
MAXIMUM LIKELIHOOD APPROACH FOR STOCHASTIC
VOLATILITY MODELS

Jordi Camprodon i Masnou

Master Thesis supervisor: Josep Perelló i Palou
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Abstract
Volatility is a measure of the amplitude of price return fluctuations. Despite it is one of the most
important quantities in finance, volatility is a hidden quantity because it is not directly observable.
Here we apply a known maximum likelihood process which assumes that volatility is a time-dependent
diffusions coefficient of the random walk of the price return and that it is a Markov process. We
use this method using the expOU, the OU and the Heston models which are previously imposed.
We find an estimator of the volatility for each model and we observe that it works reasonably well
for the three models. Using these estimators, we reach a way of forecasting absolute values of
future returns with current volatilities. During all the process, no-correlation is introduced and at
the end, we see that volatility has non-zero autocorrelation for hundreds of days and we observe a
significant correlation between volatility and price return called leverage effect. We finally apply this
methodology to different market indexes and we conclude that its properties are universal.
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1 Introduction

The first idea of modeling stock prices was given
by Bachelier in 1900 with the arithmetic Brownian dy-
namics [1]. Its properties had some disagreements with
empirical prices and, correcting that, Osborne pro-
posed the Geometric Brownian Motion model (GBM)
which was used for many years [12]. In this definition,
volatility was associated with the diffusion coefficient
of a random walk.

However, after the 1987 crash, it was noticed that
Geometric Brownian Motion was unable to reproduce
the behaviour of real markets [2]. In order to solve this
huge problem, the stochastic volatility models were
proposed. These models assume that stock price and
volatility are random variables.

In the present work, we will focus our attention on
volatility. It is a measure of the amplitude of return
fluctuations and it is associated with the risk of hold-
ing an asset. Concretely, the higher the volatility the
riskier the market index. In fact, volatility is such an
important variable that investors pay sometimes more
attention to volatility than to the direct price of the
stocks [3] and eventually they trade through deriva-
tives (futures and options).

One of the main properties of the volatility is that

while returns themselves are uncorrelated, the abso-
lute value of returns or their squares have a positive,
significant and slowly decaying autocorrelation func-
tion. This issue can be observed in the market be-
cause, as Mandelbrot says, large changes tend to be
followed by large changes, and small changes tend to
be followed by small changes [7].

It is known that volatility has extremely useful
properties [11, 8] but the biggest problem is that
volatility itself is not observed. This fact implies some
curiosities because, on one the hand, it is impossible to
find the best estimator of volatility but, on the other
hand, many models of volatility are not incorrect.

Among all the stochastic volatility models [5], we
will study the exponential Ornstein-Uhlenbeck (ex-
pOU), the Ornstein-Uhlenbeck (OU), and the Heston
models [6, 13, 9]. More concretely, we will try to ap-
ply the maximum likelihood methodology presented in
[4] to all these models. Then, we will compare some
properties in order to see if this methodology allows
us to describe the market in a better way. We will do
all of that using different indexes whose data has been
downloaded from Yahoo Finance.

This work is divided into five sections. In Section
2 we present the stochastic volatility models and their
main characteristics, while in Section 3 we show the
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Figure 1: A comparison between different volatilities. On
the top we observe the deconvoluted volatility computed
using equation 11. The other ones are volatilities calcu-
lated using our maximum likelihood algorithm applied to
different models. The Heston, the OU and the expOU
models are represented in this order from above. All the
plots are shifted in order to observe them more clearly

maximum likelihood approach. In Section 4 we explain
the results we get using our algorithms. Conclusions
are written in Section 5.

2 The stochastic volatility mar-
ket models

The starting point of any stochastic volatility
model is the GBM model:

dS(t)

S(t)
= µdt+ σ(t)dW1(t) (1)

where S(t) is a financial price or the value of an
index, µ is the drift and σ(t) is a random volatility.

If we define the zero-mean return X(t) as

X(t) = ln

(
S(t+ t0)

S(t0)

)
−
〈

ln

(
S(t+ t0)

S(t0)

)〉
(2)

with t0 the initial time, we can rewrite the GBM as

dX(t) = σ(t)dW1(t) (3)

Lots of models assume that volatility is a function
of another random process, σ(t) = f(Y (t)), and Y (t)
is also a diffusion process [6, 13, 9]. Then, we can work
with these stochastic differential equations:

dX(t) = f(Y (t))dW1(t) (4)

dY (t) = −g(Y (t))dt+ h(Y (t))dW2(t) (5)

where Wi(t) (i = 1, 2) are Wiener processes.
As f(y) is a monotonically increasing function, we

could confuse Y with volatility. That is because σ and
Y have similar behaviour in the market.
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Figure 2: Probability distribution of the different volatil-
ities. Inset figure shows the same representation in log-log
scale.

expOU OU Heston

f(y) mey y y1/2

g(y) αy α(y −m) α(y −m)

h(y) k k ky1/2

Table 1: Analytical expressions of f(y), g(y) and h(y)
that appear in equation 5. m, α and k are constants whose
values are taken from [10].

Each stochastic volatility model has its own ex-
pressions of f(y), g(y) and h(y). Table 1 summarizes
the ones we are going to deal with.

Analyzing equation 5, g(y) could be thought as a
force that makes the volatility return to the normal
level. h(y) could be viewed as the volatility of the
volatility.

3 Maximum likelihood ap-
proach

As we said in Section 1, we present a methodology
proposed in [4] that allows us to have some criteria for
choosing the best values of the volatility.

Let us imagine we have been able to get X and
Y in the time interval t − s ≤ τ ≤ t. Then, it can
be demonstrated that the probability density of this
realization is:

lnP (X,Y ) = −1

2

t∫
t−s

(
X ′(τ)

f(Y (τ))

)2

dτ

−1

2

t∫
t−s

(
Y ′(τ) + g(Y (τ))

h(Y (τ))

)2

dτ + ... (6)

where X ′ and Y ′ are the derivatives of X and Y . Com-
putationally, equation 6 is not feasible because X ′ and
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Figure 3: Comparison between the probability distribu-
tions of the return differences, dX, calculated using equa-
tion 3. Logarithmic scale is used in order to see more
differences.

Y ′ do not exist as explicit functions and we only have
discrete values of X and Y . For these reasons, we have
to work with its discrete expression:

lnP (X,Y ) =−1

2

t∑
τ=t−s

(
X(τ)−X(τ−∆t)

f(Y (τ−∆t))∆t

)2

∆t

−1

2

t∑
τ=t−s

(
Y (τ)− Y (τ−∆t)

h(Y (τ−∆t))∆t
+
g(Y (τ−∆t))

h(Y (τ−∆t))

)2

∆t (7)

The first term of equation 6 is a measure of the
variations of X with respect to the volatility. We no-
tice that the higher this fluctuations are, the lower the
contribution to the probability is. The second part
computes the fluctuations of the volatility with respect
to the volatility of the volatility. Again, the bigger this
term, the lower the contribution.

Our goal is to find a proper realization of Y given
X. Then, we should consider the following conditional
probability:

lnP (Y |X) = lnP (X,Y )− lnP (X) (8)

As we want to maximize this probability for a fixed
set ofX, the second term can be neglected. To sum up,
if we compute different realizations of Y for the same
X and we keep the one that makes bigger equation 6,
we will be taking the realizations with smaller fluctu-
ations. With this method, we can filter the Wiener
noise dW1(t) and obtain our new estimation Yest(t) of
the hidden volatility Y (t).

One of the hard points of the project is the compu-
tational task. Specifically, we have implemented one
algorithm which follows four steps:

1. Looking at equation 4, we generate a simple real-
ization of Y as:
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Figure 4: Logarithm of the return differences as a func-
tion of the logarithm of the volatility. All the models are
shifted for better understanding. In brackets, we can find
the value of the slope of the linear regression. The points
represent the medians and the error bars are the first and
third quartiles in the bins.

Ȳest(τ) = f−1
(∣∣∣∣ dX(τ)

dW1(τ)

∣∣∣∣) (9)

where t− s ≤ τ ≤ t.

2. We substitute Ȳest and X into equation 7 and we
compute the probability.

3. We iterate I times the points 1. and 2. and we
keep the realization with higher probability. From
this realization we get Yest(t) = Ȳest(t).

4. Finally, the estimator of the volatility at time t is
σest(t) = f(Yest(t)).

We observe that this procedure strongly depends
on I and s. We also notice that the stochastic volatility
model has to be chosen before starting the computa-
tion.

4 Simulation results and com-
parison between models

We have implemented the algorithm with s = 10
and I = 100000 and we have calculated our estimation
of the volatility. We have used these values because if
they were bigger our results would not be clearly im-
proved. As we have taken daily data, we have worked
with ∆t = 1 day. In order to see if our methodology
works, we have compared it with other ways of calcu-
lating the volatility.

As a first approximation, volatility can be viewed
as something proportional to return differences:

σprop(t) =
|dX(t)|
〈|dW1(t)|〉

(10)
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Figure 5: Representation of the magnitude γ(h) that ap-
pears in equation 14. The errorbars correspond to the error
on the slope of the regression of Figure 4. The data has
been divided in two trams in the case of the expOU and
the OU models. All the plots are also shifted.

This method might be too simple and we should
add Wiener noise. Then, we can compute the decon-
voluted volatility:

σdecon(t) =

∣∣∣∣ dX(t)

dW1(t)

∣∣∣∣ (11)

From equations 10 and 11, we can get Yprop =
f−1(σprop) and Ydecon = f−1(σdecon). We observe that
Ydecon is calculated with the first computed random
value dW1 while Yest chooses an optimal value after I
iterations.

In Sections 4.1 - 4.4 we have used Dow Jones daily
data from October 1928 to July 2011.

4.1 Behaviour of our estimator

As we have seen, Yest should be less noisy than
Ydecon. We observe this fact in Figure 1 because the
deconvoluted volatility oscillates much more than the
estimated volatility calculated with all the models. In
fact, the range of values of the deconvoluted is three
or four orders of magnitude bigger than the others.

We know that our maximum likelihood approach
chooses dW1 but we do not know exactly if the dif-
ferent forms of f(y), g(y) and h(y) clearly change the
results. In order to compare how our algorithm works
with each model, we have calculated the probability
distribution of the different volatilities. We observe in
Figure 2 that the position of the peaks and the height
of them depend on the model. These differences show
that the algorithm does not effect all the models in the
same way.

In order to test the values given by each model, we
should calculate dX(t) multiplying σ(t) with Wiener
noise as it is written in equation 3. Doing that, we
can compare our results with the real data of dX(t).
In Figure 3, we observe that the Gaussian shape of
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Figure 6: MFPT of the volatility of the three models and
the deconvoluted. Lines represent the theoretical form that
each curve should follow. Log-log scale is used in order to
show the power-law behaviour.

the peak of the real dX(t) is not reproduced in any
model. On the other hand, we see that the tails of the
real dX(t) are very similar to the ones given by the
OU model.

4.2 Predictive power of the method

Taking logarithms to equation 3, we get:

ln |dX(t)| = ln(σ(t)) + ln |dW1(t)| (12)

And if we use the conditional median of ln |dX(t)|
given ln(σ(t)) we should have

M [ln |dX(t)|| ln(σ(t))] = ln(σ(t)) + c (13)

where c is a constant. In Figure 4 we plot this rela-
tionship using each estimator. We observe the slopes
are near to 1 as they should be in the ideal case. We
also notice that the Heston model is the one that re-
produces better this dependence because its slope is
equal to 0.94 while the other slopes are 0.93 and 0.83.

In order to see the prediction power of each model,
we can forecast dX(t+ h) given Y (t). From equation
13, we can give the following proposal [4]:

M [ln |dX(t+ h)|| ln(σ(t))] = γ(h) ln(σ(t)) + c (14)

If we calculate γ(h) for some values of h, we can
see the degree of predictability of each model. Figure
5 shows this issue and we observe that there is an ac-
ceptable linear relation between γ(h) and log(h). We
also see that the expOU and the OU models have dif-
ferent slopes for small1 and large2 values of h. Using
that relation we can write

M [ln |dX(t+h)|| ln(σ(t))]=(a ln(h)+b) ln(σ(t)) + c
(15)



expOU1 expOU2 OU1 OU2 Heston

a -0.12 -0.064 -0.15 -0.064 -0.048
b 0.82 0.72 0.85 0.67 0.63

Table 2: Experimental values of the coefficients of equa-
tion 15. 1 is valid for h . 7 while 2 works for h & 7.
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Figure 7: MFPT of the return differences calculated using
equation 3. The expOU, the OU and the Heston models
are compared with the well-known real data.

where a and b are the coefficients of the regression.
Table 2 shows their experimental values.

We remark that, with equation 15, we have found
a strategy that allows us to forecast |dX| at time t+h
knowing information at t. We have also observed that
the loss of information has a double time scale in the
expOU and the OU models while the Heston model
has a single time scale.

4.3 Mean First-Passage Time

In this section we are going to analyse the Mean
First-Passage Time (MFPT) of the volatility. The
MFPT of the volatility represents the mean time one
has to wait in order to observe the volatility in one
concrete value λ.

In order to compare different methodologies, we
have to work with the dimensionless magnitude L =
λ/σs where σs is the volatility’s normal level which
depends on the volatility model and the stock data.
Specifically, we have used the values in Table 3 that
are calculated in [10].

expOU OU Heston

σs me1/4ν
2

m γ/ν
√

2

Table 3: Expressions of the volatility’s normal level of
the three models. The expressions of the constants are
ν = α1/2/k, γ = Γ(β + 1/2)/Γ(β), β = (1 + ρν2)/2 and
ρ = m2 − k2/4α.

expOU OU3 OU4 Heston3 Heston4 decon

2.4 0.5 3.3 1.5 3.1 1.1

Table 4: Scaling exponents of the MFPT of the volatility
calculated with our maximum likelihood method. The ex-
ponent of the deconvoluted procedure is also written. The
OU and the Heston models have two different exponents
for L . 0.2 3 and L & 0.2 4.
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Figure 8: Comparison between the autocorrelation of our
volatilities with the autocorrelation of the ”real” one. The
”real” volatility is calculated as the square of the return
differences, dX(t)2.

In Figure 6 we show the MFPT of the volatility cal-
culated with our models. We observe that the MFPT
of the volatility follows a power law in all the cases.
The expOU model and the deconvoluted process have
only one exponent for the whole range of L. The other
ones are described with different exponents for small3

and big4 values of L. The experimental scaling expo-
nents are summarized in Table 4.

In Figure 6 we also compare our experimental re-
sults with the theoretical curves given by [10]. We
notice they differ significantly. In fact, big values of L
in the expOU model and medium values in the Hes-
ton model are the only points that coincide with the
theoretical curves. This low agreement could be at-
tributed to the way of accepting the Wiener noise. In
other words, our algorithm radically changes the range
of values of the volatility and it strongly affects the be-
haviour of the MFPT.

Finally, the deconvoluted points that appear in the
plot are lower for big L. As the deconvoluted volatility
has bigger peaks and they appear more frequently, the
time needed to get a huge value of L is significantly
smaller.

As the volatility is a hidden variable and we only
observe the price, we can calculate |dX| multiplying
each σ by dW1(t). Doing that, we can compare the
MFPT of the experimental |dX| with the MFPT of the
real |dX|. In Figure 7 we see that each model has two



expOU OU Heston real data

L . 1 1.1 0.8 1.0 1.3
L & 1 2.4 3.1 2.9 2.9

Table 5: Scaling exponents of the MFPT of dX. All the
curves in Figure 7 have a characteristic exponent for L . 1
and another for L & 1.
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Figure 9: Leverage correlation given by equation 16 of
the Heston model. It is compared with the deconvoluted
procedure and the ”real” volatility, dX(t)2.

different exponents for L . 1 and L & 1. In addition,
we see that all the exponents are very similar. Their
values are shown in Table 5.

4.4 Correlations

In this section we have studied how our maximum
likelihood approach effects the main correlations of the
volatility.

It is well-known that volatility fluctuations have
long memory and that the autocorrelation function de-
cays slowly. In Figure 8 we have plotted the volatility
autocorrelation of each estimator. We observe that all
of them preserve this property because they show sig-
nificant and positive autocorrelation for hundreds of
days. This fact clearly manifests the robustness of the
proposed method.

The other important correlation that has to be
studied is the leverage effect. The leverage correlation
is defined by

L(τ) =

〈
dX(t)σ(t+ τ)2

〉
〈σ(t)2〉2

(16)

and it is a measure of the correlation between the vari-
ations of return and volatility.

In Figure 9 we have plotted the leverage correla-
tion of the Heston model as an example. We observe
there exist negative decaying correlation for some days.
That fact is really important because in the analyti-
cal calculation of equation 6 the correlation between
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Figure 10: Leverage correlations of the expOU, the OU
and the Heston models. As always, volatilities are calcu-
lated using the maximum likelihood method.

dW1(t) and dW2(t) is not imposed. It means that the
anticorrelation of the volatility and the return appears
without previous introduction. In some way, it could
be a proof that our methodology is coherent because
simply playing with the Wiener noise, the leverage ef-
fect is manifested.

In order to see if it happens in all the models, we
have plotted the leverage effect of each estimator in
Figure 10. It is clear that all the models show this
negative correlation. In addition we see that the Hes-
ton model is the one whose anticorrelation is bigger.

It should be noticed again that although no pre-
vious relationship between dW1(t) and dW2(t) is in-
troduced, we find an important negative correlation
between return and volatility.

4.5 Different market indexes

We have studied how our maximum likelihood ap-
proach effects different stochastic volatility models.
Here, we would also like to verify if there are any dif-
ferences between working with one stock market or
another.

Concretely, we have calculated our estimation of
the volatility for the following indexes: Dow-Jones
Industrial Average (DJ), Standard and Poor’s-500
(S&P), German index DAX, Japanese index NIKKEI,
American index NASDAQ, British index FTSE-100,
Spanish index IBEX-35 and French index CAC-40.

The first thing we realize is that each volatility’s
stock has its own range of values. It means that we
cannot compare directly the values of the volatility.
What we observe is that in all the markets, the es-
timated volatility is considerably less noisy than the
deconvoluted. In addition, we could say that the re-
duction of the oscillations is done in a similar way be-
cause the coefficient

variance(Yest)

variance(Ydecon)
(17)
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Figure 11: Probability distribution of the volatilities of
the Standard and Poor’s-500 (S&P) and the IBEX-35. For
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is independent of the stock data and it only depends
on the model.

In Figure 11 we plot the volatility given by the
Heston model for two different indexes. As we said,
we notice the different width of the probability distri-
bution of two stocks because each one has a different
range of values. We can also appreciate the reduc-
tion of the fluctuations achieved with our estimated
volatility.

Finally, we have tried to deduce if the appearance
of volatility’s correlations is general for all the mar-
kets. For the Heston model, we show in Figure 12
that there are some stocks which manifest more lever-
age than others. As an example, the S&P has bigger
anticorrelation than the Dow Jones. However the im-
portant fact is that we find leverage in all the stocks.
The same happens with the volatility autocorrelation
because although the NASDAQ decays more slowly,
all the stocks manifest significant autocorrelation for
hundreds of days.

5 Conclusions

It is fairly known that volatility is one of the main
quantities in finance because it is a measure of price
fluctuations and it gives information related to the risk
of holding an asset. In this work, we have used a max-
imum likelihood method in order to obtain optimal
values of the volatility.

We have applied it to the expOU, the OU and the
Heston models and we have compared them with a
deconvoluted method. We have realized that fluctua-
tions of the estimated volatility are smaller in all the
models than in the decovoluted calculation.

The Heston model has been the best one to show
that there is a linear relationship between the loga-
rithms of return and volatility. In addition, the nov-
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Figure 12: Comparison between the leverage effect of the
Dow-Jones Industrial Average (DJ), Standard and Poor’s-
500 (S&P), and NASDAQ. The inset Figure shows the de-
cay of the volatility autocorrelation of them. The Heston
model has been used in order to calculate the volatility
estimator of each stock.

elty is that we have found a strategy that allows us
to forecast future returns with actual volatilities. We
have also observed that the loss of information has a
double time scale in the expOU and the OU models.

Speaking about extreme events, we have seen that
our maximum likelihood approach does not reproduce
the MFPT of the volatility as we expected. How-
ever, we have observed the nice concordance between
the MFPT of our estimated return differences and the
MFPT of the real ones.

We have also focused on volatility’s correlations
and we have realized that all the models show the ex-
istence of significant volatility autocorrelation for hun-
dreds of days. In addition, correlations between varia-
tions of return and volatility have also been observed.
This last issue, also called leverage effect, has been sur-
prisingly found because we have not introduced previ-
ous relationship between returns and volatilities. All
of that has allowed us to say that our methodology is
really robust.

Finally, we have computed the same procedure us-
ing different stock indexes. We have seen that the
reduction of volatility’s noise follows the same pat-
tern and we have corroborated that all the markets
show volatility autocorrelation and leverage effect. In
other words, we have observed that all this methodol-
ogy shows universal properties.
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