays of other nets.

Path-based optimization algorithms try to model exact delays for the

147

most critical paths and optimize them. Many of them use linear programming

or lagrangian relaxation formulations. Some approaches use simulated an-

nealing. Linear programs scale poorly, especially for FPGAs where LABs can

have ∼50 pins and moving one LAB can affect a large number of paths. Simu-

lated annealing also has scalability problems and it cannot maintain the same

solution quality with similar runtime for increasingly larger modern designs.

A variety of ideas have been proposed for solution space exploration or

the actual ‘placement’. The most common ones are greedy swaps or moves or

shifting of cells [44, 49]. Some works extend the greedy approaches to tunnel

through barriers or use hill-climbing moves like simulated annealing [46, 48,

51]. Many of the techniques prevalent in popular literature concentrate on

minimizing their objective function first to generate a placement that can have

possible overlaps and legalize afterwards [45, 52]. Some approaches which use

linear or integer programming also incorporate the legalization into the LP or

IP. A discrete optimization technique based on choosing candidate locations

is proposed in [57] but the authors try to address all affected critical paths

together which is infeasible for FPGAs. Also, they choose disjoint sets of

candidate locations for different nodes on a critical path, which restricts the

solution space.

Below are the limitations and areas of improvement for state-of-the-art

timing-driven detailed placement techniques for FPGAs:

• Traditional net-based timing optimization tends to saturate at some dis-

148

tance from the global optimum. Further, they tend to oscillate. The

output of net-based detailed placement has a large scope for improve-

ment.

• Linear programming (LP)-based critical path optimizations are not suit-

able for FPGAs since LABs in FPGAs have a large number of pins and

moving one LAB affects many paths leading to a large number of con-

straints for LP.

• The discrete optimization of critical paths in [57] attempts to minimize

the maximum delay of all the critical paths incident on a set of nodes.

This is infeasible for FPGAs due to the large number of paths per node

(LAB)

• Critical path optimization techniques which move one path node at a

time are highly susceptible to getting stuck in local minima. Therefore,

we need to optimize all the critical path nodes concurrently.

To alleviate these limitiations, we propose a new timing-driven detailed

placement algorithm for FPGAs. The main contributions of our work [42] are

as follows:

• Our new timing-driven placement algorithm is tailored towards high con-

nectivity netlists like those for FPGAs

• Our algorithm to optimize critical paths where the path nodes are al-

lowed to move to a set of candidate locations which may overlap with

149

candidate locations of other path nodes. This gives more freedom for

movement than [57], while ensuring that the final solution is overlap-

free.

• We formulate our optimization problem as a shortest path problem on a

layered network of candidate locations for each path node

• We use hard delay limits for nets which prevents degradation in the

worst slack. This is an effective way of controlling side paths rather than

minimizing the maximum delay for a set of paths.

• Our formulation enables us to use dynamic programming to solve for

the shortest path, which is faster than the branch-and-bound algorithm

in [57]

• Timing improvements from our algorithm are complementary to those

achieved using conventional net-based detailed placement algorithms,

thus augmenting their capabilities.

• Our algorithm has negligible effect on wirelength and congestion and has

a small runtime overhead

3.4.1 Problem Formulation for Timing-Driven Detailed Placement

3.4.1.1 Timing Model

We introduce virtual 2-pin nets called tnets for each source-sink pair in

each net. Tnets represent timing arcs. They capture routing information of the

150

corresponding net segments and hence provide accurate information for timing

calculation. Delay between any two locations on the FPGA grid is modeled

in a lookup-table fashion for fast access. The lookup tables are sufficiently

small as the regular routing architecture in FPGAs leads to uniform delays.

This delay depends on current cell placement and can be easily modified for

incremental changes. We expect the routing information and congestion maps

to be practically undisturbed during the course of our algorithm as we would

be moving a very small fraction of the cells (and therefore, nets).

3.4.1.2 Setting up the Optimization Problem for a Critical Path

Let’s consider the example shown in Figure 3.30. It shows a portion

of the FPGA grid with different types of sites. In this grid, A-B-C-D-E is a

critical path that we expect to optimize. We pick some candidate locations

for each of the nodes A, B, C, D, E that are in close proximity to the path

(shown in Figure 3.31). For example B can move to B1, B2, etc. and C

can move to C1, etc. B and C can also move to BC1, BC2, etc. with the

constraint that both of them should not end up in the same location. Legality

is also taken into account while choosing candidate locations. The set of these

candidate locations is called ‘neighborhood’ of the path. (Details on how the

neighborhood is selected is discussed later). The set of candidate locations for

a single path node is called a ‘sub-neighborhood’. Candidate locations for two

consecutive path nodes may overlap (ex: B and C can go to BC1, BC2, etc

and D and E can go to DE1, DE2, etc.) but candidate locations for two nodes

151

that are not adjacent in our chosen path may not overlap (ex: AC, AD, BD

etc. are not allowed). We stress the importance of our ‘chosen’ path. There

could be another net (which may branch into or out of the current path) from

A to C making A and C adjacent, but we only have the edges A-B, B-C, C-D,

D-E in our chosen path. We will discuss how we tackle side paths like A-C

shortly. We ensure that original locations of the path nodes are also in the

candidate location set.

Figure 3.30: FPGA grid with a critical path

Figure 3.31: Neighborhood chosen around a critical path

Candidate locations for path nodes can be empty or occupied by some

152

other object (LAB, RAM, DSP, etc.). If a candidate location is empty, we

may allow the corresponding path node to move there. If they are occupied

by some other object, we may swap the object with the corresponding path

node. For example, in Figure 3.32, assume that B1 is an empty site and B4 is

occupied. In this case, B could move to B1 or B4. If B moves to B4, the cell

that is currently at B4 must move to B’s original site.

Figure 3.32: Placement of other cells in the neighborhood

Figure 3.33: Classification of tnets

153

3.4.1.3 Classification of Tnets

We now consider the set of all tnets connected to the critical path nodes

and the neighborhood nodes. They can be classified into the following 10 types

(illustrated in Figure 3.33):

• Type 1: tnets in the critical path (one path node to the next or previous

node)

• Type 2: tnets between consecutive path nodes that are not in the cur-

rent critical path

• Type 3: tnets from one path node to another path node at distance 2

or more in the critical path

• Type 4: tnets from a path node to its neighbor

• Type 5: tnets from one path node to the neighbors assigned to the next

or previous path node

• Type 6: tnets from one path node to neighbors assigned to path nodes

at distance 2 or more in the critical path

• Type 7: tnets from a path node to outside the neighborhood

• Type 8: tnets between neighbors assigned to consecutive path nodes

• Type 9: tnets between neighbors assigned to path nodes at a distance

2 or more apart in the critical path

154

• Type 10: tnets from a neighborhood node to a node outside the neigh-

borhood

When a neighbor is assigned to 2 path nodes like BC1, DE1, etc. the

types of some tnets may vary depending on the context. For example, when

we are finding new locations of tnet pins by swapping BC1 with B, we will

treat BC1 as B’s neighbor and not C’s neighbor. Similarly, when we consider

swapping BC1 with C, we will treat BC1 as C’s neighbor and not B’s neighbor.

3.4.1.4 Shortest Path Problem

Our objective is to achieve minimum delay for the path A-B-C-D-E

while ensuring that other paths do not become more critical than the one

which is currently most critical. To achieve this, we formulate a shortest path

problem with certain constraints on tnet delays. The maximum delay that

can be allowed on a tnet is denoted by delay limittnet. These delay limits

are calculated by a slack allocation algorithm right after each timing analysis

(discussed later).

Let there be N nodes on the critical path. This implies there are N-1

tnets on the critical path. Each path node has a choice of some candidate

locations. We construct a graph as follows: The graph has N layers, one for

each node in the critical path. Each layer has nodes corresponding to the

candidate locations for that path node. For example, in Figure 3.34, the layer

for B has nodes B1 to B5 and BC1 to BC3. We add an edge for each feasible

pair of locations of adjacent nodes in the critical path. For example, two

155

adjacent nodes, B and C have a feasible pair of locations B5, C1 if B can move

to B5 and C can move to C1. The edge represents the delay between B and

C after the movement. Also, observe that all BCs in B’s layer have outgoing

edges to all Cs, BCs and CDs in C’s layer except the corresponding BC. This

exclusion is necessary to prevent nodes from overlapping. BC2 in B’s layer

does not have an edge to BC2 in C’s layer as that could potentially lead us

to choose both BC2s implying that B and C both go to site BC2. The edges

essentially model the delays of the type 1 tnets defined above. For example,

the edge from B1 to C1 in the graph represents the delay of the tnet B-C when

B is moved to B1 and C is moved to C1.

We want to find locations for the path nodes such that the delay of

the critical path (which is the sum of the delays represented by these edges)

corresponding to the node locations is minimized.

When we move or swap nodes, the delays of tnets connected to the

nodes being moved will change. These tnets can be classified into the following

types:

• Case (i): delay independent of any other move or swap

• Case (ii): delay dependent on move or swap of adjacent path node

• Case (iii): delay dependent on move or swap of a path node at a distance

of 2 or more in the critical path

156

Figure 3.34: Shortest path problem; All outgoing edges for only some of the
nodes are shown. Note that BC2 in B’s layer does not have an edge to BC2
in C’s layer. This is necessary to prevent overlaps. Similar case with CD1 and
DE2

Case (i) consists of tnet types 4, 7 and 10. Case (ii) consists of tnet types 1,

2, 5 and 8. Case (iii) consists of types 3, 6 and 9.

As stated earlier, each tnet has a delay limit. Some placements in the

chosen candidate locations may violate the delay limits of some tnet connected

to the nodes being moved. If such a case occurs, we remove that candidate

location from our graph.

Tnet delays in case (i) can be computed for each candidate location

with the current placement information of the other nodes in the netlist. If

we find a candidate location that violates the delay limit of some tnet, we

remove that location from our graph. Tnet delays for case (ii) are computed

by considering pairs of location assignments for consecutive path nodes. If any

157

pair of location assignments causes a tnet delay limit violation, we remove the

corresponding edge from the graph. For case (iii), we compute net delays based

on the current placement of nodes and we update the delays when we reach

the corresponding path node downstream while finding the shortest path. We

remove the edge to the corresponding node from the graph if there is a delay

limit violation.

3.4.2 Components of our Timing-Driven Detailed Placement Algo-
rithm

3.4.2.1 Selecting a Critical Path

We store the delay and slack values obtained from timing analysis in

the tnets. For each tnet, we compute a parameter called criticality (∈ [0, 1]),

according to [48]:

criticalitytnet = 1− slacktnet − worst slack
Dmax

(3.8)

Where Dmax is the critical path delay (maximum of arrival times of all sinks for

the corresponding clock) and slacktnet is the difference between the required

and arrival times of the tnet’s load pin.

We pick all the nets with criticality greater than a certain threshold c.

We have empirically determined the best value of c to be 0.98. We extract

critical paths from these selected tnets based on connectivity information from

the netlist. Note that a tnet can belong to more than one critical path.

Critical paths are extracted by the following algorithm: Initialize a crit-

158

ical path consisting of only one tnet. The path is grown by successively adding

tnets to the front and back of our current critical path. For the starting node

of the critical path, we go through all the tnets that drive the tnet connected

to this node and find the one with the highest criticality (this criticality value

will be same as the criticality of all the tnets in the current critical path) and

add that tnet to critical path. Ties in criticality value are broken arbitrarily,

but such cases are highly unlikely. For the ending node of the critical path,

we similarly go through all the tnets that are driven by the tnet connected to

this node and find the one with the highest criticality and add it to the critical

path. Propagation stops when we reach timing start/end points.

The criticality metric normalizes the slack of a tnet to the longest path

delay for the corresponding clock. This allows us to distinguish between similar

slack tnets, weighting ones with a higher longest path delay to be more critical.

3.4.2.2 Slack Allocation

The simplest way of allocating slack while preserving the worst slack is

to assign the minimum possible marginal delay increase for each tnet. We get

slack values for each tnet from timing analysis. Assuming there are no combi-

national cycles in the logic, we can count the number of distinct timing paths

passing through each tnet. These are paths with respect to different timing

end points. We also compute the length of the longest timing path (number of

tnets on that path) passing through each tnet by forward propagation. This

can be done only once as the netlist is not being changed. Now, we can set

159

delay limit for a tnet as follows (extending the concepts from [46] and [62]):

delay limittnet = delaytnet +
slacktnet − worst slack
longest path lengthtnet

(3.9)

This slack allocation scheme ensures that even if all tnets increase in delay

to be at their upper bound limits, the total delay of the worst path through

these tnets would not be any worse than that of the original worst critical

path. However, note that this is not the optimal slack allocation. We have

pessimistically limited the maximum delay for some tnets but they could go

even higher without affecting the worst slack. [58] discusses the slack allocation

problem in detail. Optimal slack allocation is generally achieved by solving

linear programs, but that would be too slow for our purpose. In our work, we

use a simple slack allocation algorithm similar to the idea described above.

3.4.2.3 Neighborhood Extraction

We extract candidate locations for each node in the critical path from

within a square of size d centered at that path node. For example, Figure 3.35

shows a critical path A-B-C and three squares of side length 5 centered at

A, B and C respectively. It is highly likely that these squares would overlap,

and we have to decide which location to assign to which node or pair of nodes

adjacent in the critical path. For this, we first check the legality of placing a

critical path node in all the locations lying within its square. Illegal locations

would not be considered henceforth.

After this, we compute the distances of each of the locations lying

160

within some square from the corresponding critical path nodes (shown in Fig-

ure 3.35). We assign each location to the critical path node which is closest

to it (Figure 3.36). We can also add a second node that is adjacent to the

chosen node in the critical path. Consider the example in Figure 3.36. The

black location AB is closest to A. So, we assign it to A first. The next closest

path node is C, but C is not adjacent to A in the critical path. So, we assign

it to B. The case with the black location(s) C is similar. They are closest to

C, so we assign them to C first. The next closest path node is A, but A is not

adjacent to C in the critical path, so we cannot assign it to A. They are not

in B’s box, se we cannot assign them to B either. We are left with C only.

It may so happen that some path nodes in the middle of the path are

assigned too few sites due to conflict with other path nodes. In such cases, we

adjust the site assignment by borrowing sites from adjacent path nodes so that

each node has sufficient chance to move. If we want to assign more locations

to a particular critical path node, we traverse the locations within its box that

are assigned to some other node(s) one by one and keep assigning them to this

node subject to the condition that the resultant number of locations assigned

to the node from which we are borrowing should not be less than that for

the current node. If we assign a location to 2 nodes, we ensure that they are

adjacent in the critical path.

The nodes in the middle of the critical path are connected to two tnets

which are likely to be in different directions. However, the starting and ending

nodes have only one tnet each from the critical path. Hence we give a higher

161

priority to the starting and ending nodes in the critical path in case of ties

as these nodes have a definite direction of movement which could shorten the

path.

Figure 3.35: Extracting neighborhood around a critical path

3.4.2.4 Finding the Shortest Path

Once we have built the graph, we can find the shortest path from any

node in the first layer to any node in the last layer. We do this using breadth-

first traversal on layers which runs in Θ(E) time on a layered graph like ours,

where E is the number of edges. We do not need an elaborate algorithm like

Dijkstra’s due to the layered nature of our network. The delay for a node in

layer i can be calculated from the delays for layer i− 1 and the delays of the

edges between the two layers.

We initialize delays of all nodes in the graph except the first layer to

infinity. The nodes in the first layer are assigned delay value 0. We proceed

162

Figure 3.36: Assignment of locations to critical path nodes

layer by layer. At step i, we compute the outgoing delays for each node in

layer i−1 by adding the previously computed delay for that node to the delay

of the outgoing tnet. Thus, we get a set of delay values for each node in layer

i corresponding to the incoming tnets for that node. We set the delay for that

node to the minimum of all its incoming delays. We also keep a pointer to the

incoming tnet which led to the minimum delay for each node. This is useful

for tracing the optimal location assignment for the critical path nodes.

The cost(cumulative delay) for a node v in the graph is given by:

cost(v) = min
u∈input(v)

{cost(u) + edge cost(u, v)} (3.10)

When we have chosen a tnet with minimum cumulative incoming delay

for a node in level i, we also store the locations of the nodes in levels be-

fore i that affect the case (iii) tnets. Thus we will have accurate placement

163

Figure 3.37: A solution to the shortest path problem

information when computing tnet delays for layer i+ 1.

Figure 3.38: Changing placement to reflect the shortest path

Once we have found the shortest path, we change the node locations

to reflect the same. Figure 3.37 shows a possible shortest path. Here, the

shortest path goes through A’s original location, B1, CD1, DE2 and E3. So,

we choose A’s original location for A, B1 for B, CD1 for C (and move the

object previously at CD1 to C’s original location), DE2 for D and E3 for E

164

(and move the object previously at E3 to E’s original location), as shown in

Figure 3.38.

3.4.3 Complexity Analysis

We assume that the average length of a critical path is N , the average

size of sub-neighborhood for each path node is M (=d2) and the average no.

of pins per node (LAB or DSP or RAM) is p.

3.4.3.1 Extracting the critical path from a tnet

Path extraction involves forward and backward propagation for the

seed tnet. At each step, we go through all the incoming or outgoing tnets for

a node that share a combinational path with the seed tnet and choose the one

with the highest criticality. The amortized no. of tnets that we go through

per node is p. We do this for at most N nodes. Hence, the complexity for

extracting a path is pN .

3.4.3.2 Extracting the neighborhood from a path

The average number of sites that we consider for each path node is M .

We have to compute distances from each path node to all sites within its box.

This will require a total of MN operations. Assigning the sites to nodes will

take a constant multiple of MN time.

165

3.4.3.3 Generating the graph given the neighborhood

Time complexity here is dominated by edge costs. There are (N−1)M2

edges in the graph. We have to iterate over at most 2p tnets for each edge.

Hence, edge cost computation requires 2p(N − 1)M2 time. Cost computation

for case (i) tnets takes an additional pNM time.

3.4.3.4 Solving for shortest path

We iterate over the incoming edges for each node at each level and

store the minimum cost. We have to go through at most M incoming edges

for each node starting from the second layer. There are a total of M(N − 1)

such nodes. Hence the total time taken is (N − 1)M2.

We see that the overall complexity is dominated by complexity of graph

generation, which is O(pNM2)

3.4.4 Parallelization Schemes

The most widely used method of speeding up an optimization procedure

is to divide the problem into subproblems with little or no interaction and solve

them in parallel. In out context, this would mean optimizing different critical

paths in parallel. We are thus forced to ensure that the neighborhoods that

we choose for different paths are disjoint and that there is no tnet connecting

these neighborhoods. Also, critical paths are not spread uniformly over the

chip but tend to form clusters at a few spots. Many different critical paths can

share a LAB. Therefore, these paths cannot be optimized in parallel. Instead,

166

we look at ways to speed up our algorithm for a single critical path.

Consider our shortest path problem. While computing the cost for each

edge in the graph, we have to iterate over all the tnets under case (ii) incident

on the two path nodes corresponding to that edge. We have already seen

that the complexity for computing the edge costs is O(pNM2), which is high.

Hence we would like to speed up this part of our algorithm.

Observation: The cost of each edge in the graph that we form is

independent of the cost of other edges.

Using this observation, we can compute all the edge costs in parallel.

A similar observation shows that delays for tnets under case (i) can also be

computed in parallel.

Observation: Each node within a single layer of our graph (for finding

shortest path) is independent of the other nodes in the same layer.

Each node only depends on the nodes on the previous layer which have

outgoing edges to that node. Since we solve for shortest path dynamically

layer-by-layer, we can parallelize the computation at each layer. This is similar

to parallelization of timing analysis where the computations for different timing

end-points are independent.

None of the above parallelization schemes affect the placement or Fmax

results. They only change runtime.

167

3.4.5 Results

We integrated our algorithm in an industrial FPGA design implemen-

tation flow and tested the algorithm on an industrial benchmark set.

Table 3.16: Benchmark set details

Design size # LABs, RAMs and DSPs
Minimum 4156
Maximum 40889
Average 14850

Number of designs 86

The industrial benchmark set details are given in Table 3.16. Logic

utilizations for all designs are shown in Figure 3.39. Our base flow consists

of an industrial strength timing-driven global placer followed by a legalizer

followed by the net-based timing-driven detailed placement from [41]. In our

new flow, we run our critical path based detailed placer after the net based

detailed placer. We set the value of d to 5. In all the data presented in this

subsection, we report the geometric average across all benchmarks that have

high statistical confidence.

We compare our results with the net-based detailed placement algo-

rithm in [41]. On the average, our algorithm improves the maximum clock

frequency (Fmax) at placement stage by 4.5% on top of the net-based placer

in [41], while degrading wirelength by only 0.2%. Our average runtime over-

head is 7.5% of placement and packing runtime.

Our results indicate that path-based algorithms for detailed placement

168

Figure 3.39: % Logic utilization (y-axis) for all designs

Figure 3.40: % Fmax change (y-axis) for all designs

Figure 3.41: % Wirelength change (y-axis) for all designs

169

are complementary to net-based algorithms, especially considering that we are

interested in optimizing timing as well as wirelength.

Table 3.17: Results for our Algorithm

∆Fmax(%) ∆Wirelength(%) ∆Runtime(%)
4.5 0.2 7.5

The Fmax and wirelength histograms for all designs are shown in Fig-

ures 3.40 and 3.41 respectively. We observe that the majority of the Fmax

changes are within 10% but there are some extremely good outliers. The vari-

ance in the Fmax changes are due to factors like the structure of the design,

utilization of the design, modeling errors in earlier stages of the flow, vary-

ing resource usages by type, etc. Two designs have a negative Fmax change,

which may be due to our relaxation of delay limits slightly beyond the worst

slack. Most of the wirelength changes are within 0.5%. The negligible impact

on wirelength is expected as our algorithm only works on a few critical paths

and leaves most of the nets undisturbed.

170

Chapter 4

Conclusion

This dissertation proposes new algorithms for FPGA placement as well

as hardware acceleration techniques for some of those algorithms. Both global

and detailed placement algorithms have been investigated and some of these

algorithms have also been integrated into industrial design implementation

tools for state-of-the-art FPGAs.

Global placement is an important technique used in design implemen-

tation tools for modern FPGAs. Global placement significantly affects the

quality of results with respect to wiring usage, timing and routability. Global

placement techniques are numerical in nature and consume a significant part

of the overall placement runtime. In chapter 2, we presented some new al-

gorithms for improving the quality and runtime for FPGA global placement.

A theoretical analysis of how placement shapes affect wirelength is provided

with certain assumptions and a near-optimal shape is determined empirically.

A min-cost-flow-based and shape-driven spreading algorithm is proposed and

is implemented using linear programming. A flow realization algorithm is also

proposed which can work on any given flow satisfying certain conditions and

preserves the relative order among cells to a great extent. Our experimental

171

results demonstrate that our new spreading algorithm achieves 1.79% better

wirelength compared to an improved version [21] of the first place placer in

the ISPD 2016 FPGA placement contest [71]. Routing congestion and runtime

are also better compared to the same placer.

Chapter 2 also proposes FPGA acceleration of wirelength gradient com-

putation and spreading, which are the two main components of global place-

ment. Hybrid CPU-FPGA acceleration of wirelength gradient computation

for global placement has been proposed which achieves an average speedup of

3.03x for wirelength gradient computation and 2x for the entire global place-

ment flow using only one device at a time (either CPU or FPGA). We organize

the gradient computation process into different tasks and map each task to the

device which is best suited to it (CPU or FPGA). Our runtimes for wirelength

gradient computation are comparable to the best known GPU implementation

for benchmarks of similar sizes, even though our gradient function is more com-

plicated. Our results show that global placement for each design in the ISPD

2016 FPGA placement contest [71] benchmark suite can be completed in less

than a minute.

Finally, we propose a new fluid-flow based spreading algorithm for use

in an analytical global placement system. Our new algorithm is massively

parallel and we also accelerate the algorithm on an FPGA. While maintaining

the quality of results, our new spreading algorithm achieves a speedup of up to

6.47x when compared to a linear-programming-based spreading algorithm [1].

By combining our FPGA-accelerated spreading algorithm with our FPGA-

172

accelerated numerical solver, we achieve an overall global placement average

speedup of 3.06x when compared to a CPU implementation of the same solver

with the linear programming based spreading algorithm in [1].

Global placement is accompanied by detailed placement techniques to

help correct modeling errors during global placement (that occur due to ap-

proximations in the numerical formulation of global placement). Detailed

placement helps to account for the fine-grained architectural constraints of

modern FPGAs to further improve the quality of results. In chapter 3, we

discuss challenges in detailed placement for modern FPGAs, and propose new

detailed placement algorithms to address them. A new dynamic-programming-

based detailed placement algorithm is proposed, which improves both wire-

length and the maximum clock frequency obtained (Fmax). Unlike previous

works, our dynamic programming formulation for detailed placement can be

applied to multiple partitions as well as to a rectangular grid of placeable

objects. We also proposed parallelization schemes for our algorithm. We in-

tegrated our new dynamic programming based detailed placement algorithm

in an industrial FPGA design implementation flow. Experimental results on

industrial benchmarks demonstrate that our DP algorithm achieves good im-

provements in wirelength and Fmax, with minimal runtime overhead, when

compared to existing DP approaches and the output of industrial-strength

global placement and legalization engines.

We also discussed the challenges in timing-driven detailed placement for

modern FPGAs and proposed a new critical path optimization technique to

173

address them. We propose a new timing-driven detailed placement algorithm

for FPGAs, which uses a shortest path delay formulation combined with delay

budgets for each net to prevent timing degradation in all the affected paths. We

also proposed parallelization schemes for our algorithm. Experimental results

on industrial benchmarks demonstrate that our algorithm achieves 4.5% im-

provement in Fmax on average with negligible wirelength penalty and minimal

runtime overhead. We also demonstrated that our algorithm is complementary

to net-based detailed placement techniques.

Chapter 3 also demonstrates GPU acceleration of our dynamic-

programming-based detailed placement algorithm. Certain modifications are

proposed to the dynamic-programming-based detailed placement algorithm to

enable it to run faster on a GPU. We propose two serially-equivalent flows, one

of which uses both CPU and GPU and one which runs entirely on the GPU. We

further propose two sub-flows for each of these flows to explore the potential

architectural limitations of GPUs. All of our flows are equivalent to the serial

CPU version, ensuring that there is no loss of QoR. Experimental results show

that we can achieve 5.5 to 7x speedup over the multi-threaded CPU version.

We also demonstrate FPGA acceleration of the same dynamic-programming-

based detailed placement algorithm, which achieves 2.03x speedup on average.

FPGA CAD tools face the challenge to improve performance and main-

tain fit-ability at the same pace as the growth in size and complexity of modern

FPGAs, as well as the workloads that are run on the FPGAs. As multi-

threaded CPU implementations give diminishing returns, hardware accelera-

174

tion techniques have the potential to provide scalable runtime improvements.

Our work shows the advantage of using FPGA and GPU acceleration for tra-

ditional EDA problems in placement technology. We plan to extend some

of these concepts to other parts of the design implementation flow, like clus-

tering and routing. It is possible to get even more speedup than we have

demonstrated by using larger FPGAs with higher memory bandwidth. For

memory-intensive compute applications, the ability to fit the entire compute

as well as the data required for the compute within the same FPGA would help

alleviate the bottlenecks encountered during memory access. Hence, larger FP-

GAs with higher memory capacities and bandwidths would yield superlinear

runtime improvements. Beyond hardware acceleration, further improvement

to placement algorithms may be possible. Enhancements to global placement

to enable faster convergence is a promising area for continuing research. Nu-

merical formulations for hardware-accelerated global placement with reduced-

precision numbers is another promising area to improve the compile time with-

out trading off the quality of results. This approach can significantly reduce

the amount of data movement required, and hence speed up global placement

by orders of magnitude even on devices with limited memory bandwidth.

175

Bibliography

[1] S. Dhar, L. Singhal, M. A. Iyer and D. Z. Pan, “A Shape-Driven Spreading

Algorithm using Linear Programming for Global Placement”, Asia and

South Pacific Design Automation Conference, 2019.

[2] P. Spindler and U. Schlichtmann, “Kraftwerk2-A Fast Force-Directed

Quadratic Placement Approach Using an Accurate Net Model”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems (Volume:27, Issue: 8), 2008

[3] T. Lin and C. Chu, “POLAR 2.0: An effective routability-driven placer”,

Design Automation Conference, 2014

[4] T. Lin, C. Chu and G. Wu, “POLAR 3.0: An Ultrafast Global Placement

Engine”, International Conference on Computer-Aided Design, 2015

[5] J. C. Tiernan, “An Efficient Search Algorithm to find the Elementary

Circuits of a Graph”, Communications of the ACM (Volume: 13, Issue:

12), 1970

[6] D. B. Johnson, “Finding all the Elementary Circuits of a Directed Graph”,

SIAM Journal on Computing, (Volume: 4, Issue: 1), 1975

176

[7] C. Fobel, G. Grewal and A. Morton, “Using Hardware Acceleration to

Reduce FPGA Placement Times”, Canadian Conference on Electrical and

Computer Engineering, 2007

[8] S. Dhar, L. Singhal, M. A. Iyer and D. Z. Pan, “FPGA Accelerated FPGA

Placement”, International Conference on Field-Programmable Logic and

Applications, 2019.

[9] S. Dhar, L. Singhal, M. A. Iyer and D. Z. Pan, “FPGA Accelerated Spread-

ing for Global Placement”, IEEE High Performance Extreme Computing

conference, 2019.

[10] P. Mateti and N. Deo, “On Algorithms for Enumerating All Circuits of a

Graph”, SIAM Journal on Computing, (Volume: 5, Issue: 1), 2012

[11] C. Lin and M. D. F. Wong, “Accelerate Analytical Placement with GPU:

A Generic Approach”, Design Automation and Test in Europe, 2018

[12] R. Pattison, C. Fobel, G. Grewal and S. Areibi, “Scalable Analytic Place-

ment for FPGA on GPGPU”, International Conference on ReConFig-

urable Computing and FPGAs, 2015

[13] A. Al-Kawam and H. M. Harmanani, “A parallel GPU implementation of

the TimberWolf placement algorithm”, International Conference on Infor-

mation Technology, 2015

177

[14] A. Choong, R. Beidas and J. Zhu, “Parallelizing Simulated Annealing-

Based Placement using GPGPU”, International Conference on Field Pro-

grammable Logic and Applications, 2010

[15] C. Fobel, G. Grewal and D. Stacey, “A Scalable, Serially-Equivalent,

High-Quality Parallel Placement Methodology Suitable for Modern Mul-

ticore and GPU Architectures”, International Conference on Field Pro-

grammable Logic and Applications, 2014

[16] J. Cong, Z. Fang, M. Lo, H. Wang, Jingxian Xu nad Shaochong Zhang,

“Understanding Performance Differences of FPGAs and GPUs”, Interna-

tional Symposium on Field-Programmable Custom Computing Machines,

2018

[17] Ulrich Brenner and Markus Struzyna, “Faster and Better Global Place-

ment by a New Transportation Algorithm”, Design Automation Confer-

ence, 2005

[18] Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen,

and Yao-Wen Chang, “NTUplace3: An Analytical Placer for Large-Scale

Mixed-Size Designs With Preplaced Blocks and Density Constraints”,

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (Volume: 27, Issue: 7), 2008

[19] Jingwei Lu, Pengwen Chen 2, Chin-Chih Chang, Lu Sha, Dennis J-.H.

Huang, Chin-Chi Teng and Chung-Kuan Cheng, “ePlace: Electrostatics

178

Based Placement Using Nesterovs Method”, Design Automation Confer-

ence, 2014

[20] Tao Lin, Chris Chu, Joseph R. Shinnerl, Ismail Bustany and Ivailo

Nedelchev, “POLAR: A High Performance Mixed-Size Wirelengh-Driven

Placer With Density Constraints”, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems (Volume:34, Issue: 3),

2015

[21] Wuxi Li, Shounak Dhar and David Z. Pan, “UTPlaceF: A Routability-

Driven FPGA Placer with Physical and Congestion Aware Packing”,

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (Volume:37, Issue:4), 2018

[22] Ameya R. Agnihotri and Patrick H. Madden, “Fast Analytic Placement

using Minimum Cost Flow”, Asia and South Pacific Design Automation

Conference, 2007

[23] Ulrich Brenner, Anna Pauli and Jens Vygen, “Almost Optimum Place-

ment Legalization by Minimum Cost Flow and Dynamic Programming”,

International Symposium on Physical Design, 2004

[24] Nima Karimpour Darav, Ismail S. Bustany, Andrew Kennings, David

Westwick and Laleh Behjat, “Eh?Legalizer: A High Performance

Standard-Cell Legalizer Observing Technology Constraints”, ACM Trans-

actions on Design Automation of Electronic Systems, (Volume: 23, Issue:

4), May 2018

179

[25] Ulrich Brenner, “BonnPlace Legalization: Minimizing Movement by Iter-

ative Augmentation”, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (Volume: 32, Issue: 8), 2013

[26] Minsik Cho, Haoxing Ren, Hua Xiang and Ruchir Puri, “History-based

VLSI legalization using network flow”, Design Automation Conference,

2010

[27] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J.

Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman,

S. Hauck, S. Heil, A. Hormati, J. Kim, S. Lanka, J. Larus, E. Peterson, S.

Pope, A. Smith, J. Thong, P. Y. Xiao and D. Burger, “A Reconfigurable

Fabric for Accelerating Large-Scale Datacenter Services”, International

Symposium on Computer Architecture, 2014

[28] Shuai Li, Cheng-Kok Koh, “Mixed integer programming models for de-

tailed placement”, Proceedings of the International Symposium on Phys-

ical Design, 2012, pp 87-94

[29] Shuai Li, Cheng-Kok Koh, “MIP-based detailed placer for mixed-size cir-

cuits”, Proceedings of the International Symposium on Physical Design,

2014, pp11-18

[30] V. Betz and J. Rose, “VPR: A new Packing, Placement and Routing Tool

for FPGA Research”, Proceedings of the 7th Int. Workshop on Field-

Programmable Logic and Applications, 1997, pp 213-222

180

[31] Ednaldo Mariano Vasconcelos de Lima, Dr. Antnio Carlos Cavalcanti

and Dr. Lucdio dos Anjos Formiga Cabral, “A New Approach to VPR

Tool’s FPGA Placement”, World Congress on Engineering and Computer

Science, 2007

[32] Min Pan, Natarajan Viswanathan and Chris Chu, “An efficient and effec-

tive detailed placement algorithm”, IEEE/ACM International Conference

on Computer-Aided Design, 2005

[33] H. Bian, A.C. Ling, A. Choong, J. Zhu, “Towards scalable placement

for FPGAs”, Proceedings of the 18th annual ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, 2010

[34] Konrad Doll, Frank M. Johannes, and Kurt J. Antreich, “Iterative place-

ment improvement by network flow methods”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (Volume:13 ,

Issue: 10), 1994, pp 1189-1200

[35] Myung-Chul Kim, Jin Hu, Dong-Jin Lee and Igor L. Markov, “A Sim-

PLR Method for Routability-driven Placement”, Proceedings of the Inter-

national Conference on Computer-Aided Design, 2011, pp 67-73

[36] Ken Eguro, Scott Hauck and Akshay Sharma, “Architecture-Adaptive

Range Limit Windowing for Simulated Annealing FPGA Placement”,

Proceedings of the 42nd annual Design Automation Conference, 2005

181

[37] Sung-Woo Hur and John Lillis, “Mongrel: Hybrid Techniques for Stan-

dard Cell Placement, Proceedings of the International Conference on

Computer-Aided Design, 2000.

[38] Devang Jariwala, John Lillis, “On Interactions Between Routing and

Detailed Placement”, Proceedings of the International Conference on

Computer-Aided Design, 2004, pp387-393

[39] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Optimal End-Case Par-

titioners and Placers for Standard-Cell Layout”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (Volume:19,

No. 11), November 2000

[40] David Z. Pan, Bill Halpin and Haoxing Ren, “Timing Driven Placement”,

Chapter 21, Handbook of Algorithms for Physical Design Automation,

2008

[41] S. Dhar, S. Adya, L. Singhal, M. A. Iyer and D. Z. Pan, “Detailed Place-

ment for Modern FPGAs using 2D Dynamic Programming”, International

Conference on Computer Aided Design, 2016

[42] S. Dhar, M. A. Iyer, S. Adya, L. Singhal, N. Rubanov and D. Z. Pan,

“An Effective Timing-Driven Detailed Placement Algorithm for FPGAs”,

International Symposium on Physical Design, 2017

[43] S. Dhar and D. Z. Pan, “GDP: GPU Accelerated Detailed Placement”,

IEEE High Performance Extreme Computing conference, 2018

182

[44] Chrystian Guth, Vinicius Livramento, Renan Netto, Renan Fonseca, Jose

Luis Guntzel, Luiz Santos, “Timing-Driven Placement Based on Dynamic

Net-Weighting for Efficient Slack Histogram Compression”, International

Symposium on Physical Design, 2015

[45] Amit Chowdhary, Karthik Rajagopal, Satish Venkatesan, Tung Cao,

Vladimir Tiourin, Yegna Parasuram, Bill Halpin, “How Accurately Can

We Model Timing In A Placement Engine?”, Design Automation Con-

ference, 2005

[46] Tim Kong, “A novel net weighting algorithm for timing-driven place-

ment”, International Conference on Computer Aided Design, 2002.

[47] Haoxing Ren, David Z. Pan, David S. Kung, “Sensitivity guided net

weighting for placement-driven synthesis”, IEEE Transactions on Com-

puter Aided Design of Integrated Circuits and Systems, 2005.

[48] Alexander Marquardt, Vaughn Betz, Jonathan Rose, “Timing-Driven

Placement for FPGAs”, International Symposium on Field Pro-

grammable Gate Arrays, 2000

[49] Haoxing Ren, David Z. Pan, Charles J. Alpert, Gi-Joon Nam, Paul Vil-

larrubia, “Hippocrates: First-Do-No-Harm Detailed Placement”, Asia and

South Pacific Design Automation Conference, 2007

[50] Huimin Bian, Andrew C. Ling, Alexander Choong, Jianwen Zhu, “To-

wards scalable placement for FPGAs”, International Symposium on Field

183

Programmable Gate Arrays, 2010

[51] Natarajan Viswanathan, Gi-Joon Nam, Jarrod A. Roy, Zhuo Li, Charles

J. Alpert, Shyam Ramji, Chris Chu, “ITOP: Integrating Timing Opti-

mization within Placement”, International Symposium on Physical Design

2010

[52] Tao Luo, David Newmark, David Z. Pan, “A New LP Based Incremental

Timing Driven Placement for High Performance Designs”, Design Au-

tomation Conference, 2006

[53] Gang Chen and Jason Cong, “Simultaneous placement with clustering

and duplication”, ACM Transactions on Design Automation of Electronic

Systems, (Volume: 11, Issue:3), 2006.

[54] Pongstorn Maidee, Cristinel Ababei, and Kia Bazargan, “Timing-driven

partitioning-based placement for island style FPGAs”, IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems (TCAD),

(Volume:24, Issue:3), 2005.

[55] Charles M. Fiduccia and Robert M. Mattheyses, “A linear-time heuris-

tic for improving network partitions”, ACM/IEEE Design Automation

Conference, 1982.

[56] Andrew B. Kahng , Stefanus Mantik, Igor L. Markov, “Min-Max Place-

ment for Large-Scale Timing Optimization”, International Symposium on

Physical Design, 2002

184

[57] Michael D. Moffitt, David A. Papa, Zhuo Li, Charles J. Alpert, “Path

Smoothing via Discrete Optimization”, Design Automation Conference,

2008

[58] Siddharth Joshi, Stephen Boyd, “An Efficient Method for Large-Scale

Slack Allocation”, 2008

[59] Ken Eguro, Scott Hauck, “Enhancing Timing-Driven FPGA Placement

for Pipelined Netlists”, Design Automation Conference, 2008

[60] Chao Chris Wang, Guy G. F. Lemieux, “Scalable and Deterministic

Timing-Driven Parallel Placement for FPGAs”, International Sympo-

sium on Field Programmable Gate Arrays, 2011

[61] Mei-Fang Chiang, Takumi Okamoto, Takeshi Yoshimura, “Register Place-

ment for High-performance Circuits”, Design Automation and Test in

Europe, 2009

[62] Bill Halpin, C. Y. Roger Chen, Naresh Sehgal, “Detailed Placement with

Net Length Constraints”, International Workshop on System On Chip,

2003

[63] Igor L. Markov, Jin Hu, Myung-Chul Kim, “Progress and Challenges in

VLSI Placement Research”, International Conference on Computer Aided

Design, 2012

[64] Meng-Kai Hsu, Valeriy Balabanov and Yao-Wen Chang, “TSV-Aware An-

alytical Placement for 3-D IC Designs Based on a Novel Weighted-Average

185

Wirelength Model”, IEEE Transactions on Computer Aided Design of In-

tegrated Circuits and Systems (Volume:32, Issue:4), 2013

[65] https://docs.nvidia.com/cuda/cuda-c-programming-guide/

[66] https://docs.nvidia.com/cuda/thrust/index.html

[67] https://software.intel.com/en-us/hardware-accelerator-research-program

[68] https://www.intel.com/content/www/us/en/

products/programmable/soc/stratix-10.html

[69] https://www.cadence.com/solutions/cadence-cloud

[70] https://www.xilinx.com/products/silicon-devices/soc.html

[71] http://www.ispd.cc/contests/16/

186

Vita

Shounak Dhar received a B.Tech degree in Electrical Engineering with

minor in Mechanical Engineering from Indian Institute of Technology, Bombay,

in 2014. He started his Ph.D. program at the University of Texas at Austin in

2014, with research advisor David Z. Pan and co-advisor Mahesh A. Iyer from

Intel Corporation. He has interned at Altera, San Jose in summer of 2015,

and at Intel Corporation, San Jose during the summers of 2016 and 2017.

Shounak Dhar’s research interests include physical design for VLSI,

hardware acceleration and optical computing.

Permanent address: shounak.dhar@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

187

	List of Tables
	List of Figures
	Chapter 1. Introduction
	FPGA Architecture
	FPGA Design Implementation Flow
	FPGA Placement and its Evolution
	Challenges of FPGA Placement
	Summary of Contributions

	Chapter 2. Global Placement
	FPGA Acceleration of Wirelength Gradient Computation
	Problem Statement for Upper-and-Lower-Bound Nonlinear Global Placement
	Wirelength Gradient Computation
	Results

	Spreading Cells in Global Placement using Linear Programming
	Placement Shapes
	Min-Cost Flow based spreading
	Flow Realization
	Results for the new Spreading Algorithm

	FPGA Acceleration of Spreading
	Flow-based Spreading
	FPGA Acceleration
	Results

	Chapter 3. Detailed Placement
	Detailed Placement using Dynamic Programming
	Problem Statement for Dynamic Programming based Detailed Placement
	Dynamic programming in 1 dimension
	Complexity analysis
	DP in two dimensions
	Results

	GPU Acceleration of Dynamic Programming
	Overall Flow
	CUDA basics
	Kernels
	Complexity analysis
	Results

	FPGA Acceleration of Dynamic Programming
	Hybrid CPU-FPGA Implementation
	Results

	Timing-Driven Detailed Placement
	Problem Formulation for Timing-Driven Detailed Placement
	Components of our Timing-Driven Detailed Placement Algorithm
	Complexity Analysis
	Parallelization Schemes
	Results

	Chapter 4. Conclusion
	Bibliography
	Vita

