

Departamento de Ciências e Tecnologias da Informação

JA(G)OBS SIMULATOR : IMPLEMENTATION OF THE MAIN FEATURES OF THE ROUTING PROTOCOL

Rui Pedro Miranda Batalha

Dissertação submetida como requisito parcial para obtenção do grau de

Mestre em Engenharia de Telecomunicações e Informática

Orientador

PhD. Luís Gonçalo Lecoq Vences e Costa Cancela, Assistant Professor,

ISCTE-IUL

Co-orientador

Pedro Miguel Pedroso, PhD. Candidate,

UPC, Spain

Co-orientador

PhD. Davide Careglio, Associate Professor,

UPC, Spain

September 2011

II

III

Muito obrigado a todas as pessoas que me ajudaram durante este ano (e os outros de curso) e que
fizeram isto tudo valer a pena. Pai, Mãe, Beto, Sónia, Primos (uns por me darem guarida e outros

por reverem o trabalho), Pedro, Professor Cancela e um especial beijo à minha prima Sara. O outro
agradecimento especial à “inkipa” por termos passado esta fase tão especial da nossa vida juntos,

vão-me deixar bastantes saudades.

IV

V

The present document was accomplished by the Master’s student Rui Pedro Miranda Batalha from

the Instituto Superior de Ciências do Trabalho e da Empresa, Instituto Universitário de Lisboa

(ISCTE-IUL) in collaboration with the Telecommunications Department of Universitat Politècnica

de Catalunya (UPC).

The academic services of ISCTE and UPC

VI

VII

Index

List of Figures .. IX

List of Tables .. XI

Abstract ... XIII

Chapter I – Thesis Overview.. 15

1.1. Introduction .. 15

1.2. Motivation .. 17

1.3. Objectives ... 19

Chapter II – State of the Art ... 21

2.1. Optical Burst Switching ... 21

2.2. Generalized Multi-Protocol Layer Switching .. 23

2.3. GMPLS Routing ... 24

2.3.1. Link State Routing .. 24

2.3.2. Open Shortest Path First ... 26

2.3.3. Types of Packets of OSPF .. 27

2.4. GMPLS-OBS Architecture ... 33

Chapter III - Event-Driven JA(G)OBS Simulator ... 38

3.1 Signaling Implementation ... 39

3.2. Routing Implementation ... 40

3.3. PCE Implementation .. 43

3.4 Graphical User Interface ... 46

3.5 Performances Analysis .. 49

3.6 Related Work ... 54

Chapter IV - Conclusion .. 58

VIII

References .. 61

Appendixes... 65

A – Types of Packets in OSPF ... 65

A.1. Hello Packet .. 65

A.2. Database Description Packet ... 67

A.3. Link State Request Packet ... 68

A.4. Link State Update Packet .. 70

A.5. Link State Acknowledgement Packet .. 70

A.6. Link State Advertisement Packet .. 71

B – JA(G)OBS output files ... 74

C – Simulation Results .. 76

List of Acronyms ... 81

IX

List of Figures
Figure 1 – GMPLS as global control plane.. 17

Figure 2 – GMPLS-OBS Simulator Layers ... 19

Figure 3 – General view of the JAVANCO Architecture ... 19

Figure 4 – OBS time diagram .. 22

Figure 5 – BCP out of band .. 23

Figure 6 – New Node entering a network .. 28

Figure 7 – Example of LSU Spreading .. 31

Figure 8 – Link State Advertisement – type 10 [8] .. 32

Figure 9 – Different Planes in GMPLS-OBS network [8] ... 34

Figure 10 – Two physical topologies of GMPLS-OBS network ... 34

Figure 11 – Shared Wavelength ... 37

Figure 12 – GMPLS/OBS simulator architecture .. 38

Figure 13 – Flooding Procedure at Node B ... 40

Figure 14 – Structure of GMPLS Routing message. ... 42

Figure 15 – LSU flooding in JA(G)OBS ... 42

Figure 16 – Signaling and Routing with a central PCE node .. 44

Figure 17 – JA(G)OBS output when PCE is active ... 45

Figure 18 – Graphical User Interface of JA(G)OBS.. 46

Figure 19 – 3 node network configuration XML file ... 48

Figure 20 – German 50 network topology ... 49

Figure 21 – NFSNET network topology .. 50

Figure 22 – CPU load in NFSNet with SP ... 50

Figure 23 – CPU load in Germa50 with SP ... 51

X

Figure 24 – Memory Consumption in NFSNet with BLP= 10-3 SP algorithm 52

Figure 25 – Memory Consumption in German50 with BLP= 10-3 SP algorithm 52

Figure 26 – Hello Packet [8] .. 65

Figure 27 – Database Description Packet [8] ... 67

Figure 28 – Link State Request Packet [8] .. 69

Figure 29 – Link State Update Packet [8] .. 70

Figure 30 – Link State Acknowledgment Packet [8] ... 70

Figure 31 – Link State Advertisement [8] .. 71

Figure 32 – Link State Advertisement- Type 1 [8] .. 72

Figure 33 – Link State Advertisement- Type 2 [8] .. 73

Figure 34 – LSU flooding in JA(G)OBS unmodified .. 74

Figure 35 – JA(G)OBS output when PCE is active unmodified.. 75

Figure 36 – CPU load in NFSNet with K-SP... 76

Figure 37 – CPU load in German50 with K-SP ... 76

Figure 38 – Memory Consumption in NFSNet with BLP= 10-4 SP algorithm 77

Figure 39 – Memory Consumption in NFSNet with BLP= 10-3 K-SP algorithm 77

Figure 40 – Memory Consumption in NFSNet with BLP= 10-4 K-SP algorithm 78

Figure 41 – Memory Consumption in NFSNet with BLP= 10-4 SP algorithm 78

Figure 42 – Memory Consumption in German50 with BLP= 10-3 K-SP algorithm 79

Figure 43 – Memory Consumption in German50 with BLP= 10-4 K-SP algorithm 79

XI

List of Tables

Table 1 – Network Specifications .. 50

Table 2 – Table of results of the simulations .. 53

XII

XIII

Abstract

Optical Burst Switching (OBS) is an optical switching paradigm that has been re-gaining attention
in the last few years after its boom around the year 2000. This paradigm is able to bring together the
present technology (avoiding the optical buffer technology hurdles) and what is envisaged for future
networks (packet-based optical switching). However it lacks a well-defined control plane that can
keep up with quality of service (QoS) demands by Internet applications and end-to-end connectivity
among multiple switching domains controlled by a single control instance.

Generalized Multi-Protocol Layer Switching (GMPLS) is a technology that can give the missing
link to OBS. It is the extension of the Multi-Protocol Layer Switching (MPLS) which was designed
for IP networks to introduce fast forwarding and Traffic Engineering (TE). GMPLS evolves from
MPLS to deal with non-IP networks, e.g. SDH and WDM. However, it does not handle OBS so far.

This Master Thesis contributes towards this GMPLS-OBS interoperability by the development of
some features to the Java Event-Driven Simulator of the GMPLS-OBS architecture called
JA(G)OBS. This thesis comes up in sequence of another UPC-ISCTE Master Thesis of João Baião
from September 2010, who implemented some of the basic features of the GMPLS Signaling
protocol in the simulator. In particular, this Master Thesis will focus on the implementation of the
GMPLS Routing protocol basic features in the simulator and to deploy a Graphical User Interface
(GUI) for the simulator. The GMPLS Routing protocol considered in the simulator is the Open
Shortest Path First with Traffic Engineering (OSPF-TE) which is one of the standards of GMPLS
routing.

A comutação óptica de rajadas é um paradigma que tem vindo a ganhar muita atenção nos últimos
anos. Este paradigma consegue conciliar a tecnologia do presente com a rede de backbone do
futuro. Contudo, falta ao OBS um plano de controlo que consiga suportar os requisitos respeitantes
à qualidade de serviço e protecção de erros.

Assim, o GMPLS poderá ser o elo que faltava nas redes OBS. O GMPLS é a extensão do MPLS
onde este último foi desenhado para redes IP. Podemos dizer que o GMPLS é a actualização do
MPLS para redes não-IP (SDH, WDM, etc.), sendo que é desejado que também tenha uma extensão
para OBS, fazendo que seja possível ter uma rede GMPLS-OBS.

Esta dissertação teve como objectivo ajudar a equipa de investigação da UPC a implementar um
simulador Java baseado na arquitectura GMPLS-OBS. Contudo, este documento não apresenta toda
a documentação sobre simulador, visto que esta dissertação é a continuação do trabalho efectuado
por João Baião e Pedro Pedroso no simulador, que incidiu na parte de Sinalização no simulador.
Assim, esta tese incide na implementação do Encaminhamento (este é feito através do OSPF-TE) e
Interface Gráfica do Simulador.

Keywords: OBS, GMPLS, Simulator, JA(G)OBS, Java, Event-Driven Simulator, Control Plane.

XIV

JA(G)OBS Simulator 2011

15

Chapter I – Thesis Overview

1.1. Introduction

The demands of today’s network are increasing fast; let us consider for instance all the applications

inside a house that are connected to the Web. This is increasing the demand of throughput per

person, creating a problem: how to efficiently provide it? This problem is even bigger when we

think about the core networks. Such networks make use of optical technology (i.e. optical fibers) to

transmit huge amounts of data at high speed and from which is required high reliability at the same

time. So the way a core network switches and manages the traffic must satisfy such demands in a

proper and effective way.

The future goal is to send IP packets through the core networks with the minimum redundancy (i.e.

IP-over-WDM). One of the switching technologies studied nowadays to achieve the IP-over-WDM

architecture is Optical Circuit Switching (OCS). This technology uses the same principle of the

electrical circuit switching in telephone networks. The problem with OCS is when a connection is

established, only the users who established it can introduce traffic in the circuit. The two users

probably do not have enough load to use the entire channel. This is ineffective in terms of resource

management since the traffic is more data based than voice based nowadays. Optical Packet

Switching (OPS) is envisioned as the future optical switching technology. However, OPS need

optical buffering and optical logic processing [1] making this choice infeasible. Subsequently an

intermediate switching technology has been researched. This technology is the Optical Burst

Switching (OBS). OBS combines the advantages of OCS and OPS. Hence, it can achieve much

higher bandwidth utilization than OCS and with no need of buffering as the OPS do [1]. This topic

will be better explained in chapter II.

 Another problem is related with the lack of a Control Plane (CP) that can handle the specifications

in optical networks. One of the choices that could be made is Generalized Multiprotocol Label

Switching (GMPLS). This is a choice to take in account because it supports various types of

networks e.g. Time Division Multiplexing (TDM), Wavelength Division Multiplexing (WDM) and

IP Networks among others. Using GMPLS improves the dynamic and intelligence of the optical

JA(G)OBS Simulator 2011

16

network. This architecture will simplify the networks protocols and will be more cost effective [9].

Hence, the goal is to have a GMPLS-OBS architecture that can cope with present and future

challenges of core networks. The goal explained in [3] is to maintain the separation of Data and

Control Plane (CP) given by both technologies, albeit the CP will be hybrid, based on the GMPLS

and OBS interoperability. This will provide a better control in the core networks. In order to test the

feasibility of this paradigm, a simulator has been designed to implement such architecture. This tool

will provide the scientific community with results to better assess GMPLS-OBS solution.

This thesis is part of a broader research project that has been developed for some years now and it

will not be entirely concluded with this thesis either. This being said, this thesis aims to contribute

with the implementation of some features to the JA(G)OBS simulator and therefore contributing

also to its general development.

The underlying basis of this thesis is the work done in [3], [9] and [46]. This document is organized

as follows:

- Chapter I is composed by the introduction, motivation and the objectives proposed for this

thesis.

- Chapter II comprises the description of the state of the art, where it is presented the

technologies used in this thesis, namely OBS and GMPLS. It also includes the roots of

GMPLS, a small explanation of the GMPLS messages, OBS procedures and how the

GMPLS-OBS architecture is implemented.

- Chapter III is composed by the description of the implementation strategy for the basic

features of the OSPF-TE Routing protocol in JA(G)OBS, the Graphical User Interface, the

decisions and upgrades made in the code. It also includes an analysis of other simulators of

GMPLS and OBS, e.g. GMPLS Lightwave Agile Switching Simulator (GLASS) [11],

NCTUns [34], OBS model for OMNeT++ [22] and The Network Simulator - ns-2 (OBS-

ns) [35].

- Chapter IV has the conclusions of this thesis.

JA(G)OBS Simulator 2011

17

1.2. Motivation

The paradigm in optical networks is changing. OBS is a solution capable of accommodating these

changes, due to its granularity, bandwidth flexibility and separation of control and data planes.

However, by itself, the CP of OBS cannot ensure reliability and Quality of Service (QoS) that

networks nowadays need. GMPLS can ensure these missing elements to the CP. With this hybrid CP

we will ensure QoS and other benefits to the network via Traffic Engineering (TE).

So it was proposed to implement a GMPLS-OBS network. The GMPLS was chosen instead of

doing a new Control Plane from scratch since the goal of GMPLS is to achieve a unique control

over multiple switching domains as shown in Fig. 1. Therefore, GMPLS has to be extended because

so far it does not handle OBS.

Figure 1 – GMPLS as global control plane

In order to achieve this, GMPLS must be extended properly to handle OBS switching domain.

Like all new solutions, the interoperability between two different technologies has some setbacks

that have to be dealt with. In [46] these problems have been analyzed and some possible solutions

were proposed. These solutions have to be tested to see if they are reliable and feasible. To test these

solutions a simulator is used, that represents the demands of a GMPLS-OBS network. Despite of

the many OBS simulators (NCTUns [34], ns-2 [35], JAVOBS [10] and others) and one of GMPLS

(GLASS [11]), none of these simulators have the two technologies working together. Therefore, no

simulator is suitable for testing the GMPLS-OBS approach.

In such a way, the Broadband Communication research group (UPC-CBA) decided to implement a

JA(G)OBS Simulator 2011

18

new simulator. This new simulator must have most of the OBS and GMPLS tools implemented so

they can communicate with each other and be as close as possible to reality.

The deployment of this simulator started from the JAVOBS simulator [10] (also a simulator from

the same research group). JAVOBS is a Java based application designed exclusively to simulate

OBS networks on top of the JAVANCO framework [39]. It implements the event-driven model

together with fixed-increment time progression [49]. JAVOBS also implements almost all of the

schedulers and schemes to schedule and dispatch a burst.

JAVANCO is a framework that, in its fundamental structure, has several packages offering a variety

of features including graphical visualization, support for disk serialization of topologies and

execution of common graph algorithms. It is thanks to these core packages that the user can rapidly

develop and test network planning procedures through the construction of simulation models

[10].

Since these two tools have so many good and usable features implemented, it was decided to add a

new layer on top of them. So, our goal was to extend the simulator to enable OBS and GMPLS to

communicate with each other, making a completely new simulator for GMPLS-OBS network,

called JA(G)OBS.

In Fig. 2, we depict the implementation of a new layer in the JAVANCO framework (Fig.3).

The main motivation of this master thesis is to contribute with the implementation of the basic

features of the GMPLS routing protocol and contribute to the general development of the simulator.

This will help to predict possible problems and find their solutions in a controlled environment of a

simulator.

Figure

Figure 3

1.3. Objectives

The main objective of this thesis

JA(G)OBS simulator. So, to meet the objectives it was crucial to

elements:

1) Implementation of the basic features of

(OSPF-TE) [27] routing protocol

Reservation Protocol –

GMPLS set of protocols. This allows a distributed routing

JA(G)OBS Simulator

Figure 2 – GMPLS-OBS Simulator Layers

3 – General view of the JAVANCO Architecture

thesis consists in the implementation of some key elements

to meet the objectives it was crucial to deliver

of the basic features of Open Shortest Path First

routing protocol in JA(G)OBS. Up to date

– Traffic Engineering (RSVP-TE) [28] was implemented from the

GMPLS set of protocols. This allows a distributed routing computation.

JA(G)OBS Simulator 2011

19

implementation of some key elements in the

deliver the following key

irst –Traffic Engineering

date, only the Resource

was implemented from the

computation.

JA(G)OBS Simulator 2011

20

2) Implementation of a Centralized Path Control Element (PCE). Operators and Network

Providers are very fond of this element because a central node can give more accurate

paths [45]. In fact, a central node running the PCE has the view of the current condition

of the network. In our case, the goal was to test two different architectures (centralized

and distributed) in the simulator.

3) Since JAVOBS/JAVANCO framework [39] has a few years now, some Java libraries used

are becoming obsolete. One of the tasks proposed was to check the entire framework to

change obsolete libraries for new ones. This was included in a bigger perspective of

debugging all the Java classes for possible errors or better implementations of an

algorithm.

4) Implementation of a Graphical User Interface (GUI). This will help people interested in

using the simulator by making all the variables that the user can manipulate in a user-

friendly interface.

5) And finally to carry out a simulator performance analysis of the simulator. Since this is a

new simulator we are interested in finding out its performances capabilities, not only

regarding reliability but also resource consumption. We have analyzed the CPU load,

memory and time consumption in different network topologies which allow us to obtain

reliable and extensive data regarding the simulator´s behavior.

JA(G)OBS Simulator 2011

21

Chapter II – State of the Art

2.1. Optical Burst Switching

Optical Circuit Switching (OCS) relies on a well known paradigm. It uses the same idea as the

electrical circuit switching in telephone networks. Also it didn’t have to use memory and it is easy

to implement. However, OCS is not very effective when the traffic is data. This is a problem

because traffic nowadays is almost data based. OCS works by making a closed circuit between the

sending node and the receiving node. This approach is ineffective because the circuit spends more

time without sending information than the time is sending it. This happens because the data is

normally sent in bursts unlike voice traffic that is uniform. Thus, a new paradigm must be

introduced, the OPS. Packet switching is more efficient in data transport than OCS. This statement

is supported by IP networks using electrical switching.

Although OPS is the main target, it is currently unavailable because of the inexistence of optical

buffer and optical logic processing [1]. Nowadays the only type of optical buffers is the Fiber Delay

Lines (FDL). When some extra time is needed to process the burst, the node will introduce the

bursts in the FDL which will increase the delay of it. This technique is effective because instead of a

burst being lost, it will be delayed. Nevertheless inserting a burst in a FDL will add physical

impairments to the burst. Other problem is that we cannot randomly access the bursts in the FDL, so

a burst has to wait for its turn and the priority will not have any influence whatsoever on the

decision.

This is where OBS [50] is introduced bringing together the advantages of OCS and OPS. OBS can

achieve much higher bandwidth utilization for data networks than OCS and needs almost no optical

buffers as OPS do [1]. In [15] a comparison between OCS and OBS was made. This comparison

shows that OBS has a better performance, indicating that it is a good step towards a better optical

network.

JA(G)OBS Simulator 2011

22

OBS works by sending a burst control packet (BCP), with an offset time1, to the other nodes in the

path before sending the information burst (Fig.4). The offset time allows the nodes to reserve the

resources needed along the path before the burst arrives [2]. The BCP is sent normally out-of-band,

it is not sent in the same wavelength (λ) as the data burst (Fig. 5). BCP processing is done

electrically since it cannot be processed optically due to the lack optical technology.

OBS is more sophisticated than OCS because the same resources can be used for two or more

different connections more efficiently, increasing the throughput offered by the network. This is

accomplished by using the offset time to manage the resources better than having a static path like

the one used in OCS.

Figure 4 – OBS time diagram
Normally OBS uses two reserving schemes: 1) Just Enough Time (JET) and 2) Just In Time (JIT).

The basic difference of these two schemes is that JET has a field in the BCP with the offset time.

This makes possible for the node just to reserve the wavelength λ for the time it is using the

resources. The JIT reserves the resources when the BCP arrives at the node. So, a small difference

in the BCP packet makes JET more resource efficient than JIT without using more complexity in

the packet. However, JET algorithm is more complex than JIT algorithm i.e. needs more resources

of the node to be processed. This indicates that the simpler JIT reservation scheme appears to be a

good choice for the foreseeable future [48]. These two schemes use the one way reservation, which

dramatically increases the throughput of the network without compromising the burst, since the bit

error rate (BER) is minimal in an optic fiber communication system (BER≈10-12). This eliminates

1 Offset time - is the time between the BCP and the data burst.

JA(G)OBS Simulator 2011

23

the Round Trip Time (RTT) in the beginning of the burst. More detailed work about these two

schedulers was done in [12], [13] and [14].

Figure 5 – BCP out of band

2.2. Generalized Multi-Protocol Layer Switching

The GMPLS is the generalization of the MPLS. The MPLS is a protocol designed to give Fast

Forwarding abilities to IP networks. The forwarding of the packets is based on labels. The node

doesn’t have to check the entire header but only the label that is substantially smaller. The label is

checked and the node sees in the list where the packet must be forwarded, making the routing

decision faster than to inspect the all IP header.

MPLS then evolved to give Traffic Engineering (MPLS-TE) [37]. TE in MPLS has a focus on

measurement and control functions [37]. This facilitates the efficiency and reliability of the network

operations while simultaneously optimizing network resource utilization and traffic performance.

So MPLS, amongst other things, helps to ensure QoS in IP networks. This is possible because

MPLS promotes minimization of packet loss; minimization of the delay; maximization of the

throughput and enforcement the service level agreements.

Since the MPLS can only manage IP networks, it was a logical step to make it a more general

protocol because other types of networks need also a control plane. GMPLS was the answer. It can

support other types of networking that are not IP based, e.g. time-division (SDH/SONET), spatial

switching and wavelength switching. This new features makes it flexible for a CP capable for

JA(G)OBS Simulator 2011

24

handling a unified way multiple switching [32]. Also GMPLS adds RSVP-TE and OSPF-TE which

have been revised to better handle and distribute TE which was not possible with standards

protocols.

At this point, it is crucial to highlight that GMPLS is not a protocol, but rather a group of protocols

that can be separated in three categories: 1) Routing, 2) Signaling and 3) Link Management.

1. The routing can be done by Intermediate System to Intermediate System- Traffic

Engineering (IS-IS-TE) or OSPF-TE. Since OSPF-TE is more sophisticated and it is

preferred by vendors, this is the one used in the simulator. Since one of the focuses of this

thesis is to make the routing in the simulator functional, the OSPF-TE will be explained later

in this chapter (section 2.3.2).

2. The signaling can be done by: Constraint-based Routing Label Distribution Protocol (CR-

LDP) or RSVP-TE. The signaling part of the GMPLS lies outside of the scope of this thesis,

since was already implemented in JA(G)OBS [30]. Therefore, we shall no further elaborate

on it.

3. The Link Management is done by the Link Management Protocol (LMP). Once again it

does not lie within the scope of this thesis, for detailed information about this subject see

[16].

2.3. GMPLS Routing

2.3.1. Link State Routing

The LSR1 is one of the classes of protocols that were elaborated to disseminate data about the state

of the network. Many types of routing protocols are based on LSR1, for instance, the Intermediate

System to Intermediate System (IS-IS) and Open Shortest Path First (OSPF) are two examples. The

LSR1 came out to substitute the Distance Vector Routing (DVR). Two main issues were identified

in DVR, namely i) the metric used was the message queue in memory, and not the time it takes to

get from node A to B. This became a problem when the bandwidth became higher, although this

problem could be circumvented. However ii) the count to infinity problem was an issue that

JA(G)OBS Simulator 2011

25

couldn’t be circumvented properly, only partial solutions were developed [5] (Poisoned Reverse and

Split Horizon). This overthrew DVR chances of maintaining his throne.

Thus, according to [4], there are five main ideas underlying LSR1 success:

1. Discover its neighbors and learn their network addresses. When a node is initialized it

will send a Hello packet to the neighbor nodes. The neighbor node will respond with his

information and name. These two parameters must be unique in the network to maintain a

correct topology.

2. Measure the delay or cost to each of its neighbors. For the LSR1 it is very important for a

node to know the delay to each one of its neighbors. Without this metric the main idea of the

protocol wouldn´t be accomplished. The most common way to determine the delay is

sending an ECHO packet to the neighbors, they respond as soon as the message is received

(minimizing the processing time). Then the node only has to calculate the RTT and estimate

the propagation delay. This process is very similar with the ping message of the Internet

Control Message Protocol (ICMP) [29] protocol.

However the cost is a controversial subject because it can mean the actual money that is

spent to use the path, but it can mean packet lost probability in a line just to name a few

examples. So, in short, this is up to the network manager how to measure the cost. This is

why nowadays we use the Traffic Engineering tools. These tools give more flexibility for the

telecommunications engineers to create new metrics and new ways to manage a network. TE

will be explained later on.

3. Construct a packet telling all it has just learned. The packet must have the identification

of the sender, sequence number of the packet, the packet age and the list of neighbors with

the respective delays. The propagation of this information is the hard part, because in some

situation sending them periodically is the answer, but when a significant event occurs, it is

useful to send information right away. The way we send the information is important but is

an open matter in LSR1.

4. Send this packet to all other routers. This is probably one of the most important steps in

the process, although flooding information can be a big problem when using LSR1 based

JA(G)OBS Simulator 2011

26

protocols, because the packet can loop around in the network if certain measures won´t be

taken. The nodes in the network must keep record of the sequence number of the packets it

sends. This will prevent the message looping in the network. Since this method is not

flawless, for example a node can crash and the information that was contained there is lost.

Because of this problem, the field Age in this type of protocol is very important. If a node

restarts, it will start to send message with the ID=0. Although this packet won´t be rejected

by other nodes because the field Age is not equal to 0. This means the packet is “younger”

than the previous packet sent (the age of the packet starts with a certain number and is

decremented every 10 seconds until it reaches 0 and is discarded).

5. Compute the shortest path to every other router. This last step normally is calculated by

the Dijkstra algorithm or a variant of it that has some other factors into account, e.g. QoS.

When a new packet is received the information that is contained in it is processed and

compared to the one in the graph, if it has a shortest path the graph will be updated, if not,

the packet is sent to the other neighbors without changing anything.

2.3.2. Open Shortest Path First

The OSPF was created when the Routing Information Protocol (RIP) [5] protocol, which was based

in DVR, started to show weaknesses. This happened when the networks became bigger due to the

problems explained earlier. Thus, this new protocol (OSPF) had to support several requirements:

- Had to be open source, i.e. everyone who wants to use this protocol is allowed to do so

without restrictions.

 - Had to be able to support and compute different types of metrics mentioned earlier.

 - The protocol had to be dynamic, adjusting itself to constant network changes.

The OSPF-TE protocol is one of the routing protocols in GMPLS, as was mentioned early in this

thesis. This is one of two protocols that are distributed and designed to run in Autonomous System

(AS). Since OSPF was designed specifically for the Transmission Control Protocol\Internet

Protocol (TCP/IP) internet environment [8], IETF had to add more capabilities so that routing could

be done in other types of networks.

JA(G)OBS Simulator 2011

27

Thus, the Traffic Engineering (OSPF-TE) is used. TE is the study of the optimizations of the

performance in a telecommunications network, using statistics and the interpretation of nodes

behavior to increase the overall performance and reliability in a network.

The extension in OSPF was made because of the different demands in different networks. For

instances, there are networks that the routing should be made by measuring the load in each node,

which is our case. To use this type of metric there are a special type of Link State Advertisements

(LSA). They are called the Opaque Link State Advertisements because in some nodes the

information contained in it is unreadable for them, so these nodes only redirect the packets without

reading the information in it. This subject will be approached later on in this chapter.

Next the type of packets used by OSPF to manage the routing in a network will be introduced.

2.3.3. Types of Packets of OSPF

In OSPF there are five types of packets and each one was designed to do a specific task in the

network:

1. Hello: The Hello packet is the type 1 packet of OSPF protocol which allows the

communication between adjacent (neighbor) nodes in the network. These packets have two

main purposes i) to ensure bi-directional paths and ii) to create adjacencies (sharing policies)

between the nodes. The bi-directionality is established by including in the packets a list of

all nodes seen sending a hello packets recently (except for the first hello packet). This

message is sent in different ways depending on the kind of network we are working on.

Since the thesis case is a broadcast network, this is the only type that is going to be

referenced on from now on. On a broadcast network, when a node first enters a network it

will broadcast a hello packet to the entire network. This packet is the only one in OSPF that

the node is responsible to be sent to all nodes in the network. When the others nodes receive

the packet, they will respond with other hello packet, but this one includes the list of active

nodes. With this information the node can start his adjacencies sending other types of

packets. To maintain the adjacencies, hello packets will be sent periodically through the

network in periods agreed by the nodes. In Fig. 6 there is an example of the process

described.

2. Database Description: This

nodes finished the process of discovering each other, they have to complete the formation of

an adjacency, i.e. complete the submission of information

have to transmit the information they have about the network.

OSPF packets, the database description pack

the Link State Advertisement

Usually one packet does not have enough space to fit all LSAs gathered by the node, so a

string of packets may be required to send the entire database. In the

transmission the nodes have to decide who will be the master and the slave on this

information sharing. Normally

will be the master because it normally has a more detailed database. This type of

only distributed by the neighbors to spread LSAs to other adjacent nodes; this reduces the

load because it reduces the number of

3. Link State Request: When the database is exchange

consider the information that

the node will ask for more up

unpractical and introduces unnecessary load in the network. Thus,

State Request (LSR2) with the information of the LSA that is required. The response to this

type 3 packet is made by a

JA(G)OBS Simulator

Figure 6 – New Node entering a network

This packet distributes the database between the nodes. When the

nodes finished the process of discovering each other, they have to complete the formation of

complete the submission of information of the nodes

have to transmit the information they have about the network. They will start send

, the database description packet. This type of packet describes

Advertisement (LSA) in the database (LSA will be explained later on)

does not have enough space to fit all LSAs gathered by the node, so a

string of packets may be required to send the entire database. In the

transmission the nodes have to decide who will be the master and the slave on this

Normally the node that is connected the longest

will be the master because it normally has a more detailed database. This type of

only distributed by the neighbors to spread LSAs to other adjacent nodes; this reduces the

the number of packets that pass through a node.

When the database is exchanged between the nodes, some of them

consider the information that was given is old and they need new information

the node will ask for more up-to-date information. Resending all LS

unpractical and introduces unnecessary load in the network. Thus, the node will send a Link

) with the information of the LSA that is required. The response to this

type 3 packet is made by a Link State Update packet.

JA(G)OBS Simulator 2011

28

distributes the database between the nodes. When the

nodes finished the process of discovering each other, they have to complete the formation of

nodes. To do so, the nodes

will start sending type 2

describes the contents of

(LSA will be explained later on).

does not have enough space to fit all LSAs gathered by the node, so a

string of packets may be required to send the entire database. In the beginning of the

transmission the nodes have to decide who will be the master and the slave on this

the node that is connected the longest time in the network

will be the master because it normally has a more detailed database. This type of packet is

only distributed by the neighbors to spread LSAs to other adjacent nodes; this reduces the

rough a node.

between the nodes, some of them

information. In this case,

date information. Resending all LSAs in the database is

the node will send a Link

) with the information of the LSA that is required. The response to this

JA(G)OBS Simulator 2011

29

4. Link State Update. This packet has the basic principle: to spread information along the

network. However the behavior of this message is different depending on the type of

network we are using. The network can be event based and time trigger based. Since this

packet is the only one that is implemented in the simulator because we assume that the

network is static i.e. no more nodes or links will be introduced in the middle of a simulation,

so implementing other types of packets at this point will not have an impact on the results.

The Link State Update (LSU) will be better explained in the next topic of this chapter.

5. Link State Acknowledgment: The Link State Acknowledgment is the type 5 of the OSPF

packets; they exist to make the flooding of information of OSPF reliable. The Link State

Acknowledgment can be sent in two different ways, delayed or direct to the neighbor. The

delayed has the advantages of facilitate the piggybacking of various Link State

Acknowledgments in the packet, i.e. enables a single Link State Acknowledgment packet to

indicate various acknowledgments to several neighbors at once. This also randomizes the

pattern of sent messages. The transmission of the packet must start (and end) before a pre-

established time interval to prevent needless retransmissions.

The Link State Acknowledgments are sent directly to the neighbor that were the source of

the duplicated LSU, on the contrary to that we would expect this is the way it is done instead

of sending a Link State Acknowledgment for all LSU received. This method is used because

it saves bandwidth and acknowledges can be made by the LSU message.

More detailed information about OSPF messages can be found in appendix A.

The next topics will explain in more detail the LSU and its components since this was the only

packet implemented in JA(G)OBS.

Link State Update Packet

The link state update is the type 4 of the OSPF packet and it is used to disseminate the information

in the entire network. The mechanism used by this message is not a typical flooding, but a Split

Horizon flooding, where a node only needs to ensure that the packet traveled to its neighbors except

through the one from which it has received the message before, this happens with all other packets

with the exception of the hello packet.

JA(G)OBS Simulator 2011

30

This method has some advantages 1) it sends less packets to network (this is useful preventing

network congestion) and 2) it is less likely that packets loop in the network. If the LSU was not

received properly, the sender node receives a Link State Acknowledgment. Instead of flooding the

information again the node will only send the LSU to the neighbor who didn’t receive it.

There are two ways to configure the flooding of the LSUs 1) the time trigger event and 2) the event

trigger event:

1) The time trigger sends LSUs in a pre-established timer, normally this timer is configured to be 10

seconds. So the node has to inform every 10 seconds of its links situation. These messages have

always to be sent even if there isn’t any new information about the link state. They have to send the

messages to ensure the other nodes that it is online and cannot be discarded from the forwarding

table. This could be a problem if the network is congested and the packets do not arrive on time.

This will cause the node to be erased from the forwarding table of the others when it is not suppose

to, causing problems in the node because it will assume that links are offline when in fact they are

online. Despite of this fact, this is considered a reliable way to exchange information because these

situations are almost nonexistent.

2) In the Event trigger, if we assume that the network is stabilized, i.e. no more nodes are entering

or exiting the network, the only OSPF packet that travels through the network is the LSU. In Fig. 7,

it is shown how the LSU flooding mechanism works. The node A will receive a path

acknowledgment (RESV message) from the receiving node (the event). This is a signaling message

from the GMPLS protocol RSVP-TE. At this point it will update its database with the LSA created

using the information in the signaling message and flood a new LSU packet, with the LSA inside to

its neighbors.

When its neighbors (node B and D) receive the LSU they will perform the same steps, but with a

small difference; they will not send the message to the link they receive it from, performing a Split

Horizon. This behavior doesn’t allow the messages to loop in the network preventing unnecessary

load in the network. This last procedure is repeated until the LSU was seen two times in the same

place, when this happens the LSU will be discarded making impossible for the message to loop.

This is how the event trigger works. One event triggers the spreading of a Split horizon flooding.

The format of the LSU packet is described

 The next topics will explain the content in a LSU

(LSA).

Link State Advertisement

The Link State Advertisement (LSA)

the LSA it would be impossible to disseminate information over the network. This container is

where the information is stored for transmission, unit of data [8].

header (Fig. 8) that has important information that helps the node compute it. There are eleven

different types of LSAs, each one with a specific purpose. Since we only implement the type 10, it

is the only one detailed in this thesis

and [8].

Link State Advertisement – type 10

This type of LSA is used on a network that uses traffic engineering

are known as opaque LSA. The opaque LSA can be used in a network with nodes that canno

this type of information, for them it is opaque

content. This is the reason why this type is

mechanism to allow for the future extensibility of OSPF [7]. Since the TE network sends more

JA(G)OBS Simulator

Figure 7 – Example of LSU Spreading

is described in appendix A.

the content in a LSU packets i.e., the Link

The Link State Advertisement (LSA) allows the communication between nodes,

be impossible to disseminate information over the network. This container is

where the information is stored for transmission, unit of data [8]. LSAs are like

that has important information that helps the node compute it. There are eleven

different types of LSAs, each one with a specific purpose. Since we only implement the type 10, it

thesis. Type 1 and 2 are in appendix A, the rest can be found

type 10

on a network that uses traffic engineering. It is one of the few types that

The opaque LSA can be used in a network with nodes that canno

this type of information, for them it is opaque. They will distribute the packet

why this type is called opaque. Opaque LSAs provide a generalized

mechanism to allow for the future extensibility of OSPF [7]. Since the TE network sends more

JA(G)OBS Simulator 2011

31

Link State Advertisement

communication between nodes, because without

be impossible to disseminate information over the network. This container is

like packets, each has a

that has important information that helps the node compute it. There are eleven

different types of LSAs, each one with a specific purpose. Since we only implement the type 10, it

rest can be found in [7]

t is one of the few types that

The opaque LSA can be used in a network with nodes that cannot read

packets without reading its

Opaque LSAs provide a generalized

mechanism to allow for the future extensibility of OSPF [7]. Since the TE network sends more

JA(G)OBS Simulator 2011

32

types of information than the other types of network, like the bandwidth used, thus the use of

opaque-LSA is mandatory (no other type of LSA can handle this type of information). Type 10 is

used in our case because in a real life situation this type will flood the information only to the

determined area and not to the entire network. The Fig.8 shows that an opaque-LSA header is

different from the common LSA structure.

Figure 8 – Link State Advertisement – type 10 [8]

Description of the several message fields:

Opaque Type
This field has the values of 0 to 127 for IETF Consensus action and 128 to 255 for

experimental actions. In our case this value is 1, because it is the number used for

Traffic Engineering LSA.

Opaque ID This field has an arbitrary value for maintaining various LSA-TE.
Opaque Information This topic is still under discussion

JA(G)OBS Simulator 2011

33

2.4. GMPLS-OBS Architecture

In the previous sections it was explained GMPLS and OBS separately and what were the

motivations to have them. In this section it will be explain how the two interact with each other.

The GMPLS and OBS technologies have some years now, however an interoperability solution has

been continuously postponed. The main problem of these two technologies together relies on the

different signaling schemes they use to do the resource reservation. OBS signaling consists in a one

way signaling procedures while GMPLS requires a two way procedure.

The proposal made in [3] uses a hybrid control plane (Fig. 9), where both GMPLS and OBS have to

perform signaling and routing functions. One of the problems with this solution is the

communication between the two CPs. There are two solutions on the table for the connection itself:

i) using two separate networks (Fig.10a)). This has the advantages of relieving the management and

control processes between the nodes, making the network more resilient to failures i.e. if one of the

networks begins to mal function the other can carry on without being too strongly harmed. Lastly,

the cost of the nodes will decrease because they will be less complex. The main disadvantage relies

on the fact of maintaining two different networks instead of only one. To compensate this fact we

can ii) aggregate the GMPLS network to work (Fig. 10b)) in a wavelength of the optical fiber.

However this solution has the problem of using resources that could be used to transfer data. So this

problem doesn’t have a straightforward solution, instead it has to be designed on a case by case

basis. In this thesis two separated networks were used.

The other problem is the integration between the two technologies. This problem is more complex

and it is the main focus of [3] and [9]. Because the OBS and GMPLS work in two very different

time scales, they will have different responsibilities in the control plane of the network. Since OBS

works in the timescale of micro/milliseconds it is responsible for the Resource Reservation and the

“current” network resource availability because these tasks require a fast decision. The GMPLS is

responsible for the tasks that are more stable (timescale of minutes or hours), the Network Topology

and the Virtual Topology Management. More information related to this topic in [3].

JA(G)OBS Simulator 2011

34

Figure 9 – Different Planes in GMPLS-OBS network [8]

Figure 10 – Two physical topologies of GMPLS-OBS network

JA(G)OBS Simulator 2011

35

OBS Background Task

These tasks are the responsibility of GMPLS.

1. Virtual Topology Management - It is responsible for maintaining and tear downing Label

Switch Paths (LSPs) between a pair of edge nodes [3]. Despite of this, no resource

reservations is made. The reservation is done in a different time scale. The LSPs are

maintained to complete a path between the edge nodes. The maintenance of LSPs in OBS

adds protection, restoration, link management and QoS.

2. Network Topology Information – This part includes two different pieces: 1) Information

dissemination which is responsible of dissemination of the resources information along the

network. The OSPF-TE is responsible for this action because the network is relatively stable

and for this reason there aren’t many modifications. 2) Path Computation this part has the

task of computing and distributes the best paths possible, decreasing the percentage of Burst

Loss. The way of doing this is still an open matter. The proposal made in [3] says that to

support the dynamic routing we need to flood frequent network-resource-update messages

without modifying the signaling protocol. Instead it is proposed to give more dynamism to

the LSP selection when the BCP is created. The explicit route is based on a given traffic

intensity matrix. An intelligent and careful network planning based on such traffic patterns

and statistical behavior (TE functions) helps us to better define a set of static, explicit routes

and a set of limited dynamic, explicit routes for time-limited traffic demands. This approach

does not require accurate network resource availability information and therefore does not

incur in high instability. This feature is also being operated in GMPLS since the time is not a

problem, because of the scheme presented and also secures the advantages of GMPLS.

OBS Specific Tasks

These tasks are OBS responsibility.

1. Resource Reservation – which is responsible for reserving the bandwidth necessary to

transmit the bursts, because the bursts have a timescale of micro/milliseconds. The Burst

Control Packet has the necessary routing information for the core nodes to re-arrange the

switching matrix and the burst is sent to the right path. This mechanism assures the best

JA(G)OBS Simulator 2011

36

results without compromising the path in the LSP.

2. Network Resource Availability Information – is responsible for gathering and

disseminating the “current” resource availability of the network. This is very important for a

good network functioning because if it is well engineered the burst loss will decrease

dramatically. In order to be faster, this process has to be done optically, precious

milliseconds wasted in O/E/O will decrease the efficiency of the protocol, although, the

process to do it isn’t yet defined. The proposal in [3], one of the basis of this thesis, says to

implement this feature in the OSPF-TE protocol, the LSAs associated with each established

LSP must be used. For this to work a specific extension made in an opaque LSA and some

modifications are needed. LSAs information has to resume the status of the links and the

core nodes, e.g. how much traffic is in a link and how many wavelengths are being used.

This metric is not exact because the node won’t have accurate states of all nodes in the

network (there are always new events occurring in the network). However this does not

affect the performance of the proposal because normally the information gathered in the

node when the BCP is formed is enough to prevent collisions of the bursts.

Like it was said before, some changes were proposed for the GMPLS and next it will be referred

and explained what types of changes were proposed in [9].

RSVP-TE

In this protocol normally we can only have one label request per message [9], but this restricts to

one LSP request at the time, so we can only reserve one wavelength. This is very inefficient because

a burst may need more than one wavelength. So it is proposed TE tunnels2 that can have one or

more LSPs depending on the traffic demand. This is done with just two messages sent (Path and

RESV) per LSP, making it more efficient in terms of load (using fewer messages than the normal

protocol) and solving the problem of having more than one wavelength for LSP.

2 TE tunnels - The traffic that flows along a label-switched path is defined by the label applied at the ingress node of the

LSP, these paths can be treated as tunnels [51].

OSPF-TE

In the proposal as explained before, we can have one or more wavelengths per TE tunnel. Some of

the wavelengths can be shared between two or more nodes. So the authors

state that is called Shared which defines the wavelengths that are being used for more than one

tunnel. The wavelength 4 in the Fig.

announced in a different way. The nodes that

these shared links if necessary. However t

have information about this aggregations and the state of the links. So the authors pick up a

previous hypothesis [21], adding

about the state of the link, instead of the On/Off state. With this we can introduce the link state

status and more information that can be useful for computing the b

JA(G)OBS Simulator

In the proposal as explained before, we can have one or more wavelengths per TE tunnel. Some of

the wavelengths can be shared between two or more nodes. So the authors of [3]

which defines the wavelengths that are being used for more than one

wavelength 4 in the Fig. 11 exemplifies a Shared wavelength. This wavelength

he nodes that need to create new LSPs have the possibility to use

However the standard LSA messages do not have enough space to

have information about this aggregations and the state of the links. So the authors pick up a

ing two or three more bits in the LSA that can have extra information

about the state of the link, instead of the On/Off state. With this we can introduce the link state

status and more information that can be useful for computing the best possible

Figure 11 – Shared Wavelength

JA(G)OBS Simulator 2011

37

In the proposal as explained before, we can have one or more wavelengths per TE tunnel. Some of

of [3] introduced a new

which defines the wavelengths that are being used for more than one

This wavelength has to be

have the possibility to use

he standard LSA messages do not have enough space to

have information about this aggregations and the state of the links. So the authors pick up a

bits in the LSA that can have extra information

about the state of the link, instead of the On/Off state. With this we can introduce the link state

possible path.

JA(G)OBS Simulator 2011

38

Chapter III - Event-Driven JA(G)OBS Simulator

The JA(G)OBS simulator is an event-driven tool to simulate GMPLS-OBS networks. It was built

on top of JAVOBS [10] and it is an evolution of the JAVANCO framework [39]. The goal is to

introduce a fully functional and independent new layer on the simulator that can communicate with

the OBS layer, making simulations possible with this new architecture.

The GMPLS controller comprises a Signaling and Routing modules and interfaces for them to

communicate with each other and with the OBS controller. Note that the LMP was not implemented

(left for future work). The controller´s components, configuration and communication (between the

controllers) of the simulator are shown in Fig 12.

Figure 12 – GMPLS/OBS simulator architecture

JA(G)OBS Simulator 2011

39

The Fig.12 also shows the architecture of a GMPLS-OBS node in JA(G)OBS simulator. In this

paragraph it is briefly explained the tasks made by each module. In orange it is shown the Data

Link Resource Manager. This module is responsible to manage the wavelengths available in each

node. In purple is the Path Computation Module, this is where the paths are computed with the

information stored in the database (LSD/TED) and with the information just gathered by the

Routing Controller (in blue). The Routing Controller has the function of create, flood and receive

LSU messages when necessary. The Signaling Controller (in green) has the job of signaling new

paths established in the network. The forwarding table in OBS controller has the table of entries

used by the Data Link Resource Manager to help compute the wavelengths available in each node.

The other blocks in the OBS Controller simulate the jobs done by hardware level in the node.

We focus our attentions on the dissemination of the LSU and signaling messages because, as said

before, these messages are the ones who carry the information necessary for the network to operate.

We also implemented various interfaces for the new types of messages that can be introduced

without almost any effort, e.g. the interface LinkStateAdvertisement, which is ready to integrate

more than the opaque LSA that we use now. It was also our goal to make the simulator as modular

as possible because this will make future works much easier. For example, in the middle of this

thesis the shortest path algorithm was changed for a new one without almost any code changes. This

is only possible because of the modularization and interfaces available in the simulator.

The work developed during this thesis was focused on creating the Routing Controller module in

blue in Fig. 12, PCE node and the communication between them and the other components of the

simulator.

The next topics will explain in detail what was done on the simulator.

3.1 Signaling Implementation

The construction of the GMPLS layer was done in parts. The first part was to implement the

Signaling protocol which was done by Pedro Pedroso and João Baião. Details about the

implementation can be seen in [30]. Regarding the signaling structure there were two changes made

in the simulator during this thesis:

1) Implementation of the Path Computation Eleme

architecture so it will be explain

2) Implementation Yen Shortest Path [24] to fit in our simulator. We decide

the algorithm from scratch was very time consuming and the results wouldn´t differ

ones that we have now. Also the implementation of

be robust and fast. So we modified

before, because the modularization

algorithm was almost straightforward.

3.2. Routing Implementation

The routing in the simulator is done only by OSPF

thesis. The routing is responsible

GMPLS controllers is up to date. In

when a LSP is created between the node A and C

Figure

When node B receives a RESV message (signaling message) it has to update its local database and

flood the information because a path was reserved. It is crucial to maintain the local database up

date because future routings will be made based on the informat

performed by node B is to spread the information to its adjacent nodes, node A, C and D. To

JA(G)OBS Simulator

mplementation of the Path Computation Element, which is not part of the GMPLS

explained later;

mplementation Yen Shortest Path [24] to fit in our simulator. We decide

the algorithm from scratch was very time consuming and the results wouldn´t differ

Also the implementation of Yen Shortest Path in

So we modified it to work with our simulator. This was possible, as said

before, because the modularization introduced in the simulator. The introduction of this

algorithm was almost straightforward.

3.2. Routing Implementation

The routing in the simulator is done only by OSPF-TE. IS-IS-TE protocol is out of the scope of this

le to guarantee that the local Database (LSD/TED in Fig.12)

is up to date. In Fig. 13 it is shown how the flooding of one message is

when a LSP is created between the node A and C.

Figure 13 – Flooding Procedure at Node B

node B receives a RESV message (signaling message) it has to update its local database and

flood the information because a path was reserved. It is crucial to maintain the local database up

date because future routings will be made based on the information on it. So the

to spread the information to its adjacent nodes, node A, C and D. To

JA(G)OBS Simulator 2011

40

nt, which is not part of the GMPLS

mplementation Yen Shortest Path [24] to fit in our simulator. We decided that implementing

the algorithm from scratch was very time consuming and the results wouldn´t differ from the

Yen Shortest Path in [25] was shown to

This was possible, as said

he introduction of this

protocol is out of the scope of this

(LSD/TED in Fig.12) at the

it is shown how the flooding of one message is done

node B receives a RESV message (signaling message) it has to update its local database and

flood the information because a path was reserved. It is crucial to maintain the local database up-to-

ion on it. So the task to be

to spread the information to its adjacent nodes, node A, C and D. To do

JA(G)OBS Simulator 2011

41

this, it has to create a new message first (i.e. GMPLS_RoutingMsg) – see Fig.14. The message is

formed by a Header and an Opaque LSA. On its turn, Opaque LSA has also and Header and Type-

Length-Values on it. The TLV has three variables:

1) Type: which determines what kind of LSA it is, opaque or not.

2) Length: this variable has the size of the variable value.

3) Value: it has the information about what we want to spread. In our case there is a list of

TLVs that have the values of the QoS, load and wavelengths status. The number of TLVs on

the LSA depends on the size of the information that we want to spread. This is the closest

structure that could be obtained to [7].

When the message is created, the information that we want to spread is introduced, in this case a

path was established between A and C. Once this happens, when node B receives a RESV message,

meaning that a path was established, it needs to send the information to its neighbors. Therefore

Step 1 on Fig. 13 is done, i.e. the routing message has been received in the adjacent nodes. Now

they have to do what the node B did before: flood the message to its neighbors, except to the one it

was received from (split horizon).

Let us take the example of node D. This node has to send the message to the node A and E. Because

the process is parallel, the node A is also sending the same message to the node D, so the nodes

have to discard the second message that passes through them with the same message ID. This

avoids that the message enters in a loop. This is the beginning of the process of the dissolution of

the message from node B because when a message is seen twice in the same place it is assumed that

all its adjacent nodes have received this information already. The Fig.7 (section 2.3.3) shows the

continuation of the process when the message arrives to node A.

JA(G)OBS Simulator 2011

42

Figure 14 – Structure of GMPLS Routing message.

This implementation was successfully made in JA(G)OBS. In Fig. 15 there is the modified output

of the simulator, concerning the LSU flooding. This figure was modified for better explanation

purposes only. The unmodified output can be seen in appendix B.

Figure 15 – LSU flooding in JA(G)OBS

 Step

JA(G)OBS Simulator 2011

43

The process described in Fig. 15 is similar to the one described in the paragraphs above. In the first

step, node 1003 (node D of Fig.13) receives a RESV message that triggers LSU flooding. Then it

has to send it to is adjacent nodes 1000, 1001 and 1004 (nodes A B and E of Fig. 13). In blue, we

can the nodes that received successfully the LSU at the first step.

In green we see that those nodes flood the message to their neighbors. In the second step some of

the nodes received the same message twice from a different node, for example the node 1000

receives the same message, although now it is from node 1001 which flooded to its neighbors in the

first step.

In red, it can be seen that in those nodes the message is duplicated and is discarded. The only node

that received the message for the first time was node 1002 (node C Fig.13). Also in the second step

it can seen that node 1002 sent the message to node 1001, this happened because the message from

node 1003 was processed first and subsequently the node 1002 didn´t had in its database that node

1001 sent the same message at the same time. So in the third step it can be seen the end of the

process with node 1001 discarding the message sent by 1002.

3.3. PCE Implementation

The central Path Computation Element (PCE) is a special node that sniffs all the information in the

network to have a complete view of the “current” state of the nodes and links in the network. The

notion behind this architecture is that a central node with all the information can compute better

paths than using only distributed computation (as standard GMPLS) (i.e. with a local PCE at each

node). The two main disadvantages of using the PCE is the more traffic generated in the network

and with PCE there is a point of failure in the network, if the PCE fails the all network start to

malfunction, this doesn’t happen with GMPLS.

The process of asking for a new path is a bit different from the one of normal signaling. The Fig. 16

shows how the process is done when a burst arrives to node A. First the node A has to send a Path

Computation Request message [47] requesting a path to the PCE node. Because the PCE node

connection is based on Transmission Control Protocol (TCP) [23], the first time this connection is

established is much slower than sending directly to the node due to the fact that TCP uses the “three

way handshake”. Despite this fact, when the PCE node receives the message, it will compute a path

with the extra information that it has from the network and sends back a message with a path. When

node A receives this Path Computation Reply Message [47],

occupied with another burst, keep in mind that other nodes are asking

this one. The only way to confirm

the burst final node is (node C).

continue with the routing (explained

of the burst.

Figure 16 –

Figure 17 we have the modified

path to central PCE. This figure was modified

version can be seen in appendix B.

JA(G)OBS Simulator

with the extra information that it has from the network and sends back a message with a path. When

Path Computation Reply Message [47], it has to confirm

other burst, keep in mind that other nodes are asking for resources in parallel of

this one. The only way to confirm that the path is still available is to send a Path message to where

the burst final node is (node C). Only when the RESV message comes from it, the process can

continue with the routing (explained in the routing implementation section) and the actual sending

– Signaling and Routing with a central PCE node

we have the modified output (to better explain it) in JA(G)OBS when a node asks for a

. This figure was modified for explanation purposes only. The unmodified

version can be seen in appendix B.

JA(G)OBS Simulator 2011

44

with the extra information that it has from the network and sends back a message with a path. When

it has to confirm that the path is not

resources in parallel of

the path is still available is to send a Path message to where

Only when the RESV message comes from it, the process can

) and the actual sending

in JA(G)OBS when a node asks for a

only. The unmodified

JA(G)OBS Simulator 2011

45

Figure 17 – JA(G)OBS output when PCE is active

In the first step we can see the exchange of messages occurring between node 1004 (node E of

Fig.16) and the PCE node. First, node 1004 asks for a path and PCE node re-sends the same

message but with the information in it. However the node has to confirm this path with the

receiving node, which is node 1002. So in the second step we can see that node 1002 successfully

receives the signaling message and responds to it with a RESV message confirming that the path is

still available. The other steps follow the same sequence as explained in the section above (Routing

implementation), i.e. the node 1004 starts to send LSU messages to its neighbors. It should be

noticed that this was a direct path, i.e. the path had only one node in the way (node 1001). If the

path had more than that, the routing messages would start in n-1 of the path (considering that the

path has n nodes).

 Step

3.4 Graphical User Interface

One of our goals was also to develop

use the simulator can do it smoothly

because the entire simulator is based

dependencies to the simulator. For example

graphically speaking and lighter

more dependencies that would have to be installed in the computer for

Since this was not the purpose of the project

on many platforms (Linux, Windows

Java Virtual Machine, JFreechart

work. The GUI is composed by two windows

Figure

JA(G)OBS Simulator

3.4 Graphical User Interface

develop a Graphical User Interface (GUI) so that all users

smoothly without any effort. The GUI is based on Java Swing

because the entire simulator is based on Java. This is preferable rather

or example, if the GUI was written in GTK+ [38]

 in terms of memory consumption. However

have to be installed in the computer for the GUI to run properly.

Since this was not the purpose of the project, we focused on the general solution

Windows©, MacOS© and Solaris). In this case, we just need

, JFreechart [26] libraries and the JAVANCO Libraries for the simulator to

composed by two windows as shown in Fig.18.

Figure 18 – Graphical User Interface of JA(G)OBS

JA(G)OBS Simulator 2011

46

so that all users who want to

The GUI is based on Java Swing libraries

preferable rather than adding more

[38] it would be richer

However it would have many

the GUI to run properly.

the general solution since Java can run

we just needed to install

Libraries for the simulator to

JA(G)OBS Simulator 2011

47

The left window is composed by:

Network This combo box gets the name of the XML files in the directory \JAVANCO\default_graphs.

The network configuration is contained in these files. Figure 19 shows an example showing

how the file is organized. The introduction of information on the file is crucial to achieve a

good simulation. If the parameters were not introduced correctly in the XML file the

simulator could malfunction.

Number of

channels

The user can define on this field how many channels (λ´s) are available per fiber.

QoS

Requirements

(i.e. BLP)

The user will introduce on this field the burst lost probability he/she wants to have in the

network.

Matrix of Traffic This field uploads what type of traffic matrix the user wants: Uniform or Non-uniform.

Monitoring Time

Processing

This is processing time of the GMPLS to the physical layer.

Step Length This field coordinates the Step time of the simulator. The simulator step time is how much

time each node has to execute a task before the CPU time has to pass to another node. This

time has to be the shortest time defined in the simulator.

MILP Window

Length

This is the time that the PCE node has to aggregate various requests using the MILP

algorithm.

GMPLS Time

Processing

This is the amount of time the GMPLS node takes to process each message.

Model Selected In this combo box the user can choose the different kinds of models the simulator has to

offer.

Load In this parameter the user can define how much load he/she wants in the network. If he/she

wants to simulate more than one load, the only thing that he/she needs to do is to click on

the checkbox all loads and the simulator will simulate the loads from 10 to 100% with 10%

increments.

% of HP-BE

Traffic

This lets the user introduce the amount of ratio he/she wants for High Priority Traffic. Thus,

the rest will be channeled to Best Effort Traffic.

Activate GMPLS Since the simulator can only use an OBS layer, the user can choose between simulating the

two layers, GMPLS-OBS or just one OBS.

Enable PCE In this checkbox the user has the opportunity to choose if he/she wants the centralized Path

Computation Element or not. If this check box is selected, the Activate GMPLS is

automatically activated. It is assumed that the network needs a control layer to communicate

with the PCE. Also when the PCE is enable the D-MILP protocol can be activated by the user.

Single Traffic This field inserts only one kind of message

Wavelength

Conversion

This check box gives the user

convert a wavelength if

Preemption This field when selected

for BE traffic.

Synchronous This field makes the traffic generation synchronized or not with the step.

Traffic Peaks This forces the simulator to

links.

Bootstrap This allow for the configuration of the network

Simulate! Start simulator.

Cancel Shutdown button

Show results

window

This button shows the other window with the results.

The right window shows a graphic bar with the burst lost

results gathered from the simulator

problem or specific program.

Figure

JA(G)OBS Simulator

only one kind of message without the knowledge of HP or BE.

gives the user the opportunity to choose if the OBS node has

convert a wavelength if needed to complete a path.

This field when selected allow for HP traffic to be inserted in wavelengths that were reserved

This field makes the traffic generation synchronized or not with the step.

This forces the simulator to allocate traffic peaks in a certain period of time in a group of

the configuration of the network be by bootstrap.

This button shows the other window with the results.

window shows a graphic bar with the burst lost probability (BLP)

gathered from the simulator are saved in text files that can be used by the user

Figure 19 – 3 node network configuration XML file

JA(G)OBS Simulator 2011

48

without the knowledge of HP or BE.

to choose if the OBS node has the ability to

HP traffic to be inserted in wavelengths that were reserved

This field makes the traffic generation synchronized or not with the step.

traffic peaks in a certain period of time in a group of

probability (BLP) by LSP. All the other

can be used by the user without any

3.5 Performances A

In this subsection is presented the

simulator. These tests were done in an

a Microsoft© Windows© 7 64 bit

the simulator, with two different

two different networks: 1) German50

main specifications of the networks.

Figure

JA(G)OBS Simulator

Analysis

is presented the Central Processor Unit (CPU) and memory consumption in the

simulator. These tests were done in an AMD© Phenom© II X4 945 processor

64 bit operating System. The simulations were done with 10000 S

 algorithms: 1) Shortest Path and 2) K-Shortest Path

German50 Fig. 20 and 2) NSFNET Fig. 21. In the T

main specifications of the networks.

Figure 20 – German 50 network topology

JA(G)OBS Simulator 2011

49

and memory consumption in the

 with 4 GB of RAM in

The simulations were done with 10000 Steps of

Shortest Path (with K=2) on

In the Table 1 we can see

Figure

Name

NSFNet
GERMAN50

CPU Consumption

The CPU consumption over the time

used in the two different networks

Figure

21%

22%

22%

23%

23%

24%

24%

25%

25%

26%

26%

0
0

:0
0

:0
0

0
0

:0
0

:3
6

0
0

:0
1

:1
2

0
0

:0
1

:4
8

0
0

:0
2

:2
4

0
0

:0
3

:0
0

0
0

:0
3

:3
6

0
0

:0
4

:1
2

0
0

:0
4

:4
8

C
P

U
%

NFSNet CPU Load SP

JA(G)OBS Simulator

Figure 21 – NFSNET network topology

Number of
Nodes

Number of Data
Links

Number of
Control Links

14 42 42
50 176 176

Table 1 – Network Specifications

CPU consumption over the time is presented in Fig. 22 and 23. The Shortest Path algorithm

the two different networks.

Figure 22 – CPU load in NFSNet with SP

0
0

:0
4

:4
8

0
0

:0
5

:2
4

0
0

:0
6

:0
0

0
0

:0
6

:3
6

0
0

:0
7

:1
2

0
0

:0
7

:4
8

0
0

:0
8

:2
4

0
0

:0
9

:0
0

0
0

:0
9

:3
6

0
0

:1
0

:1
2

0
0

:1
0

:4
8

0
0

:1
1

:2
4

0
0

:1
2

:0
0

0
0

:1
2

:3
6

0
0

:1
3

:1
2

Time

NFSNet CPU Load SP

JA(G)OBS Simulator 2011

50

Number of
Control Links

Shortest Path algorithm is

BLP=1E-3 Load=0.5

BLP 1E-3 load=0.8

BLP=1E-4 load= 0.5

BLP=1E-4 load=0.8

JA(G)OBS Simulator 2011

51

Figure 23 – CPU load in Germa50 with SP

In these two figures it is shown that the simulator oscillates near 25% of the CPU load, which is

good because if the system has enough memory the user can run simulations in parallel to save

time. Another thing that is noticeable is that the simulation time of German50 network is longer

than the NFSNet, German50 toke 23 hours and 13 minutes and NFSNet only toke 13 minutes. This

fact can be explained because there are 3.5 times more connections and 26 more nodes in the

German50. So, the simulator has to make much more calculations per node, making it much more

time consuming. However this simulation proves that the simulator only uses a quarter of the CPU

load, even when the simulations are very time consuming. So one conclusion made is that the

simulator does not use more CPU load when the simulations are long. In appendix D is shown the

graphics for the K-SP simulations.

Memory Consumption

Figure 24 and Fig. 25 it is presented the results of memory consumption in the two networks using

the Shortest Path Algorithm and with a Burst Lost of 10-3.

0%

5%

10%

15%

20%

25%

30%

35%

0
0

:0
0

:0
0

0
1

:0
3

:5
2

0
2

:0
7

:4
5

0
3

:1
2

:4
2

0
4

:1
6

:3
4

0
5

:2
0

:2
7

0
6

:2
4

:1
9

0
7

:2
8

:1
2

0
8

:3
2

:0
5

0
9

:3
5

:5
6

1
0

:4
0

:5
1

1
1

:4
4

:4
3

1
2

:4
8

:3
5

1
3

:5
2

:2
8

1
4

:5
6

:2
4

1
6

:0
0

:1
6

1
7

:0
4

:0
9

1
8

:0
8

:0
4

1
9

:1
1

:5
6

2
0

:1
5

:4
8

2
1

:1
9

:4
0

2
2

:2
3

:3
2

2
3

:2
7

:2
4

C
P

U

Lo
a

d
 (

%
)

Time

German 50 CPU Load SP

BLP=1E-4 load=0.5

BLP=1E-4 load=0.8

BLP=1E-3 load=0.5

BLP=1E-3 load=0.8

JA(G)OBS Simulator 2011

52

Figure 24 – Memory Consumption in NFSNet with BLP= 10-3 SP algorithm

Figure 25 – Memory Consumption in German50 with BLP= 10-3 SP algorithm

0

5

10

15

20

25

30

35

40

45

50

0
0

:0
0

:0
0

0
0

:0
0

:2
8

0
0

:0
0

:5
6

0
0

:0
1

:2
4

0
0

:0
1

:5
2

0
0

:0
2

:2
0

0
0

:0
2

:4
8

0
0

:0
3

:1
6

0
0

:0
3

:4
4

0
0

:0
4

:1
2

0
0

:0
4

:4
0

0
0

:0
5

:0
8

0
0

:0
5

:3
6

0
0

:0
6

:0
4

0
0

:0
6

:3
2

0
0

:0
7

:0
0

0
0

:0
7

:2
8

0
0

:0
7

:5
6

0
0

:0
8

:2
4

0
0

:0
8

:5
2

0
0

:0
9

:2
0

0
0

:0
9

:4
8

0
0

:1
0

:1
6

0
0

:1
0

:4
4

0
0

:1
1

:1
2

0
0

:1
1

:4
0

0
0

:1
2

:0
8

0
0

:1
2

:3
6

0
0

:1
3

:0
4

0
0

:1
3

:3
2

M
e

m
o

ry
 U

sa
g

e
(M

b
)

Time

NFSNet Memory Usage SP BLP= 10-3

Load=0.5

Load=0.8

0

50

100

150

200

250

300

0
0

:0
0

:0
0

0
0

:4
8

:5
6

0
1

:3
7

:5
2

0
2

:2
6

:4
9

0
3

:1
6

:5
0

0
4

:0
5

:4
6

0
4

:5
4

:4
3

0
5

:4
3

:3
9

0
6

:3
2

:3
5

0
7

:2
1

:3
2

0
8

:1
0

:2
8

0
8

:5
9

:2
4

0
9

:4
8

:2
1

1
0

:3
8

:1
9

1
1

:2
7

:1
5

1
2

:1
6

:1
1

1
3

:0
5

:0
7

1
3

:5
4

:0
4

1
4

:4
3

:0
0

1
5

:3
1

:5
6

1
6

:2
0

:5
2

1
7

:0
9

:2
9

1
7

:5
8

:2
5

1
8

:4
7

:2
1

1
9

:3
6

:1
7

2
0

:2
5

:1
3

2
1

:1
4

:0
9

2
2

:0
3

:0
5

2
2

:5
2

:0
1

2
3

:4
0

:5
7

M
e

m
o

ry
 (

M
b

)

Time

German Memory Usage SP BLP=10-3

load=0.5

load=0.8

JA(G)OBS Simulator 2011

53

Figure 24 it is shown that the graphic curve is not stable, as it has a lot of peaks. This happens

because the Java Garbage Collector cleans the memory without us giving that command, as

expected in Java programming. However, the simulator doesn’t go above the 45 megabytes of

memory used, which for a program developed in Java is very low memory usage.

Nevertheless, in Fig.25 it is shown that the memory usage increases when the number of nodes also

increases. This is normal, because there are more nodes, links and classes loaded in the memory.

Thus, an average of 250 megabytes of memory usage is observed in the German50 network. The

curiosity of Fig.25 is that the Garbage Collector is cleaning less and less the memory over the time.

In this case, the garbage collector cannot clean the objects from the memory because there aren’t

any objects being discarded, i.e. all objects are being used in the simulation. So it can be concluded

that the memory usage of the simulator is low, taking in account that is programmed in Java. Also

that, in this case, the Garbage Collector is doing what is supposed to do, cleaning the unnecessary

objects from the memory. In the appendix D it is shown the graphics for the BLP = 10-4 using both

the SP and the K-SP algorithms.

Network Algorithm BLP Load Steps Simulation Time Max MEM Used Min MEM used
NFSNet SP 0,0001 0,5 10000 0:08:00 40 9
NFSNet SP 0,0001 0,8 10000 0:13:21 44 13
NFSNet SP 0,001 0,5 10000 0:08:03 41 10
NFSNet SP 0,001 0,8 10000 0:13:45 45 11
NFSNet K-SP 0,0001 0,5 10000 0:08:04 41 11
NFSNet K-SP 0,0001 0,8 10000 0:12:13 49 15
NFSNet K-SP 0,001 0,5 10000 0:09:13 40 10
NFSNet K-SP 0,001 0,8 10000 0:12:45 47 12

German50 SP 0,0001 0,5 10000 13:21:29 260 33
German50 SP 0,0001 0,8 10000 18:43:35 260 40
German50 SP 0,001 0,5 10000 24:30:01 260 5
German50 SP 0,001 0,8 10000 17:06:51 254 38
German50 K-SP 0,0001 0,5 10000 26:02:00 250 4
German50 K-SP 0,0001 0,8 10000 20:23:56 255 19
German50 K-SP 0,001 0,5 10000 32:11:50 259 17
German50 K-SP 0,001 0,8 10000 25:37:05 260 20

Table 2 – Table of results of the simulations

JA(G)OBS Simulator 2011

54

In Table 2, the summary of the performance results of the simulations is shown. It can see that the

memory usage is similar in all the simulations made. Also it is shown that the K-SP algorithm is

generally more time consuming in the German50 network, this happens because K-SP algorithm

has to do more calculations than the SP to dispatch a burst. This is not noticeable in the NFS

network because it has fewer connections between the nodes, therefore doing fewer calculations.

3.6 Related Work

In this section, it is described some OBS-related and GMPLS-related simulators, namely 1) OBS-ns

[35], 2) NCTUns [34] and 3) OBS model for OMNeT++ [22] and 4) GLASS [11].

OBS-ns

The OBS-ns simulator is an extension of the Network Simulator 2 (ns-2) simulator. OBS-ns is an

event-driven simulator that is built on ns-2. Because of this, it is still necessary to write a script on

OTcl to specify all the parameters in the network. This simulator introduced some extensions to the

script to implement the following features:

- Fiber-Delay-Lines (FDL);

- The size of the Burst Header Packet (BHP);

- Burst Control Packet (BCP);

- Timeout specifications.

The simulation output is organized in statistic files and trace files that can be read with any text

editor. One of the pros of this simulator is the interoperability between a Nam animator [40] that can

read the output files and create an animated GUI of the network state.

The cons are:

- All the code was written in C++, this adds complexity for developers and users that want to

install it.

- The study in [41] was unable to ascertain what type of resource reservation was

implemented in it.

JA(G)OBS Simulator 2011

55

There is no information whatsoever regarding the possibility of GMPLS or any CP being deployed.

NCTUns

The NCTUns is a more mature simulator, since it is on version 4.0. It was implemented to be a

simulator and an emulator of different kinds of networks. The OBS network is supported by

different modules that are included in the simulator. The user can specify the behavior of the nodes,

burst assembly, wavelength channel and conversion, control packet processing time and contending

burst algorithm.

Another pro of this simulator is the GUI that allows the user to construct and configure his/her

models. The GUI can also do an animation of the packet transfer which is very useful for the user to

see what his/her work is doing in a more user friendly way.

The cons are:

 -Being written in C++;

-Being difficult to install in a machine [41];

-There is only one Reservation Scheme (JET), so the user cannot see the difference in the

performance between two different reservation schemes.

However the GUI and the adaptability make it a good tool to make some experiences in OBS

networks.

OBS model for OMNeT++

As the authors say in [22], OMNet++ is not a simulator by itself, but more of a framework with

tools to make any kind of simulator, in their case an OBS simulator. The structure of the simulator is

explained in [22], but it basically consists of two types of nodes: 1) the Edge node that is based on

the Router module of OMNet++ and has to assembly module to convert packets in to bursts and

disassemble modules to do the opposite task. 2) The Core node basically is only responsible for the

routing of the packets in an optical way between the sender and the receiver.

The simulator is made up of modules, this is why it very interesting because other modules can be

implemented almost effortlessly. In our point of view this is a very interesting characteristic of this

simulator, it is also highlighted that the user can configure each node separately, this enables the

JA(G)OBS Simulator 2011

56

simulation of different network configurations.

The drawbacks of this simulator are:

- It only has implemented JET for resource reservation, despite of this the authors claim that

JIT can be easily introduced in the simulator.

- The forwarding table is static, i.e. the routing is done always on the same fiber and does not

take to account the conditioning of the network;

- It was implemented in C++.

Finally it should be stated that the simulator uses the proposal made by [19] that uses labels to the

forwarding of the bursts.

GMPLS Lightwave Agile Switching Simulator

The GLASS (GMPLS Lightwave Agile Switching Simulator) has been developed to support the

R&D work in the field of Next Generation Internet (NGI) networking with GMPLS-based WDM

optical network and Internet traffic engineering with DiffServ-over-MPLS [11]. The GLASS was

implemented on the Scalable Simulation Framework (SSF) [42].

SSF framework was implemented to be a discrete event simulation platform. It provides an

interface for programmers to create simulators avoiding the problems of threads and

synchronization. Also SSF provides a tool, used in GLASS, which is called SSFNet [42]. This

makes tools available for network simulation to programmers, i.e. allows the programmer

implement to protocols like IP, TCP, OSPF and others out of the box. Despite the fact that SSF has

an implementation of OSPF, it had to be upgraded in GLASS because SSF only supports static

OSPF and does not support Traffic Engineering (TE) features. For this reason, in GLASS the

algorithm was upgraded to handle TE, also other algorithms were developed from scratch to handle

the features documented in [11]:

1) Differentiated service (DiffServ): This has the ability to differentiate the process of a

packet that arrives in the router, i.e. depending on the type of packet the processing is a

different processing. GLASS defined 4 categories of traffic and processes the packets

depending on the category, so the packets can be queued right away, buffered (giving space

JA(G)OBS Simulator 2011

57

to more priority packet) or in the worst case scenario, dropped;

2) Per hop behavior (PHB): Because the essence of GMPLS is that every node has to decide

for itself what it is supposed to do. So the DiffServ together with the PHB algorithm decides

what the destiny of the packet is queue, buffer or dropped;

3) GMPLS-TE: In GLASS two signaling protocols were implement the Constraint-based

Routing Label Distribution (CR-LDP) and the RSVP-TE. In [11] doesn´t explain how these

protocols are implemented, only that the Type-Length-Value (TLV) has many different types

of metrics. For the MPLS routing part, it was only modified the OSPF of SSFNet to OSPF-

TE as mentioned early;

 4) MPLA in OAM for performance monitoring and fault restoration.

5) and GMPLS-based signaling for WDM optical network, link/node failure model and fast

restoration from link or node failure.

 GLASS also has LMP which supports the control channel management, link property correlation

and link connectivity verification. The LMP establishes and maintains the control channels

connectivity between neighboring nodes by exchanging hello protocol packets for fast keep-alive,

control channel availability and status monitoring. This feature is still not supported in JA(G)OBS.

Also an important aspect of this simulator is the way the data is inserted in the simulator, it uses

Domain Modeling Language (DML) which is a standard of data files. Also in the last versions of

GLASS a GUI was included, with this GUI networks can be built effortlessly, which in my point of

view, is a plus. This fact allied output files ready, out of the box, for Microsoft Excel or OpenOffice

Calc makes it a very good I/O of data in the simulator when compared with the other simulators.

 The only problem in GLASS is the following:

1) The project seems to be abandoned. Since it only fully works in Java 1.4 and with some

changes in the code works on 1.5. This is a big problem because at this time Java 7(1.7)

is almost ready and the simulator users must know how to do Java programming to make

these changes.

In summary GLASS is a very good simulator for GMPLS in WDM because it is easy to use and has

almost every tool needed.

JA(G)OBS Simulator 2011

58

Chapter IV - Conclusion

This thesis discusses the interoperability between GMPLS and OBS control plane. It presents the

two technologies separately and the challenges and benefits of putting the two working together.

However, this thesis gives more focus on GMPLS routing algorithm (OSPF-TE), since it was the

main contribution made to JA(G)OBS.

Regarding the simulator, it was shown how LSUs messages from OSPF-TE were successfully

implemented and also how JA(G)OBS is a versatile simulator due to its modularity. In addition, the

implementation of the PCE, was also done which allowed us to simulate two different policies

(distributed and centralized path computation) in the same simulator.

A series of performance tests were also presented, showing that JA(G)OBS can cope with various

network sizes (in terms of nodes and links) without using a large amount of computational

resources, as shown in Chapter III (Performance Analysis).

As such, it is concluded that JA(G)OBS is a robust and viable tool that can handle a GMPLS-OBS

network without much effort, making it a good choice for this kind of network. Other conclusion

that was made is that GMPLS-OBS is a good solution for the current and future networks, since it

accomplishes the necessary requirements for a network.

Despite of being a robust and reliable simulator, JA(G)OBS is still not finished. Our goal was not to

make all features operable right away, but instead make a reliable simulator with fewer features.

Regarding future work, the simulator will benefit if the following key features are implemented:

1. Implementation of the remaining four OSPF-TE packets, namely Hello packet, Database

Description packet, Link State Request and Link State Acknowledgment packet. This will

add more features to the simulator that aren’t supported in the current version and could be

interesting to study the full behavior of OSPF-TE in this architecture.

2. Implementation of a Pareto distribution [43], [44] algorithm. This will make the traffic in

the simulator bursty-based inside the network and give a different approach to the

simulations based on the Engset probability of congestion formula [52], [53].

JA(G)OBS Simulator 2011

59

JA(G)OBS Simulator 2011

60

JA(G)OBS Simulator 2011

61

References

[1] Keping Long et al., “A GMPLS-based OBS Architecture for IP-over-WDM Networks, Network
architectures, management, and applications No4 , COREE, REPUBLIQUE DE (2006), pp
63540H.1-63540H.10, September 2006 .

[2] T. Battestilli et al., “Introduction to Optical Burst Switching”, Communications Magazine,
IEEE, pp S10-S15, August 2003.

[3] P. Pedroso et al., “Integrating GMPLS in the OBS Networks Control Plane”, Transparent
Optical Networks, 2007. ICTON '07. 9th International Conference, pp 1-7, August 2007

[4] S. A. Tanenbaum, “Computer Networks, 4th edition”, 2003.
[5] C. Hedrick et al., “Routing Information Protocol”, RFC 1058, June 1998.
[6] L. Berger et al.” Generalized Multi-Protocol Label Switching Signaling Functional

Description”, RFC 3471, January 2003.
[7] R. Coltun, “The OSPF Opaque LSA Option”, RFC 2370, July 1998.
[8] J. Moy et al., “OSPF Version 2”, RFC 2328, April 1998.
[9] P. Pedroso et al., “An interoperable GMPLS/OBS Control Plane: RSVP and OSPF extension

Proposal”, Communication Systems, Networks and Digital Signal Processing, 2008. CNSDSP
2008. 6th International Symposium, pp 418-422, July 2008.

[10] O. Pedrola et al., “JAVOBS: A Flexible Simulator for OBS Network Architectures”, Journal of
Networks, Vol.5, pp 256-264, February 2008.

[11] Y. Kim et al., “GLASS (GMPLS Lightwave Agile Switching Simulator)- A Scalable Discrete
Event Network Simulator for GMPLS-based Optical Internet”, August 2002.

[12] M. Yoo et al, “Just-Enough-Time (JET): A High Speed Protocol for Bursty Traffic in Optical
Networks”, IEEE/LEOS Technologies for a Global Information Infrastructure, Vertical-Cavity
Lasers, Technologies for a Global Information Infrastructure, WDM Components Technology,
Advanced Semiconductor Lasers and Applications, Gallium Nitride Materials, Processing, and
Devi, pp 26-27, August 1997.

[13] S. J. Ben Yoo, “Optical Packet and Burst Switching Technologies for the Future Photonic
Internet”, Journal of Lightwave Technology, VOL. 24, pp 4468- 4492, December 2006.

[14] Z. F. Syahid et al.,” Comparison of JET and JIT Protocols in OBS Networks with Bursty
Internet Traffic “, the 4 Th International Conference TSSA, pp 54-58, December 2007.

[15] F. Xue et al., “Performance Comparison of Optical Burst and Circuit Switched Networks”,
Optical Fiber Communication Conference, 2005. Technical Digest. OFC/NFOEC, pp 3-6,
March 2005.

[16] A. Farrel et al. “GMPLS: architecture and applications”, 1st edition, 2005.
[17] A. Manolova et al., “The OBS Control Plane: GMPLS Integration or Not?”, IX Workshop in

G/MPLS Networks, Girona Spain, 2010.

JA(G)OBS Simulator 2011

62

[18] H. Guo et al., “Proposal of a multi-layer network architecture for OBS/GMPLS network
interworking”, Network Architectures, Management and Applications V, SPIE, November
2007.

[19] C. Qiao et al., “Labeled Optical Burst Switching for IP-over-WDM Integration”, IEEE
Communications magazine, Vol. 38 No. 9, pp 104-114, September 2000.

 [20] A. Manolova et al., ”Advantages and Challenges of the GMPLS\OBS Integration”, VI
GMPLS Workshop, Girona, Spain, pp 133-144, April 2007.

[21] R. Martínez, “Experimental GMPLS-based routing for dynamic lightpad provisioning and
recovery in all-optical WDM networks”, PhD dissertation, Universitat Politècnica de
Catalunya, April 11, 2007.

[22] F. Espina, “OBS network model for OMNeT++: A performance evaluation”, SIMUTools’
2010 Proceedings of 3rd International ICST Conference on Simulation Tools and Techniques,
Article No. 18, March 2010.

[23] Information Sciences Institute University of Southern California, “Transmission Control
Protocol”, RFC 793, September 1981.

[24] J. Y. Yen, “Finding the K Shortest Loopless Paths in a Network”, Management Science, Vol.
17, No. 11, Theory Series, pp. 712-716, July 1971.

[25] “K-shortest-paths”: http://code.google.com/p/k-shortest-paths/#Implementation, accessed at
May, 2011.

[26] “JFreeChart” : http://www.jfree.org/jfreechart/index.html, accessed at May, 2011
[27] D. Katz et al, “Traffic Engineering (TE) Extensions to OSPF Version 2”, RFC 3630,

September 2003.
[28] R. Aggarwal, “Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE)

for Point-to-Multipoint TE Label Switched Paths (LSPs), RFC 4875, May 2007.
[29] J. Postel, “Internet Control Message Protocol DARPA Internet Program Specification”, RFC

792, September 1981.
[30] J. Baião, “GMPLS-Controlled OBS Network Simulator: Implementation of signaling

protocol”, Master Dissertation, Instituto Superior das Ciências do Trabalho e da Empresa –
Instituto Universitário de Lisboa, October 2010.

[31] OSPF Packet Types: http://sites.google.com/site/amitsciscozone/home/important-
tips/ospf/ospf-packet-types , accessed at September 2010.

[32] E. Mannie et al., “Generalized Multi-Protocol Label Switching (GMPLS) Architecture”, RFC
3945, October 2004.

[33] P. Pedroso , “ Interoperable GMPLS/OBS Control Plane: Functional Architecture and Protocol
Extensions Proposal”, Master dissertation, Universitat Politècnica de Catalunya, July 2008.

[34] SimReal Inc., "NCTUns", http://nsl10.csie.nctu.edu.tw/, accessed at March 2011.
[35] "The Network Simulator - ns-2", http://www.isi.edu/nsnam/ns/, accessed at March 2011.

JA(G)OBS Simulator 2011

63

[36] E. Rosen et al., “Multiprotocol Label Switching Architecture”, RFC3031, January 2001
[37] D. Awduche et al., “Requirements for Traffic Engineering Over MPLS”, RFC 2702,

September 1999.
 [38] “GTK+” : http://www.gtk.org/ , accessed at May 2011.
[39] S. Rumley et al.: Software tools and methods for research and education on optical network,

in COST action 291 final report, in press.
[40]”Nam animator”: http://www.isi.edu/nsnam/nam/, accessed at May 2011.
[41] V.Soares et al., “OBS Simulation Tools: A Comparative Study”, Communications Workshops,

2008. ICC Workshops '08, pp. 256-260, May 2008.
[42]” Scalable Simulation Framework”: http://www.ssfnet.org/homePage.html, accessed at May

2011.
[43] James W. Stoutenborough, Paul Johnson, "Pareto Distribution", April 17, 2006,

http://pj.freefaculty.org/stat/Distributions/Pareto-02.pdf .
[44] Morris H. DeGroot, “Optimal Statistical Decisions”, pp. 41, 2005.
[45] Lu Shen et al., “Centralized vs. distributed connection management schemes under different

traffic patterns in wavelength-convertible optical networks”, Communications, 2002. ICC
2002. IEEE International, August 2002.

[46] P. Pedroso et al., “A GMPLS/OBS Network Architecture Enabling QoS-aware End-to-End
Burst Transport”, 12th IEEE International Conference on High Performance Switching and Routing
to be held in Cartagena, Spain, July 4 - 7, 2011.

[47] JL. Le Roux et al., “Path Computation Element (PCE) Communication Protocol (PCEP)”, RFC
5440, March 2009.

[48] J. Teng et al., “A Comparison of the JIT, JET, and Horizon Wavelength Reservation Schemes
on A Single OBS Node”, Proc. of the First International Workshop on Optical Burst Switching, San
Francisco, December 2003

[49] Z. Rosberg et al., ”Blocking probabilities of optical burst switching networks based on reduced
load fixed point approximations”, in Proc. IEEE Infocom 2003, San Francisco, CA, March 2003.

[50]C. Qiao and M. Yoo, "Optical Burst Switching (obs) - a new paradigm for an optical internet",
Journal of High Speed Networks, vol.8, no. 1, pp. 69-84, March 1999.

[51] D. Awduche et al.,” RSVP-TE: Extensions to RSVP for LSP Tunnels”, RFC 3209, December
2001

[52] J. Boucher, “Traffic System Design Handbook: Timesaving Telecommunication Traffic Tables
and Programs”,1st edition ,1993

[53] A. Zalesky et al., “Engset formula for bufferless OBS/OPS: when is and when isn’t
lengthening the off-time redundant?”, Global Telecommunications Conference, December 2009

JA(G)OBS Simulator 2011

64

JA(G)OBS Simulator 2011

65

Appendixes

A – Types of Packets in OSPF

A.1. Hello Packet

Figure 26 illustrates the structure of the Hello packet and the name of each one of the fields.

When a hello packet is received, the node has to validate the Network Mask, HelloInterval and

RouterDeadInterval before the actual processing of the packet, only if this fields match those

previously agreed is the packet accepted. In case the packet is not rejected, the rest of the packet

will be examined to see if there is any update on the information in comparison for one that is in the

list. In case there is an update, the information will be stored in the database and sent to the other

adjacent nodes, this will readjust the timer that is connected to receiving/sending of hello packet.

The figure 26 shows the configuration of the Hello packet. This packet isn’t implemented in the

simulator because it is assumed that the network is already connected and there are no nodes

connecting when the network is operating. In a future work this feature can be implemented.

Figure 26 – Hello Packet [8]

JA(G)OBS Simulator 2011

66

Description of the several message fields:

Message Field Description

Version Field where the version of the packet is inserted.

Type

This field is where the type of packets is been transmitted, there are 5 types of OSPF

packets; 1(Hello), 2(Database description), 3(Link State Request), 4(Link State Update)

and 5(Link State Acknowledgement).

Packet Length
The field where the total size of the packet is inserted, it makes sense to put the size of

the packet which can be variable, depending how much information is putted in there.

Router ID The field where the ID of the node that created the packet is introduced.

Area ID The area where the node belongs.

Checksum
This field is where a checksum travels to guarantee that the packet doesn´t have errors

produced by the transmission of the packet.

AuType

The field where the type of authentication is inserted. There are 3 types of values in the

authentication; 0(without password), 1(plain text password) and 2(Message-Digest

algorithm 5 cipher).

Authentication The field where the information to confirm the integrity of the packet is inserted.

Network mask This field has the subnet mask of the advertising OSPF interface.

HelloInterval
This field has the time interval that Hello packet must be sent. This interval is by default

in a broadcast network of 20 seconds.

Options This field has the type of extra capabilities that the node can perform.

Rtr Pti
This field has the priority for the node to become a Designated Router, if this field is 0,
the router is not capable to become a Designated Router.

DeadInterval

This field has the number of seconds that if the neighbor node doesn’t respond is

considered out of the network or down. The standard value in this field is 120 seconds in

a broadcast network.

Designated Router
This field has the ID of the node that is the Designated Router, if there isn’t one yet, the

field should be 0.

Backup Designated
Router

This field has the ID of the Backup Designated Router, this field like the previous is 0 if

there is no Backup Designated Router chosen yet.

Neighbor
The Router IDs of all OSPF nodes from whom a valid Hello packet has been seen on the

network.

JA(G)OBS Simulator 2011

67

A.2. Database Description Packet

Figure 27 illustrates the structure of the database description packet. When the packet is received it

will be associated with a node to see if it is considered active or not, this process helps to discard

packets with old information. Considering that the packet is accepted, the fields I, M, MS, Options

and DD sequence number must be stored to be compared to future packets. This comparison is

made because the packet isn’t immediately rejected if these fields are equal.

Once again this type of packet was not implemented. Since the simulator was working on event

trigger, all the information was carried in Link State Update messages.

Since OSPF packets have the same 6 fields, and they were explained in the hello packet, it will not

be explained in further OSPF packets.

Figure 27 – Database Description Packet [8]

JA(G)OBS Simulator 2011

68

Description of the several message fields:

Interface MTU This field contains the size (in bits) that the packet could have.
Options This field has the same purpose as the one in the Hello packet, to announce extra

capabilities in the node.

I This field has the information about the sequence of the packaging. If the packet is the first
of a sequence, the field has the number 1.

M This field lets the receiving node know if there are anymore packets of this sequence of
Database Description after this one. The field should be 1 if there are more packets for the
announce sequence.

MS This bit indicates if the sending node is the master in this connection.
DD sequence
number

This field is used to sequence the collection of Database packets. The initial value should
be unique. The sequence number then increments by 1 until the complete database
description has been used to sequence the collection of DBD packets. The initial value
should be unique. The sequence number then increments by 1 until the complete database
description has been sent.

LSA Header This field has the link state Advertisement (LSA) header, which is where the information
about the connections is stored. This topic will be further explained in other topics.

A.3. Link State Request Packet

The LSR2 is sent having a specific piece of the database, so it is more efficient than having to send

the all database once again. When the neighbor responds, the packet may not contain all the LSA

that are needed, in this case the node will update the list of requests and send another LSR2, the

cycle will continue in intervals of RxmtInterval3 until all LSA in the list are updated and removed

of the list. The Fig. 28 illustrates the structure of the links state request packet. This type of packet

is defined by the LS checksum, LS age and LS sequence number although these fields are not

specified in the Link State Request Packet itself. The router may receive even more recent instances

in response. [8]. When a node receives a LSR2, it will process the packet and see what the link state

agreement (LSA) or LSAs that has been requested and send them on a link state update packet

3RxmtInterva l - The number of seconds between LSA retransmissions, for adjacencies belonging to this interface. Also

used when retransmitting Database Description and Link State Request Packets.[8]

JA(G)OBS Simulator 2011

69

(LSU). The packet should not be put on the retransmission list, if the connection fails this LSR2 will

not be sent again, the neighbor will ask again for the LSA if it didn’t get it from another node. If the

node that requested the LSA doesn’t have it on the database it should produce a BadLSReq4 and

restart the adjacency again for a full share on the database once again.

Once more this type of packet wasn’t implemented because of the same reasons of the Database

Description Message.

Figure 28 – Link State Request Packet [8]

Description of the several message fields:

LS type This field has the type of link state Advertisement requested. Since there are 11 types of

LSAs, the packet must specify the type it is expecting because each type of LSA carries

different types of information, this aspect will be further explained better later on.

Link State ID This field identifies the routing domain that is being described. This parameter can have

five different options, to see each option consult [8].

Advertising Router This field has the ID of the node that requested the information.

4 BadLSReq - A Link State Request has been received for an LSA not contained in the database. This indicates an error

in the Database Exchange process. [8]

JA(G)OBS Simulator 2011

70

A.4. Link State Update Packet

In the Fig. 29 shows the structure of the LSU

Figure 29 – Link State Update Packet [8]

Description of the several message fields:
LSAs This field has the number of link state Advertisement carried by the packet.
LSAs This field is where the information about the network is sent.

A.5. Link State Acknowledgement Packet

Description of the several message fields:

Figure 30 – Link State Acknowledgment Packet [8]

LSA Header This field has the LSA header we want to confirm by sending this message.

JA(G)OBS Simulator 2011

71

A.6. Link State Advertisement Packet

Figure 31 shows the Header of an LSA that is equal in all LSAs, except those that who are opaque

which have some special field, as described earlier.

Figure 31 – Link State Advertisement [8]

Description of the several message fields:

LS Age This field has the time in seconds when the LSA was originated. The field is very useful to
confront two packets that have similar information and one is older than the other helps to
decide which LSA to discard.

Options This field specifies the options of the OSPF that the node can support.
LS Type This field is very important because it is where the link state is announced. There are 11 types

of LSA. Each LSA has its own separate advertisement type.

Link State ID
This field identifies the routing domain that is being described. This parameter can have five
different options, to see each option consult [8].

Advertising
Router

This field has the ID of the router where the packet is originated.

LS Sequence
number

This field has the sequence number of the LSA, the field is used to detect old or duplicated
LSA. The router has to check this field to guarantee that the LSA database is up to date.

LS Checksum This field has the checksum of the contents of the LSA, except the LSA age.
The checksum is used to detect errors that can occur in the transmission of the LSA. The
algorithm that is used on the LSA is the Fletcher's checksum.

Length This field has the size of the LSA. The length field is important because the LSA can contain
a variable number of information, depending on the type of LSA and the number of
information that the LSA carries.

JA(G)OBS Simulator 2011

72

A.6.1. Link State Advertisement – Type 1

This type of LSA is used when node announces itself to other nodes that share the same metrics.

This type of LSA is flooded through the network. This type of LSA was not implemented because it

was assumed that all nodes knew their neighbors. This simplification doesn’t affect our results.

Figure 32 – Link State Advertisement- Type 1 [8]

The Fig. 32 represents a link State Agreement when the Link state type value is 1, which means that

is a Router-LSA type.

Description of the several message fields:

V This parameter is set to 1 means that is the endpoint of a Virtual link.
E This parameter is set to 1 when the router is a boundary node. It means it is the point of entry of

connections on an Autonomous System (AS).
B This parameter is set to 1 when the router is a border router that has an external connection with

other network.
Links This parameter has the number of links described in the LSA. This parameter is important

because the number of links varies and the router needs to know how much information there is
to compute.

Link ID This parameter identifies where the link is connect. This value depends on the link type, if the
router is directly connected to the router that originated the LSA the link ID will have the same
ID that is on the LSA header. If it´s not the case, then this parameter can have 4 values: 1-
Neighboring router’s Router ID; 2- IP address of Designated Router; 3- IP network/subnet
number; 4- Neighboring router’s Router ID.

Link Data
This value depends on the link’s Type field. For connections to stub networks, Link Data
specifies the network’s IP address mask. For unnumbered point-to-point connections, it
specifies the interface’s MIB-II ifIndex value. For the other link types it specifies the router

JA(G)OBS Simulator 2011

73

interface’s IP address. This latter piece of information is needed during the routing table build
process, when calculating the IP address of the next hop. [8]

Type This parameter describes the type of connection that is described in the LSA, the parameter can
have values between 1 and 4

1- Point-to-point connection to another router
2- Connection to a transit network
3- Connection to a stub network
4- Virtual link

TOS
This parameter has the TOs metrics given in a link, if there is no addition of metrics in a link
this parameter is 0.

Metric This parameter has the cost of using the link.

A.6.2. Link State Advertisement – Type 2

The Fig. 33 represents a link State Agreement when the Link state type value is 2, which means that

is a network-LSA type. This type of LSA is generated for every broadcast for an area that has more

than 2 routers. This network-LSA describes the routers that are connected, including the Designated

Router which is the router that creates the LSA. This type of LSA wasn’t implemented for the same

reasons mentioned in LSA-type1.

Figure 33 – Link State Advertisement- Type 2 [8]

Network
mask

This field has the address mask for the network. In this case study it will be considered to be 0
because we don´t have an IP based network.

Attached
Router

This field has the ID of the routers that are attached to the network, keep in mind that the
Designated Router also has the ID in this list.

JA(G)OBS Simulator 2011

74

B – JA(G)OBS output files

Figure 34 – LSU flooding in JA(G)OBS unmodified

JA(G)OBS Simulator 2011

75

Figure 35 – JA(G)OBS output when PCE is active unmodified

JA(G)OBS Simulator 2011

76

C – Simulation Results

CPU results

Figure 36 – CPU load in NFSNet with K-SP

Figure 37 – CPU load in German50 with K-SP

It is noticeable that the behavior of the CPU doesn’t change when we change from SP to K-SP

algorithm.

0%

10%

20%

30%

40%

50%

60%

0
0

:0
0

:0
0

0
0

:0
0

:4
4

0
0

:0
1

:2
8

0
0

:0
2

:1
2

0
0

:0
2

:5
6

0
0

:0
3

:4
0

0
0

:0
4

:3
5

0
0

:0
5

:1
9

0
0

:0
6

:0
3

0
0

:0
6

:4
7

0
0

:0
7

:3
1

0
0

:0
8

:1
5

0
0

:0
8

:5
9

0
0

:0
9

:4
3

0
0

:1
0

:2
7

0
0

:1
1

:1
1

0
0

:1
1

:5
5

0
0

:1
2

:3
9

0
0

:1
3

:2
3

0
0

:1
4

:0
7

0
0

:1
4

:5
1

0
0

:1
5

:3
5

NFSNet CPU Load K-SP

BLP=1E-3 load=0.5

BLP=1E-3 load=0.8

BLP=1E-4 load=0.5

BLP=1E-4 load=0.8

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0
0

:0
0

:0
0

0
1

:3
1

:5
2

0
3

:0
3

:4
5

0
4

:3
5

:3
7

0
6

:0
7

:2
9

0
7

:4
0

:3
0

0
9

:1
2

:2
2

1
0

:4
4

:1
4

1
2

:1
6

:0
7

1
3

:4
7

:5
9

1
5

:2
0

:5
5

1
6

:5
2

:4
8

1
8

:2
4

:4
0

1
9

:5
6

:3
2

2
1

:2
8

:2
8

2
3

:0
0

:2
5

0
0

:3
2

:1
7

0
2

:0
4

:1
0

0
3

:3
6

:0
1

0
5

:0
7

:5
4

0
6

:3
9

:4
8

C
P

U
 L

o
a

d

Time

CPU Load German 50 K-SP

BLP=1E-4 load 0.5

BLP=1E-4 load=0.8

BLP=1E-3 load=0.5

BLP=1E-3 Load=0.8

JA(G)OBS Simulator 2011

77

Memory Results

Figure 38 – Memory Consumption in NFSNet with BLP= 10-4 SP algorithm

Figure 39 – Memory Consumption in NFSNet with BLP= 10-3 K-SP algorithm

0

5

10

15

20

25

30

35

40

45

50

0
0

:0
0

:0
0

0
0

:0
0

:2
8

0
0

:0
0

:5
6

0
0

:0
1

:2
4

0
0

:0
1

:5
2

0
0

:0
2

:2
0

0
0

:0
2

:4
8

0
0

:0
3

:1
6

0
0

:0
3

:4
4

0
0

:0
4

:1
2

0
0

:0
4

:4
0

0
0

:0
5

:0
8

0
0

:0
5

:3
6

0
0

:0
6

:0
4

0
0

:0
6

:3
2

0
0

:0
7

:0
0

0
0

:0
7

:2
8

0
0

:0
7

:5
6

0
0

:0
8

:2
4

0
0

:0
8

:5
2

0
0

:0
9

:2
0

0
0

:0
9

:4
8

0
0

:1
0

:1
6

0
0

:1
0

:4
4

0
0

:1
1

:1
2

0
0

:1
1

:4
0

0
0

:1
2

:0
8

0
0

:1
2

:3
6

0
0

:1
3

:0
4

M
e

m
o

ry
 (

M
b

)

Time

NFSNet Memory Usage SP BLP= 10-4

Load=0.5

Load=0.8

0

5

10

15

20

25

30

35

40

45

50

0
0

:0
0

:0
0

0
0

:0
0

:2
8

0
0

:0
0

:5
6

0
0

:0
1

:2
4

0
0

:0
1

:5
2

0
0

:0
2

:2
0

0
0

:0
2

:4
8

0
0

:0
3

:1
6

0
0

:0
3

:4
4

0
0

:0
4

:1
2

0
0

:0
4

:4
0

0
0

:0
5

:0
8

0
0

:0
5

:3
6

0
0

:0
6

:0
4

0
0

:0
6

:3
2

0
0

:0
7

:0
0

0
0

:0
7

:2
8

0
0

:0
7

:5
6

0
0

:0
8

:2
4

0
0

:0
8

:5
2

0
0

:0
9

:2
0

0
0

:0
9

:4
8

0
0

:1
0

:1
6

0
0

:1
0

:4
4

0
0

:1
1

:1
2

0
0

:1
1

:4
0

0
0

:1
2

:0
8

0
0

:1
2

:3
6

M
e

m
o

ry
 (

M
b

)

Time

NFSNet Memory Usage K-SP BLP= 10-3

Load=0.5

Load=0.8

JA(G)OBS Simulator 2011

78

Figure 40 – Memory Consumption in NFSNet with BLP= 10-4 K-SP algorithm

Figure 41 – Memory Consumption in NFSNet with BLP= 10-4 SP algorithm

0

10

20

30

40

50

60

0
0

:0
0

:0
0

0
0

:0
0

:2
8

0
0

:0
0

:5
6

0
0

:0
1

:2
4

0
0

:0
1

:5
2

0
0

:0
2

:2
0

0
0

:0
2

:4
8

0
0

:0
3

:1
6

0
0

:0
3

:4
4

0
0

:0
4

:1
2

0
0

:0
4

:4
0

0
0

:0
5

:0
8

0
0

:0
5

:3
6

0
0

:0
6

:0
4

0
0

:0
6

:3
2

0
0

:0
7

:0
0

0
0

:0
7

:2
8

0
0

:0
7

:5
6

0
0

:0
8

:2
4

0
0

:0
8

:5
2

0
0

:0
9

:2
0

0
0

:0
9

:4
8

0
0

:1
0

:1
6

0
0

:1
0

:4
4

0
0

:1
1

:1
2

0
0

:1
1

:4
0

0
0

:1
2

:0
8

M
e

m
o

ry
 (

M
b

)

Time

NFSNet Memory Usage K-SP BLP= 10-4

Load=0.5

Load=0.8

0

50

100

150

200

250

300

0
0

:0
0

:0
0

0
0

:3
8

:4
0

0
1

:1
7

:2
0

0
1

:5
6

:0
0

0
2

:3
4

:4
0

0
3

:1
3

:2
1

0
3

:5
2

:0
1

0
4

:3
0

:4
1

0
5

:0
9

:2
1

0
5

:4
8

:0
1

0
6

:2
6

:4
2

0
7

:0
6

:2
9

0
7

:4
5

:0
9

0
8

:2
3

:5
3

0
9

:0
2

:3
3

0
9

:4
1

:1
4

1
0

:1
9

:5
4

1
0

:5
8

:3
4

1
1

:3
7

:1
4

1
2

:1
5

:5
4

1
2

:5
4

:3
4

1
3

:3
3

:1
4

1
4

:1
3

:0
3

1
4

:5
1

:4
3

1
5

:3
0

:2
3

1
6

:0
9

:0
3

1
6

:4
7

:4
3

1
7

:2
6

:2
3

1
8

:0
5

:0
3

M
e

m
o

ry
(M

B
)

Time

German Memory Usage SP BLP=10-4

load=0.5

load=0.8

JA(G)OBS Simulator 2011

79

Figure 42 – Memory Consumption in German50 with BLP= 10-3 K-SP algorithm

Figure 43 – Memory Consumption in German50 with BLP= 10-4 K-SP algorithm

It is noticeable that the memory behavior doesn’t change when we change from SP to K-SP

algorithm.

0

50

100

150

200

250

300

0
0

:0
0

:0
0

0
1

:0
6

:3
2

0
2

:1
3

:0
4

0
3

:1
9

:3
7

0
4

:2
6

:0
9

0
5

:3
2

:4
1

0
6

:3
9

:1
3

0
7

:4
6

:5
4

0
8

:5
3

:2
6

0
9

:5
9

:5
8

1
1

:0
6

:3
0

1
2

:1
3

:0
3

1
3

:1
9

:3
5

1
4

:2
7

:1
1

1
5

:3
3

:4
3

1
6

:4
0

:1
6

1
7

:4
6

:4
8

1
8

:5
3

:2
0

1
9

:5
9

:5
2

2
1

:0
6

:2
8

2
2

:1
3

:0
4

2
3

:1
9

:3
6

0
0

:2
6

:0
9

0
1

:3
2

:4
1

0
2

:3
9

:1
3

0
3

:4
5

:4
6

0
4

:5
2

:1
8

0
5

:5
8

:5
0

0
7

:0
6

:3
0

M
e

m
o

ry
 (

m
b

)

Time

German Memory Usage K-SP BLP=10-3

Load=0.5

Load=0.8

0

50

100

150

200

250

300

0
0

:0
0

:0
0

0
0

:5
5

:4
0

0
1

:5
1

:2
0

0
2

:4
8

:1
1

0
3

:4
3

:5
2

0
4

:3
9

:3
2

0
5

:3
5

:1
2

0
6

:3
0

:5
2

0
7

:2
6

:3
2

0
8

:2
3

:1
7

0
9

:1
8

:5
7

1
0

:1
4

:3
7

1
1

:1
0

:1
7

1
2

:0
6

:0
1

1
3

:0
1

:4
6

1
3

:5
7

:2
6

1
4

:5
4

:1
0

1
5

:4
9

:5
0

1
6

:4
5

:3
0

1
7

:4
1

:1
1

1
8

:3
6

:5
1

1
9

:3
2

:3
1

2
0

:2
9

:1
5

2
1

:2
4

:5
5

2
2

:2
0

:3
6

2
3

:1
6

:1
6

0
0

:1
1

:5
6

0
1

:0
7

:3
6

M
e

m
o

ry
(M

b
)

Time

German Memory Usage K-SP BLP=10-4

load=0.5

Load=0.8

JA(G)OBS Simulator 2011

80

JA(G)OBS Simulator 2011

81

List of Acronyms

BCP – Burst Control Packet

BE – Best Effort

BER – Bit Error Rate

BLP – Burst Lost Percentage

CP – Control Plane

CPU – Central Processor Unit

CR-LDP – Constraint-based Routing Label Distribution Protocol

DiffServ - Differentiated service

DVR – Distance Vector Router

FDL – Fiber Delay Line

GLASS – GMPLS Lightwave Agile Switching Simulator

GMPLS – Generalized Multiprotocol Label Switching

GUI – Graphical User Interface

HP – High Priority

ICMP – Internet Control Message Protocol

IETF - Internet Engineering Task Force

IP – Internet Protocol

IS-IS – Intermediate System to Intermediate System

IS-IS-TE – Intermediate System to Intermediate System with Traffic Engineering

JET – Just Enough Time

JIT – Just In Time

LMP – Link Management Protocol

JA(G)OBS Simulator 2011

82

LSA – Link State Advertisement

LSP – Label Switched Path

LSR1 – Link State Routing

LSR2 – Link State Request

LSU- Link State Update

MILP – Mixed Integer Linear Programming

MPLS – Multiprotocol Label Switching

NGI - Next Generation Internet

O/E/O – Optical to Electric to Optical

OBS – Optical Burst Switching

OCS – Optical Circuit Switching

OPS – Optical Packet Switching

OSPF – Open Shortest Path First

OSPF-TE – Open Shortest Path First with Traffic Engineering

PCE – Path Computation Element

PHB – Per Hop Behavior

QoS – Quality of Service

RAM – Random Access Memory

RIP – Routing Information Protocol

RSVP-TE – Resource Reservation Protocol with Traffic Engineering

RTT – Round Trip Time

SDH – Synchronous Digital Hierarchy

SSF - Scalable Simulation Framework

JA(G)OBS Simulator 2011

83

TCP – Transmission Control Protocol

TDM – Time Division Multiplexing

TE – Traffic Engineering

TLV- Time-Length-Value

UPC - Universitat Politècnica de Catalunya

UPC-CBA - Broadband Communication research group

VoIP – Voice over Internet Protocol

WDM – Wavelength Division Multiplexing

XML - eXtensible Markup Language

