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Abstract

We describe a new model in order to study the properties of collections of self-propelled particles

swimming in a two-dimensional fluid. Our model consist in two types of particles, the first interacting

with each other with a soft potential and thus representing the fluid while the second type are self-

propelled particles of biological nature capable of changing its orientation following the velocity field

of the fluid. The results of the simulations show how a super-diffusive regime arises at large times for

biological particles, in addition to having higher velocity correlation. Also, it is show how the biological

particles have a tendency to form clusters and how these particles tend to look for the same orientation.

1 Introduction

Our world is filled with microorganisms, and a
great number of them are self-propelled microor-
ganisms swimming in a fluid. Each of these mi-
croorganisms has its unique properties and propul-
sion method [1]. The physics of this swimming
at micrometer scale are different from their coun-
terpart at macroscopic scale, since at microscopic
scale the viscosity is more important than inertia
(leading us to low Reynolds number). In physics,
this is translated into many particles systems that
are out of equilibrium but that, like equilibrium
systems in a phase transition, exhibit a coopera-
tive behaviour.

Recently, many models entirely composed by
orientated particles have been proposed in order
to study collective properties. For instance, in
the Vicsek model [2] the particles assume the av-
erage direction of the particles in their neighbor-
hood with some noise, while their move at a con-
stant module velocity. This simple model leads
to a kinetic phase transition from no transport to
finite net transport, that arises from a collective
behaviour. Others models, such as the one made
by Ginelli et al. [3], characterize by describing
the particles with a complex position. This model
also shows different phases, differentiated by the
nematic order. Despite being simple, these mod-
els provide interesting results about the collective
motion of swimmers, which is a matter of growing
interest since recent works of mechanical systems
driven by microorganisms [4].

2 The model

The motivation for our model is to couple the
swimmers with a solvent and make sure that we

recover the hydrodynamics. It arises from a new
approach: As we want to modelize the dynamics
of microorganisms swimming in a two-dimensional
fluid, we consider two types of particles. The first
type of particles are set up in order to represent
a mesoscopic fluid system. These particles inter-
act with each other and are governed by Newton’s
equations of motion.

d~ri

dt
= ~vi , mi

d~vi

dt
= ~fi (1)

~fi =
∑

j 6=i

(

~F C
ij + ~F D

ij + ~F R
ij

)

(2)

The sum is over all the particles found within a
certain cutoff radius rc from the particle i. The
force that one particle experiences contains three
parts: The first one, ~F C

ij , is a conservative force
that particle j exerts on i, while the the second
and third force are frictional and stochastic force,
respectively.

Focusing on the conservative force, we choose it
to be a soft repulsion that goes to zero by distances
larger than rc.

~F C
ij =

{

aij
rc−rij

r2
c

r̂ij rij < rc

0 rij ≥ rc

(3)

In the equation above, aij is the maximum repul-
sion between particle i and j. Further information
about this can be found at the paper by Groot and
Warren [5].

In order to solve Newton’s equations of motion,
we use the velocity Verlet algorithm to find the
position and velocities of the particles at time t +
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∆t:

~ri(t + ∆t) = ~ri(t) + ∆t~vi(t) +
∆t2

2mi

~F C
i (t)

(4)

~vi(t + ∆t) = ~vi(t) +
∆t

2mi

(

~F C
i (t) + ~F C

i (t + ∆t)
)

In the equation above, ~F C
i is the sum of the

conservative forces acting on particle i. Following
the paper by Lowe [6], we incorporate the other
forces mentioned at 2 by implementing a thermo-
stat. We construct a list of all pairs of parti-
cles for which rij < rc. For each pair we decide,
with a probability Γ∆t, whether to thermalize or
not. The factor Γ is expected to correspond to
the magnitude of the dissipative force. In order
to thermalize, we generate a new relative velocity
[~vij ]′ · r̂ij from a distribution ξij

√

2kBT/m, where
ξij is a Gaussian-distributed random variable with
unit variance. To impose this new relative veloc-
ity on the pair of particles and conserve momen-
tum, the new velocities are [~vi]

′ = ~vi + ~∆ij and

[~vj ]′ = ~vj − ~∆ij , where 2~∆ij = r̂ij([~vij ]′ − ~vij) · r̂ij .

Once the particles representing the fluid meso-
scopically are implemented, it’s time to add the
active particles that represent the swimmers. The
dynamics of these active particles also follow New-
ton’s equations of motion 1, and use the same in-
tegrator as the fluid particles (or passive particles)
4. Since we have a new set of particles, three in-
teractions between particles now exist: a) Interac-
tion between passive particles, b) interaction be-
tween active particles and c) interaction between
an active and a passive particles. In the three
cases, the interaction follow the same conservative
force (equation 3), but the maximum repulsion aij
changes. First, we will say that the maximum re-
pulsion doesn’t depend on the particles i and j.
Second, we distinguish between two maximum re-
pulsion values: a1 and a2, being the first one for
interactions a) and c), and the second one for inter-
actions of type b). Finally, in this work we will use
a2 = 0, which means that active particles doesn’t
interact between them. This is meant to facilitate
the formation of clusters. Also, the active particles
present a orientation n̂i and they are self-propelled
with a constant velocity v0 in this direction. In the
velocity Verlet integrator, this is reflected with a
new term n̂i · v0 in the position update, that must
be modified in order to conserve the momentum
of the system. For the thermostat this propulsion
velocity isn’t taken into account since the thermal-
ization is done with the "thermal" velocity only,
which is the velocity of the particles of the ther-
mal bath. This v0 term in the velocity will cause
a lift in the temperature from the expected value
without propulsion.

Our model also allow the active particles to ro-
tate following the fluid flow, so the rotation of the
particle must depend on the velocities of all parti-
cles around it. A particle i rotation during a time
interval ∆t can be expressed as ∆θi = ωi∆t, where
ωi is the vorticity sensed by the particle. At a given
time step, one can compute the angular momen-
tum ~Li =

∑

j 6=i ~rij × ~vj of the particle i. In order
to find the vorticity in terms of the velocities of
the particles, we approximate ~vj ≃ v̄i + rijα∇α~vβ ,
where v̄i =

∑

j 6=i ~vj . We choose ~vj in this way,
as a first term expansion around a constant value
v̄i, since then each velocity belonging to a particle
j will have a dependence in the vorticity of parti-
cle i. Is important to note that, despite the rota-
tion being only computed for the active particles,
the velocity of all the particles (active and passive)
within rc are counted in order to compute the vor-
ticity.

With the approximation mentioned above,
we find ~Li =

∑

j 6=i(ǫαβµ~rijβ~rijδ(∇δ~vµ) + ~rij ×
v̄i). Since

∑

j 6=i ~rijβ~rijδ can be written as

δβδ
1

2

∑

j 6=i r2

ij , then ǫαβµδβδ∇δ~vµ = ǫαδµ∇δ~vµ =
∇ × ~v. Isolating ∇ × ~v = ~ωi, we finally obtain the
vorticity in order to compute the rotation of the
active particles at each time step:

~ωi =
∑

j 6=i

~rij × (~vj − v̄i)
2

∑

k 6=i r2

ik

(5)

Since with the rotation we change the velocity of
the particle i, in order to conserve the momentum
we must subtract a fraction 1/N of the velocity
change of particle i to all the particles within rc,
where N is the number of particles within that
range. This way, the total momentum is conserved,
and with a large number of total particles the vari-
ations to their velocity are small due to the factor
1/N . In our model, the computation of the vortic-
ity for all active particles is performed before the
updating of positions, while the rotation of n̂i oc-
curs after updating positions and velocities. That
means that the active particle flips following the
velocity field existing in the time step before.

Since the soft potential of our conservative
force doesn’t cause a strong repulsion at short dis-
tances, in the initialization of the system the two
types of particles are placed randomly in the cell.
Also, the orientation of active particles are set ran-
domly, same as the velocity of all particles. Then
we proceed to setting the total momentum to zero
and performing an scaling of velocities, without the
propulsion term like in the thermostat, in order of
have the thermal bath velocities. In order to con-
serve the momentum and mass of the system, and
to avoid problems with the borders of the box, our
model use periodic boundary conditions and the
simulation is run in a box with side L.
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Figure 1: Pressure computed (in red) for densities
ranging from 3.0 to 8.0, for values of a = 25.0 and
a = 15.0. Fit for different values of α, being α =
0.125 the one fitted with our data and α = 0.101
the one given by Groot and Warren.

3 Testing the model

In order to test that our program has the model
implemented correctly, we perform a series of sim-
ulations to verify it. Hence, we set the parameters
of the simulation towards having only passive par-
ticles, thus representing only the fluid. We choose
of rc = 1.0 and m = 1, since we will be working
with box sizes L ∼ 10. Maximum repulsion is cho-
sen as a1 = 25, ∆t = 0.001 and a thermal velocity
of vt = 2.0 which means a temperature of the bath
equal to T = 2.0. With this parameters and the
thermostat always active we can compute different
properties of the simulated fluid in order to verify
the correct performance of the model.

First of all, one can obtain the internal pressure
of the system by using the virial theorem. Follow-
ing this, the pressure can be computed as follows:

p = ρkBT +
1

dV

∑

j>i

~rij · ~F C
ij (6)

where, since we are working in a two-dimension,
d = 2 and the volume is V = L2. The first term of
the expression is easily computed while the second
one is a little more costly and unpredictable. While
working in three dimension, Groot and Warren [5]
provide a good approximation for the pressure that
holds for sufficiently high densities (ρ > 2):

p = ρkBT + αaρ2 (7)

where a is the maximum repulsion of the particles
and α is a fit parameter that they calculated as
being α = 0.101 ± 0.001. We perform a simulation
using a = 25.0 as Groot and Warren and compute
our value of α.
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Figure 2: Excess pressure divided by aρ2, case with
a = 25.0. Larger densities are needed in order to
find reach a constant value of α.

As shown in figure 1 it can be seen how the
behaviour of our pressure, both for a = 15.0
and a = 25.0, follows clearly a parabola with
α = 0.125 ± 0.001. In the figure the parabola with
α = 0.101 is also shown in order to compare dif-
ferences. As can be seen, our values of pressure
for a = 25.0 are higher than the ones obtained
by Groot and Warren, hence some sort of differ-
ence between the two models must exist. As we
said before, seems plausible to think that the dif-
ferences come from the dimensions of the simula-
tion, although we haven’t check it. Since the pro-
portionality of the pressure to ρ2 came from the
second term of the equation 6, one can compute
the excess pressure as p − ρkBT and divide it by
aρ2 in order to see how fast α tends towards a con-
stant value. In figure 2 one can see how α value
for these densities doesn’t reach a constant value,
while Groot and Warren [5] achieve this with val-
ues of density ρ ∼ 4. Since we are working in a
two-dimensional system some differences with the
results can be expected, and ours behave correctly
enough.

One can also compute the correlation function
g(r) in order to see if the behaviour is the one
expected also by Groot and Warren. As before, we
use a = 25.0 and a density of ρ = 3. The results are
shown in figure 3, and one can see how the shape of
the distribution function is the one expected from
a soft potential.

With this results we prove that our program
works correctly while only having fluid particles.
When we add the self-propelled particles, we ex-
pect a few changes from this results. First, the
temperature T of the system will be different
(higher) from the one from the bath Tbath, since
the propulsion velocity add a factor unseen by the
thermostat. In order to see this, we compute the
kinetic energy for active and passive particles and
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Figure 3: Distribution function g(r) for our soft
potential for ρ = 3 and a = 25

the temperature of the system at each time step,
then compute the mean value of all the time series.
In this simulation we use a1 = 5.0, ∆t = 0.001 with
a total number of steps of Nsteps = 2000, a den-
sity of ρ = 8.0 and 4000 particles of each type.
The thermal velocity is set at vt = 2.0 as before,
thus having a temperature Tbath = 2.0, and the
propulsion velocity is set a v0 = 1.5. As shown
in the figure 4, the time series shows a fast ther-
malization after which the temperature of the sys-
tem remains quite constant. From the kinetic ener-
gies one can obtain the temperatures of both type
of particles: Passive particles are a temperature
Tpassive = 2.005, that of the thermal bath, while
active particles Tactive = 3.117. This cause the to-
tal temperature of the system to be T = 2.561,
as computed directly from the times series of the
temperature. One can note how the temperature
of the active particles is different from vt +v0, since
the orientation of ~vi and v0 · ~ni are different.

4 Results

Here we are going to discuss some properties
about the swimming particles that we observed
with this model. First we made a brief study about
the velocities of the particles, active and passive.
The velocity distributions for both types of parti-
cles can be observed at figure 5, where active par-
ticles have a wider distribution since propulsion
velocity is added to the typical thermal velocity of
the particle. At the small graph at 5 we have typi-
fied both graphs thus we can see how both almost
coincide at the same Gaussian. From just looking
one can say that the mean velocity of these Gaus-
sians is vmean ∼ 2.0, which agree with vt = 2.0 we
are using in this simulation. One can also look at
velocity correlation (figure 6) in order to note some
differences. There we see how passive particles at
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Figure 5: Velocity distributions for a system with
ρ = 8.0, a1 = 5.0, v0 = 1.5, vt = 2.0, with a
density of active particles nactive/ntotal = 0.375.
At the small windows we have typified the graphs.

long time scales have a slope ∼ −1, an algebraic
decay 1/t which is the long time tail of the hydro-
dynamics. On the other hand, active particles have
a higher correlation. It would be interesting to see
if at larger times active particles also decay alge-
braically as 1/t. This is an open question left to be
understood. One can expect this correlation to be-
came higher if we increase the value of propulsion
velocity v0.

One can also look for the mean square displace-
ment of particles since, as velocity correlation, can
give information about the diffusion. At figure 7
one can see it for both active and passive particles.
There we can see how until t ∼ 0.1 both active and
passive particles have a ballistic behaviour since
MSD increases as t2. However, it can be seen that
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for a system with ρ = 8.0, a1 = 5.0, v0 =
1.5, vt = 2.0, with a density of active particles
nactive/ntotal = 0.375. At the small windows the
correlation is plotted without logarithmic scale.
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scale for a system with ρ = 8.0, a1 = 5.0, v0 =
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passive particles leave ballistic behaviour before ac-
tive particles do, and thus reach diffusive behaviour
(t1) before, too. The values of mean square dis-
placement are higher for active particles since they
have the propulsion velocity, so one can expect the
values to increase further for larger values of v0.
Also, it seems that near t ∼ 1 passive particles be-
gan to reach the diffusive behaviour. For active
particles there is an intermediate super-diffusive
regime before reaching a diffusive behaviour, with
a crossover time between the two regimes. In fur-
ther analysis it could be interesting to see how this
crossover time increases with the activity.

Now our objective is to look for a collective be-
haviour in the active particles. In order to do so
we compute the distribution function g(r) for all
particles and ones for only active or passive parti-
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cles. The results are shown in the figure 8. One
can see how the distribution function for all par-
ticles gtt is similar to the one expected for a fluid,
although it doesn’t go to zero at distances r ∼ 0.
For the distribution only for passive particles, gpp,
we see how it follows gtt quite closely and shows
a behaviour similar to the one at 3, so the passive
particles doesn’t present any important change be-
tween a system with active or without active par-
ticles. For gap we can see how more of passive par-
ticles stand at r > rc from active particles. On the
other hand, gaa shows that active particles form
clusters since they have a high concentration at
r ∼ rc/2. It also present a minimum at r ∼ rc.
This attractive behaviour observed despite active
particles don’t attract each other arises from the
repulsion a1 of passive particles, that cause active
particles to form this clusters. When computing
cluster sizes later, we will choose rc/2 as the max-
imum distance two particles can have from each
other in order to form a cluster.
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Also, we want to see if close active particles
tend to align his vectors ~n in the same direction. In
order to do so, we compute a distribution function
weighed as |cosθ|. Since generally the orientation
of ~n is equiprobable, we need to subtract 2/π since
we are working with absolute value of cosθ. This is
shown at figure 9 for two different total densities,
ρ = 4.0 and ρ = 8.0. There we can see how, at dis-
tances r > 2.0 the orientation tends to zero, mean-
ing that no relation exist between two particles to
orient in the same direction. At small distances
r < 0.5, however, we can see how a relative orien-
tation arises. At average, active particles closely
enough tend to have an orientation of cos θ ∼ 0.6
for density ρ = 4.0 and cos θ ∼ 0.35 for density
ρ = 8.0, thus particles are closely aligned for low
densities. Despite these are not phases of totally
aligned particles inside a cluster, the results clearly
differentiate between randomly relative orientation
and a clear relative alignment.

Now we can compute the cluster sizes that
form the active particles and see how they
change for different densities of active particles
nactive/ntotal. As we said before, we choose two
particles to be in the same cluster if the distance
between them is lower than rij < rc/2, since most
of the active particles found more active particles
inside this radius (figure 8. At figure 10 one can see
the clusters’ distributions for a system with a fixed
density ρ = 8.0, but for different number of active
particles. We see how with a low density of active
particles the clusters formed are very small and the
maximum number of particles is ∼ 10. As density
rises one can see how the distribution became wider
and clusters with sizes ∼ 100 can be observed when
the number of active particles is near the half of
total particles. At this state, nactive/ntotal = 0.5,
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we can see how the cluster distribution has two
slopes. Until cluster sizes of 10 the slope follows
almost −1, while past this number the distribution
falls as ∼ −2. In the process of forming cluster, in-
crementing the propulsion velocity doesn’t has any
consequence in the distributions, incrementing nor
decreasing the slopes. It’s important to note that
the tendecies of the clusters’ distribution doesn’t
vary if we change the criteria for which two parti-
cles belong to the same cluster. So if we say that
two particles belong to the same cluster if the dis-
tance between them is lower than rc/4 the number
of clusters will increase but the tendecy of the dis-
tribution would be the same.

Finally, we compute the diffusion of active and
passive particles when the ratio of active particles
over the total number of particles varies, as shown
in figure 11, for two different values of propulsion
velocity v0. There we can see how, despite the to-
tal density of the system being constant for all the
points, the diffusion varies with the density of ac-
tive particles. Passive particles’ diffusion remains
almost constant for all values and for both v0 = 1.5
and v0 = 2.5, as is expected since the fluid’s diffu-
sion shouldn’t change as long as the total density
of the system remains the same. For active parti-
cles we see how the diffusion rise as we lower the
number of active particles in the system. Since re-
pulsion between passive particles create a fictional
attractive force between active particles, decreas-
ing its number cause less clusters to be formed.
Also, this behaviour of having an increasing dif-
fusion as fraction of active particles decreases is
similar to the one observed for gases, where when
the density of the system decreases the diffusion
rises since more free space is available. This reflects
that, despite share the space with passive particles,
active particles’ diffusion behaviour doesn’t seems



to care at all for passive particles. Of course, the
diffusion for active particles also increases with v0.

5 Conclusions

With this work we have develop a new model
that couples swimmers with a solvent so we can
study further the collective properties of swimming
microorganisms. We provide different results in
order to assure that the hydrodynamics obtained
are the expected, and to look at the properties of
the swimming particles we inserted in the fluid.

We have seen how the velocity correlation gives
the result one expects in a fluid for the passive par-
ticles, thus recovering the hydrodynamics result.
Also one sees how the correlation is greater for ac-
tive particles. As we noted before, in future works
it would be interesting to see if at larger times
the active particles achieve an algebraic decay 1/t.
Also, the mean square displacement for the pas-
sive particles behaves as expected for a fluid while
the one for active particles presents an interme-
diate super-diffusive regime between ballistic and
diffusive behaviours. In this work we only mention
the existence of this regime, but a further analysis
about how this crossover time varies with the activ-
ity would be interesting to study in future works.

The model also shows an inclination of the
swimmers to form clusters, and we see how a ten-
dency in the clusters’ distribution arises when the
density of active particles reach certain values. The
swimmers also have a tendency to orientate them-
selves, while forming a cluster, in the same direc-
tion, although we haven’t reach a state where all
the particles in a cluster are totally parallel or an-
tiparallel.
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