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ABSTRACT 

In this project several mathematic algorithms are developed to obtain a matrix 

inversion method - that combines CUDA’s parallel architecture and MATLAB – which is 

actually faster than MATLAB’s built in inverse matrix function. This matrix inversion 

method is intended to be used for image reconstruction as a faster alternative to iterative 

methods with a comparable quality. The algorithms developed in this project are Gauss-

Jordan elimination, Cholesky decomposition, Gaussian elimination and matrix 

multiplication.  Gauss-Seidel is also featured in the report, but only as an alternative 

method of finding the inverse, since it has not been developed in the project. 
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CHAPTER 1 

INTRODUCTION 

Image reconstruction from acquired data is a technique with many uses nowadays. 

It is deployed in a wide variety of areas, such as medicine, security surveillance or 

biometrics, among others. 

Any image reconstruction method can be described with the following linear 

model: 

 

And its direct solution can be found by inverting the H system matrix. The 

following images are examples obtained with the implementation of matrix inversion 

algorithm. 

 

Figure 1.1.Original image to be reconstructed, degraded (blurred) image and recovered 

image using the inverse matrix reconstruction method developed in the project 

 

The most extended way of recovering an image is through iterative methods. An 

iterative method is a mathematical procedure that generates a sequence of improving 

approximate solutions for a problem, with prefixed termination criteria. These methods 
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are often the only choice for nonlinear equations, but they are used for linear problems 

involving a huge number of variables where direct methods would be computationally 

very expensive.  

On the other hand, direct methods attempt to solve the problem by direct 

inversion of H. In case that H is invertible this kind of method delivers an exact solution, 

but it is computationally expensive.  

There are two main objectives for the elaboration of this project. The first one is 

to create a matrix inversion algorithm – thus, a direct method- accurate enough to be able 

to reconstruct a degraded image without visible artifacts in the recovered one. The second 

objective is to speed-up this matrix inversion, because for large sized matrix it is very 

time expensive.  

In order to get a speed up for this method Compute Unified Device Architecture, 

or CUDA, is used. CUDA is a parallel architecture that permits massive simultaneous 

computing, useful for operations that are highly parallelizable. The purpose of using 

CUDA is to combine it with MATLAB using MEX files in order to execute faster the 

most timing consuming operation – matrix inversion - in MATLAB, and still have the 

results in MATLAB’s environment. 
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CHAPTER 2 

PARALLEL ARCHITECTURE 

2.1  CUDA 

 The Compute Unified Device Architecture (CUDA) is NVIDIA’s parallel 

computing architecture, and it enables powerful GPU hardware to C/C++, OpenCL and 

other programming interfaces. GPUs are capable of executing a huge number of threads 

at the same time with specific hardware for floating point arithmetic, 2D and 3D matrix 

cached access. 

 A GPU card that supports CUDA is a collection of multiprocessors where each of 

them has its own number of processors, and also its own fast shared memory, common to 

all the processors within. Inside every card all the multiprocessors share the card’s global 

memory, which includes both constant and texture memory, and are cache-accessible 

from every processor.  

 From a software developer point of view, the CUDA model allows user defined 

functions named “kernels” that, when called, are executed simultaneously in N parallel 

threads as opposed to only once like traditional C functions. The number of threads to be 

executed in a thread-block (from now on, block) is decided by the developer, and the 

device is the one that will schedule the execution of each block. Likewise, the blocks will 

be put together into a grid, followed by scheduling execution of a grid on the collection 

of multiprocessors. (See figure X2). In other words, the programmer can define the 

threads in each block and the blocks in each grid, but further decisions are left to the 

device. 
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Figure 2.1. Grid, blocks and threads hierarchy. 

  

 However, there are more thread grouping than blocks and grids: the threads in 

blocks are sub-grouped in warps (groups of 32 threads). Each processor of the card can 

perform the same operation on each thread of a warp in a sequential fashion, so for 

optimal performance the programmer should avoid branching and get all the threads in a 

warp to execute the same instructions.  

 

 Each processor warp scheduler can switch content quickly and put a warp on hold 

during time consuming operations (like memory fetching). While these operations are 

taking place the scheduler will attempt to execute up to other 3 warps to fully utilize 

CUDA capabilities, it is important to submit a larger number of threads than the number 

of processors.  

 

 In the present report we will be referring to CUDA C/C++ programming interface 

and codes as CUDA without implying the rest of ways to use GPU computing for 
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simplicity. Also, all the codes explained in the report only will show CUDA C/C++ codes 

and structures. 

 

 

2.2  CUDA kernels 

Kernels, as stated in the point before, are CUDA user defined functions that run 

simultaneously in a group of threads in the GPU. The organization of the threads follows 

this structure: 

 

 

Figure 2.2. Organization of threads and blocks in a grid 

 

A kernel can have a grid of a total of 65,356 blocks, and the blocks can have up to 

512 or 1024 threads each (depending on the GPU card, in our case up to 512 only). The 

organization of blocks in the grid can be in one or two dimensions, and the organization 

of threads inside the blocks can be one, two or  three-dimensional; since there can be as 

many different kernels as software developers, the organization is up to the person 

designing the kernel. There’s no need to use all of the dimensions if not needed; 
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nevertheless, the maximum number of blocks and threads must not be surpassed in any 

case. 

Whichever the organization, each thread has its unique thread identifier inside a 

block, and its block identifier inside the grid, so we can create a kernel in which every 

thread is unique and, if needed, can be assigned a different task than any other. 

Because of this variable thread structure, we must setup the thread usage before 

calling a kernel. This setup must be done according to the needs of each kernel; if there’s 

no set up the code won’t compile correctly, but if the setup is wrong there won’t be any 

compilation error and the code will be malfunctioning, leading to a crash while execution 

in the worst cases. 

In order to setup a kernel, CUDA incorporates a new execution configuration 

syntax before the function arguments.  The grid and block dimensions (thread count) are 

set between the <<<… >>> operators before the arguments of a kernel, which are 

summoned as if in a regular C function. 

The following example illustrates the setup of a kernel named myKernel and its 

summon afterwards: 

dim3 dimGrid( gridSizeX, gridSizeY);  //Grid dimensions 

dim3 dimBlock( blockSizeX, blockSizeY, blockSizeZ); //Block dimensions 

myKernel <<< dimGrid, dimBlock >>> ( argument1, argument2, ... ); // Call 
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2.3  CUDA function types 

 A CUDA C program is basically an extension of a C/C++ program with kernels. 

However, the compiler has to be able to differentiate between CUDA and C/C++ 

functions, and three different categories arise for that purpose: 

Host functions: This are C/C++ functions called and executed in the CPU, and are 

preceded by the declaration specifier __host__. This kind of functions can have it omitted 

though, for they are the normal functions for a C program, and the compiler for CUDA 

interprets them like that if not stated otherwise. All the functions from point 2.3 belong to 

this kind. 

Global functions: This kind of functions is called from the host but executed in the 

device, and are preceded by the specifier __global__. To put it simply, they are each and 

every function that a C/C++ code running in the CPU call to be executed in a GPU. 

CUDA kernels belong to this category. 

Device functions: This last kind of functions are called and executed from the device 

(called from global functions). They are useful to keep global functions simple and 

modular, like any C/C++ program would be. Their specifier is __device__. 

 

2.4  CUDA basic functions 

 There are many implemented CUDA C functions in its API, but there are three of 

them that are the basis to run any CUDA program; that is, allocating a variable in the 

device, copying the value of variables to and from the device, and releasing resources 

from the device. 
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Memory allocation:   

Memory allocation should always be the first step in any program, and CUDA is not an 

exception. All the variables needed in a kernel must be allocated prior to its call 

 

Table 2.1. CUDA memory allocation function. 

 

cudaMalloc( void** ptr, int size )  

  void** ptr: pointer to the variable allocated 

  int size: number of bytes to be allocated for the variable pointed by ptr 

 

 

Memory copy:   

This function allows us to copy a variable to and from a device, and between device 

variables. It is useful to set the variables needed by a kernel, and to retrieve the outputs 

when the kernel has finished. 

 

Table 2.2. CUDA memory copy function

 
 

cudaMemcpy( void * dst, const void * src, size_t count, enum cudaMemcpyKind kind ) 

 void *dst: Pointer to the variable where we will copy the value of src 

 const void *src:  Pointer to the variable from which we will copy the value to dst 

 size_t count: Number of bytes to be copied 

 enum cudaMemcpyKind kind: Copy from CPU to GPU, from GPU to CPU or from 

   GPU to GPU. 
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Memory liberation 

Once all the kernels in the code have been executed it’s advisable to de-allocate the 

variables used. 

 

Table 2.3. CUDA memory de-allocation function. 

 

cudaFree( void *ptr )  

 ptr: Pointer to the variable to release 

 

 

 

2.5  Compiling a CUDA file 

 While a C/C++ file extension is .c or .cpp respectively, a CUDA file’s extension 

is .cu.  Hence, to compile a CUDA file you need a compiler that recognizes .cu file 

extension, and recognizes CUDA functions. 

 The nvcc compiler has been used for this purpose: it works great and the 

command line to use it is the same as gcc. To compile a file, it’s only needed to type in a 

terminal window (in Linux OS ): 

nvcc -o <executable_name> <.cu file> 

and the program will be ready to execute. 
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2.6  CUDA code example 

 The following example illustrates how the three categories of functions interact, 

how to set up and call a kernel, and the thread unique identification inside a kernel. This 

code calculates the minimum of two vectors element by element and returns a vector with 

those minimum values.  

 

Table 2.4. CUDA code example

 

#include "cuda.h"  // needed to use CUDA C/C++ 

#define BLOCK_SIZE 10 

 

__device__ float min( float a, float b ) 

 { 

 return (a<b)? a:b; 

} 

__global__ void findMinKernel( float *input1, float *input2, float *output ) 

{ 

 tx = threadIdx.x;  // Thread identifier inside the block 

 bx = blockIdx.x;  // Thread’s block identifier inside the grid 

 x = tx + BLOCK_SIZE * bx; 

  

 a = input1[x]; b = input2[x]; 

 output[x] = min(a, b); 

} 

 

int main( int argc, char *argv[] ){ 

 float input1[ 2 * BLOCK_SIZE ];  // First input 

 float input2[ 2 * BLOCK_SIZE ];  // Second input 

 float output[ 2 * BLOCK_SIZE ];  // Output 

  

 // give the inputs some values 

 float *input1_dev;   // First input in the device 

 float *input2_dev;   // Second input in the device 

 float *output;    // Output in the device 
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 // Variables' size to be allocated 

 int size = 2 * BLOCK_SIZE * sizeof( float );   

  

 // Allocation of the variables in the device 

 cudaMalloc( (void**) &input1_dev, size ); 

 cudaMalloc( (void**) &input2_dev, size ); 

 cudaMalloc( (void**) &output_dev, size ); 

  

 // Copy the inputs from host to device 

 cudaMemcpy( input1_dev, input1, size, cudaMemcpyHostToDevice ); 

 cudaMemcpy( input2_dev, input2, size, cudaMemcpyHostToDevice ); 

 

 // Set up the kernel 

 dim3 dimGrid( 2 );   // The same as dimGrid(2,1) 

 dim3 dimBlock( BLOCK_SIZE );  // The same as dimBlock(BLOCK_SIZE, 1, 1) 

  

 // Launching the kernel 

 findMinKernel <<< dimGrid, dimBlock >>> ( input1_dev, input2_dev, output_dev ); 

  

 // Once the kernel has finished, we have to retrieve the output 

 cudaMemcpy( output, output_dev, size, cudaMemcpyDeviceToHost ); 

  

 // Free CUDA variables if not needed anymore 

 cudaFree( input1_dev );  

 cudaFree( input2_dev );  

 cudaFree( output_dev ); 

  

 // Do whatever we want with the output we got back  

 ( ... ) 

  

 // exit the program 

 return 0; 

} 
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CHAPTER 3 

MATLAB’S MEX FILES 

3.1  Description of MEX files 

 MEX-files (Matlab Executable files) give the possibility to interface C/C++ or 

FORTRAN subroutines to MATLAB, and call them directly from MATLAB as if they 

were built-in functions. They also provide functionality to transfer data between MEX-

files and MATLAB, and the ability to call MATLAB functions from C/C++ or 

FORTRAN code.  

The two reasons any software developer finds to write a MEX-file are the following: 

- The ability to call large existing C/C++ or FORTRAN routines directly from 

MATLAB without having to rewrite them as MATLAB files. 

- To achieve speed. Bottlenecks can be rewritten as a MEX-file for efficiency 

 That last reason is the motivation to use MEX-files. Since CUDA programming 

can be done in a C/C++ language, and this language is compatible with MEX-files, we 

can create an application that combines CUDA, C/C++ and MEX-files at the same time 

to optimize MATLAB’s most timing consuming operations. 

 

3.2  MEX-files entry point 

A MEX-file code written in C/C++ keeps almost the same structure as a typical 

C/C++, except for the main function. For MATLAB to be able to recognize the function 
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and execute it properly an entry point must be set, so it takes the place of the main 

function. 

In a generic MATLAB function such as: 

 [output1, output2, … ] = function (input1, input2, …) 

All the inputs are written in the right side of the function, and the outputs on the 

left. In MEX-files’ entry point that structure is maintained to be consistent. The entry 

point syntax is as follows: 

 

void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 

where: 

nlhs: Number of arguments on the Left Hand Side 

plhs: Pointers to the arguments on the Left Hand Side 

nrhs: Number of arguments on the Right Hand Side 

prhs: Pointers to the arguments on the Right Hand Side 

 

With this structure, very similar to the one used in a C/C++ main, if we want to 

know the number of outputs we will check nlhs value and if we want to access to the 

second input we will have to access prhs[1], for instance. 

 

 

3.3  Basic MEX functions  

 There are many MEX functions available to interface C/C++ with MATLAB, 

even to the extent of using a MATLAB function directly from the MEX function. Here 
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are only listed the two most important MEX functions: accessing to and creating 

MATLAB’s variables. 

 

MATLAB variables access: 

It is mandatory to access MATLAB variables in order to do any computation with them, 

which is the whole point of creating any MEX file. The two functions that allow us to do 

so are the following: 

Table 3.1. MATLAB’s MEX functions to access variables 

 

void* mxGetData( *ptr )  

 
float *var1; 

var1 = (float*) mxGetData( prhs[0] ); 

double* mxGetPr( *ptr ) 
 

double *var2; 
var2 = mxGetPr( prhs[1] ); 
 

 
 

MATLAB variables creation: 

It is also mandatory to create the output MATLAB variables to store the values computed 

within the MEX file. Again, here are two functions that serve that purpose: 

 

Table 3.2. MATLAB’s MEX functions to create variables 

 

mxArray *mxCreateDoubleMatrix( mwSize m, mwSize n, mxComplexity ComplexFlag ); 
 
double *output1; 
output1 = mxCreateDoubleMatrix( 3, 4, mxREAL ); 

 

mxArray *mxCreateNumericArray( mwSize ndim, const mwSize *dims,  
 mxClassID classid, mxComplexity ComplexFlag ); 
float *output2; 
int dims[2]; dims[0] = 5; dims[1] = 3; 
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output2 = mxCreateNumericMatrix( 2, dims, mxSINGLE_CLASS,   
 mxREAL); 

 

 

 

3.4  Compiling a MEX file 

 A MEX code file that uses C/C++ has .c extension, but it cannot be compiled with 

a typical C/C++ compiler such as gcc; instead, the mex compiler is needed. It is included 

within MATLAB, and can be found in most of UNIX distributions, if not all. The 

command syntax to compile a MEX file is the same as with any other compiler: 

mex <filename> 

and it can be called from inside MATLAB´s environment or from a system terminal. The 

output produced is a .mex file that can be called from MATLAB as with any other buil-in 

or m function. 
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3.5  MEX code example 

This example returns the double of the input. 

 

Table 3.3. MEX code example. 

 

#include “mex.h” 

 

void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {  

  double *input,*output; 

  int M, N; 

  

  // Input checking: only one input admitted. If that’s not the case,  

  // print an error message and exit the program! 

  if (nrhs != 1) 

    mexErrMsgTxt( “There must be only one input” ); 

 

  // If any other input checking has to be made it MUST be done  

  // before continuing with the code  

 

  // Get the sizes of the input 

  M = mxGetM( prhs[0] ); // M’s value is the number of rows of the input 

  N = mxGetN( prhs[0] ); // N’s value is the number of cols of the input 

  // Get the pointer to the input from MATLAB to operate with it  

  input = mxGetPr( prhs[0] ); 

  

  // Create the MATLAB output 

  plhs[0] = mxCreateDoubleMatrix( mxGetM(prhs[0]), mxGetN(prhs[0]), mxREAL); 

 

  // Get the pointer to the output of MATLAB to operate with it 

  output = mxGetPr( plhs[0] ); 

 

// Equivalent to a C/C++ from now on 

  for ( int i = 0; i < M*N; i++ )     

    output[i] = 2*input[i]; 

 

// We can end, the values are already stored in MATLAB’s variables     

  mexPrintf( “Done!\n”); // Equivalent to printf(); 

 

}
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CHAPTER 4 

COMBINING MEX AND CUDA FILES 

4.1 Code structure 

 The only thing needed to merge both CUDA and MEX codes is to exchange the 

main function from the CUDA code for the entry point of the MEX file:  having a main 

and a MEX entry point would render Matlab incapable of detecting the entry point of the 

file correctly.  

The usual structure of the mexFunction would be the following: 

- Get all the inputs needed from MATLAB. 

- Allocate and copy all the variables needed for CUDA.  

- Execute the kernels needed. 

- Copy the results back to MATLAB variables. 

- Free CUDA variables 

The combined code should be saved as a .cu file because it is going to be compiled from 

a .cu file to a final .mex file for Matlab to use it. 

 

 

4.2  Compilation of a merged code 

To compile a merged code, two steps are needed: 

1. Compile the .cu file with nvcc and only create its object, while including Matlab’s 

libraries. 
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2. Compile the .o file (object) with the mex command while including CUDA’s 

libraries 

In order to do so in an automatic way from inside Matlab’s environment, the function 

cudaToMex was created. Its code is the following: 

 

Table 4.1. Code to compile a MEX file containing CUDA functions. 

 

function result = cudaToMex( name ) 

%CUDATOMEX Compiles a .cu file and creates a .mex file in matlab 

%   cudaToMex( name ), where name has NO extension 

%    

%   Example: if your file was multiply.cu, then type 

%                   cudaToMex( multipy ); 

 

system( sprintf( 'nvcc -I"%s/extern/include" -c %s.cu  -Xcompiler -fPIC', matlabroot, name) ); 

 

system( sprintf( 'mex -cxx %s.o -L /usr/local/cuda/lib64 -lcudart -lcublas -lcufft –L 

  /home/tesla0/cuLIB/include', name ) ); 

system( sprintf( 'rm %s.o', name ) ); 

end 

 

 

The first instruction creates the object file, the second one creates the mex file, 

and the last one removes the object file, since we don’t need it anymore.  
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4.3  Considerations 

There are some minor issues that must be taken into account when programming a 

merged code: 

- The input variables from MATLAB are constant and in no way must be modified, 

or else the program will crash during execution. 

- While C/C++ reads and stores variables row – wise, MATLAB handles its 

variables column – wise (see figure x). To avoid any confusion when accessing 

variables, the following macro has been coded: 

#define IDC2D(i, j, ld) (((j)*(ld))+(i)) 

 
                        A[9] in C/C++                         A[9] in MATLAB 

Figure 4.1. C/C++ and MATLAB’s way of storing variables. 

 

 

 

 

 

 



 

 

 

20 

CHAPTER 5 

MATRIX INVERSION 

5.1  Image reconstruction as a linear inverse problem 

 The reconstruction of any image from acquired data is an inverse problem itself. 

Being f[x,y] an unknown image we want to obtain, h[x,y] the channel that unknown 

signal travels through and n[x,y] the additive noise the channel adds (uncorrelated to 

f[x,y]), we can express the image g[x,y] that is obtained by any measure system as: 

       (1) 

where the * operator denotes linear convolution.  

It is possible to express this same model in a matrix notation such as: 

          (2) 

where capital letters express matrix and minus letters express vertical vectors. The direct 

approach to reconstruct the image f[x,y] would be one of the following methods: 

         (3) 

       (4) 

     (5) 

 The first method is not possible in most of cases (because H can be not a square 

matrix) and, even if applicable, it is not a good approach because it does not consider the 

noise introduced by the channel. 
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 As for the later ones, both of them need to invert large matrices to recover the 

original image, and these matrices are big enough to make finding its inverse very time 

consuming, even for small images such as 64x64 pixels (see table x). Hence the need of a 

speed-up to confront this problem, and the need to combine CUDA and MATLAB. 

 

Table 5.1. Inversion time of large matrices in MATLAB 

Image Size H matrix size Inversion time (MATLAB) 

64 x 64 4096 x 4096 24.29 s 

80 x 80 6400 x 6400 1 min 27.46 s 

96 x 96 9216 x 9216 4 min 19.31 s 

128 x 128 16384 x 16384 24 min 56.89 s 

  

 

However, we must bear in mind that when a direct algorithm cannot find the exact 

solution it has to approximate it, which may cause visible reconstruction artifacts in the 

recovered image. Iterative algorithms approach the correct solution using multiple 

iteration steps, which allows obtaining a better reconstruction at the cost of a higher 

computation time. The objective of this implementation is to get a significant speed-up 

while maintaining the results obtained with iterative methods. 

All the executions have been done in a NVIDIA TESLA C1060 card, with a 4.0 

CUDA Driver and 4.0 CUDA Runtime versions. 
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5.1.1.  Algorithms taken into consideration 

There are many possible approaches to calculate the inverse of a matrix, and it’s 

up to the programmer to come up with its own methods. The ones implemented in this 

project are the following: 

1. Use the Gauss – Jordan elimination method to find the inverse matrix directly. 

        (6) 

 

2. Decompose the input matrix with Cholesky decomposition, find the inverse of the 

Cholesky matrix Q taking advantage that it´s a triangular matrix and finally 

calculate the inverse of A with matrix multiplication: 

     (7) 

 

In the following points of the report each of them will be explained, compared to 

MATLAB’s built in functions and given an analysis about their performance, accuracy 

and possible improvements.  

The Gauss-Seidel algorithm has also been included in the final comparison 

between methods to invert a matrix, but since it has not been developed during the 

elaboration of this project it there’s no explanation of it. Its whole code, as well as for the 

rest of algorithms, can be found in the appendix of the project. 
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5.2  Algorithms developed 

5.2.1  Gauss-Jordan elimination 

The Gauss-Jordan elimination method is a variation of Gaussian elimination. On 

one hand, Gaussian elimination places zeros below each pivot (diagonal element) in the 

matrix by performing elementary row operations, starting from the top left element and 

working downwards. On the other hand, Gaussian-Jordan goes a step further: it places 

zeros above and below each pivot, leaving the matrix in a reduced row echelon form. 

Every matrix has a reduced row echelon form, and Gauss-Jordan method is guaranteed to 

find it. 

A matrix is in reduced row echelon form if it meets these two features: 

- All rows with at least one element different from zero are above any rows of all 

zeros 

- The leading coefficient of a row – that is, the first number different to zero from 

the left – is 1 and always strictly to the right of the leading coefficient of the row 

above it. 

Since we are going to deal with invertible matrices – thus, square matrices – all rows will 

have a leading coefficient different from zero. 

An example of matrices in row echelon and reduced row echelon form would be: 

 



 

 

 

24 

 

Gauss-Jordan can be applied on a square matrix to find its inverse. In order to do 

so, the square matrix must be augmented with the identity matrix of the same dimensions, 

and then apply the following matrix operators: 

                                                                        (8) 

 

This application only finds the inverse if the matrix is non-singular, that is, if and 

only if the identity matrix can be obtained using only elementary row operations. 

Otherwise, the matrix is non-invertible. Also, it must be mentioned that this method can 

be used to solve a linear equation by augmenting the equation matrix with the result 

matrix instead of the identity matrix. Nevertheless, it is not in the scope of this project the 

implementation of that feature.   

 

5.2.1.1  CUDA implementation 

The Gauss-Jordan elimination method consists in 3 operations that are used recursively 

from the top row to the bottom of the matrix. These operations are: 

1. Switch rows if the pivot of the actual row is zero. 
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a. Copying the corresponding column of the matrix to the CPU to check if 

the pivot value is 0 or not. 

b. In the case it is zero, find the first next value of the column that is not. 

c. Switch the previous pivot row with the one matching the index of the new 

nonzero pivot value. 

2. Normalize the pivot row so the pivot value is 1. 

3. Create zeros above and below the pivot row with elementary row operations. 

 

There is an explanation of the need to copy the column to CPU for each row: 

checking if the pivot value is 0 or not is much faster on a CPU than in a GPU, especially 

for big-sized matrices. Also, it would only need one thread to operate on a GPU, wasting 

a lot of time in something not parallelizable at all. 

The parallelized parts of this algorithm are the switching rows process, the 

normalization of a row and the update of the matrix when creating zeros. Hence, three 

kernels have been developed to run this algorithm in CUDA: 

 

Kernel 1: Given two indexes j and k, and a matrix A, it switches the values of the two 

rows in a matrix so that  

 

 

Table 5.2. Gauss-Jordan elimination row switching kernel code. 

 

__global__ void switchRows( float *matrix,float *result, int index,  int rowToSwitch, int lda ) { 
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int y = threadIdx.y + LINEAR_BLOCK_SIZE * blockIdx.y; 

float tmp_m, tmp_r; 

 

if ( y < lda ){ 

 tmp_m = matrix[ IDC2D( index, y, lda ) ]; 

 matrix[ IDC2D( index, y, lda ) ] = matrix[ IDC2D( rowToSwitch, y, lda ) ]; 

 matrix[ IDC2D( rowToSwitch, y, lda ) ] = tmp_m;  

 tmp_r = result[ IDC2D( index, y, lda ) ]; 

 result[ IDC2D( index, y, lda ) ] = result[ IDC2D( rowToSwitch, y, lda ) ]; 

 result[ IDC2D( rowToSwitch, y, lda ) ] = tmp_r;  

} 

} 

 

Here is an example of row switching with and augmented 3x3 elements matrix.  It is 

supposed that the first row has already been computed. 

 

Example 5.1. Example of the row switching method in Gauss-Jordan elimination 

 

The first row has already been computed, leaving the matrix: 

 

  Copy the 2
nd

 column and find the first non-zero element in the CPU. 

 

The first nonzero element is 7, so the 2
nd

 and 3
rd

 rows must be switched. 
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Kernel 2: Given an index k and a matrix A, it normalizes the k-th row by the pivot value 

of the row. 

Table 5.3. Gauss-Jordan elimination pivot row normalization kernel code. 

 

__global__ void normalizePivotRow(  float *matrix, float *result, int index, int lda ) { 

// Position of each thread inside the block 

    int ty = threadIdx.y;  

// Position of each thread inside the matrix 

    int y = ty + LINEAR_BLOCK_SIZE * blockIdx.y;    

// Pivot value of the row 

    __shared__ float pivotValue;    

 

    if ( y < lda ) { 

        if ( ty == 0 )    // First thread of each block loads pivotValue 

            pivotValue = matrix[ IDC2D( index, index, lda) ]; 

        __syncthreads(); 

     

    // Every thread divides the element of its position by pivotValue 

        matrix[ IDC2D( index, y, lda )] /= pivotValue; 

        result[ IDC2D( index, y, lda )] /= pivotValue; 

   } 

} 

 

Here is an example of the row normalization process. 

Example 5.2. Example of  the row normalization process in Gauss-Jordan elimination 
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Kernel 3: Given a matrix A, it creates zeros above and below the pivot row by 

subtracting said row conveniently to all the rest of the matrix’s rows. 

 

Table 5.4. Gauss-Jordan elimination zero-maker kernel code. 

 

__global__ void linearMge(  float *matrix, float *result, int index, int lda ) { 

 

int ty = threadIdx.y; 

int x =  blockIdx.x; 

int y = ty + blockIdx.y * LINEAR_BLOCK_SIZE; 

__shared__ float multColumn[ LINEAR_BLOCK_SIZE ]; 

__shared__ float matrixPivotValue; 

__shared__ float matrixRow[ LINEAR_BLOCK_SIZE ]; 

__shared__ float resultPivotValue; 

__shared__ float resultRow[ LINEAR_BLOCK_SIZE]; 

float newMatrixValue;  float newResultValue; 

 

if ( y < lda ) { 

    // Each block loads the value of the pivot Row to be substracted 

if ( ty == 0 ){ 

   matrixPivotValue = matrix[ IDC2D( index, x, lda )]; 

   resultPivotValue = result[ IDC2D( index, x, lda )]; 

} 

 

multColumn[ ty ] = matrix[ IDC2D( y, index, lda )];      

matrixRow[ ty ] = matrix[ IDC2D( y, x, lda )];  

resultRow[ ty ] = result[ IDC2D( y, x, lda )];  

__syncthreads(); 

 

if ( y!= index ) { 

    newMatrixValue = matrixRow[ty] - multColumn[ty] * matrixPivotValue; 

    newResultValue = resultRow[ty] - multColumn[ty] * resultPivotValue;       

    // Copy to the matrix 

     matrix[ IDC2D( y, x, lda) ] = newMatrixValue; 

     result[ IDC2D( y, x, lda) ] = newResultValue; 

  } 

} 

} 
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 Here is an example of the execution of the kernel for the second row: 

Example 5.3. Example of Gauss-Jordan elimination 3
rd

 kernel execution 

 

 

 

 

As it can be inferred from the code, there are two matrices instead of an 

augmented matrix: one for the input matrix and the other one for the result of the 

algorithm (and whose result is initially the identity matrix). It is programmed this way for 

simplicity as to keep track of the values to be changed and to be able to use the macro 

IDC2D (see point 4.3 for more information). 

The complete code for this implementation can be found in the appendix of this project. 

 

5.2.1.2 Performance evaluation 

The time performance of both Gauss-Jordan method (implemented in CUDA) and 

MATLAB’s inversion function can be seen in next figure, and the individual processes of 

Gauss-Jordan in the later table: 
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Figure 5.1. Execution time comparison between Gauss-Jordan elimination and 

MATLAB’s inverse function 

 

Table 5.5. Mean execution times and occupancy of the different parts of the Gauss-

Jordan elimination algorithm. 

 

Operation Mean execution time Occupancy 

Column copy back to host 13.04 us - 

Switching rows (kernel 1) 102.35 us 1 

Normalize the pivot row (kernel 2) 78.33 us 1 

Update the matrix to create zeros (kernel 3) 4.607 ms 1 

 

Assuming that all the operations are done for all the rows of the matrix - which is 

not necessarily true for the row switching kernel - the bottleneck of the algorithm is the 

third kernel. This kernel, which subtracts the pivot row to all of the rest of the matrix, 

spends approximately the 95.96% of the time spent by the algorithm in the CUDA card. 
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The occupancy listed for each kernel is a parameter that evaluates the efficiency 

of the use of the CUDA card resources (mainly based in register and threads per block 

usage). This parameter takes values between 0 and 1, being 1 the best usage possible. An 

occupancy of 1 for all the kernels means that there are not bad-dimensioned kernels – 

regarding threads per block, warps, and registers available for each block.  However, 

occupancy of 1 does not imply in any way that the kernel executes fast nor slow. 

The main problem of this third kernel is that it was designed to work with linear, 

vertical blocks to exploit that all the values in the same column have the same pivot row 

value. However, each thread has to access to the input and result matrices twice in a not-

coalesced way (which makes memory accesses much slower than they should be).  

As a conclusion, it can be said that this implementation is unsuccessful. The 

execution time is not as low as expected, and the fact that CUDA can only compute the 

inverse with single float variables makes MATLAB’s built in function the better choice. 

However, this doesn’t mean that this method is a bad mean to find an inverse – nor to 

solve a linear system if slightly modified; this only implies that, if there is a way, we 

haven’t found it yet. 
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5.2.2.  Cholesky decomposition 

The Cholesky decomposition was named after its discoverer, Andre-Louis 

Cholesky, and it consists in the decomposition of a hermitian, positive-definite matrix 

into the product of a lower triangular matrix Q and its conjugate transpose 

          (9) 

When it is applicable, this decomposition is twice as efficient as the LU 

decomposition for solving systems of linear equations. Also, this decomposition is 

unique: given an input matrix A that is, in fact, an hermitian and positive-definite matrix, 

there is one and only one lower triangular matrix Q with strictly positive diagonal entries. 

To obtain the Cholesky decomposition of any matrix, we simply have to equal both sides 

of the equation to obtain: 

  .  (10) 

        (11) 

       (12) 

All the values under the square root are always positive because A is symmetric 

and positive definite, and all the elements of Q are real. 
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5.2.2.1  CUDA implementation 

As it can be observed in the previous point, the Cholesky decomposition is a 

recursive algorithm. To obtain the diagonal values qii all the previous column values qji 

must be calculated, and vice versa, to get the new column values all the previous values 

(diagonal and column ones) must be known.  

That doesn’t mean there is no way of exploiting any parallelism the algorithm has. 

The calculus of each qji element is independent from all the elements in its column 

excepting the diagonal elements. Furthermore, the summations required to calculate the 

coefficients can be done in several separated steps (uploading a coefficient of the matrix 

with the known values so far), so it’s perfectly possible to update a coefficient of the Q 

matrix whenever some other values that affect said coefficient are final. 

 

Four kernels are needed to deal with this algorithm: 

Kernel 1 (topleft): Calculates the qii and qij elements of a diagonal block of the matrix. 

These values are final, and need no further computation.  

 

Table 5.6. Cholesky decomposition topleft kernel code. 

 

__global__ void topleft( float *matrix, int boffset, int mat_size ) { 

 int tx = threadIdx.x; 

 int ty = threadIdx.y; 

  __shared__ float topleft[BLOCK_SIZE][BLOCK_SIZE]; 

  

 // Load the proper diagonal block 

 topleft[ty][tx] = matrix[IDC2D(ty + BLOCK_SIZE*boffset,  

  tx + BLOCK_SIZE*boffset ,mat_size)];   

 __syncthreads(); 

 



 

 

 

34 

   float fac; 

  for( int k = 0; k < BLOCK_SIZE; k++ ) { 

   __syncthreads(); 

       

  fac = rsqrtf( topleft[k][k] ); 

  __syncthreads(); 

 

      if ( ( ty == k ) && ( tx >= k ) )  

         topleft[tx][ty] = (topleft[tx][ty])*fac; 

      __syncthreads(); 

    if ((ty>=tx)&&(tx>k))    

         topleft[ty][tx] = topleft[ty][tx] - topleft[tx][k] * topleft[ty][k];  

   

   } // For loop end 

 

 __syncthreads(); 

 if ( ty >= tx )   // Update of the lower triangle of the block       

      matrix[ IDC2D(ty+BLOCK_SIZE*boffset,tx+BLOCK_SIZE*boffset,mat_size)] =  

              topleft[ty][tx];  

 

  __syncthreads(); 

} 

 

 

Kernel 2 (strip): Calculates all the values of the strip of blocks below the last block 

computed by the topleft kernel, taking profit of its results. As with the previous kernel, 

these updated values are final. 

 

Table 5.7. Cholesky decomposition strip kernel code. 

 

__global__ void strip (float *matrix, int blockoffset, int mat_size ){ 

 

// blockoffset labels the topleft position 

int boffx = blockIdx.x + blockoffset + 1; // working position 

int tx = threadIdx.x; 

     int ty = threadIdx.y; 
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__shared__ float topleft[BLOCK_SIZE][BLOCK_SIZE]; 

__shared__ float workingmat[BLOCK_SIZE][BLOCK_SIZE]; 

 

     topleft[ty][tx] = matrix[ IDC2D(ty + blockoffset * BLOCK_SIZE, tx +  

blockoffset * BLOCK_SIZE, mat_size) ];   

 

// Read the working block (already transposed)   

     workingmat[tx][ty] = matrix[ IDC2D( ty+boffx*BLOCK_SIZE, 

tx+blockoffset*BLOCK_SIZE, mat_size ) ];     

     __syncthreads(); 

 

// Forward-substitution for the new strip-elements 

     if( ty == 0 ) { 

      for ( int k = 0; k < BLOCK_SIZE; k++ ) { 

           float dotprod=0.f; 

           for ( int m = 0; m < k; m++ ) 

            dotprod += topleft[k][m] * workingmat[m][tx]; 

           workingmat[k][tx] = (workingmat[k][tx] - dotprod)/topleft[k][k]; 

      } // for loop end 

     }// if clause end 

 

    __syncthreads(); 

 

// we have the result transposed, we undo it when copying to the matrix 

  matrix[ IDC2D( ty+boffx*BLOCK_SIZE, tx+blockoffset*BLOCK_SIZE, mat_size) ] =  

workingmat[tx][ty]; 

    __syncthreads(); 

} 

 

 

Kernel 3 (diagupdate): Updates the values (summations) of the elements in the diagonal 

blocks with the elements found by the strip kernel. 

 

Table 5.8. Cholesky decomposition diagonal update kernel code. 

 
__global__ void diagupdate ( float *matrix, int blockoffset, int mat_size ) { 

   int boffx = blockIdx.x+blockoffset+1;  

   int tx = threadIdx.x; 

   int ty = threadIdx.y; 



 

 

 

36 

   __shared__ float left[BLOCK_SIZE][BLOCK_SIZE]; 

   left[ty][tx] =  

            matrix[ IDC2D(ty+boffx*BLOCK_SIZE, tx+blockoffset*BLOCK_SIZE, mat_size)]; 

   __syncthreads(); 

 

   float matrixprod=0.f; 

   if ( ty >= tx ) { 

      for ( int kk = 0; kk < BLOCK_SIZE; kk++ ) 

         matrixprod+=left[ty][kk]*left[tx][kk]; 

      matrix[ IDC2D( ty+boffx*BLOCK_SIZE, tx+boffx*BLOCK_SIZE, mat_size ) ]-=  

matrixprod;  

      } 

   __syncthreads(); 

} 

 

 

Kernel 4 (loupdate): Updates all the rest of values of the matrix with the results obtained 

by the strip kernel.  

Table 5.9. Cholesky decomposition low update kernel code. 

 

_global__ void loupdate(  float *matrix, int blockoffset, int mat_size, int mat_blocks ) { 

     int tx = threadIdx.x; 

     int ty = threadIdx.y; 

 

     int boffy = blockIdx.y+blockoffset+1; 

     int boffx = boffy+1; 

 

// Left matrix is the matrix of the strip 

     __shared__ float left[BLOCK_SIZE][BLOCK_SIZE]; 

 

// Upt matrix 

     __shared__ float upt[BLOCK_SIZE][BLOCK_SIZE]; 

 

// Reading the data 

     int tmpx,tmpy,tmpb; 

     tmpy = boffy * BLOCK_SIZE;           

     tmpb = blockoffset*BLOCK_SIZE;       

 

     upt[ty][tx] = matrix[ IDC2D( ty + tmpy, tx + tmpb, mat_size) ]; 
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     for (;boffx<mat_blocks;boffx++){ 

 

          tmpx = boffx * BLOCK_SIZE;  

          left[ty][tx] = matrix[ IDC2D( ty + tmpx, tx + tmpb, mat_size) ]; 

          __syncthreads(); 

 

          float matrixprod=0.f; 

          for (int kk=0;kk<BLOCK_SIZE;kk++) 

           matrixprod+=left[ty][kk]*upt[tx][kk]; 

      __syncthreads(); 

 

      matrix[ IDC2D( ty + tmpx, tx + tmpy, mat_size) ]-=matrixprod; 

     } 

 

} 

 

 

In order to do the decomposition the matrix is first divided in square blocks of 16 x 16 

elements each. Afterwards, these four steps are repeated from the top-left corner to the 

bottom-right corner, as long as there are blocks left. 

- Compute the diagonal block with the topleft kernel. 

- Compute the values below the previous block with the strip kernel. 

- Update the diagonal blocks with the diagupdate kernel. 

- Update the rest of the matrix blocks with the loupdate kernel. 

 

Here is an example of how the decomposition of a 5x5 blocks matrix (80x80 elements) 

would be computed: 
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       Topleft        Strip     Diagupdate       Loupdate 

 

 
       Topleft        Strip     Diagupdate       Loupdate 

 

 
       Topleft        Strip     Diagupdate       Loupdate 

 

 
       Topleft        Strip     Diagupdate           Topleft 

 

 

Active blocks 

(values the kernel is working with)  
Not modified values 

 
Modified values 

 
Final values 

 

Figure 5.2. Example of kernel interaction to compute the Cholesky decomposition 

 

The whole code and implementation of the method is included in the appendix of this 

report. 
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5.2.2.2 Performance evaluation 

MATLAB has its own Cholesky decomposition built-in function that can be used 

for this same purpose, instead of a CUDA implementation of the method. The execution 

times for both methods are shown below: 

 
 

Figure 5.3. Execution times of both MATLAB’s and CUDA Cholesky decomposition 

functions. 
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Figure 5.4. Ratio between MATLAB’s and CUDA´s Cholesky decomposition 

functions execution times 

 

There is some improvement from MATLAB’s execution times, but the speed-up 

only goes up to twice as fast in most cases. In order to analyze this performance, the code 

has been run in CUDA profiler. The mean execution time and occupancy of each kernel 

that the profiler returns are the following: 

 

Table 5.10. Mean execution times and occupancy of CUDA Cholesky decomposition 

kernels 

 

Kernel Mean execution time Occupancy 

Topleft 18.45 us 0.25 

Strip 175.51 us 1 

Diagupdate 54.78 us 1 

Loupdate 6.316 ms 1 
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The two relevant values of this table are these: topleft kernel’s occupancy and 

loupdate kernel’s mean execution time. Let’s analyze the reasons behind both of them.  

The topleft kernel is an adaptation of the typical C/C++ code in the sense that it’s 

a recursive function. In the first iteration it uses one thread to calculate one coefficient, 

and then synchronizes all threads; in the second one it uses two more threads for two 

more coefficients, and then synchronization again; and so it goes on until the end of the 

block. This means that a little less than the half of the threads launched in the block aren’t 

used at all – the exact number is 120 out of 256, a 46.88 %of them. The code could be 

rewritten to use only as many threads as needed, but the low occupancy of this kernel 

isn’t the major problem the algorithm has, as it can be seen in the next figure. 
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Figure 5.5. Execution times comparison between topleft, strip and diagupdate kernels of 

Cholesky decomposition. 

 

Even if we were to optimize the execution of the topleft kernel it is, by far, the 

least time consuming kernel in most of the iterations of the algorithm, so the global time 

of the algorithm wouldn’t be greatly reduced. 

We can also see the strip and diagupdate execution times in the previous graph. 

Each iteration both of them work with the same amount of blocks, but the diagupdate 

kernel works faster. This is caused by the fact that diagupdate has more parallelism: it can 

calculate all the new values of the diagonal block at the same time, while the strip kernel 

can’t and has to follow a similar pattern of that used in the topleft kernel. 
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Regarding the loupdate kernel’s execution time, it spends way more time that it 

seems from its mean. 

 

Figure 5.6. Execution time comparison between all kernels of Cholesky decomposition. 

 

As it appears clearly in the previous graph, the fourth kernel is the real bottleneck 

of the algorithm. This is caused because the kernel updates the lower blocks in a 

recursive way instead of being all simultaneous: 
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Figure 5.7. Cholesky decomposition’s loupdate kernel recursive block update. 

(Blue blocks indicate the first blocks updated ) 

 

To put it into a mathematic notation, if the matrix dimension is N blocks, and the 

time of updating a single block is Tsingle seconds, the total amount of time Tupdate to do an 

update of all the matrix’s blocks is 

 

As for the total time spent during the whole algorithm, it could be approximated by: 

 

which grows exponentially as the input matrix increases. Of course, this 

assumption is done considering that all the blocks spend the same time updating one 
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block, which might be not true, but it gives an overall view about the execution time of 

this kernel. 

The ideal way to handle this update would be launching as many thread-blocks in 

the grid as blocks to be updated, but a CUDA limitation would be met: there mustn’t be 

more than 65535 blocks in a grid. For example, a 4096 x 4096 square matrix will have 

32896 blocks to be updated in the first iteration, but if we are going to work with larger 

matrixes, such as 8192 x 8192, a total of 131.328 blocks would be needed at the same 

time. 

A way to handle this setback would be having control from the CPU (outside the 

kernel) of which blocks have been updated and which have not, and run the kernel with 

the proper block adjustments as many times as needed until complete the update. 

Regarding the accuracy of the method, for a 4096 x 4096 the mean relative error 

between both CUDA and MATLAB’s implementation is 5.71 e-6, which is perfectly 

acceptable. We must bear in mind that CUDA can only work with single float variable 

format. 
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5.2.3  Gaussial Elimination (GETS) 

Gaussian elimination is an algorithm for solving systems of linear equations, 

which can be used to calculate determinants, matrix inverses (Gauss-Jordan elimination) 

and to find the rank of a matrix. This algorithm gets a matrix into its row echelon form 

with elemental row operations, which is explained in point 5.2.1. As a reminder, a matrix 

in row echelon form must meet: 

- All rows with at least one element different from zero are above any row of all 

zeros. 

- The leading coefficient of a row is always strictly to the right of the leading 

coefficient of the row above it. 

Again, since we are going to deal with invertible matrices all rows must have a 

leading coefficient different from zero. If that requirement is not met, the matrix is not 

invertible. 

This algorithm is based in Gaussian elimination, but it takes profit of the fact that 

the input matrix is a lower triangular matrix - the output from the Cholesky 

decomposition. Hence, it has been named GETS (Gaussian Elimination Triangular 

Solver). The GETS algorithm is in a point between Gaussian Elimination and Gauss-

Jordan elimination:  

- Zeros are only made in the lower triangle of the matrix like in Gaussian 

elimination, but it takes advantage of the fact that the zeros in the upper triangle 

of the matrix are already done.  
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- The input matrix is augmented with an identity of the same size, and the whole 

matrix is put into reduced row echelon form, like in Gauss-Jordan. 

At a first glance it looks like a particular case of Gauss-Jordan elimination, but its 

CUDA implementation gets a notorious speed up from the implementation seen in point 

5.2.1. of this report. This algorithm would also solve triangular linear systems with slight 

modifications, but doing so is not in the scope of the project. 

 

5.2.3.1  CUDA implementation 

GETS’ CUDA implementation is a lot simpler and faster than that of Gauss-

Jordan. This is due to two main facts: whether the input matrix is invertible or not, and 

the thread usage to compute the result. 

If the input matrix A is invertible its determinant will be different from zero, and 

so will be the determinant of its Cholesky decomposition Q matrix: 

 

Furthermore, it is known that Q is a lower triangular matrix, which means that its 

determinant is the multiplication of all its diagonal entries; even if there was only one 

entry equal to zero its determinant would be zero, which cannot be. Therefore, there will 

not be any diagonal entry equal to zero.  

The importance of these values is that they will be the pivot values of the 

algorithm. Since in the upper triangle of the matrix there is nothing but zeros, the 

elementary operations done with previous rows will affect neither the pivot values nor 

values below the next rows. In the next figure there’s an example of this independence: 
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the matrix entries in red are not modified after doing the subtraction of the first row 

conveniently. 

 

 

We can conclude, then, that no partial pivoting kernel will be needed, getting a 

slight speed up. 

The second crucial fact in the implementation is the thread usage. There’s no need 

to launch as many threads as elements in the augmented matrix because most of them 

will remain idle. The way of use them will be launching only as many as elements in the 

columns of the matrix that are to be modified. In other words, in the first iteration only 

one column of both input and result matrices will be modified, so only a “column” of 

threads will be used; in the second iteration, two of them; and so on. The fact that the 

matrix entries above the diagonal will remain zero has also been taken into account, as 

shown in figure x. 

                         1
st 

iteration                      2
nd

 iteration          3
rd
 iteration 

 

Figure 5.8. Thread management and usage in GETS algorithm 
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With this set up in mind, only one kernel is needed to do the whole inverse of the 

Cholesky matrix input. The kernel is called recursively from the CPU as many times as 

rows the matrix has (once for each row). 

 

Kernel 1 (getsKernel): Given an input matrix, a result matrix and an index k, calculates 

row elementary operations with the k-th row to create zeros in the k-th column of the 

input matrix. 

Table 5.11. Gaussian elimination (GETS) kernel code. 

 

__global__ void getsKernel( float *inputMatrix, float *resultMatrix, int index, int lda ){ 

   int ty = threadIdx.y; 

   int x =  blockIdx.x; 

   int y = ty + blockIdx.y * LINEAR_BLOCK_SIZE + index;   

 

   __shared__ float inputMatrixCol[ LINEAR_BLOCK_SIZE ]; 

   __shared__ float resultMatrixPivotRowValue; 

   __shared__ float inputMatrixPivotRowValue; 

 

if ( y < lda ) { 

      if ( ty == 0 ) { 

           resultMatrixPivotRowValue = resultMatrix[ IDC2D( index, x, lda ) ]; 

           inputMatrixPivotRowValue = inputMatrix[ IDC2D(index, index, lda ) ]; 

      } 

      inputMatrixCol[ ty ] = inputMatrix[ IDC2D( y, index, lda ) ]; 

      __syncthreads(); 

     

if ( y!= index ) 

       resultMatrix[IDC2D(y,x,lda)]-= inputMatrixCol[ ty ]* 

 resultMatrixPivotRowValue/ inputMatrixPivotRowValue; 

    else 

        resultMatrix[ IDC2D( y, x, lda) ] /= inputMatrixPivotRowValue; 

} 

} 
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5.2.3.2 Performance evaluation 

There is no function in MATLAB that performs the same exact operations that 

GETS does, but there’s one that gives the same results: the inverse of a lower triangular 

matrix. Here are the execution times of both methods: 

Figure 5.9. Execution time comparison between GETS and MATLAB’s function to get 

an inverse of a triangular matrix 
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Figure 5.10. Ratio of execution times between MATLAB’s and GETS’ functions 

to get an inverse of a triangular matrix. 

 

There’s a huge improvement from Gauss-Jordan elimination’s performance: for 

matrix sizes larger than 1000x1000 the algorithm goes at least 6 times faster than 

MATLAB. 

The code has been run in CUDA’s profiler as well for a large matrix size (4096 x 

4096) and the results obtained are the following: 

 

Table 5.12. Mean execution time and occupancyof GETS and Gauss-Jordan elimination 

kernels. 

 

Kernel Mean execution time Mean occupancy 

getsKernel 0.8068 ms 0.9726 

LinearMGE (from Gauss-Jordan) 4.607 ms 1 
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This new algorithm is in mean 5.5 times faster than the one from Gauss-Jordan. 

However, its occupancy is not always 1, as the mean occupancy is not exactly 1. Let’s 

analyze the reason behind it. 

 

Figure 5.11. GETS algorithm occupancy evolution throughout execution. 

 

As it can be seen, the first downfall is when we reach past the 3500-th iteration 

approximately. This may be caused because of the thread-block size: this code has been 

designed to work with linear blocks. This implies that for large matrix sizes there is more 

than one block needed for column because the maximum size of a block is 512 threads, 

but the usage of the resources is good. 
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However, when there are only a few iterations left there are a lot of columns that 

must be updated, but the elements in those columns are fewer than the maximum of the 

block - that is, 512 threads. In the worst case, the last iteration, there will be one block for 

each element to be updated, leading to occupancy of 0.188. That means 511 threads 

remaining idle while one working, being the same for each of the matrix’s columns.  

A way to handle that bad occupancy in the latter iterations of the algorithm would 

be an adaptive control of the threads used from the CPU, since the kernel is launched 

recursively. This thread control may lead to a minor speed up in later iterations, but there 

won’t be a really significant speed up in the whole time because:  

- The latter iterations are less than 1/8 from the total, and  

- The most time consuming iterations (the ones where most threads are launched) 

are around the middle of the matrix, where the occupancy is already 1. 
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5.2.4  Matrix multiplication 

Matrix multiplication is a mathematic operation that involves two input matrices 

and gives a third one as a result. 

 

 

 

To be able to multiply both matrices the inner dimensions of A and B must agree. 

The result matrix C has the same rows as A and the same columns as B. 

 

5.2.4.1  CUDA implementation 

Two approaches have been considered in this point. The first one is an exact port 

from a C/C++ code taking advantage of the simultaneous threads, and the second one - 

extracted from CUDA SDK – takes advantage of coalesced memory accesses and shared 

memory of each block of threads. 

The first approach is pretty basic: as many threads as entries the result matrix has 

are launched. Each thread has to load the entire row of matrix A and the entire column of 

matrix B according to their position in the result matrix, and then sum their element by 

element multiplication. 



 

 

 

55 

 

                 Figure 5.12. Loaded values by a single generic thread in a square matrix 

multiplication. 

 

Multiplication kernel (1
st
 approach) 

Table 5.13. Multiplication kernel code. Direct approach. 

 

__global__ void multKernel(  float *input1d, float *input2d, float *outputd,  

    int M1, int N1, int M2, int N2) { 

 

   int col = threadIdx.x + blockIdx.x * BLOCK_WIDTH; 

   int row = threadIdx.y + blockIdx.y * BLOCK_HEIGHT; 

   float outputValue = 0; 

   

if ( col < N2 && row < M1 ) { 

          for ( int k = 0; k < N1; k++ ) 

              outputValue += input1d[ row + k*M1 ] *  input2d[ k + col*M2 ]; 

          outputd[ row + col*N2 ] = outputValue; 

   } 

} 

 

The previous approach has a fatal flaw: for large sized matrices a single thread 

has to load a lot of values at the same time as the rest of threads, deriving in memory 

accessing latency issues. Furthermore, most of the loaded values by each thread are 

needed by a lot of them, so accesses to the input matrices can - and should - be 

minimized.  
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That’s the goal of the CUDA SDK implementation. Instead of letting each thread 

load all its needed values, it takes advantage that nearby entries of the result matrix need 

nearby entries of both input matrices. Hence, all the threads in a block load two values 

each (one from each input matrix) into the shared memory of the block. This has three 

main effects: 

- The bigger the block, the lesser the number of values each thread has to load, 

permitting faster calculus of each final value. 

- All the values are in the shared memory of the block, permitting much faster 

access to the values of the threads that need them. 

- There are less simultaneous accesses to memory. In fact, the number is reduced by 

the number of threads each block has (256 in our case, since we are working with 

16x16 blocks). 

The loading of the values, however, is not done in one sweep. Each block loads as 

many values as threads in the block, calculates a partial result of the multiplication, and 

heads for the next needed value. This process is shown in the next figure (assuming 2x2 

block size for simplicity): 
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Figure 5.13. CUDA SDK multiplication code’s way to load values and perform matrix 

multiplication. 
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Multiplication kernel code (2
nd

 approach) 

Table 5.14. Multiplication kernel code. CUDA SDK approach. 

 

__global__ void matrixMul( float* C, float* A, float* B, int wA, int wB){ 

 

    // Block and thread index 

    int bx = blockIdx.x; int by = blockIdx.y; 

    int tx = threadIdx.x; int ty = threadIdx.y; 

 

    // Index of the first sub-matrix of A processed by the block 

    int aBegin = wA * BLOCK_SIZE * by; 

 

    // Index of the last sub-matrix of A processed by the block 

    int aEnd   = aBegin + wA - 1; 

 

    // Step size used to iterate through the sub-matrices of A 

    int aStep  = BLOCK_SIZE; 

 

    // Index of the first sub-matrix of B processed by the block 

    int bBegin = BLOCK_SIZE * bx; 

 

    // Step size used to iterate through the sub-matrices of B 

    int bStep  = BLOCK_SIZE * wB; 

 

    // Csub is used to store the element of the block sub-matrix that is computed by the thread 

    float Csub = 0; 

 

    // Loop over all the sub-matrices of A and B required to compute the block sub-matrix 

    for (int a = aBegin, b = bBegin; a <= aEnd; a+= aStep, b += bStep) { 

 

        // Declaration of the shared memory array As used to store the sub-matrix of A 

        __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; 

        // Declaration of the shared memory array Bs used to store the sub-matrix of B 

        __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; 

 

        // Load the matrices from device memory to shared memory;  

        //each thread loads one element of each matrix 

        As[ty][tx] = A[a + wA * ty + tx]; 

        Bs[ty][tx] = B[b + wB * ty + tx]; 

 

       // Synchronize to make sure the matrices are loaded 
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        __syncthreads(); 

 

         // Multiply the two matrices together;  

   // each thread computes one element of the block sub-matrix 

        for (int k = 0; k < BLOCK_SIZE; ++k) 

            Csub += As[ty][k] * Bs[k][tx]; 

 

        // Synchronize to make sure that the preceding computation is done before  

        //loading two new sub-matrices of A and B in the next iteration 

        __syncthreads(); 

    } 

 

    // Write the block sub-matrix to device memory; each thread writes one element 

    int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; 

    C[c + wB * ty + tx] = Csub; 

} 

 

 

5.2.4.2 Performance evaluation 

In this point we evaluate the execution times of MATLAB’s matrix multiplication 

and the two approaches explained previously. 

 

Figure 5.14. Execution time comparison between matrix multiplications algorithms 
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It can clearly be seen that the direct implementation is nowhere near optimal: it 

spends way too much time in a simple operation because of the flaws commented before. 

However, the CUDA SDK approach really improves MATLAB’s times significantly.  

 

Figure 5.15.Execution times comparison between CUDA SDK and MATLAB’s 

matrix multiplication functions. 
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Figure 5.16. Ratio of execution times between MATLAB’s and CUDA SDK matrix 

multiplication methods. 

 

This speed up comes with a great accuracy too, being the absolute mean 

difference between both methods 5·10^-5. 
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5.3.  Gauss-Seidel overview 

The Gauss-Seidel method is an iterative method used to solve a linear system of 

equations. It can be applied to any matrix with non-zero elements on the diagonals, but its 

convergence is only guaranteed if the matrix is symmetric and positive definite. Since 

this algorithm can solve a linear system of equations, if the result is the identity it can 

find the system matrix inverse.  

This is not a direct method like Gaussian Elimination, but iterative: it finds the 

solution by computing an initial solution value and refining iteration after iteration. It has 

two advantages: 

- It may be computationally more efficient than Gaussian elimination. 

- The round-off error can be controlled. 

The execution times of this algorithm are the following: 

 



 

 

 

63 

 

Figure 5.17. Comparison between Gauss-Seidel method and MATLAB’s inversion 

execution times. 

 

This algorithm has been found in NVIDIA forums [6]. It hasn’t been developed 

during the elaboration of the project and it’s only featured for academic purposes.
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5.4  Summarization and comparison 

This point is a summarization of the results obtained along this chapter. Four 

methods to invert a matrix are compared: MATLAB’s built-in function; Gauss-Jordan 

elimination; the Cholesky, GETS and matrix multiplication combination; and Gauss-

Seidel. 

Here is a graph with the execution times of the four methods mentioned: 

 

Figure 5.18. Matrix inversion execution times comparison between the two methods 

developed, Gauss-Seidel and MATLAB’s built-in function 
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Figure 5.19. Ratio of matrix inversion execution times comparison between the best of 

the two methods developed, Gauss-Seidel and MATLAB’s built-in function 

 

The Gauss-Seidel method is the fastest algorithm of the four, improving 

MATLAB’s speed up to 8 times. The Colesky, GETS and matrix multiplication 

combination speed it up 4 times, which is not a bad result, but it could be better. The 

Gauss-Jordan, however, spends too much time, and it’s not a worthy choice. 

The Cholesky, GETS and matrix multiplication combination code, even with non-

optimal results, can be adapted for other purposes: 

- The matrix multiplication code can be used in many applications that require 

large-sized matrix multiplications, with a great performance improvement. 

- With slight modifications the GETS algorithm can be used to solve triangular 

systems instead of back-substitution. 

The downfall of this way of calculating a matrix inverse is the Cholesky 

decomposition. As said in its analysis, its bottleneck comes from the sequential update 
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instead of a simultaneous update of the matrix. Maybe a reconsideration of that kernel 

could speed up the whole operation. 
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CHAPTER 6 

PRACTICAL IMPLEMENTATION 

In this chapter of the project we will apply the programs developed to attack an 

iterative image reconstruction problem from a different approach (channel matrix 

inversion) and achieve better execution time performance with the results of comparable 

quality. 

 

6.1  System matrix creation 

Being g[x,y] the image obtained by any measure system (see Chapter 5): 

 

it is possible to express this same model in a matrix notation such as: 

 

where capital letters express matrix and minus letters express vertical vectors. The g, f, 

and n vectors are done just by putting all the pixels of the images consecutively in a 

vector, from left to right and from top to bottom. 

The system matrix H is created by having in the i-th row the contributions of all the f 

vector pixels to the i-th pixel of the g vector. 

To create the matrix automatically in MATLAB the following code has been developed: 

Table 6.1. Code to create the H system matrix. 

 

function Hout = filter2matrix( h, rowsf, colsf, rowsg, colsg) 
%FILTER2MATRIX Converts a filter f to a system mattrix H 
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%   H = filter2matrix( h, Mf, Nf, Mg, Ng) 
%       h: the initial filter 
%       rowsi: the number of rows of the image (i = f, g ) 
%       colsi: the number of columns of the image (i = f, g ) 
%       Reminder:      g = H*f + n 

  
% Find the central element of the h mattrix 
    [rowsh, colsh] = size( h ); 
    rowc = ceil(rowsh/2);        %central row  
    colc = ceil(colsh/2);     %central column 

  
%Creation of the needed blocks 
    a(1:colsg,1:colsf,1:rowsh) = 0; % 3D, cada i indica un cuadrado 

diferente 

  
% Give the blocks values 
    for i=1:rowsh               % i controls h rowsa  
        for j=1:colsh           % j controls h columns 
            for k=1:colsg       % k controls the current block's row 
                pos = j-colc+k; 
                if ((pos>0)&&(pos<(colsf+1)))   % If we are inside each 

"block" 
                    a(k,pos,i) = h(i,j); 
                end 
            end 
        end 
    end 

  
% Final matrix mount 
    Hout(1:(rowsg*colsg),1:(rowsf*colsg)) = 0;  % Inicialization 

outside of the loop 

  
    for j=1:rowsh           % j controls a's index 
        for k=1:rowsg       % k controls H block rows  
            pos = j-rowc+k; 
            if ((pos>0)&&(pos<(rowsf+1)))   % if we are inside H 
                Hout((1 + (k-1)*colsg):(k*colsg), (1 + (colsf*(pos-

1))):(colsf*pos)) = a(:,:,j); 
            end 

             
        end  
    end 

  
end 
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6.2  System matrix inversion method 

As said previously in Chapter 5 of this report, the recovered image f can be computed 

as: 

 

 

 

The process of recovering f is the following: 

1. Degraded image g and filter h conversion to their matrix form. 

2. Multiply H by its transposed. 

3. Add lambda times the identity matrix if needed. 

4. Invert the resulting matrix of points 2 and 3. 

5. Multiply the result from 4 by H transposed. 

6. Multiply the result by g. 

The following codes are MATLAB’s .m files to do the reconstruction in only one call.  

 

Table 6.2. Implementation in a .m file of the system matrix inversion method. 

 

function vector = im2vector( image ) 

%IM2VECTOR Just a smoke screen for reshape 

    [M, N] = size( image ); 

    vector = reshape( image', M*N, 1 ); 

end 

 

function image = vector2im( vector ) 

%VECTOR2IM Just a smoke screen for reshape 

    M = sqrt( length( vector )); 

    image = reshape( vector, M, M )'; 

end 
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function f = reconstruction( g, h, lambda ) 
%ITERATIVERECONSTRUCTION recovers a blurred and noisy image 
% System: G = H·F + N    
%       G, F y N vectors, H system matrix  

  
    G = single( im2vector( g ) );    
    [M, N] = size( g ); 

 

// Function that creates the system matrix H.  

// Explained in the previous section 

    H = single( filter2matrix( h, M, N, M, N ) ); 

  
% Ways to isolate the reconstructed image f*: 
%   1. f* = (H·H')^(-1)· H' · g 
%   2. f* = (H·H' + lambda·I)^(-1) · H' · g 

  

    HHT = matrixMul( H, H' ); 

  
% Method 2.  f* = (H·H' + lambda·I)^(-1) · H'· g 
    if ( lambda ~= 0 )  
        HHT = HHT + lambda * eye( length(H)); 
    end 

 

% Identical for both methods 
    HHT1 = gpu_inversion( HHT );  // developed CUDA matrix inversion 
    f = matrixMul( HHT1, H' );    // developed matrix multiplication   

    f = f * G;       

    
    f = vector2im( f ); // Reshape the image 

     
end 
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6.3  Results 

In this section the results obtained with the matrix inversion method. The original image 

used for this test is the following: 

 

Figure 6.1. Original image to be reconstructed by using the inverse matrix reconstruction 

method 

 

 

Figure 6.2. Blurred image without noise and its recovered image using the inverse matrix 

reconstruction method.  
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Figure 6.3. Blurred image with salt and pepper noise and its recovered image using the 

inverse matrix reconstruction method.  

 

 

Figure 6.4. Blurred image with Gaussian noise and its recovered image using the inverse 

matrix reconstruction method.  
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Figure 6.5. Sharpened image without noise and its recovered image using the inverse 

matrix reconstruction method.  

 

 

Figure 6.6. Sharpened image with salt and pepper noise and its recovered image using the 

inverse matrix reconstruction method.  
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Figure 6.7. Sharpened image with Gaussian noise and its recovered image using the 

inverse matrix reconstruction method.  

 

The mean square error (mse) between the previous images and the original (the one that 

in a real case is unknown ) are the following: 

 

Table 6.3. Mean square error between degraded images and recovered images with the 

matrix inversion reconstruction method. 

 

 MSE degraded image MSE recovered image 

Blurred without noise 0.0032 6.6104e-005 

Blurred with Salt & Pepper noise 0.0087 0.0112 

Blurred with Gaussian noise 0.0047 0.0044 

Sharpened without noise 0.2469 1.0408e-011 

Sharpened with Salt & Pepper noise 0.2469 0.03 

Sharpened with Gaussian noise 0.2459 0.0034 
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	float input1[ 2 * BLOCK_SIZE ];  // First input
	float input2[ 2 * BLOCK_SIZE ];  // Second input
	float output[ 2 * BLOCK_SIZE ];  // Output
	// give the inputs some values
	float *input1_dev;   // First input in the device
	float *input2_dev;   // Second input in the device
	float *output;    // Output in the device
	// Variables' size to be allocated
	int size = 2 * BLOCK_SIZE * sizeof( float );
	// Allocation of the variables in the device
	cudaMalloc( (void**) &input1_dev, size );
	cudaMalloc( (void**) &input2_dev, size );
	cudaMalloc( (void**) &output_dev, size );
	// Copy the inputs from host to device
	cudaMemcpy( input1_dev, input1, size, cudaMemcpyHostToDevice );
	cudaMemcpy( input2_dev, input2, size, cudaMemcpyHostToDevice );
	// Set up the kernel
	dim3 dimGrid( 2 );   // The same as dimGrid(2,1)
	dim3 dimBlock( BLOCK_SIZE );  // The same as dimBlock(BLOCK_SIZE, 1, 1)
	// Launching the kernel
	findMinKernel <<< dimGrid, dimBlock >>> ( input1_dev, input2_dev, output_dev );
	// Once the kernel has finished, we have to retrieve the output
	cudaMemcpy( output, output_dev, size, cudaMemcpyDeviceToHost );
	// Free CUDA variables if not needed anymore
	cudaFree( input1_dev );
	cudaFree( input2_dev );
	cudaFree( output_dev );
	// Do whatever we want with the output we got back
	( ... )
	// exit the program
	return 0;
	}

	Chapter 3
	Matlab’s MEX files
	3.1  Description of MEX files
	MEX-files (Matlab Executable files) give the possibility to interface C/C++ or FORTRAN subroutines to MATLAB, and call them directly from MATLAB as if they were built-in functions. They also provide functionality to transfer data between MEX-files an...
	The two reasons any software developer finds to write a MEX-file are the following:
	- The ability to call large existing C/C++ or FORTRAN routines directly from MATLAB without having to rewrite them as MATLAB files.
	- To achieve speed. Bottlenecks can be rewritten as a MEX-file for efficiency
	That last reason is the motivation to use MEX-files. Since CUDA programming can be done in a C/C++ language, and this language is compatible with MEX-files, we can create an application that combines CUDA, C/C++ and MEX-files at the same time to opti...
	3.2  MEX-files entry point
	3.3  Basic MEX functions
	There are many MEX functions available to interface C/C++ with MATLAB, even to the extent of using a MATLAB function directly from the MEX function. Here are only listed the two most important MEX functions: accessing to and creating MATLAB’s variables.
	MATLAB variables access:
	It is mandatory to access MATLAB variables in order to do any computation with them, which is the whole point of creating any MEX file. The two functions that allow us to do so are the following:
	MATLAB variables creation:
	3.4  Compiling a MEX file
	A MEX code file that uses C/C++ has .c extension, but it cannot be compiled with a typical C/C++ compiler such as gcc; instead, the mex compiler is needed. It is included within MATLAB, and can be found in most of UNIX distributions, if not all. The ...
	3.5  MEX code example
	This example returns the double of the input.
	#include “mex.h”
	void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
	double *input,*output;
	int M, N;
	// Input checking: only one input admitted. If that’s not the case,
	// print an error message and exit the program!
	if (nrhs != 1)
	mexErrMsgTxt( “There must be only one input” );
	// If any other input checking has to be made it MUST be done
	// before continuing with the code
	// Get the sizes of the input
	M = mxGetM( prhs[0] ); // M’s value is the number of rows of the input
	N = mxGetN( prhs[0] ); // N’s value is the number of cols of the input
	// Get the pointer to the input from MATLAB to operate with it
	input = mxGetPr( prhs[0] );
	// Create the MATLAB output
	plhs[0] = mxCreateDoubleMatrix( mxGetM(prhs[0]), mxGetN(prhs[0]), mxREAL);
	// Get the pointer to the output of MATLAB to operate with it
	output = mxGetPr( plhs[0] );
	// Equivalent to a C/C++ from now on
	for ( int i = 0; i < M*N; i++ )
	output[i] = 2*input[i];
	// We can end, the values are already stored in MATLAB’s variables
	mexPrintf( “Done!\n”); // Equivalent to printf();
	}

	Chapter 4
	Combining mex and cuda files
	4.1 Code structure
	The only thing needed to merge both CUDA and MEX codes is to exchange the main function from the CUDA code for the entry point of the MEX file:  having a main and a MEX entry point would render Matlab incapable of detecting the entry point of the fil...
	The usual structure of the mexFunction would be the following:
	- Get all the inputs needed from MATLAB.
	- Allocate and copy all the variables needed for CUDA.
	- Execute the kernels needed.
	- Copy the results back to MATLAB variables.
	- Free CUDA variables
	The combined code should be saved as a .cu file because it is going to be compiled from a .cu file to a final .mex file for Matlab to use it.
	4.2  Compilation of a merged code
	4.3  Considerations
	There are some minor issues that must be taken into account when programming a merged code:
	- The input variables from MATLAB are constant and in no way must be modified, or else the program will crash during execution.
	- While C/C++ reads and stores variables row – wise, MATLAB handles its variables column – wise (see figure x). To avoid any confusion when accessing variables, the following macro has been coded:
	#define IDC2D(i, j, ld) (((j)*(ld))+(i))

	Chapter 5
	MATRIX INVERSION
	5.1  Image reconstruction as a linear inverse problem
	The reconstruction of any image from acquired data is an inverse problem itself. Being f[x,y] an unknown image we want to obtain, h[x,y] the channel that unknown signal travels through and n[x,y] the additive noise the channel adds (uncorrelated to f...
	(1)
	where the * operator denotes linear convolution.
	It is possible to express this same model in a matrix notation such as:
	(2)
	where capital letters express matrix and minus letters express vertical vectors. The direct approach to reconstruct the image f[x,y] would be one of the following methods:
	(3)
	(4)
	(5)
	The first method is not possible in most of cases (because H can be not a square matrix) and, even if applicable, it is not a good approach because it does not consider the noise introduced by the channel.
	As for the later ones, both of them need to invert large matrices to recover the original image, and these matrices are big enough to make finding its inverse very time consuming, even for small images such as 64x64 pixels (see table x). Hence the ne...
	Table 5.1. Inversion time of large matrices in MATLAB
	However, we must bear in mind that when a direct algorithm cannot find the exact solution it has to approximate it, which may cause visible reconstruction artifacts in the recovered image. Iterative algorithms approach the correct solution using multi...
	5.1.1.  Algorithms taken into consideration
	(6)
	(7)
	5.2  Algorithms developed
	5.2.1  Gauss-Jordan elimination
	5.2.1.1  CUDA implementation
	5.2.1.2 Performance evaluation
	5.2.2.  Cholesky decomposition
	(9)
	.  (10)
	(11)
	(12)
	5.2.2.1  CUDA implementation
	5.2.2.2 Performance evaluation
	5.2.3  Gaussial Elimination (GETS)
	5.2.3.1  CUDA implementation
	5.2.3.2 Performance evaluation
	5.2.4  Matrix multiplication
	5.2.4.1  CUDA implementation
	5.2.4.2 Performance evaluation
	5.3.  Gauss-Seidel overview
	5.4  Summarization and comparison

	Chapter 6
	Practical implementation
	6.1  System matrix creation
	Being g[x,y] the image obtained by any measure system (see Chapter 5):
	it is possible to express this same model in a matrix notation such as:
	where capital letters express matrix and minus letters express vertical vectors. The g, f, and n vectors are done just by putting all the pixels of the images consecutively in a vector, from left to right and from top to bottom.
	To create the matrix automatically in MATLAB the following code has been developed:
	6.2  System matrix inversion method
	6.3  Results
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