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Departament de F́ısica Fonamental, Departament de Qúımica F́ısica, Universitat de Barcelona. 08034
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Abstract

We study the effect of coupling two random networks where an epidemic process propagates. A theoretical SIS
model is applied and a new critical threshold for the existence of an endemic state is analytically calculated
for the two coupled networks, under the assumption that there is total correlation between the outer degree
and the inner degree of each node. Our main result is that a global endemic state can exist in the coupled
networks, even though the epidemics does not propagate on each network separately. Finally, we checked these
results by running large scale computer simulations.

1 Introduction

Recently, network models have become a power-
ful and attractive theoretical tool, not only for their
non trivial properties but also for their large range
of applications to real networks (Albert & Barabási,
2002): from the internet (Pastor-Satorras & Vespig-
nani, 2004) to food webs (Dunne et al., 2002), as well
as interactions between proteins, genes or metabolites
(Wagner & Fell, 2001). Also social interactions, as
friendship (Amaral et al., 2000) or sexual contacts (Lil-
jeros et al., 2001), can be treated as a network where
nodes represent people and they are connected by an
edge if they interact with each other. Dynamical pro-
cesses, such as epidemic spreading, are specially inter-
esting in this context and can be studied in networks
in order to explain how networks topology affects the
spreading of the diseases and its prevalence (Newman,
2003).

Current studies focus on the propagation of epi-
demics in isolated networks (Pastor-Satorras& Vespig-
nani, 2001). However, many interesting cases in-
volve the spreading of the disease in coupled networks
(Buldyrev et al., 2010). For example, sexually trans-
mitted diseases can propagate both in heterosexual
and homosexual networks of sexual contacts (Liljeros
et al., 2001). These two networks are not completely
isolated due to the existence of bisexual individuals,
which act as an effective coupling of the two networks.

In this master thesis, we consider the SIS epidemic
spreading model (Pastor-Satorras & Vespignani, 2002)
running on two coupled random networks. In the SIS
model, nodes can be in the susceptible (S) or infected
(I) state. Susceptible nodes are infected at a given
rate λ when they are in contact with an infected node,

while the infected ones decay spontaneously to the sus-
ceptible state at a rate δ. The ratio between λ and δ

and the topology of the network determine the preva-
lence of the epidemics. This epidemic process runs on
two coupled networks, and each one will be in a range
where the epidemics does not propagate. It is known
that for a single network (and under the mean field ap-
proximation), the condition that must be satisfied in
order to make the epidemic survive reaching a steady
state is (Pastor-Satorras & Vespignani, 2002):

Λ ≡ λ
〈k2〉

〈k〉
> 1 , (1)

so the critical value of λ is:

λc =
〈k〉

〈k2〉
, (2)

where k is the degree of a node (its total number of
neighbours), 〈k〉 indicates the average of the degree
distribution, and 〈k2〉 is its second moment, which
quantifies the topological fluctuations. If λ is above
this threshold λc, the epidemics prevails whereas if it
is below this value, the epidemics dies out exponen-
tially fast. Our goal in this master thesis is to find an
equivalent condition in the case of two coupled random
networks.

In Section 2, we prove analytically that there ex-
ists a threshold for the coupled networks such that a
global endemic state exists, even though the epidemics
does not propagate in each networks separately. It is
shown that the way in which the networks are inter-
connected is crucial for the existence of the global en-
demic state. In particular, we study different levels of
the correlation between the inner degree (the degree
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between nodes belonging to the same network) and
the outer degree (edges connecting nodes from dis-
tinct networks). If the correlation is maximum, the
epidemics prevails.

In Section 3, we compare our theoretical results
with numerical simulations. We create two large scale
random networks with exponential degree distribu-
tions. We compute the time evolution of the preva-
lence for different values of the infection rate λ as well
as the number of edges connecting the two networks.
Finally, we check that an improvement is observed
when the critical threshold for an isolated network is
estimated more accurately. Conclusions are presented
in Section 4.

2 SIS process in coupled net-

works

In a single network, the SIS process is an epidemic
model where nodes can be in two different states: state
S corresponds to the susceptible state and state I cor-
responds to the infected one. An infected node can
infect one of its neighbours with rate λ if it is in the
susceptible state and decays to the S state with rate
δ. The ratio between λ and δ and the topology of the
network determines the prevalence of the epidemics
(Pastor-Satorras & Vespignani, 2002), as we have seen
in Equations 1 and 2.

Now, let us consider the SIS process in two cou-
pled networks, A and B : λXY denotes the rate that
an infected node from network X infects a susceptible
node from network Y, and δX is the rate to turn to
the susceptible state (X and Y can both be either net-
works A or B). ni(t) indicates the state of node i, and
it can take the following values:

ni(t) =

{

1, if the node is infected

0, if the node is not infected
.

From now on we are focusing on nodes from net-
work A, but the same equations can be obtained for
network B by substituting A for B and vice versa.

It is possible to write the state of the node i from
network A at time t + dt , nA

i (t + dt), in terms of its
value in the previous time step nA

i (t) (Catanzaro et al.,
2005):

nA
i (t+ dt) = nA

i (t)η
A(dt) + (1 − nA

i (t))ξ
A(dt) , (3)

where ηA(dt) is a dichotomous random variable con-
trolling the transition between the infected and sus-
ceptible states,

ηA(dt) =

{

0 with probability δAdt

1 with probability 1− δAdt ,
(4)

and ξA(dt) is another dichotomous random variable
controlling the transition between the susceptible and
infected states,

ξA(dt) =































1 with prob. λAAdt
∑

j∈A aAA
ij nA

j (t)+

λBAdt
∑

j∈B aAB
ij nB

j (t)

0 with prob. 1− λAAdt
∑

j∈A aAA
ij nA

j (t)+

λBAdt
∑

j∈B aAB
ij nB

j (t) ,

(5)

where {aXY
ij } is the adjacent matrix, with values equal

to 1 if the node i from network X is connected to node
j from network Y, and equal to 0 otherwise. Since
nA
i (t+ dt) can value 0 or 1, the first term of the right

hand side of Equation 3 considers the case where the
node is infected at the previous time step (the second
term vanishes), and the second term considers the case
when the node is, previously, susceptible to be infected
(the first term vanishes).

By computing the conditional average of Equation
3, we obtain:

〈nA
i (t+ dt)|n(t)〉 = nA

i (t)(1 − δAdt)+

(1 − nA
i (t))[λ

AAdt
∑

j∈A

aAA
ij nA

j (t)+

λBAdt
∑

j∈B

aAB
ij nB

j (t)] .

(6)

This equation describes the evolution of the state of
node i from network A by knowing the state of all
nodes as well as its own state at the previous time
step.

By multiplying this equation by the probability
to be at state nA(t) at time t, and summing for all
possible configurations, we can derive:

d〈nA
i (t)〉

dt
=− δA〈nA

i (t)〉+

λAA
∑

j∈A

aAA
ij

(

〈nA
j (t)〉 − 〈nA

i (t)n
A
j (t)〉

)

+

λBA
∑

j∈B

aAB
ij

(

〈nB
j (t)〉 − 〈nA

i (t)n
B
j (t)〉

)

.

(7)

If we define

〈ni(t)〉 ≡ ρi(t), 〈ni(t)nj(t)〉 ≡ ρij(t),

Equation 7 can be rewritten as follows:

dρAi (t)

dt
=− δAρAi (t) + λAA

∑

j∈A

aAA
ij

(

ρAj (t)− ρAA
ij (t)

)

+

λBA
∑

j∈B

aAB
ij

(

ρBj (t)− ρAB
ij (t)

)

.

(8)

Now we will assume that all nodes with the same
degree are statistically equivalent and we can treat



them equally (Boguñá et al., 2003). Given a node in

network X , we will define ~kX as its degree vector in
network X , ~kA = (kAa , k

A
b ). The first component indi-

cates the inner degree (number of connections of the
node to other nodes from network A) and the second
component corresponds to the outer degree (number of
connections of the same node from network A connect-
ing nodes from network B). With that assumption we
can define:

ρXi (t) ≡ ρ~kX (t), ∀i ∈ V(~kX ) (9)

ρXY
ij (t) ≡ ρ~kX ~k′

Y (t), ∀i ∈ V(~kX ), j ∈ V(~k′
Y
) ,
(10)

where V(~kX ) and V(~k′
Y
) are the set of vertices from

networks X and Y with degree ~k and ~k′, respectively.
If we add all densities from nodes with the same degree
and network, and we average over all of them (dividing

by the total number of nodes with degree ~k from net-
work A, denoted by N~kA), we will obtain a differential
equation for the fraction of infected nodes in degree
class ~kA:

dρ~kA

dt
= −δAρ~kA+

λAA
∑

~k′
A

(ρ~k′
A − ρ~kA ~k′

A)
1

N~kA

∑

i∈V(~kA)

∑

j∈V(~k′
A
)

aAA
ij +

λBA
∑

~k′
B

(ρ~k′
B − ρ~kA ~k′

B )
1

N~kA

∑

i∈V(~kA)

∑

j∈V(~k′
B
)

aAB
ij .

(11)

With the assumption of all nodes with the same
degree being statistically equivalent, we can also set:

1

N~k′
A

∑

i∈V(~kA)

∑

j∈V(~k′
A
)

aAA
ij = kAa P (~k′

A
|~kA) , (12)

and

1

N~k′
A

∑

i∈V(~kA)

∑

j∈V(~k′
B
)

aAB
ij = kAb P (~k′

B
|~kA) . (13)

By assuming the mean-field approximation, we can
also consider that (Boguñá et al., 2003):

ρ~kA ~k′
A ≈ ρ~kAρ~k′

A .

Finally, the time evolution equation of the preva-
lence can be expressed as follows:

dρ~kA

dt
=− δAρ~kA+

λAA(1− ρ~kA)k
A
a

∑

~k′
A

ρ~k′
AP (~k′

A
|~kA)+

λBA(1− ρ~kA)k
A
b

∑

~k′
B

ρ~k′
BP (~k′

B
|~kA) .

(14)

2.1 Uncorrelated networks

If the networks are uncorrelated, i.e., there is
no correlation between the degrees of the connected

nodes, it can be proved that

P (~k′
A
|~kA) =

k′
A
a P (~k′

A
)

〈kAa 〉
, (15)

P (~k′
B
|~kA) =

k′
B
a P (~k′

B
)

〈kAb 〉
, (16)

and the time evolution equation can be written:

dρ~kA

dt
=− δAρ~kA+

λAA kAa
〈kAa 〉

(1− ρ~kA)
∑

~k′
A

k′
A
a ρ~k′

AP (~k′
A
)+

λBA kAb
〈kAb 〉

(1− ρ~kA)
∑

~k′
B

k′
B
a ρ~k′

BP (~k′
B
) .

(17)

Equation 17 represents a set of coupled differential
equations for all values of ~k, that can be expressed as
Ẋ = MX , where M is the coefficients matrix. Since
we are interested in finding the prevalence of the epi-
demics at the steady state, we need to find the eigen-
values of the linearised system. Let (ρ0~kA

1

, ρ0~kA

2

, . . . , ρ0~kA
n

)

be the non-zero equilibrium point, which can be ob-
tained by solving Equation 17 when time derivative is
zero. It is known that the eigenvalues of matrixM give
the stability of the equilibrium points: if Λmax > 0, at
t → ∞ the system will not converge at the equilib-
rium point, but if Λmax < 0, the system will converge
at (ρ0~kA

1

, ρ0~kA

2

, . . . , ρ0~kA
n

) and we will find stability around

this solution. Λmax = 0 will denote the critical thresh-
old.

For networks A and B, the linearised equations
are:

dρ~kA

dt
=− δAρ~kA + λAA kAa

〈kAa 〉

∑

~k′
A

ρ~k′
AP (~k′

A
)k′

A
a +

λBA kAb
〈kAb 〉

∑

~k′
B

ρ~k′
BP (~k′

B
)k′

B
a ,

(18)

and

dρ~kB

dt
=− δBρ~kB + λBB kBb

〈kBb 〉

∑

~k′
B

ρ~k′
BP (~k′

B
)k′

B
b +

λAB kBa
〈kBa 〉

∑

~k′
A

ρ~k′
AP (~k′

A
)k′

A
b .

(19)

The stationary system corresponds to the tempo-
ral derivative being equal to zero. In that case, the
system can be written in the following matrix way:



0 =









−δAδ~kA, ~k′
A + λAA kA

a

〈kA
a
〉P (~k′

A
)k′

A
a λBA kA

b

〈kA

b
〉
P (~k′

B
)k′

B
a

λAB kB

a

〈kB
a
〉P (~k′

A
)k′

A
b −δBδ~kB , ~k′

B + λBB kB

b

〈kB

b
〉
P (~k′

B
)k′

B
b

















ρ~kA

ρ~kB









(20)

As we said in the introduction, we can make δA =
1. Moreover, we will assume that the rates of becoming
susceptible are the same for both networks, that is,
δA = δB = 1. In that case, the eigenvalue problem we
have in Equation 20 can be written as:

(−I+ C)~v = −~v + Λ~v = (−1 + Λ)~v , (21)

where I is the identity matrix, C is the matrix which
contains the infection terms, and ~v and Λ are its eigen-
vectors and eigenvalues, respectively.

In order to find stability, all eigenvalues must be
negative, otherwise the system would be unstable. In-
stability in our problem means that the infection does
not prevail and no nodes keep infected for large times.
In that case, the critical value we are looking for is:

−1 + Λ = 0 ⇒ Λ = 1 .

If Λ > 1 the infection prevails. To find the eigen-
values of matrix C we can write:

λAA kAa
〈kAa 〉

∑

~k′
A

P (~k′
A
)k′

A
a v~k′

A+

λBA kAb
〈kAb 〉

∑

~k′
B

P (~k′
B
)k′

B
a v~k′

B = Λv~kA ,

(22)

λBB kBb
〈kBb 〉

∑

k′B

P (~k′
B
)k′

B
b v~k′

B+

λAB kBa
〈kBa 〉

∑

~k′
A

P (~k′
A
)k′

A
b v~k′

A = Λv~kB ,

(23)

where vA~k and vB~k
are the eigenvectors. We can see that

each summation term is constant, so the eigenvectors
must have the form:

v~kA = mkAa + nkAb , (24)

v~kB = pkBa + qkBb , (25)

where m,n, p and q are constants. If we substitute
Equations 24 and 25 into 22 and 23, and define:

ΛAA ≡ λAA 〈kAa
2
〉

〈kAa 〉
, ΛAB ≡ λAB 〈kAb

2
〉

〈kAb 〉
, (26)

ΛBB ≡ λBB 〈kBb
2
〉

〈kBb 〉
, ΛBA ≡ λBA 〈kBa

2
〉

〈kBa 〉
, (27)

F1 ≡ λAA 〈kAa k
A
b 〉

〈kAa 〉
, F2 ≡ λAB 〈kAa k

A
b 〉

〈kAb 〉
, (28)

F3 ≡ λBA 〈kBa kBb 〉

〈kBa 〉
, F4 ≡ λBB 〈kBa kBb 〉

〈kBb 〉
, (29)

we obtain, after some manipulations, the following
equation for the eigenvalues:

(Λ2 − ΛABΛBA)(Λ − ΛAA)(Λ− ΛBB) = F1F2F3F4+

F1F2Λ
BA(Λ− ΛBB) + F3F4Λ

AB(Λ− ΛAA) .

(30)

We can see that ΛAA and ΛBB are the eigenvalues
shown in Equation 1 of networks A and B, respec-
tively, if they are not coupled.

By solving this equation it is possible to determine
the eigenvalues as a function of the average degrees
and second moments of the networks and, therefore,
the stability of the system.

2.2 Limit case: maximum correlation

between outer and inner degrees

In this master thesis, we will consider the case
where both networks do not propagate the epidemic
by themselves. Hence, ΛAA and ΛBB are below the
critical threshold:

ΛAA < 1, ΛBB < 1 .

Equations from 26 to 30 show that the prevalence
of the epidemic for the coupled networks not only will
depend on the outer and inner degrees of the nodes
but also in their correlation. We study the coupling
with maximum local correlation between the inner and
outer degree of a node, such that:

kAb = αkAa ⇒ α =
〈kAb 〉

〈kAa 〉
, (31)

kBa = βkBb ⇒ β =
〈kBa 〉

〈kBb 〉
, (32)

where α and β are constants.
In order to go further, we will make all probabili-

ties to infect to be equal (λAA = λAB = λBA = λBB).
Then, after some basic operations, the eigenvalues
equation can be expressed:

Λ2
[

Λ2 − (ΛAA + ΛBB)Λ−

αβΛAAΛBB + ΛAAΛBB
]

= 0 .
(33)



The solution of the maximum eigenvalue is then:

Λ =
1

2

{

ΛAA + ΛBB+

√

(ΛAA − ΛBB)2 + 4ΛAAΛBB
〈kAb 〉

〈kAa 〉

〈kBa 〉

〈kBb 〉

}

.

(34)

Since the infection prevails if Λ > 1, we get:

〈kAb 〉

〈kAa 〉

〈kBa 〉

〈kBb 〉
>

(1− ΛAA)(1− ΛBB)

ΛAAΛBB
. (35)

If the two networks are statistically equivalent,

〈kAb 〉

〈kAa 〉
>

1− ΛAA

ΛAA
. (36)

Then, the critical value from which the epidemic prop-
agates is:

αc =
1− ΛAA

ΛAA
, (37)

where

α ≡
〈kAb 〉

〈kAa 〉
=

〈kBa 〉

〈kBb 〉
. (38)

By controlling the fraction
〈kA

b
〉

〈kA
a
〉
and using Equa-

tion 1 we will be able to find the critical value of λAA

(remember all rates have the same value) from which
the infection propagates. Alternatively, this equation
will allow us to determine the fraction of edges we will
have to add connecting the two networks in order to
make the epidemic survive if we know the infection
rates (making the correlation to be maximum). In the
following section, we compare these results with sim-
ulations.

3 Numerical simulation

In this section, we generate two exponential net-
works with inner minimum degree equal to 2. The
number of internal edges of each node follows the prob-
ability distribution function:

f(k) =

{

µe−µ(kin−2) if kin ≥ 2
0 otherwise

(39)

where we call kin either kAa or kBb .
We made the inner average degree to be 10, 〈kAa 〉 =

〈kBb 〉 = 10. Moreover, we can easily prove that:

〈kin〉 = 2 +
1

µ
. (40)

Then, by imposing the value of 〈kin〉 we could deter-
mine µ. The value of 〈k2in〉 could be easy obtained by
computing:

〈k2in〉 = µ

∫ ∞

2

k2ine
−µ(kin−2)dk = 4 +

2

µ

(

2 +
1

µ

)

.

(41)

The algorithm used in order to implement this pro-
cess is explained in Appendix and it is based on consid-
ering continuous time instead of discrete time, which
makes the program more efficient and powerful and re-
alistic. In the following simulations, we fixed different
values of the infection rates (i.e. values of Λ). Then,
by adding edges connecting the two networks making
the correlation to be maximum, we could determinate
at which value of α the epidemic propagated when
t → ∞. Figure 1 shows the prevalence of the infection
at large times. Arrows show the theoretical values of
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Figure 1: Prevalence of the epidemics as a function of
α for different values of Λ. Arrows show the expected
critical thresholds. We simulated the networks with
3× 105.

the critical threshold obtained in the previous section.
We can observe that, qualitatively, the numerical re-
sults agree with the theoretical ones.

Given a certain infection rate, the critical value of
α from which there is a phase transition and the infec-
tion propagates can also be determined by measuring
the time evolution of the density of infected nodes.
Right at the critical point the prevalence decays as a
function of time as a power law function. Figure 2a
shows, in logarithmic scale, the time evolution of the
global prevalence for different values of α for Λ = 0.8.
We can see that when α = 0.31 the time evolution of
the infected nodes shows a good power law behaviour.
Below this value, the prevalence decays exponentially
fast and the epidemic dies out and above it, there is
always a fraction of nodes which remains infected.

Although α = 0.31 is not the exact value for αc

(we should make a Finite Size Scaling to obtain, nu-
merically, a really accurate result), we can see that
the theoretical and the numerical results do not ex-
actly coincide. This is due to the approximations we
made to develop the critical value analytically. A first
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Figure 2: Time evolution of the infected nodes for different values for α when Λ = 0.8, when (a) local degrees
are correlated and when (b) they are rewired randomly. We simulated the networks with 3× 105.

improvement we can make is the following:
It can be proved that, for a single network, a bet-

ter result for the critical infection rate from which the
epidemic propagates, instead of Equation 1, is:

Λc ≡ λc

〈k(k − 1)〉

〈k〉
= 1 (42)

By substituting the new value of ΛAA into Equa-
tion 37 we could determine the new theoretical value
of αc. Figure 3 shows in a green line the dependence
between ΛAA and αc without this correction. The red
line shows that dependence using Equation 42, while
blue line shows Equation 37. We can see that the new
theoretical approximation gives a better result. We
cannot expect to find the same curve for both results:
although we have minimized the error for Λc, equation
37 is still an approximate solution by itself. Moreover,
the numerical results we obtained for αc are approx-
imated. However, both results are very close to each
other and that allowed us to check the expected be-
haviour of the epidemic spreading.

Finally, we have to point out that this critical
threshold from which there is global propagation in the
coupled networks is obtained under the condition of
complete correlation between internal and external de-
grees for each node. In fact, if there is not correlation
between them, there is not endemic state in the whole
range of the studied values of α. To conclude this
master thesis, we compared the results above against
a null model. We computed the time evolution of the
total fraction of infected nodes in the coupled networks
without local correlation. We fixed the total number
of external edges (for each value of α, we computed
the total number of external edges connecting the two
networks), we rewired them randomly in order to de-

stroy any correlation between internal and external de-
grees in each node and let the epidemic evolve. We
checked that, even for values of α that were above the
critical threshold, the epidemic does not propagate ei-
ther. Figure 2b shows, for the same values of α and
ΛAA = 0.8, the time evolution of the fraction of in-
fected nodes. We can see how the epidemics dies in
the coupled networks, and it is not possible to observe
a phase transition.

4 Conclusions and further work

In this master thesis, we have found a new thresh-
old from which an epidemics propagates within the
coupling of two random networks, that were below
their critical threshold and did not propagate the epi-
demics by themselves.

By adding edges coupling the two networks under
the condition that the correlation between inner and
outer degrees of each node is maximum, we could ob-
serve that above a critical value of the number of edges
connecting the two networks, the epidemics propa-
gated globally.

Although all theoretical results are obtained un-
der the heterogeneous mean field approximation, we
compared them with some simulations and observed
a good agreement. After using a better estimation
for the threshold for isolated networks, we observed a
great improvement of the results. On the other hand,
the infection is supposed to spread on two infinite
networks. However the networks we generated have
3 × 105 nodes, and one can expect finite size effects.
We also used other simplifying assumptions, like con-
sidering that all infection rates were equal. Different
results can be obtained if more realistic assumptions
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Figure 3: Dependence between ΛAA and αc. The
blue line shows the theoretical equation, the green line
shows each value of αc we obtained for each value of
ΛAA without correction and the red line shows αc once
the theoretical critical threshold for a single network
is modified for each value of ΛAA.

are taken into account. We keep that for further work
in order to complete the model.
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Appendix

The SIS model that we implemented uses an algo-
rithm where time evolves continuously, where there are
not two events taking place at the same time and they
occur independently of one another. More precisely,
they were assumed to follow a Poisson process. As we
know, two classes of events were considered: recovery
events and infectious events.

Since the simulations were taken in two coupled
networks and their recovery rates δA and δB could take
different values, it was needed to distinguish in which
one the recovery event occurred. The total number of
nodes that could be recovered in the network α (that
could be either A or B) is the total number of infected
nodes. Hence, the rate that one of these events occur
is given by the total number of infected nodes times
the rate for a single event:

Ωα
r = δα

∑

i∈α

nα
i (t) . (43)

For each infectious event two nodes were involved,
the node that was infected and the susceptible one
that connected it by an edge. Since the rates to infect
may depend on the network where they belong to, four
different kinds of infectious events were distinguished.
The total number of susceptible nodes from network β

that can be infected by one of their infected neighbours
from network α times the rate to infect, λαβ , gives the
total rate this event occurs:

Ωαβ
i = λαβ

∑

i∈α

(1 − nα
i (t))

∑

j∈β

n
β
j (t)a

αβ
ij . (44)

The initial system was supposed to have an in-
fected fraction of the total nodes.

In order to compute the time evolution of the sys-
tem, we created two lists with all infected nodes, one
for each network, as well as four lists with all edges
connecting an infected node with a node susceptible to
be infected. Each list would contain a different combi-
nation between the two networks: infected node from

networkA connected with a susceptible node from net-
work A, infected node from network A connected with
a susceptible node from network B, etc.

Using a random generator program, each event oc-
curred with a certain probability. For example, the
probability to recover an infected node from network
A was given by:

ΩA
r

ΩA
r +ΩB

r + ΩAA
i +ΩAB

i +ΩBB
i +ΩBA

i

, (45)

and analogously for the other events. If in a iteration a
node from network A was recovered, an infected node
was chosen randomly and became in the susceptible
state.

If, for example, in a given iteration an infection in-
volving two nodes from network A was required, then,
not one node was chosen randomly, but one of the
edges connecting an infected node with a non infected
one, both from network A. Then, the susceptible node
turned to be infected.

At each iteration the list was actualized. It is im-
portant to point that, for example, in the case where
an infection of a node from network A due to a node
from the same network takes place, not only the list
of infected nodes from network A and the list of both
links of edges belonging to the network A must be
actualized, but also the lists of edges connecting in-
fected nodes from network A with susceptible nodes
from network B, and the list connecting infected nodes
from network B with susceptible nodes from network
A. This algorithm needs to be computed more care-
fully than the continuous time simulations of the SIS
model for one single network.

After each iteration, time evolved as:

t → t+
1

ΩA
r +ΩB

r +ΩAA
i +ΩAB

i +ΩBB
i +ΩBA

i

.

(46)
After some iterations, process should evolve to the

stationary state we were interested in. Our simulations
finished when t = 100.


