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ABSTRACT 

Park Güell is one of the most visited and characteristic monuments in the city of Barcelona designed by the 

modernist architect Antoni Gaudi. Park Güell was designed as a real estate project but due to economic 

reasons the project failed and opened as a public park in 1922. The main purpose of the thesis is the 

analysis of the stability of the lower viaduct of the three main viaducts of the Park Güell that can be found at 

the south-east side of the park.  

Since the lower viaduct is a masonry structure it is important the presentation of all the methods used 

historically for the analysis of the stability of historic masonry structures. Among them the method of graphic 

statics and the method of funicular analysis are applied for the calculation of the thrust line of the structure in 

order to investigate its stability. 

The general information regarding the historic and artistic significance of Park Güell is important in order to 

understand the significance of the whole structure where the viaduct is contained. Also reporting the 

architectural arrangement of the viaduct, its structural characteristics and its materials is necessary for a 

deeper understanding of the function of the structure before its stability analysis. Also a previous structural 

study by BIS architects offers conclusions on the structural capacity of the viaduct. 

The three-dimensional model of the structure in AutoCAD 3D allows the better understanding of the 

geometry of the structure and uses for the application of the graphic statics method. The graphic statics 

method is applied in two dimensions and is taking into account all the loads applied on the structure in order 

to investigate its stability. The results of the graphic statics method is the thrust line of the viaduct that must 

fit inside the limits of the geometry of the structure in order to consider that the structure is stable according 

to safe theorem. 

The application of the funicular analysis with the MASONRISK application of program GID for a characteristic 

part of the viaduct is another method for the investigation of the stability of the viaduct. The objective of the 

method is to create a catenary net that its deformed shape due to its loading is contained within the limits of 

the structure in order to prove that the structure is stable according to safe theorem. The solution obtained is 

a three dimensional catenary network. 

Finally some general conclusions regarding the two methods are made presenting their advantages and 

disadvantages for the analysis of the stability of historic masonry structures and also some recommendations 

for the improvement of the methods. 
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RESUMEN 

Park Guell es uno de los monumentos más visitados y característicos de la ciudad de Barcelona. Este 

parque fue diseñado por el arquitecto modernista Antoni Gaudi. Park Guell fue diseñado originalmente como 

un proyecto de finca raíz, pero por problemas económicos el proyecto no tuvo éxito y termino siendo abierto 

como parque público en 1922. El propósito principal de esta tesis es el de analizar la estabilidad del más 

bajo de los tres viaductos localizados en la parte sur-oriental de Park Guell. 

Dado que el viaducto bajo consideración está construido en mampostería, es importante hacer una revisión 

bibliográfica de los métodos utilizados históricamente para evaluar la estabilidad de estructuras con esta 

tipología. Dos de estos métodos, el de estática grafica y el de análisis funicular, son utilizados en este 

estudio para determinar la línea de empuje y así evaluar la estabilidad de la estructura. 

Para lograr entender el significado del viaducto estudiado dentro del contexto general del parque, es 

importante conocer la información acerca del valor histórico y artístico de Park Guell. Asimismo, es 

fundamental entender el valor funcional de la estructura antes de investigar la estabilidad de la misma. Para 

esto, se debe conocer su diseño arquitectónico, las características estructurales y los materiales que la 

componen. Un estudio previo llevado a cabo por la firma arquitectónica BIS, da conclusiones acerca de la 

capacidad estructural del viaducto. 

La realización de un modelo tridimensional de la estructura en AutoCAD 3D permite un mejor entendimiento 

de la geometría y puede ser utilizado para la aplicación del método de estática grafica. Para evaluar la 

estabilidad de la estructura, el método de estática grafica es aplicado bidimensionalmente teniendo en 

cuenta todas las cargas existentes. Como resultado de la aplicación de este método, la línea de empuje es 

determinada. De acuerdo con el teorema de seguridad, la línea de empuje debe estar dentro de los límites 

geométricos de la estructura para que su estabilidad sea verificada. 

El método del análisis funicular fue utilizado también para investigar una porción característica del viaducto 

estudiado. La aplicación MASONRISK del programa GID fue utilizada para este fin. El objetivo de este 

método es crear una malla catenaria deformada debido a las cargas actuantes que está dentro de los 

límites geométricos de la estructura. De esta forma, la estabilidad del sistema es verificada de acuerdo con 

el teorema de la seguridad. La solución obtenida es una malla catenaria tridimensional. 

Finalmente, se presentan conclusiones generales acerca de la aplicación de los dos métodos utilizados, 

haciendo énfasis en las ventajas and desventajas de cada uno con respecto al análisis de estabilidad de 

estructuras históricas de mampostería. Adicionalmente, se hacen recomendaciones para el mejoramiento 

de los métodos de análisis utilizados en este estudio.     
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ΠΕΡΙΛΗΨΗ   

«Ανάλυση της θολωτής κατασκευής από πέτρα του πάρκου Γκουέλ της Βαρκελώνης µε αναπαράσταση της 

κατασκευής από καλωδιωτό µοντέλο» 

Το πάρκο Güell είναι ένα από τα πιο επισκέψιµα και χαρακτηριστικά µνηµεία της Βαρκελώνης το οποίο 

σχεδιάστηκε  από τον µοντερνιστή αρχιτέκτονα Αντονί Γκαουντί. Το πάρκο Güell σχεδιάστηκε  ως 

συγκρότηµα κατοικιών προς πώληση αλλά για οικονοµικούς λόγους το εγχείρηµα απέτυχε και άνοιξε ως 

δηµόσιο πάρκο το 1922. Ο κύριος σκοπός της εργασίας είναι η ανάλυση τηε σταθερότητας της χαµηλότερης 

σε διάταξη θολωτης κατασκευής από τις τρεις θολωτές κατασκευές του πάρκου Güell που βρίσκονται στη 

νοτιοανατολική πλευρά του  του πάρκου.  

Εφόσον η χαµηλότερη σε διάταξη θολωτή κατασκευή είναι κατασκευή από πέτρα είναι σηµαντική η 

παρουσίαση όλων των µεθόδων που χρησιµοποιήθηκαν ιστορικά για τη στατική ανάλυση των ιστορικών 

κατασκευών από πέτρα. Ανάµεσά τους η µέθοδος γραφικής στατικής ανάλυσης και ανάλυσης µε 

προσωµοίωση µε καλώδιωτό µοντέλο εφαρµόζονται για τον υπολογισµό της γραµµής θλίψης της 

κατασκευής µε σκοπό να διερευνηθεί η ευστάθειά της. 

Οι γενικές πληροφορίες σε σχέση µε την καλλιτεχνική και ιστορική αξία του πάρκου Güell είναι σηµαντικές 

ώστε να γίνει κατανοητή η σηµασία όλης της κατασκευής στην οποία η θολωτή κατασκευή περιέχεται. 

Επίσης η παρουσίαση της αρχιτεκτονικής διάταξη της κατασκευής, τα στατικά χαρακτηριστικά της και τα 

υλικά της είναι σηµαντικά για τη βαθύτερη κατανόηση της λειτουργίας της κατασκευής πριν τη στατική 

ανάλυση της ευστάθειας της. Επίσης η προηγούµενη µελέτη της εταιρίας BIS architects προσφέρει 

σηµαντικά συµπεράσµατα για τη στατική συµπεριφορά της θολωτής κατασκευής. 

Η κατασκευή του τρισδιάστατου µοντέλου της κατασκευής στο AutoCAD 3D  επιτρέπει τη καλύτερη 

κατανόηση της γεωµετρίας της κατασκευής και χρησιµοποιείται επίσης για την εφαρµογή της γραφικής 

στατικής µεθόδου. Η γραφική στατική µέθοδος εφαρµόζεται στις δύο διαστάσεις  και λαµβάνει υπόψη όλα τα 

φορτία που εφαρµόζονται στη κατασκευή µε σκοπό να αναλύσει τη ευστάθεια της. Το αποτελέσµα της 

γραφικής στατικής µεθόδου είναι η γραµµή θλίψης της θολωτής κατασκευής η οποία πρεπεί να περιέχεται 

µέσα στα ορια της γεωµετρίας της κατασκευής µε σκοπό να θεωρηθεί ότι η κατασκευή είναι ευσταθής 

σύµφωνα µε το θεώρηµα του κατωτάτου ορίου.  

Η εφαρµογή της µεθόδου προσοµοίωσης της κατασκευής µε καλώδια µε την εφαρµογή MASONRISK του 

προγράµµατος GID για ένα χαρακτηριστικό µέρος της κατασκευής είναι µία άλλη µέθοδος διερεύνησης της 

ευστάθειας της κατασκευής. Ο σκοπός της µεθόδου είναι να δηµιουργήσει ένα καλωδιωτο δίκτυο του οποίου 

το παραµορφωµένο σχήµα λόγω της φόρτισης του να περιέχεται στα όρια της κατασκευής µε σκοπό τηςν 

απόδειξη της ευστάθειας της κατασκευής σύµφωνα µε το θεώρηµα κατωτάτου ορίου. Η λύση που προκύπτει 

είναι ένα τρισδιάστατο καλωδιωτό µοντέλο. 

Τέλος εξάγονται µερικά γενικά συµπεράσµτα σχετικά µε τος δύο µεθόδους παρουσιάζοντας τα 

πλεονεκτήµατα και τα µειονεκτήµατα τους για της ανάλυση της ευστάθεις  των ιστορικών κατασκευών από 

πέτρα και γίνονται κάποιες προτάσεις σχετικα µε τη βελτίωση των µεθόδων. 
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1. INTRODUCTION AND OBJECTIVES 

1.1 Introduction 

The monuments play always a very important role in the architecture of a city. There is no doubt that they 

add cultural, architectural and historic value to any city that contains them.  Park Güell is one of the most 

visited and characteristic monuments in the city of Barcelona. It is a monument designed by one of the most 

famous architects of the 19
th
 century and maybe the most representative of modernism the Catalan Antoni 

Gaudi.  

During my visit at Barcelona in October of 2009 I had the chance to visit park Güell and walk through the 

various structures that Gaudi designed. All the structures through the park are masterpieces of architecture 

however the structures that most captured my interest where the stone viaducts-porticoes. The main purpose 

of their construction was to facilitate the transportation through the site and through its different levels. 

However the unique characteristic of them is despite the fact that the structures have a simple function this 

of the transportation through the site, are each one of them a piece of art, representing different styles of 

architecture. Also the material of their construction which is stone taken originally from the site gives a rustic 

and original sense as if there were part of the nature, and not built architectural works.  

The thesis is focusing in the study of the lower viaduct of the main three viaducts of Park Güell. The main 

difficulty of the study was the luck of original structural drawings or any officially measured and verified 

structural drawing available. With the kind contribution of the Ajuntament of Barcelona it was possible an 

access to some architectural drawings that could be used as a base for the investigation of the stability of the 

lower viaduct. However the non uniform character of Gaudi‘s structure and the different geometry of each 

structural in combination with the various architectural details element is making the modeling of the 

structure a complicated task. For this reason many simplifications in the geometry have been adopted to 

make possible the study of the viaduct. 

1.2 Objective  

The main purpose of the thesis is the analysis of the lower viaduct of the three main viaducts of the Park 

Güell that can be found at the south-east side of Park Güell. The analysis of the stability is aiming at finding 

an appropriate thrust line that is contained within the limits of the structure so according to the safe theorem 

the structure is stable. The process of finding the thrust line of the structure has been based in two different 

methods. The first is the method of graphic statics and the second is the method of funicular analysis with 

the use of program GID. The specific objectives of the thesis are the following: 

1. The review of the methods of analysis of the masonry structures with emphasis at the methods of limit 

analysis and funicular modeling 



Analysis of a masonry viaduct of Parc Güell in Barcelona by funicular modeling 

 
 

Erasmus Mundus Programme 

2 ADVANCED MASTERS IN STRUCTURAL ANALYSIS OF MONUMENTS AND HISTORICAL CONSTRUCTIONS 

2. The presentation of the historical and architectural information related to Park Güell and the lower 

viaduct in particular. 

3. The description of the architectural and structural function of the viaduct and its material. The description 

is also based on structural drawings from previous studies and recent photos. Also the presentation of 

the results from previous study made by BIS architects regarding the stability of the viaduct and its 

structural elements through the Finite Element Analysis method. 

4. The three-dimensional modeling of the structure in AutoCAD 3D and the calculation of the volumes of 

the different structural and architectural elements. The application of the graphic statics method is taking 

into account the loads of the structure in order to prove the stability or not of the structure. The graphic 

statics method is applied in a characteristic part of the structure due to the symmetry conditions 

5. The application of the funicular analysis with the program GID for a characteristic part of the viaduct. The 

objective is to find a deformed catenary net that is contained within the limits of the geometry of the 

structure. 

6. General conclusions about the stability of the structure and comparison of the two methods used for the 

investigation of its stability. Conclusions regarding the use of the funicular analysis method with the 

program GID and its advantages in order to be established as a method of finding a potential thrust 

included within the structure for future studies on historic masonry structure. 
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2. STATE OF ART 

2.1 Analysis of masonry historic structures 

A big part of world’s architectural heritage consists of historic buildings in masonry. In addition to their 

historical and cultural values, such monuments often have important economical values. As an example, the 

earthquake of 2009 at L’ Aquila had as a result damages at the historic buildings and churches and 

considerable number of human losses.  As a result, the town and region lost income from the tourism while 

many churches are closed for restoration.  

The analysis of masonry structures is an issue that has been always studied from the scientists from time of 

the ancient civilizations until today. In the ancient times the engineers were basing their calculations in 

empirical rules and the solution was found often after a trial and error process. The ancient constructions 

treatises are the first proofs of engineering research on the masonry structures. The gothic geometrical rules 

and the empirical rules before the scientific revolution were giving more information on the design of the 

structural members and the behavior of the masonry structure. By the middle of 17th century scientists and 

designers experienced the need for rational principles or methods stemming from scientific theories. In 1675 

Hooke provided the solution for the equilibrium of an arch by means of an anagram included in the book "A 

description of Helioscopes and some other Instruments", which was only deciphered after his death in 1703. 

The solution was: “Ut pendet continuum flexile, sic stabit contiguum rigidum inversum” which means as 

hangs the flexible line, so but inverted will stand the rigid arch. David Gregory wrote a treatise on the 

catenary curve in 1690. In 1698 stated that only the inverted catenary is the correct shape for an arch. 

Arches shaped differently are stable if it is possible to fit a catenary within their thickness. In fact, the 

catenary is worth to describe the equilibrium of an arch with uniform depth subject to dead load. Other arch 

shapes, depth variations and load conditions require different curves the so-called anti-funicular shapes. The 

curve thus determined is called “equilibrium line”. 

 

Figure 2.1 Equilibrium line of an arch 

Late on several researchers contributed to a graphically oriented procedure stemming from the catenary 

principle including La Hire at 18th century and Rankine at 19th century. Accurate formulations were provided 
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during the 19th century by Gerstner (Germany), Méry (France) and Moseley (England), the latter on 1833 

being the most scientific and comprehensive one. The arch is first decomposed in a series of real or fictitious 

voussoirs separated by a series of planes (the planes do not need to be parallel). The thrust line is defined 

as the geometrical locus of the points of application of the sectional forces (the resulting forces over each 

plane between voussoirs) across the arch. An arch is stable if it is possible to find thrust line contained 

between its boundaries. 

 

Figure 2.2 The graphic statics method for the definition of the thrust line for a masonry arch 

Charles-Agustin Coulomb (1736-1806) proposed in 1773 the first general and accurate theory on the stability 

of masonry arches. The basic assumptions are: 

(1) Sliding between voussoirs is unlikely due to the existence of frictional forces 

(2) Collapse will be caused by the rotation between parts due to the appearance of a number of hinges.  

The modern formulation of Limit Analysis is attributed at Heyman (1966). Under these conditions, the limit 

theorems of limit analysis, based on plasticity theory, are applicable to masonry structures according to 

Kooharian (1953) and Praguer (1959). Failure will be caused due to the generation of a mechanism. 

Though many historic masonry structures have survived for centuries, there is always a need for new tools to 

analyze the stability and the safety of such structures. The use of applications applying the funicular analysis 

method is more appropriate for a three-dimensional equilibrium approach. Regarding the analysis of 

masonry historic structures is always important to have in mind that the basic static equilibrium is the most 

important principle, even if is often neglected. 

2.2 Limit Analysis 

The main hypotheses of the Limit Analysis according to Heyman are: 

1. Masonry has null tensile stress 

2. The compression strength of the material is infinite 

3. Sliding between stone blocks is impossible 
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There are three main theorems that represent the concept of the limit analysis, the safe or lower bound 

theorem, the upper bound theorem and the uniqueness theorem. According to the safe or lower bound 

theorem the structure is safe, meaning that the collapse will not occur, if a statically admissible state of 

equilibrium can be found. This occurs when a thrust line can be determined, in equilibrium with the external 

loads, which falls within the boundaries of the structure. The load applied is a lower bound of the actual 

ultimate load, the one causing the failure. 

 

Figure 2.3 According to the safe theorem the thrust line falls within the boundaries of the structure 
so the arch is safe 

According to the upper bound theorem if a kinematically admissible mechanism can be found, for which the 

work developed by external forces is positive or zero, then the arch will collapse. In other works, if a 

mechanism is assumed by arbitrarily placing a sufficient number of hinges, the load which results from 

equating the work of the external forces to zero is an upper-bound of the actual ultimate load.  

 

Figure 2.4 Collapse mechanism of an arch according to the upper bound theorem 

According to the uniqueness theorem a limit condition will be reached which means that the structure will be 

about to collapse if a both statically and kinematically admissible collapsing mechanism can be found. In 

other words, the collapsing configuration will be reached if a thrust line can be found causing as many plastic 

hinges as needed to develop a mechanism. Plastic hinges are caused by the thrust line becoming tangent to 

the boundaries. When this occurs, the load is the true ultimate load, the mechanism is the true ultimate 

mechanism, and the thrust line is the only possible one. 
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Figure 2.5 The collapse mechanism for the arch is the one corresponding to the formation of four 
hinges 

Limit analysis depicts realistically the collapse and capacity of masonry arches. It constitutes a very reliable 

and powerful tool and should be used to assess masonry. Limit analysis can be easily applied to arches and 

skeletal structures. However, its application to 3D structures as domes and vaults is more complex. 

Thrust lines are used to illustrate possible collapse modes and to allow users to clearly visualize the forces 

within the masonry. For most historic structures there are infinite possible load paths. Graphic statics is a 

powerful method for equilibrium analysis for use in structural engineering.  

 

Figure 2.6 Graphic statics is a method that allows the construction of funicular shapes (only tension 
or compression) for a certain set of loads (a) using Bow’s Notation and (b) a force polygon that gives 
the magnitude of the forces of the segments in the funicular polygon (After Zalewski and Allen, 1998) 

Medieval vault builders explored three-dimensional equilibrium, creating complex forms carefully balanced in 

compression. The structural properties of these sophisticated forms are still poorly understood because of a 

lack of appropriate analysis methods, methods relating to stability and form. Famous engineers, such as 
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Robert Maillart, Gustave Eiffel, and Antoni Gaudí used the method of graphic statics to create some of their 

greatest works.  

 

Figure 2.7  Joan Rubio‘s graphical design for the columns and retaining wall of the Park Güell [Rubio 
1913] 

For the analysis of the masonry historic structures it is important to understand the behavior of masonry 

structures. In most cases, masonry structures fail due to instability rather than a lack of material strength 

according to Heyman (1995). Stresses in masonry structures are typically only a fraction of the crushing 

capacity of the stone. Therefore, rigid block models with the same proportions as the structures are good 

models to understand their stability. The stability problems can be scaled so an equilibrium approach is most 

appropriate to understand the structural behavior of masonry constructions. The master builders of the 

Middle Ages were able to use geometrical rules, developed through centuries of trial and error, to build 

structural elements by scaling up the same proportions for new larger elements according to Huerta (2004). 

In those days, there was no knowledge of material properties or allowable stresses. Yet, many of these 

architectural marvels are still standing in a state of equilibrium.  

Structures in unreinforced masonry work in compression, and the tensile capacity of the stone and mortar 

can be considered as negligible. These considerations then demand new approach in order to understand 

how these structures work and why they are able to stand for centuries. Linear elastic analysis using finite 

element methods is mainly concerned with stresses, and is not appropriate for historic structures in masonry. 

A stability or equilibrium approach will be most valuable, and limit analysis provides a theoretical framework. 

Although we will never know how exactly the masonry vault is standing, this is not necessary. The safe 

theorem guarantees that as long as we can demonstrate one way that the structure could stand, i.e. could be 

in equilibrium with the external forces, then it is safe. This approach initially neglects sliding, which can be 

checked afterwards to ensure that sufficient friction exists.  
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Figure 2.8 The actions of the different blocks are treated as lumped masses applied at their center of 
gravity (a) The magnitudes of the forces are proportional to their weight and transferred to the force 
polygon (b) Two possible thrust lines (funicular solutions) are shown in graph (a) and (c) shows the 

equilibrium of a single “voussoir” 

Thrust-line analysis is a particularly powerful method for understanding and exploring the range of lower-

bound equilibrium solutions of compression only systems, such as masonry structures. It represents the 

relative stability of these structures by showing the paths of the resultant compressive forces throughout the 

structure and, for two-dimensional problems, suggests possible collapse mechanisms (Ochsendorf 2002, 

Block et al. 2006b).  

 
Figure 2.9 A pseudo-3D analysis of a gothic rib vault using graphic statics (Wolfe 1921). The web of 

the vault is cut into strips which are analyzed as 2D arches. The main ribs bring the forces from 
those arches down to the supports 
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However, it is primarily a two-dimensional technique and is therefore most appropriate for the analysis of 

arches, flying buttresses or any structure which can be reduced to a sectional analysis. Graphic statics can 

be used to compute thrust lines. The main advantage of using graphical analysis is that the funicular polygon 

visually represents the forces in the system. In order to analyze three-dimensional structures using the 

graphic statics method, the analyst typically must slice the structure, reducing it to a combination of two-

dimensional problems. In this way, structural behavior is reduced to a combination of arch actions. 

 
Figure 2.10A pseudo-3D analysis of a gothic rib vaulting using the slicing technique and graphic 

statics by Wolfe (1921) 

2.3 Funicular Modeling 

Historically, the catenary analogy was one of the first methods envisaged to assess the stability of masonry 

buildings. In 1675, Hooke published, in an anagram, the relationship between the shape of a catenary and 

the shape of the equilibrium line that gives an arch its stability (Heyman, 1989). In 1698, Gregory 

independently formulated the principle of ‘antifunicularity’. He also established the analogy between the 

tensile forces of the funicular model and the reaction at arch springings, but it was not until 1717 that Stirling 

proved, by geometric methods, that there is a clear relationship between the stability of a masonry arch and 

the profile described by a catenary. Poleni in 1748 used Hooke‘s (1675) hanging chain idea for the analysis 

of the cracked dome of St Peter‘s in Rome:  “As hangs the flexible line, so but inverted will stand the rigid 
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arch”. He assessed the stability of the dome by hanging a string loaded with weights proportional to 

segments of a radial slice of the dome.  

 

Figure 2.11 Poleni illustrated that the line of thrust is a funicular polygon that may be envisioned as 
an inverted string loaded with weights for the dome of St. Peter, Rome from Heyman (1996) 

It is possible that Wren may have applied the principle described by Hooke to design the dome of St Paul’s 

Cathedral in London. Perronet also applied the anti-funicular principle to find the shape of the arch of Neuilly 

Bridge, and it is probable that Rondolet also used it in assessing the dome of the Church of Sainte-

Genevieve in Paris. Hubsch applied the method to design the vaults and buttresses in Bulach Church and 

Rottenburg Cathedral in Wurttemberg. Heinzerling formalized the use of the anti-funicular method in his work 

published in 1869 (Andreu, 2006). The procedure of finding a suitable catenary model of the structure is very 

challenging and time consuming for a three-dimensional network. It becomes quite difficult to relate the 

hanging shape to the geometry of the vault.  

 

Figure 2.12 Gaudi ‘s hanging hanging model for the crypt of the chapel of the Colonia Güell 1898-
1919 compared with a model of the geometry of the structure (museum of Sagrada Familia at 

Barcelona, Spain) 
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Also, not every network topology works and much iteration is necessary in order to be found a hanging 

model that fits within the section especially for geometries more complicated than a groin vault. The main 

problem with three-dimensional equilibrium analysis for masonry vaults is that they are highly indeterminate 

structures. Antoni Gaudi’s physical form-finding process for the church of the Colonia Güell can be used to 

explain this. The hanging model of the crypt was realized by a highly skilled team from 1898 to 1908. Making 

the physical hanging model was time consuming. First, before starting to construct a hanging string model, 

Gaudi had to decide on a suitable force pattern topology that would represent the structural action of the 

vaults. Then, after choosing the structural logic, it is still challenging to control or even predict the final shape, 

since the equilibrium of each string influences the equilibrium of the entire network. It is a tedious, iterative 

process of adjusting and refining. 

 

Figure 2.13 Detail of Gaudi‘s hanging model hanging model for the crypt of the chapel of the Colonia 
Güell 1898-1919 (museum of Sagrada Familia at Barcelona, Spain) 

 

Figure 2.14 Different possible representations for the thrust line: (a) rigid bars, proportional to the 
forces in every ray combined with the equivalent hanging chain model (b) meaning of resultant on 
different sections throughout the structure (c) flags indicating the force in each ray and (d) a color 

code, indicating how far the actual thrust line differs from its most optimal position, the centerline of 
the structure Block (2003) 
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Yet the catenary representation is not always understandable, since its meaning is not univocal over its path. 

Along this line for example, the magnitude of the resultant forces change as it can be seen in Figure 2.14 or 

the resultants represent very different loading condition in every section as is shown in Figure 2.14b. Some 

investigations should be done to try to represent in clear ways the ambiguities of the thrust line. Some first 

attempts to address this are shown in Figure 2.14a-d according to Block (2003). New form-finding programs 

which explore hanging models in the virtual world, based on dynamic relaxation, such as Kilian’s CADenary 

tool have to deal with the same issues (Kilian and Ochsendorf 2005). 

 

Figure 2.15 (a) Gaudi’s hanging weights model to find the form of his Colonia Güell  and (b) Kilian’s 
particle spring applet, a virtual hanging chain model  

The problem of controlling a virtual hanging strings network has been elegantly and efficiently implemented 

within a similar optimization framework by Andreu et al. (2007). The analysis of masonry structures by 

funicular networks Andreu et al (2010) is a method that facilitates the equilibrium exploration through 3D 

catenary models. This method is computational method for the assessment of skeletal or spatial and curved 

masonry structures based on the simulation of anti-funicular states of equilibrium by means of cable nets. 

According to the method, the cables represent the inverted shape of the equilibrium lines (or load paths) 

experienced by the structural members. In the case of 2D curved structures such as domes and vaults, the 

cable nets represent, in an approximate way, the distribution of the compression stress fields in equilibrium. 

The method permits an assessment of stability and determination of the ultimate capacity by application of 

the static theorem of limit analysis according to Andreu et al (2010). The cable element utilized in the model 

has been already presented by Andreu et al. (2006, 2007), together with its validation by comparison with 

available experimental and numerical results. 

The concept of anti-funicular equilibrium is used from a computational or virtual perspective. The virtual 

structure is constructed inverted (upside down) and loaded according to the loading conditions of the 

structure. After the loading of the structure the initial cable net is deforming. In case that the deformed net is 

contained in the interior of the structure with the catenary net hanging from the supports then the deformed 

model of hanging cables simulates a possible state of equilibrium. By inverting the model is possible the 
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definition of a set of connected equilibrium lines that describes the equilibrium attained by the structure in 

compression according to Andreu et al (2010). 

 

Figure 2.16 Combined modeling of equilibrium lines and external resisting surfaces (inverted 
representation) according to Andreu et al (2010) 

In the case of skeletal structures, plastic theorems can be applied to a cable net representation that 

comprises linear components as it is shown in Figure 2.17a. In the case of a 2D curved structure such as a 

dome or general shell structure, O’Dwyer’s (1999) approach is used to decompose the structure into a set of 

multiple arches as it is shown in Figure 2.17b. Every catenary describing an individual linear member must 

be modeled by a series of cable elements. Thus, the equilibrium lines of the entire structure will be modeled 

by means of a set of catenary elements connected to a certain number of nodes. In order to assess the 

safety of masonry construction, the modeling of the external surfaces of the structure is also necessary. For 

that purpose, the external surface of the structure is simulated by means of a discrete mesh of surface 

elements. 

 

Figure 2.17 (a) Modeling of a skeletal structure and (b) a spatial 2D curved structure by means of a 
net of cables (inverted representation) according to Andreu et al (2010) 
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The finite compression strength of masonry can be taken into account by considering a reduced external 

surface. For that purpose, a plastic distribution of compression stresses is adopted to account for the 

ultimate state. The stresses are assumed uniform and equal to the compression strength (fc) in an area 

centred at the point of application of the thrust as it is shown in the following Figure. The resulting reduced 

surface must be recalculated for each different value of the thrust (N) acting on the section. Thus far, this 

possibility has only been utilized in 2D problems for which determination of the maximum eccentricity 

becomes immediately clear. Determination of reduced strength surfaces for 3D problems requires further 

development according to Andreu et al (2010). 

 

Figure 2.18 Reduced strength surface to account for finite compression strength according to 
Andreu et al (2010) 

A catenary element is defined as the curve adopted by a cable with negligible flexural stiffness, suspended 

from its ends and submitted to gravity’s effect. If a segment of the cable is cut, a set of forces appear at the 

end nodes which are in equilibrium with the weight of the piece as it is shown in the following Figure. 

 

Figure 2.19 Catenary Element 

For the catenary element, considering a cable with infinite axial stiffness, the equation that relates the 

coordinates of the nodes with the forces is known according to Irvine (1992). 
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Figure 2.20  The equations that relates the coordinates of the nodes with the forces is known (Irvine 
1992) 

The method has been applied to the lateral towers of the facade of Barcelona Cathedral, Spain. Application 

of the method requires, as a preliminary step, full definition of the strength surfaces and the initial 

undeformed cable model as it is shown in the following Figure. The cable model includes 132 elements. The 

variables chosen for the optimization problem are the length of all cable elements and the coordinates x, y 

(contained in the horizontal plane) of the end nodes at the base. As shown in Figure 2.21(d) and 2.21(e) the 

solution obtained is totally contained within the strength surfaces, meaning that the structure can safely resist 

the entire dead load even if the steel rings were not considered.  

 

Figure 2.21 (a) Modelling of the external surfaces, (b) and (c) initial funicular model in a reversed 
presentation (d) deformed funicular model (e) detail of the model 

In general it is very hard to control and predict how the final shape of the compression network will look like if 

local changes are being made or a string model is being assembled and hung under gravity. This is true for 

both physical and virtual string models as for graphical methods. In order to analyze a three-dimensional 

indeterminate system these unknowns need to be understood and controlled. 
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3. DESCRIPTION OF STRUCTURE 

3.1 Name, location and description of the whole structure 

The site of Park Güell is located on a hillside at the edge of the Collserola mountain range. The main 

entrance of the park faces southeast onto a narrow street, Carrer d' Olot. In the main entrance there are two 

colorful gate lodges, which signify the access to the park and also a high wall that surrounds the park at 

Carrer d’ Olot. 

 

Figure 3.1 General Plan of the park published at “El Park Güell. Memoria descriptiva” of the Annuario 
of the Association of Architects of Catalonia, 1903 

 

Figure 3.2 General aerial view (Martínez Lapeña and Torres “Park Güell”) 
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The entrance area contains an open space that leads to a staircase which is supported by retaining walls. 

The double staircase rises in three levels. A grotto-fountain, a serpent's head, and a dragon-lizard straddling 

and a long ceramic basin dominate the center of the staircase (Kent and Prindle 1993). 

 

Figure 3.3 The wall of the main entrance of Park Güell at Carrer D' Olot (Kent and Prindle “Park 
Güell”) 

Excavations cut into the retaining walls provide service areas: a storage area to the left that now is as a cafe, 

and an enclosure to the right for carriages. Three circulation paths begin from the entrance area. The first to 

the right is a road five meters wide and follows the inside of the front wall northeast, then winds up the rough 

terrain to the slopes where sixty villas were originally planned as a part of a residential colony. 

 

Figure 3.4 The staircase and the Hall Market. View from the main entrance of Park Güell photo from 
"Antonio Gaudi," by George R. Collins 

Another gate at the end of Carrer d' Olot opens onto this road as it begins to curve, crossing the first of three 

curving portico-bridges in its serpentine ascent (Kent and Prindle 1993). The second to the left is a walkway 

which runs between the wall and the front of the Güell mansion, then approaches the park's steepest slope, 

a hill negotiated by a spiral portico and winding paths. An extension of this walkway leads to the highest 
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point on the site, marked by a large stone Calvary. The third a straight ahead, the monumental staircase 

rises to the level of the market hall, where to the left is the Baldiri Rexach school-an eighteenth-century 

mansion and once the home of Eusebi Güell and to the right an open field now planted in formal beds. 

Beyond the field and farther up the slope lies the original Gaudi house, now a museum, which stands in a 

copse of pine trees. Staircases beside the market hall and walkways around it both provide access to a third 

level, where a large plaza (86 x 40 meters) extends back into the hillside, but also out over the roof of the 

market hall.  

The principal artery of the park is an avenue ten meters wide, entering the park to the northeast from the 

Avinguda del Carmel. Traversing the park above and behind the theater, the avenue is marked by massive 

stone "trees" suggestive of palms and set like half-columns into the hillside retaining wall. Matched by live 

Canary Island palms on the other side of the avenue, these stone structures convert the avenue into a 

shaded terrace overlooking the theater and its bench. The broad avenue exits at the southwest gate of the 

park, on Sant Josep de la Muntanya.  

Access to the upper reaches of the park is provided by the serpentine road, which joins with the broad 

avenue briefly as it approaches the Avinguda del Carmel entrance, then turns to continue its ascent over the 

middle and upper bridges of the park. This road would have allowed carriages to reach properties in the 

upper areas, and is marked by occasional carriage turn-arounds. Higher up, the road begins a long traverse 

of the hillside, through a nature area past the Trias house, along the broken ridge line at the top of the hill, 

and on to the southeast where it joins the footpaths approaching the Calvary and summit. The principal 

features of the park, -the theater-plaza, entrance, and portico-bridges are seen from this point. The summit 

also looks over Barcelona below and affords views of Mount Tibidabo to the northwest. Ascent and descent 

from the park summit can also be made by footpaths and short cuts between the park avenues and roads 

(Kent and Prindle 1993). 

Perhaps the most bizarre constructions in Park Güell are its grotto-like bridges or viaducts, permitting the 

roads on the right side of the site to ascend over the steep topography.  

 

Figure 3.5 Left: View of the lower viaduct Right: Bearing structure of the lower viaduct 
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Figure 3.6 Left: View of the middle viaduct Right: Bearing structure of the middle viaduct 

Avoiding what would otherwise be tight, switchback curves, each of the three columnated bridges carries the 

road out from the mountain-side to make wider the looping curves by which it makes its serpentine ascent of 

the site. While each viaduct has its own unique character, all are variously faced with unfinished stone. 

These structures refuse to be simply functional. 

  

Figure 3.7 Left: View of the upper viaduct Right: Bearing structure of the upper viaduct  

3.2 Historical note 

The origins of the Park Güell date back to 1899, when Eusebi Güell, a wealthy Catalan businessman 

member of an influential bourgeois family of Barcelona, bought the land occupying the park by Marquis of 

Mariano. The park is located in the upper area of Barcelona, at Hill of the Caramel, formerly called 

“Muntanya Pelada” which means the "Bald Mountain". Later, Count Güell commissioned the architect Antoni 

Gaudi i Cornet for the urbanization project of the park, which was built between 1900 and 1914. Antoni 

Gaudi together with Count Güell was aiming at convert the slope of the hill in a residential area. Both wanted 

to construct a garden city that was similar to those constructed in England where they would provide a high 

standard urbanization with approximately 60 residences. Despite the work of Gaudi and Güell, the project 
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became a commercial failure, due to the region, that was at that time little urbanized and was also far from 

the city center. Only there were sold two plots of land, one of them the current House-Museum Gaudi, where 

the architect lived from 1906 to 1925, and Casa Trias, property of the lawyer Martí Trias i Domènech. In the 

year 1914 the works had to stop due to World War I. In the year 1918, after the death of Count Güell the 

heirs decided to sell the land to the City Council of Barcelona in order to become a public park. Finally, Park 

Güell opened as a public part in 1922. 

3.3 Historical and artistic significance 

Gaudi adopted the style of flowing lines and organic forms that produced the floral tracery of the Art 

Nouveau. But that movement, beginning in arts and crafts, went beyond the decorative use at walls and 

windows. Park Güell maybe is the project that includes in the largest scale applications of organic forms at 

architectural structures. For example the viaducts and the gate houses were informed by principles of 

organicism. 

The park except from being an exceptional art nouveau example also is very good representation of the 

culture of Barcelona in 1900. Moreover is a result of the creative imagination of two men, Eusebi Güell and 

Antoni Gaudi (1852-1926). Together Güell and Gaudi experienced the transformation of Barcelona into a 

modern industrial city. Together for fourteen years, from 1900 to 1914, they actually brought all their previous 

experiments in reality at Park Güell. Along with the chapel crypt at the Colonia Güell, the park is their 

greatest achievement and a powerful expression of the cultural aspirations of the industrial order Barcelona 

of the end of 19th century. 

The collaboration of culture and industry was a phenomenon characteristic of the age. When the park begun 

in 1900 Barcelona's industrialists, already the most powerful in Spain, were looking to expand both the 

economic and cultural influence. Recovering from the loss of colonial markets and cheap resources after the 

war of 1898, Güell and his peers were facing the challenges of the new era. Park Güell, originally was 

designed as a real estate project, and was designed to meet those new economic and cultural challenges. 

Without the colonial markets abroad the textile industry was in crisis so the interest into other type of 

business appealed to be an attractive and necessary alternative. By the turn of the century Güell himself had 

moved into other areas, producing cement in a new enterprise and beginning his venture in real estate at 

park Güell.  

Park Güell was to be the ideal destination for Barcelona's new elite, a mountain-side enclave built on the 

rugged terrain. The park was to be a residential housing project on 15 hectares pulled together from Güell’ s 

purchase of two parcels of undeveloped land. The first and largest was bought in 1899, while the second, at 

the top of the mountain, was added during construction in 1902. Rising some 60 meters over rocky terrain 

from 150 to 210 meters above sea level, Muntanya Pelada ("Bald Mountain") was a very steep land to 

develop a building project than the expanding city bellow. The topography, together with Güell’ s triangular 

plots and the prohibition against clearing the sites of existing trees, make mandatory for the architect a more 

rustic landscape. The topography was so irregular that from the very beginning it was decided to design the 

garden villa plots in consort with the natural terrain. Roads and paths of four different widths and building 
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plots for sixty villas were to be adapted to the contours of the park site. Residents of the park were to have 

their own chapel, a weekly village market, theater, and public plaza, as well as a protected reserve of fresh 

water on the site. A high wall would protect the structures and regulate the access. The common buildings 

and public areas were intended to connect the families together in a residential community.  

The inspirations for the park seem to have come from diverse sources. On the one hand the park is an 

indigenous, Catalan answer to the ideal associated with the English landscape tradition in combination with a 

contemporary garden city. It is also important, constant references to local geography and Catalan 

craftsmanship, as well as the insistent use of indigenous vegetation in the landscape. This was a way to 

point the regional pride which shapes even the most cosmopolitan features of Barcelona's urban landscape. 

Among the keys of the qualities of life in Park Güell was the tendency to retreat from the newly great city 

below. Park Güell was to serve as a haven, a private world made possible by the industrial and commercial 

power of Güell, and made necessary because of the changes in the life of Catalonia. The potential buyers 

which would need an alternative of the modern and constantly changing life below would find in Park Güell a 

residential solution. A second key to Park Güell is the recognition of Güell and Gaudi's obsession with 

integrating the past and the present. Numerous inventions in the park give evidence of the attempts of Gaudi 

and Güell to include the modern technologies in archaic shapes and the numerous colors of folk art. The 

dressing with bright ceramic tiles or rustic stone is characteristic of the Catalan tradition. Still, the tradition did 

not serve only as ornament. Traditional craft also made possible structural configurations to be implemented 

in the contemporary architecture and engineering, as in the park's gate lodges with their fluid parabolas and 

hyperbolic paraboloids constructed with traditional Catalan tile vaulting. A third key to understanding the park 

is Gaudi's integration of sacred impulses in the design. This modern residential garden is involved with the 

Catalan tradition of shrines and pilgrimages, traditions associated particularly with the monastic heritage of 

nearby Montserrat, the sacred mountain whose "Black Virgin" had become the patron saint of Catalonia in 

1881. In this way Gaudi was synthesizing real estate development with religious tradition. 

The great parks and landscape gardens had traditionally reached some of their most romantic heights in 

artificial ruins or grottoes evoking a mythic past, a spirit of the place often associated with classical gods or 

more historical figures commemorated in funerary monuments. The Gaudi-Güell response to the tradition 

may be seen here in the grotto-like porticoes and the bridges they support overhead. Gaudi’s designs create 

spaces variously reminiscent of mountain shrines, Christian catacombs, grottoes, or cloisters, features which 

commemorate not gods or heroes, but the genius loci which are found in the sacred Catalan land itself (Kent 

and Prindle 1993). Here, the park residents could found reminders of the ancient heritage of their land. 

These bridges are hallmark features of the park. They also account for the character of the higher reaches of 

the park, thematically as well as aesthetically. 

Each one of the Gaudi's bridges represents a different historical style, but what impresses most visitors is the 

beauty of stone forms that seem rooted in the land itself, originating before or outside of history. Dali saw it in 

the slumping stone forest of massive jardinieres surmounting the upper bridge, and in one of his better 

known comments on Gaudi gave the surrealist response: "The open spaces between the artificial trees give 

me a sense of unforgettable anguish" (Salvador Dali 1942). Most observers find that the archaic effects of 



Analysis of a masonry viaduct of Parc Güell in Barcelona by funicular modeling 

 
 

Erasmus Mundus Programme 

ADVANCED MASTERS IN STRUCTURAL ANALYSIS OF MONUMENTS AND HISTORICAL CONSTRUCTIONS 23 

the stonework remind them variously of grottoes, caves, stalactites, architectural ruins, and of course, the 

rugged landscape. 

The program of the portico-bridges would have made possible within the domestic use of the garden city a 

small-scale version of the pilgrimage-excursions then popular with Catalans. Gaudi had visited such 

pilgrimage sites in the 1880s, both with a Catalan excursionist society and with the Association of Architects 

of Catalonia. The garden traditions of the English landscape also meet here with the more popular 

nineteenth-century enthusiasm for the religious grotto, an enthusiasm reinforced in Catalonia by ideology 

and tradition.  

Substituting his archaic portico-bridges for the more traditional Gothic ruins Gaudi chose to evoke the kind of 

geological and devotional sites of the Catalan landscape in his drawings. The Catalan fixation on the grotto 

as an emblem of sanctity was already established. These bridges are hallmark features of the park. They 

also account for the character of the higher reaches of the park, thematically as well as aesthetically (Kent 

and Prindle 1993). Gaudi's bridges hint at historical styles, but what strikes most visitors is the beauty of 

stone forms from the centuries of Moorish occupation. Also the inspiration for the porticoes can be also find 

in the shrines of Montserrat, the cavernous religious mountain, with sacred caves and labyrinthine paths. 

The program of the portico- bridges can best be understood as a combination of the two traditions of garden 

and grotto. 

In Gaudi’s bridges the likeness to sacred grottoes and ancient buildings is emphasized by the rough, and 

archaic stonework applied to the columns. Contemporary with the gate lodges and park entrance, the 

portico-bridges belong to the critical period from 1901-1903 when Gaudi began to produce the radical 

innovations grounded in his philosophy of organic form. With their rustic surfaces and their structurally 

experimental design, the grotto-bridges combine great technical ingenuity with a highly aesthetically 

appearance.  

The spiral ramp, the columns and vaulting of the viaducts, shows that Gaudi was far from just imitating the 

Gothic architecture in the 1880s. Forms which Gaudi used as revival of medieval forms like rib-work and the 

fan vaulting of the viaducts were being refashioned in unique organic forms which he saw himself taking 

directly from the "book of nature." "The column is like the shaft; the trunk of a tree," Gaudi told the young 

Joan Burgos; "the roof is like the mountain with its ridge and slopes. The vault is the cave of parabolic 

section. The more resistant terraces of the mountain cliff form lintels and corbels where the weaker strata 

have eroded away"(Kent and Prindle 1993). In the observation of the nature Gaudi found the structural 

designs which would correspond to the equilibrium and diversity of nature. The gate houses on the Carrer d' 

Olot were the first were Gaudi attempted the application of the "book of nature" into forms usable in 

contemporary life. If the result in work like the portico-bridges of the park impresses today as a radical 

naturalism, for Gaudi the experience of nature was shaped and mediated at every point by his experience of 

his culture. For Gaudi, organic form inevitably went beyond aesthetics. Gaudi's organic engineering of the 

viaducts is an ideological, as much as an artistic, statement. Engineering, a "rational science" had grown up 

with the use of industrial iron and the materialistic science of frame structures. To Gaudi the architect 
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distinguished himself from the structural engineer by endowing his creation with a spiritual and a human 

purpose that moved beyond the mechanics of construction.  

In the year of 1969, the Park Güell was nominated Artistic Historical Monument and in 1984 UNESCO 

included it as a "World Heritage Place of Works of Antonio Gaudi”.  

3.4 Architectural arrangement of the lower viaduct, structure and materials 

There are three main viaducts that facilitate the transition through the Park Güell. All the viaducts were 

projected with an important width to permit the passage for carriages and some porticoed roads to allow the 

passage of pedestrians. The plan view of the three viaducts can be seen in Figure 3.8. The viaduct that has 

the south position in the plan view of the viaducts is the lower viaduct. The viaduct that is at the north 

position of the three viaducts is called the upper viaduct while the viaduct between the lower and the upper 

viaduct is called the middle viaduct. Gaudi designed each viaduct with a different structural solution, the 

lower viaduct with a Gothic style, the middle viaduct with Baroque style and the upper viaduct with 

Romanesque style. The three different architectural styles of the viaducts can be seen in Figure 3.9. 

However in this Chapter the emphasis is given in the description of the geometry and the structural system 

of the lower viaduct. The stability of the lower viaduct will be analyzed in the following Chapter. 

 

Figure 3.8 Left: General view of the three viaducts Right: Plan view of the viaducts according to 
previous study of BIS architects 

 
Figure 3.9 Elevations, horizontal sections and isometric drawings of the three viaducts Left: the 

lower viaduct Middle: The middle viaduct Right: The upper viaduct (Kent and Prindle 1993) 
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The first of the viaducts, the named also as lower viaduct is located at the bottom of the layout shown in 

Figure 3.8. The lower bridge curves up to the principal avenue at Gaudi’s house in a fairly steep grade. It has 

a wide of 6.50 m and a length of approximately 50 m as shown in Figure 3.11 

 

Figure 3.10 Plan view of inferior viaduct (BIS architects)  

The arrangement of the columns of the structure form a curve as it can be seen in the plan view of Figure 

3.11.  

 

Figure 3.11 Architectural arrangement of the lower viaduct 

The general views of the structure both from the north and the east side can be seen in the Figure 3.12. 

 

Figure 3.12 Left: General view from the north side of the lower viaduct Right: General view from the 
south side 
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The vertical bearing structure is columns of 80cm in diameter with a maximum height of 6.00m. The columns 

are made of masonry and are covered with stone as a cladding over the original structure. A section of the 

structure can be seen in Figure 3.13. The geometry of the columns is described in Figure 3.14. 

 

Figure 3.13 Section of the lower viaduct and detail of the jardiniere of the deck of the bridge 

   

Figure 3.14 Detail of the columns in elevation. Photo taken from the north side of the structure 

Gaudi’s columns combine logic with aesthetic effect as, canted slightly inward. The inclination of the columns 

apart from impressing aesthetically has also a structural meaning.  

 

Figure 3.15 Stem-like columns in the north side of the bridge of the lower viaduct 
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This is facilitating the columns to bear the thrust line of the structure within the limits of the columns 

geometry. The union of the columns is done with a capital that has a mushroom form that terminates in a 

pentagon.  Arising stem-like from these canted columns in the outside curve of the bridge in the north side of 

the structure there are smaller columns, which support the bridge’s overhanging balustrade. The diameter of 

these auxiliary columns is 50cm. With the main columns of the two sides alternating rather than opposing 

each other, the rising incline of the bridge yields a complex, rhythmic effect as the visitor walks beneath the 

curving portico (Kent and Prindle 1993). Elongated stones attached to the brick and tile sub-structure of the 

columns also enhance the effect as they rise to give an irregular but dynamic effect of fan vaulting. The load 

transmition to the columns is through the capitals that have a mushroom form as it can be seen in Figure 

3.17. The horizontal bearing structure is a stone vault without nerves. The vault is covered with uniform 

pieces of stone. The finished top of the vault was made with concrete, which appears as a layer over the 

initial finish with stone. The columns together with the vault assemble the geometry of a parabola. 

 

Figure 3.16 The main columns of the north and south side of the lower viaduct are alterating rather 
than opposing each other 

 

Figure 3.17 The fan vaulting of the lower viaduct. The transmition of the load is done through the 
capitals that have a mushroom shape. 
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On the roadbed overhead, the metamorphosis continues as the portico below becomes the bridge above. 

The bridge, in turn, supports a series of benches which function also as protective railings. Set into these 

benches are jardinieres which contain agave plants that emphasize on the relationship between organic and 

architectural forms. The provocative relationship of grotto and bridge is an experiment varied rather than 

replicated in the nearby bridges. 

  

Figure 3.18 Left: View of the deck of the bridge Right: Detail of the bench at the south side of the 
deck of the bridge at its current state with forbidden access due its instability problems 

 

Figure 3.19 Left: View of the jardiniere Right: View of the benches and the jardiniere from the south 
side of the lower viaduct 

On the north side of the deck of the bridge there is a railing made of masonry as shown in the Figure 3.20. 

The railing is given an asymmetrical form.  

 

Figure 3.20 Railing at the north side of the deck of the bridge of the lower viaduct 
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3.5 Previous study on the structural capacity of the lower viaduct 

The Department of Environment of the City Council (Departament de Medi Ambient de l’Ajuntament de 

Barcelona) and its representative its Manager Mr. Jorge Campillo Gamez requested during September 2010, 

the professional Services of Martí Cabestany Puértolas, architect, and David Garcia Carreras, architect and 

technical director of consultants BIS architects, architecture company specializing in structural design and 

rehabilitation of buildings, to work on a structural diagnosis of the viaducts of Park Güell, located on 

mountain of Carmel, at the street Carrer d’ Olot of Barcelona.  

The purpose of this report is was to locate and identify the various structural lesions, and as a diagnosis 

what is the structural capacity of the viaducts. The study evaluates the security level that the structure has 

for the actual use are and is designed to have, concluding the security if the security is admissible or not for 

safety of the users. It is recommended that all the interventions and recommendations mentioned in the 

diagnosis, are formalized in an Executive Project Consolidation and structural reinforcement (Projecte 

Executiu de Consolidació i Reforç Estructural).Since the diagnosis about the current state of the building, the 

Finite Element analysis is considering the existing geometry and the current state of loading. The 

verifications were performed with different computation programs depending on the geometry and material of 

each element. 

The elements of the lower viaduct that were analyzed were:  

1. The bearing structure 

2. The railing with benches 

3. The jardinieres 

4. The low railing 

This study was a compilation of the most significant data from these analyses. 

For the definition of the bearing capacity of the material that forms the structure of viaducts (vaults and 

pillars) have been used  values obtained  in other similar works and have been conducted with the 

formulation proposed by the CTE-F in Annex C (although it is designed for ceramics): 

It has been considered limestone with a resistance to compression of 60 N/mm
2
 and a mortar M-2 (2 

N/mm
2
). From Annex C of the DB-SE-F the characteristic compressive strength of masonry it is obtained: 

Fk= K�fb
0.65

�fm
0.25

. = 0.6 � 60
0.65

 � 2
0.25

 

Calculating with the values obtained by the material characteristics the compression strength is 102.Kg/cm2. 

As for tension, is considered a 10% of compression strength 102.1 kg/cm
2
 � 10% = 10.2 kg/cm

2
. 

Taking a reduction coefficient of 2.5 it is: 

Resistance to compression: 102.1 kg/cm
2
 reduced to 40 kg/cm

2
 

Resistance to traction: 10.2 kg/cm
2
 reduced to 4 kg/cm

2
 



Analysis of a masonry viaduct of Parc Güell in Barcelona by funicular modeling 

 
 

Erasmus Mundus Programme 

30 ADVANCED MASTERS IN STRUCTURAL ANALYSIS OF MONUMENTS AND HISTORICAL CONSTRUCTIONS 

It was also recommended carrying out a laboratory test to know the real characteristics of the material that 

the viaduct is made of. 

The detail of all states of loading that might occur due to different parts of the building is according to the  

values proposed by current regulations, the Technical Building Code of Spain (codi tecnic de l’edificacio). 

These load states were used in the calculation of the viaducts and the various elements that compose it. 

There have been many different hypotheses as loading condition and have been generated several possible 

combinations with the corresponding application of the coefficients that increment the loads. 

1. Dead loads 

The dead loads were determined based on the dimensions and densities of the materials comprising them. 

The densities of the materials considered are: 

Reinforced concrete: 2.50 t/m
3  

Solid bricks: 1.80 t/m³ 

Stone: 2.20 t/m
3
  

Filling of stone and mortar: 2.20 t/m
3
 

2. Overloading 

TRAFFIC LOAD AVERAGE  

Loading of Use: 1000 kg/m
2
 

PADESTRIANS 

Load of use: 500 kg/m
2
 

Vertical loads on handrails: 200 kg/m 

Horizontal loads at handrails: 160 kg/m 

3. Wind action 

The values used for calculating wind were the following: 

Wind velocity: v=29 m/s 

Dynamic pressure of the wind: qb = 0.52 kN/m
2
 

Coefficient of exposure: ce = 2.0 

The Park Güell viaducts were analyzed with the current regulations, the Technical Code of Building of Spain, 

taking into account the loads foreseen with the circulation of average traffic load. It will be necessary to 

determine if the structural element complies or doesn’t comply with the current regulations. Therefore, a 

check is made with the values of maximum stress of design (Ed) to compare with the values of the reduced 

elastic limit of the element‘s material strength (Rd). From this study we can determine if we deal with a 

tension that can meet the regulations, if the value Ed ≤ Rd or cannot meet Ed> Rd. 
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When the result of the verifications is to meet, we can say that the structure exceeds the safety factors set by 

the regulations. That means that the admissible stress of the element (Rd) with coefficients of reduction (γM) 

is higher than the tension which is subject according to the calculation (Ed) with the respective coefficients 

(γG, γQ). Moreover, this statement considers that the element is in an acceptable state of conservation. 

If the condition is cannot meet, it means the item does not meet the analysis safety factors set by standards. 

Then a second verification is performed with the characteristics values of tension (Ek) and compared with the 

characteristic values of elastic limit of strength of the material (Rk). If the result is admissible, there must be 

action on the item until it complies with the condition that means it must be strengthened to achieve the 

security level set in the regulations. In this case, it is necessary to take immediate safety measures so there 

is not any risk for the security. 

If this second comparison result is not acceptable, the item is subject to a tension higher than it can support 

and therefore must be performed some security action immediately (reinforcements, restrictions of use, etc.) 

To analyze the structure of the viaduct a finite element model was carried out with the program Robot. It was 

modeled using shell elements, to simulate the layer of stone that is the bearing layer, entering the filling as 

dead weights and skipping the collaboration it may have with the structure. in the reality the behavior of the 

viaduct is considered to be a bit better than the model. These elements are of 40 cm thickness. In the reality 

there must be configuration of the thickness of the vault in order for the model of the viaduct to be accurate. 

The Finite Element model can be seen in Figure 3.21 

 

Figure 3.21 Finite Element model of the viaduct 

From this analysis there were the following conclusions and recommendations: 

4. Bearing structure 

The bearing structure of the viaduct meets the condition.  

5. Railing with benches 

The rail of viaduct does not meet the condition and is the condition is not admissible. According to the results 

obtained in the numerical verification, the railing of the viaduct has a higher stress than those that can 

support. Therefore, it must be strengthened or limit the access urgently. 
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6. Deck jardiniere 

That jardiniere meets the condition. According to the results obtained in the numerical verification, the 

jardiniere has lower tensions that it can support. Therefore it doesn’t need to be strengthened.  

7. Low railing 

The low rail of viaduct does not meet the condition and is the condition is not admissible. 

According to the results obtained in the numerical verification, the low railing presents tensions higher than it 

can support, with coefficients proposed by the standards, but it has a sufficient supplement of safety for the 

failure in a matter of urgency. Therefore, we must strengthen but do not need to take urgent action. 

After the completion of the analysis the following conclusions have been made. Park Güell is a unique 

architectural work of the modernist architect Antoni Gaudi i Cornet, with a very important heritage value that 

requires a specific and accurate treatment. Therefore it was recommend keeping the restriction of access to 

the railings, planters and benches above the viaduct and make limited the access to the railings and 

benches under the viaduct, to perform an operation of such consolidation. 

Therefore, we recommend keeping limited access to the railings and benches of the viaduct, for performing 

an operation of consolidation. 

Furthermore, the coating of stone of the viaduct and the different elements of this study were excluded 

because of its maintenance actions, which are already carried out periodically. 

As a final conclusion of this structural diagnosis of viaduct of Park Güell in Barcelona, was recommend the 

implementation and execution, as soon as possible, a basic and executive project of structural consolidation 

of unstable elements to ensure an appropriate degree of security. 
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4. GRAPHIC STATICS 

4.1 Introduction 

The graphic statics method has been applied to the lower viaduct for the calculation of the thrust line of the 

structure. The purpose of the calculation of the thrust line is the investigation of the stability of viaduct. 

According to the safe theorem if there is a thrust line that fits in the limits of the structure then the structure is 

stable. 

The architectural information of the lower viaduct is given in Figure 4.1. In gray color is represented the 

masonry while in brown color is represented the layer of concrete at the deck of the bridge. 

 
Figure 4.1 Architectural drawing of the facade of the lower viaduct 

For the calculation of the thrust line it was necessary the creation of a 3D model in AutoCAD 3D. The 

creation of the model was based on the architectural information of Figure 4.1, the architectural configuration 

of chapter 3.4 and photos taken during the in-site inspections. Due to the symmetry of the structure there 

has been modeled only a part of a structure that is repeated along the structure. A view of the model can be 

seen in Figure 4.2. The columns are represented with yellow color while the masonry vault is represented 

with green color. Also the concrete of the deck is represented with gray color. The railing of the north side of 

the deck is in green color and the jardiniere and the bench of the south side of the deck is in yellow color. 
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Figure 4.2 Left: View of the 3D model of the lower viaduct of Park Güell Right: 3D view of the model 

 
Figure 4.3 Plan view of the 3D model 

 
Figure 4.4 North and south view of the 3D model 
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The plan view of the viaduct and the can be seen in Figure 4.3 while the north and the side view can be seen 

in Figure 4.4. 

4.2 Thrust line calculation 

The calculation of the thrust is divided in 2 parts. In the first part the calculation of the thrust line is regarding 

the model shown in Figure 4.5. This part of the south side of the structure is repeating through the structure. 

For this reason the thrust line can be calculated in this element. 

 

Figure 4.5 View of the characteristic part of the north side of the lower viaduct of Park Güell Right: 3D 
view of the model 

For the calculation of the thrust line the vault is divided in 15 voussoirs. The voussoirs of the part of the 

structure made of masonry are represented in Figure 4.6 in green and blue color while the concrete 

voussoirs of the deck of the bridge are represented in Figure 4.6 with grey and blue color. The column is also 

divided into 8 voussoirs as it can be seen in Figure 4.6. The numbering of the voussoirs of the vault and the 

column can be seen in Figure 4.7. 

 
Figure 4.6 Discretization of the model into voussoirs for the mass calculation 

The position of the center of the mass for the voussoirs of the vault and the column is obtained with 

AutoCAD 3D and it can be can be seen at Figure 4.7. The center of the mass differs according to the 
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material of the voussoir. The coordinates of the center of the mass are necessary because they are the 

points of application of the self weight of the material either masonry or concrete. Also, the center of the 

upper surfaces of the voussoirs can be seen in figure 4.7. The center the upper surface is the point of 

application of the traffic load of the structure.  

The coordinates of the center of the mass of each voussoir made of masonry can be seen at Table 4.2 while 

the coordinates of the center of the mass for the concrete voussoirs can be seen in Table 4.3. The 

coordinates of the center of the upper surface are presented n Table 4.4. 

 
Figure 4.7 Left: Centers of mass of the different voussoirs. Right: Centers of mass of the upper 

surfaces of the voussoirs at the deck of the bridge 

The loads acting on the structure are divided in two categories. The first category is the dead load which is 

the self weight of the structure. There are three different type of materials in the structure for which the self 

weight is calculated; the masonry of the vault and the jardiniere, the concrete of the upper layer of the deck 

and the soil that is used as a filling in the jardiniere for the south side of the structure. The second category 

of load is the live loads which include the traffic load acting on all the area of the deck. All the loads are 

according to the loads proposed by the previous structural study about the structural capacity of the lower 

viaduct made by BIS architects Table 4.1 is presenting the price of the loads acting on the structure.  
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Table 4.1 Dead and live loads acting on the viaduct 

Live load

concrete kg/m3 masonry kg/m3 soil kg/m3 traffic kg/m2

2300 2200 2000 1000

Dead loads

 
 

The pedestrians load proposed by the study of BIS architects is 500 kg/m
3
 so it is safer to consider the traffic 

load as the main live load for the stability evaluation. For the calculation of the self weight loads acting on the 

structure the volumes of the masonry and concrete voussoirs are given in the Table 4.2 and Table 4.3 

accordingly. The self weight acting on the center of the mass of the masonry and concrete voussoirs is 

calculated with Excel and is also presented in Table 4.2 and Table 4.3. The load is scaled in order to be 

graphically represented and designed in AutoCAD. For this reason a scaling of 0.02 has been used. The 

length of the lines representing the size of the vectors of the self weight forces are given in table 4.3 and 

Table 4.3.  

Table 4.2 Self weight and center of the mass of the masonry voussoirs of the vault 

No unit vault Volume m3 Load kN AutoCAD m Centroid X m Centroid Y m

1 0.64 14.12 0.28 -15.45 1.86

2 1.67 36.76 0.74 -15.22 1.34

3 1.62 35.63 0.71 -14.94 0.66

4 1.68 36.97 0.74 -14.66 0.61

5 1.68 36.99 0.74 -14.38 0.61

6 1.67 36.64 0.73 -14.10 0.62

7 1.44 31.74 0.63 -13.83 0.60

8 1.36 29.93 0.60 -13.55 0.67

9 1.27 28.00 0.56 -13.27 0.73

10 1.16 25.61 0.51 -12.99 0.80

11 1.03 22.76 0.46 -12.71 0.88

12 0.88 19.45 0.39 -12.43 0.97

13 0.71 15.68 0.31 -12.15 1.06

14 0.45 9.86 0.20 -11.89 1.14

15 0.13 2.80 0.06 -11.64 1.19

Self Weight

Masonry
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Table 4.3 Self weight and center of the mass of the concrete voussoirs of the vault 

No unit arch Volume  m3 Load kN AutoCAD m Centroid X m Centroid Y m

1 - - - - -

2 - - - - -

3 - - - - -

4 - - - - -

5 - - - - -

6 - - - - -

7 0.15 3.38 0.07 -13.82 1.51

8 0.15 3.38 0.07 -13.54 1.51

9 0.15 3.38 0.07 -13.27 1.51

10 0.15 3.38 0.07 -12.99 1.51

11 0.15 3.38 0.07 -12.71 1.51

12 0.15 3.38 0.07 -12.43 1.51

13 0.15 3.38 0.07 -12.15 1.51

14 0.12 2.65 0.05 -11.88 1.51

15 0.04 0.89 0.02 -11.63 1.51

Self Weight

Concrete

 
 

The traffic load applied at the surface of the deck of the bridge is calculated for the upper surface of each of 

the voussoirs and is considered to be applied at the center of the upper surface. The prices of the surface of 

the upper areas of the voussoirs and the traffic load can be seen in Table 4.4. 

Table 4.4 Traffic load and center of the upper surface of the voussoirs of the vault 

No unit arch Area m2 Load kN AutoCAD m Centroid X Centroid Y

1 - - - - -

2 0.37 3.75 0.07 -10.54 5.41

3 0.98 9.78 0.20 -10.35 5.41

4 0.98 9.78 0.20 -10.07 5.41

5 0.98 9.78 0.20 -9.79 5.41

6 0.98 9.78 0.20 -9.51 5.41

7 0.98 9.78 0.20 -9.23 5.41

8 0.98 9.78 0.20 -8.95 5.41

9 0.98 9.78 0.20 -8.67 5.41

10 0.98 9.78 0.20 -8.39 5.41

11 0.98 9.78 0.20 -8.11 5.41

12 0.98 9.78 0.20 -7.83 5.41

13 0.98 9.78 0.20 -7.55 5.41

14 0.77 7.67 0.15 -7.27 5.41

15 0.26 2.56 0.05 -7.04 5.41

Traffic load

Stone and concrete

 

The self weight of the masonry column for the different voussoirs and the point of its application can be seen 

in Table 4.5.  
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Table 4.5 Self weight and center of the mass of the voussoirs of the column 

No unit vault Volume m3 Load kN AutoCAD m Centroid X m Centroid Y m

1 0.26 5.67 0.11 -15.32 0.25

2 0.26 5.67 0.11 -15.21 0.75

3 0.26 5.67 0.11 -15.10 1.25

4 0.26 5.67 0.11 -14.99 1.75

5 0.26 5.67 0.11 -14.87 2.25

6 0.26 5.67 0.11 -14.76 2.75

7 0.26 5.67 0.11 -14.65 3.25

8 0.26 5.67 0.11 -14.54 3.75

Masonry

Self Weight

 
 

The graphic representation of the loads is shown in Figure 4.8. A detail of all the different loads acting on the 

structure can be seen in Figure 4.9. The vectors acting on the same vertical direction are added as it can be 

seen on the right of the Figure 4.8. The force polygon for the calculation of the resultant force of all the loads 

acting on the structure can be seen in 4.10. The resultant force is 534.5 KN. The position of the resultant 

force is very important for the estimation of the thrust line. The funicular polygon is created in order to be 

graphically calculated the position of the resultant force. In all the drawings that follow the analogy between 

the lengths of the lines in meters that are representing the force vectors and the size of the force in kN is 

graphically represented with a scale graph that can be seen at the lower part of the drawing. 

 
Figure 4.8 Left: Self weight and traffic loads applied to the voussoirs Right: Resultant loads acting at 

the voussoirs 
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Figure 4.9 Detail of the loads acting on the voussoirs 

 
Figure 4.10 Force polygon for the calculation of the resultant force of the loads acting on the vault 
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Figure 4.11 Funicular polygon for the calculation of the position of the resultant force 

The funicular polygon is shown in Figure 4.11. For the calculation of the thrust line is necessary an 

estimation of the horizontal thrust applied at the vault. The result presented is taken after many previous 

trials on the position of the thrust line.  

 
Figure 4.12 Left: Forces acting on the structure Right: Force polygon for the calculation of the size of 

the forces 
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The position at the top of the section of the vault is the ideal position for the horizontal thrust.  Also the 

direction of the reaction at the column of the structure which is represented as R1 is graphically calculated. 

The vector of the reaction must pass through the intersection of the vectors H1 and P1 representing the 

horizontal thrust and the resultant of the vertical loads on the vault as it can be seen in Figure 4.12. The 

inclination of the line of the vector R1 has been chosen similar to the inclination of the column as it can be 

seen in Figure 4.12. The force polygon on the right of Figure 4.12 has as a result the definition of the size of 

the vectors of the horizontal thrust H1 and the reaction at the pillar R1. The force polygon that is used at the 

calculation of the thrust line of the vault can be seen in Figure 4.13. 

 
Figure 4.13 Force polygon for the calculation of the thrust line 

The thrust line of the vault can be seen in Figure 4.14. The thrust line is in the limits of the structure so the 

vault is safe according to the safe theorem.  

 
Figure 4.14 Thrust line of the vault. According to the safe theorem the vault is stable since the thrust 

line is contained within the limits of the vault geometry 
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However in order to conclude if the structure is stable or not the column must be taken into account too. 

Before the calculation of the thrust line in the column, it is important to find the sum of the forces that were 

not included in the thrust line of the vault and these are the forces of voussoirs 1, 2, 3, 4 and 5 as it is shown 

in Figure 4.15. The resultant force of the five forces as well as the force polygon for calculation of the 

position of the resultant force can be seen in Figure 4.16. The funicular polygon for finding the exact position 

of the resultant force V1 can be seen in Figure 4.17. 

 
Figure 4.15 Forces which are not included in the thrust line 

 
Figure 4.16 Force polygon for the calculation of the resultant force  

 
Figure 4.17 Funicular polygon for the calculation of the position of the resultant force 
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The forces applied at the structure can be seen on Figure 4.18. The forces applied at the column of the 

structure can be seen on the right of Figure 4.18. 

 
Figure 4.18 Left: Forces acting on the structure Right: Forces acting on the column of the structure  

The synthesis of the vectors of the reaction R1 and the forces of the voussoirs of the pillars is shown in the 

following Figures. 

 
Figure 4.19 Sum of the vector of the resultant force of the thrust line and the force of voussoir 8 on 

the left and voussoir 7 on the right 
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Figure 4.20 Sum of the vector of the resultant force of the thrust line and the force of voussoir 6 

The sum of the resultant R1,c and the resultant force V1 is shown in the following Figure. 

 

Figure 4.21 Sum of the vector of the resultant force of the thrust line R1,c and the resultant force V1 
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The sum of the resultant and the forces of the voussoirs 5 to 1 is shown in the following Figures. 

 
Figure 4.22 Sum of the vector of the resultant force of the thrust line and the force of voussoir 5 on 

the left and voussoir 4 on the right 

 
Figure 4.23 Sum of the vector of the resultant force of the thrust line and the force of voussoir 3 on 

the left and voussoir 2 on the right 
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Figure 4.24 Sum of the vector of the resultant force of the thrust line and the force of voussoir 1. 

According to the safe theorem the structure is stable since the resultant force is contained inside the limits of 

the column geometry as it can be seen in Figure 4.24.  

The second part of the graphic statics analysis for the stability of the viaduct contains the application of the 

graphic statics method in the east part of the structure. The geometry of this part can be seen in Figure 4.25. 

This element of the south side of the structure is repeating through the structure. 

 

Figure 4.25 View of the characteristic part of the south side of the lower viaduct of Park Güell Right: 
3D view of the model 
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In this part of the structure the railing on the deck of the bridge is substituted with the jardiniere and the 

benches. For the calculation of the thrust line the vault is divided in 15 voussoirs. The voussoirs of the part of 

the structure made of masonry are represented in Figure 4.26 in green and blue color while the voussoirs of 

the part of the vault made of concrete are represented in Figure 4.26 with grey and blue color. The soil 

voussoirs are represented with brown and magenta color. The column is also divided into 8 voussoirs as it 

can be seen in Figure 4.6. The numbering of the voussoirs of the vault and can be seen in Figure 4.27. 

 
Figure 4.26 Discretization of the model into voussoirs for the mass calculation 

 
Figure 4.27 Left: Centers of mass of the different voussoirs. Right: Centers of mass of the deck 

surface 
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The position of the center of the mass for the voussoirs of the vault and the column is obtained with 

AutoCAD 3D and it can be can be seen at Figure 4.27. The center of the mass differs according to the 

material of the voussoir. The coordinates of the center of the mass are the points of application of the self 

weight of the masonry and concrete voussoirs. Also, the center of the upper surfaces of the voussoirs can be 

seen in figure 4.7. The center of the upper surfaces of the voussoirs has been calculated only for the part of 

the deck subject to traffic load because is the point of application of the traffic load of the structure. 

The coordinates of the center of the mass of each voussoir made of masonry can be seen at Table 4.6 while 

the coordinates of the center of the mass for the voussoirs made of concrete can be seen in Table 4.7. The 

coordinates of the center of the upper surface are presented n Table 4.10. 

The loads acting on the structure are divided in two categories. The first category is the dead load which is 

the self weight of the structure. There are three different type of materials in the structure for which the self 

weight is calculated; the masonry of the vault and the jardiniere, the concrete of the upper layer of the deck 

and the soil that is used as a filling in the jardiniere. Table 4.1 is presenting the price of the loads acting on 

the structure.  

For the calculation of the self weight loads acting on the structure the volumes of the masonry and concrete 

voussoirs are given in the Table 4.6 and Table 4.7 accordingly. The self weight acting on the center of the 

mass of the masonry and concrete voussoirs is calculated with Excel and is presented also in Table 4.6 and 

Table 4.7. The load is scaled in order to be graphically represented and designed in AutoCAD. For this 

reason a scaling of 0.02 has been used for all the loads. The lengths of the AutoCAD lines representing the 

size of the vectors of the self weight forces are given in table 4.6 and Table 4.7.  

Table 4.6 Self weight and center of the mass of the masonry voussoirs of the vault 

No unit vault Volume m3 Load kN AutoCAD m Centroid X m Centroid Y m

1 0.11 2.40 0.05 -13.90 -39.46

2 0.38 8.37 0.17 -13.67 -39.51

3 0.63 13.89 0.28 -13.42 -39.57

4 0.78 17.22 0.34 -13.17 -39.66

5 0.92 20.19 0.40 -12.91 -39.74

6 1.04 22.79 0.46 -12.65 -39.82

7 1.14 25.01 0.50 -12.39 -39.89

8 1.22 26.87 0.54 -12.13 -39.95

9 1.29 28.41 0.57 -11.87 -40.01

10 1.36 30.03 0.60 -11.61 -40.07

11 1.42 31.21 0.62 -11.35 -40.12

12 1.42 31.33 0.63 -11.09 -40.13

13 1.42 31.30 0.63 -10.83 -40.13

14 1.44 31.74 0.63 -10.58 -40.02

15 1.03 22.58 0.45 -10.33 -39.73

Self Weight

Masonry

 

In all the drawings that follow, the analogy between the lengths of the lines in meters that are representing 

the force vectors and the size of the force in kN is graphically represented with a scale graph in the lower 

part of the Figures. 
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Table 4.7 Self weight and center of the mass of the concrete voussoirs of the vault 

No unit vault Volume m3 Load kN AutoCAD m Centroid X m Centroid Y m

1 0.03 0.76 0.02 -13.90 -39.14

2 0.10 2.29 0.05 -13.67 -39.14

3 0.14 3.13 0.06 -13.43 -39.14

4 0.14 3.13 0.06 -13.17 -39.14

5 0.14 3.13 0.06 -12.91 -39.14

6 0.14 3.13 0.06 -12.65 -39.14

7 0.14 3.13 0.06 -12.39 -39.14

8 0.13 3.02 0.06 -12.14 -39.14

9 0.10 2.27 0.05 -11.88 -39.14

10 0.08 1.93 0.04 -11.62 -39.14

11 0.07 1.72 0.03 -11.36 -39.14

12 0.05 1.23 0.02 -11.13 -39.14

13 - - - - -

14 - - - - -

15 - - - - -

Concrete

Self Weight

 

The volumes of the masonry and soil voussoirs of the jardiniere are shown in Table 4.8 and Table 4.9 

accordingly. Also the self weight of the masonry and soil voussoirs of the jardiniere is also shown in Table 

4.8 and Table 4.9.  

Table 4.8Self weight and center of the mass of the masonry voussoirs of the jardiniere 

No unit vault Volume m3 Load kN AutoCAD m Centroid X m Centroid Y m

1 - - - - -

2 - - - - -

3 - - - - -

4 - - - - -

5 - - - - -

6 - - - - -

7 - - - - -

8 0.05 1.11 0.02 -12.03 -38.46

9 0.36 8.01 0.16 -11.86 -38.47

10 0.30 6.71 0.13 -11.62 -38.52

11 0.32 6.95 0.14 -11.35 -38.53

12 0.41 8.94 0.18 -11.08 -38.60

13 0.68 14.87 0.30 -10.83 -38.63

14 0.42 9.19 0.18 -10.57 -38.49

15 0.32 7.10 0.14 -10.34 -38.46

Self Weight

Jardiniere' s masonry

 

The traffic load applied at the surface of the deck of the bridge is calculated for the upper surface of each of 

the voussoirs and is considered to be applied at the center of the upper surface. The prices of the surface of 

the upper areas of the voussoirs and the traffic load can be seen in Table 4.10. 
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Table 4.9 Self weight and center of the mass of the soil voussoirs of the jardiniere 

No unit vault Volume m3 Load kN AutoCAD m Centroid X m Centroid Y m

1 - - - - -

2 - - - - -

3 - - - - -

4 - - - - -

5 - - - - -

6 - - - - -

7 - - - - -

8 - - - - -

9 0.01 0.23 0.00 -11.76 -38.38

10 0.18 3.56 0.07 -11.60 -38.38

11 0.26 5.25 0.11 -11.35 -38.38

12 0.32 6.43 0.13 -11.09 -38.38

13 0.31 6.25 0.12 -10.84 -38.38

14 0.15 3.06 0.06 -10.62 -38.38

15 - - - - -

Self Weight

Jardiniere 's Soil

 
 

Table 4.10 Traffic load and center of the upper surface of the voussoirs of the vault 

No unit vault Surface m2 Load kN AutoCAD m Centroid X m Centroid Y m

1 0.22 2.20 0.04 -7.73 -38.14

2 0.66 6.60 0.13 -7.50 -40.69

3 0.91 9.07 0.18 -7.26 -39.60

4 0.91 9.08 0.18 -7.00 -39.60

5 0.91 9.08 0.18 -6.74 -39.60

6 0.91 9.08 0.18 -6.48 -39.60

7 0.91 9.08 0.18 -6.22 -39.60

8 0.87 8.74 0.17 -5.96 -39.60

9 0.66 6.60 0.13 -5.70 -40.72

10 0.46 4.60 0.09 -5.44 -40.81

11 0.50 5.00 0.10 -5.18 -40.87

12 0.36 3.57 0.07 -4.95 -40.90

13 - - - - -

14 - - - - -

15 - - - - -

Traffic load

Stone and concrete

 

The self weight of the stem like column of the south side of the viaduct is shown in Table 4.11 together with 

the center of the mass of the column.  

Table 4.11 Self weight and center of the mass of the stem-like column 

No unit pillar Volume m3 Load kN AutoCAD m Centroid X m Centroid Y m

1 0.17 3.74 0.07 -13.76 -86.38

Self Weight

Column

 

The graphic representation of the loads is shown in Figure 4.28. A detail of all the different loads acting on 

the vault can be seen in Figure 4.29. The vectors acting on the same vertical direction are added as it can be 

seen on the right of the Figure 4.28.  
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Figure 4.28 Left: Self weight and traffic loads applied to the voussoirs Right: Resultant loads acting 

at the voussoirs 

 
Figure 4.29 Detail of the loads acting on the voussoirs 
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The force polygon for the calculation of the resultant force of all the loads acting on the structure can be seen 

in Figure 4.30. The resultant force P2 is 539.5 KN. The position of the resultant force is very important for the 

estimation of the thrust line. The funicular polygon is created in order to be graphically calculated the position 

of the resultant force. 

 
Figure 4.30 Force polygon for the calculation of the resultant force of the loads acting on the vault 

The funicular polygon is shown in Figure 4.31.  

 
Figure 4.31 Funicular polygon for the calculation of the position of the resultant force 
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For the calculation of the thrust line the horizontal thrust used previously for the north side of the viaduct is 

used. The direction of the reaction at the pillar of the structure which is represented as R2 is graphically 

calculated.  

 
Figure 4.32 Left: Forces acting on the structure Right: Force polygon for the calculation of the size of 

the forces 

The vector of the reaction must pass through the intersection of the vectors H2 and P2 representing the 

horizontal thrust and the resultant of the vertical loads on the vault as it can be seen in Figure 4.32. The 

inclination of the line of the vector is the same with the reaction R1 of the north side as it can be seen in 

Figure 4.12. The force polygon on the right of Figure 4.32 has as a result the definition of the size of the 

vector of the reaction at the pillar R2. The force polygon for the calculation of the thrust line of the vault can 

be seen in Figure 4.33. 

 

Figure 4.33 Force polygon for the calculation of the thrust line 
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The thrust line of the vault can be seen in Figure 4.34. The thrust line is in the limit of the structure so the 

vault is safe according to the safe theorem. However in order to conclude if the structure is stable or not the 

column must be taken into account too. Before the calculation of the thrust line in the column it is important 

to find the sum of the forces that were not included in the thrust line of the vault and these are the forces of 

voussoirs 12, 13, 14 and 15 as it is shown in Figure 4.35. The resultant force of the five forces as well as the 

force polygon for calculation of the position of the resultant force can be seen in Figure 4.36. The funicular 

polygon for finding the exact position of the resultant force V2 can be seen in Figure 4.37. 

 
Figure 4.34 Thrust line of the vault. According to the safe theorem the vault is stable since the thrust 

line is contained within the limits of the vault geometry 

 
Figure 4.35 Forces which are not included in the thrust line 

 
Figure 4.36 Force polygon for the calculation of the resultant force  
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Figure 4.37 Funicular polygon for the calculation of the position of the resultant force 

The forces applied at the structure can be seen on Figure 4.18. On the right of Figure 4.18 can be seen the 

forces applied at the column of the structure. 

 
Figure 4.38 Left: Forces acting on the structure Right: Forces acting on the column of the structure 

and numbering of the voussoirs of the column 
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The synthesis of the vectors of the reaction R2 and the forces of the voussoirs of the pillars is shown in the 

following Figures. 

 
Figure 4.39 Sum of the vector of the resultant force of the thrust line and the force of voussoir 8 on 

the left and voussoir 7 on the right 

The sum of the resultant R2,b and the resultant force V2 is shown in the following Figure. 

 
Figure 4.40 Sum of the vector of the resultant force of the thrust line R2,b, the force of voussoir 6 and 

the resultant force V2 
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The sum of the resultant force and the forces of the voussoirs 5 to 1 is shown in the following Figures. 

 
Figure 4.41 Sum of the vector of the resultant force of the thrust line and the force of voussoir 5 on 

the left and voussoir 4 on the right 

 
Figure 4.42 Left: Sum of the vector of the resultant force of the thrust line and the force of voussoir 3 

Right: Sum of the vector of the resultant force of the thrust line, voussoir 2 and the force of the 
upper-column 
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Figure 4.43 Sum of the vector of the resultant force of the thrust line and the force of voussoir 8 

According to the safe theorem the structure is stable since the resultant force is contained inside the limits of 

the column geometry as it can be seen on the right Figure 4.43. Since both the north and the south parts are 

safe and due to symmetry conditions the structure is safe. 
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5. FUNICILAR ANALYSIS 

5.1 Introduction 

The application MASONRISK of GID has been used for the funicular modeling of the viaduct. The purpose is 

to create a cable network which deformed due to the loading must fit within the limits of the geometry of the 

structure. In this way according to the safe theorem the structure is stable. Before the modeling it has been 

necessary finding the appropriate element of the structure which would be used as a model for the program. 

This basic element must be symmetric and repeat through the structure. The basic element for modeling is 

shown in Figure 5.1. If this element is copied and rotated 180
 
degrees

 
then another element is produced in 

continuity with the previous element so the element chosen is symmetric. Also it is necessary that the 

element chosen is having columns at all the corners so the catenary model can hang from all the columns. 

The red lines in Figure 5.1 represent the geometry of the catenary net.   

The definition of the cables is based on the geometry of the structure. The meshing of the net has been 

designed manually. The criterion used for the discretization was a creation of a uniform mesh of the catenary 

that could take into account all the loads applied on the structure.  

 
Figure 5.1 Basic element of the structure used for GID modeling 

It is very important before the creation of the model with GID program to calculate the loads acting on all the 

elements. For this reason just two parts of the element are used as it can be seen in Figure 5.2. 
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Figure 5.2 The two parts of the characteristic element used for the calculation of the load 

Both the north and the south part are sliced into pieces in order to calculate their volume and the concrete 

surface of each piece. After the calculation of the volume the self weight of the element can be calculated. 

Also the calculation of the concrete surface is necessary for the calculation of the traffic load.  

5.2 Calculation of the loads 

The south part of the structure is divided in two parts part 1 and part 2. The volumes and the concrete 

surfaces of the pieces of part 1 of the south element are shown in the following Figures. 

 

Figure 5.3 Geometry of part 1 of the south element 
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Figure 5.4 Volumes and concrete surfaces of piece A of part 1 of the south element 

 

Figure 5.5 Volumes and concrete surfaces of piece B of part 1 of the south element 
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Figure 5.6 Volumes and concrete surfaces of piece C of part 1 of the south element 

The volumes and concrete surfaces of pieces D, E and F are considered to be symmetric to pieces C, B and 

A accordingly. 

The volumes and the concrete surfaces of the pieces of part 2 of the south element are shown in the 

following Figures. 

 
Figure 5.7 Geometry of part 2 of the south element 
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Figure 5.8 Volumes and concrete surfaces of piece A of part 2 of the south element 

 

Figure 5.9 Volumes and concrete surfaces of piece B of part 2 of the south element 
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Figure 5.10 Volumes and concrete surfaces of piece C of part 2 of the south element 

 
Figure 5.11 Volumes and concrete surfaces of piece D of part 2 of the south element 
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Figure 5.12 Volumes and concrete surfaces of piece E of part 2 of the south element 

 
Figure 5.13 Volumes and concrete surfaces of piece F of part 2 of the south element 

The volumes, concrete areas different loads and the total load applied to the different pieces of the south 

element are given at the following Tables. 
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Table 5.1 Volumes and concrete areas of the different pieces of part 1 of the south element 

No piece No subdivision Area m2

concrete stone soil concrete

A1 5 0.006 0.038 - 0.040

6 0.018 0.072 - 0.120

B1 3 0.006 0.068 - 0.040

4 0.018 0.166 - 0.122

5 0.024 0.164 - 0.162

6 0.024 0.100 - 0.161

C1 1 0.004 0.069 - 0.028

2 0.014 0.208 - 0.096

3 0.026 0.302 - 0.170

4 0.026 0.241 - 0.170

5 0.026 0.174 - 0.170

6 0.026 0.105 - 0.170

D1 1 0.006 0.038 - 0.040

2 0.018 0.072 - 0.120

3 0.006 0.068 - 0.040

4 0.018 0.166 - 0.122

5 0.024 0.164 - 0.162

6 0.024 0.100 - 0.161

E1 3 0.004 0.069 - 0.028

4 0.014 0.208 - 0.096

5 0.026 0.302 - 0.170

6 0.026 0.241 - 0.170

F1 5 0.026 0.174 - 0.170

6 0.026 0.105 - 0.170

PART A

Volume m3

 

Table 5.2 Self weight, traffic load and total load on the different pieces of part 1 of the south element  

No piece No subdivision Traffic load kN Total

concrete stone soil on concrete area Force kN

A1 5 0.140 0.832 - 0.404 1.376

6 0.414 1.588 - 1.202 3.204

B1 3 0.140 1.503 - 0.404 2.047

4 0.419 3.641 - 1.215 5.275

5 0.559 3.610 - 1.619 5.788

6 0.554 2.209 - 1.607 4.370

C1 1 0.097 1.516 - 0.283 1.895

2 0.331 4.585 - 0.957 5.873

3 0.587 6.633 - 1.698 8.918

4 0.589 5.295 - 1.698 7.582

5 0.589 3.821 - 1.698 6.108

6 0.589 2.319 - 1.698 4.606

D1 1 0.140 0.832 - 0.404 1.376

2 0.414 1.588 - 1.202 3.204

3 0.140 1.503 - 0.404 2.047

4 0.419 3.641 - 1.215 5.275

5 0.559 3.610 - 1.619 5.788

6 0.554 2.209 - 1.607 4.370

E1 3 0.097 1.516 - 0.283 1.895

4 0.331 4.585 - 0.957 5.873

5 0.587 6.633 - 1.698 8.918

6 0.589 5.295 - 1.698 7.582

F1 5 0.589 3.821 - 1.698 6.108

6 0.589 2.319 - 1.698 4.606

Self weight kN

PART A
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Table 5.3 Volumes and concrete areas of the different pieces of part 2 of the south element 

No piece No subdivision Area m2

concrete stone soil concrete

A2 6 0.010 0.037 - 0.066

B2 5 0.010 0.020 - 0.069

6 0.064 0.084 - 0.135

C2 4 0.010 0.089 - 0.069

5 0.021 0.136 - 0.135

6 0.021 0.084 - 0.135

D2 3 0.010 0.115 - 0.069

4 0.020 0.198 - 0.130

5 0.008 0.257 - 0.056

6 0.002 0.224 0.036 0.016

E2 2 0.008 0.112 - 0.054

3 0.015 0.170 - 0.098

4 0.006 0.220 - 0.039

5 - 0.194 0.020 -

6 - 0.074 0.129 -

F2 1 - 0.111 - -

2 0.007 0.232 0.000 0.044

3 0.006 0.176 0.000 0.039

4 0.001 0.232 0.000 0.003

5 - 0.139 0.065 0.000

6 - 0.063 0.112 0.000

Volume m3

PART A

 

Table 5.4 Self weight, traffic load and total load on the different pieces of part 2 of the south element 

No piece No subdivision Traffic load kN Total

concrete stone soil concrete force

A2 6 0.230 0.814 - 0.663 1.707

B2 5 0.237 0.444 - 0.686 1.367

6 1.465 1.837 - 1.349 4.651

C2 4 0.237 1.967 - 0.686 2.890

5 0.474 2.990 - 1.349 4.813

6 0.474 1.837 - 1.349 3.660

D2 3 0.237 2.532 - 0.686 3.455

4 0.449 4.358 - 1.298 6.105

5 0.191 5.647 - 0.556 6.394

6 0.055 4.928 0.726 0.160 5.869

E2 2 0.184 2.471 - 0.536 3.191

3 0.336 3.738 - 0.976 5.050

4 0.133 4.842 - 0.390 5.366

5 - 4.272 0.394 - 4.666

6 - 1.635 2.586 - 4.221

F2 1 - 2.437 - - 2.437

2 0.150 5.095 0.000 0.435 5.680

3 0.133 3.874 0.000 0.388 4.396

4 0.012 5.107 0.000 0.033 5.151

5 - 3.068 1.295 0.000 4.363

6 - 1.386 2.233 0.000 3.619

Self weight kN

PART A

 
 

The numbering of the north element is shown in the following Figure. 
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Figure 5.14 Numbering of the south element 

A graphic representation of the total load (kN) acting on each piece of the south element is shown in the 

following Figure. 

 
Figure 5.15 Total load acting on the different pieces of south element 
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For the distribution of the load from the solid pieces to the cables of the net it is necessary the subdivision of 

the mesh into sub surfaces. The division is done always dividing the angle into two equal angles using the 

bisector of the angle. The subdivision is shown in Figure 5.16. 

 
Figure 5.16 Division into sub surfaces for the distribution of the load to the cables 

The area of each one of the sub surfaces is presented in the following Figure. 

 

Figure 5.17 Area of the sub surfaces that the mesh is divided 

The area of the different surfaces of the mesh is shown in the following Figure. 
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Figure 5.18 Areas of the different surfaces of the mesh 

 
Figure 5.19 Loads acting on the cables of the net 
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The calculation of the total load is based on the rule below: 

Load on the element = Sum[[(Area of the subsurface)/(Area of the surface)]�(Load on the piece)] 

This means that all the pieces ending at a cable contribute with a load on the cable. This load is a 

percentage of the total load of the piece. This percentage is given by the term (Area of the subsurface)/(Area 

of the surface) where the subsurface is the subsurface of the piece facing the cable and the surface is the 

surface of the piece. By summing the load that the different pieces contribute to the cable the total load on 

the cable is calculated. The total loads applied on the cables are shown in Figure 5.19. 

The same process is repeated for the calculation of the loads for the north element of the structure. The 

Figures that follow are showing the process of calculation of the loads. The volumes and the concrete 

surfaces of the pieces of part 1 of the north element are shown in the following Figures. 

 
Figure 5.20 Geometry of part 1 of the north element 

 
Figure 5.21 Volumes and concrete surfaces of piece A of part 1 of the north element 
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Figure 5.22 Volumes and concrete surfaces of piece B of part 1 of the north element 

 
Figure 5.23 Volumes and concrete surfaces of piece C of part 1 of the north element 
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Figure 5.24 Volumes and concrete surfaces of piece D of part 1 of the north element 

 

 

Figure 5.25 Volumes and concrete surfaces of piece E of part 1 of the north element 
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Figure 5.26 Volumes and concrete surfaces of piece F of part 1 of the north element 

The volumes and the concrete surfaces of the pieces of part 1 of the north element are shown in the 

following Figures. 

 
Figure 5.27 Geometry of part 2 of the north element  
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Figure 5.28 Volumes and concrete surfaces of piece A of part 2 of the north element 

 
Figure 5.29 Volumes and concrete surfaces of piece B of part 2 of the north element 
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Figure 5.30 Volumes and concrete surfaces of piece C of part 2 of the north element 

The volumes and concrete surfaces of pieces D, E and F are considered to be symmetric to pieces C, B and 

A accordingly. The volumes, areas different loads and the total load applied to the different pieces of the 

south element are given at the following Tables. 

Table 5.5 Volumes and concrete areas of the different pieces of part 1 of the north element 

No piece No subdivision Area m2

concrete stone soil concrete

A1 1 0.097

2 - 0.199 - -

3 - 0.147 - -

4 - 0.118 - -

5 - 0.089 - -

6 - 0.060 - -

B1 2 0.008 0.113 - 0.054

3 0.015 0.171 - 0.098

4 0.015 0.134 - 0.098

5 0.015 0.097 - 0.098

6 0.015 0.061 - 0.098

C1 3 0.010 0.114 - 0.068

4 0.020 0.186 - 0.136

5 0.020 0.135 - 0.136

6 0.020 0.085 - 0.136

D1 4 0.010 0.089 - 0.068

5 0.020 0.135 - 0.136

6 0.020 0.085 - 0.136

E1 5 0.010 0.063 - 0.068

6 0.020 0.085 - 0.136

F1 6 0.010 0.038 - 0.068

Volume m3

PART B
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Table 5.6 Self weight, traffic load and total load on the different pieces of part 1 of the north element 

No piece No subdivision Traffic load kN Total

concrete stone soil on concrete area Force kN

A1 1 2.125 2.125

2 - 4.379 - - 4.379

3 - 3.238 - - 3.238

4 - 2.598 - - 2.598

5 - 1.958 - - 1.958

6 - 1.319 - - 1.319

B1 2 0.184 2.479 - 0.536 3.199

3 0.336 3.751 - 0.976 5.063

4 0.336 2.946 - 0.976 4.258

5 0.336 2.141 - 0.976 3.452

6 0.336 1.335 - 0.976 2.647

C1 3 0.235 2.515 - 0.679 3.428

4 0.469 4.099 - 1.357 5.925

5 0.469 2.979 - 1.357 4.805

6 0.469 1.859 - 1.357 3.685

D1 4 0.235 1.956 - 0.679 2.869

5 0.469 2.979 - 1.357 4.805

6 0.469 1.859 - 1.357 3.685

E1 5 0.235 1.395 - 0.679 2.308

6 0.469 1.859 - 1.357 3.685

F1 6 0.235 0.836 - 0.679 1.750

Self weight kN

PART B

 

Table 5.7 Volumes and concrete areas of the different pieces of part 2 of the north element 

No piece No subdivision Area m2

concrete stone soil concrete

A2 5 0.006 0.038 0.040

6 0.018 0.072 0.120

B2 3 0.006 0.068 0.040

4 0.018 0.166 0.122

5 0.024 0.164 0.162

6 0.024 0.100 0.161

C2 1 0.004 0.069 0.028

2 0.014 0.208 0.096

3 0.026 0.302 0.170

4 0.026 0.241 0.170

5 0.026 0.174 0.170

6 0.026 0.105 0.170

D2 1 0.006 0.038 0.040

2 0.018 0.072 0.120

3 0.006 0.068 0.040

4 0.018 0.166 0.122

5 0.024 0.164 0.162

6 0.024 0.100 0.161

E2 3 0.004 0.069 0.028

4 0.014 0.208 0.096

5 0.026 0.302 0.170

6 0.026 0.241 0.170

F2 5 0.026 0.174 0.170

6 0.026 0.105 0.170

Volume m3

PART B
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Table 5.8 Self weight, traffic load and total load on the different pieces of part 2 of the south element 

No piece No subdivision Traffic load kN Total

concrete stone soil on concrete area Force kN

A2 5 0.140 0.832 0.404 1.376

6 0.414 1.588 1.202 3.204

B2 3 0.140 1.503 0.404 2.047

4 0.419 3.641 1.215 5.275

5 0.559 3.610 1.619 5.788

6 0.554 2.209 1.607 4.370

C2 1 0.097 1.516 0.283 1.895

2 0.331 4.585 0.957 5.873

3 0.587 6.633 1.698 8.918

4 0.589 5.295 1.698 7.582

5 0.589 3.821 1.698 6.108

6 0.5888 2.3188 1.698 4.6056

D2 1 0.1403 0.8316 0.404 1.3759

2 0.414 1.5884 1.202 3.2044

3 0.1403 1.5026 0.404 2.0469

4 0.4186 3.641 1.215 5.2746

5 0.5589 3.6102 1.619 5.7881

6 0.5543 2.2088 1.607 4.3701

E2 3 0.0966 1.5158 0.283 1.8954

4 0.3312 4.5848 0.957 5.873

5 0.5865 6.633 1.698 8.9175

6 0.5888 5.2954 1.698 7.5822

F2 5 0.5888 3.8214 1.698 6.1082

6 0.5888 2.3188 1.698 4.6056

Self weight kN

PART B

 

The numbering of the north element is shown in the following Figure. 

 
Figure 5.31 Numbering of the cables of the south element 
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Figure 5.32 Total load acting on the different pieces of south element 

For the distribution of the load from the solid pieces to the cables of the net it is necessary the subdivision of 

the mesh into sub surfaces. The division is done always dividing the angle into two equal angles using the 

bisector of the angle. The subdivision is shown in Figure 5.33. 

 

Figure 5.33 Division of the mesh into sub surfaces for the distribution of the load to the cables 
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The area of each one of the sub surfaces is presented in the following Figure. 

 
Figure 5.34 Area of the sub surfaces that the mesh is divided 

The area of the different surfaces of the mesh is shown in the following Figure. 
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Figure 5.35 Areas of the different surfaces of the mesh 

The calculation of the total load is based on the rule below: 

Load on the element = Sum [[(Area of the subsurface)/(Area of the surface)]�(Load on the piece)] 

This means that all the pieces ending at a cable contribute with loading the cable with a percentage of the 

total load of the piece. This percentage is given by the term (Area of the subsurface)/(Area of the surface) 

where the subsurface is the subsurface of the piece facing the cable and the surface is the surface of the 

piece. By summing the load that the different pieces contribute the load of the cable is calculated. The total 

loads applied on the cables are shown in Figure 5.36. 
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Figure 5.36 Loads acting on the cables of the net 

5.3 Modeling and analysis of the cable network 

After the calculation of the loads the model geometry is introduced in MASONRISK application of GID 

program. A plan view of the geometry of the net is shown in Figure 5.37 while a 3D view of the model is 

shown in Figure 5.38. The cable net has 100 points and 100 lines representing the different cables. 

 All the cable nets are created horizontally apart from the cables represented the columns that are three-

dimensional. 
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Figure 5.37 Plan view of the cable net generated with MASONRISK application of GID 

 
Figure 5.38 3D view of the cable net generated with MASONRISK application of GID 
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Figure 5.39 Boundary conditions applied on the cable net 

The boundary conditions applied on the cable net can be seen in Figure 5.39. The only fixed points are the 

end points of the cable of the elements of the columns from where the all structure is going to hang in order 

to deform and give the deformed catenary model. The fixed points can be seen in Figure 5.39 and are 

represented with the reference “APOYO 1 1 1”. The cables of the net where the geometry of the structure is 

cut in order to model the structure are characterized by boundary conditions “APOYO 1 2 2”. This means 

that the horizontal movement of these elements is restricted. This is because the whole structure does not 

move horizontally so also these elements due to symmetry reasons should not move horizontally. The 

boundary condition for all the other elements is “APOYO 2 2 2” which means that they are free to move in all 

the degrees of freedom. 

The material characteristic assigned on the horizontal cables can be seen in the following Figure. 

 

Figure 5.40 Material characteristics assigned on the cables 

The Rigidesa is the rigidness of the structure and is given a price of 1000kN. 

The factor long is a coefficient that multiplies the length bases defined by the Long_base variable to obtain 

the length of the element. It is practical to use when the Long_base variable takes the value of the distance 
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between the extreme knots of the element. The factor long has been chosen equal to 1.1 for the horizontal 

cables of the edge of the network where the structure is cut to due to symmetry reasons and 1 for all the 

other horizontal cables. 

The long base defines the length bases of the element at issue. If a negative value in this variable is placed 

the program takes directly the length between the nodes of the element. In this case the long base is equal 

to the actual length of the element because the long base is equal to 1. 

The Pes distrib expresses the load by units of length of the element (measured in the development of the 

element). The Pes didtrib is the price of the loads calculated on the element given in Figures 5.19 and 5.36 

divided by the length of the element. 

The material properties assigned at the cables stimulating the columns can be seen in the following Figures. 

 

Figure 5.41 Material properties assigned on the cable stimulating the column of the north side 

 

Figure 5.42 Material properties assigned on the cable stimulating the half column of the north side 

 

Figure 5.43 Material properties assigned on the cable stimulating the half column of the north side 
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The load of the columns is a sum of the self weight of the columns and the rest of the load of the structure 

not applied on the cable net because as it can be seen in Figure 5.1 only one part of the structure is 

stimulated with cable elements. The exact calculation of the load of the columns is presented in the following 

Figure. 

Volume m3 2.06

Length m 4.20

Self-weight kN 45.34

Dead and live load NORTH column kN 128.11

Dead and live load SOUTH column kN 134.72

Total load NORTH column kN/m 41.30

Total load HALF NORTH column kN/m 20.65

Total load HALF SOUTH column kN/m 21.44  

Figure 5.44 Loads acting on the cables stimulating the columns 

The different material properties represented by the different colors are shown in Figure 5.45. From this 

Figure is visible the symmetric application of the loads on the structure 

 
Figure 5.45 Different colors representing the different material loads on the cable net 
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Before the calculation of the mesh is important the definition of the problem Data which can be seen in the 

following Figure. 

 

Figure 5.46 Problem Data of the catenary model 

The Numero_div_grafic is the most important parameter that is defined as follows: The resulting catenaries 

are visualized by means of polygonal and this parameter defines the number of parts of these. 

The meshing of the cable net is shown in the following Figure 5.47. The size of the elements to be calculated 

is one. After the meshing the model has a number of 559 linear elements and 290 nodes because at the 

problem data the number of graphic division (Numero div graphic) is defined as 5. 

 
Figure 5.47 Meshing of the cable net 
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The two following Figures are presenting 2 details of the cable net. The north part is represented in Figure 

5.48 and the south part in Figure 5.49. 

 
Figure 5.48 Detail of the mesh of the north side of the cable net 

 
Figure 5.49 Detail of the mesh of the north side of the cable net 
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5.4 Presentation of the results 

After the calculation of the structure GID produces the deformed catenary model as shown in the following 

Figure. 

 
Figure 5.50 Deformed catenary net produced by MASONRISK application of GID 

In order to compare the catenary model with the geometry of the structure the catenary model is inverted. A 

three-dimensional presentation of the inverted model is shown in Figure 5.51.  

 
Figure 5.51 3D view of the inverted catenary model 

This inverted model must fit in the limits of the geometry of the viaduct in order to conclude that the structure 

is stable according to the safe theorem.  
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Figure 5.52 View of the final solution of the catenary model fitting within the limits of the structure 

Figure 5.52 and Figure 5.53 and Figure 5.54 confirm that the catenary model fits within the limits of the 

structure so the structure is stable. 

 
Figure 5.53 Front view of final solution of the catenary model fitting within the limits of the structure 
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Figure 5.54 3D view of the final solution of the catenary model fitting within the limits of the structure 

According to the results of both studies the graphic statics method and the funicular analysis method the 

lower viaduct of park Güell is stable. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions and recommendations on Graphic statics method 

The graphic statics method for the calculation of the thrust line is always a very useful tool for the engineers 

that want to study the stability of historic structures. The main advantage of the method is that is simple to 

understand and can be applied to many different types of historic structures. Even for a complex geometry 

like this of the lower viaduct the application of the method has been easy. However the main disadvantage of 

the graphic statics method is that many trials are necessary until a final solution is found. The fact that the 

graphic statics application at lower viaduct has been manual with the help of AutoCAD 3D increased even 

more the time of the calculation. A good recommendation for the use of graphic statics with the help of CAD 

tools when the loading conditions are complex would be the first trial to include only the self weight of the 

structure. After a solution is obtained only for the self weight, this solution can be used as an input for the 

final calculation of the thrust line regarding all the loads. The graphic statics method for the calculation of the 

thrust line is accurate however is applied only in two-dimensions and is not taking account the three-

dimensional geometry of the structure. 

6.2 Conclusions and recommendations on the funicular analysis method 

The fundamental idea of the funicular analysis method, the creation of a catenary model is an old process 

that found an application in Gaudi‘s designing process of Colonia Güell and many other structures. The use 

of the catenary model was to produce compression only geometries appropriate for the masonry structures. 

However the funicular analysis method applied on the MASONRISK application of GID is a new method 

aiming at finding a cable net that deformed due to the loads applied on it and inverted can fit within the limits 

of the structure in order to prove that the structure is stable.  

The generation of the geometry of the cable net, the application of the properties on the net and the 

calculation of the deformed model is a simple process. However the assignment of different material 

properties for 100 different lines manually is a time consuming process. Also the calculation of the loads 

applied on the cables is very time consuming for structures with varying loading condition along the 

geometry like the lower viaduct of Parc Güell. The fact that the load calculation has been manual with the 

help of AutoCAD 3D increased the time of the pre process of the cable net. The main difficulty for finding the 

final solution has been the repeat of the trial and error process many times. Every time that the deformed 

catenary model did not fit within the limits of the geometry of the structure a change in the cable net was 

necessary. The parameter that was mainly changed was the factor long on the material properties box which 

influences the length of the cable. This parameter had to be changed many times in order to find the final 

solution. However even the smallest change at the length of the cable had many times as a result bigger 

change at the deformed catenary model so it was not always easy to predict how the structure will deform 

after the change of the length of one or more cables.  

In general this method is very useful for the study of the historic structures because of its accuracy. It is very 

important that it provides a three dimensional solution which is closer to the real three-dimensional geometry 
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of the structure. In contrast the graphic statics method is applied only in two dimensions neglecting the three-

dimensional geometry of the structure. 
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