

MASTER THESIS

TITLE: Real-time multicast algorithms for P2P networks

MASTER DEGREE: Master of Science in Telecommunication Engineering
& Management

AUTHORS: Eva Aymamí Gili
 Albert Rodríguez Viaplana

DIRECTOR: Javier Ozón Górriz

DATE: October 13th, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41804471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Title: Real-time multicast transmission algorithms for P2P networks

Authors: Eva Aymamí Gili
 Albert Rodríguez Viaplana

Director: Javier Ozón Górriz

Date: October 13th, 2011

Overview

Nowadays, many applications use multicast transmissions, such as online
games, videoconference programs, or sharing applications in a P2P network.
However, multicast transmission is a problem that has still not been
satisfactorily solved.

In this work we show a family of algorithms capable to solve this problem,
concretely focused on the real-time transmissions, in which a node called root
or source sends information to a specific group of nodes. These algorithms
take advantage of the transmission delay of a message between one node and
another in order to send it towards another node.

In order to study the behaviour of these new real-time transmission algorithms
we have worked with two virtual networks that models the IP network, to which
we have added a number of users, from 10 to 1000. These users form the
multicast group. Later, we have obtained the overlay network. This network is
defined in the application layer, and the user nodes form it.

Finally, the multicast algorithms have been applied on those networks and
results have been analysed to extract the conclusions for our original purposes.

Títol: Algorismes per la transmissió multicast en temps real en xarxes P2P

Autors: Eva Aymamí Gili
 Albert Rodríguez Viaplana

Director: Javier Ozón Górriz

Data: 13 d’Octubre del 2011

Resum

Actualment, moltes aplicacions utilitzen les transmissions multicast, tals com
jocs en línia, aplicacions de videoconferència o d’intercanvi d’arxius en una
xarxa P2P. No obstant, la transmissió multicast és un problema que encara no
ha estat resolt de forma satisfactòria.

En aquest projecte, es presenta i estudia una família d’algorismes capaços de
resoldre el problema de l’encaminament multicast, focalitzats en escenaris de
transmissió en temps real, en els qual un node denominat arrel o font ha
d’enviar informació a un grup determinat de nodes. Aquests algorismes
aprofiten el retard de transmissió d’un missatge entre un node i un altre per tal
d’enviar el missatge cap a un tercer node.

Amb la finalitat d’estudiar el comportament d’aquests algorismes hem treballat
amb dos models de xarxa virtual per tal d’emular la xarxa IP, als quals hem
afegit un determinat número d’usuaris que han oscil·lat des de 10 fins a 1000.
Aquests usuaris conformen finalment el grup multicast. A continuació s’ha
obtingut la xarxa overlay, definida a la capa d’aplicació i formada pel conjunt
de nodes d’usuari.

Finalment, s’han aplicat els algorismes sobre les diferents xarxes overlay i els
resultats han estat analitzats amb l’objectiu d’extreure’n conclusions i conèixer
si els algorismes han assolit les premisses definides inicialment.

INDEX

INTRODUCTION .. 1

CHAPTER 1. TRANSMISSION AND MODELING OF IP NETWORK 3

1.1. Multicast transmissions .. 3

1.2. IP network modeling ... 4
1.2.1. Computer network modeling .. 4
1.2.2. Transit-Stub model ... 5
1.2.3. Random plain graphs ... 6

CHAPTER 2. GRAPH THEORY ... 9

2.1. Definitions .. 9

2.2. Shortest path search. Dijkstra’s algorithm ... 12
2.2.1. The shortest path problem ... 12
2.2.2. Dijkstra’s algorithm principles ... 13

CHAPTER 3. MULTICAST ALGORITHM ... 15

3.1. The postal model ... 15

3.2. The extended postal model .. 16

3.3. Single message multicast algorithm SMM .. 17

3.4. Message Stream Multicast Algorithm MSM .. 22

3.5. MSM algorithm with time restriction ... 24

3.6. MSM algorithm with rate restriction .. 25

3.7. MSM algorithm for real-time transmission ... 27

CHAPTER 4. ALGORITHMS APPLICATION ... 29

4.1. Backbone network ... 29
4.1.1 Single Autonomous System simulation ... 30
4.1.2 Multiple Autonomous Systems simulation .. 31

4.2. MSM algorithm simulation .. 31
4.2.1. User graphs .. 33
4.2.2. Overlay graphs ... 33
4.2.3. Algorithms simulation ... 34

CHAPTER 5. ALGORITHMS EVALUATION .. 35

5.1. Transit network parameterization .. 35

5.2. Graph creation ... 36

5.3. Results and comparisons ... 37

5.3.1. Algorithms execution over simulated IP networks (Transit – Stub model)........... 37
5.3.2. Single Autonomous System backbone network emulation 38

5.3.2.1. Former algorithms from previous projects ... 38
5.3.2.2. Real-time transmission algorithms .. 39
5.3.2.3. Comparison, analysis and results ... 41
5.3.2.4. Real-time transmission algorithms tuning ... 43

5.3.3. Multiple Autonomous System backbone network emulation 46

CHAPTER 6. CONCLUSIONS ... 49

BIBLIOGRAPHY REFERENCES ... 51

INDEX FIGURES

1.1 Transit-Stub model structure …………………………………………………..…...………...… 6

2.1 Example of a connected graph and a disconnected graph ……………………………...….. 10

2.2 Example of a tree graph ……………………………………………………………………….... 10

2.3 Example of a complete graph and a regular graph ………………………………………….. 11

2.4 Example of an isomorphic vertex-transitive graph ………………………………………….... 11

2.5 Example of a digraph and its base graph associated ……………………………………..… 12

2.6 Dijkstra’s algorithm ……………………………………………………………………..........….. 13

2.7 Dijsktra’s algorithm execution example for a node u ……………………………….............. 14

3.1 Transmission trees (Binomial on the left, Fibonacci on the right) ...………………......……. 16

3.2 Time transmission and latency ……………………………………………………………........ 16

3.3 Comparison between EMPS (n, λ, µ) and Minimum Spanning Tree ……...…......…….….. 18

3.4 SMM Single Message Multicast Algorithm ..………………………………………...…….….. 18

3.5 SMM algorithm example in a full-connected network ……………………………..……........ 20

3.6 Network example where SMM is not optimal ………………………………………..……….. 21

3.7 A network in which MSM-s isolates some peers for s≤3 ..…………………….....……..…... 24

3.8 Transmission of two peers p and q …………………………………………………….…..….. 24

4.1 Single Autonomous System simulation graph ……………………………..……………..….. 30

4.2 Multiple Autonomous System simulation graph ………………...…………………….…..….. 31

4.3 MSM Algorithm Simulator user interface …………………………………………………..….. 32

4.4 P2P overlay network node example …………………………………………………...…..….. 34

5.1 Algorithm behaviour - Congestion avoidance ……………………………………………….... 40

5.2 Algorithm behaviour – Codec vs. bandwidth ………………………………………….…..….. 40

5.3 Algorithm behaviour – t0 vs. n ………………………………………...……………...……..….. 48

INDEX TABLE

1.1. Random graph models ……………………………………………………………………..…… 7

5.1. GT-ITM parameterization ……………………………………………………………………….. 36

5.2. Access rates (AIMC quiz, 2011) ..………………………………………………………..…..... 37

5.3. Real-time transmission algorithm results …………………………………………………...… 42

5.4. Real-time transmission optt0 ...………………………………….... 44

5.5. Real-time transmission optcad2 ...…………………………….... 46

5.6. Real-time transmission algorithm over multiple SA emulation ……………………………… 47

Introduction 1

INTRODUCTION

In recent years the number of computers connected to the Internet has grown
up considerably, as well as the set of applications that can be executed over
them. Very often, these applications consist in data transmission between one
computer and another, or between one computer and a group of them. From
the origins of computer networks, the unicast (from one computer to a single
one) and the broadcast (from one computer to an undefined group of them)
transmissions are available for communications among devices on a network.
Moreover, the transmission from one single computer to a well-defined group of
receivers is still an unsolved problem. This sort of transmissions is named
multicast and lots of applications use it: videoconference calls, multiplayer
games, or file sharing in a P2P network.

The multicast IP is an available solution to multicast routing problem, but it also
has some (and relevant) drawbacks, as it was added to the original IP
specification. First, the number of multicast addresses is small, which implies a
limited number of groups and then, some multicast routing algorithms and
protocols are complex. In any case, the most problematic point is the fact that
all the network equipment, basically routers and switches, must understand
these protocols and some of them are still not ready to support multicast
services. In other words, most of the backbone equipment should be changed in
order to provide a multicast IP service.

This master thesis is the continuation of previous works [13,14,15,16,17], where
a different strategy for multicast transmissions, defined over the application
layer, was proposed. With this purpose, they presented a family of routing
algorithms which, due to its general characteristics, can be used at any layer of
the protocol stack. These algorithms present as main features: simple
implementation, low transmission delay and high scalability.

At the beginning [13,14,15], the algorithms were defined to send a single packet
in a very homogeneous network. After that, more complex networks and
scenarios were proposed, adding also some behaviour conditions with the aim
of optimizing the total transmission delay [16,17]. But, in any case, no one of the
preceding studies took into account the performance of the algorithms for a
real-time transmission. Most of the multicast transmissions such as a
retransmission of a live match or a concert, require a real-time communication,
so our study is focused on the adaption of the former algorithms to properly
work with real-time transmissions.

To study and check the performance of the modified algorithms, we have tested
them on different simulated networks. In fact, we have worked with a virtual
representation of an Internet backbone, which has transit networks (with high
speed and delay) and access networks (slower, with lower delays, and
connected to the transit nodes). So, two different classes of backbone networks
are tested in this work, one formed by a single Autonomous System, and
another which includes several AS.

2 Real-time multicast transmission algorithms for P2P networks

After that, we have defined the overlay networks by adding to the previous
backbone networks a set of user nodes (or peers) that form the multicast group.
Once we have the overlay network, we have applied the algorithms over it. This
execution will report the routing tree, the node rate, the time at which any node
receives the packet, the number of nodes reached by the algorithm and the total
transmission delay. We have analysed and compared the results for real-time
algorithms with those ones resulting from previous works.

The memory of this project is structured in six chapters: first, we explain the
multicast transmission problem and we present the Internet network model used
for the simulations. The second section is a brief introduction to graph theory
and the Dijkstra’s algorithm, which is used to obtain the minimum path between
two nodes. The third section defines the algorithms used to get the multicast
routing tables. Fourth section describes the applications used to create the P2P
overlay networks and to apply the algorithms on it. In the fifth chapter we
present and analyse the results, and compare them with former performances
of the algorithms. Finally, in the last section, we enumerate the conclusions of
the study and analyze the environmental impact of this work.

Transmission and modeling of IP network 3

CHAPTER 1. TRANSMISSION AND MODELING OF IP
NETWORK

1.1. Multicast transmissions

Any communication network, including computer networks, responds to some
transmission topology. The most usual transmission types are unicast or point-
to-point transmission (where one single source sends information to one single
receiver) and broadcast, where the data is transmitted from a single source to
all the possible receivers in the network. An example of unicast communication
is a call over the Public Switched Telephone Network (PSTN) while an example
of broadcast transmission is the diffusion done by a radio station. Otherwise, if
we want to transmit data from a node to a well-defined set of receivers, the
transmission is more complex than in the previous cases. This is known as
multicast transmission and means a set of clients receiving the same stream
from a single source.

Multicast applications include video conferencing, multiplayer networking
games, corporate communications, distance learning, software distribution,
stock quotes or news. In the context of IP networks multicast was initially
proposed to be implemented at the network layer [1], but it has not been widely
deployed [2]. Multicast IP defines a multicast group where the clients receive
the stream originated by a single source, which only sends one packet to the
multicast group. It is forwarded to the multicast routers and replicated at points
where the paths of the different clients diverge. By sending only one copy of the
information to the network and allowing the network intelligence replicate the
packet only when necessary, bandwidth and network resources may be
efficiently exploited. But there are significant drawbacks for multicast IP, since
the original IP design did not consider multicast transmission and it is an “add-
on” to the IPv4 protocol. For example, the range of IP addresses to create
multicast groups is very limited and most of them are already reserved.
Additionally, complex algorithms capable to know all the devices involved during
the transmission (end devices, routers…) are needed. An example of a protocol
family that carries out this function is the Protocol Independent Multicast (PIM).

These reasons make multicast transmission complex and difficult before using
IPv6. Also, the multicast group in IPv4 is created at network level of the protocol
stack, so an application that needs to define and manage a multicast group (for
example, a videoconference call application) may have difficulty to administrate
the whole multicast group. New application layer based approaches have been
deployed due to multiple existing drawbacks in IP multicast transmissions.
These alternatives are built using peer-to-peer architectures [3].

In an application-layer multicast approach, also called overlay multicast, the
participating peers organize themselves into an overlay topology for data
delivery. In this topology each edge corresponds to a unicast path between two
end-systems or peers in the underlying IP network. All multicast-related

4 Real-time multicast transmission algorithms for P2P networks

functionality is implemented by peers instead of routers, with the goal of
depicting an efficient overlay network for multicast data transmission. Obviously,
the application-layer multicast is not as efficient as network-layer multicast
because it adds delay and bandwidth consumption and also provides less
stability in the multicast tree. This fact penalizes those applications that require
a real-time communication, as a live broadcast football game or a concert,
because both are delay-sensitive transmissions. They are also sensible to jitter
delay (that is, the difference between transmission delays of two consecutive
packets). In video on demand applications, receiving the information without
delay is not as important as avoiding the delay jitter, since in this case we want
to preserve the rate at which the packets arrive at the destination (rather than
the delay at which they arrive) to be able to rebuild the video without
interruptions.

This project presents a set of algorithms for obtaining multicast trees in order to
minimize the total delay of the transmission –in other words, the time since the
first packet is issued into the network until the last node receives the last packet
of the transmission– and, also, in order to maintain the rate transmission above
the source bit rate, to avoid network congestion.

There are several studies and proposals for application-layer multicast
transmissions. These studies are mainly focused on protocols describing
efficient overlay trees construction and maintenance. There are two basic
approaches to this problem: fixed nodes and dynamic nodes. The first proposal,
as proposed in [4] and [5], places strategically a set of some special nodes
around the whole network when a multicast service is required by any
application. Although the multicast tree defined is quite stable and easy to
maintain, this solution has similar problems than IP Multicast [2]. In dynamic
nodes-based approach, according to [6], [7] and [8], the group members are
self-organized into an overlay multicast tree and they take care of all multicast
functions. Since in large multicast groups there is a frequent joining and leaving
movement of nodes, the adaptation of the network to possible changes is one of
the main issues that should be considered together with the scalable formation
of an efficient multicast tree.

1.2. IP network modeling

1.2.1. Computer network modeling

The use of real networks to study and analyse the multicast algorithms is not
possible due to the difficulty to manage them. Moreover, they are usually not
available for this sort of tests. These are some of the reasons why simulations
will be used to test our designs.

So far, the models used to modelling computer networks usually are:

 Regular topologies, like rings, trees and stars.

 “Well-known” topologies, like ARPAnet or the backbone of NSFnet.

 Randomly generated topologies.

Transmission and modeling of IP network 5

Obviously, these three options have some limitations. The regular or “well-
known” topologies only represent a part of current networks and the random
ones, usually, do not represent a real network. These limitations must be taken
into account, since the performance of an algorithm can widely vary from one
topology to another.

Other option to model a network is using a hierarchical model. Two choices are
available: N-Level and Transit-Stub. The first one starts with a random
connected graph and then, recursively, the nodes are substituted by another
new connected graph. The result of this operation is a hierarchical level
structure where domains and properties, like the cost of the links, can be
defined by the user. The Transit-Stub model will be used for developing our
simulations, so it will be described in a more detailed way in the following
section.

1.2.2. Transit-Stub model

The graphs proposed by Ellen W. Zegura, Kenneth L. Calvert and Samrat
Bhattacharjee [9] have been chosen by us to model the IP network. Their
purpose is emulating, in the most realistic way, the paths (that is, the nodes
sequence) through which information travels in a transmission between any pair
of nodes in the IP network. Nodes represent networking devices as switches or
routers, and edges represent the paths between interconnecting elements. The
model only stands for the logical network structure and does not include
individual hosts, that is, terminal equipment.

Figure 1.1 shows a network built following the Transit-Stub model. First, a
random connected graph is defined, where each node represents a complete
transit domain. Two different domains are shown in the figure; they are
highlighted in grey. Then, each node is substituted by a new connected graph,
which represents the backbone network for each transit domain (five and three
nodes in the figure, respectively). After that, we generate a set of connected
graphs and we randomly join one of the nodes of each connected graph to a
transit node. Thus, each new connected graph (also called stub domain)
represents an access domain for that transit node. Finally, some edges
between transit domain and stub domain nodes (or even between stub domain
and stub domain nodes) are added. Due to all the generated graphs are
connected graphs, the resulting graph will be a connected graph as well.
Finally, we must add that any of those random generated graphs can be
created using any of the random plain graphs model. The parameters needed to
create a network using the Transit-Stub model are:

 T: number of transit domains.

 Nt: average number of nodes per transit domain.

 K: average number of stub domains per transit domain.

 Ns: average number of nodes per stub domain.

 Ps: probability of connecting a stub node to another stub node.

 Pt: probability of connecting a stub node to a transit node.

6 Real-time multicast transmission algorithms for P2P networks

With these parameters, we can use the tools (described in section 4.1) to create
the network layer of each device. However, the Transit-Stub model only sets the
backbone (that is, the network layer devices interconnection), which is not
enough for our purposes, since we need individual hosts (or peers) to act as
multicast group members. Therefore, we should add to the backbone network
formed by the transit nodes T and the stub nodes S, the terminal or user nodes.
These nodes will form the multicast group which will share information. In our
study, the user nodes have been added to the network by a Java application
(see section 4.2) that randomly connects each user node to a stub node of the
backbone. This operation emulates the connection between an end user with an
Internet access node (i.e. an ISP, represented in our model by an S stub node)
through an access link. After this, the end user becomes a member of the
overlay network.

Fig. 1.1 Transit-Stub model structure

1.2.3. Random plain graphs

Another model that can be used for the multicast algorithms test is the random
plain graphs model. Although this sort of graphs do not represent a real IP
network, its simplicity makes them a good option in some network studies to
measure the correct behaviour of the overlay algorithms. The basic model
corresponds to the pure random model, which distributes the nodes randomly
throughout the plane surface. Once distributed, edges are added between a
pair of nodes u and v with an probability.

Other random models also distribute the nodes randomly over the plain, but
they modify the probability function to add an edge with the aim of getting a
better approach of the network structure. The most used model is the Waxman
one, where the probability of adding an edge between two nodes u and v is
given by the expression:

Transmission and modeling of IP network 7

- (1.1)

In this case, α>0, β≤1, d is the Euclidian distance between u and v, and L is the
maximum distance between two nodes of the network. There are other
possibilities such as replace the value of d by a random number between 0 and
L or set α>1.

Another similar topology to the Waxman’s model is the exponential model. In
this case, the probability of adding an edge between any pair of nodes u and v
is:

- - (1.2)

In both cases the probability of adding an edge between two nodes decreases
as the distance between them increases.

Finally, on the localization model, the nodes are divided into categories and a
link probability is assigned to each of them. For example, for two categories, the
probability of an existing edge between u and v is:

 (1.3)

In this case, r is a parameter used to establish the boundaries of the category.
The Table 1.1 summarizes the random models:

Table 1.1. Random graph models

Model Edge probability

Pure random

Waxman

Exponential

Localization

In our case, as described in future sections, we have chosen a set of nodes and
they have been joined among them, creating a complete graph according to the
Transit-Stub model. The edges have been described by two random
parameters: transmission time and propagation delay. These values have been
chosen randomly and uniformly within a range of allowed values. We have

8 Real-time multicast transmission algorithms for P2P networks

defined for simplicity’s sake a symmetric topology, and so the values of the
edge that joins node u to node v are the same as those of the opposite edge
that goes from node v to node u.

Graph theory 9

CHAPTER 2. GRAPH THEORY

This chapter presents graph theory, some definitions and the Dijkstra’s shortest
path algorithm. With these tools, we will model Internet and create the overlay
graph to represent our multicast group and test the routing algorithms.

2.1. Definitions

A pair (V(G),E(G)) is a simple graph G where V(G) is a finite set of elements
called vertices or nodes of G and E(G) is a finite set of non-sorted pairs of
nodes, called edges or links. The order n of a graph G=(V,E) is the cardinal of
V(G), that is, the number of nodes that form it. The graph size E is defined as
the number of edges of the graph, i.e. the cardinal of E(G). Usually, a graph is
sketched through points, which represent nodes, and lines representing the
edges joining the nodes, as it can be seen in Figure 2.1. By definition, a simple
graph G has no repeated edges (pair of nodes linked by more than one edge).
From now on, unless specified otherwise, whenever we say graph G we will
refer to a simple graph.

Both nodes and edges of a graph may include one or more labels identified

from applications Ф:V(G) R and Ф’:E(G) R. Then, each node has associated
a label that typically is an integer or a real number. These labels (also known as
weights) can be used to identify the elements of the graph, or set some property
of these elements, like link bandwidth. In this project we have assigned two
labels –represented by real numbers– to each edge, one for transmission time
and another for the propagation delay between each pair of nodes.

Two nodes u and v are adjacent (or neighbours) if they are linked by an edge
uv. In this case, nodes u and v are adjacent to edge uv, and edge uv is also
said to be adjacent to nodes u and v. Two edges are adjacent when they have

one common node. The degree (v) of a node v is the number of adjacent
edges to v.

Given a simple graph of order n, the maximum number of edges that it can have
is equal to n(n-1)/2, that is, all the possible combinations of n nodes taken in

groups of two. The density (G) of a graph G of order n is the ratio between the
number of edges of the graph G and the maximum number of edges that can
contain a graph of order n. Thus:

- -
 (2.1)

We define an edge sequence as a succession of consecutive edges
v0v1,v1v2,v2v3,…,vm-1vm. This sequence draws a continuous path over the graph.
A sequence with no repeated edges is called path, and if there are not repeated

10 Real-time multicast transmission algorithms for P2P networks

nodes, it is called a simple path. A cycle is a path such that the first node and
the end node are the same. Note, however, that any node of a cycle can be
chosen as the start node, so the start is often not specified.

Two nodes u and v are connected if G contains a path from u to v. If every pair
of nodes in V(G) is connected, then the graph G is connected. The distance
d(u,v) between two nodes u and v is the length of the shortest path between
them, that is, the minimum number of edges that we need to go from one node
to the other. If a graph is not connected and two nodes belong to two different
connected components, we say that their distance is infinite. The eccentricity
ε(v) of a node u in a graph G is the maximum distance from u to any other node
of the graph. The diameter D(G) of a graph G is the maximum eccentricity of all
the vertices in the graph –that is, the maximum distance between two nodes–,
and the radius R(G), the minimum.

Fig. 2.1 Example of a connected graph and a disconnected graph

A tree is a connected graph with no cycles, or alternatively, a graph in which
any two nodes are connected by exactly one path.

Fig. 2.2 Example of a tree graph

It is easy to prove [10,11] the equivalence of next propositions, related to tree
definitions and their properties:

i. T is a tree composed by n nodes.

ii. T has no cycles and has n-1 edges.

iii. T is a connected graph and has n-1 edges.

Graph theory 11

iv. T is connected and each of its edges is an isthmus, that is, the removal
of any of its edges splits off the graph into two connected parts.
Moreover, these parts do not have cycles.

v. Each pair of nodes of T is connected through just one path.

vi. T has no cycles, but the addition of any new edge will create exactly one
cycle.

A complete graph Kn is a simple graph in which all the pairs of nodes are linked
by an edge, and thus its size is n(n-1)/2. In addition, if all nodes in a graph have
the same degree, it is called a regular graph; and, in particular, if all nodes have
degree r, it is called a regular graph of degree r or r-regular graph.

Fig. 2.3 Example of a complete graph and a regular graph

Two graphs G=(V,E) and G’=(V’,E’) are isomorphic if exists a bijection Ф :V V’

such that for any pair of nodes u,v V(G) the edge uv belongs to E(G) if, and
only if, the edge Ф(u)Ф(v) belongs to E’(G’). In this case we say that Ф is an
isomorphism of G to G’. Two isomorphic graphs G and G’ can be represented
graphically in the same way. An automorphism of a graph G is an isomorphism
from G to G. A graph G=(V,E) is vertex-transitive or vertex-symmetric if given

any arbitrary pair of nodes u,v V(G) there exists an automorphism Ф of G
such that Ф(u)=v. Given a vertex-transitive graph, all nodes are interchangeable
and have the same properties.

Fig. 2.4 Example of an isomorphic vertex-transitive graph

A directed graph or digraph G is an ordered pair (V(G),A(G)), where V(G) is a
finite, non-empty set of elements called vertices or nodes, and A(G) is a finite
set of ordered pairs of V(G), called directed edges or arrows. In this case, the
edges have directions (plotted by an arrow) and “goes” from a node v to another

12 Real-time multicast transmission algorithms for P2P networks

one w. This way, the edge vw and the edge wv are different and we can say
that vw is the inverted edge of wv. If G has not any edge from one node to itself
(that is, an arrow vv called loop), and all the edges in G are different, then G is
called a simple digraph. If G is a digraph, the graph obtained by deleting the
arrows (or the directions) of the arcs is called base graph of G.

Fig. 2.5 Example of a digraph and its base graph associated

All the definitions given for a simple graph can be extended to a digraph. Thus,

we can define labelling applications Ф:V(G) R and Ф’:E(G) R on the set of
nodes and on the set of edges, respectively, and also describe finite sequences
of edges v0v1,v1v2,v2v3, …, vm-1vm where neither edges nor nodes are repeated.

A digraph G is called connected or weakly connected if the base graph of G is a
connected graph. Otherwise, G is called strongly connected if it contains a

directed path for every pair of nodes v,w V(G). While all strongly connected
digraphs are connected, not all connected digraphs are strongly connected.

The difference between weakly connected digraphs and strongly connected
digraphs is easier to understand if we consider a map of a city whose streets
are all one-way. Saying that the map is connected is equivalent to say that we
can move from one point of the city to somewhere else, ignoring the required
traffic directions. By other hand, if we say that the map is strongly connected we
can keep driving from any point of the city to any other else, but always taking
care about the allowable direction of the streets.

2.2. Shortest path search. Dijkstra’s algorithm

2.2.1. The shortest path problem

The main objective of this project is to study the behaviour of a set of algorithms
in order to optimize the transmission of information over a multicast network. To
do this, it will be necessary to calculate the shortest path between any pair of
nodes of the network and the cost (or delay) to send data between them. This is
a classical problem of graph theory, solved optimally by the Dijkstra’s algorithm.
In particular, Dijkstra’s algorithm searches the minimum distance from a node u
to the rest of the nodes of the graph. To find the shortest path between any pair

Graph theory 13

of nodes, the algorithm must be run consecutively, taking in each case, as the
source node, each node in the graph.

2.2.2. Dijkstra’s algorithm principles

In this algorithm, each node v of G=(V,E) has a label L(v) associated. This label
shows the shortest known distance needed to move from one given node u to
that node v. Initially, the value of L(v) is the weight w(u,v) of the edge that
connects the nodes u and v. If this edge does not exist, this value is set to
infinity. Also, L(u)=0, so the cost to stay in the node itself is 0.

The algorithm defines a set T V which contains the nodes whose shortest path
has already been found (from u to each of them). Initially, T contains only the
node u. When the algorithm application ends, the L(v) value is equal to the cost
of the shortest path from u to node v of V(G).

At each iteration, the algorithm adds a new node to the list T. This is done by
choosing the node v’ which does not belong to the list T and which has the
minimum label L(v’). In other words, the selected node is the nearest node v’ to
u among those that have not been selected. Once this is done, the adjacent
nodes to v’ must update their label, so the distances between u and these
nodes are recalculated. This process is repeated until all the nodes of the graph
have been added to the list. In Figure 2.6 we can see the code which shows the
steps performed on the algorithm execution.

Fig. 2.6 Dijkstra’s algorithm

Dijkstra’s algorithm is optimal. To prove this, let’s see that each time a node v’ is
added to T, the label L(v’) is the minimum distance from u to v’. Using a proof by
contradiction, let’s suppose that L(v’) is not the shortest path between u and v’.
Then, let’s say that w2 is the first node through which passes this new shortest
way between u and v’, shorter than L(v’). This w2 node must belong to T by
construction, as the distance from u to w2, which the algorithm knows since the
first iteration, must be shorter than L(v’).

for all v u L(v)=w(u,v)
L(u)=0
T={u}
while T≠V
begin

find v’ T such that for all v T L(v’)≤L(v)
T=TU{v’}

for all v T such that v’ is adjacent to v
if L(v)>L(v’)+w(v’,v)
then L(v)=L(v’)+w(v’,v) end if

end for all
end while

14 Real-time multicast transmission algorithms for P2P networks

The same argument can be repeated for the next node in the path, w3, which
must have shorter distance from u than L(v’), calculated after adding w2 to T,
and therefore this node w3 must also belong to T. Hence, when the algorithm
reaches v’, if it would exist a shortest path from u to v’ than the indicated by
L(v’), the algorithm would have added to T these nodes w2,w3,w4,… which form
this shortest path, and it would have found this path. Finally, as to complete the
algorithm execution all nodes must be in T, the Dijkstra’s algorithm finds the
shortest path from one node u to any other node in the graph.

Iteration V’ L(u) L(v1) L(v2) L(v3) L(v4) T

0 - 0 1 2 4 ∞ {u}

1 v1 0 1 2 4 4 {u, v1}

2 v2 0 1 2 3 3 {u, v1, v2}

3 v3 0 1 2 3 3 {u, v1, v2, v3}

4 v4 0 1 2 3 3 {u, v1, v2, v3, V4}

Fig. 2.7 Dijsktra’s algorithm execution example for a node u

It is also easy to prove that Dijkstra’s algorithm has a complexity of O(n2),
something that, in practice, means that shortest paths can be found in a low
computing time. To get the minimum L(v’) (fifth line of the algorithm pseudo
code) we make O(n) comparisons, and the seventh line does not need more
than n allocations. These two lines are in the while loop from line 4, executed
(n-1) times. Then, this algorithm can be completed in O(n2) computation time.

Finally, it must be noted that this algorithm not only calculates the minimum cost
(or distance) between any two nodes, but also draws the path which connects
them. This can be done by adding a new label in each node, in such a way that
when L(v’) value is updated, this new label keeps the node v from which the
new value for L(v’) has been calculated.

Multicast algorithm 15

CHAPTER 3. MULTICAST ALGORITHM

In this chapter we describe an algorithm, named Message Stream Multicast
MSM, for multicast data transmission. Initially we describe the postal model
where a source node sends information to a group of nodes. Afterwards, a set
of modifications, which have been carried out over the initial algorithm, have
been proposed, developed and compared among them.

3.1. The postal model

To improve data transmission between nodes, or peers in the P2P network
context, A. Bar-Noy and S. Kipnis introduced in [12] the MPS(n) Postal Model,
which characterizes message-passing system, where packet switching

techniques are employed. Also a latency parameter is defined. It
corresponds to the time elapsed since a peer starts sending a message until it
is fully received by another peer. Therefore, the latency can be calculated as
the sum of transmission and link propagation times.

The basic idea of the model proposed in [12] is to use the transmission delay to
send the message to other peers. This means that the source forwards the
message to more than one peer in order to flood the network as soon as
possible, instead of remaining idle after it has send the message once.
Similarly, the peers who have already received a message, forward it to other
peers before receiving the next one.

The postal model looks for optimum routing trees based on Fibonacci, in spite
of the traditional binominal trees. Although the presented model in [12] is
designed for broadcast transmissions, it can easily be extrapolated to multicast
communications, organizing the peers in groups and using broadcast
transmissions to share the information among the nodes belonging to the same
group.

Figure 3.1 shows the transmission from peer p0 to seven different peers, using
a binomial tree and a Fibonacci tree. In both cases, each peer can transmit a

packet every time unit. The latency value is because two time units are
required to go from one peer to other one. Thus, propagation time is equal to
one time unit. The left tree is based on a binomial model and requires six time
units to send the data message to all the network peers. The right one uses the
postal model based on Fibonacci tree, and only needs five time units to reach
all the network peers.

16 Real-time multicast transmission algorithms for P2P networks

Fig. 3.1 Transmission trees (Binomial on the left, Fibonacci on the right)

3.2. The extended postal model

In this document, continuation of previous projects [13,14,15,16,17] we work
with an extended postal model, denominated Extended MPS or by the acronym
EMPS. For this, we have defined a message-passing system EMPS (n, λ, µ) of
n peers, with full-duplex connectivity among peers {p0, p1, … pn-1}, where each
peer p can simultaneously send a message to a peer q and receive from a
second peer r another message according to the parameters listed below:

 For each peer p in a message-passing system, we define the
transmission time µp as the time that p requires to transmit a message M

of length L. We denote as the vector of all µp. In a more detailed
context we can define a transmission time µpq for each pair of peers p
and q. In this case µ, is a square matrix with all-time transmissions µpq.

 For each pair of peers p and q, in a message-passing system, we define
the communication latency λpq between two peers p and q. If at time t
peer p starts sending a message M to the peer q, then the peer p sends
the message M during the time interval [t, t+µpq], and the peer q will
receive the message M during the interval [t-µpq+λpq, t+λpq], as shown in
Figure 3.2. As defined, the latency is the sum of transmission time of the
peer p and the propagation delay between p and q. We denote λ as the
square matrix of all λpq.

Fig. 3.2 Time transmission and latency

Multicast algorithm 17

Although an overlay network normally is a fully connected network (each peer in
the overlay network is able to send an end-to-end message to any other peer),
the EMPS (n, λ, µ) does not require full connectivity. Hence, the definitions and
results depicted in this project will fit both fully connected and not fully
connected networks. We also assume that the processing delay of the peers is
negligible. However, the model could easily be modified when a peer p has a
processing delay different than zero just adding the processing delay to the
latency each time that peer p forwards the message for the first time.

EMPS (n, λ, µ) is a generalization of MPS (n) in [18]. In MPS (n) model all peers
are identical, so µp is equal to the unit value for all peers, and λpq has also the
same value for any pair of peers p and q. Furthermore, the overlay network is a
full connected graph. On the other hand, the EMPS (n, λ, µ) model considers
heterogeneous nodes, so we can model different transmission times for
different peers and also different communication latencies between any pair of
peers, since the underlay network consists of a set of links with different
characteristics and network devices.

For simplicity, we assume that for same length messages, the communication
latency is constant as a function of time. This means that we do not consider
the possible variation of the communication latency due to the load and broken
links of the underlying network. Application-layer networks use the services
provided by the underlying network, such as a TCP/IP network, to establish
unicast full-duplex connections between any pair of peers. However, in this
project, we will ignore the characteristics of the layers below the application
layer. The term message refers to any atomic piece of data sent by one peer to
another using the protocols of the underlying layers.

Thus, we denote by EMPS (n, λ, µ) the message-passing system with n peers,
a communication latency matrix λ and a transmission time vector µ.

3.3. Single message multicast algorithm SMM

The problem of multicasting one message in a message-passing system is
defined as follows: let p0 be a peer in EMPS (n, λ, µ) model which has a
message M to multicast to the set of receiving peers R={p0, p1, … pn-1}, at time
t=0. On this scenario we have to find an algorithm that minimizes the multicast
time tM, that is, the time at which the last peer of R receives the message M.
Although the result of EMPS (n, λ, µ) is a multicast spanning tree (that is, a tree
connecting all the peers of the network), Figure 3.3 shows that this problem is
different from the well known Minimum Spanning Tree problem, in which, for a
given a network, we have to find the spanning tree with minimum weight.
Furthermore, in our problem the time delay between two peers p and q is not
always the weight λpq of the edge that joins them, since if the peer p has
forwarded the message to other peer before, we must add the transmission
time µp to the delay.

18 Real-time multicast transmission algorithms for P2P networks

Fig. 3.3 Comparison between EMPS (n, λ, µ) and Minimum Spanning Tree. The

transmission time µ is one for all peers and the latency is the weight of the
edge. Brackets show the time that each peer receives the message

In [18] the authors define the algorithm BCAST which provides time-optimal
multicast trees for the full connectivity case, and for µp=1 and λpq=1 for any pair
of peers p and q. Such time-optimal multicast trees are based on generalized
Fibonacci numbers, and they refer to these trees as generalized Fibonacci
trees. The authors also state in [18], that in any optimal strategy each peer once
have received message M, has to forward it to a new peer each time unit (so,
transmission time is considered to be one). This idea also applies to the
extended postal model EMPS (n, λ, µ), with the difference that now message
retransmissions of peer p have to occur each transmission time µp. The
algorithm that we propose, called SMM Single Message Multicast, is outlined in
Figure 3.4.

Fig. 3.4 SMM Single Message Multicast Algorithm

Data: EMPS(n,λ,μ)
Result: routing[i].send[j]
send¬1;
routing[i].send[j] 0 ji , ;

routing[i].tnext i ;

routing[root].tnext lowest latency of root;

while send <n do
i imin();

next routing[i].index;

routing[i].send[next] 1;

update_i(routing[i].index);
update_t(routing[i].tnext);
update_i(routing[next].index);
update_tn(routing[next].tnext);
send¬send+1;

end

Multicast algorithm 19

The variables, arrays, and functions that the algorithm uses are the following:

 routing[i].send[j]: the routing table. Initially all its values are 0. When
SMM has finished, routing[i].send[j] equal to 1 means that peer i has to
forward the message to peer j. If it equals to 0, then peer i will not send
the message to peer j. After the algorithm’s execution, since each peer
has an ordered list of its neighbours according to their distance, once
peer i has received the message, it will forward it to the first peer j such
that routing[i].send[j]=1. After that, it will forward the message to the next
peer k with routing[i].send[k]=1 and so forth.

 i: the peer that sends the message at each step.

 next: the peer that receives the message at each step.

 routing[i].index: points to the closest peer to i which has not yet received
the message. We understand as closest peer the one who has a smaller
latency (transmission time add on propagation time) in front of i.

 routing[i].tnext: time at which if peer i sends a message, it will arrive at its
closest peer, chosen among the unvisited peers. This receiving peer is
routing[i].index.

 imin(): chooses the peer with lowest routing[i].tnext.

 update_i(): searches the nearest peer to i from the set of peers which
have not yet received the message.

 update_t(): once i has forwarded the message, update_t() computes the
next value for routing[i].tnext. That is, it subtracts from its previous value
the last latency, and adds up to it the next latency plus its transmission
time.

 update_tn(): the same as update_t() but it applies to a peer which has
just received the message. To the time at which the peer receives the
message, we add up the closet peer latency, chosen among the peers
that have not yet received the message.

The algorithm operation is simple. At each step, SMM chooses the peer that
has not yet received the message and has the lowest cost. That is, the unvisited
peer that can be reached with the minimum time from any peer, among those
that has already received the message. Once the message has been received
by the new peer, the algorithm recalculates the arrival times of the remaining
peers (considering that the new peer can forward the message immediately),
chooses the peer with the lowest arrival time and forwards the message to it.
The arrival time calculations are made under the assumption that when a peer
finishes the message transmission to another peer, it begins immediately with
another destination peer.

The SMM algorithm is very similar to Dijkstra’s shortest path algorithm [19] with
the difference that in EMPS (n, λ, µ) the time delay between two peers p and q
is not constant. Actually, in EMPS (n, λ, µ) this delay is equal to λpq plus µp

multiplied by the number of previous retransmissions of peer p (or, when the
transmission time p varies according to the recipient, is equal to the sum of λpq
and the total time of all previous retransmissions of p).

Consider the network depicted in Figure 3.5 where the edges weights
correspond to the communication latency λpq (transmission time plus

20 Real-time multicast transmission algorithms for P2P networks

propagation time) between nodes that the edge joins. For simplicity, we have
considered that the transmission time is equal to one for all peers. We also
assume that p0 is the source peer. At t=0, p0 sends the message to peer p1
which receives the message at time t=10. At t=1, p0 has its output link free and
can send the message M to the next closest peer p2, which will receive the
message at time t=11. Likewise, for p3 and p4, the arrival times from the p0 peer
is calculated as t=22 and t=23 respectively, whereas from p1 those arrival times
are t=20 and t=21. So, in this case, the algorithm will forward the message to
peers p3 and p4 from peer p1.

Fig. 3.5 SMM algorithm example in a full-connected network

Observe that if peer p2 sends the message to peer p4, the message also would
arrive at t=21 instant. The selection of either p1 or p2 to send the message to p4,
depends on a strict comparison or not when the algorithm checks if the next

peer has to be selected (i.e. the use of “ ” versus “ ”). This consideration has
an effect on the peers degree in the multicast tree, and in turn, on the peers
load in terms of network computing. Although the effects on computing load are
not the focus of our study, it seems clearly useful to preserve the minimum
peers degree. This has a certain importance since in overlay networks the
peers correspond to end-users devices.

We can prove that the multicast time achieved by the algorithm SMM is
minimum, when for all peers, µp=0. The proof is simple: in this case, since µp=0
for all peers, the time delay between two peers p and q is always the weight λpq
of the edge that joins them. Thus, the SMM algorithm corresponds to the
optimal Dijkstras’ algorithm of complexity O(n2). In a general case, however, the
SMM algorithm is not always optimal. In Figure 3.6 we show a network where
SMM is not optimal. On the left, we apply SMM with a result of a 7 multicast
time. On the right, we apply another multicast transmission order and we show
that multicast delay can be reduced to 5. Hence, if the source begins with peer
p3, follows with p1 and finishes with p2, the multicast delay will be 5. In the
picture, the time that the packet reaches each peer is showed in brackets.
Transmission time is also 1 for all peers.

Multicast algorithm 21

Fig. 3.6 Network example where SMM is not optimal

Nevertheless, for an overlay network we can assume that µp«λpq ∀ p,q and thus
consider µp≈0. This means that in an overlay network the SMM algorithm may
be described as near optimal (since for µp=0 the algorithm is optimum).
Moreover, in the general case where µp≠0 an optimal solution could be found by
means of redefining the order of transmissions for each peer, using an
exhaustive exploration (i.e. by analysing all the possible multicast trees). First of
all we choose the peer where the root node sends the message for the first
time, which gives n-1 possible combinations. After that, we choose the second
receiver peer among the n-2 remaining peers, as well as the peer who sends
the message, from one of the two nodes who have already the message (the
root node or the first node who has received the message). Thus give a total of
2·(n-2) possible combinations. For the next peer we can choose between n-3
receivers and 3 transmitters, so we will have 3·(n-3) possible combinations, and
so forth until the last peer, where we can choose between n-1 transmitters and
just one receiver. Summarizing we have 1·(n-1)·2·(n-2)·3·(n-3) … (n-2)·2·(n-
1)·1=(n-1)!2 possible combinations, and thus (n-1)!2 possible multicast trees.
Once each tree has been completed, we calculate the total delay transmission
of one message and choose the best possible tree. Anyway, the value (n-1)!2 is
not suitable in practise for high values of n. Even a n=10 network will give

 possible trees, which leads to an unacceptable computational time.

At this point, we can prove that SMM algorithm for EMPS (n, λ, µ) has
complexity O(n2). At each step, SMM searches the peer that has not yet
received the message and has the lowest cost, that is, the peer that can be
reached at minimum time. As the maximum number of unvisited peers is n, this
operation requires at most n-1 comparisons. Moreover, each iteration is
executed once for every peer that receives the message, thus, the total number
of steps equals the number of peers. So we have n steps and at each step we
perform at maximum n-1 comparisons plus some basic operations, resulting a
complexity of O(n2).

22 Real-time multicast transmission algorithms for P2P networks

3.4. Message Stream Multicast Algorithm MSM

The SMM algorithm was designed for a single-message multicast environment.
This is a drawback since usually we desire to send more than a single
message. So, SMM is not very practical and would only apply where the time
difference between two consecutive messages is larger than the multicast
delay. If, for example, we consider a real application-layer of multicast video
streaming, we see that what we call message in EMPS (n, λ, µ), may be a video
frame. In practise, two consecutive video frames are provided with a time
difference equal to the inverse of the frames per second (fps), which usually has
a value between 16 and 32 fps, depending on the video quality. Thus, the
source must multicast two consecutive messages with an interval value
between 31,25 and 62,5 ms.

The first approach to message streaming is to repeat indefinitely the routing
table obtained with SMM algorithm, multicasting each message as if it would be
completely independent of the others. That means that when one message
finally arrives at all the multicast group members, the message source would
proceed to multicast the next message, and so forth.

The total multicast time delay of the stream would be, in this case, the total
number of messages M multiplied by the multicast SMM delay t0 for one single
message. The main obstacle of this solution is that the source cannot send the
next message until the previous one has been received by all the group
members, and this, may increase the message rate. As defined by the SMM
algorithm, the source usually retransmits the message until the communications
end, in order to flood before the multicast group and to minimize the total delay
of a single message.

Next, we consider a new possibility for multicast transmission when we transmit
more than one single message. Before the first message has arrived to all
peers, the source could stop sending it and begin with the second message.
With this restriction, the multicast time t0 of the first message, individually
considered, will be increased, but we will begin to send before the second
message, and so the third, and the fourth, and so on. This saving of time
between the sending of two consecutive messages will be progressively
accumulated and, if the number of messages is large enough, it will
compensate the increase of the first message multicast time t0.

The modified algorithm, called MSM-s Message Stream Multicast Algorithm, will
allow each peer to transmit s times the same message. At this point, the peer
will start to send the next message, and so on, with the feature that it will be
able to send the second message before the first has been received by all the
network peers. The MSM-s definition is the same as SMM adding the restriction
that each peer can send s times the same message, and this particularity is
applied to successive messages as well.

Therefore the scheme in Figure 3.4 is for the SMM algorithm can be extended
to MSM-s with the only difference that function imin(), will choose the next peer
among the peers which have not yet forwarded the message s times or, as

Multicast algorithm 23

shown in section 3.5, within the peers that have forwarded the message during
a time lower than a certain value.

The number of retransmissions restriction could isolate some peers if we do not
have full connectivity, as shown in Figure 3.7 when s≤3. In this case, the MSM-s
algorithm should choose a minimum restriction number s to guarantee that all
peers receive the messages. Moreover, when we restrict the number of
transmissions for each peer, MSM-s has to take into account the packet or
messages generation rate of the source. That is, if the source sends at most s
times the first message and then, after s·µr time units, stops the transmission of
the first message to begin with the second one, we must be able to assume that
the source has the second message ready to forward. This means that we must
assume that the rate of the source is high enough to provide a new message
each s·µr time units. Otherwise, the source would stop sending the first
message before having the second one and would remain unnecessarily idle,
with the consequent loss of efficiency. Therefore, MSM-s has to choose a
minimum restriction number s not only to avoid the isolation of the peers but
also in order to avoid the source idleness. Hence, s·µr cannot be much lower
than the time spent between the generation of two consecutive messages.

To calculate the total transmission delay, we denote M as the number of
messages transmitted, µr as the source transmission time and t0 as the total
single message delay. If the rate of all peers is greater than the rate of the
source, will not be necessary store packets in queues (buffers) and t0 delay will
be the same for all packets. In this case, the total delay transmission, assuming
that the source transmit the message sr(s)≤s times, is:

T = (M-1)·sr(s)·μr + t0 (3.1)

As mentioned above, limiting s will increase the t0 delay for a single message;
on the other hand, the first term will decrease. This reduction will compensate
the t0 increment if the number M of messages is large enough.

For a given network, if we apply MSM-s instead of MSM-(s+1), that is, if the
maximum number of messages sent by any peer is s instead of s+1, then the
first message will arrive later to all the destination peers (that is, t0 will increase),
but we will start to send the second message before, and so the third, and the
fourth, and so on. We have already pointed that for every new message we will
save a little time. In this case, if the number of messages is large enough, the
increase of the multicast time for one single message will be compensated and
thus MSM-s will be faster than MSM-(s+1). In [16] has been proved that under
certain conditions it is possible to calculate a minimum number Mσ in such a
way that if the number of messages is equal or larger than Mσ then MSM-σ is
better than MSM-(σ+1).

24 Real-time multicast transmission algorithms for P2P networks

Fig. 3.7 A network in which MSM-s isolates some peers for s≤3

Finally we can demonstrate that MSM-s algorithm for EMPS (n, λ, µ) has
complexity O(n2). The proof is the same as for SMM, since MSM-s performs
exactly the same operations with the difference that at each step MSM-s has to
limit the number of message retransmission, for each peer, to s.

3.5. MSM algorithm with time restriction

Figure 3.8 shows a peer q that has the same transmission time µp than a peer p
that forwards to q the message. Let sp(s)≤s be the actual number of times that p
forwards the message for MSM-s. In this case the second message will be
received at q with a time delay of sp(s)·µp time units respect to the first
message, since the second message follows the same path but with a time
delay, from p, equal to sp(s)·µp. That is, p will send the first message sp(s) times
and then, sp(s)·µp time units later, it will begin with the second and so forth. In
this case, if we also limit the time transmission of q to sq(s)·µq, and moreover
sq(s)=sp(s), then peer q will receive the second message at the same time that it
finishes the sending of the first message for the last time. Although this is not
important since we have usually full-duplex connections, it could be avoided if
sq(s)=sp(s)-1.

Fig. 3.8 Transmission of two peers p and q

Multicast algorithm 25

In a more general case where peers has different transmission times, when the
forwarding period sq(s)·µq of peer q is higher than the forwarding period sp(s)·µp

of peer p, which is in a higher level of the multicast tree, the second message
could arrive at peer q before it has finished forwarding the first message and
then, the second message would have to be buffered, with the consequent time
delay. This buffering delay would be accumulated by the third message and by
the forth message and so on. So if we do not do anything, it can result in a
message loss. This situation can be avoided by limiting the time period sq(s)·µq

while each peer forwards the message. Thus, the forwarding time sq(s)·µq of
each peer q must be less or equal than the retransmission time sp(s)·µp of any
peer p that is in the path between the source and the peer q (including the
source). That is equivalent to say that sq(s)·µq<sp(s)·µp. Furthermore, we do not

want sp(s)·µp≫sq(s)·µq since in this case q would stop forwarding the first
message long time before receiving the second one and the algorithm would
lose efficiency or, in other words, it would waste bandwidth.

3.6. MSM algorithm with rate restriction

Since the MSM-s algorithm depends on some parameters (the number of
retransmissions of the root node, or the transmission time limit for any of the
other peers, as seen in previous section), we can apply some modifications
over the original algorithm to improve its performance. Thus, all the algorithms
defined in the present work are based on the definition of Figure 3.4, with some
changes in the imin() function that chooses the next forwarding peer. In fact,
these changes affect mainly two different points: the condition that considers
one peer better than other to be the next to forward the data; and the strategy
that we follow when, under certain conditions, the algorithm cannot find any
node to send the data and as a consequence total connectivity is not reached.

The first algorithms that were defined in previous projects [13,14,15,16,17] were
the following. We first call Cadence the MSM algorithm with time restriction, as
it has been specified in previous section. In this case, the limit time b0 is defined
as the value of s multiplied by the mean of all the root transmission times (note
that the transmission time between the root and any other peer is not always
the same, since it depends on the bandwidth of the links of the path between
the root and the peer). The root can send the packet at most s times, while the
other peers will be able to send the packet while their rate time tcad (this means,
the time during a peer forwards the same message) is lower than b0. Note that,
with this algorithm, depending on the value of s and the link bandwidth, some
peers can be isolated (for example, if one peer has a very slow access, and the
time to transmit the packet to it is higher than b0), resulting an incomplete tree.
Also, we can find some cases where a node fulfils the condition for its rate time,
but this time is higher than the rate time of the root. For example: set s to 5, and

the value of b0 to 50 ms (because the average of the root node is 10); then, if

the root sends the packet to the nearest peers, whose is 9 for all of them, we
can have a total rate time for the root of 45 ms. As the time limit is b0, some
other peer can have a rate time of 48 ms, which fulfils the restriction of being
lower than b0. Anyway, this rate time is higher than root rate, which could result
in a congestion issue.

26 Real-time multicast transmission algorithms for P2P networks

Another algorithm designed in previous works is the Forced leaves. In this case,
the source can send the message s times, and also the b0 limit is imposed to
the rate time tcad of each peer. Similarly, peers can send the packet as long as
its rate time is less or equal to b0, but this time, if some peer does not fulfil the
retransmission condition, and there are still isolated peers, the algorithm forces
one or more peers (always chosen to minimize the arrival time of the
messages) to send the message once, among those who have not yet
retransmitted the message. This algorithm allows the generation of complete
trees, but now some peers can exceed the limit b0 and also the rate time of the
source, causing congestion problems (unless we limit the rate of the source to
the rate of slowest rate peer in the network, a discussion that we will state later).
With the name Forced all peers is denominated an algorithm quiet near form the
previous one, with the difference that if there are still peers for receive the
message, any peer can be forced to retransmit the information (and not only
those who have not yet retransmitted the message).

The algorithms that follow the previous ones are listed next. They were
developed during a previous project [17] and our work consists on improving
them for real-time multicast. A common point among all of them is that they are
defined according to two conditions: first, a restriction criterion and, after that, a
selection criterion. All the next algorithms have the same restriction criterion. In
this case, we allow the source to send the packet up to s times, while the rest of
peers can forward the message as long as its rate time tcad does not exceed the
source rate time at that concrete time (this will be modified in our work, as it will
be explained later in section 3.7). The selection criterion varies according to the
algorithm.

Optimum t0 (optt0): In this algorithm, as in previous ones, the source can send
any message at most s times (in practice, we can increase the value of s until
we get full connectivity). At each step, the algorithm chooses as a transmitter
the peer that has already received the message and can reach its closest
neighbour at minimum time. In this case, we can apply an additional restriction
in such a way that a peer will be allowed to retransmit the message only if its
total rate time tcad (which, as mentioned, is the time that a peer has transmitted
the same message) is less or equal than the rate time of the source. If we
assume this restriction we will avoid congestion problem, since the source will
have the highest rate time of the network, and thus all the peers will have
finished sending a message before receiving the next.

Optimum rate (optcad): This algorithm is quite similar to the optt0 algorithm
but now we change the selection criterion that chooses the next forwarding peer
at each step. Now, selection criterion tries to minimize the amount of time that a
peer transmits the same message, instead of minimizing the arrival time on the
next peer. Therefore, we choose as a transmitter peer the one who has
accumulated less rate time tcad. Thus, limiting the rate time of the different
nodes, the next messages could be sent earlier and if the number of messages
is large enough, we will get a smaller total delay. In this case, as for optt0, we
can optionally allow a peer to retransmit the packet only when its total rate time
tcad accumulated is less or equal than the rate time of the source.

Multicast algorithm 27

Optimum rate version 2.0 (optcad2): This algorithm is a redefinition of the
above algorithm, optcad. In this case, the selection criterion does not choose as
a transmitter peer the one who has accumulated less transmission rate tcad, as
in optcad. Now we choose the peer who will accumulate a lowest rate time if
transmits the message. That is, optcad2 takes into account the future
transmission while the original optcad does not. As for both optt0 and optcad,
now we can also apply the restriction criterion for avoiding congestion.

3.7. MSM algorithm for real-time transmission

The algorithms presented so far have been focused on minimizing the time rate
t0 or tcad, depending on the algorithm applied (optt0 and optcad as well as their
evolutions, respectively), in order to reduce the total delay when M is large
enough. However, this sometimes does not consider real-time transmission. For
example, if we get a time rate of tcad=12 ms, but, the source generates a packet
each 23,4375 ms (corresponding to a 512 Kbps rate if every packet has a
length of 1500 bytes), we will lose bandwidth since the source will transmit the
first packet in 12 ms and then it will remain idle for almost 12 ms before having
the second packet ready to transfer.

Since the aim of the present project is to carry out real-time transmissions in an
optimal way and the algorithms presented so far do not consider real-time
transmissions, now we propose a new algorithm. First, we define the packet
transmission period Tp (for simplicity, we will refer to it as the packet period) as
the time that the information source needs to produce two consecutives
packets. Thereby, considering that we have a real-time communication
scenario, the source starts to send each packet when it is ready, and so the
second packet will be sent Tp seconds later than the first one and it will reach
the destination nodes with the same delay. We consider that the network works
with a good performance and it does not have congestion problems.

The algorithm proposed follows the same model as the former algorithms: it has
a restriction and a selection criterion in order to allow a peer to transmit and
choose the next peer that will transmit each packet. Since now it has no sense
to minimize tcad as explained before (it has no sense to achieve a tcad of 12 ms if
we have to wait 23,4375 ms for the next packet, due to the information rate), we
will try to minimize t0 and then we apply the same selection criterion than optt0.
Moreover, we use a new restriction criterion: choose the next transmitter node
only among those peers who will return a rate time equal or less than the period
packet Tp, in other words, between those nodes whose time rate is finally lower
than the time elapsed between the creation of two consecutives packets.

Algorithms application 29

CHAPTER 4. ALGORITHMS APPLICATION

In the previous chapter we have described the fundamental aspects of the
routing algorithms, aim of our study. Next, we present the procedures and tools
used to perform and analyse the behaviour of the algorithms over a simulated
network. With this purpose, we use the Transit-Stub model, described in the first
chapter, in order to simulate Internet. Internet is not the unique scenario for real-
time multicast transmission. However, it is the most common environment
where we can find this sort of communications. So, from now on, we will talk
either about Internet or backbone network. Furthermore, on the network
generated using a Transit-Stub model, we have added a set of user nodes with
different link speeds.

4.1. Backbone network

As we described previously, to simulate an overlay network first of all we have
to define a backbone network. The backbone network that we want to simulate
is Internet, a network without general topological constrictions. Thus, nobody
can give us today a fully detailed map of the Internet. Fortunately, some aspects
of the Internet topology are easier to capture than others. Hence Internet is a
collection of Autonomous Systems (AS) [20], where each AS may be
understood as a collection of connected IP routing prefixes, under the control of
one or more network operators that presents a common, clearly defined routing
policy to the Internet.

Summarizing, on the Internet context, an AS is the unit of router policy, either a
single network or a group of networks that is controlled by a common network
administrator (or administrators) on behalf of a single administrative entity (such
as a university, a business enterprise, a business division or an ISP). Networks
within an AS communicate routing information to each other using an Interior
Gateway Protocol (IGP). An AS shares routing information with other AS using
the Boarder Gateway Protocol (BGP). Previously, the Exterior Gateway
Protocol (EGP) was used. In the future, is expected to replace BGP with the
OSI Inter-Domain Routing Protocol (IDRP).

There are several backbone network simulators. Some offers simulations closer
to the Internet topology than others. The one considered in the present project
is the Georgia Tech Internet Topology Models GT-ITM [21], a group of
applications which uses both a random and a Transit-Stub model. In our case,
we have used the Transit-Stub model. The GT-ITM group of applications
package works with a data file, which contains all the backbone network
parameters. In our case, we have also employed other tool in order to convert
the output file of the GT-ITM application (“.gb”) to an “*.alt” file, with intelligible
information. The resulting file contains the graph information (nodes, edges and
weights). The topology of this graph is similar to the real Internet topology, with
a set of nodes acting as routers on the backbone network and high-speed links

30 Real-time multicast transmission algorithms for P2P networks

that interconnect the routers to the stubs. These stubs represent the ISP or
corporative LAN networks connected to the backbone network. Finally, we have
added to the ISP network the user nodes, which form the multicast group of the
P2P network.

On the present project we have work with two sorts of backbone network
topologies. The first one simulates a network formed by a single Autonomous
System and hence it simulates just the network of a single ISP. The second
backbone network simulation are composed by multiple Autonomous Systems
and therefore simulates in a closest way the Internet topology, which is built by
a collection of AS.

4.1.1 Single Autonomous System simulation

As it has been explained, the Internet topology is formed by a group of AS,
where each AS represents a single ISP. So, a simulation with a single AS is a
simulation quite far from the real Internet network topology. However, we have
work with this sort of backbone network in order to compare the results of the
new routing algorithms presented on section 3.7, with the ones presented on
previous works [13,14,15,16,17].

Fig. 4.1 Single Autonomous System simulation graph

Algorithms applications 31

4.1.2 Multiple Autonomous Systems simulation

For the present project we introduce the simulation of a backbone network as a
set of multiple Autonomous Systems. This is a scenario much closer to Internet
topology than the one presented in the previous section.

Fig. 4.2 Multiple Autonomous System simulation graph

4.2. MSM algorithm simulation

Once the backbone network has been depicted, we use an application created
in previous projects [13,14,15,16,17] to design the overlay network and apply
the routing algorithms over it. The application, named MSM or MSM Algorithms
Simulator, which is developed in Java [22] and RCP Rich Client Platform [23],
has been used to obtain the backbone graphs as well as the user nodes that,
finally, will form the overlay network.

After that, we have used two more applications. The first of them is the
Dijkstra’s algorithm, also developed in Java. The result of this application is an
overlay graph which contains the user nodes that forms the multicast group and
the corresponding delays to send a packet from one to another node, that is,

32 Real-time multicast transmission algorithms for P2P networks

transmission time, propagation time, and also the sum of these two variables
(called latency).

The second application reads the overlay graphs created with the previous
application and, then, executes the routing algorithms. This application is
programmed in C. On every execution, the program returns three files. The first
is a “.res” file extension which contains the execution results. The second file
just contains the delays tcad and t0 for each value of s in “.csv” format. Finally,
the program returns a “.res” file with the routing tree obtained as well as the
arrival and departure times of each message between two consecutives nodes
of the tree.

Fig. 4.3 MSM Algorithm Simulator user interface

The node access rates to the network have been updated respect previous
works, as shown in next chapter. Moreover, we have modified both codes, the
code for Dijkstra’s application that generates the user graphs and the C

Algorithms applications 33

application which executes the routing algorithms. Initially, these codes worked
with milliseconds units represented by integer values, which in the old stages
were enough. However, in our case, by including faster links, the access rates
obtained goes up to 20 Mbps, that involves transmission times of 0,6 ms
(considering a packet size of 1500 bytes). In that case, it does not make sense
to round the value to an integer value.

4.2.1. User graphs

As it has been said, to represent the overlay network it is necessary, first of all,
to define the backbone network graph and, after that, to add the user nodes.
These second task is carried out using the MSM-AS application, which works
with an “.alt” file that contains the backbone network. The application adds n
nodes (acting as multicast members) to the backbone network and connects
each one of them to just one stub node. According to Figure 4.3, the input data
required by the application are: the backbone network graph (“.alt” file), the user
nodes and a data generator file (“.dat” file). The “.dat” file contains the statistics
of the user nodes that form the multicast group, in particular, the links
bandwidth, and the probability of having each kind of link. On section 5.2 we
specify these values with more detail.

This information establishes the parameters of the application, which finally
adds each peer to the network. First, we choose a node among the stub nodes
of the backbone network. This selection has been done considering an equal
probability for all stub nodes. In this way, we ensure that all user nodes are
connected to one access network, since, as we remarked in the first chapter,
the stub domain represent the access networks. Once we have the stub node,
we add the new user link, with a bandwidth value chosen randomly according to
the information file “.dat”. As a result, the application gives a “.grf” file, which
adds the user nodes to the initial backbone network (conformed by 100 nodes
for single AS simulation and 1000 nodes for multiple AS simulation). When we
have the “.grf” files, we can use the applications described below in order to
obtain the overlay graph of the multicast group.

4.2.2. Overlay graphs

The next step consists of depicting the overlay network. With this objective, we
have used an application that obtains the overlay network from the initial
network (“.grf” file), and returns a graph formed just by the user nodes and the
distances between them (measured in transmission and propagation times).
The resulting files “.ovr” allows the execution and the analysis of the routing
algorithms.

This application reads the “.grf” file previously generated and applies, over it,
the Dijsktra’s algorithm in order to obtain the shortest path between any pair of
users, from the delay (propagation plus transmission) point of view. In our case,
the total propagation delay is calculated as the sum of all links that we pass-
through when we go from one node to other one. The transmission time

34 Real-time multicast transmission algorithms for P2P networks

between two users is calculated as the transmission time of the slowest link.
The result is a complete graph, formed by the user nodes and represented with
a square matrix of ordered nodes. For each node, we define a list of neighbour
nodes, ordered by transmission time or latency (the sum of the transmission
and propagations times), depending on the routing algorithm that we apply later:
the optcad algorithm and its redefinition use the transmission time ordination,
whereas the optt0 algorithm and its redefinition use the latency ordination.
Figure 4.4 shows the matrix structure for a node belonging to a 10-user graph,
differentiating both ordinations cases.

Fig. 4.4 P2P overlay network node example

4.2.3. Algorithms simulation

Once the overlay network has been described, we can execute the routing
algorithms. With this purpose, we have used an application that executes, over
the overlay graphs, the algorithms described on the previous chapter (the two
redefinitions of the optt0 and optcad2 algorithms). This application gives as a
result three information files, which contains the delays, the nodes affected by
congestion (no one in our case do to restriction included by us for real-time
transmissions) and the multicast trees.

First of all, this application determines the root node, which is a random
selected node among those capable of transmitting (that is, with a bandwidth
higher than the source rate). We have to indicate to the application the range of
s values that limits the number of retransmissions of the source (which depends
on the number of users) as well as the routing algorithm that will be executed
(mainly optt0 redefinition and optcad2 redefinition). In our case, we have
developed the algorithms in a “.c” extension file, which has been compiled and
executed on a Linux operating system.

Algorithms evaluation 35

CHAPTER 5. ALGORITHMS EVALUATION

In this chapter we present the parameters that we have considered to define our
simulated networks as well as the results, once we have applied on them our
multicast algorithms. We evaluate them, mostly, in terms of delay and
percentage of nodes which receive the information and we compare them with
former results [17].

5.1. Transit network parameterization

As it has been specified on section 4.1, the first step to simulate an overlay P2P
network consists of depicting the transit or backbone network. We have used
the GT-ITM tools to build five network cores based on the Transit-Stub model,
according to the two sets of parameters listed on Table 5.1.

The first group of parameters simulates a single Autonomous System. Though
this is not the proper scenario to simulate Internet –since Internet’s topology is
made of multiple AS– we have consider these parameters in order to compare
our results with previous works.

Additionally, one of the objectives of our study is to simulate a backbone or
transit network closer to the actual Internet network, where multicast
transmissions are usually carried out. Thus, we have considered a new group of
parameters with the aim of simulating multiple ISP networks, where each AS
represents the network of an ISP.

As it can be observed on Table 5.1, both nodes and transit domain parameters
have been increased, resulting on a new network with 5·8·(1+3·8)=1000 nodes
instead of the 1·4·(1+3·8)=100 nodes of the first network. Moreover, network
bandwidth has been updated to actual link capacities [24] and propagation
delays have also been modified in order to represent the actual Internet
scenario in a more realistic way. To obtain the propagation delays let’s see an
example. Consider two routers (i.e. transit nodes) between Europe and United
States. We can assume that the distance to go from one to another point is
5000 Km approximately. This is probably one of the longest existing links
between two AS. So, in the worst case, the propagation delay is:

 (5.1)

where d is the distance between the nodes and v is the wave propagation
speed. We consider v = 0,7·c where c is the speed of light. This resultant value
determines the propagation delay between two transit nodes.

36 Real-time multicast transmission algorithms for P2P networks

Table 5.1. GT-ITM parameterization

Single AS Multiple AS

Transit Domains 1 5

Transit Nodes (T) per Transit Domain (average) 4 8

Stub Domains per Transit Node (average) 3 3

Stub Nodes (S) per Stub Domain (average) 8 8

Link Probability
(between nodes in the same Transit domain)

0.6

Link Probability
(between nodes in the same Stub domain)

0.42

Transit-Stub extra links 0

Stub-Stub extra links 0

Transit-Transit bandwidth 1 Gbit/s 10 Gbit/s

Transit-Transit propagation delay 100 ms 25 ms

Transit-Stub bandwidth 100 Mbit/s 2,5 Gbit/s

Transit-Stub propagation delay 10 ms 10 ms

Stub-Stub bandwidth 100 Mbit/s 2,5 Gbit/s

Stub-Stub propagation delay 10 ms 5 ms

5.2. Graph creation

In order to create the overlay network –as an enlargement of the Transit-Stub
model– where the algorithms will be tested, we have applied the generator
described in section 4.2. In this case, we have considered the access rates
published in the thirteenth AIMC quiz [25] over Internet ADSL users, released in
2011. The ADSL users connected to an ISP network represent our peers. The
peer access rates and its percentage are detailed in table 5.2. As it can be
seen, all the nodes have an access rate higher than 512 Kbps, which is
considered good enough to transmit information in real time. Anyway, the
quality of service (QoS) of the communications will rely on the codec used by
the multicast user applications. This will be discussed in more detail in section
5.3.2.

We have considered a propagation delay for the links connecting the peers to a
stub node equal to 1 ms because user and access nodes are usually close. In
the table, the link rates are symmetric, unlike what happens in practise with
ADSL. Anyway, the progressive increment of the upload speeds mixed with the
use of the high-speed links, as for example the FTTH (Fiber To The Home),
makes this restriction unimportant.

Algorithms evaluation 37

Table 5.2. Access rates (AIMC quiz, 2011)

Link base Absolute users %

It is not known 3229 8,2

512 Kbps 507 1,3

1 Mbps 2303 5,9

2 Mbps 1311 3,3

3 Mbps 5157 13,2

4 Mbps 1085 2,8

6 Mbps 10977 28

8 Mbps 621 1,6

10 Mbps 6192 15,8

12 Mbps 2871 7,3

20 Mbps 3687 9,4

More than 20 Mbps 1162 3

Do not know/No answer 47 0,1

5.3. Results and comparisons

Next, we present the results, comparisons and analysis of the algorithms
applied over the single Autonomous System backbone network. As it has been
said previously, this is not a very realistic scenario. However, we have used it in
order to compare our results with previous works. After that, the results and
analysis of the algorithms applied over multiple Autonomous Systems backbone
network are introduced.

5.3.1. Algorithms execution over simulated IP networks (Transit –
Stub model)

With the values presented on Table 5.2 we have generated, for each of the 5
backbone networks, 10 overlay graphs of 10 users each one, representing a
total of 50 networks with 10 user nodes. After that we have repeated the same
operation for 25, 50, 100, 200, 500 and 1000 users, respectively. In total we
have obtained 50 networks of 10 users, other 50 of 25 users and so on. In order
to calculate the transmission times we have assumed that the packets
transmitted have a size of 1500 bytes.

After that, we have applied on each network the former optt0 and optcad2
algorithms (section 3.6) and their respective evolutions for a real-time
transmission (section 3.7). Remember that the difference between the former
and the actual algorithms is that now we have real-time transmissions, and then
we restrict the rate time tcad of each node to the packet period. This means that
each node has to send each packet a period of time lower than the packet
period, that is, than the time elapsed between the generation of two consecutive
packets.

38 Real-time multicast transmission algorithms for P2P networks

We present now the statistics of applying the arithmetical mean to the 50
overlay networks (10 overlay networks per each one of the 5 backbone
networks) created for each number of users. The variables studied and
analysed are listed and described below:

 t0: is the transmission delay of a single packet, that is, the time elapsed
since a packet is injected into the network by the source until it is
received by the last node in the multicast group. In real-time transmission
t0 represents the delay of the communication, that is, the time elapsed
between the event and its reception at home.

 tcad: the rate time is the time that a node forwards the same packet to one
or several nodes. For the network, we select the time of the node with a
higher rate time, since this node will limit the rest of the nodes if we want
to avoid congestion, as explained in former chapters.

 s: is the number of times that the root sends a packet.

 Covered nodes: the number of reached nodes by the algorithm. Note that
since we restrict the rate time of each node, we cannot assure full
connectivity and we can have isolated nodes at last, that is, nodes which
do not receive the information.

 Worst case: if exists, the number of nodes covered in the worst scenario
or overlay network.

 Total connected networks: if exist, the amount of scenarios where all
nodes are reached.

Both t0 and tcad times are expressed in milliseconds (ms).

5.3.2. Single Autonomous System backbone network emulation

5.3.2.1. Former algorithms from previous projects

As it has been explained, the real-time algorithms proposed in this work are an
evolution of algorithms whose intention were to minimize t0 or tcad depending on
the algorithm applied, oppt0 and optcad2 respectively. This is the reason why a
brief explanation an analysis of the results obtained by them is exposed next.

According to the optt0 definition given on section 3.6, optt0 tries to minimize t0
by selecting as the next transmitter the node which obtains a lower partial t0. In
an analogous way, the optcad2 algorithm tries to minimize the rate time tcad of
the nodes by selecting as the next forwarding node that one which gives us
back a better tcad.

That was the original description of the algorithms. However, when applying
them some nodes were affected by congestion. This is the reason why a

Algorithms evaluation 39

redefinition of the algorithms was implemented by introducing a common new
restriction for both of them. This new restriction consists of limiting the possible
transmitter nodes to those which has a tcad lower than the tcad accumulated by
the source at that time. We refer to these algorithm redefinitions as optt0 and
optcad2 “with restrictions” while for the original ones, we talk about optt0 and
optcad2 with “no restrictions” (see Table 5.3).

5.3.2.2. Real-time transmission algorithms

The principal evolution of our new algorithms consists in restricting each peer
rate time tcad to the period packet time Tp of the source. This means that any
peer will be able to transmit a packet only if its rate time tcad is less or equal than
Tp. So, finally, for optt0 and optcad2 evolutions we have:

 As a restriction criterion, we apply the new method just explained on the
previous paragraph to carry out real-time transmissions. This new
restriction substitutes any other restriction applied earlier. As explained
before, this restriction avoids any possibility of congestion, since each
node will finish the transmission of each packet before receiving the next
one.

 As a selection criterion, we apply the same as described in section 3.6,
that is, we will chose at each step the peer that returns a better partial t0
and tcad for optt0 and optcad2, respectively.

According to section 4.2.2, each node of the overlay network has a sorted
vector of neighbours that is used to determine the next receiver node at each
step. For optt0, this vector is sorted in function of the latency time (ttx+tprop) while
in optcad2, an arrangement by ttx is applied. During the optt0 algorithm
application, some node evaluations may be truncated if we have a neighbour
whose ttx overcomes the maximum tcad limited by the period packet Tp. But, due
to latency sorting, the next node of the neighbours’ vector may have a lower ttx
time (if its latency time is dominated by a high propagation time that makes the
final latency worse than its predecessor node, while its ttx is lower). So, the optt0
algorithm has to take this possibility into account. That is, if it finds in the
neighbours’ vector a possible receiver which does not accomplish the rate
restriction, then it has to check the next node in the neighbours’ vector and so
forth.

Since we are considering real-time transmission we select a codec of at least
256 Kbps, which is considered the minimum rate able to offer a real-time
transmission with acceptable quality. This codec determines the transmission
capacity of the source node, which at the same time determines the period
packet time Tp defined in section 3.7 as the time that the information source
needs to produce two consecutives packets.

Given a 512 Kbps codec and considering packets of 1500 bytes, the source will
generate a packet each Tp=23,4375 ms. For a good real-time transmission, the
destination node must receive the packets at the same rate fixed by codec. In
our case, this means receiving a packet every 23,4375 ms in order to allow the

40 Real-time multicast transmission algorithms for P2P networks

destination node to rebuild the streaming flow properly, without interruptions.
Then, a minimum link bandwidth equal to the rate of the codec is required.
Moreover, if we assume ideal backbone networks, congestion will not appear
because any node will finish forwarding each packet before the reception of the
next one, Tp seconds later, and so every peer will receive the information at the
source rate.

Fig. 5.1 Algorithm behaviour - Congestion avoidance

To understand better the congestion avoidance achieved by these algorithms,
see Figure 5.1. Assuming t0(i) as the partial t0 time of the node i, this node can
forward the same message to its neighbours while tcad(i) does not reach
23,4375 ms or in, other words, before t0(i)+23,4375 ms, instant at which the
second packet will arrive to i. With this restriction, no queues are needed on
nodes because when the second packet is received it may be processed.
Hence, no congestion occurs on network.

Also, a clarification of forwarding process for a node is exposed in Figure 5.2.

Fig. 5.2 Algorithm behaviour – Codec vs. bandwidth

Algorithms evaluation 41

Suppose that the node i can forward the same message to a determined
number of nodes while its tcad(i) does not exceeds Tp. The number of nodes to
where the message is transmitted during Tp is limited by the bandwidth of the
links evaluated. In case “A” we observe that the packet is forwarded up to 3
times. This is possible due to links 2 and 3 use a quarter of the Tp available time
because both links have a bandwidth of 2048 Kbps. This rate is 4 times higher
than the 512 Kbps rate of the codec, so the transmission time needed to
transmit a packet over these links is 5,8594 ms. Besides, the link bandwidth of
1024 Kbps offers a transmission time of 11,7187 ms, which means the half of
the Tp time. In contrast, case “B” (link 4) allows node “i” to transmit only one
packet because the link has a bandwidth of 512 Kbps, the same as the codec.

5.3.2.3. Comparison, analysis and results

Some multicast P2P applications require real-time communications. As it has
been said, the former algorithms definition does not consider this requirement.
So, in most cases, they do not fulfil the characteristics required by this sort of
communications: sometimes by introducing congestion and other times by
exceeding the codec rate.

Formerly, the results obtained were filtered according to the Tp time given by a
codec of 512 Kbps and considering packets of 1500 bytes. This means that any
node of the network could not have a tcad time higher than the period packet
Tp=23,4375 ms, determined by the codec. Networks with a tcad exceeding the Tp
were directly eliminated because they would not support a real-time traffic flow.
In this case, packets would not arrive to some nodes at the rate at which they
were generated causing a bad rebuilding of the streaming flow and, additionally,
congestion would appear on network. So, the arithmetic means were calculated
only with the compliant networks, that is, the trees with a rate time tcad lower
than Tp. We do not show the results for optcad2 since we consider now t0 as a
comparing parameter, and optcad2 were designed for minimizing tcad.

The results of this filtering operation are presented in Table 5.3, where we can
differentiate the results obtained by optt0 algorithm with and without restrictions.
Note that as the number of users increases, the number of compliant networks
decreases exponentially. This is because the original optt0 algorithm is
designed for minimizing the t0, which implies a deterioration of the rate time tcad.
That is, if we increase the number of users, we need more packet
retransmissions and then the rate time tcad also increases, resulting in more
cases with a tcad higher than Tp.

If we analyse the behaviour of both versions of the original algorithm, we realize
that better results are obtained without restrictions. This was expected and has
a simple explanation: algorithms with no limits have more freedom and have
been able to find trees with lower delays. Anyway, these results are not
significant due to the limited number of compliant networks.

42 Real-time multicast transmission algorithms for P2P networks

Table 5.3. Real-time transmission algorithm results

Number of users n

Algorithm Parameters 10 25 50 100 200 500

optt0 - no
restriction

Available networks 40 34 2 1 0 0

t0 273,91 267,62 212,19 109,13 - -

tcad 19,42 21,63 22,33 23,44 - -

optt0 –
with

restriction

Available networks 43 34 16 9 12 9

t0 291,43 303,56 312,70 325,16 338,27 436,64

tcad 19,22 21,33 22,25 21,58 23,44 23,44

optt0
evolution

Available networks 47 50 49 49 48 47

t0 268,52 303,84 310,92 303,19 310,04 323,87

tcad 18,75 22,33 23,16 23,22 23,36 23,44

Covered nodes 9,85 24,58 48,86 98,43 196,33 491,91

Covered nodes (%) 98,51% 98,32% 97,71% 98,43% 98,17% 98,38%

Worst case 9 22 46 96 193 486

Total connected networks 40 32 13 6 1 0

Total connected networks (%) 80% 64% 26% 12% 2% 0%

At this point starts our development by introducing the modification presented in
section 5.3.2.2. Remember that this one consists of restricting each peer rate
time tcad to the period packet time Tp of the source. Thus, any peer will be able
to transmit a packet only if it has forwarded this same packet less than Tp
seconds.

As it can be observed in last section of Table 5.3, after applying the restriction
for transmitting in real-time almost all the networks are available. Moreover, the
ones that have not been evaluated are not considered because the source node
has not enough bandwidth to transmit the information at the codec rate. An
example for that situation is the scenario where all links from the source node
have a maximum bandwidth of 256 Kbps, while the source codec rate is of 512
Kbps. In this case, when the second packet is ready (Tp reached), only the half
of the first packet has been transmitted and therefore a real-time transmission is
not possible. In these scenarios, any packet will overcome the tcad restriction for
real-time transmissions and therefore no packet will be transmitted.

From Table 5.5 we see that, in general, t0 and tcad increase with the number of
nodes. These results were expected, but the transmission delay t0 does not
increase significantly due to more users implies more transmissions, but also
more transmitting resources. In this context, the value of tcad is irrelevant and

never exceeds the value Tp= 23,4375≃23,44 ms because the rate of the data
emission is fixed by the source node itself.

Moreover, the percentage of covered nodes is high. Approximately, 98% of the
nodes are reached independently of the size of the network. This implies that
the second modification presented in previous section to reach the maximum
number of users works properly. Although the percentage of the covered nodes
remains almost constant for all network sizes, the total connected networks

Algorithms evaluation 43

percentage decreases with the number of nodes. Anyway, this is not a big deal
since we are interested in connecting the maximum number of users as
possible and although not all users are connected, getting a 98% of connected
users can be considered good enough.

5.3.2.4. Real-time transmission algorithms tuning

For simplicity, all the algorithms presented up till now select as a source node
the first user of the overlay network, which always corresponds to the node
number 100 (for a single AS, nodes from 0 up to 99 correspond to backbone
nodes). Anyway, if this source node has not enough bandwidth to transmit the
information at the codec rate, the network is not compliant, as explained before.
So from now on we choose as a source a user connected to the network by at
least one link with a bandwidth equal or higher than the codec rate.

Once this new condition has been considered, the results obtained by optt0
evolution algorithm are presented in Table 5.4. Note that the concept “available
networks” has disappeared from it. This is because after applying the new
restriction, all networks can support real-time transmissions. In the table, the s
parameter represents the average number of retransmissions done by the
source node.

In Table 5.4, results are evaluated for different codec rates from 256 to 4096
Kbps. The same overlay networks have been used in order to compare the
results obtained by the different codec rates. This means that the source node
must have at least one link bandwidth equal or higher than 4096 Kbps, which is
the most restrictive codec. In this case, for 1500 byte packets it results
Tp=2,9297≃2,93 ms.

Table shows that the total delay t0 does not increase significatively with the
number of users. This is explained by the fact that although more users have to
be achieved, the network also has more available resources. That is, more
nodes retransmit at the same time, which finally is translated only into a low
increment of t0. The differences on t0 time values are minimal between
bandwidths from 256 to 1024 Kbps. More appreciable differences are observed
when codec rate is augmented to 2048 Kbps or, especially, when it is raised to
4096 Kbps. Those differences are not significant, but they exist because an
increase in the codec rate implies a more limited algorithm. In these cases, the
rate time tcad for node retransmissions is lower due to source period packet Tp,
fixed by codec, is also lower. Thus, transmissions over some links are not
allowed because tcad could overcome Tp. Despite of a transmission may not be
allowed, each node has its own neighbours’ vector sorted by latency time, so a
transmission to other nodes with a lower ttx time (but worse latency) may be
possible and this worsens the total t0. Anyway, this increase of t0 is small, as
shown in Table 5.4.

44 Real-time multicast transmission algorithms for P2P networks

Table 5.4. Real-time transmission optt0

Number of users n

Codec rate Parameters 10 25 50 100 200 500 1000

256 Kbps

s 6,78 12,10 12,85 12,34 12,30 14,06 14,20

t0 247,79 269,22 291,68 321,37 311,39 306,28 319,12

tcad 21,36 31,43 35,52 37,09 39,37 41,21 42,67

Covered nodes 10 25 50 100 200 500 1000

Covered nodes (%) 100% 100% 100% 100% 100% 100% 100%

Worst case - - - - - - -

Total connected networks 50 50 50 50 50 50 50

Total connected networks (%) 100% 100% 100% 100% 100% 100% 100%

512 Kbps

s 6,22 9,55 9,15 8,86 8,06 9,40 9,74

t0 248,87 270,65 295,44 327,87 313,46 307,72 320,59

tcad 18,64 21,48 23,00 23,43 23,44 23,44 23,44

Covered nodes 10 25 50 100 200 500 1000

Covered nodes (%) 100% 100% 100% 100% 100% 100% 100%

Worst case - - - - - - -

Total connected networks 50 50 50 50 50 50 50

Total connected networks (%) 100% 100% 100% 100% 100% 100% 100%

1024 Kbps

s 4,92 5,64 5,16 4,66 5,36 5,92 5,96

t0 261,75 279,96 304,59 330,57 318,39 309,81 321,28

tcad 10,79 11,72 11,72 11,72 11,72 11,72 11,72

Covered nodes 9,80 24,60 49,32 98,52 197,54 492,64 985,94

Covered nodes (%) 98,00% 98,40% 98,64% 98,52% 98,77% 98,53% 98,59%

Worst case 9 23 48 96 193 484 979

Total connected networks 40 32 27 10 4 0 0

Total connected networks (%) 80% 64% 54% 20% 8% 0% 0%

2048 Kbps

s 2,79 3,03 2,75 3,00 2,82 3,42 3,42

t0 282,25 308,44 329,40 352,44 337,60 322,41 331,34

tcad 5,65 5,86 5,86 5,86 5,86 5,86 5,86

Covered nodes 9,31 23,12 45,96 91,58 185,60 460,72 923,28

Covered nodes (%) 93,09% 92,48% 91,92% 91,58% 92,80% 92,14% 92,33%

Worst case 7 18 42 87 179 449 904

Total connected networks 23 6 2 0 0 0 0

Total connected networks (%) 46% 12% 4% 0% 0% 0% 0%

4096 Kbps

s 1,60 1,49 1,59 1,50 1,48 1,64 1,58

t0 336,02 393,30 401,37 426,37 402,99 373,11 373,93

tcad 2,45 2,82 2,87 2,93 2,93 2,93 2,93

Covered nodes 7,55 18,57 35,53 71,52 143,72 353,66 712,38

Covered nodes (%) 75,53% 74,27% 71,06% 71,52% 71,86% 70,73% 71,24%

Worst case 5 14 30 62 132 333 677

Total connected networks 2 0 0 0 0 0 0

Total connected networks (%) 4% 0% 0% 0% 0% 0% 0%

If we look at the evolution of t0 when the number of users increases, we notice
the decrement of this time when 100 and 200 user networks are compared. The
same occurs between 200 and 500 users networks. This behaviour for t0 occurs
in all codec scenarios, which is logical because we are using the same overlay

Algorithms evaluation 45

networks and the final multicast transmission trees should not vary too much
among all codec rates. This unexpected behaviour is due to the own distribution
of user nodes through the network. In this scenario, the user nodes always
belong to the same transit domain and they are distributed among different stub
domains. This means that communications through these overlay networks
have always (of nearly always) to cross exactly 3 transit-transit edges (we have
four transit nodes), which contributes most to the delay. Thus, the statistical
deviations due to user nodes distribution will cause this unexpected behaviour
in the t0 function. To check it, we expand the study over these networks by
calculating the arithmetical means with 20 overlay networks per transit network
instead of 10. In this case, the results consider 100 cases in total instead of 50.
As we expected, an increasing behaviour of t0 was recorded for all the values of
n and the statistical deviations were corrected by expanding our statistics.

As explained in section 5.3.2.3, the value of tcad is irrelevant in this scenario
because the rate of the data emission is fixed by the codec. Moreover, the
number of covered nodes and its percentage is also high. The only scenario
where this value must be pointed out is the 4096 Kbps, where only 70% of the
users are reached, independently on the size of the network. Actually, this value
corresponds to the amount of users with an Internet access equal or higher than
4 Mbps (see Table 5.2) and although it is not as good as those presented by the
other codecs, where more than 90% of the end users are reached in all cases, it
is clear that if the access link is not good enough to support a certain codec
rate, the transmission is not possible. In this case, the problem is not the
algorithm but the network itself.

Finally, we point out the average number of times s that the source sends each
packet. Obviously, this s is directly related with tcad of the source, so the higher
the rate of the codec is, the lower the value of s. On the other hand, this value
increases with the number of nodes, since if we want to flood a higher number
of users, the source will usually send more times each packet, always within the
constriction tcad<Tp.

Through this entire report we have said that the modification to get real-time
transmissions would be applied in both optt0 and optcad2 algorithms. Anyway,
until this point, only results for original and evolved optt0 algorithms have been
presented. In Table 5.5, we show the results provided by optcad2 evolution, that
is, after the real-time modification tcad<Tp has been applied over the original
algorithm.

The original optcad2 tries to optimize the rate time tcad of all nodes in the
network. This is reached by penalizing the t0 time, as it is explained in the report
of the preceding study [17], which makes sense if the number of messages M of
the flow is large enough. In this scenario all the nodes could forward each
packet before (thanks to a better tcad) and the total transmission time could be
better than for optt0 (optcad2 saves time each time a node sends a new
packet). Anyway, in Table 5.5 we show that optcad2 has no sense in real-time
scenarios where tcad is limited by the period packet time Tp of the source node.

46 Real-time multicast transmission algorithms for P2P networks

Table 5.5. Real-time transmission optcad2

 Number of users n

10 25 50 100 200 500 1000

Codec
rate

Parameters

256
Kbps

s 1 1 1 1 1 1 1

t0 1022,3 2285,57 3848,22 5936,99 8472,43 13112,7 17728,1

tcad 10,04 15,66 17,58 20,86 21,8 23,44 23,44

Covered nodes 10 25 50 100 200 500 1000

Covered nodes (%) 100% 100% 100% 100% 100% 100% 100%

Worst case - - - - - - -

Total connected networks 50 50 50 50 50 50 50

Total connected networks (%) 100% 100% 100% 100% 100% 100% 100%

512
Kbps

s 1 1 1 1 1 1 1

t0 1022,3 2285,57 3848,22 5936,99 8472,43 13112,7 17728,1

tcad 10,04 15,66 17,58 20,86 21,8 23,44 23,44

Covered nodes 10 25 50 100 200 500 1000

Covered nodes (%) 100% 100% 100% 100% 100% 100% 100%

Worst case - - - - - - -

Total connected networks 50 50 50 50 50 50 50

Total connected networks (%) 100% 100% 100% 100% 100% 100% 100%

1024
Kbps

s 1 1 1 1 1 1 1

t0 1025,11 2206,37 3758,83 5720,98 8147,23 12360,5 16636,6

tcad 8,71 10,66 11,48 11,72 11,72 11,72 11,72

Covered nodes 9,92 24,56 49,34 98,6 197,72 492,14 986,04

Covered nodes (%) 99,20% 98,24% 98,68% 98,60% 98,86% 98,43% 98,60%

Worst case 9 23 48 96 193 484 978

Total connected networks 46 31 24 11 7 0 0

Total connected networks (%) 92% 62% 48% 22% 14% 0% 0%

5.3.3. Multiple Autonomous System backbone network emulation

As seen in section 4.1, the routing algorithms presented have been tested over
two sorts of backbone network topologies. The first one emulates the network of
a single ISP and is the one considered until now. From now on, the backbone
network simulates multiple Autonomous Systems, much closer to the actual
Internet topology. So, next, the optt0 evolution with all the modifications is
evaluated over this scenario.

As it were expected, the final results obtained on this set of tests are similar as
the results presented in section 5.3.2.4. However, a lower delay t0 is obtained
since the propagation delays of the new backbone networks are lower.

According to Table 5.6, the t0 delay does not increase significantly with the
number of nodes. This fact occurs because although the number of nodes
increases, the network resources increase as well, as explained before. Another
relevant result is the dependence of the total delay t0 on the codec rate.
Although total delay t0 increases with the codec rate, this growth is insignificant.

Algorithms evaluation 47

All these behaviours were also obtained in the previous section, were
algorithms were tested over simple networks.

The same that is explained in section 5.3.2.3 (first optt0 evolution) for tcad and
covered nodes, applies in this new scenario. That is, the value of tcad is
irrelevant because the rate of the data emission is fixed by the source node
itself. Furthermore, the number of covered nodes and its percentage is again
high. For codec rates up to 512 Kbps all user nodes are reached independently
on the size of the network while for the 1024 Kbps codec rate case some users
were not reachable due to their access links were not high enough.

Table 5.6. Real-time transmission algorithm over multiple SA emulation

 Number of users n

10 25 50 100 200 500 1000

Codec rate Parameters

256 Kbps

t0 188,77 220,28 236,73 249,04 263,82 270,91 276,81

tcad 28,71 41,11 43,51 45,91 46,53 46,80 46,86

Covered nodes 10 25 50 100 200 500 1000

Covered nodes (%) 100% 100% 100% 100% 100% 100% 100%

Worst case - - - - - - -

Total connected networks 50 50 50 50 50 50 25

Total connected networks (%) 100% 100% 100% 100% 100% 100% 100%

512 Kbps

t0 202,62 230,86 247,14 257,61 273,96 278,24 282,80

tcad 20,57 22,41 23,37 23,44 23,44 23,44 23,44

Covered nodes 10 25 50 100 200 500 1000

Covered nodes (%) 100% 100% 100% 100% 100% 100% 100%

Worst case - - - - - - -

Total connected networks 50 50 50 50 50 50 50

Total connected networks (%) 100% 100% 100% 100% 100% 100% 100%

1024 Kbps

t0 223,08 254,60 271,60 282,99 296,35 299,54 305,56

tcad 11,16 11,70 11,72 11,72 11,72 11,72 11,79

Covered nodes 9,88 24,84 49,48 98,5 197,3 492,54 981,19

Covered nodes (%) 98,80% 99,36% 98,96% 98,50% 98,65% 98,51% 98,12%

Worst case 8 24 48 96 193 488 978

Total connected networks 45 42 26 12 4 0 0

Total connected networks (%) 90% 84% 52% 24% 8% 0% 0%

The upward tendency for t0 as the number of users increases is graphically
represented in Figure 5.3. The low variations respect to the number of users
shows that if a new user is added, t0 will almost not be affected. This is because
the packet could be send to the new user through an idle user long before the
packet has reached to all the users. Moreover, if the bandwidth of the source
increases there are also moderate delay increases. This is because by
increasing the source rate will be some links that cannot be used, and so slower
links (worst latency time) will be used instead. However, as the delay growth
from one link to another is always gradual, the final increase will be also
gradual. Besides this, if one link is used instead of other due to rate time

48 Real-time multicast transmission algorithms for P2P networks

restrictions, the new link will have a higher latency (tprop+ttx), but on the other
side, the transmission time will be lower (if not, it will not be valid because it will
result in a higher rate time). Hence, the propagation growth will be
compensated by a lower transmission time. This is why, when we increase the
bandwidth of the source, the delay is not increased notably.

All this conclusions mean that defined trees will give very good results, with a
total delay lower than a second, a perfectly acceptable value for the
transmission of live events. Furthermore, this transmission delay will not grow
up notably if we increase both the transmission quality (bandwidth of the
source) and the number of connected users. However, if transmission quality is
augmented up to 1024 Kbps, some users (always in a small percentage) will not
get connected.

Finally, on multiple AS scenarios the statistical deviations due to the distribution
of the user nodes does not occur often (remember the deviations on the single
AS networks in section 5.3.2.4). This fact is due to the backbone network
topology. On the new backbone networks, where there are 40 transit nodes, in
general, as the number of nodes increases more Transit-Transit edges must to
be crossed. Thus, if we increase the number of users in general we will cross
more Transit-Transit edges which contribute most to the total delay, and thus
statistical deviation will be less probable. This is also why on the multiple AS
scenario, t0 increases as the number of users grows up more than on the single
AS scenario, though this increment is irrelevant in practice.

Fig. 5.3 Algorithm behaviour – t0 vs. n

150

170

190

210

230

250

270

290

310

330

10 25 50 100 200 500 1000

t 0
(m

s
)

Number of users n

Codec rates:

256 Kbps

512 Kbps

1024 Kbps

Conclusions 49

CHAPTER 6. CONCLUSIONS

In this project, continuation of previous works [13,14,15,16,17], we have
presented a set of real-time multicast routing algorithms for P2P networks
Those networks are also named overlay networks because they are defined on
the application layer. Starting from an algorithm based on a single message
transmission, we have described a group of algorithms that allows the
transmission of multiple messages on a multicast group, considering always
real-time communications. Our analysis has been focused on evolutions of
optt0 and optcad2 algorithms, looking for the application of those algorithms on
real-time scenarios. Both algorithms and their modifications have a complexity
of O(n2).

We have worked with two different network backbone models. The first of them,
which is the one used in previous works, is based on the representation of the
backbone network as a single Autonomous System. The second one assumes
that the Internet topology is based on multiple Autonomous Systems. Over
those backbone networks simulations, we have tested the real-time multicast
algorithms described in the present project.

Initially, we took the original algorithms optt0 and optcad2 and analysed their
results. In this case, for real-time transmission we need to obtain a rate time, for
each user, equal or lower than the source packet rate time (time elapsed
between the creation of two consecutives packets). Hence, based on previous
results, a filtration was done by selecting those networks with a rate time for the
worst node lower than the packet period Tp. In this case, the number of
available overlay networks was very small.

After that, the rate restriction described in former paragraph was introduced on
the algorithms performance. Therefore, the rate time of the nodes has been
limited to the period packet Tp of the source. These modifications have been
tested over a backbone network topology represented by a single Autonomous
System. The results obtained in this case, compared to the ones obtained
previously, offer a higher amount of available networks where a real-time
communication could take place. With this same purpose, we have chosen later
as source a user connected to network by at least one link with a bandwidth
equal or higher than the codec rate. After this modification all the networks were
available. Finally, the optt0 evolution has been tested over a backbone network
conformed by multiple Autonomous Systems in order to represent, in a more
realistic way, the actual Internet topology, all with similar results.

Summarizing, the total delay of the first message t0 (the one that we try to
minimize) does not depend highly on the number of overlay users nor on the
bandwidth of the source. This time t0 has always been lower than one second,
even in the case of 1000 users, which is completely proper for the transmission
of life events. Furthermore, the results presented offer a transmission rate for
each user equal or higher than the codec rate, an essential requirement to carry

50 Real-time multicast transmission algorithms for P2P networks

out real-time communications. Hence, the initial objective of the present work is
achieved satisfactorily.

The project environmental impact can be evaluated taking into account that with
the algorithms introduced, the messages transmission time is reduced and the
resources and bandwidth are optimized either in physical or logical terms. In
smaller networks, formed by 10 users, such resources optimization is relative,
but in large networks, with up to 1000 users, the resource savings can be
significant.

Bibliography references 51

BIBLIOGRAPHY REFERENCES

[1] S. E. Deering and D. R. Cheriton, “Multicast routing in datagram
internetworks and extended LANs”, ACM Trans. Comput. Syst., vol. 8, no.
2, pp. 85-110, 1990.

[2] M. H. Ammar, “Why Johnny can’t multicast: lessons about the evolution of

the internet” in NOSSDAV ’03: Proceedings of the 13
th

international
workshop on Network and operating systems support for digital audio and
video, New York, NY, USA: ACM Press, pp. 1-1, 2003.

[3] J. H. Saltzer, D. P. Reed and D. D. Clarck, “End-to-end arguments in

system design”, ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 277-288,
1984.

[4] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.

O’Toole, Jr., “Overcast: Reliable multicasting with an overlay network”, in
USENIX Symposium on Operating Systems Desing and Implementation,
pp. 197-212, 2000.

[5] Y. Chawathe, S. McCanne, and E. A. Brewer, “RMX: Reliable multicast for
heterogeneous networks”, in INFOCOM. IEEE, pp. 795-804, 2000.

[6] A.-M. K. M. Castro, P. Druschel and A. Rowstron, “SCRIBE: A largescale

and decentralised application-level multicast insfrastructure”, IEEE Journal
on Selected Areas in Communication (JSAC), vol. 20, no. 8, October
2002.

[7] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz,

“Bayeux: An architecture for scalable and fault-tolerant wide-area data
dissemination”, in NOSSDAV, June 2001.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A

scalable content addressable network”, in ACM SIGCOMM, 2001.

[9] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to Model an

Internetwork” in IEEE Infocom, pp. 594-602, IEEE, San Francisco, 1996.

[10] Gimbert, R. Moreno, J.M. Ribó, M. Valls, Apropament a la teoria de grafs i

als seus algorismes, Edicions de la Universitat de Lleida, Lleida, 1998.

[11] R.J. Wilson, Introducción a la Teoría de Grafos, Alianza Universidad,

Alianza Editorial, Madrid, 1972.

[12] A. Bar-Noy, and S.Kipnis, Designing Broadcasting Algorithms in the Postal
Model for Message-Passing Systems, ACM Symposium on Parallel
Algorithms and Architectures, pp. 12-22, 1992.

52 Real-time multicast transmission algorithms for P2P networks

[13] Van Creij, V., Algorismes Multicast en Xarxes Overlay, Final project thesis,
Escola Politècnica Superior de Castelldefles - UPC, 2009.

[14] S. Domínguez, Análisis de aloritmos multicast en redes overlay, Final

project thesis, Escola Politècnica Superior de Castelldefels - UPC, 2006.

[15] J. Pratsevall, Anàlisis d’algorismes de multicast en xarxes overlay, Final

project thesis, Escola Politècnica Superior de Castelldefels – UPC, 2005.

[16] J. Pratsevall, Application-Layer Multicast Algorithms for Bounded Delay
Transmissions, Master Thesis, Escola Politècnica Superior de
Castelldefels – UPC, 2008.

[17] A.J. Alcaide, Algoritmos Multicast en Redes P2P, Final project thesis,
Escola Politècnica Superior de Castelldefels – UPC, 2010.

[18] A. Bar-Noy, and S. Kipnis, Designing Broadcasting Algorithms in the

Postal Model for Message-Passing Systems in ACM Symposium on
Parallel Algorithms and Architectures, pp. 13-22, 1992.

[19] E. W. Dijkstra, A note on two problems in connextion with graphs,

Numerische Mathematik, vol. 1, pp. 269-271, 1959.

[20] Autonomous System, AS [On-line] Available:
“http://en.wikipedia.org/wiki/Autonomous_system_(Internet)”.

[21] GT-ITM, Modeling Topology of Internetworks [On-line] Available:

“http://www.cc.gatech.edu/computing/Networking/projects/gt-itm/”.

[22] Eclipse.org home [On-line] Available: “http://www.eclipse.org”.

[23] Jeff McAffer, Jean-Michel Lemieux, Eclipse Rich Client Platform:

Designing, Coding and Packaging Java Applications, Addison-Wesley
Professional, 2005. [On-line] Available: http://eclipsercp.org/.

[24] Caida.org home [On line] Available: “http://www.caida.org/”.

[25] Amic.es home [On line] Available: “http://www.aimc.es/”.

