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Summary

The concept of data fingerprinting is of paramount importance in the frame-
work of digital content distribution. This project deals with fingerprinting
codes, which are used to prevent dishonest users from redistributing copy-
righted material. After introducing some basic notions of coding and finger-
printing theory, the project is divided in two parts.

In the first part, we present and analyze some of the main existing fin-
gerprinting codes and we also discuss some new constructions. The study is
specifically focused on the estimation of the minimum length of the codes,
given the design parameters of the system: number of users to allocate, max-
imum size of the collusions and probability of identification error. Also, we
present some theoretical results about the new code construction studied.
Finally, we present several simulations, comparing the different codes and
estimating what is the minimum-length code in each region.

The second part of the project is devoted to the study of the properties of
Reed-Solomon codes in the context of fingerprinting. Codes with the trace-
ability (TA) property are of remarkable significance, since they provide an
efficient way to identify traitors. Codes with the identifiable parent property
(IPP) are also capable of identifying traitors, requiring less restrictive condi-
tions than the TA codes at the expense of not having an efficient decoding
algorithm, in the general case. Other codes that have been widely stud-
ied but possess a weaker traitor-tracing capability are the secure frameproof
codes (SFP). It is a well-known result that TA implies IPP and IPP implies
SFP. The converse is in general false. However, it has been conjectured that
for Reed-Solomon codes all three properties are equivalent. In this paper
we investigate this equivalence, and provide a positive answer for families of
Reed-Solomon codes when the number of traitors divide the size of the code
field.

Keywords: Fingerprinting, Traitor Tracing, Identifiable Parent Prop-
erty, Secure Frameproof Property, Simplex Codes, Boneh-Shaw Codes, Tar-
dos Codes, Barg et al. Codes, Reed-Solomon Codes, Algebraic-Geometric
Codes.
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Preface

This project deals with the study of the parameters and properties of fin-
gerprinting codes, and it is specifically focused on the length of the codes.
There are many families of such codes, and in this study we have considered
some of the families which have high relevance in this field. The project is
organized as follows.

In section 2 we introduce the topic of fingerprinting and define some useful
notation related to coding theory, fingerprinting and traceability codes. We
also present some basic and well-known results about fingerprinting codes.

Section 3 is devoted to the analysis of the the proposed binary finger-
printing codes. In this section, we present an analysis of the length of the
Boneh-Shaw codes, some results related to secure frameproof codes and we
propose methods to determine the length of different versions of the Barg
codes. Also, a new family of codes, presented in [2], is studied. We con-
clude this section with a comparative analysis between the different families
of codes.

In section 4 we study the traceability properties of Reed-Solomon codes.In
2001, Staddon et al. [3] raised a question concerning this topic. Essentially,
one can classify codes according to their capacity to identify dishonest users.
Obviously, codes with “weaker” tracing properties are a subset of codes with
“stronger” tracing properties. The question raised in [3] asks wether, for the
case of Reed-Solomon codes, all these properties are equivalent. We give a
positive answer to this question for a large family of Reed-Solomon codes.
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2 1. Preface

1.1 Notation

Here we present a summary of the notation that we use in the report of the
project.

Symbol/acronym Description
D(�∥p) Kullback-Leibler divergence of two binomial distributions,

D(�∥p) = � log2(�/p) + (1− �) log2((1− �)/(1− p)).
Fq The finite field of q elements.
F
∗
q The multiplicative group of Fq.

Fq[x] The ring of univariate polynomials over Fq.
Fq[x]k The ring of univariate polynomials over Fq of degree ≤ k.
a,b, . . . Vectors over a finite field (boldface).
a(i) Cyclic rotation in i coordinates to the right of a ∈ F

n
q .

d(a,b) Hamming distance between the vectors a and b.
w(a) Weight of the codeword a.
wB(a) Weight of the codeword a restricted to the set of coordinates

in B.
D(A,B) Group separation between the sets A and B.
(n,M, d)q-code A code of length n, size M and minimum distance d.
[n, k, d]q-code A linear code of length n, dimension k and minimum dis-

tance d.
� Normalized dimension (rate) of a code: (logq M)/k.
� Normalized minimum distance of a code: n/d.
Co ∘ Ci Concatenation of the outer code Co with the inner code Ci.
Pq(n, k) Polynomial code of length n and dimension k over Fq.
ℛSq(k) Reed-Solomon code of dimension k over Fq.
ℰℛSq(k) Extended Reed-Solomon code of dimension k over Fq.
AGq(n, k, d) Algebraic-geometric code approaching the Tsfasman-

Vlǎduţ-Zink bound, of length n, dimension k and minimum
distance d over Fq.

Sq(k) Simplex code of dimension k over Fq.
ℱS(no, ki) Binary polynomial simplex concatenated code defined in [4]

(Fernández-Soriano) with outer code length no and inner
dimension ki.

ℬS(M, �) Binary M-secure Boneh-Shaw code with error �, of size M .
ℬS(M, c, �) Binary c-secure Boneh-Shaw code with error �, of size M .
ℬS★(M, c, �) Binary c-secure concatenated Boneh-Shaw code with error

�.
ℬ(M, c, �) Binary c-secure Barg code with error �, of size M .
ℬRS(M, c, �) Barg code with outer Reed-Solomon code.
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Symbol/acronym Description
ℬRS(M, c, �) Barg code with outer algebraic-geometric code.
Cℱ(M, c, �) Binary c-secure code defined in [2] (Cotrina-Fernández) with

error �, of size M .
CℱRS(M, c, �) Code defined in [2] with outer Reed-Solomon code.
CℱAG(M, c, �) Code defined in [2] with outer algebraic-geometric code.
T (M, c, �) Binary c-secure Tardos code with error �, of size M .
SFP Secure frameproof property.
IPP Identifiable parent property.
TA Traceability property.
MDS Maximum distance separable (code).
TVZ Tsfasman-Vlǎduţ-Zink (bound).
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Preliminaries

Fingerprinting and watermarking are methods to prevent copyright violations
and illegal content redistribution, respectively. Watermarking has been an
effective tool for centuries. For example, in the French Decorations scandal
of 1887, a paper watermark established that two political letters supposedly
written in 1884 were actually written on a paper manufactured in 1885.

Digital watermarking is the process of embedding copyright information
(watermark) into a digital content which is going to be distributed to a
set of users. The content may be audio, pictures or video, for instance.
If the content is copied, then the watermark is also carried in the copy.
Therefore, the legitimate author has a tool to fight against false claims of
authorship. The watermarking process should ideally meet the two following
requirements:

∙ The watermark must be either imperceptible or, if it is not, it must be
non-intrusive.

∙ It must be a robust process, i.e. the watermark must not be easily
made unreadable or deleted.

We shall assume unless otherwise stated that we posses an ideal watermarking
algorithm.

Fingerprinting is also an old cryptographic technique. Several hundred
years ago, distributors of logarithm tables used to introduce tiny errors in
the insignificant digits of log x for few random values of x. Had an owner of
a logarithm table sold illegal copies of it, the errors in the table would have
allowed to identify who was that owner.

In the framework of digital content distribution, illegal redistribution is
a major concern. Therefore, the digital fingerprinting technique appears as
a method to discourage it. In this case, the distributor embeds in the digi-
tal content, using a watermarking algorithm, an unique piece of information
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6 2. Preliminaries

(fingerprint) for each user. If the content is illegally redistributed, the fin-
gerprint can be extracted and identify the dishonest user. Again, the users
may try to damage the fingerprint before they redistribute the content. This,
however, should not cause much worry to the distributor if the watermarking
process is robust.

Nevertheless, the fingerprinting scenario is prone to another kind of attack
known as collusion attack. As the copies of the content owned by the users
contain different fingerprints they are, essentially, different objects. Several
users (traitors) may compare their copies and find the locations where they
differ. This simple operation reveals where part of the marks are located.
Traitors may generate a new copy of the content where these locations are
deleted or modified in order not to being caught. This has an additional
and more severe problem: the pirate copy generated by the traitors may
be very similar or coincide with that of an innocent user. Note that the
traitors are unable to detect fingerprint positions where their copies agree.
The distributor, with that amount of information, would like to be able
to identify at least one of the traitors. Therefore, and assuming that we
have robust watermark algorithms, we are interested in the design of sets of
fingerprints (fingerprinting codes) who are resistant against collusion attacks.

2.1 Coding theory definitions

In this section we present the basic elements of coding theory and finger-
printing that we will be using throughout the project. This, in turn, allow
us to introduce some notation and conventions.

Given a power of a prime number, q, we denote the finite field of q elements
by Fq. For any integer n ≥ 1 we denote the elements of Fn

q in boldface,
e.g. a = (a1, . . . , an) ∈ F

n
q . As we have just shown, ai represents the ith

coordinate of the vector a. For any subset A = {a1, a2, . . . } ⊆ F
n
q , we denote

by u(A) and m(A) the sets of the unmatching and matching coordinates of
the elements of A:

u(A) = {i : aj,i ∕= ak,i for some aj , ak ∈ A}
m(A) = {i : aj,i = ak,i for all aj , ak ∈ A}.

The Hamming distance (or simply, the distance) between a,b ∈ F
n
q is defined

as d(a,b) = ∣ u({a,b})∣, and the similitude between a and b as s(a,b) =
∣m({a,b})∣. It is usual to generalize these two concepts for nonempty subsets
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of vectors A,B ⊆ F
n
q as

d(A,B) = min{d(a,b) : a ∈ A, b ∈ B}
s(A,B) = max{s(a,b) : a ∈ A, b ∈ B}.

For the analysis of fingerprinting codes it will also be useful to define the
following concept related to the distance between codewords.

Definition 2.1.1. Let A,B be two nonempty subsets of Fn
q , A = {a1, a2, . . . },

B = {b1,b2, . . . }. We define the group separation between A and B,
D(A,B), as the number of coordinates where the elements of A and B have
disjoint elements of Fq, that is

D(A,B) = ∣U(A,B)∣,

where U(A,B) = {i : {a1,i, a2,i, . . . } ∩ {b1,i, b2,i, . . . } = ∅} is the group un-
matching set. The coordinates in U(A,B) are called separated coordinates,
whereas the remaining are called nonseparated coordinates.

One can easily verify that the relations d(A,B) + s(A,B) = n and
d(A,B) ≥ D(A,B) always hold. Whenever ∣A∣ = ∣B∣ = 1 the last rela-
tion is satisfied with equality.

An (n,M, d)q-block code C is a nonempty subset of Fn
q of size M , where

d = min{d(a,b) : a,b ∈ C, a ∕= b} is called the minimum distance of the
code. We will only deal with block codes, therefore, the adjective block will
be omitted henceforth. We refer to the elements of C as codewords. If C is a
linear k-dimensional vector space over Fq we say that C is an [n, k, d]q-code.

Given two integers c1 and c2, we denote by Dc1,c2 the smallest of the
D(A,B) between disjoint sets A,B of an (n,M, d)q-code with ∣A∣ = c1 and
∣B∣ = c2. Clearly, D1,1 is the minimum distance of the code, d. The value
Dc1,c2 is called the (c1, c2)-group separation of the code. For A and B disjoint,
we will say that they form a (c1, c2)-nonseparated configuration whenever
they satisfy D(A,B) = 0.

Finally, we define the concept of code concatenation, which will be ex-
ploded throughout the project.

Definition 2.1.2. Given an (no,M, do)q-code Co (called outer code) and an
(ni, q, di)qi-code Ci (called inner code) we denote by Co∘Ci the (noni,M, dodi)qi-
code C constructed as

C = {(�1(u1)∥ ⋅ ⋅ ⋅ ∥�no
(uno

)) : u = (u1, . . . , uno
) ∈ Co},

where �j is a bijective mapping �j : Fq → Ci and ∥ denotes the concatenation
of codewords. We say that C is the concatenated code of Co and Ci.
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In other words, to construct a codeword of C = Co ∘ Ci, we choose a
codeword of Co, u, and for every coordinate j we replace uj by the value
�j(uj). The corresponding codeword of C is the concatenation of the �j(uj)’s.
It is easy to see that C has length noni, size M and minimum distance dodi.
If Co and Ci are [no, ko, do]q and [ni, ki, di]qi-codes respectively, the code C has
dimension k = koki.

2.2 Fingerprinting and traceable codes

Assume that a distributor is applying the fingerprinting technique, i.e. the
copies of some content are being watermarked with a fingerprinting code C,
and each fingerprint ui ∈ C is assigned to a user. We will make no distinction
between users and their corresponding fingerprints. Considering that a set
of c traitors C = {t1, . . . , tc} collude and construct a pirate object, we are
interested in the properties of the pirate fingerprint x produced by them.

Definition 2.2.1. Given an (n,M, d)q-fingerprinting code C, the envelope
of C ⊆ C, denoted by E(C), is the set of pirate fingerprints that can be
produced by the codewords in C in a collusion attack. We denote by Ec(C)
the set of all the pirate fingerprints that can be generated by coalitions of
size at most c:

Ec(C) =
∪

C⊆C
∣C∣≤c

E(C).

Obviously, each x ∈ E(C) must be equal to each ti ∈ C in the set of
matching coordinates, m(C). This is known as the marking assumption. For
the coordinates in u(C), several models can be defined:

∙ The narrow-sense envelope model: the symbol at each position of the
pirate fingerprint can only be one of the symbols that the traitors have
at that position:

E(C) = {x ∈ F
n
q : xj ∈ {t1,j , . . . , tc,j}}.

∙ The wide-sense envelope model: the traitors can put an arbitrary ele-
ment of Fq in the coordinates in u(C):

E(C) = {x ∈ F
n
q : xj = t1,j for j ∈ m(C)}.

∙ The expanded narrow-sense envelope model: the traitors can either put
one of the symbols that the traitors have at that position or make it
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unreadable. This is denoted by ∗, an erasure symbol:

E(C) = {x ∈ (Fq ∪ {∗})n : xj = t1,j for j ∈ m(C) and

xj ∈ {∗, t1,j, . . . , tc,j} for j ∈ u(C)}.

∙ The expanded wide-sense envelope model: the traitors can put an ar-
bitrary element of Fq ∪ {∗} in the coordinates in u(C):

E(C) = {x ∈ (Fq ∪ {∗})n : xj = t1,j for j ∈ m(C)}.

Definition 2.2.2. Given a fingerprinting code C, a �-strategy for a set of
traitors, C ⊆ C, is a randomized or deterministic algorithm that takes as
input C and outputs a pirate codeword x = �(C) ∈ E(C)

The presented scenarios are discussed in more detail in [5]. Intuitively,
the wide-sense envelopes lead to more sophisticated �-strategies than the
narrow-sense envelopes. The same is valid for non-expanded versus expanded
envelopes. An important remark is that, as we are interested in the case of
digital content distribution, we are interested in fingerprinting codes over F2.
In this case the four models are equivalent in terms of traitor tracing. What
is more, for binary codes it is detrimental for the traitors to use ∗, since
it gives the distributor more information that merely inserting 0 or 1 in a
detectable position.

Definition 2.2.3. Consider the narrow-sense envelope model. Then, an
(n,M, d)q-fingerprinting code C may have the following properties:

∙ The code C has the (c1, c2)-secure frameproof property (SFP) if its
group separation satisfies Dc1,c2 > 0. In other words, for any C1, C2 ⊆ C
with ∣C1∣ = c1 and C2 = c2 it holds that

C1 ∩ C2 = ∅ ⇒ E(C1) ∩ E(C2) = ∅.

∙ The code C has the c-identifiable parent property (IPP) if for any x ∈
F
n
q either x ∕∈ Ec(C) or the intersection of all the coalitions capable of

generating x is not empty,
∩

C⊆C,∣C∣≤c
x∈E(C)

C ∕= ∅.

∙ The code has the c-traceability (TA) property if for any C ⊆ C with
∣C∣ = c and x ∈ E(C), there exists some t ∈ C such that d(x, t) <
d(x,y), for any y ∈ C ∖ C.
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The ideas under the previous definitions are the following. If a code has
the (1, c)-SFP property,1 then, no coalition of size at most c will be able to
generate the fingerprint of any user. However, they may generate a pirate
codeword x and claim that it was generated by another c-coalition. With an
(c, c)-SFP code [3, 6] they would not be able to accuse a completely disjoint
coalition. Anyways, this does not guarantee that some traitor may be caught.
If the fingerprints belong to a c-IPP code [7, 8] then, one can ensure that, at
least, one traitor will be caught: if a codeword belongs to the intersection of
all the coalitions that can generate a pirate codeword, in particular, it belongs
to the coalition that actually generated it. Regarding c-TA codes [9, 3], they
offer the same level of security than c-IPP codes, with the additional benefit
that some traitor can be identified efficiently, as it is the closest codeword to
x. The following relations are well-known results [3]:

c-TA⇒ c-IPP⇒ (c, c)-SFP. (2.1)

What is more, for any (n,M, d)q-code

d > n(1− 1/c2)⇒ c-TA. (2.2)

Definition 2.2.4. We say that a fingerprinting code C (under any envelope
model), with identification algorithm �, is c-secure with error � if for any set
of traitors C ⊆ C, with ∣C∣ ≤ c, using any �-strategy the probability that
either no traitor is caught or some innocent user is accused is less than �, i.e.

P (�(�(C)) = ∅ ∨ �(�(C)) ∩ C ∖ C ∕= ∅) < �.

Note that c-IPP and c-TA codes can be viewed as c-secure fingerprinting
codes with 0 error.2 One may think that they represent the solution to the
fingerprinting problem. However, these codes have two drawbacks: they are
restricted to the narrow-case scenario and the size of the field limits severely
their collusion-resistant properties.

Lemma 2.2.5 ([3]). For any (n,M, d)q-fingerprinting code with the c-IPP
property c < q.

As we have commented previously, we are mainly interested in the distri-
bution of digital contents, therefore the codes that we use must be binary.
Unfortunately, the previous lemma states that there are not IPP or TA codes
(i.e. zero-error codes) over F2. In the following sections we are devoted to
the study of binary fingerprinting codes with error � > 0. We will show how
concatenated constructions based on TA codes provide interesting tools for
the construction of such codes.

1Codes with the (1, c)-SFP property are usually called c-frameproof (FP) codes.
2Some authors reserve name of fingerprinting codes solely for (binary) c-secure finger-

printing codes with error �. They classify IPP and TA codes as traceable codes.
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Analysis of fingerprinting codes

This part of the project is focused on the study of the main binary finger-
printing code families existing in the literature. Our goal is to determine or
estimate their length given the following design parameters: the number of
users to allocate in the system, M , the maximum size of the collusions, c, and
the allowed identification error probability, �. For some of the codes the value
of the length follows easily from their definition. For the others, we propose
methods to estimate it. Also, an analysis and some results related to a new
family of codes are presented. We conclude this part with the simulation
results showing the regions where the codes have minimum length.

3.1 SFP and simplex codes

SFP codes have been introduced in section 2.2. They have been studied
under the name of separating codes in the context of automata: two systems
which transit simultaneously from state a to a′ and from b to b′ respectively
should be forbidden to pass through a common intermediate state. A state is
described as an n-bit array, and transiting from the initial state to the final
state can only be done through intermediate states by flipping one bit at a
time, where the current and the final states differ.

Recall that with a (c1, c2)-SFP code C, a size-c1 coalition C ⊆ C cannot
create a pirate codeword which incriminates a disjoint subset of, at most, c2
users. We will be mainly interested in SFP codes with c1 = c2 = c. Whenever
c1 ∕= c2 we can obtain a (c, c)-SFP code taking c = min{c1, c2}, provided that
c ≥ 2.

SFP codes are not very attractive in a fingerprinting scenario. Given a
size-c coalition C and a pirate codeword x ⊆ E(C) the only statement that
we can make is that the intersection between sets capable of generating x is

11



12 3. Analysis of fingerprinting codes

nonempty. In other words if C ′ is any size-c coalition capable of generating
x, all we can say with certainty is that it contains one true traitor, which
henceforth implies a high false accusation error probability.

Lemma 3.1.1. A (c, c)-SFP code C has an identification error probability
� < 1− 1/t.

Proof. Assume that the size-c coalition C1 ⊆ C creates the pirate fingerprint
x = �(C1) ⊆ E(C1). Now, we propose the following tracing algorithm �.
Consider all the size-c coalitions Cj ∈ C, j = 1, . . . , m such that x ∈ E(Cj).
Choose a codeword a which belongs to the maximum number of Cj’s (ties are
broken randomly) and accuse a as a pirate. As a belongs to the maximum
number of Cj’s, say i, and because all the Cj must intersect each other, then,
m ≤ i+ (t− 1)(i− 1). Therefore,

P (a ∈ C1) =
i

i+ (t− 1)(i− 1)
>

1

t
,

which implies � < 1− 1/t.

Note that a more accurate approximation of the identification error prob-
ability in lemma 3.1.1 can be improved after knowing the maximum value
of the intersection in the first stage of the proposed decoding method. In [5]
an alternative decoding method is proposed which is somewhat weaker than
this result. There, they construct digital fingerprinting codes based on SFP
codes, where the concatenation of Reed-Solomon and algebraic-geometric
codes strengthen the poor tracing properties of the SFP codes. We will later
discuss such codes.

Besides that, SFP codes present additional drawbacks. Little is known
about how to construct and decode SFP codes, except maybe for the well-
known binary simplex code. What is more, the rate � of binary SFP codes
vanishes dramatically as c increases.

Proposition 3.1.2 ([5]). There exist binary (c1, c2)-SFP codes of size M
and length

n ≤ (log2M + 1)(c1 + c2 − 1)

− log2(1− 2−c1−c2+1)
,

i.e. of rate

� ≥ − log2(1− 2−(c1+c2−1))

c1 + c2 − 1
− 1

M
≃ − log2(1− 2−(c1+c2−1))

c1 + c2 − 1
. (3.1)
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If c1 = c2 = c, for M fixed and c increasing we have that the length of
SFP codes increases as n = Ω(22cc logM). The proof of proposition 3.1.2 is
based on an exhaustive search of random codes of size n and, therefore, the
time complexity for generating such a code is O(2M22cc logM). Algorithm 3.1
improves somewhat the running time of the code generation of a binary SFP
code. In this case, the algorithm performs a search over all the possible pairs
of disjoint subsets, i.e. in

(
M

c1

)(
M − c1

c2

)

subsets. For c1 = c2 = c, the running time of the algorithm is O(M2c) at the
expense of having a length of order Ω(M2c).

Algorithm 3.1 Simple generation of a binary (c1, c2)-SFP code.

Input: Three integers M ≥ 1, c1, c2 ≤M/2.
Output: A binary (c, c)-SFP code C of size M .
k ← ⌈log2M⌉
C ← C, where C ⊆ F

k
2 and ∣C∣ = M .

for all A ⊆ C with ∣A∣ = c1 do

for all B ⊆ C ∖ A with ∣B∣ = c2 do

if D(A,B) = 0 then

for all a ∈ A do

a← a∥(1)
end for

for all x ∈ C ∖ A do

x← x∥(0)
end for

end if

end for

end for

return C

As mentioned before, a notable exception among the SFP codes are the
binary simplex codes. They are defined as follows.

Definition 3.1.3. The simplex code of parameter k over Fq, Sq(k), is the
code which has a generator matrix G constructed as the concatenation of
n = (qk − 1)/(q − 1) columns that are pairwise linearly independent vectors
of Fk

q .
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Example 3.1.4. The simplex code of parameter k = 3 over F3, S3(3), is the
code generated by

G =

⎛

⎝

0 0 0 0 1 1 1 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1 2 2 2
1 0 1 2 0 1 2 0 1 2 0 1 2

⎞

⎠ .

Observe that the n required pairwise linearly independent vectors of Fk
q can

always be found, e.g. by choosing all the non-zero vectors with the leftmost
non-zero coordinate equal to 1.

Proposition 3.1.5. The simplex code Sq(k) satisfies:
∙ It is an [n, k, qk−1]q-code, with n = (qk − 1)/(q − 1).

∙ It meets the Griesmer bound. Therefore it is a linear code with the
lowest possible length n for a given dimension k and distance qk−1.

∙ It is a constant-weight equidistant code.

∙ It is the dual of a Hamming code.

Now let us focus on the traceability properties of binary simplex codes.

Corollary 3.1.6 ([10]). If C ⊆ Fq is (c1, c2)-SFP, then, max{c1, c2} ≤ q.

Corollary 3.1.7 ([10]). All linear, equidistant codes are (2, 2)-SFP.

The two previous corollaries imply that the binary simplex codes are
(2, 2)-SFP, and no better results can be achieved for linear equidistant codes.
Simplex codes present several advantages over generic SFP codes: they are
linear and they need not be stored, there exist polytime decoding algorithms
and, unlike generic (2, 2)-SFP codes, they have a remarkable small iden-
tification error probability. Any 2 colluding users of a simplex code can
not generate a pirate codeword at a distance greater than d/2 [11]. Note
that this radius is one unit greater than the error-correcting capacity of the
code. Therefore, the appropriate decoding algorithm in this case consists
of performing a list-decoding in a d/2 = 2r−2 radius. Using this decoding
algorithm, we have the following result.

Proposition 3.1.8. According to the �-strategy chosen by a set of traitors,
C = {t1, t2} the binary simplex code S2(k), with d = 2k−1, has the following
identification error probability � using a radius-d/2 list-decoding algorithm:

∙ �1-strategy: the pirate fingerprint x is chosen at random from E(C),
then � ≤ 2k−d.
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∙ �2-strategy: x is chosen at random from {xj : xj ∈ E(C) ∧ d(t1,x) =
d(t2,x) = d/2}, then � ≤ 2k/

(
d

d/2

)
.

∙ �3-strategy: x is chosen at random from {xj : xj ∈ E(C) ∧ d(t1,x) =

d(t2,x) = wU(x) = d/2}, where U = u(t1, t2), then � ≤ 2k/
(
d/2
d/4

)
.

The idea of the proof of proposition 3.1.8 is that on a (2, 2)-SFP code C
there are only three possible parent configurations for any x ∈ E(C). Assume
that Ci, i ≥ 1 are subsets of size 2 of C such that x ∈ E(Ci). Then, the Ci’s
must form one of the following configurations:

∙ Star configuration: all the Ci’s intersects in a common element.

∙ Degenerated star configuration: there exists only one Ci.

∙ Triangle configuration: there only exist three Ci such that C1 = {a,b},
C2 = {b, c} and C3 = {c, a}.

One can accuse at least one traitor if the pirate codeword generates a star
or a degenerated star configuration. Therefore � is a bound on the generation
of a triangle configuration. Unfortunately, given any nonzero codewords of
S2(k) it is possible to generate deterministically a triangle configuration. This
invalidates the use of simplex codes for fingerprinting. However, it can still
be used as an inner code in a concatenated construction provided that the
resulting code has highly mixed coordinates. A complete discussion of this
issues can be found in [11].

As the simplex code is just parameterized just by its dimension, given
the design parameters M, c = 2, �, the minimum length of the simplex code,
O(M), can be computed as the length of that code with size and identification
error probability satisfying the requirements. For k = 30 we can allocate
M = 1, 07 ⋅ 109 users and the greatest identification error probability of
proposition 3.1 is � ≃ 0, which are reasonable values.

3.2 Polynomial concatenation of simplex codes

In a paper by M. Fernández and M. Soriano [4] a 2-secure with error �
fingerprinting code was presented. It is a binary linear concatenated code
based on simplex codes and it is determined by two parameters, no and
ki, namely, the size of the outer code and the dimension of the inner code,
respectively. First we need the following definition.
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Definition 3.2.1. A polynomial code over Fq of parameters n ≤ q and k,
Pq(n, k) is defined as

Pq(n, k) = {(f(p1), . . . , f(pn) : f ∈ Fq[x]k−1},
where {p1, . . . , pn} is a size-n set of Fq and Fq[x]k−1 denotes the ring of the
polynomials over Fq of degree at most k − 1.

Assume that � is a primitive element of Fq. When n = q− 1 and pi = �i

for i = 1, . . . , n the code is called Reed-Solomon code, and it is denoted by
ℛSq(k). If n = q and p1 = 0, pi = �i−1 for i = 2, . . . , n the code is called
extended Reed-Solomon code, and it is denoted by ℰℛSq(k).

Proposition 3.2.2. The polynomial code satisfes:

∙ It is linear, of length n and dimension k.

∙ It has minimum distance d = n−k+1 and, hence, it meets the Singleton
bound.

∙ Reed-Solomon codes are cyclic.

Now, we are in position to define the concatenated construction.

Definition 3.2.3. Given two integer values no, ki with 2ki ≤ no, the con-
catenated code1 ℱS(no, ki) over F2 is defined as the concatenation of the
polynomial code P2ki (no, ⌈no/4⌉) and the binary simplex code S2(ki),

ℱS(no, ki) = P(no, ⌈no/4⌉)2ki ∘ S2(ki).
To determine the identification error probability, we need to present be-

fore the decoding algorithm. It is as follows. The outer code used here is
2-TA, because it satisfies (2.2), and therefore the tracing capacity is limited
by the inner code. After decoding the jth subcodeword, we will have a set
of 1, 2 or 3 codewords2 of the simplex code. As a result, and after applying
the inverse mapping �−1

j , we will obtain a subset Sj ⊂ F2ki containing up

to 3 elements. For p = 1, 2, 3, we denote by S(p) the set of the Sj ’s with
∣Sj∣ = p. Obviously ∣S(1)∣ + ∣S(2)∣ + ∣S(3)∣ = no. Next, we construct the
following 2ki × no reliability matrix Π = (�i,j), where

�i,j =

{

1/∣Sj∣ if �i ∈ Sj

0 otherwise.

1Note that when P(no, ⌈no/4⌉) is a Reed-Solomon code, then ℱS(no, ki) is determined
by a single parameter.

2One codeword if the coalition produced a star configuration, two if it produced a
degenerated star and three if it produced a triangle configuration in that subcodword.
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Here �i denotes the ith element of the outer field, according to an arbitrary
preestablished order. The matrix Π is used as the input for the Koetter-Vardy
soft-decision decoding algorithm [12]. This decoding algorithm returns all the
codewords u ∈ P(no, ⌈no/4⌉) that satisfy

⟨Π, [u]⟩
√

⟨Π,Π⟩
≥
√

ko − 1 + o(1),

where ⟨⋅, ⋅⟩ denotes the inner product. For the complete details of the rela-
tions between the Koetter-Vardy decoding algorithm and the tracing algo-
rithm of ℱS(no, ki), see [4, 11].

Because the outer code is 2-TA, observe that:

1. If ∣S(1)∣+∣S(2)∣ > 4(no−do), then, at least one of the traitors is identified
with probability 1.

2. If ∣S(2)∣ > 2(no−do), then, both traitors are identified with probability
1.

3. If ∣S(1)∣ + ∣S(2)∣ <= 4(no − do), then, the only cases of identification
are:

(a) if there exists a j such that there is a Sj = {�1, �2} ∈ S(2) and
there exist exactly 2 codewords u1,u2 ∈ U such that u1,j = �1

and u2,j = �2, output u1,u2 as traitors,

(b) if there exists a j such that there is a Sj = {�} ∈ S(1) and there
exists exactly 1 codeword u ∈ U such that uj = �, output u as a
traitor.

Therefore the tracing capacity of the algorithm is limited by the capacity
of the traitors to generate triangle configurations in the subcodewords of
ℱS(no, ki). Taking this into account, the tracing algorithm can only fail if
∣S(3)∣ ≥ no − 2(no − do).

Given the identification error probability of the inner code, �i, we define
P as

P = P (∣S(3)∣ ≥ no − 2(no − do)) =
no∑

j=no−2(no−do)

(
no

j

)

�ji (1− �i)
no−j.

No codeword will be identified if there is a codeword in the outer code that
matches all the parent positions in S(1)∪S(2). The outer code is a polynomial
code over F2ki , so there are 2ki

(
no

ko−1

)
of such codewords. Since 2ki

(
no

ko−1

)
≤

2kiko, then
� ≤ 2kiko ⋅ P. (3.2)
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The original algorithm, however, can be somewhat improved. Assume
that U is the set of codewords returned by the Koetter-Vardy algorithm.
The idea is that if we can ensure that {a,b} ⊆ U and we apply a process
giving as a result a subset U ′ ⊆ U ensuring that no traitor will be removed,
then if ∣U ′∣ = 2, we can output U ′ as a positive parent set. An important
remark is that the position of the coordinates of every codeword in ℱS(no, ki)
need to be shuffled (and unshuffled before decoding) to prevent systematic
attacks on the simplex code. For a complete discussion of the code, see [4, 11].

Since ℱS(no, ki) depends on two parameters, given the design parameters
M, c = 2, �, one can perform a search over some pairs of parameters and use
the shortest code which satisfies them considering M ≤ 2ki⌈no/4⌉ and (3.2).
For ko = 6 and no = 64 we obtain a code of size M = 1, 0995 ⋅ 1012, length
n = 992 and identification error probability � ≤ 1, 0421 ⋅ 10−66, so it is
expected that one can find the required code for reasonable values of the
design parameters.

3.3 The Boneh-Shaw codes

In [13] a family of binary M-secure with error � codes were introduced by
D. Boneh and J. Shaw. They construct the ℬS(M, d) for M users using a
matrix that has M − 1 column types repeated d times each. The codewords
are then the rows the matrix.

Example 3.3.1. The ℬS(M, d) for M = 8 users is

User 1 u1 = (

B1
︷ ︸︸ ︷

1 ⋅ ⋅ ⋅1
B2

︷ ︸︸ ︷

1 ⋅ ⋅ ⋅1
B3

︷ ︸︸ ︷

1 ⋅ ⋅ ⋅1
B4

︷ ︸︸ ︷

1 ⋅ ⋅ ⋅1
B5

︷ ︸︸ ︷

1 ⋅ ⋅ ⋅1
B6

︷ ︸︸ ︷

1 ⋅ ⋅ ⋅1
B7

︷ ︸︸ ︷

1 ⋅ ⋅ ⋅1)
User 2 u2 = (0 ⋅ ⋅ ⋅0 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1)
User 3 u3 = (0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1)
User 4 u4 = (0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1)
User 5 u5 = (0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1)
User 6 u6 = (0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 1 ⋅ ⋅ ⋅1 1 ⋅ ⋅ ⋅1)
User 7 u7 = (0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 1 ⋅ ⋅ ⋅1)
User 8 u8 = (0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0)

Note that every set of d coordinates, B1, . . .BM−1, contains only one column
type repeated d times.

Proposition 3.3.2 ([13]). The ℬS(M, d) code satisfies that

∙ It is a binary (n,M, d)-code with n = (M − 1)d.

∙ If d ≥ 2M2 log(2M/�) it is anM-secure fingerprinting code with � error.
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The security of the code lies on the uniqueness of the boundaries between
0’s and 1’s for every user. If user i is not guilty, then, even though the rest
of the users collude to generate a pirate codeword x they will not be able
to distinguish between column types i and i − 1. Therefore, x will have
approximately the same distribution of symbols in these the Bi−1 ∪Bi. This
requires, however, that the columns of the codebook are heavily mixed before
insert the fingerprints in the content. Algorithm 3.2 describes the original
tracing algorithm proposed in [13].

Algorithm 3.2 Tracing algorithm for the ℬS(M, d) code.

Input: The ℬS(M, d) code with d ≥ 2M2 log(2M/�) and a pirate codeword
x generated by any coalition of traitors.

Output: A list of traitors capable of generating the codeword x with iden-
tification error probability �, according to proposition 3.3.2.
C ← ∅
if wB1(x) > 0 then

C ← C ∪ {u1}
end if

if wBM−1
(x) < d then

C ← C ∪ {uM}
end if

for all i = 2, . . . ,M − 1 do

Ri = Bi−1 ∪ Bi

k ← wRi
(x)

if wRi
(x) > k

2
−
√

k
2
log 2M

�
then

C ← C ∪ {ui}
end if

end for

return C

However, the ℬS(M, d) code has the drawback that its length grows as
O(M3 log(M/�))), which is not desirable. The cubic growth is due to the
fact that the code is designed to fight against maximal coalition sizes. To
overcome this problem, under the relations pointed in [14], the following
construction is proposed to achieve c-secure codes of logarithmic length, n =
cO(1) logM . The idea is to concatenate codes, using as the inner code Ci the
M-secure code ℬS(Mi, di) and as the outer code Co a random (no,Mo, do)-
code over an alphabet of size Mi. The resulting code ℬS★(no,Mo,Mi, di) has
size M = Mo and length n = nodi(Mi − 1).
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Theorem 3.3.3 ([13]). Given integers Mo, c and � > 0, set the following
values:

∙ Mi = 2c,

∙ no = 2c log(2Mo/�),

∙ di = 2M2
i log(2Mino/�).

Then, the code ℬS★(no,Mo,Mi, di) is a c-secure fingerprinting code with �,
size M = Mo and length n = O(nodiMi),

n = O(c4 log(M/�) log(1/�). (3.3)

An important issue of the ℬS★(no,Mo,Mi, di) code is that for reasonable
values of � the number of codewords is asymptotically exp(O(

√
n)). This can

be seen by taking (3.3) and solving for log �. We have that

log � =
c4 logM ±

√

c8 log2M + 4c4n

2c4
.

As log � < 0, we discard the positive root. Now, taking logM = O(n�) and
substituting it into the previous equation we have that for every value of c

log � = O(n� −
√
n+ n2�).

If we take � < 1/2, then,

log � = O(−
√
n). (3.4)

For � ≥ 1/2 we rewrite (3.3) and, because log �≪ n�, we obtain

n = O(c4(log �− n�) log �) = O(−n� log �).

This implies that log � = Ω(−n1−�). Combining this with (3.4) we have that

log � = −Ω(min{√n, n1−�}).

In other words, � cannot decrease faster than exp(−Ω(√n)), so we take � =
1/2 and henceforth M = exp(O(

√
n)).

Another alternative based on the Boneh-Shaw codes focused in reducing
the size of the fingerprinting code is that presented in [15]. There, a new
analysis of the ℬS(M, d) code is presented, which leads to the following
result.
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Algorithm 3.3 Tracing algorithm for the modified ℬS(M, d) code.

Input: The ℬS(M, d) code with d ≥ 8(c+
√
c+ 1)2 log(4M/�) and a pirate

codeword x generated by any coalition of traitors of size at most c.
Output: A list of traitors capable of generating the codeword x with iden-
tification error probability �, according to theorem 3.3.4.
C ← ∅
if wB1(x) > 0 then

C ← C ∪ {u1}
end if

if wBM−1
(x) < d then

C ← C ∪ {uM}
end if

�←
√

2d log
(
4M
�

)

for all i = 2, . . . ,M − 1 do

if wRi
(x)− wRi−1

(x) > 2� then

C ← C ∪ {ui}
end if

end for

return C

Theorem 3.3.4 ([15]). The ℬS(M, d) code with

d ≥ 8(c+
√
c+ 1)2 log(4M/�)

that is, of length O(Mc2 log(M/�)), is a binary c-secure fingerprinting code
with error �.

Applying similar decoding rules as the ones used in [13], Algorithm 3.3
performs the decoding of the redesigned code.

Given the design parametersM, c and �, we denote by ℬS(M, �), ℬS∗(M, c, �),
ℬS(M, c, �) the c-secure with error � version of the Boneh-Shaw codes pre-
sented in this section, with lengths described in proposition 3.3.2, theorem
3.3.3 and theorem 3.3.4, respectively. Note that for the first code, c = M .

3.4 The Barg codes

In [5] A. Barg, G. R. Blakley and G. A. Kabatiansky present a family of
digital fingerprinting codes based on (c, c)-SFP codes. As well as in the
case of the Boneh-Shaw codes, the idea underneath the Barg codes relies on
concatenation.
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Definition 3.4.1. Let Co be linear [no, ko, do = �ono]q-code with

�o > 1− 1

c2
+

c− 1

c(q − 1)
,

and Ci be a size-q code with the (c, c)-SFP property. The Barg code ℬ(q, no, ko)
is defined as the concatenated code Co ∘ Ci.
Theorem 3.4.2 ([5]). The code ℬ(q, no, ko) using Ci as the inner code and
Co as the outer code is a c-secure fingerprinting code of length n = noni with
M = qko codewords and identification error probability

� ≤ 2−n�i((log2 q)
−1 D(�∥ c−1

q−1
)−�o). (3.5)

Here � = 1/c − (1 − �o)c and �o = ko/no, �i = ki/ni are the rate of the
outer and the inner code, respectively and D(�∥p) is the Kullback-Leibler
divergence, D(�∥�) = � log2(�/�) + (1− �) log2((1− �)/(1− �)).

In order to guarantee security against size-c coalitions, the mappings used
in the concatenation, �i : Fq → Ci, for i = 1, . . . , no, must be chosen at
random. We now show the two purposed implementations and how their
length can be computed.

3.4.1 Reed-Solomon codes as outer codes

The first construction is based on extended Reed-Solomon codes over a large
alphabet. Take as inner code Ci a (c, c)-SFP code of size q and rate �i. Next,
choose an extended Reed-Solomon code ℰℛSq(ko) as outer code Co. Now
note that, for sufficiently large q, the following approximation can be made:

D

(

�

∥
∥
∥
∥

c− 1

q − 1

)

= � log2

(
�(q − 1)

t− 1

)

+ (1− �) log2

⎛

⎝
1− �

(

1− t−1
q−1

)

⎞

⎠ ≈

� log2

(
�(q − 1)

t− 1

)

= �(log2 � + log2(q − 1) + log2(t− 1)) ≈ � log2 q. (3.6)

As ℰℛSq(ko) meets the Singleton bound, and because q is large, its rate and
normalized minimum distance satisfy

1− �o = �o + o(1).

This, together with (3.6), implies that the identification error probability of
(3.5) can be approximated by

� ≤ 2−n(c−1�i−(c+1)�+o(1)), (3.7)
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where � = �i�o denotes the rate of the concatenated code. The code will
exist provided that the exponent in the previous equation is negative, that
is, the rate of the outer code must satisfy �o < 1/c(c+1), and the total rate

� <
�i

c(c+ 1)
. (3.8)

Now, let us estimate the code length of the previous construction given
the design parameters M, c, �. First, note that the rate of the inner code �i

can be computed according to (3.1), hence, it does not depend on M nor �.
Ignoring the term o(1)3 in (3.7) and combining (3.8) with M = 2n� we obtain

log2M

n
≤ � <

�i

c(c + 1)
.

From (3.7) we obtain

n ≥ − log2 �

�i/c− (c+ 1)�
,

and therefore an estimation of the minimum length of the code ℰℛSq(ki)∘Ci
for SFP inner codes, according to (3.1), is

n ≥ 2c(c− 1)
− log2 �+ (c+ 1) log2M

− log2(1− 2−(2c−1))
. (3.9)

That is, the code has a length of order Ω(max{22cc2 log 1
�
, 22cc3 logM}).

3.4.2 Algebraic-geometric codes as outer codes

The second construction is based on outer algebraic-geometric codes ap-
proaching the Tsfasman-Vlǎduţ-Zink (TVZ) bound. It is well-known [16]
the existence of families of [no, ko, do]q algebraic-geometric codes over a finite
field Fq whose parameters asymptotically approach the bound

ko + do ≥ no − no/(
√
q − 1), (3.10)

which can be restated as �o + �o = 1 − 1√
q−1

. As a consequence, � is of the

form

� =
1

c
− c

(

�o −
1√
q − 1

)

.

Note that the code will exist if

1

c
− c

(

�o −
1√
q − 1

)

>
t− 1

q − 1
.

3This term is actually 1/q.
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This condition can be rewritten as �o < A, where

A =
1

c
− c− 1

c(q − 1)
+

1√
q − 1

. (3.11)

The value A is always positive. This is implied by the fact that c−1+c2
√
q+

q > 0, which is a trivial condition. Another necessary condition to guarantee
the existence of the code, according to (3.5), is f(�o) > 0, where

f(x) = (log2 q)
−1D

(
1

c
− c

(

x− 1√
q − 1

)∥
∥
∥
∥

c− 1

q − 1

)

− x.

It is easy to see that f(x) is a monotonically decreasing function of x with
a root, namely �max

o , in the interval 0 < x < A. The code will exists for any
�o < �max

o . We omit here the proof because a similar proof will be presented
later.

Now, let us compute the length of the Barg code when using an outer
algebraic-geometric code. Given the same design parameters, M, c and �,
and a set of possible values for q, we proceed as follows.

1. Compute �i, which only depends on c.

2. For a given value of q:

(a) Compute the value A(q) according to (3.11).

(b) Find the value �max
o performing a search in the interval 0 < �max

o <
A(q). This can be done numerically.

(c) For every 0 < �o < �max
o compute n(�o, q) = max{n1, n2}, where

n1 = log2(M)/(�i�o)

n2 = − log2(�)/(�i((log2 q)
−1D(�∥ c−1

q−1
)− �o)).

This ensures that the code meets the requirements. Compute the
value n(q) = min{n(�o, q) : 0 < �o < A(q)}.

3. Repeat the procedure until all the plausible values of q have been tested
and return n, the minimum value of the n(q)’s, as the code length.

Note that, the value n(�o, q) is the minimum length such that both
the code size and the identification error probability satisfy the require-
ments. Therefore, the procedure consists in finding the minimum value of
the n(�o, q)’s.
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Figure 3.1: Plot of the length of ℬAG(M, c, �, q) versus �o

As an example, in figure 3.1 there is a plot of n(�o, q) for M = 106, c =
5, � = 10−15 and q = 500. The minimum length occurs approximately at
0.038 and the minimum achieved code length is n = 1.6834 ⋅ 106. We denote
by ℬRS(M, c, �) and ℬAG(M, c, �) the c-secure with error � Barg codes of size
M , for outer extended Reed-Solomon and algebraic-geometric codes. The
decoding of the Barg codes is performed in a two step-process: first, decod-
ing the inner codes and then, using the list-decoding Guruswami-Sudan [17]
decoding algorithm. The algorithm based in a similar idea to that presented
for the polynomial concatenated simplex codes.

3.5 The Tardos codes

The original Tardos code was presented in [18]. Currently it is the code
with the best-known asymptotic length. In fact, the Tardos code mets the
following bound.

Proposition 3.5.1 ([18]). Any (n,M, d) c-secure code with error � satisfies

n = Ω(c2 log(1/�)).

Definition 3.5.2. Let M, c be positive integers with c ≤ M and 0 < � < 1.
The Tardos code of parameters M, c, �, T (M, c, �), is a c-secure fingerprinting
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code with error � and length n = 100c2⌈log(M/�)⌉, where every codeword
u = (u1, . . . , un) ∈ T (M, c, �) is such that P (ui = 1) = pi, and every pi, 1 ≤
i ≤ n, is independently distributed according to the following probability
density function:

fpi(p) =
1

� − 4 arcsin(
√
c)

1
√

p(1− p)
, with t =

1

300c
.

In the original paper, it is set a value of L = 100 as a multiplicative
constant term in the length of the code. However, many researchers found
this constant not accurate. Better known approximations are, for instance,
L = 4�2 [19], L = 38 [20]. Other works propose more practical implementa-
tions of the Tardos code [21].

Because of its random nature, the decoding of the Tardos code is almost
a “brute force” process, i.e. the code must perform a search over all the
codewords in T (M, c, �). Algorithm 3.4 is the decoding algorithm for this
code.

Algorithm 3.4 Tracing algorithm for the T (M, c, �) code.

Input: The T (M, c, �) code and a pirate codeword x generated by any coali-
tion of traitors.

Output: A list of traitors capable of generating the codeword x with iden-
tification error probability �.
Arrange the M codewords u1, . . . ,uM in an M × n matrix where the jth
row is the codeword uj .
Compute the M × n matrix U as

Uj,i =

⎧

⎨

⎩

√
1−pi
pi

if uj,i = 1

−
√

pi
1−pi

if uj,i = 0.

Z ← 20c⌈log(M/�)⌉
C ← ∅
for all ui ∈ T (M, c, �) do
if
∑n

i=1 xiUj,i > Z then

C ← C ∪ {uj}.
end if

end for

return C
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3.6 Structured concatenation of fingerprint-

ing codes

We have already discussed in previous sections constructions based on con-
catenation. Here we discuss a new family of codes proposed by J. Cotrina
and M. Fernández in [2].

As mentioned earlier, TA codes and c-IPP codes can be viewed (under the
narrow-case model) as c-secure fingerprinting codes with null error. What is
more, TA codes posses and efficient decoding algorithm. Recall from (2.2)
that a code with

d > n(1− 1/c2) (3.12)

is c-TA (and hence, c-IPP). Therefore, one may try to find a binary code
satisfying (2.2). Unfortunately, for the binary case, we have that not only
such codes do not exist, but no binary IPP code do exists.

Corollary 3.6.1. Any (n,M, d)q-code C over Fq with d > n(1−1/c2) satisfies
that c < q.

Proof. The proof is immediate, since d > n(1 − 1/c2) ⇒ c-TA ⇒ c-IPP ⇒
c < q, where the last assertion is due to lemma 2.2.5.

As commented earlier, the field size limits considerably the traceability
properties in the narrow-case scenario. Therefore concatenated outer TA
codes with inner binary codes cannot be used for our purposes. The idea
proposed in [2] consists of concatenating an outer c-TA code Co satisfying
(3.12) with an inner binary c-secure fingerprinting code with error �. Obvi-
ously, after decoding the inner code, we will have an average of no�i errors in
the outer code, and the selected value of do may not be higher enough. The
solution to this problem consists of adding an additional term that depends
on �i to the value of do in (3.12).

Theorem 3.6.2 ([2]). Let Co be an (no,M, do)q-code. Let Ci be an (ni, q, di)-
binary c-secure fingerprinting code with �i error. Then, for any �i < � <
1/(c + 1), the concatenated code C = Co ∘ Ci is a binary c-secure finger-
printing code with exponentially decreasing identification error probability
� = exp(−Ω(no)) for M users if

do > no

(

1− 1

c2
+

�(c+ 1)

c2

)

. (3.13)
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The proof of the theorem, as well as in the case of the Barg codes, is
based on the well-known Chernoff bound:

P

(
no∑

i=1

�i ≥ no�

)

≤ 2−no D(�∥�i),

where �i are independent Bernoully random variables equal to 1 with prob-
ability �i and 0 with probability 1 − �i. Using this result, the identification
error probability of the concatenated code can be bounded by

� ≤ 2−no D(�∥�i) (3.14)

In order to obtain a short fingerprinting code and to provide an efficient
decoding algorithm, the two purposed outer codes are based, as in the case
of the Barg codes, in Reed-Solomon codes and algebraic-geometric codes
approaching the TVZ bound. As inner codes, Boneh-Shaw codes ℬS(q, c, �)
are proposed. Given the design parameters, we denote by CℱRS(M, c, �)
and CℱAG(M, c, �) the concatenated codes, when using Reed-Solomon and
algebraic-geometric as outer codes, respectively.

3.6.1 Reed-Solomon codes as outer codes

Our goal is to choose the optimal parameters to construct a minimum-length
concatenated code CℱRS(M, c, �) = ℛSq(ko)∘Ci, given a fixed family of inner
codes Ci. We choose as Co a Reed-Solomon code over Fq, where q is the size
of the inner code.

Definition 3.6.3. For a fixed value of 0 < � < 1/(c + 1), we denote by
CℱRS(M, c, �, �) the c-secure fingerprinting code with error � for M users
constructed according to the following steps:

1. Find the minimum prime power q such that f(q) > 0, where

f(q) = M − q⌈(q−1)( 1−�(c+1)

c2
)⌉.

2. Find the 0 < �i < � such that g(�i) = 0, where

g(�i) = qD(�∥�i)− log2 �.

3. Construct CℱRS(M, c, �, �) as ℛSq(ko) ∘ Ci, where ℛSq(ko) is a Reed-
Solomon code over Fq with

ko =

⌈

no

(
1− �(c+ 1)

c2

)⌉

,

and Ci is a binary c-secure fingerprinting code with error �i and size q.
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Lemma 3.6.4. Assume that the length of the inner code of CℱRS(M, c, �, �),
Ci, is a monotonically decreasing function of �i. Then, CℱRS(M, c, �, �) exists
and it is the shortest c-secure fingerprinting code with error � of sizeM among
all the codes of the form ℛSq(ko)∘Ci for a fixed � and a fixed family of codes
Ci.
Proof. First, note that CℱRS(M, c, �, �) has size, at least, M if the ℛSq(ko)
code has qko ≥M codewords. In order to satisfy (3.13) we take

do = no −
⌈

no

(
1− �(c+ 1)

c2

)⌉

+ 1,

which is the minimum value allowed for do, leading to the maximum dimen-
sion. Therefore, M−qko > 0 is precisely the condition that f(q) must satisfy
in the first step. As f(q) is a monotonically increasing function of q we can
find the smallest value for which f(q) > 0. Next, the code must satisfy
(3.14). For � fixed, D(�∥�i) is a monotonically decreasing function of �i,in
the interval (0, �), from +∞ to 0. Therefore, there exists some value for �i,
say �′i such that g(�′i) = 0. Since we assume that the length of Ci decreases
with �i, we choose the maximum value allowed for �i = �′i, which leads to the
minimum-length code CℱRS(M, c, �, �).

We are, however, interested in the shortest-length CℱRS(M, c, �, �) code
for any value of 0 < � < 1/(c + 1). Therefore, we must perform a search in
that interval.

As an example, in the figure 3.2 we have considered the following param-
eters: M = 106, c = 20 and � = 10−3. It can be appreciated that for these
parameters the optimal code occurs for � = 0.0037, approximately.

As the equations involved in the computation of the length are tran-
scendental, the only way to determine the optimal value for � is through
numerical simulation. We denote by CℱRS(M, c, �) the optimal code.

3.6.2 Algebraic-geometric codes as outer codes

Finally we present another construction which is asymptotically optimal.
The implementation consists of the concatenation of an outer algebraic-
geometric code with an inner fingerprinting code. Recall that there exist
codes approaching the TVZ bound (3.10):

ko + do ≥ no − no/(
√
q − 1).

These codes satisfy no = O(log(M)). Let AGq(no, ko, do) be one of those
codes satisfying (3.13). Since we are interested in positive-rate algebraic-
geometric codes, i.e. ko/no > 0, for do, we have that it must be an integer
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Figure 3.2: Plot of the length of Cℱ(M, c, �, �) versus �

value satisfying the TVZ bound and (3.13):

no

(

1− 1− �(c+ 1)

c2

)

< do < no

(

1− 1√
q − 1

)

. (3.15)

Thus, a sufficient condition for the existence of such value is

no

(

1− 1− �(c+ 1)

c2

)

< no

(

1− 1√
q − 1

)

− 1.

Solving for q, we obtain

√
q > 1 +

c2

1− c2/no − (1 + c)�
. (3.16)

Note that no is related to the design parameter �, because of (3.14), as

no ≥
log2 �i
D(�∥�i)

.

Therefore, we have the following necessary lemma to guarantee the existence
of the concatenated code CℱAG(M, c, �).

Lemma 3.6.5. The code C = AGq(no, ko, do) ∘ Ci exists if �i < � < �′ <
1/(c+ 1), where �′ is the root of the equation

ℎ(�) = 1 +
c2D(�∥�i)
log2 �

− (1 + c)�
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in the interval �i < � < 1/(c+ 1).

Proof. One can easily see that ℎ(�) contains a root in the interval �i <
� < 1/(c + 1). First, note that in that interval ℎ′(�) = (1 + c)� − 1 is a
negative increasing function that reaches zero for � = 1/(c+1), and ℎ′′(�) =
c2D(�∥�i)/log2 � is a negative decreasing function starting at 0. Therefore,
it must exist a single value �′ where both functions meet (See figure 3.3 for
a numerical example). Since ℎ(�) = ℎ′′(�) − ℎ′(�), it changes sign at �′.
Considering (3.14) we have that no ≥ c2D(�∥�i)/log2 �, and therefore, the
only interval where we can ensure the existence of the code is � < � < �′,
otherwise

√
q would not be a positive number. Obviously, as no increases,

�′ → 1/(c+ 1).
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Figure 3.3: Plot of ℎ′(�) and ℎ′′(�) for c = 20, �i = 10−2 and � = 10−3

Asymptotically, we can suppress the term c2/no from (3.16), which implies
that constructible codes exist if �i < � < 1/(c+ 1), with q = Ω(c4). In order
to obtain an efficient decoding process, in [2] it is suggested to use, as inner
codes, binary c-secure Barg codes, which have been presented previously. In
this case, the code has a length of order

O(c6 log c
�
logM).

Finally, we make some considerations about the decoding process. The
inner decoding algorithm is obviously algorithm 3.3. For the outer decoding,
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as in the case of the Barg codes, the Guruswami-Sudan algorithm [17] is
used, which is a polynomial-complexity process. This algorithm will return
a list of codewords within a radius

no −
√

no(no − do).

If the inner code were error-free, we would only need that the outer code had
do > no − no/c

2 (which would imply that it is a TA code). In this case, all
the codewords in the output list would be traitors. In [2] it is shown that
if x is a pirate codeword and u an innocent user of the code CℱAG(M, c, �),
after the inner decoding and with probability error �, it is satisfied that

d(u,x) ≥ no − no� − c(no − do) > no −
no(1− �)

c

Therefore, if we only want traitors in the output list, the outer code must
satisfy

no − no� − c(no − do) > no −
√

no(no − do).

This implies that

no −
no

(
1
2
− c� +

√
1
4
− c�

)

c2
< do < no −

no

(
1
2
− c� −

√
1
4
− c�

)

c2
(3.17)

This equation, together with (3.15) are the restriction of the parameters for
the case of algebraic-geometric codes. After solving the system of restrictions
computationally, ensuring that there exists an integer value do for which both
conditions holds, leads to the following restrictions:

0 < � ≤ 1

(c+ 1)
≤ 1/2,

0 < �c <
1

4
and

q >
1− 4c� + 2�2 + 2c2�2 − 4c�3 + 2�4

2�4
−

1

2

√

1− 8c� + 4�2 + 20c2�2 − 24c�3 − 16c3�3 + 4�4 + 32c2�4 − 16c�5

�8

Therefore, it is possible to ensure that the output list only contains
traitors for sufficiently large values of q. This however has only theoreti-
cal interest in the asymptotic case. In any case, it is possible to identify a
traitor, because with probability error �, it is the closest codeword to the
pirate fingerprint in the list returned by the Guruswami-Sudan algorithm.
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3.7 Simulation results

We present in this section the simulation results. Our goal is to determine the
code with the minimum length given the design parameters M, c and �. As
we are interested in practical implementations, we will often establish a limit
around 107 108 users. The graphics show the regions of the shortest-length
code.

The first simulations are focused on the different versions of the Boneh-
Shaw codes: the two original constructions and the one proposed in [15].
Figure 3.4 shows the results of the simulation for these families with a fixed
identification error probability � = 10−10. For large values of M , the (ran-
dom) concatenated version of the code, ℬS∗(M, c, �) has the shortest length.
The reason for this is that, in the asymptotic case, the length of the non-
concatenated versions are Ω(M), because they must generate M column
types, one for each user.

log(M)

c

0 1 2 3 4 5 6 7

10

20

30

40

50

60

70

80

90

100

BS
∗(M, c, ǫ)

BS(M, ǫ)

BS(M, c, ǫ)

Figure 3.4: Shortest Boneh-Shaw codes
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Next, we compare the Boneh-Shaw codes with binary c-SFP codes. To
make this comparison, we require the same error probability for the Boneh-
Shaw codes than that of the SFP codes, which is � = 1 − 1/c. The results
are shown in figure 3.5. Since the length of SFP codes depends on a factor
of the form 22c, it is disadvantageous to use them for large values of c. The
simulation shows how how it is detrimental to use such codes for values
c ≥ 10.
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In figure 3.6 we include in the simulation the Tardos codes. As we have
commented previously, Tardos codes achieve the asymptotic bound for fin-
gerprinting codes, and hence, it is not surprising that the greatest region is
that corresponding to this family of codes. We will omit them in many of
our simulations.
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Figure 3.6: Boneh-Shaw codes versus SFP and Tardos codes
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The next simulation deals with 2-secure codes. In this case, only simplex,
S(k), and polynomial concatenated simplex codes ℱS(no, ki) are, by far, the
ones with the minimum length for the purposed practical scenarios, even
shorter than the Tardos code. For instance, the code ℱS(32, 5) has length
n = 992 and can allocate up toM = 1.0995⋅1012 users with � = 1.0421⋅10−66.
A tardos code with the same parameters has length n = 71863. The sharp
boundaries in the graphic are justified because the codes S(k) and ℱS(no, ki)
are parameterized, and hence, the length does not grow smoothly.
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Our next simulations deals with the quantification of the number of
traitors (parameter c). Obviously, as M grows, the number of traitors also
grows. However it is too pessimistic to consider that c grows linearly with
M . Some authors propose c = log(M) [13]. We propose to determine c as
Ma, with 0 < a ≤ 1. In the following simulations, we show how the length
of the codes vary with M and �.
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Figure 3.8: Comparison of codes for the case c = Ma

In figure 3.8 the Tardos almost covers the whole area. Only small strips
are reserved for the Boneh-Shaw and Barg codes for small number of users.
This simulation has been made with a = 0.5, however, little changes are
appreciated irrespectively of the value of a. In the following simulations, we
omit the Tardos code.

In figures 3.9 and 3.10 it can be appreciated how the areas for the minimum-
length code change. Recall that the inner codes used in the Barg codes have
a length that grows with 22c. That is the reason why the Barg codes are
only significative for small values of �. As � grows, and hence, c→M codes
designed specifically to fight against size-M becomes relevant. However, note
that, even for values of a of the order of 0.95 they are only useful for M ≤ 106

users, approximately.
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Figure 3.9: Comparison of codes for the case c = Ma



3.7. Simulation results 39

log(M)

lo
g(

ǫ)

0 1 2 3 4 5 6 7

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

BS(M, ǫ)

BS(M, c, ǫ)

BRS(M, c, ǫ)

(a) a = 0.59

log(M)

lo
g(

ǫ)

0 1 2 3 4 5 6 7

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

BS(M, c, ǫ)

BS(M, ǫ)

BRS(M, c, ǫ)

(b) a = 0.60

log(M)

lo
g(

ǫ)

0 1 2 3 4 5 6 7

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

BS(M, c, ǫ)BS(M, ǫ)

(c) a = 0.85

log(M)

lo
g(

ǫ)

0 1 2 3 4 5 6 7

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

BS(M, c, ǫ)BS(M, ǫ)

(d) a = 0.95

Figure 3.10: Comparison of codes for the case c = Ma
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Next, we present a comparison between codes with efficient-decoding algo-
rithms. It is a fact that randomized codes are usually better than structured
codes. This has an enormous drawback, since the decoding of a random
code it is known to be an NP-hard problem. The simulation has been made
for the Reed-Solomon versions of the Barg and the structured concatenation
of Boneh-Shaw codes. Observe how the concatenated codes follow approxi-
mately the shape of the regions in figure 3.6, which are, actually, the shape
of their inner codes.
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Figure 3.11: Comparison of codes with efficient-decoding algorithm.



3.7. Simulation results 41

Finally, we present some figures for some parameters of the codes, where
it can be seen that randomized codes achieve usually shorter lengths.

Code Length
S(k) n/a
ℱS(no, ki) n/a
c-SFP n/a
ℬS(M, �) 7.9674 ⋅ 1022
ℬS(M, c, �) 3.9198 ⋅ 1013
ℬS★(M, c, �) 4.9079 ⋅ 1012
T (M, c, �) 3.9143 ⋅ 107
ℬRS(M, c, �) ∞
ℬRS(M, c, �) ∞
CℱRS(M, c, �) 6.4526 ⋅ 1014

Table 3.1: Lengths for M = 107, c = 100, � = 10−10

Code Length
S(k) n/a
ℱS(no, ki) n/a
c-SFP n/a
ℬS(M, �) 8.4279 ⋅ 1025
ℬS(M, c, �) 4.2905 ⋅ 1013
ℬS★(M, c, �) 3.9033 ⋅ 1010
T (M, c, �) 3.7301 ⋅ 107
ℬRS(M, c, �) ∞
ℬRS(M, c, �) ∞
CℱRS(M, c, �) 1.0618 ⋅ 1012

Table 3.2: Lengths for M = 108, c = 30, � = 10−10
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Code Length
S(k) 5.2700 ⋅ 102
ℱS(no, ki) 3.7800 ⋅ 102
c-SFP n/a
ℬS(M, �) 2.9190 ⋅ 1010
ℬS(M, c, �) 4.7231 ⋅ 105
ℬS★(M, c, �) 1.565 ⋅ 104
T (M, c, �) 3.7301 ⋅ 107
ℬRS(M, c, �) 1.759 ⋅ 103
ℬRS(M, c, �) 1.6924 ⋅ 103
CℱRS(M, c, �) 8.8805 ⋅ 105

Table 3.3: Lengths for M = 107, c = 2, � = 10−10

Code Length
S(k) n/a
ℱS(no, ki) n/a
c-SFP 7.7391 ⋅ 104
ℬS(M, �) 3.4069 ⋅ 1022
ℬS(M, c, �) 6.9500 ⋅ 1010
ℬS★(M, c, �) 2.7749 ⋅ 106
T (M, c, �) 4.0854 ⋅ 104
ℬRS(M, c, �) 1.4891 ⋅ 106
ℬRS(M, c, �) 1.4414 ⋅ 106
CℱRS(M, c, �) 3.9320 ⋅ 107

Table 3.4: Lengths for M = 107, c = 5, � = 1− 1/5
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The traceability properties of

Reed-Solomon codes

As we have seen, traceable codes play a paramount role in the fingerprint-
ing framework. Ideally, one would like to use TA codes since they can be
decoded efficiently by means, for example, of a traditional half-distance de-
coder. Unfortunately, they are usually very long codes and require a very
stringent conditions to be constructed. One may try to relax the TA condi-
tion without losing the traceability properties using IPP codes. This topic
has received considerable attention in the recent years having been studied
by several authors.

Given a family of codes, we are interested in how much can the TA
property be relaxed without losing the IPP property. Specifically, in this
section we are concerned with the case of Reed-Solomon codes. We try to
give an answer to the question raised by Silverberg et al. in [22, 9]: Is it
the case that all IPP Reed-Solomon codes are TA?. We show how often,
losing the TA property implies losing more basic properties than just the
IPP property.

4.1 SFP, IPP and TA codes

Recall from section 2.2 that, under the narrow-sense envelope model, a code C
has the c-TA property if, for any pirate fingerprint generated by a c-coalition
C ⊆ C, the closest codeword of C, in terms of the Hamming distance, is a
traitor.

Recall the definition of group separation (definition 2.1.1):

D(A,B) = ∣U(A,B)∣,

43
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where U(A,B) = {i : {a1,i, a2,i, . . . } ∩ {b1,i, b2,i, . . . } = ∅} is the set of sep-
arated coordinates. Recall also that we define the (c1, c2)-group separation
of a code C, Dc1,c2, as the minimum D(A,B) for disjoint sets A,B ⊆ C with
∣A∣ = c1 and ∣B∣ = c2. For linear codes, we have the following result.

Proposition 4.1.1. For any [n, k, d]q-code C and any pair of positive integer
values c1, c2 it holds that

max{0, d−(c1c2−1)(n−d)} ≤ Dc1,c2 ≤ max{0, d−(c1+c2−2)(k−1)}. (4.1)

Proof. To prove the first inequality, let us compute the maximum number
of nonseparated coordinates that any pair of disjoint sets, A,B ⊆ C, could
have. Without loss of generality, assume that ∣A∣ = c1 and ∣B∣ = c2, and
let us call x the required number. First, note that the maximum similitude
between any two codewords of C is n − d. Therefore, every codeword in
A contributes, at most, with c2(n − d) nonseparated coordinates, assuming
that it agrees with every codeword in B in n− d coordinates. As we have c1
codewords in A,

n−Dc1,c2 = x ≤ min{n, c1c2(n− d)}

proves the inequality.
To prove the second inequality, let us construct explicitly two disjoint sets

A,B ⊆ C in the following way. We call y the number of nondisjoint coordi-
nates in this case. First choose two codewords a1,b1 ∈ C which agree exactly
in n−d coordinates. Such codewords exist by definition of the minimum dis-
tance. Insert a1 into A and b1 into B. For the d remaining coordinates
were a1 and b1 do not agree, we operate in the following way. As C is a k-
dimensional vector space, one can always find a codeword that matches any
other codeword in any set of, at least, k − 1 arbitrary coordinates.1 Choose
c1 − 1 codewords such that each one of them matches k − 1 disjoint posi-
tions with b1 (in the d coordinates where a1 and b1 are different) and insert
them into A. Proceed similarly for the codeword a1 and insert the computed
codewords into B. Therefore, we have that

n−Dc1,c2 = y ≥ min{n, (n− d) + (c1 + c2 − 2)(k − 1)},

which proves the inequality.

Note that if we set either c1 = 1 or c2 = 1 in (4.1) we obtain the well-
known result n− d ≥ k − 1, which is the Singleton bound for linear codes.

1We omit this part of the proof.
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From the previous result it follows that for a linear [n, k, d]-code, if d >
(c1c2 − 1)(n− d) the code is (c1, c2)-SFP, and if d ≤ (c1 + c2 − 2)(k − 1) the
code is not (c1, c2)-SFP. Regarding the c-TA property we have the following
sufficient condition.

Proposition 4.1.2. An (n,M, d)-code C is c-TA if

D1,c > (1− 1/c)n. (4.2)

Proof. From the definition of D1,c, there exists a c-coalition C ⊆ C that can
generate a pirate codeword x such that d(x,u) = D1,c for some u ∈ C ∖ C,
and it does not exist any u′ ∈ C ∖ C such that d(x,u′) < D1,c. Note that x
must agree with some traitor t ∈ C at least in n/c coordinates. Therefore,
d(x, t) ≤ (1− 1/c)n < D1,c ≤ d(x,u) for all u ∈ C ∖ C.

It is not difficult to see that

d > (1− 1/c2)n (4.3)

implies the previous condition, and therefore the code is c-TA too. The
converse is, in general, not true.

Example 4.1.3. Consider the following two codes over F4 = {0, 1, �, �2}:

C = {(0, 0), (1, 1), (�, �), (�2, �2)}
C′ = {(0, 0, 0), (1, 1, 0), (�, �, 0), (�2, �2, 0)}

Observe that, for c = 2, C satisfies both (4.2) and (4.3), whereas C′ only
satisfies (4.2). Nevertheless, they both are 2-TA codes. For c = 3, C′ does
not satisfy neither (4.2) nor (4.3), even though it is a 3-TA code.

If d can be easily computed, it is often an easy way to determine or
construct c-TA codes rather than computing the value D1,c. We can now
expand the diagram of equation (2.1) as follows:

d > (1− 1/c2)n⇒ D1,c > (1− 1/c)n⇒ c-TA⇒ c-IPP⇒ (c, c)-SFP (4.4)

Codes that meet the Singleton bound, M ≤ qn−d+1, are called maximum
distance separable (MDS) codes. Linear MDS codes satisfy that n−d = k−1
and conditions (4.2) and (4.3) are equivalent for them [23]. What is more,
the following result also holds.

Theorem 4.1.4 ([23]). Let C be an [n, k, d]q-code with n ≤ q+1. Then, for
c ≥ 2, C has the c-TA property if and only if d > (1− 1/c2)n.
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Reed-Solomon codes are an important family of linear MDS codes which
are also cyclic. We denote by t(i) the cyclic rotation in i coordinates to
the right of t ∈ F

n
q . In [22, 9] authors raised the question wether it is

the case that all c-IPP Reed-Solomon codes are c-TA codes. Even though
the conditions that appear on the right in (4.4) are more stringent than
those on the left, for a large family of Reed-Solomon codes it turns out that
(c, c)-SFP ⇔ d > (1 − 1/c2)n. In the next section we present a method to
find nonseparated configurations when the code is not c-TA and c divides
the field size.

We describe here one last convention that we will use henceforth. Let f
be a polynomial f ∈ Fq[x]. We can define the map f : Fq → Fq as x 7→ f(x).
We shall immediately become less formal and refer to this map simply as
the polynomial f . We will be specially interested in polynomials f such that
f : Fq → Fq is homomorphic.

4.2 Equivalence of the traceability properties

of Reed-Solomon codes

The main result of this section comes in the form of the following theorem.

Theorem 4.2.1. LetℛSq(k) be a Reed-Solomon code over Fq and c a divisor
of q. Then, if the minimum distance of ℛSq(k) satisfies d ≤ n − n/c2 the
code is not (c, c)-SFP.

The proof of the theorem can get somewhat lost in the notation and
the construction of the elements that appear in it. Because of this, we first
present aprocedure which summarizes the idea underneath the construction
of the elements in the proof.

Let ℛSq(k), c and d be as stated in theorem 4.2.1. Note that in this
situation ℛSq(k) is not c-TA. Our goal is to find a pair of subsets of size at
most c, C1, C2 ⊆ ℛSq(k), such that D(C1, C2) = 0. That would prove that
ℛSq(k) fails to be (c, c)-SFP too.

Given the finite field Fq, an integer value c satisfying c∣q, and a Reed-
Solomon code over Fq, ℛSq(k), with minimum distance d ≤ (1− 1/c2)n, the
following procedure outputs a pair of subsets T1, T2 ⊆ ℛSq(k) such that they
are (c, c)-nonseparated:

1. If c2 > q then:

(a) Set c′ = min{c, n}.



4.2. Equivalence of the traceability properties of Reed-Solomon codes 47

(b) Find a codeword t = (t1, . . . , tn) ∈ ℛSq(k) such that ∣T∣ = c′,
where T = {t1, . . . , tc′}.

(c) Return

T1 = {t1 : t ∈ T} and

T2 = {t(ic
′) : 1 ≤ i ≤ ⌈n/c′⌉}.

2. Else (c2 ≤ q):

(a) Find an additive subgroup G ≤ Fq with q/c2 elements.

(b) Find a nontrivial minimum-degree polynomial f ∈ Fq[x] with the
elements ofG as single-multiplicity roots (the application f : Fq →
Fq will act as an additive homomorphism with ker f = G).

(c) Find a subgroup S ≤ im f of c elements and its c cosets, �1 +
S, . . . , �c + S. Set B = {�1, . . . , �c}.

(d) Set r = random{1, . . . , c} and consider the coset �r + S.

(e) Return

T1 = {�j1 : �j ∈ �r + S} and

T2 = {ev(f(x)− �i) : �i ∈ B}.

Note that the procedure, as well as the proof of theorem 4.2.1, is split in
two cases. The first case is proved in the following proposition.

Proposition 4.2.2. Let ℛSq(k) be a Reed-Solomon code over Fq and c an
integer satisfying c2 ≥ q − 1. Then, if the minimum distance of ℛSq(k)
satisfies d ≤ n− n/c2 the code is not (c, c)-SFP.

Proof. According to the stated restrictions, we have that n = q − 1 and
k ≥ 2. This means that ℛSq(2) ⊆ ℛSq(k), i.e. ℛSq(k) contains all the
codewords resulting from the evaluation of constant and linear polynomials.
Take a nontrivial linear polynomial and its associated codeword, t. Take
the first c′ = min{c, n} coordinates of t, {t1, . . . , tc′}, which are all different,
and construct C1 and C2 as in step 1c of the procedure. Note that ∣C2∣ =
⌈n/c′⌉ ≤ ∣C1∣ = c′ ≤ c. One can easily check that for the coordinates
with indexes (i − 1)c′ + 1, . . . , ic′ the codeword t(ic

′) ∈ C2 takes values in
T, for 1 ≤ i ≤ ⌈n/c′⌉. Because ⌈n/c′⌉ ≥ n, for each coordinate there exist
some codeword in C2 which takes a value in T and, therefore, agrees in that
coordinate with some codeword in C1. Hence, D(C1, C2) = 0, which implies
that ℛSq(k) is not (c, c)-SFP.
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To prove the second case, we need the following supporting lemmas.

Lemma 4.2.3. Let R be an additive subgroup of r elements of the finite
field Fq, R ≤ Fq. Then, if m divides r there exists a subgroup S ≤ R with
m elements.

Proof. The Sylow theorems [24] guarantee the existence of S. We show a
constructive way to find S which works for the case of finite fields. Since
R ≤ Fq, r must divide q. Let us convey q = pk, r = pj and m = pi, for some
prime number p and some positive integers k ≥ j ≥ i, and let us call Si the
subgroup with pi elements. The construction is by induction on i. For i = 0
simply take S0 = {0}. For 0 < i ≤ j take first any subgroup Si−1 ≤ R with
∣Si−1∣ = pi−1 elements and compute

Si =

p−1
∪

k=0

[( k∑

l=1

�

)

+ Si−1

]

,

where � ∈ R∖Si−1. Using the fact that
∑p

l=1 � = 0, it is routine to check that
Si is an additive subgroup with pi elements. Note that, in general, neither
R nor S need not be isomorphic to Fr and Fm, respectively.

Lemma 4.2.4. Given the finite field Fq and a divisor of q, m, there exists
a nontrivial polynomial f ∈ Fq[x] of degree m such that the application
f : Fq → Fq is an additive homomorphism.

Proof. By lemma 4.2.3, take R = Fq and a subgroup G ≤ R of m elements,
G = {g1, . . . , gm}, and construct a polynomial having the elements of G as
single-multiplicity roots,

f(x) = �
m∏

i=1

(x− gi), � ∈ F
∗
q .

Note that the polynomial f(x) vanishes in all the elements of the subgroup
G and the polynomial f�(x) = f(x)− f(�) vanishes in the coset �+G. This
happens because f takes the same value in all the elements of � + G. Also
we have that

f(−x) = �
m∏

i=1

(−x− gi) = �
m∏

i=1

(−x+ gi)

= (−1)m�
m∏

i=1

(x− gi) = −�
m∏

i=1

(x− gi) = −f(x).
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Note that the fourth equality is true for m odd. This is the case of any field
of characteristic ∕= 2. For fields of characteristic 2 we have that −1 = 1, and
the equality holds too. Finally,

f(x+ y) = �

m∏

i=1

(x+ y − gi) = �

m∏

i=1

(x− (−y + gi))

= �
m∏

i=1

(x− (−y − gi)) = f−y(x) = f(x) + f(y)

proves that f : Fq → Fq it is an additive homomorphism. Note that ker f = G
and ∣ im f ∣ = ∣Fq/G∣.

Now, we are in position to prove the main result of this section.

Proof of Theorem 4.2.1. We prove the theorem by explicitly finding, again,
a pair of subsets which form (c, c)-nonseparated configuration.

If c2 > q, the code is not (c, c)-SFP by proposition 4.2.2. From now
on, we assume that c2 ≤ q. Under this circumstance, if c divides q, so c2

does. Therefore, as ℛSq(q/c
2 + 1) ⊆ ℛSq(k), it suffices to consider the case

k = q/c2 + 1. Lemma 4.2.4 provides a constructive proof of the existence of
a nontrivial polynomial f of degree q/c2 such that f : Fq → Fq acts as an
additive homomorphism. Hence ev(f) ∈ ℛSq(k). Since ∣ ker f ∣ = q/c2, then
∣ im f ∣ = c2. Take a subgroup of c elements S ≤ im f . This can be done
because im f ≤ Fq and lemma 4.2.3 guarantees the existence of S. Now,
construct B, �r + S, C1 and C2 as in steps 2c, 2d and 2e of the procedure.
Note that ∣C1∣ = ∣C2∣ = c. Note also that for every  ∈ Fq there exists a
polynomial fi ∈ C2 such that

fi() ∈ �r + S. (4.5)

This is true because the c polynomials of C2 replicate the c cosets of S in
disjoint subsets of Fq due to the fact that the cosets of im f are disjoint. For
example consider the subgroup S itself (assuming that �1 ∈ S and r = 1,
i.e. �r + S = 0 + S). It is replicated in the coset �2 + S in the polynomial
f(x) − �2, which is disjoint from S, in the coset �3 + S in the polynomial
f(x)− �3, which is disjoint from S and �2 + S, etc. An analogous argument
can be applied to any coset of S. Because of (4.5) and since C1 contains the
constant-valued codewords in �r + S, an arbitrary coset, D(C1, C2) = 0 and
the Reed-Solomon code ℛSq(k) is not (c, c)-SFP.

Finally, note that in the second construction we have not exploded the
cyclic nature of the Reed-Solomon codes. This, together with (4.5) makes
that construction be valid even for extended Reed-Solomon codes (i.e. Reed-
Solomon codes where the evaluation point 0 is also considered and n = q).
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4.3 Example

Consider the field F27 = F3[x]/(x
3 + 2x + 1) with primitive element � = x.

Consider the case c = 3 and take the Reed-Solomon code ℛS27(4). First, we
take the subgroup S = {0, 1, �13} and construct the polynomial

f(x) = �(x− 0)(x− 1)(x− �13) = �(x3 + �13x), � ∈ F
∗
q.

For simplicity we choose � = 1. The associated codeword to f is

ev(f) = (0, �13, �9, �13, �3, �16, �, �3, �22, �13, �, �,

�9, 0, 1, �22, 1, �16, �3, �14, �16, �9, 1, �14, �14, �22),

where it can be read off that im f = {0, 1, �, �3, �9, �13, �14, �16, �22}.
Since c2 = ∣ im f ∣, we take, for example the subgroup S = {0, 1, �13} ≤ im f
of c elements and its c cosets:

S1 = �1 + S = {0, 1, �13}
S2 = �2 + S = {�, �3, �9}
S3 = �3 + S = {�14, �16, �22},

where �1 = 0, �2 = � and �3 = �14. Now consider the polynomials fi(x) =
f(x)− �i, for 1 ≤ i ≤ c. Their evaluations are those depicted in (4.6), where
each coset Si has been colored in the same way in every codeword. It can
be seen that the three codewords cover disjoint positions in each coordinate
for every coset. Hence, they can generate a common descendant with any
of the sets whose elements are the constant words having as coordinates the
elements of every coset. Valid C1 sets are those corresponding to constant
codewords in S1, S2 and S3, as depicted in (4.7), (4.8) and (4.9), respectively.
The common descendants are, precisely, those whose coordinates belong to
the same coset Si and are colored (underlined) in the same way.

4.4 Results for other coalition sizes

In [25] it was presented a related result proving the equivalence of SFP and
TA for another families of Reed-Solomon codes. The idea there was to restate
the SFP condition algebraically, as a system of equations.

Theorem 4.4.1 ([25]). Let ℛSq(k) be a Reed-Solomon code over Fq such
that k − 1 divides q − 1. Then, if d ≤ n− n/c2 the code is not (c, c)-SFP.

This covers families of codes where c2 ≥ (q−1)/(k−1) with (q−1)/(k−1)
integer.
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(0 , �13, �9 , �13, �3 , �16, � , �3 , �22, �13, � , � , �9 , 0 , 1 , �22, 1 , �16, �3 , �14, �16, �9 , 1 , �14, �14, �22)
(�14, �22, 1 , �22, �13, �9 , 0 , �13, �3 , �22, 0 , 0 , 1 , �14, �16, �3 , �16, �9 , �13, � , �9 , 1 , �16, � , � , �3 )
(� , �3 , �16, �3 , �22, 1 , �14, �22, �13, �3 , �14, �14, �16, � , �9 , �13, �9 , 1 , �22, 0 , 1 , �16, �9 , 0 , 0 , �13)

(4.6)

(0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )
(1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 )
(�13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13, �13)

(4.7)

(� , � , � , � , � , � , � , � , � , � , � , � , � , � , � , � , � , � , � , � , � , � , � , � , � , � )
(�3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 , �3 )
(�9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 , �9 )

(4.8)

(�14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14, �14)
(�16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16, �16)
(�22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22, �22)

(4.9)
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Proposition 4.4.2. Given a Reed-Solomon code ℛSq(k) over Fq with min-
imum distance d and an integer value c, if either c∣q or (k − 1)∣(q − 1) then,
ℛSq(k) satisfies

d > (1− 1/c2)n⇔ c-TA⇔ c-IPP⇔ (c, c)-SFP.

In fact, the construction presented in the step 2 in the procedure defined
in section 4.2 can be easily generalized for any integer c and (extended)
Reed-Solomon code over Fq satisfying the following property.

Proposition 4.4.3. Let ℛSq(k) be a Reed-Solomon code over Fq and c an
integer value satisfying

√
q

⌈q/c2⌉ ∈ ℕ
+. (4.10)

Then, if the minimum distance of ℛSq(k) satisfies d ≤ n− n/c2 the code is
not (c, c)-SFP.

Proof. Let us call c̄ the value of equation (4.10). It implies that c̄ divides
q. Then, by theorem 4.2.1, if ℛSq(k) had d ≤ n − n/c̄2 the code would
not be (c̄, c̄)-SFP. But note that c̄ ≤ c, hence d ≤ n − n/c2 ≤ n − n/c̄2, so
the code is not (c̄, c̄)-SFP and, obviously, not (c, c)-SFP. In other words, it
exists a ℛS ′

q(k
′) ⊆ ℛSq(k) such that the conditions of theorem 4.2.1 hold

for a smaller value than c. The case of extended Reed-Solomon codes follows
easily from this result.

Illustratively, in table 4.1 we show some families of Reed-Solomon codes
for certain values of c and q which obey (c, c)-SFP ⇔ c-TA with k = ⌈(q −
1)/c2+1⌉. This suggests a positive answer for the question posted in [22, 9].
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Table 4.1: Some families of covered Reed-Solomon codes
ℛSq(k = ⌈(q− 1)/c2 + 1⌉): (a) codes that satisfy c2 > q, (b) codes that

satisfy (4.10), (c) codes that satisfy (k − 1)∣(q − 1)

Fq 64 81 125 128 243 256 512 625 729 1024 2187

c = 2 (b) (c) (c) (b) – (b) (b) (c) (c) (b) –

3 (c) (b) – – (b) – – – (b) – (b)

4 (b) (c) – (b) – (b) (b) (c) – (b) –

5 (c) (c) (b) – – – – (b) – – –

8 (b) (c) (c) (b) – (b) (b) – – (b) –

9 (a) (b) (c) (b) (b) (b) (c) (c) (b) – (b)

10 (a) (a) (c) (b) (b) (c) – – (c) (c) –

11 (a) (a) (c) (b) (b) (c) – (c) (c) – –

14-15 (a) (a) (a) (a) (c) – – (c) (c) – –

16 (a) (a) (a) (a) (a) (b) (b) (c) – (b) –

17-18 (a) (a) (a) (a) (a) (a) (b) (c) – (b) –

Fq 512 625 729 1024 2187

c = 19 (b) (c) – (c) –

20-22 (b) (c) (c) (c) –

23-24 (a) (c) (c) – –

25 (a) (b) (c) – –

26 (a) (a) (c) – –

27 (a) (a) (b) – (b)

28-31 (a) (a) (a) – (b)

32 (a) (a) (a) (b) (b)

33 (a) (a) (a) (a) (b)

34-46 (a) (a) (a) (a) (c)

≥ 47 (a) (a) (a) (a) (a)
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Conclusion

In this project we have presented an study of the properties of the main
fingerprinting codes, mainly focused on the determination of their length.
We have also proposed methods to determine an estimation of this value
when there is no direct method to obtain it. Specifically, we have presented
and discussed some results related to SFP, Boneh-Shaw and Barg codes, and
the codes presented in [2].

Also, we have presented a comparative analysis of the families of codes
introduced in the project. The results show the regions where it is preferable
to use each code, given the design parameters of number of users to allocate,
maximum size of the collusions and identification error probability.

Finally, we have discussed the tracing properties of Reed-Solomon codes.
Our main goal was to give an answer to the question posted by Silverberg
et al. in [22, 9] (Is it the case that all IPP Reed-Solomon codes are TA? ).
We have proven the equivalence of the SFP, IPP and TA properties for some
families of Reed-Solomon codes, where the coalition of traitors has the par-
ticularity that its size divides the field size. Obviously this does not provide
a full answer to the question but hopefully it gives some hints that may be
useful in finding the final response.

5.1 Future work

The main open questions are:

1. Determining a practical method to estimate the length of the CℱAG(M, c, �)
code.

2. Determining the limits of concatenation for fingerprinting code: when
is it detrimental to concatenate in terms of code length?
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3. Providing a full answer to the question about the properties of Reed-
Solomon codes.

Of course, it would be interesting to determine if the last question also applies
to other families of MDS or non-MDS codes.
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