Universitat Politécnica de Catalunya

Escola Técnica Superior d’Enginyeria Industrial

GRAPHICS AND HAPTICS USER INTERFACE FOR VIRTUAL
BRONCHOSCOPY

Director : Prof. Jan Rosell Gratacos

Author: Paolo Cabras

October 2010

2 Graphics and Haptics User Interface for Virtual Bronchoscopy

Graphics and Haptics User Interface for Virtual Bronchoscopy 3

Resumen

La broncoscopia virtual es una técnica de reconstruccion tridimensional generada por medio del or-
denador que simula la vista de las vias aéreas , como si se estuviese llevando a cabo una broncoscopia
real. Representa un ambiente 1til de entrenamiento donde el doctor puede recibir indicaciones sobre
el camino més corto que conecta la traquea con la zona enferma que se necesita observar con mas
atenciéon. La idea principal consiste en realizar una exploracion de los pulmones lo mas real posible,
como si el doctor estuviese sujetando un broncoscopio dando la sensaciéon de estar interactuando
con el ambiente real. Con este objetivo, el usuario llevara a cabo la tarea de exploraciéon utilizando
un dispositivo héptico, el cual permite la retro-alimentacién de fuerzas que puede ser aprovechada
para dar sensacion de tacto y fricciéon y también para dar una posible guia a lo largo de una ruta
calculada. El desarrollo de ese proyecto requiere: la implementaciéon de una representacion grafica
de los pulmones desde un punto de vista exterior y desde la cAmara del broncoscopio; la determi-
naciéon de los movimientos del dispositivo haptico para poder controlar el broncoscopio virtual de
la manera més real posible; la representacion héptica de las fuerzas de contacto con los elementos
virtuales y, finalmente, una evaluacion por parte de un equipo médico especializado. El programa
serd desarrollado utilizando H3DAPI para la representacion grafica y la interfaz haptica, Qt para
construir la Interfaz Grafica de Usuario y CMake para definir el proyecto: debido a esas elecciones

la aplicacion podré funcionar en diferentes Sistemas Operativos.

4 Graphics and Haptics User Interface for Virtual Bronchoscopy

Graphics and Haptics User Interface for Virtual Bronchoscopy 5)

Abstract

Virtual bronchoscopy is a computer-generated, three-dimensional reconstruction technique that
simulates a bronchoscopist’s view of the airways, creating a training environment where the doctor
can be assisted with indication of the shortest path connecting the trachea to the lung’s diseased
zone which he wants to analyze.

The idea is to make the lung exploration as much real as possible, as if the doctor was really handling
a bronchoscope, even giving the sensation of touching and interacting with the real physical bronchial
tube. With this aim, in this work, the user will carry out the exploration task by using a haptic
device, which is a device that allows force feedback that can be exploited to give touch and friction
sensation and also to provide guidance along the calculated path.

The development of the project requires: a) The implementation of the graphical representation of
the lungs both as a general view and as seen from the bronchoscope tip; b) The determination of
the movement of the haptic device that allows to control the motions of the virtual bronchoscope in
a realistic way; ¢) The haptic rendering of the contact forces; d) Validation with qualified personal.
The software will be developed using H3DAPI for images representation and Haptic interface, Qt
for the Graphic User Interface and CMake for defining the project: due to this choices the program

will be able to run on different Operative Systems.

6 Graphics and Haptics User Interface for Virtual Bronchoscopy

Graphics and Haptics User Interface for Virtual Bronchoscopy

Contents

Resumen
Abstract
Preface
1 Introduction

2 State of Art

2.1 Bronchoscopyo
2.2 Virtual Bronchoscopy 0oL

2.3 Simulation Training oL

3 Motivation

4 Objectives

5 Involved Hardware: Haptic Device

5.1 Haptic Deviceso
52 PHANTOM Omni

5.3 Haptic Renderers

6 Involved Software

11

21

23

31

8 Graphics and Haptics User Interface for Virtual Bronchoscopy

6.1 CMake
6.2 Graphic Rendering: H3DAPL
6.3 Haptics Rendering Engine: HAPL o o
6.4 Framework for software development: Qt oL

7 Haptics Interface

7.1 Bronchoscope Modeling L
7.2 Navigation System
7.2.1 Moving directly the camera oL
7.2.2 Moving the camera from the baseof thetip
7.2.3 Going Backward oo
7.3 Collisions and Haptic Renderer Chosen
7.3.1 C++ implementation

8 Graphics Interface

8.1 Qt - H3D integration: The QT Window Class
8.2 Main Application oL
8.2.1 Graphic design
8.2.2 Functioning
8.3 Two different views L L

9 Environmental Analysis

10 Costs Analysis

11 Results

12 Conclusions

37

40

41

43

ol

29

61

65

69

69

71

71

74

78

81

83

85

89

Graphics and Haptics User Interface for Virtual Bronchoscopy

13 Future Work

13.1 “Improving the Feeling”

13.2 Guidance

A User Manual

A1 Example of navigation

Bibliography

Bibliographic References,

Complementary Bibliography

91

............. 91

............. 91

93

............. 96

99

10 Graphics and Haptics User Interface for Virtual Bronchoscopy

Graphics and Haptics User Interface for Virtual Bronchoscopy 11

Preface

Lately, engineering and medicine are collaborating more and more to find new solutions to make the
doctor task easier and increase the comfort for the patient. The tendency is to make the operations
the least invasive possible and to intensify the use of virtual reality for training or diagnosis. This
techniques have been improving their reliability and they are increasingly assuming a fundamen-
tal role on the medicine scene. Despite this big steps, many invasive medical procedure are still
“unavoidable”, an example is bronchoscopy. It still represents the unique way to obtain samples of
the possible tumoral tissue for further analysis or to remove foreign objects from the airways. This
procedure is still very bothering for the patient and in some cases it takes a long time (bronchoscopy
can last between 20 and 30 minutes depending on the procedure to perform).

Also in this field the doctor can receive an important assistance from technology. The most spread
and affirmed tools used are Virtual Bronchoscopy and training platform. They take care of two
different but both important sides of the bronchoscopy field. Training platforms provide medical
staff with a very “real” environment where they can approach to the bronchoscopy in a safe way
and experiment some kind of complications that can come out during the real procedure.

Virtual Bronchoscopy helps doctors to make preliminary studies on the conformation of the patient
airway and choose the better solution procedure. The increasing diffusion of this tool can be consid-
ered a natural expression of the current tendency of the “personalization of the health care” whose
basic idea is to use the patient’s internal structure to plan the better procedure. Furthermore,
nowadays the clearness of the information is another important point and with 3D reconstruction
provided by virtual bronchoscopy, patient and doctor can have almost the same level of understand-

ing.

This work wants to place itself exactly in the junction of these two fields (training and virtual
reconstruction to previous planning and diagnosis) creating a new tool that can “personalize” also

the training.

12 Graphics and Haptics User Interface for Virtual Bronchoscopy

Graphics and Haptics User Interface for Virtual Bronchoscopy 13

Chapter 1

Introduction

Bronchoscopy is an interventional medical procedure used to analyze the bronchial tube, to see
abnormalities of the airway, obtain samples from a specific lung site identified on preoperative
images (CTI or MRI) !, evaluate a person who has bleeding in the lungs, possible lung cancer, a
chronic cough, or a collapsed lung, remove foreign objects lodged in the airway or open the spaces

of a blocked airway.

A critical point for this technique is to find the right path to get to the target: doctors usually
analyze the DICOM images ? and try to plan the path on these 2-D images, which are very different
from the real scene they will face while executing bronchoscopy. Finding the way inside the bronchial
tree, then, comes to be very difficult and it takes a long time to the doctor to find the right path
or to make an overall analysis of the airways, with a consequent great bother for the patient.
Concerning this last point, the current tendency in medical procedures is to make them as much
no-invasive as possible so that the patient would be less affected and would feel more comfortable.
Considering this fundamental question, Virtual Bronchoscopy (VB) could be considered a useful
tool. VB is a computer-generated, three-dimensional reconstruction technique that allows medical
staff to explore the bronchial tree. This technique is already used to make a previous analysis
of lungs, help individuating the diseased zone and to see if it is necessary to proceed with real

bronchoscopy.

This project intends to improve Virtual Bronchoscopy so that to make the lung exploration as
much real as possible, as if the doctor was really handling a bronchoscope, even giving the sensation
of touching and interacting with the real physical bronchial tube. With this aim, in this work, the
user will carry out the exploration task by using a haptic device, which is a device that allows force

feedback that can be exploited to give touch and friction sensation.

!Computed Tomography and Magnetic Resonance Images
Digital Imaging and COmmunications in Medicine, the set of slices coming from CT images (in gray scale)

14 Graphics and Haptics User Interface for Virtual Bronchoscopy

Graphics and Haptics User Interface for Virtual Bronchoscopy 15

Chapter 2

State of Art

2.1 Bronchoscopy

Bronchoscopy is a procedure in which a thin tube is threaded through the nose or mouth into the
windpipe and lungs. This allows the clinician to look inside a patient’s airway for abnormalities
like blockages, bleeding, tumors, or inflammation. The clinician often takes samples from inside the
lungs: biopsies, fluid, or endobronchial brushing. The clinician may use either a rigid or a flexible

bronchoscope.

Types

There are two ways to perform a bronchoscopy, depending on which bronchoscope is used: a rigid
bronchoscope or a flexible fiberoptic bronchoscope. We will center on flexible bronchoscope, since,
today, the majority of bronchoscopies are performed using the flexible fiberoptic scope because of
the improved patient comfort and reduced use of anesthesia. For the same reason, in our study, it
has been decided to model the movements of this kind of bronchoscope.

Flexible fiberoptic bronchoscopy uses a fiberoptic camera on a flexible mounting to look inside the
airway. This technique is more comfortable for the patient and does not require general anesthesia,
although, in most cases, conscious sedation (“twilight sleep”) is utilized. The bronchoscope can be

considered as a device with 3 DOF, as it is shown in the picture 2.1:
e insertion/extraction of the tube (A).

e rotation along the axis of the tube (D).

e rotation (+90°) of the tip, that allows the doctor to turn. The rotation of the tip is made by
rotating a little wheel (B) in the handle of the bronchoscope.

o Wﬂ’g ?
fe.

e

16 Graphics and Haptics User Interface for Virtual Bronchoscopy

Figure 2.1: Degrees of freedom of a bronchoscope. 1) translational motion forward and backward along the
D-azis generated by pushing and pulling the bronchoscope (B); 2) rotational motion around the
C-azis obtained by turning wheel A (the camera central azis, E, coincides with D when the wheel
is at its home position); 8) rotational motion around the D-axis produced by the rotation of the

whole bronchoscope handle.

The bronchoscope is inserted through the nose (or mouth), down the throat, and into the airways
(see fig. 2.2). The bronchoscope can also be inserted into the airway through a breathing tube. A
flexible bronchoscope is a long, thin tube of optical fibers that transmit light. Before the procedure,
the nose and throat are numbed by a spray of medicine squirted into those areas. This helps prevent
coughing and gagging when the bronchoscope is inserted. The vocal cords, windpipe and airways
are visualized by a light and mini-camera situated on the tip of the bronchoscope. Pre-medication

is given before the procedure to relax the patient but not cause loss of consciousness.

As mentioned before, the navigation in the bronchial tree and, consequently, the diagnosis can
be very difficult: because of their dimension and low flexibility, standard bronchoscopes cannot
reach all the zone of the lungs (above all the upper and boarder zones), so the doctor is not able
to see directly all the part of the lungs themselves. In the exploration with the bronchoscope, the
doctor have not many references that helps him to find the right path towards the zone of interest,
so the navigation is very difficult, sometimes. New advanced methods have been introduced to help
navigate the bronchoscope and improve diagnostic ability, such as Virtual Bronchoscopy (which will
be illustrated in the next section), electromagnetic navigation and endobronchial ultrasound.
Electromagnetic navigation bronchoscopy detects lung tumors by using low-frequency electromag-

netic waves to guide the bronchoscope.

Graphics and Haptics User Interface for Virtual Bronchoscopy 17

Bronchoscope

Figure 2.2: Scheme of flexible bronchoscopy

Endobronchial ultrasound can be combined with electromagnetic navigation bronchoscopy to achieve
a great technique for tumor detection: a study found that the combination of the two techniques
was able to successfully diagnose lesions in 88% of patients, whereas electromagnetic navigation

bronchoscopy alone successfully diagnosed lesions in 59% of patients [1].

2.2 Virtual Bronchoscopy

Advances in computer technology have permitted development of virtual reality images of the tra-
cheobronchial tree using data sets derived from helical CT of the chest. One method is wvirtual

bronchoscopy (VB), which is a form of computed tomography (CT).

Virtual bronchoscopy is used for the screening of airways in endoluminal neoplasias diagnosis,
for the evaluation of bronchial stenosis and to obtain a sort of map for the prospective fiberoptic
bronchoscopy. This technique does not need the insertion of any instrument in the airways. It uses
special x-ray equipment to take clear, detailed pictures of the inside of the lungs. Its 3D recon-
struction allows a better observation of the relation between the airways and all the other organs
or other structures. It has improved the ability of bronchoscopy to detect small, cancerous lung
lesions that are inaccessible by conventional methods, above all in peripheral zones, but it cannot
be used to sample neither cytologic nor histologic material. VB does not represent an alternative
to fiber-optic bronchoscopy. It seems clear that the virtual bronchoscopic view of the airway, if

both anatomically accurate and providing accurate measurements, is an important new addition in

18 Graphics and Haptics User Interface for Virtual Bronchoscopy

the pulmonary physician’s practice, and is especially useful in evaluating the airway before initial
or sequential real bronchoscopies where an interventional procedure might be considered. These
images reduce the chances of significant surprises occurring during any procedure, and allow the

patient and family to be as fully informed of the records as the physician is.

Complex Virtual Bronchoscopy

Virtual bronchoscopy can be used to achieve different results and it is becoming the current helping
tool to improve diagnosis and to facilitate the task of the bronchoscopy. We can basically distinguish

three complex application of the VB idea.

The first of these complex virtual bronchoscopy applications uses the data contained within the
three-dimensional image for procedures of localization within the mediastinum® and hilar struc-

tures2.

A simple example is understanding where a mediastinal lymph node is in relation to the bronchial
tree. In traditional bronchoscopy, the doctor can only see the airway lumen and not on the other
side of the nontransparent bronchial epithelium, where the lymph node (that is the target for a
transbronchial needle aspiration or core biopsy) may be. Using the virtual bronchoscopy information
obtained from the three-dimensional MDCT (Multi Detector Computed Tomography) dataset, it can
be shown precisely the same image as the real bronchoscope does, with gray-scale rendering. With
these two images side by side (the virtual bronchoscopic visualization and the real bronchoscope
visualization of the same region), it is possible to make the “virtual bronchial wall” transparent, so
that the structures through the bronchial wall can be visualized.

Once the lymph node is made visible on the virtual bronchoscope images, comparing the virtual
and real scene, the bronchoscopy operator can, with a great degree of confidence, know where the
target lymph node is. His task can be made easier using a computer script for the image processing
to transfer the virtual image with the lymph node in question to overlay the real bronchoscopic
image.

Early results suggest a greater than 90% success rate for mediastinal and hilar lymph node biopsies.

Clearly, these early successes open the possibility of sampling mediastinal structures precisely and

!The mediastinum is a non-delineated group of structures in the thorax, surrounded by loose connective tissue.
It is the central compartment of the thoracic cavity. It contains the heart, the great vessels of the heart, esophagus,

trachea, phrenic nerve, cardiac nerve, thoracic duct, thymus, and lymph nodes of the central chest.
2 Above and behind the cardiac impression is a triangular depression named the hilum, where the structures which

form the root of the lung enter and leave the viscus. These include the pulmonary artery, the superior and inferior
pulmonary veins, lymphatic vessels and the bronchus, with bronchial vessels surrounding it.A pleural sleeve is created
around these structures, where the pleura reflects, changing from visceral to parietal. These structures pass through
the narrow hila on each side and then branch as they widen out into the lungs. The hila are not symmetrical but

contain the same basic structures on each side.

Graphics and Haptics User Interface for Virtual Bronchoscopy 19

reliably. This also opens up the possibility of localized application of nonspecific or specific therapies.

A second advanced virtual bronchoscopic application is that of path-finding to a peripheral region
of interest within the lung [2]. With the significant improvement in MDCT scanners, seven or eight
generations of airways can now be automatically extracted and evaluated. A specific software can
interrogate the three-dimensional image dataset and provide a pathway that links the trachea with
the lesion in the lungs peripheral region. This path, then, can be easily cannulated and once this
tube is placed, several probes can be placed either to brush or biopsy or optically or by ultrasound
sample the lesion of interest.

Using these sorts of approaches, in early studies, 80% of peripheral lung lesions can be easily and
satisfactorily sampled. These pulmonary pathfinding applications are in clinical studies and are

being developed by a number of companies for medical application.

The third advanced virtual bronchoscopy application involves the targeting of the peripheral
lung for endobronchial valve-type procedures in the management of pulmonary emphysema, so-
called endobronchial lung volume reduction surgery |3]. Here, the information that is required is
the state of the lung parenchyma and the extent of emphysema in each segmental region together
with the anatomic configuration and size of the subtending airway segments. In this case, it allows
operating interventional pulmonologist to plan many things before the procedure, such as valve size,
how many segments a device might require to be placed, whether the segment lengths are adequate

for the valve placement.

In summary, it can be affirmed that VB is getting a more and more useful tool to be used
with actual bronchoscopy. Application of advanced virtual bronchoscopy techniques is an obvious
solution to shorten procedure times, to improve accuracy of device placement, to reduce medical

error, and to educate the patient and families.

2.3 Simulation Training

One important tool for the training of the bronchoscopy operator is the bronchoscopy simulator
(2.3). It’s a virtual reality simulator with a model flexible bronchoscope that looks and feels like
the real object. It interacts with a small bench top sensor which registers the scope’s movements
and translates this to a three-dimensional virtual airway displayed on a computer screen. The user
can progress through virtual clinical scenarios receiving instant feedback from the simulator which
measures participant performance. In certain models the reconstruction of medical environment is
very realistic, it can comprise a replica of a human body and many complications that can happens

during the real bronchoscope.

A bronchoscopy simulator allows the doctors to repeat the procedural experiences at their own

20 Graphics and Haptics User Interface for Virtual Bronchoscopy

-

Figure 2.3: The VR bronchoscopy skill station includes a cart, computer, display, printer, proxy flexible
bronchoscope, and keyboard. While the operator performs Flexible Fiber Bronchoscope via the

left nares, realistic resistance is felt during manipulation of the proxy flexible bronchoscope.

pace and practice medical procedures by accurately duplicating the look and the feel of real-life
situations. This improves patient safety by allowing the doctor to become better trained without
putting patients at risk. The study in |4] compared the bronchoscopy skills and cognitive knowledge
of 22 fellows who received standard bronchoscopy training with 22 fellows who received additional
bronchoscopy training, including simulation bronchoscopy and an online curriculum. Results showed
that fellows who received additional simulation training significantly improved their bronchoscopy

skills and accelerated the acquisition of skills compared with those who received standard training.

Simulators will allow this initial training to occur in a time-efficient and cost-effective manner. In
a very short period of time, fellows can be exposed to a broad range of cases that reflect variations in
patient anatomy, pathology, and physiology. These exercises or procedures would otherwise require

numerous real-life encounters and costly hours of supervision.

Simulation Procedure

To begin the bronchoscopy, the user inserts the bronchoscope into the robotic device. The broncho-
scope feels and acts like an actual flexible fiberoptic bronchoscope. The device tracks the motions of
the flexible bronchoscope and reproduces the forces felt during an actual bronchoscopic procedure.
The proximal end of the interface device can be shaped like a human face with a port to insert
the flexible bronchoscope through one of the nasal passages. The flexible bronchoscope tracks the
manipulations of the tip control lever, the suction button, and video buttons. In addition, instru-
ments are tracked as they are manipulated in the working channel. This allows for biopsies and

other diagnostic and therapeutic procedures to be performed on the simulator.

ok

Y

8

7

A\
Y 5

Dyl

bz

Graphics and Haptics User Interface for Virtual Bronchoscopy 21

A monitor displays computer-generated images of the airway as the user navigates through the vir-
tual anatomy. Texture maps based on videotapes of actual bronchoscopic images are added to the
airway models to give the mucosa a realistic look. Using different CT scan data sets allows for the

development of a variety of simulated cases that reflect a range of patient anatomy and pathology.

In addition to being anatomically correct, the virtual patient also behaves in a realistic manner.
The patient breathes, coughs, bleeds, and exhibits changes in vital signs. Complications are pro-

grammed in such as lidocaine toxicity causing the patient to seize or develop a cardiac arrhythmia.

The simulation computer software records all the actions of the user and stores this information
in a database. Complications such as hemorrhage, pneumothorax and cardiorespiratory distress can
be programmed to occur during a simulated case. The trainee must then respond in a timely and

appropriate manner.

22 Graphics and Haptics User Interface for Virtual Bronchoscopy

Graphics and Haptics User Interface for Virtual Bronchoscopy 23

Chapter 3

Motivation

In comparison with real bronchoscopy, Virtual Bronchoscopy has some advantages. It is a non-
invasive procedure that can visualize areas inaccessible to the flexible bronchoscope. Virtual bron-
choscopy is able to evaluate bronchial stenosis and obstruction caused by both endoluminal pathol-
ogy (tumor, mucus, foreign bodies) and external compression (anatomical structures, tumor, lymph
nodes), can be helpful in the preoperative planning of stent placement and can be used to evalu-
ate surgical sutures after lung transplantations, lobectomy or pneumectomy. Virtual bronchoscopy,
then, is a very useful tool but it provides only an exploration made by a camera passing through
points, which are established previously. Since all the commands are given by keyboard or mouse,
this procedure does not allow any sort of interaction with the tissue nor a correspondence with the
real movements the doctor would do with the bronchoscope. Furthermore, since no interaction is

provided, the “virtual camera” can go out of the bronchial tree, while exploring within.

The bronchoscopy simulator, which, on one side, provides a very realistic environment (con-
sidering force feeling, procedure and instruments), is not very practical, on the other hand, for a
specific analysis on a particular patient: it provides only a range of cases that reflect variations in

patient anatomy, pathology, and physiology. Moreover, it does cost a lot.

Therefore, there is the need of a VB system able to be navigated in a more realistic way. This
can be achieved exploiting the characteristic of haptics devices that can provide the doctor with a
complete platform to see and, somehow, feel as if he were doing a real bronchoscopy on that specific

patient.

The natural target of this software will be bronchoscopy experts, who will exploit the useful

characteristics of the VB joined with a more ergonomic way of doing it.

By using VB with haptic feedback, medical staff is expected to carry out their tasks in a more

fluent way and in a shorter time, since they would know the path and movement in advance. Fur-

24 Graphics and Haptics User Interface for Virtual Bronchoscopy

thermore, this fact is also expected to improve the patient reaction to this operation, since it would
take less time and reduce the number of “forward-backward” movements of the bronchoscope in

bronchis, which are very annoying for the patient.

The present work is focused on the development of a system able to allow people to navigate
inside the bronchial tree using an haptic device. Since it is part of a bigger project, this work also
responds to the need of having a software that could integrate all the tools developed in the whole
project: load the 3D-lung reconstruction from CT images and the shortest path calculated to get

to the diseased lung zone and allow people to navigate the 3D scene using a haptic device.

This work intends to represent another little step to the “personalization of health care”, which
means to use the patient’s internal structure and function for the training or preplanning of complex
diagnostic or therapeutic procedures. This seems to be a fundamentally important characteristic

for improving the outcome of health care.

Graphics and Haptics User Interface for Virtual Bronchoscopy 25

Chapter 4

Objectives

The main objective of this work is to make a basic application which, exploiting virtual reality and
haptics device potentialities, can be used to execute virtual bronchoscopy of that particular patient
in a more practical and realistic way, using the same movements to move the camera within the
airways and recreating, somehow, the feelings of a real bronchoscopy. It is not the aim of this work

to build a complex simulator.

To achieve this objective, this work is divided into two modules:

e Navigation Module
The first problem that has to be resolved is the determination of the haptics device movements
that allow to control the motions of the virtual bronchoscope in the most realistic way, in other
words the most accurate correspondence between camera motion controlled by haptics device
and the camera motion controlled by broncoscope has to be found, disabling, if it is necessary,

those device DOF not present in the real broncoscope.

This module must also cope with the rendering of the contact forces and the management of

the collisions, in order to avoid the exit from within the bronchial tube.

e Visualization Module
The software also requires a Graphics Interface that permits the user to see the virtual scene
and explore it: to make the exploration more intuitive, the application must provide the
graphical representation of the lungs both as a general view and as seen from the bronchoscope

tip, so the user can always know in which position he is and where to go.

Another important objective is to create a “cross-platform” software, able to run on different
Operative System. Therefore, the libraries chosen for the implementation will meet this require-

ment.

26 Graphics and Haptics User Interface for Virtual Bronchoscopy

Graphics and Haptics User Interface for Virtual Bronchoscopy 27

Chapter 5

Involved Hardware: Haptic Device

5.1 Haptic Devices

Haptic devices (or haptical interfaces) are mechanical devices that allow users to touch, feel and
manipulate 3D objects in a virtual environment or in a tele-operated system. Unlike the other most
common computer interface devices (mouse, keyboard or joystick) which are input-only devices, the
haptic devices are input-output devices, meaning that they track a user’s physical manipulations
(input) and provide realistic touch and sensations coordinated with on-screen events (output): they
give the force feedback to the subject who is interacting with virtual or remote environments, giving,

somehow, the sensation of being present in the scene.

The word haptic derives from the Greek haptikos meaning “being able to come into contact
with”. In human-computer interaction, haptic feedback means both tactile and force feedback. The
term Tactile, or touch feedback is used to express the sensations felt by the skin. Tactile feedback
allows users to feel things such as the texture of surfaces and vibration. Force feedback reproduces
directional forces that can result from solid boundaries, the weight of grasped virtual objects,
mechanical compliance of an object and inertia. All these features enhance the task performance

and increase the realism of a simulation.

Considering the human sensorial characteristics, they impose much faster refresh rates for haptic
feedback than for visual feedback: for example, tactile sensors in the skin respond best to vibrations
higher than 300 Hz. For this reason HAPI', and usually also the other haptic rendering APIs man-
age the high priority threads for haptic rendering at 1000 Hz [5]. This order-of-magnitude difference
between haptics and vision bandwidths requires that the haptic interface incorporate a dedicated

controller. Since it is computationally expensive to convert encoder data to end effector position

'Library for haptic handling and rendering. It will be further described in section 6.

o Wﬂ’g ?
fe.

e

28 Graphics and Haptics User Interface for Virtual Bronchoscopy

and translate motor torques into directional forces, a haptic device will usually have its own ded-
icated processor. This removes computation costs associated with haptics and the host computer

can dedicate its processing power to application requirements, such as rendering high-level graphics

[6].

The haptic interfaces sold at present can be classified as either ground-based devices (force
reflecting joysticks and linkage-based devices) or body-based devices (gloves, suits, exoskeletal de-
vices). The most popular design on the market is a linkage-based system, which consists of a robotic
arm attached to a stylus. The arm tracks the position of the stylus and is capable of exerting a

force on the tip of this stylus.

An alternative to a linkage-based device is one that is tension-based. Instead of applying force
through links, cables are connected to the point of contact in order to exert a force. Encoders
determine the length of each cable. From this information, the position of a “grip” can be determined.
Motors are used to create tension in the cables, which results in an applied force at the grip. In
this case, it has to be considered the one which better would represent the bronchoscope, so it had

been chosen a linked based system.

Many kind of devices can be found among the linkage-based systems. Since the configuration
of one bronchoscope is determined by the tip’s position and orientation, we centered on the 6 DOF
devices. Among the brands, we decided for PHANTOM by Sensable Technologies, whose devices
were already used in our laboratory (PHANTOM Premium) and which was one of the first in

commercing force feedback devices and, nowadays, is the most popular.

Among the PHANTOMSs there are three devices that could suit our needs:

e Premium: 6 DOF and force feedback for the position and momentum for the orientation.

e Desktop: 6 DOF but force feedback for only 3 joints (the position ones), i.e. only three
electric actuators to virtually fix a point in a 3D space. Also his workspace is smaller than

the Premium’s one.

e Omni: like the Desktop but with less power for the force-feedback and more friction.

Considering the degrees of freedom of the bronchoscope and above all the charateristic and
wanting to make the doctor feel the bronchoscopy and, in the future, provide a sort of guidance,
the 6 DOF of Phantom Premium would be the best choice. The momentum given by this device
will increase the reality of the application and moreover it would allow to force the user to adopt
a determined orientation, which will help a possible guidance to be more effective. Other factors,

such as costs, has to be taken into account for the choice, because it would be kind of meaningless

Graphics and Haptics User Interface for Virtual Bronchoscopy

29

Model

The PHANTOM Deskiop Device

The PHANTOM Omni Device

Force feedback workspace

~64W=x48H=x48D
=160 W x 120 Hx 120 D mm

~64W=x48H=x28Din
>160 W=x 120 Hx 70 D mm

Footprint
Physical area the base of device
occupies on the desk

338W=x714Din
~ 143 W x 184 D mm

63BW=x8Din
~ 168 W =x 203 D mam

Weight (device only) 61b Soz 3lb13 oz
Range of motion Hand movement prvoting at wiist Hand movement prvoting at wrist
= 1100 dp1 = 450 dp1
Nominal position resolution ~0.023 mm =~ 0,055 mm
Backdrive friction <023 oz (0.06) <loz(D26MN)

Maximum exertable force at nominal
(orthogonal arms) position

1.8 1bf (F.ON)

0.75Ibf (3.3N)

Continnous exertable force (24 hrs.)

0.2 1bE (175)

= 0.2 bf (0.88)

Stiffness

X axiz > 10.8 Ib/in (1.86 N/mm)
Y ancis > 13.6 Ibfin (2.35 N/mm)
Z axis > 8.6 Ib/in (1.48 N/mm)

X axis > 7.3 Ibiin (1.26 N/mm)
Y axis > 13.4 Ib/in (2.31 N/mm})
Z axis = 5.9 1b/in (1.02 N/mm)

Inertia (apparent mass at tip)

~ 0,101 [bm. (45 =)

~ 0101 Ibm. (45 =)

Force feedback

V. z

o

Position sensing

L T e E e R LY]

[Stylus gimbal]

% y. z (digital encoders)
[Pitch. roll, vaw (= 3% lineanty
potentiometers)]

x. v. z (digital encoders)
[Pitch. roll, vaw (= 5% lineanty
potentiometers)]

Interface Parallel port and IEEE-1394 FireWue® port:
FueWue® option® f-pin to 6-pin*
Supported platforms Intel or AMD-based PCs Intel or AMD-based PCs

OpenHaptics® Toolkit compatibility

Yes

Yes

Figure 5.1: Comparison table between Phantom Omni and Phantom Desktop

to build a program on a expensive device if an acceptable result can be achieved also with much

cheaper devices (e.g. Phantom Omni that is 25 times cheaper than the Phantom Premium).

As it can be seen on the comparison table (fig. 5.1), Desktop and Omni basically differs only
on the strength of the force feedback. Since it was seen that the force provided by the Omni was

sufficient, finally PHANToM Omni was chosen for this application.

5.2 PHANTOM Omni

PHANTOM Omni has 6 DOF: 3 digital encoders to read the position and +5% linearity poten-
tiometers to read the stylus gimbal angles. As mentioned before, it cannot provide torque but only

force feedback in the three orthogonal axis X, Y and Z.

i
n»,FQf’gﬂ

Eatrod
i

30 Graphics and Haptics User Interface for Virtual Bronchoscopy

Control Algorithm

The Omni (as the other PHANTOM devices) uses an impedance control algorithm: the user moves
the device and it responds with a force, if it is necessary. In this kind of algorithm the control
loop can be resumed as follow. The position sensors detect the movement made with the device
by the user, then the hardware controller (driver) sends the translation information to the software
simulator, which determines if a reaction force is required and its magnitude value. The host
computer sends feedback forces to the device. Actuators (motors within the device) apply these
forces based on mathematical models that simulate the desired sensations.

For example, when simulating the feel of a rigid wall, the driver orders to the motors to stay in a
determined position and actuators (motors within the device) exerts the forces needed to stay at

that position. The farther the wall is penetrated, the harder the motors push back the device.

Workspace Definition

Nominal Worspace (NW): it is the volume in front of the device, in which the manufacturer
guarantees the specified force feedback and precision. No physics limitations forbid to exit this
volume, since it is only definition of part of the space and the joint range allows wider movements.

For the Omni device is a parallelepiped whose dimensions are 160 W x 120 H x 70 D [mm)].

The nominal workspace is different from the real workspace (RW) which is the volume con-
taining all the points reachable by the device end effector, exploiting the maximum range of all
joints. The RW comprises marginal zones where the device behavior would not be acceptable for

certain applications, this would be a question to take care of in every prospective work.

5.3 Haptic Renderers

The haptic renderer’s task (or haptic-rendering algorithm) is to compute the correct interaction
between the representation of the haptic interface in the virtual environment and the objects pop-
ulating that envinronment. Furthermore, these algorithms ensure that the haptic device correctly

renders such forces on the human operator.

Following the idea of professors Salisbury, Conti and Barbagli described in [7], three parts can

be distinguished in a haptic-rendering algorithm:

e Collision-detection algorithms detect collisions between objects and avatars® in the virtual

2The virtual representation of the haptic interface through which the user physically interacts with the virtual

environment.

Graphics and Haptics User Interface for Virtual Bronchoscopy 31

environment and yield information about where, when, and ideally to what extent collisions

(penetrations, indentations, contact area, and so on) have occurred.

o [orce-response algorithms compute the interaction force between avatars and virtual objects
when a collision is detected. This force approximates as closely as possible the contact forces
that would normally arise during contact between real objects. Force-response algorithms typ-
ically operate on the avatars’ positions, the positions of all objects in the virtual environment,
and the collision state between avatars and virtual objects. Their return values are normally

force and torque vectors that are applied at the device-body interface.

o (ontrol algorithms command the haptic device in such a way that minimizes the error between
ideal and applicable forces. These algorithms take as input the force and torque vectors
computed by force-response algorithms and return the values of the actual force and torque

vectors that will be commanded to the haptic device.

For example, HAPI (haptic rendering API which will be described better in section 6) is a
library that allow to build haptic interfaces, giving methods and function which implement the
three parts just mentioned. There are four haptic renderers available in this library: two are
internally implemented in HAPI and two use external haptics libraries. Each of them can work

better than the others on a specific shape model or in a specific application.

GodObject renderer

The god-object algorithm was introduced by Zillers and Salisbury [8]. It uses a point proxy and
supports custom user defined surfaces. Moreover, it is Open Source and device independent but

could have problems wth the concave part of a curved surface.

Ruspini renderer

The RuspiniRenderer is based on the algorithm presented by Ruspini et al. in [9]. It is different
from all the other renderers in HAPI in that it uses a sphere proxy making it possible to have
an interaction object with a size instead of just a point. As the GodObject, also this renderer is
Open source, device independent and support user surfaces, but it is a little slower than the other

renderers.

Chai3D

Chai3D is an open source haptics library distributed under the GNU GPL license. It has been

developed by a team at Stanford University in California, USA. As the others, it is open source and

32 Graphics and Haptics User Interface for Virtual Bronchoscopy

device independent, but this presents some fallthrough problems on moving objects and it does not

allow user defined surfaces [10].

OpenHaptics

OpenHaptics is a proprietary haptics library developed by SensAble Technologies. It uses a point
proxy based approach and provides a stable haptic feedback. It is however not very extendable in
terms of user defined surfaces and only works with haptics from SensAble Technologies, moreover is
closed source. Among the pros of this renderer, we can mention the availability of MagneticSurface?

and a good behavior with moving objects.

31t is a H3DAPI surface node with a particular haptic property that makes the surface magnetic: the surface has
a sort of magnetic field (modeled like a spring force, whose spring constant and the range of action can be set) that
attracts the proxy and force it to stay on the surface, sending to the device the corresponding forces to make it stay

on the surface. It works only with OpenHaptics Renderer

Graphics and Haptics User Interface for Virtual Bronchoscopy 33

Chapter 6

Involved Software

6.1 CMake

As it is described in the official site [11], CMake is an extensible, open-source, cross-platform make
system that manages the build process in an operating system and in a compiler-independent
manner. CMake has many functionality: it can compile source code, generate wrappers, create
libraries and build executables in arbitrary combinations. CMake also supports static and dynamic

library builds.

Unlike many cross-platform systems, CMake is designed to be used in conjunction with the
native build environment. Moreover, CMake generates a cache file that is designed to be used with
a graphical editor. For example, when CMake runs, it locates include files, libraries, and executables,
and may encounter optional build directives. This information is gathered into the cache, which

may be changed by the user prior to the generation of the native build files.

It is very easy to use: the build process is controlled by creating one or more configuration files
in each source directory (called CMakeLists.txt files) that make up the project. These configuration
files are used to generate standard build files (e.g., makefiles on Unix and projects/workspaces
in Windows MSVC) which are employed in the usual way. CMake provides many pre-defined
commands but, if needed, user defined commands can be made. Furthermore, it is possible to add
other makefile generator (Unix and MSVC++ is supported currently) for a particular compiler/OS

configuration.

Its easy learning and all the possibilities it offers make CMake an almost essential (or at least

very useful) tool for developing cross-platform software.

%
(2

N

34 Graphics and Haptics User Interface for Virtual Bronchoscopy

6.2 Graphic Rendering: H3DAPI

For graphic rendering there are many solutions too. Scene-graph based API seemed to be a good
tool to make complex application more manageable, so we will center on this kind of API. The
scene graph structure uses a hierarchical representation of a scene with nodes to divide the world

into smaller sub-components with its characteristics and properties set in specific fields.

Openlnventor is an object-oriented 3D toolkit offering a comprehensive solution to interactive
graphics programming problems. It can be defined the de facto standard for 3D visualization and
visual simulation software in the engineering community. It presents a programming model based
on a 3D scene database, including a rich set of objects (such as cubes, polygons, text, materials,
cameras, lights, trackballs, handle boxes, 3D viewers) and editors that speed up the programming
time. This toolkit is built on top of OpenGL, provides a stardard file format for data interchange and
it is cross-platform, window-system and platform independent. It allows animations and creating

new users customized objects.

Coin3D is another example of high-level 3D graphics toolkit for developing cross-platform real-
time 3D visualization and visual simulation software. As Openlnventor is, also Coin3D is built on
OpenGL and uses scene graph data structures to render 3D graphics in real-time. In fact, Coin3D
is fully compatible with Openlnventor. In addition, it provides 3D sound, 3D textures, and parallel
rendering on multiple processors. Another interesting feature is the seamlessly integration in the Qt
development environment. Coin3D, which is only oriented to the graphic rendering, is a “very much
developed” instrument to manage graphic rendering: it offers a wide range of tools to managing the
camera and creating several indipendent window with different point of view perfectly integrated
with Qt (thanks to the SoQt library!).

Both of these mentioned API only provide graphic-rendering, so in applications that require
haptic devices, haptic rendering has to be developed in parallel. If you want to use scene-graph APlIs,
the solution is to create a duplication of the scene-graph, one cointaining the haptic specifications
and the other for the graphic rendering. This would imply to keep the two in sync (Coin3D and
Openlnventor have callbacks mechanism to handle this, unless you have many dynamic objects

moving around) and may imply data redundancy (every object has to be duplicated in both scene-

graph).

H3DAPI is an open-source, cross-platform, scene-graph API. H3D is written entirely in C-++
and uses OpenGL for graphics rendering and HAPI for haptics rendering. It provides a scene-graph
API that merge graphics and haptic features: it performs graphic and haptic rendering from a
single scene description. H3D leverages the de facto industry standard haptic library OpenHaptics.
Through the use of HAPI there is also haptics rendering support for several other devices that does

'For more information on this library, see http://doc.coin3d.org/SoQt/

ok

Y

8

7

A\
Y 5

Dyl

bz

Graphics and Haptics User Interface for Virtual Bronchoscopy 35

not depend on OpenHaptics? . H3D is built using many industry standards [12] including:

X3D3.The Extensible 3D file format that is the successor to the VRML standard. X3D, how-
ever, can be considered an ISO open standard scene-graph design that is easily extended to offer

new functionality in a modular way.

XML *. Extensible Markup Language, XML is the standard markup language used in a wide
variety of applications. The X3D file format is based on XML, and H3D comes with a full XML

parser for loading scene-graph definitions.

OpenGL °. Open Graphics Library, the cross-language, cross-platform standard for 3D graph-
ics. Today, all commercial graphics processors support OpenGL accelerated rendering and OpenGL

rendering is available on nearly every known operating system.

STL - The Standard Template Library is a large collection of C++ templates that support
rapid development of highly efficient applications. It provides also a quite rapid development: by
combining X3D, C++ and the scripting language Python, H3D offers three ways of programming
applications that gives you the best of both worlds - execution speed where performance is critical,

and development speed where performance is less critical.

6.3 Haptics Rendering Engine: HAPI

HAPI is an open-source, cross-platform, haptics rendering engine written entirely in C++. It is
device-independent and supports multiple currently available commercial haptics devices. This
means that the application can be written just once and no code needs to be modified to use
another device. It gives the possibility to choose between different rendering algorithms, different
force effects and several kinds of surfaces to create the feeling that you want or create your own
custom made effects. HAPI has been designed to be highly modular and easily extendable.

Furthermore, HAPI is integrated in the H3DAPI. This make the development faster, since both

graphic and haptic rendering can be achieved by building just one scene-graph.

As other alternatives to the use of HAPI, there are GHOST or the more recent OpenHaptics,

2This version of H3D supports the following devices: Phantom Device, Force Dimension Device and Novint Falcon.
*http://www.web3d.org

*http:/ /www.w3.org/ XML

®http://www.opengl.org

36 Graphics and Haptics User Interface for Virtual Bronchoscopy

both developed by SensAble. Ghost is the original API and uses graph structure, but does not
perform any graphical rendering (it has callbacks to allow users own graphical rendering). Open-
Haptics is the SensAble newest solution for haptic rendering. It is more powerful than GHOST, but
since it is not based on graph structure it can be more difficult and not so quick to work with. As
GHOST, OpenHaptics does not deal with graphic rendering. Among other things, the OpenHaptics

toolkit includes:

o QuickHaptics, a micro API that makes it easy to write new haptic applications or add haptic

feature to existing applications;

e Haptic Device API (HDAPI), which provides a low-level access to the haptic device (enabling
to render forces directly offering control over configuring the runtime behavior of the drivers)

and provides convenient utility features and debugging aids;

e Haptic Library API (HLAPI) provides high-level haptic rendering and is designed to be fa-
miliar to OpenGL API programmers. It allows significant reuse of existing OpenGL code and

simplifies synchronization of the haptics and graphics threads.

6.4 Framework for software development: Qt

Looking for a framework for developing cross-platform GUI application, the two best solutions seems
to be wxWidgets and Qt. To satisfy the objectives, these two C++ frameworks are very similar
and offer, more or less, the same possibilities. The opinions on them are very discordant depending

on the programmer.

Another point is that using wxWidgets you have to write the makefile by your own (that could
be not that easy), whereas in Qt QMake is very simple to use, so there’s no need to edit MakeFiles

manually; using CMake this is not a relevant difference for this work.

Qt introduces an innovative alternative for inter-object communication, called “signals and slots”,
that replaces the old and unsafe callback technique used in many legacy frameworks: Qt automati-
cally connects signals to slots based on the names. Moreover, Qt provides a very useful and polished
IDE (QtCreator) tailored to the needs of Qt developers. It includes C++ code editor, integrated
GUI layout and forms designer, project and build management tools, integrated, context-sensitive
help system, visual debugger, rapid code navigation tools and supports multiple platforms.

Both of them provide another very useful tool for graphically designing user interface: wxBuilder
for wxWidgets and QtDesigner for Qt.
Furthermore, Qt provides also support for 3D graphics and XML.

WxWidgets is used in many applications and one of these is H3DViewer, the Graphic User

Graphics and Haptics User Interface for Virtual Bronchoscopy 37

Interface provided by SenseGraphic to load the scene-graphs made using H3D. Since Qt’s continuous
spreading and other applications in the laboratory are made in Qt, it was thought that Qt would

be the best choice also for future integration of this software in those already existing.

38 Graphics and Haptics User Interface for Virtual Bronchoscopy

Graphics and Haptics User Interface for Virtual Bronchoscopy 39

Chapter 7
Haptics Interface

The main objective of this module is to allow the navigation within a generic bronchial tree using
a haptic device as if it were a bronchoscope, seeing the same scene and feeling the same sensations
as if the user were carrying out a real bronchoscopy. The idea is to allow the user to move a camera
(setting the orientation and position) with the same movements as if he were handling a real
bronchoscope. This means finding a good correspondence between the movements that the doctor
has to make with the bronchoscope to explore the bronchial tube and the movements available with

the Phantom Omni haptic device.

stylus
.—".4{—' B

Figure 7.1: Phantom Omni with the azis of movement.

40 Graphics and Haptics User Interface for Virtual Bronchoscopy

Figure 7.2: Angles of the joints of the Phantom Omni. The red frame represents the origin of the device

world coordinates.

Before describing the main features of the navigation and how the Phantom Omni is used for
simulating the bronchoscope, it is necessary to specify some global references of the device itself.
As it can be seen in figure 7.1, the Phantom Omni has a pen-like tip called stylus, which is fixed to
the base by two links and a round head. This part rotates around the A axis (6;), while the first
link rotates around B (f2) and the second link around C' (f3) axis which is parallel to B (fig. 7.2).
The last three joints (gimbal elements), marked with numbers 4, 5 and 6, allow the stylus to rotate
around the orthogonal axis system centered in the joint 5, and the consequent orientation (with

respect to the world coordinates (X, Yy, Zw)) can be read from the device.

The endpoint location of the physical haptic interface as sensed by encoders is called Haptic
Interface Position (HIP). In proxy-based rendering algorithms (such as those included in HAPI and
described in section 5.3), the HIP (and the whole haptics device with it) has a virtual representation
called prozy. The proxy follows the position of the device, but it cannot pass through the objects’
surfaces: when a shape is touched, the proxy stays on the surface, even though the haptic device
actually has penetrated the surface. Forces are then generated to bring the haptic device out of the
surface towards the proxy. When the user moves the haptics device the proxy follows the movement
but on the surface. The kind of feedback forces, the movement of the proxy and, therefore, the way
the surface feels can be controlled by HAPI. When a surface is touched we can consider that the

virtual point representing the HIP will divide into two: the proxy that stays on the surface and

Graphics and Haptics User Interface for Virtual Bronchoscopy 41

the point that represents the real device position (penetrating the surface) which is called probe (or
tracker). Where no collisions are detected the probe and the proxy coincide. Even if the proxy can
assume many shapes, the real proxy, i.e. the element that interact with virtual objects, is a point,

except for Ruspini’s Rendering algorithm, where the proxy is a sphere.

In the default situation, using H3D, the device position and orientation are identically transmit-
ted to the virtual world, so the probe (or tracker) position and orientation coincide with the device
position and orientation, respectively. H3DAPI supplies the user with two elements (a matrix and
a rotation vector) that can modify the way the device position and orientation are “translated” in

the virtual world. These two elements are positionCalibration and orientationCalibration'.

positionCalibration: It is a field that accepts a Matrix4f?, a 4 x 4 matrix which has the form

of a transform matrix:

Tcalib =

where R defines a rotation, P, P, P., define a translation vector and s a scale factor. It works as

follows:
Ldev
: Pydev
Pprobe = dcalib - Pdevice’ with Pdevice =
Zdev
1
where P, , Py, ., P, define the device position as obtained by the encoders. The important

thing to underline here is that positionCalibration influences just the way the device position
is translated in the virtual world and does not affect the orientation. The rotational part of the
matrix (if it is not the identity) will transform a device translational movement in +X, for example,
in a movement of the virtual HIP that does not occur on a horizontal line. It will be, instead, a
movement on a straight line oriented as described by the rotational part, corresponding to the virtual
world X-axis. Moreover, this rotational part does not influence the way the device orientation is
translated into the virtual world. For example, if the viewpoint orientation were associated to the
one of the stylus, the orientationCalibration were the identity (default situation) and the user
were handling the stylus so as to have the same orientation as the world, the loaded scene will show
the world in the normal position: Y-axis pointing upward, X-axis pointing to the right and the

Z-axis pointing out of the screen.

!positionCalibration and orientationCalibration are two fields of the node PhantomDevice, which is a node of the

H3DAPL
2Matrix4f is a type defined in H3D: it is a 4 x 4 matrix whose elements are floating-point numbers

g}

S
,Sz'ww‘v"
£
ezl
S

42 Graphics and Haptics User Interface for Virtual Bronchoscopy

orientationCalibration: It is the field that provides the calibration of the orientation. This
field accepts objects of type Rotation, which is a vector defining an orientation in a angle-axis way.
This vector has four elements: the first three describe the axis around which the rotation is done
and the fourth element is the angle in radians. In H3D Rotation is also a function that takes as
input a Matrix3f3 and returns a Rotation vector. Considering orientationCalibration a matrix

(called Reqrip), it works as follows:
Rprobe = Reativ * Raew (7.1)

where IR, 1s the orientation of the probe and R, is the orientation of the device as it is read

by the encoders.

As said for positionCalibration, orientationCalibration only affects the way the device
orientation is translated into the probe orientation. In other words, if the device is moved in a +X
direction and its positionCalibration is the identity matrix, then the probe will translate along

the world X-axis (irrespective of the values of orientationCalibration R.up)-

7.1 Bronchoscope Modeling

As seen before, in a bronchoscope we can distinguish three degrees of freedom (fig. 2.1): forward-
backward movement, the rotation along the tube central axis and the rotation of the tip of a
4+90° range. The first and the second actions are performed by the doctor acting directly on
the bronchoscope handle and tube, pushing and pulling or rotating the bronchoscope tube itself
through the bronchial tree. The tip can be rotated just in one plane whose orientation depends on
the orientation of the tube. The tip rotation is provided by a wheel (element (B) in the fig. 2.1)
that can be rotated till the tip reaches an orientation of £90° with respect to the bronchoscope D

axis.

Considering how the Phantom Omni is handled by the user and wanting to reproduce the
movements of the bronchoscope (as much similar as possible), it has been decided to adopt the

following correspondence between the three basic movements:

e The forward-backward movement made by pushing or pulling the tube will be performed by
translating the device tip along the device Y-axis. A negative value will correspond to a

forward movement, while a positive value will correspond to a backward one.

6th

e The rotation along the tube central axis will correspond to the rotation of the joint of the

device.

3A 3 x 3 defining a rotation whose elements are floating-point numbers

Graphics and Haptics User Interface for Virtual Bronchoscopy 43

e The orientation (between 4+90° and —90°) of the camera positioned on the tip of the bron-
choscope is obtained acting on the 5" joint, but (as explained further in section 7.2.1) it will

not be 5 joint angle 5.

7.2 Navigation System

The basic idea is to position the camera in the proxy and make it move with it. The movements
done with the device to make the camera move will be as much similar as possible to the ones done

when handling a real bronchoscope.

As explained in chapter 6, H3D has been used both to describe the graphic scene and to render
the haptics properties. The Scene is described with a XML-like graph (X3D file). The node <Scene>
is the “highest” node in a X3D graph (no other X3D node can contain scene) and contains all
the other nodes describing the shapes and haptics properties. To render the scene, a window
inheriting from H3DWindowNode must be created. To this kind of window, whose implementation
will be expounded later on, in chapter 8, a viewpoint can be associated, which represents the
camera of the H3D scene. This Viewpoint node inherits from the class (which represents a node)
X3DViewpointNode, which, in turn, contains two fields named “position” and “orientation”. They
specify, as the names tell, the position and the orientation of the viewpoint, respectively. The
viewpoint node has a frame (coordinate system) associated to it. Per default the viewer is on the
Z-axis looking down the —Z-axis toward the origin with +X to the right and +Y straight up (fig.
7.3).

File Settings

Figure 7.3: Default viewpoint orientation drawn on the application main window.

The configuration of the bronchoscope tip is defined by a position and an orientation. Trying to

use the haptic device as a bronchoscope, there are two possible ways to set the tip orientation with

44 Graphics and Haptics User Interface for Virtual Bronchoscopy

(a) Drawing of a real general endoscope showing (b) Simplified representation of the bronchoscope

the DOF and the azis of rotation. tip. The frame (X",Y",Z") is the same as
(X",Y', Z") when the tip is turned in the opposite
direction (+90°).

Figure 7.4: Degrees of freedom and reference frames in the considered model of bronchoscope.

the device movements: one is controlling directly the camera on the tip (described in section 7.2.1)
and the other is controlling the camera from the base of the tip (described in section 7.2.2), that
is the beginning of the flexible bronchoscope final part (that one that can be moved from —90° till
+90°, see figure 7.4). Both of them have been implemented and the final decision about which one
is the best will be let to the doctors who will test the application.

Looking at figure 7.4 it can be better seen how the bronchoscope is modeled and it can be
better understood what each of the implementations are referring to. Figure 7.4(b) shows the
two frames associated to the bronchoscope tip which the two different implementation of camera
controlling refer to. The navigation implemented controlling directly the camera (section 7.2.1) will
refer to the blue coordinate system (X', Y”,Z’), whereas the other implementation (section 7.2.2)
will refer to the green one (X, Y, Z). Furthermore, between the two images (7.4(a) and 7.4(b)) some

correspondences can be underlined (leaving out the orientation):

e The D-axis coincides with the Z-axis whereas the E-axis corresponds to the Z’-axis. This

two axes have the same orientation only if the tip is totally extended.

e (-axis refers to X-axis and corresponds to the beginning of the bronchocope flexible tip
which can be rotated, as already mentioned, in a range of £90°. In other words, it marks the

beginning of the tip which the wheel actuates on.

=W N =

© 0 N o o

Graphics and Haptics User Interface for Virtual Bronchoscopy 45

The two possible implementations mentioned have, basically, the same process and differs only
in few things regarding how the calibration matrices are calculated and how the device controls the

camera. The internal cycle that allows navigation can be described as follows:

Haptics loop(){

Read device info(); // read the position and the orientation of the device

Compute controls(); // Dz: bronchoscope advance, angles of the rotations to
apply to the camera

Update viewpoint () ;

Update calibration();

Compute forces();

7.2.1 Moving directly the camera

The first possible implementation of the “Haptics loop()” is using the haptic device movements to

control directly the position and orientation of the camera.

Rotation Movement

When asking the device for the orientation, the device returns a Rotation object which can be easily
converted to a 3 X 3 matrix using the functions of H3D. This matrix defines a rotation between the
fixed frame of the device and the frame associated to the HIP ((Xw, Yw, Zw) and (X,Y, Z) frames
of picture 7.5, respectively), which depends on the joints 4, 5 and 6 (fig. 7.1).

Exploring a scene with a flying camera controlled by an external device can present some diffi-
culties. The problem is that the device reads the values of position and orientation with reference
to his physical world frame which, in a default situation, coincides with the scene world frame. So,
when the camera and the scene world frame orientations are not the same, the camera will not
respond to the device input as expected: when the camera is rotated around Z-axis, for example,
its top stops coinciding with the top of the scene world. In this case, if the observer wants to
look upward (with respect to what he is looking), he will spontaneously move the stylus tip up but
this movement will not be translated to the camera looking upward, because it corresponds to an
upward movement (positive rotation along X) with respect to the scene world coordinates. This
problem is accentuated when the 3D scene has no reference points to distinguish which are the scene
top and bottom or what is right and left. A bronchial tree exploration can be considered such a

scene, because of the cylindric shape of bronchus and the symmetry of the lungs. In these cases

46 Graphics and Haptics User Interface for Virtual Bronchoscopy

it is important to update the calibration matrices in order to translate the device movements into
the expected camera movements. That can be done by applying the “infinitesimal” variation in the

device orientation (every clock signal) to the rotation of the actual camera frame.

Before continuing, a clarification has to be made on the meaning of the joint angles. The values
read by the encoders (called gimbal angles) are the absolute angles of the joints but do not define
the device orientation (5 and 6 in figure 7.5). The difference can be seen in figure 7.5: doing
a translation in world Y-axis (where only the device position is supposed to change, but not its
orientation) will modify the gimbal angle of the 5" joint but the orientation, correctly, will not
change. From now on, if no other thing is specified, when it will be talking about changes in the

5" or 6" joint, it will be referring to changes that cause a variation in the device orientation.

Figure 7.5: Visual representation of the difference between the gimbal angles (05) and the device orientation.

In a +Y translation change the value of the gimbal angles but not the orientation.

The correspondence between movements of the device and those of the camera has to take into

6th

consideration the DOF of the real bronchoscope. That being so, the rotation of the joint can

Graphics and Haptics User Interface for Virtual Bronchoscopy 47

intuitively correspond to a camera rotation around its Z-axis (that is the viewpoint Z-axis). A
clockwise rotation of 6 will correspond to a clockwise camera rotation around its central axis. The
5" joint can be used as the wheel of the real bronchoscope, moving the camera up and down with
respect to the camera frame. With regard to the 4" joint, a real bronchoscope has not this movement

so the value from this joint will not be considered and will not affect the camera orientation.

Summarizing all what has been told, the aim here is that a rotation in the 5 joint always
corresponds to a rotation about the camera X-axis and that a rotation in the 6! joint always
corresponds to a rotation about the camera Z-axis. These two read angles do not correspond
directly to the device orientation about X and Z-axis, because a rotation of the 5! affects the
orientation depending on the position of the 6! one. Figure 7.6 explains better this issue. The
(X,Y, Z) frame is the one related with the camera and (Xw,Yw, Zw) frame is the world frame,
which has been drawn twice with the origin coincident with that of the HIP to see better the
orientation which relates the two reference systems. It can be useful to remember that the camera
looks towards —Z, with +Y pointing up and +X pointing right. In case 1 the movement of 5
change the orientation of the camera up and down, that is a rotation around the camera X-axis.
When the joint 6 is rotated —90°, the rotation of 5 provokes a rotation around the Y-axis, which

means a right-left changing in the orientation of the camera, which is not the expected behaviour.

A solution to this problem is to calculate the orientation of the device as a matrix and from this
calculate the rotation angles with respect to the fixed axis. After that, it will be sufficient to use
the rotation angles around the Xy and Zy to rotate the camera frame (which is associated to the

probe) around its current X-axis and Z-axis, respectively.

To achieve this, the first step is finding the angles with respect to the world axis. Defining the
rotation matrix:
™11 T2 T13
R=|ry ra r| = Ru(p) Ry(V) Rs(),
31 732 7133
what is wanted to find are the values of the rotation angles 1) and ¢ around Z and X axis, respec-

tively. These are:

@ = —arctan 2(r12,r11) (7.2)

1 = — arctan 2(ra3, 733) (7.3)

where arctan 2(y, =) is the angle in radians between the positive X-axis of a plane and the point

given by the coordinates (z,y) on it.

When the device is asked to return its orientation, it returns a rotation matrix of this kind:

Rdev = Rm(’y) Ry (C) RZ(OZ),

48 Graphics and Haptics User Interface for Virtual Bronchoscopy

Figure 7.6: The effect of the joint values on the orientation. When the 6" is rotated —90° the 5" joint will
rotate around the world X -axis (the red one) which corresponds to the HIP Y -awis.

It is possible to apply (7.2) and (7.3) to get the angles v and «, which define the orientation of the
HIP with respect to the world coordinates?.

Once these angles values are found their variations have to be calculated to rotate the camera
in the right way. So, when one of these angles changes by an infinitesimal A®, this rotation of A

along one axis will be applied to the actual camera frame with respect to the corresponding axis.

There are other features to take into account. One important point is the 5" joint which
controls the rotation of the wheel, rotating the camera 90° up or 90° down (around the C-axis of

the figure 7.4(a)). When the doctor wants to turn right or left, he has to orientate the bronchocope

“The HIP reference system is left-handed system with the X-axis opposite with respect to the one drawn here.
For reasons of clearness, it has been decided to use a right-handed frame for the modeling changing the sign of « in

the implementation.
®With the term infinitesimal here, it is meant the variation of the angle occurred during a clock cycle.

iy
g&" %5
a |

Z S
7 8

8 "

=

R\ V)
W 2

Dyl

4

Graphics and Haptics User Interface for Virtual Bronchoscopy 49

in order to position the plane, which the tip rotates on, in a horizontal position. Then, he actuates
on the wheel to turn the tip and push the tube forward to enter in the desired bronchus. Once got
to the right path, he combines the rotation of the wheel, necessary to straighten the bronchocope
tip, with pushing the tube so as to go straight ahead. To render this action of the doctor that puts
the wheel back to default position once entered the right bronchus, in this kind of implementation
(using the device to control directly the camera), it has been decided to rotate the camera on this
plane by a rate control. The rotation angle about camera X-axis () is increased (or decreased) by
a quantity equal to the difference between the current device angle and a reference angle previously
set. Considering the way the bronchoscope is handled (see figure 2.3), this reference angle was set
to 45°.

Implementing all these features, the movements made during the exploration will better trace
the real movement. In fact, when the user wants to turn right or left because he gets to a fork, he
has to turn the sixth joint till he obtains the two bronchial tubes in a vertical plane, then he moves
the HIP up or down (depending on which bronchus he wants to explore) rotating the 5 joint, till
the camera gets to the needed orientation to enter the bronchus. Subsequently, he has to put the
stylus in the reference position to make the camera stop rotating and be able to go straight, as if

he was rotating the wheel back to the original position.

In light of what has been shown up to this point, the wanted orientation calibration matrix is
the result of several infinitesimal rotations applied to an accumulated rotation matrix. In other

words, the orientation matrix at instant ¢ is:
Ri = Ri—l . RZ(A a) . Rx(A ")/), (74)

where
R, is the orientation matrix of the camera at instant ¢ — 1

Ay=r;—7i-1 and

Aa=aa; — a1

Considering the way ~ is incremented, A~ can be written as

Ay=m/4—n;.

Since the aim is also to interact with the virtual scene the observer is looking at and, for example,
touch the bronchus, the proxy has to be in the same position and same orientation as the viewpoint.
With regard to the orientation, this means setting the orientationCalibration field in order to
obtain in (7.1):

Ryrope = R;

this can be made by setting:
Rcalib = RZ . [Rdev]_l . (75)

50 Graphics and Haptics User Interface for Virtual Bronchoscopy

This makes the probe (and so the proxy, if there are no collisions) and the viewpoint to have

the same orientation.

Finally, it has to be taken into consideration also the fact that the bronchoscope tip cannot bend
more than 90° in both sides (fig. 7.4). Every time the angle changes, the application will control

that the rotation angle around the local X-axis never exceeds £90°.

Insertion Movement

The insertion movement implies a modification of the position of the camera (positioned on the tip of
the tube), which can be considered the viewpoint of the real scene. Imagining the real camera with
the same frame of the viewpoint, the pushing movement causes a translation of the tip towards the
camera —/-axis. S0, knowing the orientation of the camera, it is possible to translate the viewpoint
in the correct direction. To make the viewpoint move following the haptic device movements, it is

changed with the position of the proxy.

A consideration about the workspace has to be done, before describing in details the implemen-
tation of this part. As it has been showed in previous sections, there are several kinds of workspace.
When building a haptic display system, the optimal system is the one which is able to make the
application workspace (AW)® coincide with that zone in which the haptic device provide its better
performance.

In this case, the application workspace is much bigger than the nominal (NW) and the real workspace
(RW), so something is needed to reach and be able to navigate all the AW. There can be two solu-
tion: use a mouse-jump to translate the NW in another volume space of the AW or use the haptic
device to establish a velocity value and translate the probe and the NW where needed, in the ap-
plication volume.

The second solution has been chosen, because this one seems to be more comfortable compared to

the hundreds of mouse-jumps needed to explore the whole bronchial tree.

The insertion movement is provided by moving the stylus up (backward) and down (forward)
the Y-axis. At every clock cycle, the device is asked to read the position value on the Y-axis. This
read value is taken as the linear velocity of the viewpoint (VP): if it is negative the viewpoint will
translate in its —Z-axis direction and if it is positive it will go backward (in the +Z-axis direction).
In other words, the device Y position corresponds to an increment (A z) in the camera Z-axis.

This behaviour is performed by passing (every clock loop) to the VP position the tip position (where

51f determined virtual simulation is defined, it is the “virtual” volume used by the application

Graphics and Haptics User Interface for Virtual Bronchoscopy ol

the camera is placed) calculated as follows:

0
Pcamera,- - Pcamerai,l + Rprobe . 0 (76)
Az

where Ry,op is the tracker (or probe) orientation, A z is the linear increment calculated from the de-
vice as explained before and P.qynerq 1 the position of the camera, which coincides with the one of the
tip. Since the camera position and the probe position have to coincide, the positionCalibration

matrix has to be set to:

-1

I P, camera;) I P, dev;

Tcalibi = (77)

0 0 0 1 0 0 0 1
where Prgmera; and Pye,, are the camera and device position vector at instant ¢, respectively.

The real bronchoscope can only translate along its longitudinal axis, since, once inserted, the
trachea or the bronchus do not enable movements on the plane perpendicular to the bronchoscope
tube. To render also this characteristic, the device movement along its X-axis has been blocked by

sending it a force proportional to the device X-coordinate so as to bring the device to the X-origin.

To make the procedure clearer, the “Haptics loop” can be summarized as follows (in pseudo-
code):

Read_device_info()

P_device=device_position

R_device=device_orientation

Compute_controls()

Az =P_device.y

o; =rotZ(R_device)
~v; =rotX(R_device)
Aa; = o — @i

Ay =m/4—r;

A v’gﬁ
f’

N

52 Graphics and Haptics User Interface for Virtual Bronchoscopy

Update_viewpoint ()

Reamera; = Reamera;_1 - Rz(Aa) - Ry(A~y) // from eq. (7.4)

Pcamerai = Pcamerai,1 + Rprobe : 0 // from €q. (76)
Az

Update_calibration()

Reaiiv = R; - [Rdev]_l // from eq. (7.5)

I Pcamerai I Pdevi
Tcalibi - .

Compute_forces()

// Constraint along x-axis

// send to the device a force proportional to its X-position
computeFx(P_device.x)

// if the surface node perceives a contact, it sends a force
//along device Y-axis to push the camera backward

if (surface.isTouched()) compute_Fy()

Graphics and Haptics User Interface for Virtual Bronchoscopy 53

7.2.2 Moving the camera from the base of the tip

The way of controlling the camera described in the last section is easy and intuitive but do not
correspond faithfully to the real bronchoscope behaviour: for example, when the doctor bends the
tip of the bronchoscope and turns the bronchoscope around the tube central axis, he will not observe
the image rotating around the camera Z-axis but about the D axis (fig. 7.4(a)). In other words, if
the camera is 90° bent, he will observe the bronchus wall and rotating the bronchoscope handle he
will move the camera from the bottom to the top, always looking at the bronchial wall.

Translating this question to the device, it means that a rotation of 6 correspond to a rotation around

the camera Z-axis, just in the case the E and D axis were aligned.

To have a better correspondence with the real bronchoscope movements, the moving of the
camera from the base is proposed. This requires a different model of the bronchoscope. The final
bronchoscope part has been modeled like a kinematic chain composed by n links of the same length
(fig. 7.7). It actuates like a robot which has the camera in its TCP”.

Y,

TCP

Figure 7.7: Modeling of the bronchoscope for n = 4.

"Tool Center Point

iy
%&tjy
VEANE
G i
2=

Dyt

54 Graphics and Haptics User Interface for Virtual Bronchoscopy

Rotation Movement

The angle of the joint 6 of the device determines « and joint 5 will modify the total bending angle
of the tip, that is (n — 1) - &.

In this way there is a better correspondence between the handle-tip relation of the real bronchoscope
and the device-VP relation of the “virtual” one. The rotation of the joint 6 always corresponds to
a rotation around the Z-axis of the green frame (X,Y, Z) (which is the D axis in fig. 7.4(a)) and
not around the camera Z-axis (Z; of figure 7.7). It will happen only if the tip is totally extended,
that is £ = 0. The green coordinate system (X,Y, Z) is the one which the device movements are

associated to, while the blue one (Xy, Yy, Z;) is the one the viewpoint is referred to.

Insertion Movement

Also in this case, the linear increment of the position is determined by the Ay of the device (as
described in section 7.2.1). What differs here is how this linear increment (which is a Az with
respect to the (X, Y, Z) frame) is translated to the movement of the virtual tip. It has been imagined
that, when the tip is bent by a certain angle, the doctor’s intention is to turn into a bronchus by
pushing the tube and make the side of the bent tip lean against the bronchus wall and make the
bronchoscope tube slide into it. To render this behaviour, every increment in the Z-axis of the
(X,Y, Z) coordinate system (fig. 7.7) will be translated in a rotation of a certain angle 5 around
an axis passing through C' and perpendicular to the plane where the tip is moving on. This angle
B, obviously, depends on the increment Az and on the curvature . If the tip is totally extended,
a pushing movement will correspond directly to a straight forward translation. In other words,
referring to the geometric model of the same figure (7.7), if £ = 0 the center C of rotation will be
located in the infinity and the Az will be directly a linear translation along green Z-axis (which

will coincide with the blue one Z’, in this case).

Calculating Viewpoint and Calibration Matrices

At the beginning, it is shown how the movement of the devices are translated into the movement of
the green coordinate system, so if nothing is specified, everything will refer to this system. Also an-
other nomenclature convention has to be established. The transformation matrices in homogeneous

coordinates will be expressed with the letter 7" and will have mainly two forms:

T(z,0) O Tig,y,2)

where the first is a 4 matrix defining a pure rotation along the X-axis (or any other axis

indicated) of a generic angle o. The second one is a 4 matrix too and expresses a pure translation

Graphics and Haptics User Interface for Virtual Bronchoscopy 5%5)

of the generic vector (z,vy, z). For example:

1 0 0 0 1 0 0 =

Tipoy = 0 cosa —sina 0 or Ty y sy = 01 0 y
' 0 sina cosa 0 e 00 1 =z

0 O 0 1 0 0 01

The rotation of o depends on where the (X,Y,Z) coordinate system is placed and oriented in
the space, so, really, it will be a rotation of infinitesimal A« applied every clock loop on the current
orientation of the system. Figure 7.8 shows the idea. This transformation can be expressed with
the following matrix:

0 0 0
cos(Aa) —sin(Aa) 0
T(z,n0) = :
sin(Aa) cos(Aa) 0
0 0 1

o O o =

As already told, the 5" joint acts on the bending angle of the tip (as shown in figure 7.9). The

total bending angle, which is (n — 1) - £ can be maximum 90° and will be checked every cycle.

As seen before, if £ = 0 an increment of Az corresponds to a linear increment in the same
direction. When the user will modify the value of ¢ moving the 5 joint, this Az will be converted

in a rotation of 8 around X,.-axis. This transformation can be expressed by the matrix:

0 0

T B cosf3 —sinf
S sinf3 cosp

0 0

o O o =
= o O O

Looking at figure 7.10), it can be seen all the process to implement this Az translation and its
final effect of rotating the bronchoscope around X¢ axis. To rotate an object or, better said, to
rotate the frame associated to the object (in this case (Xp, Yy, Zp)) about an axis of another frame,

some steps have to be followed:

e Translate the frame (Xj,Y}, Zp) to the origin of the other frame ((X,, Y., Z.)). In this case

the translation will be:

1 0 0 O
010 —d

T 1y =
(0,—d,— L) l
2 oo 1 4
00 0 1

56

Graphics and Haptics User Interface for Virtual Bronchoscopy

Ok
N
=

1 Ax

Figure 7.8: Describing the effect of a Aa rotation on the movement of the tip.

Graphics and Haptics User Interface for Virtual Bronchoscopy o7

}/t/
Y
7 TCP
t Xt
7
g’
3 /
7,/
!
z d e X T *
T ZL Zé
P
(«
vy

/

Figure 7.9: Describing the effect of changing & on the modeled bronchoscope tip.

58 Graphics and Haptics User Interface for Virtual Bronchoscopy

!
Y b

7!
Zb

4

1a.

Figure 7.10: Describing the effect of changing Az on the modeled bronchoscope tip.

iy

N

==
g}? fm:
VALY)
@W’@ (1
{ j/ﬁ‘

Dyt

Graphics and Haptics User Interface for Virtual Bronchoscopy 59

Figure 7.11: In an infinitesimal rotation the arc 6L can be indistinct from the cord §z.

e Make the frame to rotate of 3 about the X -axis obtaining (X/,Y/, Z!). Knowing that

de 1 cos(£/2)

2 sin(£/2)
and considering that, for infinitesimal rotation, the arc can be indistinct from the the cord éz

relative to the arc (figure 7.11), 5 can be calculated as follows:

/BZE 2A z - sin(€/2)

d — 1-cos(£/2)

e After having rotated, the inverse of the initial translation has to be applied so as to find the
new base position. The new transformation will be a translation of +d along the Y/-axis

followed by another translation of 4+1/2 along the Z'-axis.

Ascertained that, to actualize the orientation and position of the green base (X3, Yy, Z), every

clock loop the associated transformation has to be actualized as follows:

-1
Tbasei - Tba86i71) T(ZvAa) ' T(Oy_d7_%) ' T(w76) ' |:T(07_d7_é):| (78)

where Thse, is a 4 x 4 matrix which defines orientation and position of the base of the tip at
instant 1.
The real position of the camera and the “touch-point” are on the bronchoscope tip. With this
particular modeling, it can be easily derived the orientation and position of the tip with respect to
the ones of the base. Since the links have all the same length and every link form the same angle
(&) with its subsequent, this transformation consists in a rotation of the base frame about the same
Xc-axis as before. The rotation angle here is —né and “rotates” the base frame to (X¢, Y, Z;) which

is the frame associated to the camera. The same transformation can be expressed as follows:

base
Tcamera = T((],_d7_%) : T(:E,—(n—l)ﬁ) : T(O’d’_i)a (79)

where the rotation angle is —(n — 1)¢ and the last translation makes the frame (X”,Y" Z") to

translate along its Z” axis till coinciding with (X, Y, Zy).

60 Graphics and Haptics User Interface for Virtual Bronchoscopy

From this last operation, the following result can be easily obtained:

Tcamera = Tbase : chézrsnema‘ (710)

Teamera 18 @ 4 X 4 matrix of the form:

Rcamera Pcamera

0 0 0 1

where Regmera and Pegmerq are respectively the orientation and the position of the camera with
respect to the world frame. In order to obtain the probe in P.gnerq and with the orientation
Reamera, 1t 1s only needed to make positionCalibration and orientationCalibration fields to

take these two values:

Rcalib :Rcamera : [Rdev]_l ; (711)
-1
I Pcamera I P, ev
Tcalib = : d . (712)
0 0 0 1 00 0] 1

The viewpoint is placed and oriented with the same values as the probe and proxy. The VP position
can be kept a bit behind the proxy so as to totally prevent the VP from going out the bronchus wall
even in case of collision. If the viewpoint were associated to the probe, in the possible collisions the
viewpoint would have followed the probe which penetrate the surface which is not possible for the

real bronchoscope tip.

In this implementation, the “pseudo-functions” Read_ device_wvalue(), Update calibration() and
Compute_ force of the “Haptics loop()” algorithm are identical to those of the other implementation

(7.2.1), whereas the central body of the algorithm changes. It can be schematized like this:

Compute_controls()
Az =P_device.y
¢ =rotX(R_device)

o =rotZ(R_device)

AO&Z' =0y — 01

Update_viewpoint ()

o Wﬂ’g ?
e,

iSS

Graphics and Haptics User Interface for Virtual Bronchoscopy 61

Az 2Az-sin(£/2)
b= d l-cos(€/2)

1
Thase; = Thase; 'T(z,Aa) 'T(07—d,—é) 'T(m,ﬁ) : [T(Q—d,—é)} // from eq. (7.8)

base
Tcamera = T(07_d,_%) : T(:c7—(n—1)§) : T(07d7—%) // from eq- (79)
Teamera = Thase Tbaseera // from eq. (710)

cam

Rcamera = rotation (Tcamera)

Pe.omera = translation (Teamera)

In the implementation of section 7.2.1 the rotational and translational part of the matrix Tegmera
can be calculated separately, this eases the calculation itself and even the amount of used memory,
when storing the data. On the other hand, this implementation requires a more complicated process
to find T,.qmera, SO the application first calculates the matrix and then takes its rotational and

translational part separately.

7.2.3 Going Backward

The backward movement is provided by pulling up the stylus till a position with a positive com-
ponent along device Y-axis. When the doctor pulls out the bronchoscope from the bronchial tube,
the camera go along the same route it did going forward (forced by the fact that it is linked to
the bronchoscope flexible tube). To render this way of acting, while going forward in the explo-
ration, the tip orientation and position are memorized in a C++ vector, creating like an historical
memory of the done path. In the implementation 7.2.1 will be two vectors: one memorizing the
viewpoint (VP) position (Vec3f elements) and the other the orientation (Rotation elements). In
the implementation 7.2.2 the vector will be only one memorizing Matrix4f elements which describe
the total transformation of the tip with respect to the world coordinates.

When the device reveals a positive value in its Y-axis, the viewpoint fields that were connected to
the device, start reading the values from the vector (or vectors) in question. The main thread keeps
on popping values from the last position of this vector and assign them to the correspondent field
of the viewpoint. In this way, the VP will travel through the memorized path towards the starting

point and the user will observe the same scene he observed while going forward.

In the configuration described in section 7.2.1, when the user decides to pass from going backward

to go forward and the orientation is not the same a jump may occur in the viewpoint.

The situation can be seen in figure 7.12: the user is going backward and the memorized camera

62 Graphics and Haptics User Interface for Virtual Bronchoscopy

Figure 7.12:

frame he gets to is positioned like (X,Y, 7). The problem comes out when the device orientation
is different from the one of (X,Y, Z), like the (Xgey, Yiev; Zdev) frame shown in the picture. If the
user now decides to start navigating forward again, all the connections between the device and
the VP fields will be re-established and a jump in the vision will be noticed (from (X,Y,Z) to
(Xdews Yiews Zaen)). Since the 5 joint is used just to establish an increment, it will not cause any
jump: when changing to forward navigation, the memorized camera angle around X-axis will be
incremented by a “infinitesimal” quantity depending on the angular velocity. To avoid, somehow,
the cited problem, the viewpoint is made smoothly rotating around its Z-axis, till it gets to the

current orientation defined by the device.

In the other configuration (section 7.2.2), a similar approach is not possible because if the tip is
bent, a rotation in « (as indicated in figure 7.8) can make the tip to hit on a wall, against the user’s
will. If the orientation is not equal (with a certain tolerance) to the one associated to the recorded
position (the same case of figure 7.12), the navigation is stopped and a force is sent to the device to
prevent the user from positioning the stylus in a position with negative Y component (which would
mean a forward movement). This force is proportional to the product of two terms. The first is
the difference between the current device orientation about X-axis and the memorized orientation
about the same axis and the second one is similar to the first, but referring to the Z-axis. This can

be mathematically express as follows :

FZsend = k : (ﬁcurrent - Bmem) : (acurrent - ﬁmem)a

where Fogepg is the force to send to the device and by current and mem is meant current angle
read by the device and the memorized one, respectively (the angle o and f are those indicated in
figure 7.7).

The application will indicate to the user how to move the device so as to get to the correct
orientation and continue the navigation. The fundamental matrices in this implementation are
two: Teagmera and Tpese and any of them can be calculated from the other. Tigmerq determines the

observed scene and Tpyse is inescapable for the right translation of the device movement into the tip

Graphics and Haptics User Interface for Virtual Bronchoscopy 63

movement.

Since the user will see what T.qmerq indicates, it is necessary to know the “history” of T,.qmerq for
rendering the backward movement. So the options here are two: memorizing Tp.se in the vector and
then, in backward movement, calculate the correspondent T,.qmerq €ach clock time or memorizing
Teamerqa and then, when the backward movement finishes, calculating the correspondent Tj,s. for
continuing with the usual transformation of the base. The second one seems to be the reasonable
and efficient: the memory occupied by the two options will be the same but the second solution will
imply just one “hard” calculation at the end of the backward movement, instead of any clock cycle.
Reminding the relation between Tegmerq and Thgse:

Tcamera = Tbase . T((),_d7—%) ’ T(Iy_(”_l)f) ’ T(O,dy_i)

2

when the user changes from backward to forward the correct Tp,s. to be set can be calculated as

follows:

o —1 —1 —1
Tyase = Teamera " L(g.4,—1/2) " T~ (n-1)¢) * T0,-d,—1/2)"

In this implementation, the “pseudo-functions” Read_ device_value(), Update calibration() and
Compute_ force of the “Haptics_loop()” algorithm are identical to those of the other implementation

(7.2.1), whereas the central body of the algorithm changes. It can be schematized like this:

7.3 Collisions and Haptic Renderer Chosen

All the possible renderer and their characteristics were already described in section 5.3. To choose
the correct Haptic Renderer, it has to be considered the kind of virtual object that has to be
rendered. A bronchial tube has very thin walls and concave surfaces and so there can be some prob-
lems with a generic renderer. Using OpenHaptics renderer, for example, there had been problems
of proxy falling through the surface. This can be attributed to the fact, also mentioned in 8], that
when there is a collision the proxy stays on the surface but the obe can penetrate the surface itself.
If and volume is thin, the probe can totally pass the volume making the control algorithm “think”
that there is no collision. If no collision is detected, the proxy will be positioned in the same place
as the probe and so a passing through would happen. The God Object method resolves, somehow,
this problem by memorizing the “story” of the proxy: in plain terms, the method remembers which
surface was first touched and so, if the probe passes on the other side of the volume the control
algorithm knows that there is still a collision and keeps on exerting the reaction forces. On the other
hand, GodObject renderer has some problems with acute concave intersection of surfaces [8]: if the
user is pressing into one surface and sliding down, the god-object will cross to the negative side of

the surface before the haptic interface will and the constraint will not be activated (fig. 7.13).

This problem can be tolerable considering two more aspects: the shape of the virtual reconstruc-

e

Y

8

5

A\
Y 5

Dyl

bz

64 Graphics and Haptics User Interface for Virtual Bronchoscopy

Figure 7.13: Picture taken from [8]: For an acute concave intersection of surfaces the god-object will be able
to cross one of the surfaces unless special precautions are taken. The large dot represents the
position of the god-object and the small dot represents the haptic interface. a) If the user is
pressing into one surface and sliding down, b) the god-object will cross to the negative side of

the surface before the haptic interface will and the constraint will not be activated.

tion of the bronchial tree and the kind of contact between tip and bronchial wall. With regard to
the first, the triangle faces that compose the virtual bronchial tree rarely assume this kind of acute
configuration. With respect to the second aspect, GodObject presents problems when the proxy
is sliding on one surface, but, in this case, when the bronchoscope tip beats on a wall it is pushed
back at once, so the risk of sliding on one surface and passing through another surface is very small.
Furthermore, this renderer also allows custom made surface, which is fundamental for this work.

For these reasons GodObject render seemed to be the most appropriate for this application.

Before choosing how to manage collisions and related forces, we have to refer to the real bron-
choscopy: when the doctor is inserting the tube or hits obstacles, the greater force he perceives
is along the pushing (or pulling) direction, i.e. the longitudinal tube central axis. Since it is not
possible to transmit momentum, an approximation of what the doctor feels can be a force along the
device Y-axis (which is the axis where the advancing is determined) every time there is a collision

with the surface.

In H3D, the management of the forces exerted in a collision is assigned to a function in the
surface node. So, to characterize these forces, a new H3D surface node has to be created which

defines a new surface that reacts with a force along device Y-axis to any contact.

To create a custom surface in H3D, it is necessary to create a class inheriting from H3DSurfaceNode.
Before doing this, a custom made class inheriting from HAPISurfaceObject has to be provided (in
HAPI). In other words, the haptic behaviour is defined in HAPI and H3D transforms the HAPI

new surface in a node that can be used in the X3D scene-graph.

A surface object in HAPI is an object that defines the haptic properties of a geometric shape,
such as stiffness and friction. It is responsible for generating forces at a local contact point on a
shape. The base class of all such objects is HAPISurfaceObject and there are several surfaces avail-
able in HAPI [5]. The surface object is responsible of two things: moving the proxy and calculating

an interacting force.

S O s W N

[o RN

10
11
12
13
14
15
16
17
18
19

Graphics and Haptics User Interface for Virtual Bronchoscopy 65

When defining a new surface the virtual function getProxyMovement (ContactInfo & ci) in HAPISur-

faceObject is used to define the proxy movement.

The user should call the function

ci.setLocalProxyMovement (Vec2f \& pm)

to set the proxy movement. The rendering system will try to move the proxy according to the
specified movement but might be stopped by colliding with other shapes along the path to the
new position. The proxy will then stay at this collision point instead of moving all the way to the
specified position. When calculating the proxy movement and the interaction force the user has
access to a ContactInfo object. This object contains many information about the contact point and
the contact surface. In this case, the argument of setLocalProxyMovement is the Vec2 composed
by the and z component of c¢i.localProbePosition(), which returns the position of the proxy
in the contact point local coordinates®. This means that the proxy will move on the surface with

the local = and z determined by the device values.

After the new position of the proxy has been calculated, the interaction force with the surface
has to be determined. For the most common surface types this is usually a linear spring force pulling
the device back towards the proxy. In this case, a force along Y-axis has to be rendered. To achieve

this, it is sufficient to characterize the virtual function getForces(ContactInfo & ci) as follows:

void myHAPISurface:: getForces(ContactInfo &contact info){

double eps=0.01;

int forceSgn;

Vec3 force_ to_render, VPVec;

Vec3 localProbe= contact info.localProbePosition();

Vec3d probe to_origin=contact info.globalOrigin()—contact info.
globalProbePosition () ;

hdevSur=static cast <HAPI:: PhantomHapticsDevicex> (contact info.hapticsDevice());

VPVec=(Matrix3f (hdevSur—>getOrientation ())).getColumn(2); //getting the
third column of orn Mtrx = VP z—axis
//if (probe to_ origin.dotProduct(—VPVec)>0) forceSgn=1;
//else if (probe_ to_ origin.dotProduct(—VPVec)<0) forceSgn=-—1;
//else forceSgn=0;
forceSgn=—1;
force_to_render=forceSgn *(localProbe)*20;
Matrix4d CalSur=hdevSur—>getPositionCalibration ();
Matrix3d CalibRotPart= CalSur.getRotationPart ();
Matrix3d invCalibRotPart=CalibRotPart.inverse ();

contact info.setGlobalForce (Vec3(invCalibRotPart+*Vec3(0,force to_ render.y,0)));

8The local coordinate system is constructed with the proxy position as the origin, the contact normal as the Y-axis

and and two arbitrary perpendicular axis in the plane as X and Z-axis.

20

W N O U W N

66 Graphics and Haptics User Interface for Virtual Bronchoscopy

Calculating the sign in the commented way (forceSgn, line 10 and 11), this surface considers
both cases if collision occurs when going forward and going backward (even if it may not be strictly
necessary with this kind of navigation) ?. If the collision occurs when going forward the HIP will
be pushed upward and in the case that the collision occurs going backward the HIP will be pushed
downward. The kind of navigation implemented make this case impossible, because the proxy will
go backward traveling on the same path it made when going forward. In this work the forceSgn
will be always positive, because it will help to go back inside the bronchial tree if a falling through

occurs.

Provided that a custom made class inheriting from HAPISurfaceObject exists all that has to be
done is to subclass H3DSurfaceNode. To subclass H3DSurfaceNode start by creating a constructor,
fields and the database interface just as for any other node (see [12], section 4.2.1). To make this
new node a functional surface node add an instance of the class created in HAPI to the variable

“hapi_surface”. This is usually done by overriding the initialize function of H3DSurfaceNode:

void MySurface:: initialize () {
H3DStiffnessSurfaceNode:: initialize ();
hapi_surface.reset (
new HAPI:: myHAPISurface(stiffness —>getValue(),
damping—>getValue (),
0, 0,
useRelativeValues —>getValue()));

Created the new surface node, it can be used in the scene graph and set as characteristic of
the bronchial tube object. Every time there will be a collision between the “virtual” bronchoscope
tip and the bronchial tube, a force along device Y-axis will be sent to the device itself. The node
mySurface will be inserted inside the Appearance node.

The reconstructed lungs model is a triangle face set and every face has an orientation. The
node HapticsOption has a field called touchableFace which specifies which sides of the shapes
to render haptically. If “BACK” only the back side of can be felt, “CRONT” only front side and
“FRONT _AND_BACK?” both sides!®. To avoid falling through caused by the fact that the interior
side is not the touchable (for possible errors in the model), this field is set to “‘FRONT AND BACK?”.

“This surface is defined by the class myHAPISurface
0The “BACK” and “FRONT” side are determined by the normal to the triangle surface

T W N

S O s W N

Graphics and Haptics User Interface for Virtual Bronchoscopy 67

7.3.1 C++ implementation

The aim of this section is not to show and describe all the implementation code, but the real aim
is giving the basic idea that lays under the communication between the device and the viewpoint

and the setting of all the described parameters and matrices.

H3D allows its field of the same type to communicate one another. This can be done with
something called routing. A route between field A and field B means that if something changes
in field A an event message is sent to field B to let it know that A has changed and B can take
appropriate actions. The values of the fields are updated using lazy evaluation. This means that the
value of the field will not be updated unless some part of the code asks for its value (with e.g. the
getValue() function). Fields have a member function called update() that takes care of updating
the value. By default it just copies the value of the incoming event, but it can be changed to do
any arbitrary calculation by specializing the update function. The default update function for an
SField'! looks something like:
class SFFloat: public Field{

virtual void update() {
value = static_cast< SFFloat>(event.ptr)—>getValue ();

where event is a member variable that contains a pointer to the field that caused the event and a

time stamp with the time the event occur [12].

Sometimes, the existing fields could not be sufficient or the update function must be modified to
achieve one’s objectives. In these cases, H3D gives to the developer the possibility to build his own
fields choosing the type and the number of the input parameters and the type of the returned value.

Sometimes lazy evaluation is not desiderable, it is wanted the update function to be called as
soon as an event is received. This can be done by specifying the field to be an AutoUpdate field. In
C++ this would be done as:
class PrintInt32: public AutoUpdate< SFInt32 > {

virtual void update() {

SFInt32::update();
cerr << value << endl;

which creates a field that, as soon as it receives the event, print on screen the value it received.

Once constructed the desired classes with the respective update function, the field can be built by

'L An SField is a field that contains a single value of some type and the field type is named depending on the type

of the contained value.

68 Graphics and Haptics User Interface for Virtual Bronchoscopy

creating an instance of this class. To make the different field to communicate one another, it is

sufficient to route them in the desired order.

In the implementation of section 7.2.1 three class of this kind have been implemented. The
first field (called devNavigatorTrsf) is “in charge” of reading the device position value and save
it in a variable. Furthermore, the update function of this field modifies other two variables: the
linear velocity depending on the y device position and the blocking of the device movement along
its X-axis. This blocking is made by sending a force proportional to the x distance from the origin.
The event routed to this field will be the position read from the device. This means that every time
the device position changes, the update function of this class will be called and all the values will
be, exactly, updated.

The second field is devNavigatorOrn. This memorizes the orientation of the device in a variable
and determines the camera angular velocity (about its X-axis). The event routed to it is the device
orientation.

Finally, the class viewUpdater that contains all the calculations of the transformation matrices
and that takes care of setting the viewpoint and calibration matrices to the right value. The
update function of this field is the one that moves everything and allow the navigation, so it is
wanted this function to updating continually. For this reason, the event routed to this field is the
fraction_changed of the clock: every clock time the update function will be called. The values
of linear and angular velocity and device position and orientation provided from the other two
fields need to be global variable, so as to be utilized in the viewUpdater class to execute all the

calculations.

On the other hand, in the implementation described in section 7.2.2 the necessary classes are
only two. The class that, in the other case, managed the angular velocity is no longer needed,
since the angle about the camera X-axis correspond to the device orientation about the X-axis
as explained in the corresponding section (in this implementation the angle £ of figure 7.7 is not
modified by angular velocity). Excepting for the devNavigatorOrn, the other two classes are in this
implementation too and have the same role. Obviously, the viewUpdater will contain the operations

(setting VP and calibration matrices) of the specific described implementation.

Referring to the pseudo-code of section 7.2, there is a correspondence between that code and
these classes. devNavigatorOrn and devNavigatorTrsf represents the Read_device_info() func-
tion and the viewUpdater is in charge of executing Compute_control(), Update_calibration and
Update_viewpoint (). As already explained, the Compute_forces() function is managed directly

by the surface.

As mentioned, to route the different fields the corresponding class objects have to be created.
In this case, it was done as follows:

First creating the new needed fields

3 devNavigatorOrn xdevNavigatorOrnObj = new devNavigatorOrn(); // just in

w

© 0 N O Ot

10

Graphics and Haptics User Interface for Virtual Bronchoscopy

69

// Read device info (position and orientation)

devNavigatorTrsf xdevNavigatorTrsfObj = new devNavigatorTrsf();

¢
controlling directly the camera’’ implementation

// Update viewpoint (), Update calibration() and Compute controls ()

viewUpdater *xviewUpdaterObj = new viewUpdater();

and then, when loading the scene, they have to be connected with the desired field:

// reading the hdev values
hdev—>devicePosition —>route (devNavigatorTrsfObj);

hdev—>deviceOrientation —>route (devNavigatorOrnObj); // just in ‘‘controlling

directly the camera’’ implementation
hdev—>followViewpoint —>setValue(false);

// starting the clock and routing to viewUpdater field
AutoRef< TimeSensor > ts(new TimeSensor);
ts—>startTime —>setValue (TimeStamp ()-+1);

ts—>fraction changed—>route (viewUpdaterObj);
ts—>loop—>setValue (true);

In this code, 'hdev’ is the name of the pointer that refers to the connected device.

The field

followViewpoint (true if the device should follow the viewpoint) must be set to false. If its value

is true, this settings will act on the calibration matrix so as to maintain the probe position and

orientation on the screen even when the VP is modified. This setting would obviously collide with

the desired behaviour, which wants the device to follow the device.

After having established the different routings, any time a device value of position or orientation

changes, it will be revealed and the value will be passed to the routed field which will handle the

event by changing the settings in the appropriate way.

70 Graphics and Haptics User Interface for Virtual Bronchoscopy

Graphics and Haptics User Interface for Virtual Bronchoscopy 71

Chapter 8

Graphics Interface

The objective of this module is to provide a Graphic User Interface (GUI) made using Qt, which
allows the user to explore the bronchial tree with the haptic device. It must also provide an external
view of the same bronchial tree, where a point will indicate the position of the virtual camera during

the exploration. This GUI must have also tools to make the navigation easy and intuitive.

This section presumes to describe just the main concepts which are at the basis of the imple-
mentation, the entire code of C++ classes and the detailed functioning of the application can be

found in the appendix and the accompanying CD.

8.1 Qt - H3D integration: The QT Window Class

H3D provides users with an H3DViewer which is totally built using the wzWidgets library. Since the
aim of this project is to create an application (“Lung Viewer”) in Qt and nothing was available with
Qt, the first step was to implement the integration of an H3D scene in a Qt window, guaranteeing

keyboard and mouse interaction with the specified scene.

In H3D, the base class for all windows nodes is H3DWindowNode. It handles creation of win-
dows and window properties for looking into a Scene. To implement a new window class the
following virtual functions have to be specified: swapBuffers(), initWindow(), initWindowHan-
dler(), setFullscreen(bool fullscreen) makeWindowActive(), setCursorType(const std::string &
cursor _mode) and getCursorForMode(). These functions define the fundamental actions asso-
ciated to any window, they are functions to create the window and set of the properties, to set
whether the window should be fullscreen or not or to make the window active. The same class
also has a set of functions that manage the signals coming from mouse and keyboard and allow

to interact with the scene. The missing “plug” is a event handler, that can recognize the signals

%
(2

N

T W N

72 Graphics and Haptics User Interface for Virtual Bronchoscopy

Qt H3DWindowNode

mousePressEvent(QMouseEvent *event) | virtual void onMouseButtonAction(int button, int state);

mouseReleaseEvent(QMouseEvent *event) | virtual void onMouseButtonAction(int button, int state);

keyPressEvent(QKeyEvent *event) virtual void onKeyDown(int key, bool special);
keyReleaseEvent(QKeyEvent *event) virtual void onKeyUp(int key, bool special);

mouseMoveEvent(QMouseEvent *event) virtual void onMouseMotionAction(int x, int y);

wheelEvent(QWheelEvent *event) virtual void onMouseWheelAction(int direction);

Table 8.1: Correspondence between the Qt function for catching mouse and keyboard events (left column)
and the H3DWindowNode functions to manage them (right column). Each Qt function calls its

corresponding H3D function, passing the right parameter.

from external devices. This event handler is provided in Qt by the functions: mousePressEv-
ent(QMouseEvent *event), mouseReleaseEvent(QMouseEvent *event), keyPressEvent(QKeyEvent
*event), keyReleaseEvent(QKeyEvent *event), mouseMoveEvent((QMouseEvent *event), wheelEvent(
QWheelEvent *event). The “event” parameter includes information about which element (of key-
board or mouse) has provoked the event. These functions are just used to catch the event and
call the H3DWindowNode function that handles the event caught. In tab. 8.1 can be seen the

correspondence between Qt and H3D functions for acting on windows.

On the Qt side, the base class of all user interface objects is () Widget. The widget is the “atom”
of the user interface: it receives mouse, keyboard and other events from the window system and
paints a representation of itself on the screen. To achieve the Qt-H3D connection, the idea proposed
in this project is to create an object which inherits from H3DWindowNode and from QWidget, so
as to be able to catch the events and call the corresponding H3D function with the right parameters.
The combination of this functions will allow to explore and look into the scene. To associate the
window to the node Scene, QTWindow must be a H3D node itself. To do this it is sufficient to add
the following code in the .cpp file of the QTWindow class, defining the name of the new node and
adding it to the H3D database.

// Add this node to the H3DNodeDatabase system.

H3DNodeDatabase QTWindow:: database ("QTWindow" ,
&(newlnstance <QTWindow>) ,
typeid (QTWindow),
& (H3DWindowNode : : database));

So, when a window is to be added to a scene, it will be sufficient to create the window and set the

value of the field scene->window with the window just created.

iy

g&’ 3
Gt L
oISV

Graphics and Haptics User Interface for Virtual Bronchoscopy 73

| e ==
e~ Settings jpakisn |

Toolbars

Dock Widgets

Central Widget

(a) QMainWindow layout struc- (b) QtDesigner form for the LungViewer Window,

ture. which is the application main window.

Figure 8.1: QMainWindow layout and its relative implementation in the main application GUL

8.2 Main Application

8.2.1 Graphic design

As already explained in previous sections, Qt supplies the user with a useful tool called QtDesigner.
This helps building the main structure of the window by dragging and dropping basic widget forms
(such as buttons, tags, sliders, menus...) in the empty window model and disposing them in the
intended layout. Once the window structure is completed, this software allows to set properties
and how the events generated by the user have to be managed. Another important feature of
this tool is that it is perfectly integrated in QtCreator (the Qt ID environment): the user can
create a Qt Designer Form Class and the ui' file and the relative class are automatically generated.
Furthermore, the C++ code describing the window structure can be easily obtained using CMake
tools: QT4_WRAP_UI reads the formName.ui files (an example can be the one in figure 8.1(b)) and
creates the file ui_formName.h. This file only contains the C++ code corresponding to the form
built in QtDesigner, including the connection of signals and slots (which will be explained below).
In the class associated to the form, the creator and all the needed signals and slots are defined and

implemented.

The application main window is a QMain Window, a Qt class that provides (with classes asso-
ciated to it) a framework for building an application’s user interface. QMainWindow has its own
layout to which you can add QToolBars, QDockWidgets, a QMenuBar, and a QStatusBar. The
layout has a center area that can be occupied by any kind of widget (8.1(a)). As told before, a

Yyi is the extension of the files created in QtDesigner.

74 Graphics and Haptics User Interface for Virtual Bronchoscopy

QtDesigner form needs to be processed by QT WRAP UI. An example of the created code can
be the following .h file and and its structure is similar for every form. Here it will be shown the

code relative to the form of figure 8.1(b):

In the first part there are all the classes of the basic widget needed to build the window:

#ifndef Ul LUNGVIEWERWINDOW H
#define Ul LUNGVIEWERWINDOW_H

#include <QtCore/QVariant>
#include <QtGui/QAction>
#include <QtGui/QApplication>
#include <QtGui/QButtonGroup>
#include <QtGui/QHBoxLayout>

© 00 1 O U s W N =

10 #include <QtGui/QHeaderView>

11 #include <QtGui/QMainWindow>

12 #include <QtGui/QMenu>

13 #include <QtGui/QMenuBar>

14 #include <QtGui/QPushButton>

15 #include <QtGui/QSpacerltem>

16 #include <QtGui/QStatusBar>

17 #include <QtGui/QVBoxLayout>

18 #include <QtGui/QWidget>

19

20 QT_BEGIN_NAMESPACE

e then the class and all the objects used in the window are defined:
1 class Ui_LungViewerWindow

2 {

3 public:

4 QAction xactionOpen Lung;

5 QAction xactionOpen Path;

6 QAction xactionMain _Settings ;
7 QWidget xcentralwidget ;

8 QVBoxLayout *verticalLayout ;

9 QWidget *LunPlcae widget;

10 QVBoxLayout *verticalLayout 2;
11 QHBoxLayout *LungPlace Layout;
12 QHBoxLayout sxhorizontalLayout;
13 QSpacerltem xhorizontalSpacer ;
14 QPushButton xstartButton ;

15 QPushButton xstopButton;

16 QPushButton xhomeButton;

17 QMenuBar smenubar ;

18 QMenu xmenuFile ;

19 QMenu *menuOpen;

Graphics and Haptics User Interface for Virtual Bronchoscopy 75

20
21

S O R W N =

10
11
12
13

14

15

16

17

18

19

20

21
22

1
2
3

4

QMenu *menuSettings;
QStatusBar xstatusbar ;

subsequently all the elements composing the window are named and positioned in the layout.

At the end of the setupUi function, the connection between signals and slots are defined.

void setupUi(QMainWindow #LungViewerWindow)

// defining , naming and positioning all the elements

if (LungViewerWindow—>objectName () .isEmpty ())
LungViewerWindow—>setObjectName (QString :: fromUtf8 ("LungViewerWindow

"))
LungViewerWindow—>resize (639, 526);

A B

//Defining the connection between signals and slots.

QObject :: connect (actionOpen_Lung , SIGNAL(triggered()), LungViewerWindow
, SLOT(openLung()));

QObject :: connect (actionMain _Settings , SIGNAL(triggered()),
LungViewerWindow, SLOT(openMainSett()));

QObject :: connect (startButton, SIGNAL(clicked ()), LungViewerWindow, SLOT
(routeAll()));

QObject :: connect (stopButton, SIGNAL(clicked ()), LungViewerWindow, SLOT(
unRouteAll()));

QObject :: connect (homeButton, SIGNAL(clicked ()), LungViewerWindow, SLOT(
getHome ())) ;

QMetaObject : : connectSlotsByName (LungViewerWindow) ;

} // setupUi

Finally, the class associated to the form is defined (LungViewerWindow) and force to inherit

from the wui class.

namespace Ui {
class LungViewerWindow: public Ui LungViewerWindow {};
} // namespace Ui

5 QT END NAMESPACE

6

7 #endif // UL LUNGVIEWERWINDOW H

© 0 1 O O s W N

10
11
12
13

76 Graphics and Haptics User Interface for Virtual Bronchoscopy

8.2.2 Functioning

As already mentioned, the signals and slots mechanism is fundamental for Qt programming. It
enables the application programmer to bind objects together without the objects knowing anything
about each other. So, by this mechanism, the widgets (and all the structure formed by that)
can communicate one another or with the main process. When an event occurs (such as an OK
button is pressed) the involved element sends a signal according to the occurred event. This signal
is redirected to the bind object (of the same or another window) which will react with the slot
associated to that signal. One object can throw different signals and each signal can be connected
to many slots or, vice versa, many signals can be connected to the same slot. These connections
can easily be defined in QtDesigner itself, by linking the different widgets and choosing the existing

signals/slots or creating some new. As shown above, the connection astatement looks like this:

connect (sender , SIGNAL(signal) ,receiver , SLOT(slot));

where sender and receiver are pointers to QObject and where signal and slot are function

signature without parameter names [14].

The only thing to be respected is the coherence between the parameters of the linked signal and
slot: the signal and the slot must have the same parameter types and in the same order. Signals
and slots are here used just with widgets, but the mechanism is implemented in QObject and is not
limited to GUI programming. It can be used by any QObject class. Slots and signals have to be
defined and implemented in the class associated to the form (in this case it is LungViewerWindow).
A little inconvenience of this method is that Qt uses a preprocess MOC to translate signals and

slots and so there is no access to “pure” C++ code.

Another two features of this main window deserve to be mentioned: the LungViewerWindow

class constructor and the “load function”.

The constructor has the following form:

/// Constructor
LungViewerWindow : : LungViewer Window (QWidget *parent)
QMainWindow(parent) ,

ui (new Ui::LungViewerWindow)

{
ui—setupUi(this);
scene.reset (new Scene);
// create a window to display
QTWindow *glwindow = new QTWindow;
scene —>window—>push back(glwindow) ;
\@5%@%’54
(2 HX
U Al W
Y "zﬂﬁ
=0E&

14
15
16
17
18

Graphics and Haptics User Interface for Virtual Bronchoscopy 77

ui—LungPlace Layout—>addWidget(glwindow) ;
scene—>sceneRoot—>setValue (NULL) ;

settings —0;

where it can be observed the assignment of the form to the window (line 7) and the creation of
the QTWindow which is associated to the Scene scene (lines 11 and 12). At the beginning the
scene root is NULL (no file is shown), so, when opening this main window, a black rectangle (which
represent the “NULL scene”) will be shown in the QTWindow position. The scene is “filled up”

when the load function is called.

The other important element is the loadFile function. Its input parameter is the path to the
file of the lung image. What this function does is to load a basic empty scene with all the general
settings and fill in the two empty groups *‘LUNGS’’ and ‘‘ROUTES’’ defined to contain the bronchial
tree input parameter and the possible guidance path, respectively. This basic file is called base.z3d
and looks like this:

1 <?xml version="1.0" encoding="utf-8"7>
2 <X3D profile="H3DAPI" version="2.0">

3

© 0 N O Ot

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

<Group DEF="BASE">

<Devicelnfo>
<PhantomDevice positionCalibration="10 0 0 0
0 10 0 0
0010 0
000 1"
<GodObjectRenderer />
<Shape containerField="stylus">
<Appearance>
<Material />
</Appearance>
<Sphere radius="0.01" />
</Shape>
</PhantomDevice>
</Devicelnfo>
<IMPORT inlineDEF="H3D EXPORTS" exported DEF="HDEV" AS="HDEV" />

<GlobalSettings>
<HapticsOptions DEF="HaOp" />
<DefaultAppearance>

<Appearance containerField="defaultAppearance'">
<SmoothSurface stiffness="0.5" />
</Appearance>
</DefaultAppearance>
</GlobalSettings>

78 Graphics and Haptics User Interface for Virtual Bronchoscopy

29
30 <Viewpoint DEF="VP" position="0 0.0 3" />
31 <!— Disable the headlight since we want an overhead light —>
32 <!—NavigationInfo headlight="FALSE" type="NONE" /—>
33 <!—Position a light overhead, slightly off—-centered —>
34 <!—DirectionalLight direction="0.1 -1 0.1" /—>
35 <!—DirectionalLight direction="0.1 1 0.1" /—>
36
37
38 <!—LUNGS—>
39 <Group DEF="LUNGS">
40
41 </Group>
42
43
44 <!—XY Z AXIS—>
45 <Group DEF="ROUTES">
46 </Group>
47
48 </Group>
49 </X3D>
where:
e DeviceInfo node defines the device settings such as the renderer used and the shape of the
proxy (a sphere in that case).
e IMPORT node detects the device and assigns it a name that will be used to refer to it.
e GlobalSettings establish some global haptics options, such as the touchable face or the
stiffness of all the surfaces.
An X3D file defines a scene-graph using an XML-like syntax characterized by nodes and tags.
To each node a string can be associated. This string (inserted with the DEF command) gives a
name to the node, which can be used for further references. H3D has a class named DEFNodes
which provides a mapping between defined DEF names in X3D and the nodes they refer to. The
insertion of the input file inside base.x3d is possible thanks to this tags on the nodes. When an
X3D file is loaded, all its defined nodes can be collected in a DEFNodes object and can be used
to modify the graph from the C++ environment. How to insert “lungs scene-graph” is shown and
commented below. After having created the DEFNodes object myDefNodesl and referred to the
root node (Group base) of the base.x3d file, the group which will correspond to the LUNGS node
is created
1 Group* base= new Group();

= W N = Tt W N

SO W N

Graphics and Haptics User Interface for Virtual Bronchoscopy 79

myDefNodesl—>getNode ("BASE" , base) ;

// creating the group which will correspond to the LUNGS node
Group *lungs= new Group();

myDefNodesl—>getNode ("LUNGS" ,lungs) ;

Then, the node that receives the input file graph must be created (called lungsNode). The command
createX3DFromURL create H3D nodes given X3D data as a URL and lungsNode will be pointing
to the first node of the X3D scene-graph contained in fileName.

)

// inserting the scene graph defined by fileName as children of the ‘‘lungs’

X3D::DEFNodes #lungsDefNodes= new X3D:DEFNodes() ;

AutoRef<Node> xlungsNode;

lungsNode=new AutoRef<Node>(X3D::createX3DNodeFromURL (fileName.toStdString(),
lungsDefNodes)) ;

group

The last step is to insert the graph into the existing file and then set this complete scene graph as

the sceneRoot:

if (t_lungs) t lungs—>children—>push back(lungsNode—>get ());
if (lungs) lungs—>children—>push back(t_ lungs);

A

scene—>sceneRoot—>setValue (base) ;

The load function (called loadPath) for adding the calculated path in the scene is based, more or
less, on the same idea. A node containing the path is created by the function createX3DNodeFromURL
and this node is inserted as children of the group base, which is declared as private variable of the

LungViewerWindow class.

In the implementation of controlling the camera from the base of the tip, an additional tool is
needed. As explained in chapter 7, in this implementation, it is not possible to pass from backward
to forward if the current device orientation does not correspond to the one associated to the “old”
memorized position. With the aim to help the user to position the device in the right orientation, a
little window has been created. This window (fig. 8.2) indicates to the user by red arrows in which

direction he/she has to rotate the stylus or if he has to move its tip up or down.

This window is obtained using the QPainter class, which performs low-level painting on widgets

and other paint devices (see [13] and [14] for more details).

g}

S
,Sz'ww‘v"
£
ezl
S

80 Graphics and Haptics User Interface for Virtual Bronchoscopy

Figure 8.2: Window indicating the movement to make with the device to align the device orientation with

the memorized one.

8.3 Two different views

As said in the introdcution of this chapter, the other main feature of the application is having two
different views: one showing the scene seen by the bronchoscope camera and the other showing the

external view of the lungs with a sphere indicating the position of the tip inside the bronchial tree.

In the attempt of creating two windows (QTWindow) containing the same scene but with
different viewpoint, H3D presents some problems: when the user acts on the image with the fixed
viewpoint this stays still whereas the other scene reacts as if this last scene was receiving the event.
The internal H3D navigation system is not built to handle two viewpoints at the same time and
navigation in both windows. Even consulting the H3D Forum, it does not seem to be possible or

easily implementable.

In this project the total independence between scenes is achieved working with separate pro-
cesses: one dealing with haptics navigation and the other with the external view. This way of
implementing also assures navigation for both windows, even with different viewpoints. However,
a new problem arises, concerning the fact that the haptics device can communicate with just one
application at a time. So, it has to be found a method to make the two processes communicate one
another so as also the second one can know the tip position and orientation and, therefore, positions
the indication point in the right coordinates inside the bronchial tree.

The solution adopted here is to create a shared memory where the both processes can access, read
or write data. To achieve that, BOOST library is used. This library provides, among other pack-
ages, the Boost.Interprocess which allows to create and manage a shared memory and, therefore, a

communication between processes in the same computer (or machine in general).

The Lung Viewer main window is the window that receives the haptics device information and

it will be the main thread. This application is also responsible of updating the calibration field,

Graphics and Haptics User Interface for Virtual Bronchoscopy 81

(a) Lung Viewer window which wvisualizes the (b) Window used for the general view. The figure
bronchoscope camera view. 1s more transparent and a little red point can be

seen at the mouth of the trachea.

Figure 8.3: The Complete Graphic User Interface

apart from the communication with the device. The main process creates the shared memory
segment in which a vector of matrices will be saved. This vector contains the matrices decribing the
“historical” positions and orientations of the bronchoscope tip. They are 4 x 4 matrices expressing
the transformation between the world coordinates and the tip coordinates. Every updating cycle,
the main process adds to the shared vector the last matrix value. The second process just reads
from the shared memory segment the last vector value, which represents the current position. It is
“in charge” of showing the general view of the lungs and translate a little sphere according to this
read value. Every time a new file is opened, the shared memory is cleared to free the space and
avoid that the values regarding different navigation will affect the current one. Finally, being two
parallel processes, it is made possible to interact with the scene rendered in general view window

by mouse or keyboard, without affecting the other one.

82 Graphics and Haptics User Interface for Virtual Bronchoscopy

Graphics and Haptics User Interface for Virtual Bronchoscopy 83

Chapter 9

Environmental Analysis

Since this work is purely a software development, it does not affect the environment directly.

More or less the same approach was used to develop the different modules. The first phase,
always, consisted of consulting books, articles and manuals and doing some tests to know the tools
which will be used in the project. This implied the use of paper (new, used or recycled) to print
some essential part of documents or write notes or calculations and the use of computer to make
tests or also read documents. The following phase was more centered on the development of code
and tests using the computer and the device, when needed. In this phases the use of paper may
decrease (just use to print some important code) but, on the other hand, the consumption of electric
energy increases. Since this software should be distributed and tested in two hospitals, at least two

CD must be burned and distributed. The effects on the environment can be summarized as follow:

e Emissions in the atmosphere caused by a continuing use of a computer. Considering an average
power consumption of 360 W for 6 months (24 day per month) and a average time of 10 hours

per day, this consumption can be estimated in about 520 kWh.

e Emissions caused for the use of the haptics device. Considering an average power consumption
of 40W and an average use of 2 hours per day in only the second part of the work (4 months),

the electricity consumption can be estimated in 192 kWh.

e Paper and ink consumption to print documents in general or part of interesting code and to

write notes or calculations. The paper used was recycled, written on one page or new sheets.

e CDs for the distribution of the software (at least two for the two hospital which are collabo-

rating in this project) that need to be recycled when not used anymore.

e Emissions as consequence of the transport used to go to the laboratory or libraries.

o Wﬂ’g ?
fe.

e

84 Graphics and Haptics User Interface for Virtual Bronchoscopy

A last consideration to make is that all the paper used in the project and considered useless at

the end of the project itself has been recycled.

Graphics and Haptics User Interface for Virtual Bronchoscopy 85

Chapter 10
Costs Analysis

The costs deriving from this work can be divided into two groups: costs related to the physical
equipment or material and those related to the staff work (composed by doctor engineer, a PhD

student and a new engineer.)

Physical Equipment

Equipment / Material | Unit Price [€] | Total Cost |€]
Phantom Omni 1780 1780
PC Dell T1500 1000 1000
Fungible Material
(CD, Sheets of paper...) - 20
Total - 3000

The indicated price may seem a high price for a tower PC, but a good graphical board with
high calculation capacity is needed to process the “heavy” images of bronchial tubes. It need also a
Fire-Wire (IEEE 1394) to communicate with the haptics device.

Working Staff

Profession Hours | Professional Fee [€/h] | Total Cost [€]

Senior Engineer | 100 100 10000
PhD Student 100 80 8000
Engineer Junior | 1080 35 37800

Total 55800

86 Graphics and Haptics User Interface for Virtual Bronchoscopy

The cost of transport to get to the laboratory or to get where the meeting took place are included

in the professional fee.

The estimate of this project can be around 58.800 €, which can be an hypothetical budget to

carry out this work.

Graphics and Haptics User Interface for Virtual Bronchoscopy 87

Chapter 11

Results

A software has been implemented to allow the navigation in the VB by means of a haptic device,

satisfying the requirements of the application expounded in section 4.

The software allows the user to observe the virtual reconstruction of the bronchial tree of a spe-
cific patient and to explore it by a haptics device. To achieve that, the bronchoscope was modeled
and the transformation matrices between device and virtual world were calculated considering
the model.

The movements made for the virtual exploration are very similar to the ones made in real
bronchoscopy and two implementations are proposed, which have to be evaluated by competent
medical staff.

The collisions are managed in the right way avoiding the proxy from exiting from the bronchial
tube and rendering a force in device Y-axis. This makes the stylus lifting and, consequently, causes
a backward movement of the camera that allows the observer to see his way and go on with the
navigation. The external view helps the user’s bearings showing the position of the camera inside
the bronchial tube.

The specification regarding the libraries to be used have been satisfied too: graphics and hap-
tics rendering has been developed with H3DAPI and HAPI and the Graphic User Interface by
Qt. Defining the project by a CMake file enables to build the project both for Linux and Windows.

In the tests made so far, the software does not present any strange behaviour. It has a slow
start up depending on the size of the .wrl loaded for the navigation. The haptic renderer provides
good results but in some cases does not totally avoid falling through problems. It depends on the
quality of the reconstruction and on the shape of the hit zone. If a falling through may occur, the

provided going backward movement, assure the return of the camera inside the bronchus and the

%
(2

N

88 Graphics and Haptics User Interface for Virtual Bronchoscopy

user can start again his/her navigation. The interface will be composed of two separate windows
and each of them is associated to one process (navigation or external view). The user can manage
separately the two windows, set their dimensions and move them independently or choosing which
one to show on the screen. Moreover, it is guaranteed the total independence between the two

scenes for the user, that can modify one without the other being affected.

The forces sent to the device (caused by collisions or to constrain it to a position with a null
X-component) make the device vibrating sometimes. The reason of that could be related with
several issues. As described in [7] haptic interfaces can only exert force with limited magnitude and
not equally well in all directions, thus rendering algorithms must ensure that no output components
saturate, as this would lead to erroneous or discontinuous application of forces to the user. Another
issue could be that haptic-rendering algorithms operate in discrete time whereas users operate in
continuous time: while touching a virtual object, the virtual sampled probe will always lag behind
the probe’s actual continuous-time position. Due to this beahaviour, the user needs to perform less
work than in reality, when pressing on a virtual object. The problems can come when the user
releases: the virtual object returns more work than its real-world counterpart would have returned.
This “over-reaction” can cause an unstable response. Finally, haptic device position sensors have
finite resolution. Consequently, there are always quantization errors, attempting to determine where
and when contact occurs or just the device position (needed, then, to calculate velocity or determine
whether or not forces has to be sent). Although users might not easily perceive this error, it can

create stability problems.

Figure 11.1 shows some screen-shots of the created application. Moreover, some videos have

been made to show better and attached in the accompanying CD.

Graphics and Haptics User Interface for Virtual Bronchoscopy 89

Figure 11.1: Screenshots from the application

90 Graphics and Haptics User Interface for Virtual Bronchoscopy

Graphics and Haptics User Interface for Virtual Bronchoscopy 91

Chapter 12

Conclusions

All the objectives of the beginning have been attained with good results. This work can be consid-
ered also a sort of experiment to test new libraries and merge them to “blend” cleverly the quality

of each of them.

Qt turns out to be a very good tool for developing GUI and widgets in general. It enables the

user to accomplish the GUI very quickly, using all its tools, which are perfectly integrated in the
QtCreator IDE. The Qt Reference Documentation is very complete and clear and plenty of useful
examples.
H3DAPI integrates haptic and graphic rendering in a very good way. It represents a powerful de-
velopment tool that consents to the software developer to save time and achieve very good results.
HAPT allows a total control of the device and of the haptic side of the scene. H3DAPI build nodes
from HAPI structures, which can be used in the scene-graph making all the development easier and
the structure clearer. On the other hand, when creating something new regarding haptic rendering,
it is needed the HAPI structure first and then the node with H3DAPI can be defined calling the
HAPI object just created.

Finally, another positive consideration can be done about Python', even though it was never
mentioned before. It cannot be numbered among the fundamental software used developing this
work, but it has turn out to be a good tool for testing operation. It is a very easy and intuitive
programming language, which H3D uses for many examples and to implement useful tools. Since
it is an interpreted language, its efficiency may not be as good as C+-+ written programs, so the

choice to develop everything in C++.

Despite being a basic version, it can be defined a good tool for navigation. It allows also to

"http:/ /www.python.org/

92 Graphics and Haptics User Interface for Virtual Bronchoscopy

adjust some important parameters like transparency, navigation type and velocity or the position
of the center of rotation, offering more possibilities to carry out the navigation and analyze more
specifically some parts. It can be used to carry out the virtual bronchoscopy more quickly and in
a more intuitive way. It acquires a “value-added” inside the bigger project already mentioned at
the beginning: it is the application which make it possible to integrate the results of both virtual

reconstruction from CT images and path-finding modules.

Graphics and Haptics User Interface for Virtual Bronchoscopy 93

Chapter 13

Future Work

Using this work as basis, there are many possibilities to add features and expand the field of

application. Some of them have already been considered as natural continuation of this project.

13.1 “Improving the Feeling”

Two aspects can be added to make the navigation more real. One is to make the virtual broncoscope
tip to turn if one side of the tip is touching a bronchus wall, so as to better render the real
bronchoscope turning action. In fact, what really happens in real bronchoscopy is that the doctor
(when getting to a fork) turns the tip in the desired direction and push the tube forward; the bent
bronchoscope tip hits on its lateral side against the bronchus wall and, then, keeping on pushing
the bronchoscope, it slides on the bronchus wall and actually turns as desired. To better render
the feeling of this behaviour and of bronchoscopy in general, a solution could be to give a different
interacting shape to the proxy. In this case the haptic interaction point will be a bronchoscope tip
model. This would be complicated to calculate the reaction force from the collision points of the
virtual tip and to translate them in a meaningful way to the device (i.e. send a force to the device

that render, somehow, the real feeling).

13.2 Guidance

This application counts with the insertion of a planned path that indicates to the doctor the route
he/she has to follow to reach the target point (for example a cancer nodule in a lung peripheral
zone). Haptics properties can be exploited to lead the doctor exploration following the proposed

route, by sending forces to the device that indicate the doctor how to actuate.

iy

%gﬂ‘

i,

Y

YN

YA 7
Y 5

Dyl

bz

94 Graphics and Haptics User Interface for Virtual Bronchoscopy

Another thing that can be useful to add is the vision of the DICOM images which the doctors
are very familiar with. So, during navigation, they can see the 3-dimensional reconstruction and

identify where they are also in the two planes (sagittal and trasversal) in DICOM images.

Graphics and Haptics User Interface for Virtual Bronchoscopy 95

Appendix A

User Manual

When the Lung Viewer is opened, appears as seen in figure A.1. To start the navigation is necessary
to load a scene. This can be done by clicking on the File menu and choosing Open->Open Lung.
Once selected the file to open, the scene will appear on the main window (named Lung Viewer
A.2(a)) and a second window will be open showing the general view of the lungs and a little spot
indicating the position within the bronchial tube during the navigation (fig. A.2(b)). To insert the

planned path is sufficient to click on the other item of the File menu and choose the desired file.

Lung Viewer

Lung Viewer presents 3 buttons:

e Start allows the user to start the navigation by the haptics device.

e Stop interrupts the navigation and the camera stays at the same position and orientation as

when the button is pressed.
e Home is like a reset button: it brings the situation as it is at the beginning.
These buttons are very useful if the user loose his/her way and wants to start from the beginning
or to stop the navigation if some problem occurs.
It has also the menu “Settings” (fig. A.3)that open a dialog window where the user can change

some parameters:

e Velocity allows the user to change the linear forward velocity. The biggest is the value the

less the user has to move the device to obtain a certain displacement velocity.

A v’gﬁ
f’

e

96 Graphics and Haptics User Interface for Virtual Bronchoscopy

Figure A.1: The appearance of the main window when the process start.

(a) Lung Viewer window which wvisualized the (b) Window used for the general view. The figure
bronchoscope camera view. is more transparent and a little red point can be

seen at the mouth of the trachea.

Figure A.2: The Complete Graphic User Interface

Graphics and Haptics User Interface for Virtual Bronchoscopy 97

Angular Velocity [- 200 2]

Transparency D =7 .:

e

Figure A.3: The Main Settings dialog window.

e Angular Velocity available only in the navigation controlling directly the camera. It change

the velocity of increasing-decreasing the tip angle.

e Transparency, as the word tells, is used to set the transparency of the bronchial tube: its

range goes from 0 to 1 where 1 is totally transparent and 0 is the natural color.

General View

This second window opens only when a new file is opened in Lung Viewer. It presents three Group
Box: one showing the current navigation type and letting the user to modify it, another one showing
the coordinates of the center of rotation and the last one indicating the transparency.

The center of rotation is the point which the bronchial tube will move around when the user will
act on the window with the mouse. Furthermore, it is also the point where the camera comes nearer
when zooming by mouse. To change the orientation of the viewpoint is only necessary to click on
the image and translate the mouse in the desired direction.

The navigation type determines the user interface capabilities of the browser. There are many type

of navigation [15]:

e WALK: is used for exploring a virtual world on foot or in a vehicle that rests on or hovers
above the ground. It is strongly recommended that WALK navigation define the up vector in
the +Y direction and provide some form of terrain following and gravity in order to produce

a walking or driving experience.

e FLY: is similar to WALK except that terrain following and gravity may be disabled or ignored.
If the type is “FLY”, the browser shall strictly support collision detection.

e LOOK AT: is used to explore a scene by navigating to a particular object. Selecting an object
with LOOKAT, it moves the viewpoint directly to some convenient viewing distance from the
bounding box center of the selected object, with the viewpoint orientation set to aim the view
at the approximate “center” of the object and it sets the center of rotation in the currently

bound Viewpoint node to the approximate “center” of the selected object.

iy

%gﬂ‘

i,

Y

YN

YA 7
Y 5

Dyl

bz

98 Graphics and Haptics User Interface for Virtual Bronchoscopy

(a) Ezample of a scene showing a bronchial (b) To obtain a straight forward movement,

tree during the forward movement the user has to bring the HIP in a negative
position about y component. The arrow here
is not indicating any references coordinate,
it indicates just the suggested movement to

perform.

Figure A.J: How obtain the forward movement and the correspondent result.

e EXAMINE navigation is used for viewing individual objects. EXAMINE shall provide the ability
to orbit or spin the user’s eyepoint about the center of rotation in response to user actions. The
center of rotation for moving the viewpoint around the object and determining the viewpoint

orientation is specified in the currently bound Viewpoint node.

e NONE navigation disables and removes all browser-specific navigation user interface forcing the
user to navigate using only mechanisms provided in the scene, such as Anchor nodes or scripts
that include loadURL(). NONE has an effect only when it is the first supported navigation

type.

A.1 Example of navigation

In this section it will be shown in practice the movement the user must do to explore the scene
and turn into a bronchus. The forward movement is obtained by pushing the device in a position
with negative y component (figure A.4(b)). When the observer will get to a fork of the bronchial
tree (figure A.4(a)), he will need to turn into the desired bronchus and proceed with the navigation.
Considering how the bronchoscope is modeled in this work, its tip is able to turn only on the vertical
plane (Y, Z) with respect to the camera frame, in other words just up-down movement is consented.

" on other planes, a combination of more movements is needed. In this

To enter in bronchi “lying ’
section, it will be analyzed how to turn into a left bronchus, considering the trachea and the two

main bronchi in a horizontal position as shown in figure A.4(a).

To turn left, the user must position the plane which the tip moves on in the position needed

L%L

=
Sz'ww‘v"
‘L\‘ E»E‘.' !
Tezal’
=

Graphics and Haptics User Interface for Virtual Bronchoscopy 99

(a) The rotation of the camera about its Z - (b) To obtain the result shown in the pic-
azis. The camera is rotated counterclock- ture A.5(a) the 6" joint of the device has
wise, so the image appears rotated clock- to be rotated counterclockwise as shown.

wise. This can be seen comparing the spots
with those of figure A.4(a).

Figure A.5: The rotation around camera Z-axis.

to turn in the desired direction. In this case he can turn counterclockwise the camera (acting on
joint 6 in the same direction, see fig. A.5(b)) so as to position the tip in a way it can turn in the
wanted bronchus. After this rotation, the scene observed will be that on of figure A.5(a) where the
bronchi, now, are positioned in the vertical plane. Comparing figure A.4(a) and A.5(a) can be seen
that the left bronchus now become the upper one. At this point, the user just have to turn the tip
up, by pointing the stylus in the same up direction (fig. A.6(b)). To move into the bronchus and

then continue the exploration, he just need to perform a forward movement as described before.

100 Graphics and Haptics User Interface for Virtual Bronchoscopy

) Com))

(a) The rotation of the camera about its X - (b) Moving the tip of the stylus up, the user
azis which allows the user to observe the will be able to observe the top and, vice
top or the bottom of the scene to, in case, versa, moving the stylus down, he will see
choose the bronchus to enter when reached the bottom.

a fork, as in this example is shown.

Figure A.6: The rotation around camera Z-azis.

Graphics and Haptics User Interface for Virtual Bronchoscopy 101

Bibliography

Bibliographic References

1]

2]

3]

4]

15]

6]

7]

18]

9]

EBERHARDT, R., [et al.|, Multimodality bronchoscopic diagnosis of peripheral lung lesions:
a randomized controlled trial. American Journal of Respiratory and Critical Care Medicine.
Vol.176, June 2007, pp. 36—41.

KIRALY, AP., |et al.|, Three-dimensional path planning for virtual bronchoscopy. IEEE Trans
Med Imaging. Vol. 23, 2004, pp. 1365—1379.

SNELL, GI., [et al.| The potential for bronchoscopic lung volume reduction using bronchial
prostheses: a pilot study. Chest. Vol. 124, 2003, pp. 1073—1080.

WAHIDI, MM. | [et al.]| A Prospective Multicenter Study of Competency Metrics and Ed-
ucational Interventions in the Learning of Bronchoscopy Among New Pulmonary Fellows.
Chest. Vol. 137, May 2010, pp. 137:1040—1049. Published ahead of print October 26, 2009,
doi:10.1378/chest.09-1234.

SENSE GRAPHICS, HAPI Manual. May 2009. |http://www.h3dapi.org/uploads/
api/H3DAPI 2.1/docs/HAPI%20Manual.pdf, March - September 2010|

BERKLEY, JJ., MIMIC TECHNOLOGIES INC. Haptics Device. White Paper. Seattle 2003,
pp.2-4.

SALISBURY, K., CONTI, F., BARBAGLI, F. Haptic Rendering: Introductory Concepts. IEEE
Computer Graphics and Applications. Vol.24 Issue:2, March-April 2004, pp. 24-32.

ZILLES, C.B., SALISBURY, J.K. A Constraint-based God-object Method For Haptic Display.
Intelligent Robots and Systems 95. 'Human Robot Interaction and Cooperative Robots’, Pro-
ceedings. Vol. 3, August 1995, pp. 146-151 vol. 3.

RUSPINI, DC., KOLAROV, K., KHATIB, O. The Haptic Display of Complex Graphical En-
vironments. Proceedings of the 24th annual conference on Computer graphics and interactive
techniques. August 1997, pp. 245-352.

102

Graphics and Haptics User Interface for Virtual Bronchoscopy

[10]

[11]

[12]

[13]

[14]

[15]

CONTI, F., [et. al.| CHAI 3D: An Open-Source Library for the Rapid Development of Haptic
Scenes. IEEE World Haptics. IEEE World Haptics. Pisa, Italy, March 2005.

KITWARE Documentation CMake 2.8. New York, 2009.
|http://www.cmake.org/cmake/help/cmake-2-8-docs.html, March - September 2010].

SENSE GRAPHICS AB, H3D Manual. Stockholm, September 2009.
|http://www.h3dapi.org/uploads/api/H3DAPI 2.1/docs/H3D%20AP1%20Manual.pdf,
March - September 2010]

NOKIA CORPORATION. @t Reference Documentation. |http://doc.qt.nokia.com/4.6/,
March - September 2010].

BLANCHETTE, J., SUMMERFIELD, M. C++ GUI programming with Qt 4, Prentice Hall,
2009.

SENSEGRAPHICS AB, H3DAPI Documentation. Doxygen.
|http://www.h3dapi.org/uploads/api/H3DAPI 2.1/docs/H3DAPI/html/index.html, March -
September 2010]

Complementary Bibliography

ALBU-SHAFFER, A., HIRZINGER, G. Cartesian Impedance Control Techniques for Torque
Controlled Light-Weight Robots. Proceedings of the 2002 IEEE International Conference on
Robotics and Automation. Washington, May 2002.

COLT, H. G., [et al.] Simulazione di broncoscopia in realta virtuale. CHEST italian edition.
Vol.1, 2001, pp.44-50.

FENG-XIN, Y., et al.| Research of Haptic Techniques for Computer-Based Education®. Pro-
ceedings of 2009 4th International Conference on Computer Science €& Education. 20009,
pp-1636-1640.

KORY, P. D., |et al.| Initial Airway Management skills of Senior Residents: Simulation
Training Compared with Traditional Training. CHEST. Vol.132, 2001, pp.1927-1931.

LATHROP, R.A., [et al.] Guidance of a Steerable Cannula Robot in Soft Tissue Using Preoper-
ative Imaging and Conoscopic Surface Contour Sensing. 2010 IEEE International Conference
on Robotics and Automation. 2010, pp.5601-5606, The Eurographics Association and Black-
well Publishing Ltd 2003.

Graphics and Haptics User Interface for Virtual Bronchoscopy 103

e LAYCOCK, S.D., DAY, A.M. Recent Developments and Applications of Haptic Devices. Com-
puter Graphics Forum. Vol.22, n.2, 2003, pp.117-132, The Eurographics Association and
Blackwell Publishing Ltd 2003.

e MCLENNAN, G., [et al.] The Use of MDCT-Based Computer-Aided Pathway Finding for
Mediastinal and Perihilar Lymph Node Biopsy: A Randomized Controlled Prospective Trial.
Respiration. Vol.74, 2007, pp.423-431.

e SICILIANO, B., [et al.] Robotics. Modeling, Planning and Control. London, Springer, 2009,
cap.l and cap.2.

e SILVESTRI, G. A. The Ewvolution of Bronchoscopy Training. Respiration. Vol.76, 2008,
pp-19-20.

