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Abstract

The recent developments in technology of movement tracking devices such as Global Positioning (GPS),
together with the increasing availability of consistent data bases, have lately given rise to the study of human
mobility patterns in different environments. In this work a statistical characterization of real mobility GPS
high-frequency data from taxis in San Francisco is performed. The different patterns taxi drivers and customers
follow are shown through comparing behavior when cabs are empty or full and the information is presented
using a weighted directed complex network metric, from which the author obtains some topological information
such as correlations between nodes, assortativity and clustering. Some adapted measurements to weighted nets
are presented together with some remarks to support the need for new tools for assortativity classification.

1 Introduction

The study of the patterns and dynamics of mo-
bility has always been subject of great interest in sev-
eral disciplines such as sociology [1], ecology [2], urban
planning [3], traffic forecasting or virus/disease spread
among others. However, until recently the quantity
and quality of data available to perform such studies
was limited on one hand due to technological reasons
(the position tracking and storing devices were inac-
curate, not very accessible and with low capacity) and
in the other due to practical issues (most data was
obtained based on surveys or manually collected from
sighting records in the case of animals). Nowadays,
the GPS has improved in such a way that many studies
can be performed with large mobility, high frequency
databases taking advantage as well from the advance
in the processing capacity of our computers [4]. Many
of these past studies have been centered in studying
the home range or use of space of animals using mod-
ified diffusion equations [5] and based mainly in the
theory of Lévy Flights [6], others explore the emerg-
ing scaling properties of human mobility [7] while some
work also has been done on explaining the influence of
the environment in changes on mobility patterns [8].

In the present work the author aims to present a
new way on studying home-range mobility based on a
GPS Taxi traces database in San Francisco, USA.

The idea is to firstly perform a complete study of
the raw available data without taking into account the
specific conditions from where it was taken to detect
interesting features and then relate those features with
the particular boundary conditions of the problem at
hand. This way many different mobility environments

can be compared and the results of the studies become
more universal [9,10].

The document is structured as follows: Firstly the
technical details of the data are presented, followed by
a quick statistical overview of its main characteristics.
The text then follows to analyze more specific statis-
tical features of the individuals involved in the study
to present some insight in the different behavioral pat-
terns observed. With the gathered information the au-
thor presents a complex network representation of the
data. Finally some preliminary conclusions are drawn
and many ideas for further work are presented.

2 The Data

2.1 General information

The data used on this study was obtained from
[11]1 and consists of high frequency GPS data (up-
dated at a high pace of < ti+1− ti >= 90 s) from a set
of 537 taxis of the same company collected on the in-
terval May-June 2008. The data provides latitude and
longitude coordinates of the taxi together with a time
reference (UNIX time since epoch) and an indicator
of it being occupied or not2. Other information about
whether the taxis are operated by the same driver, if

1The data is published [12], where it has been kindly up-
loaded under public license by its authors.

2The dataset was filtered and 4 anomalous taxis excluded
from the study. The parameters used to do so were the number
of trips3 per taxi (n ≥ 40) to detect anomalous behavior. In
the appendix to the document the reader may find additional
information and figures on the procedures used and explained
through the text. Refer to Preparing the Data for further details
on the data preparation.



∆te ∆tf ∆re ∆rf

ic 200’ 43’ 15 km 16 km

Table 1: Starting values of the decreasing tails defined
as {ic|P (ic) = 0.1, i = ∆t,∆r}.

environmental information is shared between workers
via radio contact as well as if the trips originate from
a call/taxi station or spontaneous user decision is not
available. We will consider the taxis as statistically
independent (as done and justified in [11]) and con-
sider their drivers as skilled enough to have a similar
knowledge of the city [13] and usage of GPS due to
the lack of further a priori information. No precision
ranges were given with the data but the accuracy of
the integrated GPS devices on the taxi for 2-D data
such as these is typically of about 10 meters4.

2.2 Features overview

From the overall of the data, we obtained a total
of 5× 105 empty and full trips out of around 11× 106

GPS updates which conform a good statistical ensem-
ble to work on. In figure 1 we present the complemen-
tary cumulative (CCDF) and probability (pdf) distri-
butions of elapsed times ∆ti and distances ∆ri covered
by the taxis during all the observation time. From
both the CCDF and their pdf’s one sees several inter-
esting features: Firstly we observe a noisy initial range
O ∼ [1, 10] (for meters and seconds) easily explained
by the fact that these are not typical ranges of usage
of a taxi, neither for distances nor for times. Addi-
tionally we see slow decaying tails that extend to very
large values, we also see that in the case of the dis-
tances the forms of the distributions seem to be quite
similar5. Finally it is worthy to observe a protuber-
ance in the middle of the tail at around the interval
[10 − 20] km for distances that may account for the
trips to the airport (which is 15 km apart from the
city approximately) and is a frequent destination as
we will see in section §4.4. Also note that the distri-
butions seem to be flat (flatter in the case of empty
trips) with a decay in a fat tail behavior starting at
values rc, tc that define a typical maximum distance
(time) of taxi usage as shown in table 1 (most likely
the typical time/distance spent in an in-city trip)6.

3 Statistical Analysis

The aim of this section is to provide some insight
in the individual behavior patterns for the individual
taxis. As a first approach to do so we fitted the tails

4This information can be obtained from top retailer GPS
tracking devices website.

5We shall study the correlation of long trips in section §3.
6Please note those are not the values at which the fits start,

only where the decreasing trend does.
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Figure 1: Probability density distribution and CCDF
of elapsed times and distances for all the taxis with
logarithmic binning. Note the slow decreasing tails.
The light blue line is a guide for the eye with fitted
exponent α = 2.030 ± 0.002 from the CCDF of full
times, which was the only with statistically relevant
results. For more details on the fits see the appendix.

of the individual distributions of ∆t, ∆r for each taxi
to detect strange patterns but all the data had power
law tails with similar exponents7. Then we proceeded
to study the efficiency of each taxi defined as,

ve =
∆re
∆te

vf =
∆rf
∆tf

ρr =
∆rf

∆rtotal
ρt =

∆tf
∆ttotal

ρv =
ve
vf
. (1)

We show the results on table 28. From the values ob-
tained and the peak shaped distributions, we observe
no substantial differences in the efficiency of the taxis,
fact that provides an hypothesis for all of them show-
ing similar behavior. Also it is noteworthy that in
mean, half of the distance the taxis move, they do it
occupied while they spend one third of the total time
on duty. Interestingly enough, they all seem to have
bigger typical speeds when full and this feature has
a bigger spread, fact probably caused by the bias in-
troduced by resting times (counted as in-time empty
trips) on the data treatment and caused by different
resting patterns of the drivers.

We also computed the center of masses of the
movements for the different taxis ~rCM (mean position
over time updates) and compared the spread of the
movements using the gyration radius defined as,

r2gyr =
1

N

N∑
i

|~ri(t)− ~rCM |2.

Where each values ri represent a GPS location update.
The results are shown in figure 2. We observe that the

7Taking into account we are dealing with real data, with a
certain amount of noise. Refer to appendix for further details.

8To see the associated distributions refer to the appendix.



r t v
< ρ > 0.56± 0.04 0.31± 0.06 0.359± 0.102

Table 2: Efficiency mean values and associated stan-
dard deviation. ρr > ρt is explained by the fact that
drivers spend some waiting times looking for customers
in taxi stops such as the airport. As for the relative
speeds, one sees that taxis tend to move faster when
full.
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Figure 2: Gyration Radius distribution for empty and
full situations.

spread in the reference system for each taxi is smaller
whenever they are occupied (< rfgyr >= 769 ± 369
m), situation that is explained by the fact that the
destination in these cases is known an set by the cus-
tomer, resulting in direct trips unlike the empty situ-
ation (< regyr >= 1500± 800 m) where drivers tend to
wander in search of customers.

Finally we focused our attention on the tails of
the distribution (the long range trips) given the sim-
ilar form that seems to exist between the tails of the
empty/full distance distributions shown in figure 1.
First we computed the distribution of maximum range
trips and observed that a high overlap in the ranges
of empty/full maximum distances exist, and that the
long range full most lengthy trips were longer than the
empty ones.

These hints directed us to study the correla-
tion between the successive long trips (sequences of
full/empty trips with a small intermediate time ∆τ <
3 hours9 and lengths ∆r > 20 km) and successive short
trips (∆r < 5 km and ∆τ < 10 minutes). We calcu-
lated for each taxi the Pearson correlation coefficient
of the pairs of trips and their p-values10 and aver-
aged over all the taxis to obtain Clong = 0.45 ± 0.21,
Cshort = 0.11± 0.006. These differences in correlation
of length of successive trips are explained by the fact
that when taxi drivers drive away from the city, they
do not have the legal right to pick up customers and
so are forced to retrace their way back (thus having

9The time condition was added to avoid data discontinuities
using non-related trips.

10Using the usual definition as found for instance in [14]. See
appendix.

successive trips of similar length). The opposite sit-
uation (operating inside the city) does not generate
correlation since this constraint no longer exists and
successive trips can be considered independent.

The taxis are considered independent and do not
seem to show significant differences in their efficiency
parameters, spread around the city (rgyr), mean posi-
tion (CM). Moreover, the correlation existing in long
trips indicate that the observed tails in the distribu-
tions of distances are caused mainly by the choice of
destination of customers, and hence that the fat tails
are explained by the heterogeneity of customers (be-
havior when full) and not searching strategies (empty
taxis). This correlation also explains the similitude
in the distance tails, whereas in the case of times the
discrepancy is not explained11. Finally, the bumps
present in the distributions seem to indicate the pres-
ence of (one or several) important destinations at an
important distance from the city. Some of the overall
facts presented here should be present and explained
by the network built in section §4.

4 Complex Network Approach

In this second part a representation of the data
using a complex network approach is shown. Firstly
the building procedure of the network is quickly ex-
plained together with some general features of it listed
and finally more involved calculations as well as some
conclusions are drawn from it.

4.1 General Overview

The network is built from the trips present in the
data, where nodes correspond to locations (starting
or ending ride points) discretized12 using a grid with
bins of 100× 100 m of surface that are connected with
weighted edges that represent the number of trips link-
ing each pair of locations. The net is directed (be-
cause it is in no way symmetric) and weighted (with
the number of trips)13 and selfloops as well as iso-
lated nodes have been trimmed. The main features
of the net are presented in table 3 and its distribu-
tion of strengths and degrees. We observe that the
net representing empty trips is denser14 than the full

11The study of time intervals is inconclusive on one hand due
to the definition of trip used and on the other because even
though the constraint for long rides exists for distances, in the
case of times this fact is much more difficult to study due to
resting times not accounted for.

12Some noise coming from the discretization will be present
on the results, but we cannot apply a non-constant metric on
the grid without applying an a priori bias on the results, i.e.
1 km2 may contain more information in the city center than
in the outskirts of San Francisco but we are forced to make no
assumptions on our analysis, so we adopted a constant grid (also
for simplicity in our algorithm).

13Please refer to the appendix for a complete justification and
the algorithm used to construct the net as well as for the distri-
butions mentioned in the document and not showed.

14With a similar number of nodes, it has 80% less links.
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Figure 3: Strength and degree distribution (inset).
We see the similarity between them and its fat tailed
nature, both seem to have a functional form of
P (s), P (k) ∼ k−γf(k/kx) truncated power laws due
to the finite size nature of the nets at study in accor-
dance with [15].

one. Finally, the weight distribution decreases faster
for the full net (indicating more relative importance
of most used trips for the empty one). These features
are explained by the fact that normally destinations for
customers tend to be more diverse (home, work) and
heterogeneous, hence more edges pointing to different
places are present in the full net (greater strength out,
greater density, more edges). In figure 3 we show the
distribution of both strengths and degrees for the nets
at study, we observe similar behavior for the comple-
mentary features (in /out) of both nets (empty/full)
but this is an expected behavior emerging from the
definition of trip mentioned earlier.

4.2 Studying correlations

Once we have taken a look at the general features
of the graphs, we want to further explore the correla-
tions existing in the nets, to do so, we wish to study
the relation between the strength and weights of edges
emerging from nodes: Were no correlation present be-
tween them, we would obtain [15] si =< ω > ki using
the approximation ωij ≡< ω >. In figure 4 we see the
plot of this function and observe that whereas the ap-
proximation is valid for low values of k, the degree of

N E ρ < ki > < ko > < si > < so > αω < ωij >
Empty 17465 278891 9.1× 10−4 15± 62 15± 43 22± 118 22± 79 2.125± 0.005 1.4

Full 17511 348166 1.1× 10−4 20± 60 20± 81 26± 98 26± 130 2.660± 0.003 1.1

Table 3: General features of the net. Refer to the
appendix for the exact definitions of the parameters
used together with the references for algorithms used
in computing the values. Observe the conservation for
both strengths and degrees, with different σ due to
slight differences in their distribution tails. Finally αω
refers to the fit of the weight distribution as a power
law, the only consistent fit available (see appendix).
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Figure 4: (a) Computed function < s > (k). The
straight lines serve as guide to the eye, we observe that
the approximation ωij ≡< ω > is lost for high values of
k. (b) Computed mean weight of edges as a function
of starting and ending unweighted degrees, the inset
is the raw data while the main plot corresponds to
the mean over s. We observe again a general lack of
correlations for several decades with a sudden increase
for high values of k

(o)
i k

(i)
j .

nodes increases slower than its strength as values in-
crease, thus showing that as nodes become more con-
nected, they become more and more frequent (impor-
tant). The second plot in figure 4 shows yet another
interesting behavior, with the weight of edges being in
general independent of the nodes they connect except

for big values of k
(o)
i k

(i)
j , where we see the tendency of

high connected nodes in the net being linked by fre-
quent trips (heavy weighted edges) among themselves
(specially in the case of the full net, where the pat-
tern is clearer). Important places (hot spots) tend to
be connected among themselves because people need
to move between them (full net) and so are a frequent
destination for taxi drivers in their search of customers
(empty net)15.

Finally we also computed the betweenness central-
ity of all the nodes in the net and averaged it over the
nodes with the same values of strength as shown in
figure 5 and found a power-law like behavior as done

15Both nets are likely to be highly correlated and show sim-
ilar patterns for most features, but an in-depth study of the
correlations between them is out of the scope of this work.
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Figure 5: Mean strength as a function of betweenness
< s > (b), the inset corresponds to the raw data while
the main plot is smoothed over repeated values of b.

in [15]. The betweenness definition in our networks
give an idea of the routing habits of taxi drivers, since
assuming the taxi drivers want to maximize their ef-
ficiency, they might want to cover all the important
zones of the city concatenating occupied trips, and so
high values of betweenness indicate important spots
(places with high density of customers) that are well
connected (many weighted short paths16) and thus dis-
tribute the transit over the different regions of the
map.

From the features studied in this section, we can
conclude the very important influence the top nodes
of the net accumulate, on one hand due to the fact
that the more connected they become in degree k, the
more strength s they gather, and the more strength
(traffic) they gain, the more central (b) they become,
as well as the better connected with other important
nodes < ωij > (kikj) they get.

It needs to be noted that the analysis of correla-
tions in this network is pretty simple and more ad-
vanced studies on weighted networks could have been
performed [16,17,18], but the facts presented here al-
low us to indistinguishably use s or k as variables in
our mean field approximation of the network, just sim-
plifying our posterior assortativity analysis17.

4.3 Assortativity: Pearson r coeffi-
cients and neighbor connectivity

To finish our study of the main characteristics of
the net prior to its representation, we studied the as-
sortativity of our networks. To do so we computed
both the Pearson assortativity node strength coeffi-
cient rs

18 and the mean neighbor degree knn(k) to
look for the linking nature of both nets. We need to
be aware that since we are working with a directed net-

16Computed using Dijkstra’s algorithm.
17In fact, all the figures shown have been computed for both

s and k, refer to the appendix for the ones not appearing in the
present document.

18Adapted to weighted nets from the definition in [19] and
[20].

rin−in rout−out rout−in rin−out < r >
Empty s -0.032847 0.017782 -0.054016 0.045915 −0.018± 0.043

Full s -0.079386 -0.093057 -0.116725 -0.057891 −0.10± 0.03

Table 4: Pearson r coefficient for degrees in both net-
works. Please note that the minimum values of r are
bounded [21].

work (which is highly non-reciprocal) we can compute
several versions of the coefficient and neighbor degree
(strength), all containing different information19. In
table 4 we present the values obtained from the compu-
tation of the Pearson coefficient, and we observe some
surprising differences. Whilst the full net seems to
have an important disassortative character, the empty
net gives non-conclusive results (with low values nev-
ertheless) so from this preliminary analysis we need to
conclude a general lack of assortativity in the empty
network. To evaluate the effect superrich nodes may
have on this statistic [22] due to the correlations ex-
isting between them seen in §4.2, we computed the
evolution of the ri coefficients recursively extracting
the top weighted in and out degree nodes of the net as
showed in figure 6, where we also show the relative size
evolution of the biggest weakly and strongly connected
components of the network.

We observe that as we exclude the top nodes, the
networks’ r coefficients evolve into positive values, fact
that would indicate assortative nature, i.e. a tendency
of nodes of similar (or increasing) degree to link. More-
over, the sudden change in the r coefficient indicates
the strong tendency of superrich nodes to link with
scattered destinations (very low connected nodes).

Accounting for the size of the biggest components,
it is important to note that the nets are percolated
with their giant component20 occupying roughly the
98% of the network in both cases. As we exclude the
very first top nodes, we see that the size of the gi-
ant component in the case of the empty net is more
vulnerable, fact that would indicate a more assorta-
tive nature than the full case21. Moreover, we ob-
serve that the size of the strongly connected compo-
nent is resilient to extraction of top nodes, fact that
indicates a strong inter-connectivity for medium sized
nodes (mostly points inside the city center).

To further clarify the assortativity of the net we
present on figure 7 the mean neighbor degree of the
networks at hand22 in figure 7.

19In-In indicates In degree of node out-going neighbors re-
lated with In degree of parent node for instance. See the ap-
pendix for an explanation of the different meanings in the coef-
ficients or [20].

20The weakly biggest component (or giant component) of our
network is the subgraph of nodes that are connected between
themselves via a path composed of directed or undirected links.

21As shown in [21] for different theoretical models. Albeit
since we are dealing with real data, the pattern observed is much
less extreme.

22We computed them at two stages, both with the complete
nets and with the nets trimmed with 52 nodes, roughly 0.3% of
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Figure 6: Evolution of ri coefficients for both nets and
of the size of the giant computing while top nodes are
being removed, as a function of the percentage of nodes
removed. We observe the disassortative negative val-
ues are quickly lost due to exclusion of main nodes
and the assortative nature of the nets is strengthened
as we exclude more and more nodes.

We start taking a look at the full net. It is im-
portant to note that in this case all the coefficients
carry similar information, as important places are both
a preferred destination and departure points for cus-
tomers, and random spots in the streets (i.e. stop-
ing a taxi on the move) or scattered locations such as
workplaces behave the opposite way. We do not ob-
serve clear patterns, with nodes qualitatively seeming
to show a faint assortative tendency.

The empty net seems to have a much more com-
plicated pattern. Not all the pairs show the same in-
formation nor the same tendency. The clearer pat-
tern is shown by the In−Out pairs (U shape), where
low out-degree nodes (occupied trips ending in a scat-
tered locations) have a very strong tendency to link
to high in-degree spots (taxi spots, hot spots for cus-
tomers) that dramatically falls to a constant tendency
of medium sized nodes (k ∼ O(10)) to increasingly
link with similar nodes, ending in a pattern for busy
spots tending to connect among themselves. A similar,
less-extreme shape is observed for the In − In pairs.
Finally, both Out−Out and Out− In show a faint as-
sortative tendency (in this case, drivers ending a trip
do not want to visit places where they will not likely
embark customers, hence they do not choose low out
degree locations).

Our assortativity analysis is inconclusive due to
the fact that the two indicators used appear to give
different results due to the influence of the most impor-
tant nodes in the net, evidence supported by the strong
correlations detected for the supernodes of the net in
previous sections §4.3. Moreover, the mix of linking
behaviors (assortative and disassortative) present in
the complex structural nature of the nets call for the

its total number. Besides changes for low values of the graphs,
no substantial changes were observed possibly due to the quali-
tatively nature of the analysis. Refer to the appendix.
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Figure 7: Mean weighted degree of neighbor nodes in
semi logarithmic scale. (a) In-In and Out-Out strength
pairs. (b) In-Out and Out-In strength pairs. We ob-
serve an overall assortative-disassortative tendency for
the full net while having an s shaped effect and a mixed
pattern for the empty net.

need of a local based assortative analysis [23]. All this
facts suggest that some additional tools need to be de-
veloped to study and better quantify the linking trends
present in directed (weighted) networks.

4.4 Network Representations

For practical reasons we restrict our representation
to the empty net23, that shows the behavioral patterns
of the taxi drivers. We have kept the giant compo-
nent of the net with edges of ωij > 5 (trimming out
scattered, seldomly visited locations) and performed a
modularity analysis on it [24] that successfully identi-
fied groups of communities. We observe in figure 8 the
overall net with several clear clustering patterns: Taxi
drivers tend to go to nearest local important nodes to
look for customers (hence the successful clustering and
the assortativity for medium-connected nodes), oth-
erwise, they direct themselves (travelling longer dis-
tances) to the top nodes (disassortativity) that greatly
influence our network and are well connected between
themselves. In the figure we also see the top influence
of the airport on the overall net, fact that explains the
bumps found on the distributions in section §3. This

23More representations are available in the appendix.



sort of behavior is clearly marked by the knowledge of
the system the drivers have, and is reminiscent of a
truncated Lévy Flight searching strategy.

5 Preliminary conclusions and
future work

We have firstly trimmed and studied individual
taxi real data and found no sharp differences between
the different taxi driver behavior patterns. Similar dis-
tribution shapes were obtained for the different taxis
in times, distances and efficiency parameters, although
no scaling was attained. A more pronounced disper-
sion was detected for empty taxis through the study of
its radius of gyration rgyr and a strong correlation for
long empty and full trips caused by legal constraints
was detected, that explain the similitude of the fat
tails observed for the data of empty and full situations,
governed by the heterogeneity of destinations chosen
by customers24. To conclude the statistical analysis we
also detected a frequent destination at long distance of
the city, which would later correspond to a top node
of the network representation performed.

In this sense we represented our data in two com-
plex weighted directed networks and computed the
main characteristics of the nets (power law distribu-
tion of weights, fat tailed in and out weighted degree
distribution) as well as the patterns of the correlations
existing between the nodes’ betweenness, strength and
degree. Finally an assortativity analysis was per-
formed with contradictory results that showed the dif-
ficult linking nature of the net, the strong influence
of superrich nodes on the statistics of the net (rising
from the correlations detected and the shape of the
distributions of weight and degree) and the need for
local-based assortativity analysis tools.

To end this work some representations of the net of
empty taxi trips are shown exhibiting a clustered na-
ture for frequent movements attached to delimited ge-
ographical zones, indicating the tendency of drivers to
maximize their occupancy efficiency by visiting their
nearest busy spots after each run.

The author considers that the results of this study
mainly open up three ways for further research: On
one hand, the introduction of a weighted directed net
forced the author to adapt some standard measures
to these type of nets, and such measures should be
refined and its efficiency further studied (specially in
the case of assortative characterization, where we ob-
tained many inconclusive results that call for a better
defined local approach in its study25). On the other
hand, if more Taxi mobility data were available on
other cities, the properties studied here could be com-

24Please note that some of the results obtained here coincide
with very recent studies performed in mobility habits of popu-
lation based on their personal car GPS data usage [4].

25Adapting the methodology in [25] to weighted networks for
instance.
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Figure 8: Empty Net representations. (a) Geographic
location of node with edges with wij ≥ 5 with their size
referred to their value of sin and labelled by address.
We observe a clear neighborhood clustering pattern
with both airports (SFK and Oakland) far from the
city. (b) Radial layout with the r coordinate repre-
senting decreasing values of mean weighted neighbor
out degree kwnn and the nodesizes their incoming de-
gree ki. We observe that the clustering is broken by
connections between top nodes and the general disas-
sortativity, with big nodes present towards big radial
values in each cluster. The node labelled Domestic
Garage corresponds to the drivers resting area in the
airport.



pared in the search for universal patterns (or particu-
lar divergences). Also a study of the nets’ growth over
time could be carried with additional data. Finally,
the results of this analysis open the way for a model
to be constructed on taxi behavior that via simulation
validates the results obtained, and in the event of ob-
taining a realistic model optimization in the searching
strategies could be devised.

To conclude, it needs to be stated that the method-
ology followed provides a good example of the power of
complexity and data mining strategies to both study
and represent without preliminary information a big
set of data and obtain relevant information and pat-
terns, as well as providing tools to compare different
sets of similar data.

The author would like to thank its tutor for
the bibliography and remarks provided as well as
the developer community of the open-source package
NetworkX for its useful programming tips and work in
maintaining such a powerful tool in open access.
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Abstract

This documents presents the additional information that was not added to the main document but is needed
to back up the facts there presented. It contains important information about the procedures followed,
complementary plots, maps and figures as well as statistical methods and algorithms used.

1 Preparing the Data:

The data available was obtained from several txt
files (one per each taxi) in a 4 column format, where
the first and second columns referred to the lati-
tude/longitude positioning of the taxi (in decimal de-
grees), the third to the taxi occupancy (0 for empty, 1
for full) and the last one showed the UNIX time since
epoch.

Our definition of trip includes the group of suc-
cessive data rows between a change on the taxi occu-
pancy parameter (from empty to full or from full to
empty). The time spent in each trip was computed
from direct sum of the block of values contained in
each occupancy (referred to the original starting time
of the movement)1. Accounting for the distance, we
used the python module geopy [1] that uses Vicenty’s
formulae to compute the geodesical distance2 between
two geodesical points with an accuracy of about 0.05%
[2] and iterated for all the values in each trip-block.
The metric used was euclidean due to the fact that
the frequency of the data was high enough to avoid
considering the use of other metrics such as the Man-
hattan (also called TaxiCab) metrics3 and the ellipsoid
used to do the conversion was the standard WGS-84
(as supplied in the data).

Finally, to avoid non-consistent taxis, we excluded
4 taxis with a low level of performed trips n (n <
nmax = 40) or with a high level of zero-length per-
centage trips (in time or space)4 0.1 ≤ ν ≤ 0.9. The
overall data accounted 464216 (464006) empty (full)

1Please note that the data available is gathered while taxis
are on duty, and hence off-working times are not counted. This
fact is not mentioned with the information provided with the
data, but taking a look at the time intervals between trips one
sees that just a very small minority are longer than 6 hours,
which wouldn’t be the case otherwise.

2Straight distance over the ellipsoid.
3As performed in [3] using the same dataset.
4I. e. number of 0 length trips over total, ν ≡ n0

n
.

Empty Full Total
Trips 872± 285 872± 285 1744± 571
νt 0.14± 0.05% 0.02± 0.02 0.08± 0.03
νr 0.14± 0.05% 0.02± 0.02 0.08± 0.03

Table 1: Mean values and standard derivation of num-
ber of trips and zero-length percentages. We observe
their values are equal within the error observed.

trips from a total of 11257922 GPS updates.

2 Statistical methods

Some comments are in order to account for the
statistical features used. Regarding the binning of the
data, all the cumulatives have been computed with-
out binning and directly sorting the data (taking into
account repeated results), while the histograms have
been produced either with a normal binning or log-
arithmic in the case of strongly skewed distributions
(presence of fat tails) and this circumstance is always
stated on the text. The number of bins used is nor-
mally chosen with a thumb rule or via trial and error
considering the value that smoothes the noise while
capturing the main details of the distributions (but
never taking bins that imply less than 20 data values
on average). Please note all the tools used in such anal-
ysis have been the python standard scipy and numpy

modules [4].
As for the fitting of the power laws, all fits (un-

less otherwise stated) have been performed using max-
imum likelihood methods described in [5] with the
python package plfit [6].

Finally, all the mean values presented in the text
are normally accompanied by an error equal to the
standard derivation of the sample obtained from the
second moment of the distribution (whenever its dis-



∆rmin,∆tmin n(> ∆rmin,∆tmin) < αr, t > L
∆te 3641 1409 3.11± 0.05 -12575.9
∆tf 884 121705 2.030± 0.003 −1.06× 106

∆re 24643.3 13093 3.35± 0.02 -139820
∆rf 251444 107 2.7± 0.2 -1445.4

Table 2: Fit details of the overall distributions of time
and distances.

tribution is smooth enough5) and the same holds for
the presence of errorbars in the figures.

2.1 Total time and distance distribu-
tion fits

In table 1 we show the details of the fit of the total
accumulated data together with the associated error
and Likelihood measurement6. The only tail with a
likely pure power law behavior is the one correspond-
ing to full times and possibly the empty distances tail,
while the two others resemble more a sort of logbrow-
nian distribution. Anyhow, the number of decades is
not consistent enough to say anything further than the
fact that the tails are fat.

2.2 Time and distance individual dis-
tributions

In our hope to observe some differences among the
different taxis, we made a preliminary step by trying
to fit the tails of each of the distributions by a power
law and we present the results in figure 1. Please note
that those fits are just orientative and although some
differences are observed among exponents, we see that
most of the distributions seem to have similar values
for the exponents using a consistent number of data
for the fits (as seen in the inset figure). The tails start
in a minimum range of ∆rmin,∆tmin ∼ 500 m,s up to
∆rmin∆tmin ∼ 4000 m,s for the shorter tails of dis-
tances (times). We observe as well that for the times
those distributions are much more flattened, fact that
indicates more dispersion (heterogeneity of the tails)
and could explain the dispersion observed in the dif-
ferences on velocity efficiency seen in §2.3.

To further explore differences between taxis, in fig-
ure 2 we show the pdf figures of all the taxis for both
distances and times. We observe several interesting
features, we observe dispersion more pronounced in
the case of the times and an initial noisy part (which
is not interesting since this is not the main usage of
taxis). We also see two bumped zones, the initial one
whose end marks the typical distance (time) of usage
of a taxi in accordance with the results found in the
main article and a second one that in the case of dis-
tances is most probably explained by the presence of
the airport at an important distance of the city, that

5Which means with a concentrated enough gaussian form so
that the second moment has any statistical sense as error.

6For details see [5].
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Figure 1: Distribution of fitted exponents for each taxi.

acts as a hub (as we will see further on). Although
a scaling relation seemed feasible, a procedure based
in the ideas presented in [7] with a parameter rg

7 was
tried to no satisfactory result.

2.3 Taxi Efficiency in movement and
time

We present in figure 3 the distributions from which
the mean and standard deviation of taxi efficiency pa-
rameters presented in the main document have been
derived, which support the hypothesis that mostly all
the taxi drivers obtain similar productivity levels.

2.4 Correlation and Pearson p-values
for long trips

To check our hypothesis about correlation in long
trips, an analysis of the extreme statistics of the data
ensemble was performed and the maximum ∆r and ∆t
range values for each taxi were gathered and counted
as shown in figure 4. We observe a new hint about the
behavior of the taxis, while their number of long trips
seem to be quite similar, the waiting times / traveling
times are radically different, fact that emerges from
the definition of trip used (the resting on duty times
are included in empty trips) together with the fact
that while full, the taxis do have a preferred destina-
tion and hence move quicker. The second plot in figure
4 show the correlation pearson value and their accu-
racy presented as its p-value for successive occupied-
unoccupied trip pairs. We observe big differences in
the correlation behavior for long/short trips, fact that
confirms the strong influence that long trips perform
on the immediate search strategy for the drivers. The
computation of the mean correlation values has been
performed counting successive full/empty trips and ex-
cluding the ones with a significance level lesser than
5% for the full trips (no trimming for empty trips)8.

7See Statistical Analysis in the main document.
8See the p-value distributions, that are concentrated for the

full trips but not in the other case. It needs to be noted that
we do not expect extremely significant correlation values, as
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Figure 2: (a) Total histograms (normalized) with log-
arithmic binning of the distributions. We observe sim-
ilar shapes and the usual bumped zone mentioned in
the text, (b) CCDF from the raw data.
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Figure 4: (a) Distribution of maximum values for
empty/full trips for ∆r and ∆t. We observe that
while the distance distribution do overlap it is not
the case for the time distributions, (b) Distributions
of pearson correlation coefficients computed for long
(∆r > 20km) and short (∆r < 5 km) trips and asso-
ciated p-values (inset). We observe a pronounced dif-
ference between both, long trip correlation coefficients
are more spread and have smaller p-values (more con-
fidence) skewed to values at the right of the graph.
Please note that a faint number of small outsiders with
negative values have been omitted from the plot.



Figure 5: Map showing the locations of the mean po-
sition of the taxis when full (upper figure) and empty
(lower). We see they group in the center of the city
and that the spread is greater in the case of empty
situation.

2.5 Gyration radius and center of
masses

To end up the individual taxi data analysis, the
center of masses of each taxi was computed and their
mean squared spread over this value (rgyr) (see main
text). A Google Map created using the python geopy

and simpleklm [8] is shown on figure 5 where the CM’s
are placed on the map, as expected, they all concen-
trate in the city center9.

such values compute the likelihood of a linear relation between
variables, and our goal is to check for any linear relationship in
terms of orders of magnitude (i. e., after a long trip, taxi drivers
will return to the city but not to the same exact location). In
any case, for the long trips we roughly excluded 40% of the data.

9In fact, they concentrate in the area formed by the three
most visited locations (Union Square, Embarcadero and SFK
airport) as we shall see on our complex network approach.
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Figure 6: Example of taxi number 10’s first 400 tra-
jectories on the UTM 10S plane referred to our cus-
tom defined origin as directly translated from lati-
tude/longitude positions.

3 Building the net

In this part of the appendix we explain in detail
the procedure followed to construct the net and the
calculations that support the choices made (and ex-
plained in the main document) for it to be directed
and weighted.

We have used the python module NetworkX [9] to
build the net and perform the numerical operations
on it, as for what representation concerns, we used the
open source Gephi suite [10]. Finally, for the coordi-
nate transformation we used the module pyproj [11].

First of all the author wanted to refer the data to
a bidimensional map of cartesian coordinates, to do so
the Universal Transverse Mercator coordinate system
(UTM) was used centered in zone map 10S (where the
area of San Francisco is included). A convenient value
of (x01, x

0
2) = (543442, 4173200) m was chosen as the

origin of a grid of variable size (after some trials we
have set the gridsize as squares of ∆x1×∆x2 = 100×
100 m). Then a simple algorithm10 was performed on
both the empty and full data sets.

1. We create a both dictionaries
nodelist,edgelist11 and set nodecount = 0.

2. For every trip (group of pairs of lati-
tude/longitude data) we translate the start-
ing and ending positions to UTM (x1, x2)
coordinates.

3. We compute ni ∈ Z|ni ≤ xi/∆xi < ni + 1 for
i = 1, 2 for initial (in) and ending points (end).

4. If (n1, n2) /∈ nodelist : nodecount+ = 1

and nodelist[nodecount] = (n1, n2) and

10Please note that python is a high level programming lan-
guage and hence it is better to perform calculations in a Matlab
way rather than performing many loops for efficiency reasons.

11An array of pairs key:value where one can access the value

anytime by querying A[key]. For more details see12.



edgeinitial = nodecountin , edgefinal =
nodecountend. If edgefinal 6= edgefinal,

• If (edgeinitial, edgefinal) /∈ edgelist:
edgelist[edgeinitial, edgefinal] = 1.

• Else: edgelist[edgeinitial, edgefinal]+ =
1.

5. Else: continue to next trip.

6. Until all trips have been computed. Then, we add
directly the nodes in the dictionary to the net,
adding as node attributes the latitude and lon-
gitude of each point obtained via inverse trans-
formation of xi = ni × ∆xi + x0i from UTM to
geodesical coordinates.

7. Finally we add the edges from the remaining dic-
tionary, where their weight represents the number
of trips between locations (non normalized).

Note that we create a net where isolated nodes may
occur. We do not include it on the description of
the algorithm but we computed and alternative dic-
tionary with the selfloops. Also note that the algo-
rithm needed to be modified to compute the second
net, as we wanted the numeration of nodes to remain
unchanged (in order to compare net nodes for both
empty/full situations).

3.1 Isolated and selfloops

We trimmed the nets from isolates and selfloops for
various reasons. First of all due to the fact that self-
loops imply trajectories inside an area of 1 ha (short
trips) which are not very representative of taxi us-
age, whereas isolated nodes are points of the grid from
which no trips either leave (ko = 0) or enter (ki = 0),
facts caused by either the discrete nature of the grid
used or probably by bad GPS data. Secondly because
many algorithms may fail used on an un-filtered net
such as the one we are treating. An overview on the
data of such points is found on table 3. Focusing a

Niso Overlapiso Es Overlaps < ωij >
Empty 217 4.6% 5143 63% 15± 41

Full 160 6.3% 4119 78% 3± 7

Table 3: Isolates Niso and selfloops Es information.
Note that Overlap is defined as the percentage of iso-
lated nodes(selfloops) appearing on both nets at the
same time from the total of isolates Ni(selfloops Es).
The last column is the average weight of selfloops and
its associated standard derivation values indicate a fat
tail behavior (as seen in figure 3).

little bit further on the selfloops, we observe that the
distribution of their weights is fat tailed as can be seen
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Figure 7: CCDF (axis at right) and distribution of
trips (weights, axis at left side) in selfloops.

in figure 7. Finally, a map12 of the overlapping isolates
in both empty and full maps was computed but no sig-
nificant relation between such points was detected13.

3.2 Weighted and directed net justifi-
cation

We choose to represent our nets in a weighted and
directed way. The reasons to use a weighted net are
similar to those presented in for example13, since ac-
counting the effect or load travelling through the dif-
ferent edges can provide more accurate topological as
well as dynamical information about the network at
study. As for the reasons to represent the net in a
directed way (thus increasing the level of difficulty of
our study), since we deal with directed trips, it seems
logical to adopt these strategy. Moreover, the statis-
tics presented in table 4 show that since the net is
not in any case symmetric, we are forced to adopt this
approach.

< |ωij − ωji| > Esym ρsym ρ0 R
Empty 1.06± 5.1 23454 16% 45% 0.24

Full 1.03± 2.07 30701 17% 50% 0.26

Table 4: Mean difference of weight between edges that
exist in both senses. Esym is the number of pairs of
edges that connect 2 nodes both ways and ρsym ≡
2Esym

Etotal
is the percentage over total number of nodes

and ρ0 ≡ E(<ωij−ωji=0>)
Esym

. R is the reciprocity of the

net, see §4.1.

12One can consult via internet all the maps mentioned, to
obtain the addresses refer to §6.

13In fact the top node concentrating most of the transit is the
base of the taxi company from which the data was taken. Hence
it seems correct to exclude those data from the study.



4 Studying the Net

4.1 General features

The general features presented in the table on the
main document are defined as follows14,

• Number of edges is E, number of nodes is N .

• Density: ρ ≡ E
N(N−1)

• Degree in (out) ki,o: Number of edges entering
(leaving) a node.

• Strength in (out) si,o : Total sum of weights of
edges entering (leaving) a node15. Also referred
as weighted in (out) degree.

souti =

N∑
j=1

ωijAij sinj =

N∑
i

ωijAij

• Degree and strength assortativity : Measures the
similarity of connections in the graph with respect
to the node degree or strength. It is the pearson
coefficient of the different degree (strength) pairs
of nodes at each end of the edges of the net, ap-
plied to strengths by the author from the defini-
tion in [15] and [16] for pairs In− In, Out−Out,
In − Out and Out − In. For further details see
§4.3. The original formula corresponds to,

r(α, β) =

E−1
∑
i

[(jαi − < jα >)(kαi − < kα >)]

σασβ
.

Where the parameters α, β are the degree or
strength (in or out) of the (source,destination)
node pairs j, k.

• Betweenness centrality: Relative number of short-
est paths that pass trough a node, thus giving an
idea of the importance in traffic handling of such
node. It is defined for node v ∈ V as,

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
,

and the number of shortest path for the weighted
net is computed using a modified Dijkstra’s dis-
tance algorithm as in [17]. Please note that us-
ing this algorithm the shortest path between two
nodes is the one with the lowest sum of weights
in the edges used to reach destination.

• Reciprocity R: Gives a measure of the similarity
of edges connecting nodes in the two senses in a
weighted manner. Adapted from [14] introducing
weights by author. A value towards 1 indicates

14The usual concepts of graph theory have been mainly ex-
tracted from [14].

15All the weighted quantities referred here are adapted from
the undirected weighted versions in [13]

S1
w ρ1w S2

w ρ2w
Empty 17213 98.64% 4 0.023%

Full 17189 98.23% 3 0.017%

S1
s ρ1s S2

s ρ2s
Empty 7724 44.23% 1 0.005%

Full 7738 44.18% 2 0.011%

Table 5: Size of first and second biggest strongly and
weakly connected components. We observe that the
graph are well above the phase transition occurring in
such nets [15] on their undirected versions.

high (weighted) reciprocity, and the opposite to-
wards 0.

R ≡
∑√

ωijωjiAijAji∑
Aijωij

.

• Size of weakly/strongly connected components
Siw,s: The i−th weakly (strongly) connected com-
ponent is the i − th biggest connected subgraph
of nodes (by undirected edges for the weakly com-
ponent, by directed edges for the strongly one) in
the net, and ρiw,s ≡= Siw,s/N its relative size. It is
computed using the algorithm proposed in [18] for
directed graphs. In table 5 we present the values
obtained.

• Average Neighbor degree/strength: Mean degree
of neighboring nodes for unweighted nets [19].

knn,i ≡

N∑
j=1

aijkj

kj
snn,i ≡

N∑
j=1

aijsj

kj
.

• Average Weighted In (Out) Neighbor de-
gree/strength: Average number of degree for the
neighbors of a node weighted by their out strength
(relative preference of out-going connections).

kwnn,i ≡
1

si

N∑
j=1

aijωijkj .

Can be computed for the pairs < xwnn, > (x) :
(in−in), (out−out), (in−out), (out−in) x = k, s
producing different information about assortativ-
ity of the network. Partially adapted for directed
networks from [13].

We present on figure 8 the distribution of weights
for both networks as well as the histogram (pdf) for the
strengths and degrees of the net. Note that whereas
these distributions seem to follow a power law, the
distributions shown of degree and strength are very
influenced by finite size effects or directly seem to be
logbrownian shaped16, this is why we do not present
the results of the fits. The distribution of betweenness
is also shown.

16In their CCDF plots shown in the main document.
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Figure 8: (a) Probability distribution (non normal-
ized) for strength and degree (inset) for both nets. (b)
Probability distribution (non normalized) and CCDF
for the weights in both nets. The straight lines are fits
to power law behavior with exponents αe = 2.125 ±
0.005 and αf = 2.660 ± 0.003. (c) Probability dis-
tribution (with logarithmic binning) and CCDF for
weighted betweenness in both networks. We observe
that the most central hubs accumulate up to a 2% of
the traffic.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

<
ω

ij>

<s
out

is
in

j>

Mean weight as a function of out-starting and in-ending strenght and average over strenght

Empty Full

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

s
o
is

i
j

Figure 9: Mean weight of edges as product of starting
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In Degree
High Taxi Stop, Driver resting area Hot Spot (airport, train station...)
Low Low customer density spot Particular location (house, work)

Out Degree
High Driver resting area, Airport departures terminal Hot Spot
Low Hot spot, Scattered Location, Taxi Stop Particular location

Table 6: Examples of meaning of high and low degree
spots.

4.2 Studying Correlations

To further study the correlations present in the
network between weights and connections, we have
computed the mean strength as a function of the be-
tweenness of the nodes (showed in the main docu-
ment), as well as the mean weight of edges as a func-
tion of the product of its starting and ending nodes’
strength (figure 9) and degree (in main document). We
confirm a roughly constant part accounting for lack of
correlation for low values of k, s that is lost in the form
of a potential function towards the values correspond-
ing to most connected nodes.

We have repeated all the calculations shown in the
main document for the degree of the nodes to see if
there where any differences with the strength versions
of the computation. Besides an increase in the noise,
we did not see any differences, and this fact backs up
our choice of applying a mean field approximation to
strengths rather than degrees explained in the main
document.

4.3 Assortativity

To compute the pearson coefficient for assortativ-
ity for the attributes mentioned (in/out degree and
strength) we applied a usual r definition on a bidimen-
sional array containing for each node’s first attribute
αn its neighbors second attribute βnn. We roughly
present in figure 10 the meaning of each attribute pair
assortativity measure used in the main document.

In table 6 we introduce examples of the meaning
of high and low connected nodes could be for further
clarification.

In table 7 we show the complete set of r values for
both networks corresponding to k and s and in figure



Figure 10: The four degree-degree correlations in di-
rected networks. The fuzzy edges indicate that nodes
can have any number of edges of this type, as they do
not enter into the specific correlation. For each cor-
relation we show an example typical of assortative or
disassortative networks. Taken from [16].

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

r i

G
ia

n
t 

c
o
m

p
o
n

e
n

t 
s
iz

e
 S

1
 (

%
)

Percentage of excluded nodes over total size ne

Evolution of pearson coefficients and giant component size with top nodes removal (empty)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.2  0.4  0.6  0.8  1

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

r i

G
ia

n
t 
c
o
m

p
o
n
e

n
t 
s
iz

e
 S

1
 (

%
)

Percentage of excluded nodes over total size ne

Evolution of pearson coefficients and giant component size with top nodes removal (full)

Out-In In-Out Out-Out In-In S
1
w(ne) S

1
s(ne)

Figure 11: Evolution of the size (weakly and strongly
connected) biggest component S1 and r values with
successive removal of top in and out degree nodes.

11 we show the same version of the plot appearing in
the main document for the evolution of raw degrees
of the net as we exclude top nodes. We observe very
similar patterns as the ones explained there. To do so,
we used a simple algorithm:

1. Copy original net.

2. Obtain top nodes of the network for both in and
out versions of desired attribute (strength or de-
gree). In case of two nodes having the same rank,
we place them randomly.

3. Recursively extract all the nodes in the list,
grouped by their rank (if there are two top number
5 nodes, we extract them all at the same time).

4. Compute reduced r coefficients as defined in [20]
for the nodes in the new net, but using the at-
tributes from the old one. Please note that we do
not recompute the attributes of the net (strength
and degree), we simply eliminate the contribution
of the top ones.

rin−in rout−out rout−in rin−out < r >
Empty s -0.032847 0.017782 -0.054016 0.045915 −0.018± 0.043
Empty k -0.039805 0.031489 -0.067035 0.070131 0.02± 0.05

Full s -0.079386 -0.093057 -0.116725 -0.057891 −0.10± 0.03
Full k -0.092305 -0.110126 -0.138987 -0.066179 −0.090± 0.018

Table 7: Pearson r coefficient for strength and degree
in both networks.
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Figure 12: (a,b) Mean neighbor weighed and un-
weighted strength for both nets. We observe the very
same shape as in the plots presented in the main doc-
ument.



Finally we show the figures 13 representing the cal-
culations performed when evaluating the assortativity
of the net for both k and s with the complete net and
the trimmed one. In fact we do not observe any differ-
ences in the shapes (which are the important factor of
the qualitatively analysis performed on such graphs).
Moreover, in figure 12 we observe the same shape as
the graph presented with the raw degrees on the main
document, hence confirming the general interchange-
ability of s and k in our study.

5 Plotting the net

We present some additional representations of
both the full and empty networks not shown in the
main document17.

5.1 Empty Net

a) Giant component of trimmed net with condition for
edges ωij ≥ 5 after a modularity analysis (mod-
ularity of 0.602) [21] representing nodes accord-
ing to their geographical position (shown in main
document). Node size is the incoming strength for
nodes. Number of visible edges E = 6503(2.33%),
nodes N = 1168(6.98%).

b) Radial figure of the previous plot with radial coor-
dinate corresponding to decreasing values of in-
coming degree. We observe the proportionally
studied for s,k.

c) Radial figure of plot a) with radial coordinate rep-
resenting outgoing strength. We observe the over-
all assortative tendency for medium and big sized
nodes (except the case of the airport, biggest dot
that represents the resting area for taxi drivers in
airport). Shown in main document.

5.2 Full Net

d) Plot under the same conditions as performed in
a). Number of nodes N = 1017(5.81%) and edges
E = 5111(1.47%). We observe that the modu-
larity analysis no longer relates to delimited geo-
graphical zones.

e) Image showing the group nodes {g ∈ G|kin(g) <
6 ∩ kout(g) < 6} that contains NG =
11667(66.63%) nodes and EG = 1298(0.38%)
edges. The size of the nodes represents their
betweenness and the color their outgoing degree
(black for 1, pale green for 5). We observe
the almost inexistent tendency of low connected
nodes to link among themselves since despite
these nodes representing over 70% of the net, they

17The author recommends to visualize the attached images
using a computer as their quality is good enough to be zoomed
several times for a convenient exploration by the reader.

just have links that represent a very small part of
the total connections present in the network.

6 Maps

Finally please note that there is additional on-line
material in http://maps.google.com/maps/user?

uid=218221286799316438623&hl=ca&ptab=2, where
the reader may find a collection of Google Maps featur-
ing the positions of different important nodes of both
networks18.

The maps feature the top 25 nodes for each of the
listed attributes to provide better information about
top spots for taxis in San Francisco.

• Degree and strength (in and out).

• Hub and Authority number (computed with the
HITS algorithm) [22].

• Betweenness.

• Isolated nodes.

• Selfloops.

• Center of masses for each taxi.

18Please note that Google disabled some functionality on their
website, and thus we have attached to the present document
the maps in .kml format to be opened with the GoogleEarth
software.
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Figure 13: (a,b) Mean neighbor and strength degree (c,d) Mean weighted neighbor and strength degree, com-
puted for the complete net and the trimmed net removing 0.3% of their top nodes. We observe some changes
on the initial and final ranges of the shapes of the functions, corresponding to the influence of top nodes on
small ones. We also see the more accurate description that the weighted average provides, enhancing the
disassortativity for small nodes and linking tendency among top connected locations.
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Figure 14: Additional images of both nets. See main text for details.
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