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Abstract

Power consumption has become one of the dominant issues in pro-

cessor design, especially important in embedded systems and data

centers. One of possible solution that can address this issue and pro-

vide higher performance for existing applications and new capabilities

for future applications used in hand-held devices and data centers is

to use vector processor.

This thesis presents the design and implementation of a vector library

that enables the vectorization of the target applications and allows to

characterize them.

We also present the ETModel: a simple trace-driven simulator for

vector processors. It is used to analyse the micro-architectural re-

quirements of the vectorized applications.

We show that the target applications are highly vectorizable with a

degree of vectorization from 62.9% for H264ref to 91% for ECLAT.

Detailed instruction level characteristics such as the distribution of

vector instructions, the distribution of vector lengths, etc. are also

presented in the thesis.

The thesis contains detailed timing analysis of the vectorized applica-

tions for different micro-architectural configurations of a vector pro-

cessor. We measured the execution time for the different configu-

rations of cache hierarchy, main memory latencies, maximum vector

lengths and configuration of functional units, as well as the usage of

functional units. All these help in understanding the behavior of the

vectorized applications and requirements of vector micro-architecture.
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Chapter 1

Work Presentation

1.1 Motivation

Over the last few years, power consumption has become one of the dominant issues

in processor design. This issue is especially important in embedded systems such

as cellular phones, pagers, PDAs, digital cameras, DVDs, game consoles, etc.

in which battery life becomes a major concern, but also in tremendous data

centers that consume a large amount of power. At the same time, a new design

should provide higher performance for existing applications and new capabilities

for future applications that will be used in hand-held devices or data centers.

Vector processors are one possible solution to address this issue because they

can express data level parallelism where it exists in a very efficient way. They

fetch fewer instructions and therefore reduce the fetch and decode bandwidth

requirements.

In order to help us to define a new vector architecture, we should discover

which are the characteristics at the instructions level of the target applications

(once they have been vectorized) (e.g. degree of vectorization in application,

distribution of vector lengths, distribution of instruction types, etc.) and also

which new vector instructions we will need in order to vectorize these applications

in an efficient way. We also want to know which will be the micro-architectural

requirements for implementing such a vector ISA and estimate the execution time

of vectorized applications.

1



1. WORK PRESENTATION 1.2 Project Objectives

Some of these questions are addressed by Espasa [15, 40] using traces from

vectorized CONVEX binaries and simulating them. Currently we do not have

access to any compiler that performs automatic vectorization of our target appli-

cations. To overcome this problem, in this project we have chosen to develop a

vector library and a model for execution time that addresses the issues mentioned

above.

1.2 Project Objectives

The main goals of the project are:

• To develop a vector library that implements a vector ISA similar to VMIPS1

[20]. The vector library will also contain some additional instructions that

are useful or required to vectorize our target applications. The vector library

will be parameterizable: size of vector register file, register length, etc.

The library will collect results and statistics at runtime from vectorized

applications. It will also provide support to generate instruction and address

traces of the vectorized applications to allow further analysis (e.g. a model

for execution time). The vector library will also provide support to allow

the vectorization of applications written in C, C++ and FORTRAN.

• To choose several modern applications that can be used in handheld devices

or data centers, profile them and vectorize them by hand if they are suitable

for vectorization. Another sub-goal is to generate statistics that will provide

information about instruction level characterization of these applications.

These statistics will be generated through traces that will feed the model

for execution time.

• To develop a trace-driven model for execution time (ETModel), motivated

by work presented by Karkhanis & Smith [23] and Hennessy & Patterson

[20]. The model will be parameterizable (e.g. number of lanes, number of

ALU units, LD/ST units, start-up latencies, memory bandwidth, etc.).

1RISC-like a vector ISA and register based

2



1. WORK PRESENTATION 1.3 Project Objectives

• To analyze the results. Gathered results and statistics will be used to

analyze the micro-architectural requirements to implement the proposed

vector ISA. In particular, we wish to study the impact of the parameters of

the model on an application’s execution time.

1.3 Project Objectives

The following table summarizes the distribution of the time used to develop the

different activities in this project.

# Activity Time (hours)

1 Vector library implementation. 240

2 Benchmark vectorization. 320

3 ETModel implementation and testing. 200

4 Results collecting. 120

5 Results analyzing. 40

6 Final report. 100

Total 1020

Table 1.1: Project roadmap activities.
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Chapter 2

Vector Processors

This chapter presents vector processors in general, the advantages of vector pro-

cessors and vector instruction set architecture (ISA), reviews existing implemen-

tations and gives definitions of some terms used in the rest of the thesis. Patterson

& Hennessy [20] gives more details about vector processors as well as Asanovic

[3].

Various forms of parallelism have been exploited in computer architecture to

provide increases in performance. The three major categories are: instruction-

level parallelism (ILP), thread-level parallelism (TLP) and data-level par-

allelism (DLP). ILP allows simultaneous execution of multiple instructions from

one instruction stream (superscalar processors). TLP allows simultaneous exe-

cution of multiple instruction streams (Simultaneous Multi Threading - SMT).

DLP allows simultaneous execution of the same operations on arrays of elements

(Single Instruction Multiple Data - SIMD).

A vector processor implements a type of data-level parallelism. Vector proces-

sors typically contain vector registers that hold multiple values instead of single-

value registers as in super-scalar processors. They provide vector instructions

that operate on all values of the registers, in conceptually simultaneous manner.

For example, a scalar addition instruction would take values from two scalar reg-

isters A and B, and produce a result stored in scalar register C, as figure 2.1

(a) shows. A vector addition instruction would take two vectors A and B, and

produce a resulting vector C, as in figure 2.1 (b), where VL is vector length.

4



2. VECTOR PROCESSORS 2.1 Advantages of Vector Processors

A B+ = C

Scalar Vector

B1

B3

B2

BVL

B5

B4

...

A1

A3

A2

AVL

A5

A4

...

+

C1

C3

C2

CVL

C5

C4

...

=

(a) (b)

Figure 2.1: Comparison of a scalar instruction and a vector instruction.

2.1 Advantages of Vector Processors

As it is emphasized in previous work [3, 20, 22], vector processors and vector ISAs

have several advantages:

• A single vector instruction specifies N operations, where N represents tens

or hundreds of operations. It dramatically reduces instruction fetch band-

width, which is a bottleneck of conventional processors, particularly in terms

of power consumption [29, 42].

• These N operations are independent. There is no need for checking data

hazards within a vector instruction. It allows simultaneously execution of

all operations in an array of parallel functional units, or in a single very

deeply pipelined functional unit, or in any intermediate configuration of

parallel and pipelined functional units.

• Reduced control logic complexity. Hardware needs only check for data

hazards between two vector instructions once per vector operand, not once

for every element within the vectors. Therefore, the dependency checking

logic required between two vector instructions is approximately the same as

that required between two scalar instructions, but now many more elemental

operations can be in flight.

5



2. VECTOR PROCESSORS 2.2 Relevant techniques and concepts

• Vector instructions that access memory have a known access pattern. A

memory system can implement important optimizations if it has accurate

information on the address stream. In particular, a stream of unit-stride

accesses can be performed very efficiently using large block transfer. Also

in case main memory accessed, the high latency of initiating access versus

accessing a cache is amortized, because a single access is initiated for entire

vector rather than to a single word.

• Reduced control hazards from loops, because an entire loop can be replaced

by a vector instruction whose behaviour is predetermined.

2.2 Relevant techniques and concepts

In this section, we describe techniques and concepts that have been used in vector

architectures, relevant for this thesis.

2.2.1 Chaining

Some vector architectures have to complete a vector instruction before starting

the next vector instruction. Chaining is a technique that allows overlapped ex-

ecution of two dependent instructions. It means that next vector instruction

can start execution before current vector instruction is completed. Consider the

simple vector sequence:

addv R1, R2, R3

mulv R4, R1, R5

We want to add vector registers R2 and R3 and to store results into vector

register R1. After that, we multiply vector registers R1 and R5 and store result

into vector register R4. Figure 2.2 shows the timing of chained and an unchained

version of the above pair of vector instructions with a vector length of N. In an

unchained version two vector instructions are computed serially. We have the

start-up time to compute the first element in the first vector instruction and

then n cycles to compute the whole vector and then the same for second vector

instruction. In a chained version, second vector starts execution when the first

6



2. VECTOR PROCESSORS 2.2 Relevant techniques and concepts

element in the first vector instruction is computed. Generally, chaining allows a

vector operation to start as soon as the individual elements of its vector source

operand become available.

Unchained

Chained
start1

start1 start2

start2

N

N

N N

MULV

MULVADDV

ADDV

Total = (start1+start2) + 2N

Total = (start1+start2) + N

Figure 2.2: Timings for a sequence of dependent vector instructions ADDV and

MULV, both unchained and chained.

It is obvious that chaining plays an important role in boosting vector per-

formance. In fact, chaining is so important that every modern vector processor

supports chaining [20].

2.2.2 Multiple Lanes

As mentioned above, a vector instruction specifies a number of independent op-

erations that can be executed in parallel. This semantics of a vector instruction

allows using an array of parallel functional units, or a single very deeply pipelined

functional unit, or any intermediate configuration of parallel and pipelined func-

tional units. Vector performance can be improved by using parallel and pipelined

units. For example, figure 2.3 (a) shows a vector unit that has a single pipeline

and can complete one addition per cycle. The figure 2.3 (b) shows a vector

unit that has four add pipelines and can complete four additions per cycle. The

elements within a single vector add instruction are interleaved across the four

pipelines.

The construction of parallel vector unit is simple because all vector arithmetic

instructions only allow element N of one vector register to take part in operations

with element N from other vector registers. Parallel vector unit can be structured

as multiple parallel lanes. Patterson and Hennessey [20] give one example of a

four lane vector unit (figure 2.4). The vector-register storage is divided across

7



2. VECTOR PROCESSORS 2.2 Relevant techniques and concepts

A15
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A14
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A12
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A9
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B15

B13
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B10

B11

B12

B6

B7

B8

B9

B3

B4

B5

C1

C2

+

A9

A13

B9

B13

C1

C5

+

A10

A14

B10

B14

C2

C6

+

A11

A15

B11

B15

C3

C7

+

A12 B12

C4

C8

+

(a) (b)

Figure 2.3: Using multiple functional units to improve performance of a single

vector add instruction, C = A + B.

the lanes, with each lane holding every fourth element of each vector register.

There are three vector functional units shown, an FP add, an FP multiply, and

a load-store unit. Each of the vector arithmetic units contains four execution

pipelines, one per lane, that act in concern to complete a single vector instruction.

Implementation of instructions that require communication across lanes is more

complex.

2.2.3 Death time or recovery time

Adding multiple lanes increases performance, but still there are start-up overhead

and power consumption concerns. It is possible to reduce start-up overhead

allowing the start of one instruction to be overlapped with the completion of

preceding vector instructions. It increases the complexity of control logic and

8



2. VECTOR PROCESSORS 2.2 Relevant techniques and concepts

Vector 
registers: 
elements
0,4,8,...

FP add
pipe 1

FP mul.
pipe 1

Vector load-store unit

Lane 1

Vector 
registers: 
elements
1,5,9,...

FP add
pipe 2

FP mul.
pipe 2

Lane 2

Vector 
registers: 
elements
2,6,10,...

FP add
pipe 3

FP mul.
pipe 3

Lane 3

Vector 
registers: 
elements
3,7,11,...

FP add
pipe 4

FP mul.
pipe 4

Lane 4

Figure 2.4: Structure of a vector unit containing four lanes.

some vector machines require some recovery time or death time in between two

vector instructions dispatched to the same vector unit.

2.2.4 Masking

Programs that contain conditional (if ) statements cannot be vectorized using

the basic memory, arithmetic and logical instructions which are sufficient for

vectorizing many straight-line loops. Consider the following loop:

for( i = 1, i <= looplen , i++){

if (a[i] == b[i])

c[i] = a[i] + b[i];

}

This code cannot normally be vectorized because of the conditional execution

of the body. J. E. Smith et al [37] examined a number of vector instruction set

alternatives for implementing conditional loops. The paper concludes that “the

best approach is to use masked instructions. Masked instruction uses a Boolean

vector of maximum vector length (MVL) to control the execution of a vector

instruction just as conditionally executed instructions use a Boolean condition

to determine whether an instruction is executed. When the vector-mask register

9



2. VECTOR PROCESSORS 2.3 Existing implementations

is enabled, any vector instructions executed operate only on the vector elements

whose corresponding entries in the vector-mask register are 1”.

Masking allows higher level of vectorization and it is critical in achieving the

large difference between vector and scalar mode [20].

2.3 Existing implementations

Vector processors have a long and successful history in supercomputers where they

are used for large scientific and engineering applications. The first vector archi-

tecture were memory based with instructions that operate on memory-resident

vectors [21, 41]. Cray [35], register-based vector machines were the first commer-

cially successful supercomputers [15]. They provide arithmetic instructions that

operate on vector registers, while separate vector load and store instructions move

data between vector registers and memory. Several modest mini-supercomputers

[32, 33] were released in the mid 80s.

Vector processors have found their place in microprocessors. Vector micropro-

cessors have been constructed to support vector instructions [4, 31]. Torrent-0

and IRAM are an example of vector microprocessors developed as part of aca-

demic research. Espasa et al [16] developed Tarantula, a vector extension to the

Alpha architecture.

Vector extensions, such as MAX[26], MMX[30], SSE[39], AVX[9], AltiVec[19],

3DNow![28], etc., are very popular in desktop processors of all of the major ven-

dors. These vector extensions do not implement all traditional vector instructions

and operate on much shorter vectors (4-8 elements) than in old vector architec-

tures because one of goals is to minimize additional chip area.

Vector processors are also used in special purpose hardware such as video

cards and game consoles. One of example is the Sony Playstation II [38].

”Knight’s Corner” is an upcoming massively parallel x86 microprocessor de-

signed by Intel Corporation. It is based on the cancelled Larrabee [36] GPU that

contains a 512-bit vector processing unit in each core, able to process 16 single

precision floating point numbers at a time.

10



2. VECTOR PROCESSORS 2.3 Existing implementations

Vector register architecture has several advantages over memory-memory ar-

chitectures [3]. A vector register architecture reduces temporary storage require-

ments, memory bandwidth, and inter-instruction latency compared to vector

memory-memory architecture because vector register architectures can keep inter-

mediate results while memory-memory architecture has to write all intermediate

results to memory and then must read them back from memory. Also if the result

of a vector instruction is needed by multiple other vector instructions, a memory-

memory architecture must read it from memory multiple times, whereas a vector

machine can reuse the value from vector registers, further reducing memory band-

width requirements. For these reasons, vector register machines have proven more

effective in practice. In the rest of this thesis, I restrict the discussion to vector

register architectures.
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Chapter 3

Vector library

One of the objectives in this thesis is designing and implementing a vector library

that will help us to vectorize and analyse target applications. The vector library

is implemented in C++ and has the following features:

• It collects results and statistics at runtime from the vectorized application.

• It implements a configurable vector register file.

• It implements vector ISA similar to VMIPS [20] plus extensions.

• It generates instruction and address traces of the vectorized application,

that enable further analysis.

• Provides wrapper functions for applications written in C and FORTRAN.

3.1 Configurable vector register file

The vector library implements a configurable vector register file. The number

of vector registers and the maximum number of elements per vector register are

parameters of the vector library. This allows us to use different configuration of

the vector register file and to specify different maximum vector lengths (MVL)

of the vector register.

Each register holds a set of values and they can be one of several data types:

12



3. VECTOR LIBRARY 3.2 Vector ISA

• signed or unsigned integer (16, 32 and 64 bits),

• double (floating-point double precision: 64 bits),

• float (floating-point single precision: 32 bits) or

• char (8 bits).

3.2 Vector ISA

The vector library implements a vector ISA similar to VMIPS [20]. Most instruc-

tions are RISC-like and register-based. The implemented vector ISA consists

of:

• arithmetic and logical instructions,

• memory instructions,

• reduction instructions and

• bit and element manipulation instructions.

Most implemented instructions are usually found in any register-based vector

ISA, but there are some not so common instructions that are useful or required

to vectorize our target applications. Following subsections give more details.

Tables 3.1 and 3.2 show the vector instructions implemented in the vector

library. The first column contains the type of instruction. The second column

is the opcode of instruction. Arithmetic and logical instructions have suffix S in

opcode (sixth column gives information if a particular arithmetic or logical vector

instruction supports vector-scalar mode) if one operand is scalar, or suffix MASK

if it is executed over vector mask register, or SMASK if one of the operands is

scalar and it is executed over vector register. Third and fourth columns give

information related with source and destination vector registers used by vector

instruction. Fifth column contains information related with vector mask register.

If an instruction contains x in masking column, it means that there are an avail-

able instruction that can be executed over the vector mask register (arithmetic

13



3. VECTOR LIBRARY 3.2 Vector ISA
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Figure 3.1: Two modes of vector instruction: (a) vector-vector and (b) vector-

scalar.

and logical and memory instructions) or one operand is a vector mask register

(bit and element manipulation instructions). Availability of an instruction with

scalar operand is displayed in the sixth column. The last column contains a short

description of the implemented vector instruction.

3.2.1 Arithmetic and Logic Instructions

The vector library implements all common arithmetic and logic instructions such

as addition, multiplication, subtraction, logical bitwise operations, etc. Instruc-

tions can operate in vector-vector or vector-scalar mode. In vector-vector mode,

an arithmetic or logic instruction has two vector source registers and performs

arithmetic or logic operations on all elements of vector in a pairwise fashion, as

figure 3.1 (a) shows. In vector-scalar mode, an arithmetic or logic instruction has

one vector source register and one scalar source value and performs arithmetic

or logic operations between all elements of vector register and scalar value, as is

14



3. VECTOR LIBRARY 3.2 Vector ISA

shown in figure 3.1 (b).

The vector library also supports masking. It means that implemented arith-

metic or logic instructions can be optionally executed over vector mask register

(see Section 2.2.4).

3.2.2 Memory Instructions

Common vector memory instructions such as unit-stride and strided memory

instructions as well as indexed memory instructions (scatter and gather) are im-

plemented in the vector library. In unit-stride memory access, consecutive ele-

ments are accessed, as in figure 3.2 (a). In strided memory accesses, elements are

accessed with a constant stride, as is shown in figure 3.2 (b). With indexed mem-

ory access elements accessed randomly using there indices stored in the vector

register, as figure 3.2 (c) shows.

Some of these instructions are implemented with support for masking. These

instructions are useful in kernels where we have to store or load some elements

of a stream depending on some condition. For example, in code below we store

only those elements from array b to array c if the corresponding element in array

a is greater than constant value con.

for( i = 1, i <= looplen , i++){

if (a[i] > con)

c[i] = b[i];

}

If we have memory instructions with support for masking, the code above is

vectorized in the following way:

ldv VR1 , a // load from array a to

// vector register VR1

cmpvsqt VMR , R1, con // compare vector register VR1 and

// scalar value con; store results

// in vector mask register VMR

ldvmask VR2 , b, VMR // load over VMR from array b

// and store to VR2

stvmask VR2 , c, VMR // store to array c from VR2 over VMR

The example above clearly show the importance of memory instructions with

support for masking.
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A10A1 A2 A6 A7 A8 A9A3 A4 A5 A11 A12 A13 A14 A15

(a)

A10A1 A2 A6 A7 A8 A9A3 A4 A5 A11 A12 A13 A14 A15

(b)

A10A1 A2 A6 A7 A8 A9A3 A4 A5 A11 A12 A13 A14 A15

(c)

1 5 6 10 15index vector

Figure 3.2: Different types of memory instructions: (a) unit-stride, (b) strided,

and (c) indexed.

The vector library also implements uncommon memory shape instructions,

similar to the one introduced by RSVP [13]. The vector is described by the

address of the first element and three scalar values: stride, span and skip. Stride

describes the spacing between each loaded/stored element (inclusive of element).

Span describes how many elements to access at stride spacing before applying

the second-level skip offset. For example, we want to load four elements from the

first row, but only every second element (Figure 3.3), then do the same for the

second row, etc. Using memory shape load instruction with stride equal 2, span

equal 4 and skip equal 3 we can load elements with only one memory instruction.

Memory shape instructions allow vectorization of previously non-vectorized

kernels or to increase average vector length of vectorized applications (see Chapter

5) and decrease the number of vector instructions used to vectorize some kernels.

3.2.3 Reduction Instructions

Reductions (such as sum) are often not available in some architectures. The

library provides supports for:

• Sum - computes the sum of all elements in a vector register.

• Max - finds maximum element in a vector register.
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A10 A11 A12 A16 A17 A18 A19A13 A14 A15

A20 A21 A22 A26 A27 A28 A29A23 A24 A25

A30 A31 A32 A36 A37 A38 A39A33 A34 A35

A40 A41 A42 A46 A47 A48 A49A43 A44 A45

A00 A01 A02 A06 A07 A08 A09A03 A04 A05

A90 A91 A92 A96 A97 A98 A99A93 A94 A95

... ......

Figure 3.3: An example of vector memory shape instructions where red elements

are loaded from matrix.

• Min - finds minimum element in a vector register.

The library also implements new reduction instruction called sub-reduction

add or sub-sum. This instruction performs the sum for sub-sets in a vector

register. For example, we want to sum group of 3 elements of an array, the first 3

elements, then next 3, etc. We can do it with the existing sum instruction, but we

will have short vectors and several load instructions, as figure 3.4 (a) illustrates.

Using sub-sum, we just need two instructions instead: one to load the vector and

for another to perform sub-reduction, as it is shown in figure 3.4 (b). With this

approach, the number of vector instructions is decreased and the average vector

length is increased.
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A10A1 A2 A6 A7 A8 A9A3 A4 A5 A11 A12

(b)

A1 A2 A3 A4load

sum C1

A6 A7 A8A5load

C2

+

sum

+

A10A9 A11 A12

sum C3

+

load

(a)

A10A1 A2 A6 A7 A8 A9A3 A4 A5 A11 A12load

C1 C2 C3

+ + +

sub-sum

array

Figure 3.4: An example of performing sum for sub-sets of array using: (a) reduc-

tion instruction sum and (b) new reduction instrucion sub-sum.

3.2.4 Bit and element manipulation instructions

Standard bitwise instructions such as OR, AND, etc. are implemented in the

vector library. The library also provides instructions that manipulate individual

elements of vector registers such as getelem, setelem, select, init, etc. Getelem

gets a particular element from the specified source register, while setelem sets a

particular element of vector destination register with specified scalar value. Select

instruction is related with masking (see Section 2.2.4) and selects elements from

one or other source depending on the value in vector mask register. Init or iota

has two operands, base and stride, and creates the following array:

base + j* stride , where j = 0, 1, 2... vl -1.
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3.3 Results and Statistics

One of the purposes of the vector library is to generate results and statistics from

vectorized applications. The library collects following statistics:

• Percentage of vectorized code. It tells us what is the degree of vectorization

in an application; number of operations executed in the vectorized code and

the number of operations executed in scalar code. The PAPI library [7] is

used to count the number of instructions executed in the scalar code (for

more details see Section 3.6).

• Instruction type statistics. It gives us information about distribution of the

vector instructions; how many times each instruction is executed and how

many operations are executed per vector instruction.

• Distribution of vector lengths. This information tells us how many instruc-

tions are executed for every vector length up to maximum vector length

and helps to determine the utilization of the vector register file.

• Algorithmic vector lengths. Lengths of arrays (vectors) in algorithms are

sometimes longer than the maximum vector length. The library collects

these statistics optionally and it is done manually during the process of

vectorization.

• Stride distribution information. It tell us how many memory instructions

are executed with the corresponding stride and it helps to determine the

dominant memory access patterns.

• Information related with the vector mask registers. The vector library sup-

ports masking and also collects statistics related with masking. It tells us

how many instructions and operations are executed over a vector mask reg-

ister and how many operations are really executed (operations for which bit

in the vector mask register was set).

If more information needs to be harvested, the vector library can be easily

extended to collect desired statistics.
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3.4 Instruction and address traces

The library has the support to generate a trace of executed vector instructions as

well as a trace of addresses for each memory vector instruction. The traces are

used as inputs in the ETModel to estimate the execution time of the vectorized

application (see Chapter 4). The traces can be generated in binary format, textual

or both.

The instruction trace has the following format:

[Num_of_scalar_ins] [Set_VL] Block_of_vector_ins

Num of scalar ins is the number of scalar instructions between two blocks

of vector instructions; Set VL is the vector length used in the following block of

vector instructions; and Block of vector ins is a block of vector instructions. Each

instruction in the block is represented by the instruction opcode, destination and

source registers with their types. The PAPI library is used to automatically count

the number of scalar instructions between two blocks of vector instructions.

Square brackets mean that num of scalar ins and set VL are optional. Some-

times there are no scalar instructions between two blocks of vector instructions,

they are just executed with different vector lengths or two blocks are executed

with the same vector length and between them there is some scalar code.

In order to reduce the size of the address trace, it does not always contain the

addresses of all locations in memory accessed by a vector memory instruction.

In general, it contains information that are sources of the memory instructions:

opcode, type of accessed data, base address, number of accessed elements, etc.

Different types of vector memory instructions have different formats.

Unit-stride vector memory instruction has the following format:

opcode type start_address num_elems

where opcode identifies particular instruction which accesses num elems ele-

ments of type type starting from address start address. These four parameters

are enough to generate addresses of all elements accessed by an unit-stride vector

memory instruction.

Strided vector memory instruction needs a small addition to the format of

unit-stride vector memory instruction:
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3. VECTOR LIBRARY 3.5 Wrappers

opcode type start_address num_elems stride

where stride is the distance between two accessed elements. Again this is

enough to generate all addresses for strided vector memory instructions.

Vector memory shape instructions need more information than unit-stride or

strided vector memory instructions. The format is following:

opcode type start_addr num_elems stride 1st_span span skip

where opcode identifies particular instruction which loads-stores num elems el-

ements of type type starting from address start addr. Stride describes the spacing

between each accessed element. Span describes how many elements to accessed at

stride spacing before applying the second-level skip offset. 1st span is related with

strip-mining (see section 5.1). Sometimes a memory shape instruction does not

access all elements in first span group, because some number of elements were

accessed in previous stripe of strip-mined loop. This is the reason for adding

1st span into the address trace for vector memory shape instructions.

The most problematic instructions are indexed and instructions executed over

a vector mask register. For an indexed vector memory instruction the address

trace contains the indices of all accessed elements and the base address:

opcode type start_address num_elems array_of_indices

For vector memory instruction executed over vector a mask register, the trace

contains only those addresses for which the corresponding bit in the vector mask

register is set:

opcode type start_address num_elems array_of_accessed_addr

3.5 Wrappers

Some benchmarks were written in C or FORTRAN. The library contains wrapper

functions that allow vectorization of applications written in FORTRAN and C.

3.6 Implementation details

Most code in the library is implemented in C++ using templates. Templates are

very well suited for our implementation because vector registers and implemented
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vector instructions have to support different data types. Several optimization

techniques such as in-lining, macros, etc. are applied. It allow us to have compact

and optimized code.

As mentioned above, the PAPI library is used to count scalar instructions be-

tween blocks of vector instructions. The idea is to count operations between calls

to functions of the vector library that simulate vector instructions. If there are

two consecutive function calls to the vector library without scalar code between

them, the PAPI library should still count some number of operations, which is

overhead of calling functions of the vector library. After some experiments, we set

a fixed threshold that is used to determine if two vector instructions are from the

same block or the obtained number of operations using PAPI represents scalar

code between two blocks of vector instructions. The threshold is highly dependent

on the host ISA and compiler.

We used Dell sever with four cores as evaluation environment for generating

instruction traces and collecting statistics. Each core is Xeon Dual-Core 5160 @

3.00GHz with 4MB of cache and 16GB of RAM. All applications were compiled

with gcc compiler (version 4.4.3), except the FaceRec which was compiled with

icc compiler (version 12.0.2).

-O3 optimization flag is used for all applications, except for the FaceRec.

-xSSE3 -fast -no-scalar-rep -unroll1 optimizations flags are used for the FaceRec.

The overhead of the vector library to the original application’s execution time

depends on the mode in which the library is run. The basic version of vector

library just collects results for the instruction level characterization. It can count

the scalar operations using the PAPI library and generate instruction and address

traces.

For example, the execution time of the original version of the Sphinx3 is

sixteen minutes. The basic version is less than four times slower than the original

version. The version than counts the scalar operations is 200 times slower because

the PAPI library adds a lot of overhead. The version that collects instruction

trace is 400 times slower because it has to write trace into a named pipe, while

the second process compresses that named pipe.

The vector library adds a lot overhead, but still it is less than a simulator.
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Chapter 4

ETModel

The target applications can be vectorized using the vector library and statistics

such as instruction level characterisation can be obtained but there is no infor-

mation related with execution time on a vector architecture. Detailed simulators

are very often used to evaluate performance of a processor. Although it is ac-

curate, this method is time-consuming, both to create the simulator and to run

the simulations. Our idea was to have fast results and to a perform preliminary

evaluation and early parameter exploration.

The ETModel is a simple trace-driven simulator for vector processors based on

the work presented by Karkhanis & Smith [23] and Hennessy & Patterson [20].

Karkhanis & Smith [23] propose analytical performance model for superscalar

processors, while Hennessy & Patterson [20] describe basic vector architecture as

well as techniques and concepts that help in enhancing vector performance. The

model consists of a component that models the micro-architecture of the desired

vector processor and methods that apply chaining and other implementation fea-

tures as described in section 2.2. The model uses an instruction trace, optionally

an address trace and IPC of scalar code as inputs to estimate execution time of

the vectorized application. Instruction and address traces are generated by the

vectorized application using the vector library (see Section 3.4).
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4. ETMODEL 4.1 Micro-Architecture

4.1 Micro-Architecture

The ETModel models a parametrizable in-order vector architecture similar to the

architecture presented in [20]. It consists of basic units such as a vector register

file, ALU units, vector load/store units and a memory hierarchy (figure 4.1). The

model is parametrizable because we can specify how many instances of any unit

are available in the model (e.g. number of lanes, number of ALUs, LD/ST units,

etc.). All units are also parametrizable:

• Number of vector registers and size of vector register for the vector register

file.

• Types of instructions and types of data that each ALU unit supports (e.g.

FP multiply unit, logical unit, etc.).

• Types of memory instructions that each vector load/store unit support.

Memory can be modeled in two different ways: simple and detailed. In the

simple approach, the memory is simply modeled with parameters such as cache

miss rates, bandwidths and latencies for each type of memory instruction. L1

and L2 cache misses are uniformly modeled using cache miss rates. For example

if L1 cache miss rate is 10%, every tenth access to L1 cache will be modeled as

miss. This approach is fast but has low accuracy.

In the second approach, a more accurate memory model is used. A trace of

addresses of vector memory instructions is generated by vector library and a sim-

ple cache simulator is implemented based on the memory model of SimpleScalar

[8]. For each vector memory instruction from the instruction trace, the address

trace contains all necessary information to generate all accessed addresses.

In both memory models, different types of vector memory instructions are

modeled separately. For the unit-stride memory instruction, we can load/store

a whole L1 cache line with only one access, while for all other types, only one

element per access is loaded/stored.

All the parameters mentioned above help us to analyse a broad range of differ-

ent configurations of vector processors ranging from very simple vector processors

with only one lane, one vector load/store unit and a small number of functional
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Figure 4.1: The basic structure of model register-based vector architecture.

units, to very complex vector processor with multiple lanes, several vector load-

/store units and a rich set of functional units.

Beside the concept of multiple lanes, other important techniques such as chain-

ing and pipelined instruction start-up (dead time or recovery time) are also in-

cluded into the model.

The ETModel also provides detailed statistics of the resource usage. For the

cache hierarchy, the ETModel collects the following:

• Total number of L1 accesses, the number of L1 miss (miss rate) and hit (hit

rate) accesses.

• Total number of L2 accesses, the number of L2 miss (miss rate) and hit (hit

rate) accesses.
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• Total number of cycles spent in the memory hierarchy.

• Average memory access time per access.

• The number of L1 accesses per memory unit.

For every functional unit, there is information about its usage; the number

of the cycles that particular functional unit was busy. There is also information

about dependent vector instructions: the number of vector instructions executed

using chaining or without chaining, as well as the number of cycles waiting for a

free ALU or memory unit. The distribution of data types (see section 5.3.4) was

collected using the ETModel.

All these statistics help us to better understand the obtained results and the

behavior of the vectorized applications.

4.2 Top-Level Model

For reasoning about vector processor operation, we utilized vector execution time

and enhancing vector performance models from [20] to create the algorithm of

execution in ETModel as shown in figure 4.2. The model reads the instruction

trace sequentially. Each opcode is loaded from the instruction trace and fit as

one of three possibilities:

1. The number of scalar instructions between two blocks of vector instructions.

The execution time for these scalar instructions is computed using the input

parameter scalar IPC (number of scalar instructions divided by IPC). We

assume that there is no overlapping between scalar and vector instructions.

2. A set vector length instruction.

The VL register is set for following vector instructions.

3. A vector instruction.

First, operands and type of operands are read from the instruction trace

file. After that, the model checks if it is a memory or arithmetic/logic
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instruction. In both cases, the model tries to find a free vector load/store or

ALU unit. If there isn’t a free unit, memory or arithmetic/logic instruction

waits for the first free load/store or ALU unit. Finally, when memory or

arithmetic/logic instruction finds free load/store or ALU unit it checks for

dependency and if there is no dependency the memory or arithmetic/logic

instruction is issued. Otherwise, the model checks for chaining and if it is

possible it issues chained memory or arithmetic/logic instruction. If it is

not possible, the memory or arithmetic/logic instruction is issued in non-

chained mode. It means that current instruction will be issued when the

previous instruction, from which the current instruction depends, is finished.
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Chapter 5

Vectorization

Our target applications are chosen from a range of applications that are used or

will be used in handheld devices or data centers. This range includes computer

vision, speech recognition, face recognition, 3D graphics and video media, con-

sole games, database management systems, etc. Asanovic et al. [5, 6] identify 13

”dwarfs”, which each capture a pattern of computation and communication com-

mon to a class of important applications. We also tried to cover several dwarfs

choosing the applications that contain different dwarfs.

5.1 Methodology

The process of vectorization contains the following steps:

• Profiling. The goal of profiling is to find kernels that consume the most

execution time. Applications are profiled using standard Unix profiler called

gprof and/or using Intel’s performance analyzer called VTune.

• Kernel testing on vectorization. Kernels that consume the most of execu-

tion time are examined for vectorization (e.g. does kernel contain loops,

dependency, what is the size of loop, etc.), and if they are suitable for

vectorization vectorized pseudo-code is written.

• Vectorization of kernels and applying strip-mining. The kernels are vec-

torized using functions from the vector library. The actual vector length
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required by an algorithm (the number of iterations of a loop) is usually

larger than maximum vector length (MVL) supported by the architecture

and often unknown at compile time. Strip-mining is a technique that al-

lows operating on “stripes” of the data of length less or equal to MVL.

Strip-mining is applied in all vectorized kernels in order to support vec-

torization of loops that are longer than the size of vector register. It also

allows changing the maximum size of vector register in the vector library

without modification in the vectorized application. MVL is a parameter of

the vector library that is set at compilation time.

• Collecting and analysing results. In this step, the vectorized application is

run and statistics are collected. The percentage of vectorized code, average

vector register length, etc. are analysed.

• Performing additional modifications of the vectorized code. If the collected

results are not satisfying, additional code modifications are performed in

order to improve the average vector length (longer vectors) or the percentage

of vectorized code, if it’s possible.

5.2 Vectorized applications

This section describes applications that have been vectorized. They are cho-

sen from several areas such as speech recognition, face recognition, data-mining,

graphical models and video compression. These applications also cover several

dwarfs such as dense linear algebra, sparse linear algebra, graphical models and

finite state machine.

5.2.1 SPEC2006 Sphinx3 benchmark

Sphinx3 is a widely known speech recognition system from Carnegie Mellon Uni-

versity. It includes both an acoustic trainer and various decoders, e.g., text

recognition, phoneme recognition, N-best list generation, etc. Sphinx3 adopted

the prevalent continuous hidden Markov acoustic model (HMM) representation
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and has been used primarily for high-accuracy, non-real-time recognition. The

benchmark is written in C.

5.2.2 SPEC2006 H264ref benchmark

H264ref is a reference implementation of H.264/AVC (Advanced Video Coding),

the latest state-of-the-art video compression standard. The standard is devel-

oped by the VCEG (Video Coding Experts Group) of the ITU (International

Telecommunications Union and the MPEG (Moving Pictures Experts Group)

of the ISO/IEC (International Standardization Organization). This standard

replaces the currently widely used MPEG-2 standard, and is being applied for

applications such as the next-generation DVDs (Blu-ray and HD DVD) and video

broadcasting. This benchmark is written in C.

5.2.3 SPEC2006 Hmmer benchmark

Hmmer benchmark searches a gene sequence database. It applies profile Hidden

Markov Models (profile HMMs), statistical models of multiple sequence align-

ments, which are used in computational biology to search for patterns in DNA

sequences.

The technique is used to do sensitive database searching, using statistical

descriptions of a sequence family’s consensus. It is used for protein sequence

analysis. It is written in C.

5.2.4 SPEC2000 FaceRec benchmark

This is an implementation of the face recognition system described in [24]. It is

an object recognition system based on the Dynamic Link Architecture, which is

an extension to classical Artificial Neural Networks. The benchmark is written

in FORTRAN.

5.2.5 ECLAT MineBench

ECLAT is an application from the data-mining realm. In particular, it imple-

ments a known algorithm for frequent itemset mining. The original implementa-
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tion was borrowed from NU-Minebench [27]. The most relevant operation consists

in the intersection of large sparse sets. The Minebench implementation has been

modified to use another data structure more suitable for vectorization, based on

bitmaps. The benchmark is written in C++.

5.3 Vectorized kernels

The vectorization of some kernels is neither obvious nor trivial. It requires a

lot of effort, deep understanding of kernels, sometimes algorithm modification or

introducing new vector instructions. In this section, we explain the process of

vectorization for some kernels that was not trivial.

In all vectorized kernels, the left-most operand is the destination register if an

instruction has a destination operand. The letter R represents a vector register,

while MV represents a vector mask register.

If a kernel contains a loop with a constant number of iterations during the

execution of application, this number is included in the loop condition. In order

to simplify the process of vectorization, we do not present strip-mining in the

most kernels.

5.3.1 Sphinx3

The Sphinx3 application contains several kernels that are difficult to vectorize.

5.3.1.1 Kernel 1. vector gautbl eval logs3

The source code of this kernel is shown above. This function takes 42.22% of

execution time. As we can see the function contains two loops, the inner loop

always has 13 iterations and the outer loop has 4,096 iterations for the ref data

input set. In the outer loop, three vectors are loaded and in the inner loop it is

performed some computation on all the elements in the vectors.

float32 *m, *v; // local variables

float64 dval, diff; // local variables

float32 *x, *score; // functions arguments
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double f = log_to_logs3_factor();

for (r = 0; r < 4096; r++){

m = gautbl->mean[r];

v = gautbl->var[r];

dval = gautbl->lrd[r];

for (i = 0; i < 13; i++){

diff = x[i] - m[i];

dval -= diff * diff * v[i];

}

if (dval < gautbl->distfloor)

dval = gautbl->distfloor;

score[r] = (int)(f * dval)

}

The first and obvious approach is to vectorize the inner loop, but in that

case, we will have very short vectors (length of thirteen) and reduction that is

an expensive instruction. Our approach is to vectorize the outer loop and in

this case, we will have vectors with length 4,096, but we will load them with a

stride of 13. The code below is the pseudo code of vectorized version. We ignore

strip-mining here.

ldv R1, gautbl->lrd

for (i = 0; i < 13; i++){

ldvs R2, gautbl->mean[i], 13;

subsv R3, R2, x[i];

mulv R4, R3, R3;

ldvs R5, gautbl->var[i], 13;

mulv R6, R4, R5;

subv R1, R1, R6;

}

cmpvs_gt MR1, R1, gautbl->distfloor;

selectvs R7, R1, gautbl->distfloor, MR1;

mulvs R8, R7, f;
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castv_int32_db R9, R8;

stv R9, score;

5.3.1.2 Kernel 2. subvq mgau shortlist

In this kernel, the elements of the array map are used as indices to access elements

from the array vqdist. A partial sum of the array vqdist is computed for groups of

three elements. All the sums are stored in the array gauscore and the maximum

of them is computed. Finally, for any element from array gauscore that is greater

or equal to threshold th, its index is stored into the array sl.

int32 *vqdist;

int32 *map;

bv = MAX_NEG_INT32;

for (i=0; i<8; i++){

v = vqdist[*(map++)];

v += vqdist[*(map++)];

v += vqdist[*(map++)];

gauscore[i] = v;

if (bv < v)

bv = v;

}

th = bv + beam; nc = 0;

for (i=0; i<8; i++){

if (gauscore[i] >= th)

sl[nc++] = 1;

}

sl[nc] = -1;

This kernel can be vectorized using reduction instructions, but the vector

length will be very short (just three elements). In order to improve vector length,

we introduced a new vector instruction called subreduction (see section 3.2.3)

that performs the sum of sub-sets in a vector register. With this instruction, we

can vectorize the kernel with a vector length of 24. The mnemonic used for this

instruction is vsubredadd. The vectorized pseudo-code is shown below.
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ldv R1, map;

ldvgi R2, R1, vqdist;

vsubredadd R3, R2, 3;

vredmax scalar, R3;

stv R3, gauscore;

th = scalar + beam;

cmpvs_ge MR1, R3, th;

vinit R4, 0, 1;

stvmask R4, MR1, vq->mgau_sl;

popcountvm temp, MR1;

sl[temp] = -1;

5.3.1.3 Kernel 3. mdef sseq2sen active

In this kernel, all elements of the array sswq are compared with zero in the outer

loop. Then for all non-zero elements of the array sswq, their positions are used

as indices to access an array of three elements from matrix mdef-sseq. After that

the three elements of the array are used to index the array sen. All accessed

elements of the array sen are set to one.

int16 *sp;

for (ss=0; ss<32639; ss++){

if (sswq[ss]){

sp = mdef->sseq[ss];

for (i=0; i<3; i++)

sen[sp[i]] = 1;

}

}

In this kernel, the inner loop can be vectorized easily, but vectors will be very

short. We decided to vectorize the outer loop. We load elements from array

sswq and compare with zero. We detected that this array contains a lot of zeros.

This is the reason why we count how many elements are different from zero using

the instruction popcountvm. If this number is equal to zero, we skip the rest of

the computation. Otherwise, we vectorize the kernel as it is shown below. vinit
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instruction creates index vector. The first element is i and every next element is

incremented for three. We could use here a different approach: if the scalar value

is lower than some threshold then execute the loop in scalar mode. To do it, we

need some experimental results to choose the proper threshold.

vsets R0, 1;

ldv R1, sswq;

smpvs_ne MR1, R1, 0;

popcountvm MR1, scalar;

if (scalar != 0){

for (i = 0; i < 3; i++){

vinit R2, i, 3;

ldvgimask R3, R2, MR1, mdef->sseq[0];

stvsi R0, R3, sen;

}

}

5.3.1.4 Kernel 4. dict2pid comsenscr

In the kernel below, the elements of the array comstate are used as indices to

access the array senscr. The inner loop is particularly interesting because we

do not know the number of iterations until execution time. It uses the break

keyword to exit the inner loop when it finds the first negative element in the

array comstate.

int16 *comstate;

for (i=0; i<873; i++){

comstate = d2p->comstate[i];

best = senscr[comstate[0]];

for (j=0; ; j++){

k = comstate[j];

if (k < 0)

break;

if (best < senscr[k])
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best = senscr[k];

}

comsenscr[i]=best+d2p->comwt[i];

}

We decided to vectorize this kernel in the following way. The code below

presents a vectorized version of the kernel using strip-mining, because it is easier

to understand. We load maximum vector length (MVL) elements from array

comstate and compare if these elements are greater or equal to zero. Then we

try to find the position of the first negative element in the vector (bitscann finds

position of the first zero in the vector mask register). If this number is equal to

MVL, we perform the computation on all elements. Otherwise, we perform the

computation just on all positive elements until the first negative element. The

pseudo-code below presents the vectorized kernel. We assume that the size of

comstate is a multiple of MVL and all memory accesses would be valid. If it is

not possible, we can check at the beginning if we have to use a smaller VL.

VL = MVL;

temp = VL;

for (i=0; i<873; i++) {

iter = 0;

temp = VL;

best = INT32_MIN;

while(temp == VL){

setvl VL;

ldv R1, (d2p->comstate[i] + iter * VL);

cmpvs_ge MR1, R1, 0;

bitscann temp, MR1;

if (temp != 0)

setvl(temp);

ldvgi R2, R1, senscr;

vredmax scalar, R2;

if (best < scalar)

best = scalar;
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iter++;

}

comsenscr[i] = best + d2p->comwt[i];

}

5.3.1.5 Kernel 5. approx cont mgau frame eval

The code below is just a part of the kernel approx cont mgau frame eval. For all

the elements of array sen active that are different from zero, best is subtracted

to the corresponding elements in array senscr.

for (t = 0; t < 6144; t++) {

if(sen_active[s])

senscr[s]-=best;

}

The vectorized kernel is shown in the code below.

ldv R1, sen_active;

cmpvs_ne MR1, R1, 0;

ldv R2, senscr;

subvsmask R2, R2, R1, MR1;

stv R2, senscr;

5.3.2 FaceRec

The four most executed kernels for FaceRec application have been vectorized. In

the first version of the vectorized code, the average vector length was very short.

We spent a lot of time improving the average vector length.

5.3.2.1 Kernel 1. passb4

In the code below, there are two loops. The vectorization of the inner loop is

not difficult, but 30% of all instructions are executed with a vector length of

four because there are three different combinations for iterations in the outer and

inner loops: 1) L1 = 1, IDO = 128, 2) L1 = 4, IDO = 32 and 3) L1 = 16, IDO =
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8. For the third case, the vector length for the vectorized version is four because

there are only four iterations of the inner loop (the step in the inner loop is two).

DO 104 K=1,L1

DO 113 I=2,IDO,2

TI1 = CC(I,1,K)-CC(I,3,K)

TI2 = CC(I,1,K)+CC(I,3,K)

TI3 = CC(I,2,K)+CC(I,4,K)

TR4 = CC(I,4,K)-CC(I,2,K)

TR1 = CC(I-1,1,K)-CC(I-1,3,K)

TR2 = CC(I-1,1,K)+CC(I-1,3,K)

! Some computation

CH(I,K,2) = WA1(I-1)*CI2+WA1(I)*CR2

CH(I-1,K,3) = WA2(I-1)*CR3-WA2(I)*CI3

CH(I,K,3) = WA2(I-1)*CI3+WA2(I)*CR3

CH(I-1,K,4) = WA3(I-1)*CR4-WA3(I)*CI4

CH(I,K,4) = WA3(I-1)*CI4+WA3(I)*CR4

113 CONTINUE

104 CONTINUE

In order to increase the vector length for the second and third case, we decided

to use vector memory shape instructions. For example, the distance between

elements that are used to compute TI1, in the two consecutive iterations of the

outer loop is constant. Therefore, there is regular access pattern with constant

stride across the iterations of the outer loop. We can create vectors of 64 elements

using vector memory shape instructions. We do not show vectorized code because

it is too long.

5.3.2.2 Kernel 2. gaborTrafo

The code displayed below is an interesting part of this kernel. FCImage and

FCTemp are two two-dimensional arrays of complex numbers with 256 elements

in each dimension. Kernel is three-dimensional array of floating-point elements
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with dimensions of 256, 256, and five. Two consecutive CSHIFT statemens shift

the first and the second dimension of the three-dimensional array Kernel for

ShiftRow rows and ShiftCol columns. The third dimension is fixed.

All elements from the first and second dimension of the three-dimensional ar-

ray Kernel with a fixed third dimension are multiplied with scalar value DC. Then

all shifted elements of Kernel are subtracted with the corresponding elements that

are multiplied with DC. At the end, resulting elements are multiplied with cor-

responding elements from the array FCImage (they are multiplied with the real

and imaginary parts of a complex number) and stored to the array FCTemp.

Complex(4) :: FCImage(256, 256), FCTemp(256, 256)

Real(4) :: Kernel(256, 256, 5)

FCTemp = FCImage&

& * (CSHIFT(CSHIFT(Kernel (:, :, Level),ShiftRow,1),ShiftCol,2) &

& - DC * Kernel (:, :, Level))

The critical part is subtraction between the shifted version of Kernel and

the original version that is multiplied with DC, as figure 5.1 shows. We have

to subtract the first part of the shifted Kernel with the first part of the original

Kernel, the second part with the second, etc. Consecutive elements in FORTRAN

are stored in column-major order.

I

I

II

II

III

III

IV

IV
- =

OriginalShifted Result

Figure 5.1: Subtraction of shifted version of Kernel and the original version.

In the first and simple approach, we load the first column from the first part of

the shifted Kernel and the first column from the first part of the original Kernel

and then subtract them. Then we repeat the process for the second columns, etc.

The process is the same for the remaining three parts.
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It means that the vector lengths are ShiftRow for the first and the second part

and 256-ShiftRow for the last two parts. ShiftRow is a small number in a lot of

cases and it means that we have short vectors.

We decided here again to use vector memory shape instructions in order to

increase the average vector length. Using vector memory shape instructions, we

can access all the elements from one part or up to MVL using just one vector

instruction.

5.3.2.3 Kernel 3. TopCostFct

This kernel is the most difficult one. This kernel performs some kind of stencil

computation. In order to compute one element of a two-dimensional array, it

has to access its neighbor elements. The code of this kernel is shown below. It

is important to mention that the computation is performed for all the elements

of the two two-dimenstional arrays and this is the code for central elements.

This computation is little bit different for corner cases and that complicates the

vectorization. CrdX and CrdY are two two-dimensional array with dimensions

twelve and nine. This kernel is called inside four nested loops. The two most

outer loops iterate over all elements of CrdX and CrdY. The two most inner

loops change current elements of the CrdX and CrdY from the current value

minus eight to the current value plus eight. It means that there are 64 iterations

in the two most inner loop. After this kernel computed OC and NC if is some

condition is true, the current element in the arrays CrdX and CrdY are updated.

It means that there is a dependency across iterations.

Integer :: EdgeXP, EdgeXM, EdgeYM, EdgeYP

Integer :: V1X, V1Y, V2X, V2Y, OCT, NCT

EdgeXP (V1X, V1Y, V2X, V2Y) = (V2X-V1X-StepX)**2+(V2Y-V1Y)**2

EdgeXM (V1X, V1Y, V2X, V2Y) = (V2X-V1X+StepX)**2+(V2Y-V1Y)**2

EdgeYP (V1X, V1Y, V2X, V2Y) = (V2X-V1X)**2+(V2Y-V1Y-StepY)**2

EdgeYM (V1X, V1Y, V2X, V2Y) = (V2X-V1X)**2+(V2Y-V1Y+StepY)**2

OC=0 +EdgeXM(CrdX(IX,IY),CrdY(IX,IY),CrdX(IX-1,IY),CrdY(IX-1,IY))

NC=0 +EdgeXM(NewX, NewY, CrdX(IX-1,IY),CrdY(IX-1,IY))
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OC=OC+EdgeYM(CrdX(IX,IY),CrdY(IX,IY),CrdX(IX,IY-1),CrdY(IX,IY-1))

NC=NC+EdgeYM(NewX, NewY, CrdX(IX,IY-1),CrdY(IX,IY-1))

OC=OC+EdgeXP(CrdX(IX,IY),CrdY(IX,IY),CrdX(IX+1,IY),CrdY(IX+1,IY))

NC=NC+EdgeXP(NewX, NewY, CrdX(IX+1,IY),CrdY(IX+1,IY))

OC=OC+EdgeYP(CrdX(IX,IY),CrdY(IX,IY),CrdX(IX,IY+1),CrdY(IX,IY+1))

NC=NC+EdgeYP(NewX, NewY, CrdX(IX,IY+1),CrdY(IX,IY+1))

In the first approach, we changed the code of this kernel in order to vectorize

it, but the best what we have were vectors with vector length of 8. After several

tests, we realized that the current elements of the CrdX and CrdY are very rarely

updated. Then we decided to vectorize the two most inner loops and increase the

length of vectors to 82. If we detect that there is an update after this computation,

then we have to recompute this computation using the first approach and vectors

of length eight.

5.3.3 ECLAT

My workmate has vectorized this application. I’ll not present details of the vec-

torization here because it is part of unpublished work. In the experiments of this

thesis we present the results for only one kernel of ECLAT, but it is the core

operation of the algorithm.

5.3.4 Hmmer

The Hmmer application contains only one significant kernel that takes more than

90% of the execution time. The vectorization of two-thirds of this kernel is

straightforward, while the vectorization of the remaining part of the kernel is not

possible because there is a complex chain of dependencies.

5.3.5 H264ref

In H264ref application, several benchmarks were vectorized. We present only the

two kernels that were not straightforward to vectorize.
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5.3.5.1 Kernel 1. FastFullPelBlockMotionSearch

The code below is the main part of this kernel which finds the minimum mcost for

elements from the array block sad. The vectorization of this kernel is not trivial

because there is a dependency across iterations if the variable mcost is updated.

There is also an if statement in the loop.

#define WEIGHTED_COST(factor,bits)

(((factor)*(bits))>>LAMBDA_ACCURACY_BITS)

#define MV_COST(f,s,cx,cy,px,py)

(WEIGHTED_COST(f,mvbits[((cx)<<(s))-px]+mvbits[((cy)<<(s))-py]))

for (pos=0; pos<1089; pos++, block_sad++){

if (*block_sad < min_mcost){

cand_x = offset_x + spiral_search_x[pos];

cand_y = offset_y + spiral_search_y[pos];

mcost = *block_sad;

mcost += MV_COST (lambda_factor, 2,

cand_x, cand_y, pred_mv_x, pred_mv_y);

if (mcost < min_mcost)

{

min_mcost = mcost;

best_pos = pos;

}

}

}

We explain the vectorization for this kernel with included strip-mining. The

dependency across iterations is solved in the following way. We load MVL el-

ements and compare them with current min mcost. Then we count how many

elements are less than current min mcost. If this number is greater than a thresh-

old (in our case MVL/2), then the remaining part of the computation for the

current stripe of the array block sad is executed in vector mode. Otherwise, it is

executed in scalar mode. The compress instruction is used to avoid the problem

with if statement. This instruction copies the elements of source vector register
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according to the set bits of vector mask. Copied elements are stored consecu-

tively in destination vector register. All the elements are loaded, but only the

computation is performed just for iterations in which if statement is true. The

vectorized code is shown below.

VL = MVL;

threshold = VL/2;

for (pos=0; pos < 1089; pos+=VL) {

if ((pos + VL)>max_pos) { VL=max_pos-pos; wrapper_setvl(VL);}

else wrapper_setvl(VL);

temp_min = min_mcost;

ldv R1, block_sad[pos];

cmpvs_lt MR1, R1, min_mcost;

popcountvm pop_cnt, MR1;

if (pop_cnt < threshold){

if(pop_cnt > 0){

bitscanvvm R0, MR1;

for (i=0; i<pop_cnt; i++){

getelem R0, i, curr_elem;

curr_cost = block_sad[pos+curr_elem];

if (curr_cost < min_mcost){

//--- scalar code ---

}

}

}

else{

compress R0, R1, MR1;

ldv R15, spiral_search_x[pos];

compress R2, R15, MR1;

ldv R16, spiral_search_y[pos];

compress R4, R16, MR1;

VL = pop_cnt;

addvs R3, R2, offset_x;
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addvs R5, R4, offset_y;

shopvs_l R3, R3, 2;

shopvs_l R5, R5, 2;

subvs R3, R3, pred_mv_x;

subvs R5, R5, pred_mv_y;

ldvgi R6, R3, mvbits;

ldvgi R7, R5, mvbits;

addv R8, R6, R7;

mulvs R9, R8, lambda_factor;

shopvs_r R9, R9, LAMBDA_ACCURACY_BITS;

addv R10, R0, R9;

vredmin temp_min, R10;

cmpvs_le MR2, R10, temp_min;

bitscanp temp_pos, MR2;

if (temp_min < min_mcost){

VL = MVL;

bitscanvvm R11, MR1;

min_mcost = temp_min;

getelem R11, temp_pos, curr_elem;

best_pos = pos + curr_elem;

}

}

}

5.3.5.2 Kernel 2. SubPelBlockMotionSearch

In the code below, one part of this kernel is shown. The computation in the inner

most loop is the only interesting part in the code for the vectorization. It sub-

tracts four elements with stride of four from matrix ref pic from four consecutive

elements from one row of the matrix orig pic and store results to the array d. The

computation is repeated for the next three rows of matrices orig pic and ref pic.

for (y0=0,abort_search=0;y0<blocksize_y && !abort_search;y0+=4){

ry0 = ((pic_pix_y+y0)<<2) + cand_mv_y;

for (x0=0; x0<blocksize_x; x0+=4) {
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rx0 = ((pic_pix_x+x0)<<2) + cand_mv_x;

d = diff;

orig_line = orig_pic [y0 ]; ry=ry0;

*d++ = orig_line[x0 ] - ref_pic[IP_S*4+ry][IP_S*4+rx0];

*d++ = orig_line[x0+1] - ref_pic[IP_S*4+ry][IP_S*4+rx0+ 4];

*d++ = orig_line[x0+2] - ref_pic[IP_S*4+ry][IP_S*4+rx0+ 8];

*d++ = orig_line[x0+3] - ref_pic[IP_S*4+ry][IP_S*4+rx0+12];

orig_line = orig_pic [y0+1]; ry=ry0+4;

*d++ = orig_line[x0 ] - ref_pic[IP_S*4+ry][IP_S*4+rx0];

*d++ = orig_line[x0+1] - ref_pic[IP_S*4+ry][IP_S*4+rx0+ 4];

*d++ = orig_line[x0+2] - ref_pic[IP_S*4+ry][IP_S*4+rx0+ 8];

*d++ = orig_line[x0+3] - ref_pic[IP_S*4+ry][IP_S*4+rx0+12];

orig_line = orig_pic [y0+2]; ry=ry0+8;

*d++ = orig_line[x0 ] - ref_pic[IP_S*4+ry][IP_S*4+rx0];

*d++ = orig_line[x0+1] - ref_pic[IP_S*4+ry][IP_S*4+rx0+ 4];

*d++ = orig_line[x0+2] - ref_pic[IP_S*4+ry][IP_S*4+rx0+ 8];

*d++ = orig_line[x0+3] - ref_pic[IP_S*4+ry][IP_S*4+rx0+12];

orig_line = orig_pic [y0+3]; ry=ry0+12;

*d++ = orig_line[x0 ] - ref_pic[IP_S*4+ry][IP_S*4+rx0];

*d++ = orig_line[x0+1] - ref_pic[IP_S*4+ry][IP_S*4+rx0+ 4];

*d++ = orig_line[x0+2] - ref_pic[IP_S*4+ry][IP_S*4+rx0+ 8];

*d = orig_line[x0+3] - ref_pic[IP_S*4+ry][IP_S*4+rx0+12];

}

}

We can vectorize this four parts of the inner loop easily, but then the vector

length will be just four. We decided to use vector memory load shape instruction

(see section 3.2.2) in order to load all sixteen elements and therefore, increase the

vector length to sixteen. The vectorize code is shown below.

for (y0=0,abort_search=0;y0<blocksize_y && !abort_search;y0+=4){
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ry0 = ((pic_pix_y+y0)<<2) + cand_mv_y;

for (x0=0; x0<blocksize_x; x0+=4) {

rx0 = ((pic_pix_x+x0)<<2) + cand_mv_x;

d = diff;

VL = 16;

ldvshape R1, orig_line+x0, 1, 4, 13, 0;

ldvshape R2, ref_pic[IP_S*4+ry][IP_S*4+rx0], 4, 4, skip, 0;

subv R3, R1, R2;

stv R3, diff;

}

}

5.4 Instruction level characterization

Before we define new vector architecture or propose adding some new functional-

ity, it is very important to have detailed knowledge of the low level characteristics

of vectorized applications. The same approach used Espasa [15] and Quintatna

[34]. They claimed that in order to be able to reason about performance deficien-

cies of a program it is necessary to know in detail the resource usage made by

the dominant parts of the program. Without this resource usage knowledge, it is

very difficult to determine whether a performance problem could be easily solved

by adding some extra functionality or whether the problem is more complex and

requires a significant amount of work.

The CONVEX vector machine was the target platform used in their study,

which has a fixed size of vector register, a fixed number of functional and memory

units, etc. In our case, the size of vector register or the number of vector registers

are parameters of the vector library that can be easily changed. Our vector ISA is

also flexible, we can add new vector instructions and generate some new statistics

with small changes in the vector library.

In this chapter, we present a detailed characterisation of the vectorized appli-

cations. In particular, we are interested in following measurements:
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• Percentage of vectorization : We can determine the degree of vectoriza-

tion by counting the number of scalar and vector operations. This degree

tells us in general if a vector processor is a suitable choice for vectorized

application.

• Distribution of vector lengths : An accurate measurement of the vector

lengths used in vector computations is crucial to understand the interaction

between latencies and performance. As it is known, larger vector lengths

help in amortizing all kinds of latencies, particularly memory latency. Vec-

tor length also has an impact on the pressure on the fetch and decode unit.

With longer vector lengths, lower number of instructions must be decoded

and executed.

• Distribution of Memory and Computation Instructions or Instruc-

tion Mix: This measurement gives us information about the vector instruc-

tions executed in the vectorized application. We can determine the most

executed instructions, as well as the ratio between memory and compu-

tation instructions. This information determines the resources that could

be a potential bottleneck when the vectorized application is executed. For

example, an application is memory bound if a particular configuration of

vector processor has only one memory port and several ALU units and

the ratio between memory and computation instructions is one. Memory

bound means that memory unit will be the bottleneck when the vectorized

application is executed.

• Memory access patterns : The most critical part of any vector machine

is the memory system. The distribution of unit-stride, strided, and indexed

vector memory instructions in vectorized applications has a high impact in

micro-architectural design decisions.

• Impact of vector register length : The number and length of vector

registers is a key decision in the design of a vector unit. Longer vector reg-

isters and the increased number of vector registers have several advantages

as it is reported in [3], but for applications with natural vector lengths fewer
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than the existing vector register length there is no improvements in perfor-

mance with longer vector register lengths. Using different vector register

lengths, we determine what is the optimum length for the set of vectorized

applications.

5.4.1 Degree of Vectorization

Table 5.1 presents some basic statistics for the set of vectorized applications. The

first column in this table contains the names of vectorized applications. SPEC

[2] benchmark suite provides input data sets with different sizes: small (test),

medium (train) and large (ref) input data sets. Some applications have several

different ref input data sets; Hmmer has two different ref input data sets and

H264ref has three different ref input data sets. Table 5.1 presents results for all

input data sets. The next two columns contain the total number of executed

instructions, broken down into scalar and vector instructions. In this study,

we made a distinction between operations and instructions. A scalar instruction

performs a single operation, while a vector instruction performs a varying number

of operations, depending on the value of the vector length (VL) register. The next

column presents the number of operations performed by the vector instructions

(a column for the number for scalar operation is not needed because it is identical

to the column that represents the scalar instruction counts). The fifth column is

the percentage of vectorization of each application. We used the same metrics as

Espasa et al [15]. The degree of vectorization of an application is defined as the

ratio between the number of vector operations and the total number of operation

performed by the program (i.e., column four divided by the sum of columns two

and four). The last column presents the average vector length used by the vector

instructions, and is the ratio between vector operations and vector instructions

(columns four and three, respectively). Note that these results are obtained for

a maximum vector register length of 64.

The first interesting point from table 5.1 is the degree of vectorization. All our

applications have a high percentage of vectorization. The degree of vectorization

goes from 62.90% for H264ref up to 91.06% for ECLAT. It is important to mention

that we have just vectorized the most executed kernels and these numbers can be
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Application # of scalar # of vector # of vector % of avg.

instructions instructions operations vectorization VL

FaceRec 2.1×1010 2.4×109 9.4×1010 81.81 38.7

Sphinx3 3.6×1011 3.7×1010 1.7×1012 82.47 46

ECLAT 1.7×108 3.8×107 1.7×109 91.06 59.1

Hmmer
2.2×1011 8.5×109 5.1×1011 70.08 59.9

5.2×1011 2.1×1010 1.1×1012 66.76 49.8

H264ref

1.5×1011 1.6×1010 2.6×1011 62.90 15.8

1×1011 9.3×109 2.1×1011 67.47 22.7

8.8×1010 7.7×1011 2.1×1012 73.22 23.38

Table 5.1: The degree of vectorization for the set of vectorized applications.

improved by vectorizing other kernels in applications. The degree of vectorization

also depends on the input data set. We can observe that Hmmer has different

degree of vectorization for its two different input data sets, 70.08% and 66.76%.

We investigated Hmmer application and found that we have different number of

iterations in the most executed loop for different input data sets. For the first

one, the number of iterations is 300, while for the second one is just 100.

The second interesting point from table 5.1 is the average vector length ob-

served in applications. Even though, these applications are highly vectorizable,

their average vector length varies a lot. Only Hmmer and ECLAT applications

have the average vector length very close to the maximum vector register size. All

other applications also have relatively long average vector length, except H264ref

application which has a short average vector length.

In our applications, the average vector length depends on the input data set,

as it is explained for Hmmer application above. The next section will present a

more detailed study about vector lengths.

5.4.2 Distribution of Vector Lengths

The vector length used by the vector instructions in vectorized applications is a

very important factor in achieving high performance in vector execution. Different
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sizes of vector registers have been used in vector architectures. The higher number

of register elements used during the computation is better, because all latencies

(memory and functional units latencies and vector start-up costs) are amortized

over the length of the vector register, but the utilization of resources can be the

problem if the vector register is very large. Simply longer vectors achieve higher

performance, because they have a lower associated overhead.

In this section, we present the effective usage of vector registers with 64 ele-

ments. In figure 5.2, we plot the cumulative percentage of executed instructions

and the cumulative percentage of executed operations in vector instructions for

each vector length used in a vector instruction. The X-axis plots the vector

length value and the Y-axis plots the cumulative percentage of instructions and

operations that have used a certain vector length. For example, for Sphinx3 we

can see that about 15% of all vector instructions were executed with a vector

length that was lower than 39, about 40% of all instructions were executed with

vector length 39, and the remaining 45% of instructions were executed using a

vector length equal to maximum, 64. We can also see that more than 60% of all

executed operations in vector instructions were executed with maximum vector

length of 64, about 35% of all operations were executed using a vector length of

39, and less than 5% of all operations were executed with a vector length that

was lower than 39.

From figure 5.2, it is clear that the vector length distribution does not follow

any regular pattern. Two applications (ECLAT and HmmerI) have the majority

of their vector lengths clustered around 64 and have a small percentage of other

vector lengths that are residuals generated due to strip-mining. The H264ref

application for all input data sets has a dominant vector length of 16. The other

programs use many different vector lengths. For all applications, except H264refI,

more than 50% of all operations are executed using the maximum vector length

of 64.

All in all, this data suggests that the utilization of the vector registers varies a

lot. While some of the applications almost always use the 64 elements, the other

could also run at a similar performance using shorter vector registers (H264ref

application). It is also obvious that the distribution depends on the input data

sets used to run applications (Hmmer and H264ref applications).
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Figure 5.2: Distribution of vector lengths. X-axis is the VL value and Y-axis is

a cumulative percentage distribution.
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App # of Instructions % # of Operations %

vector A&L Mem Red B&E vector A&L Mem Red B&E

ins Man ops Man

FaceRec 2.4×109 41.0 34.4 13.1 11.5 9.4×1010 43.9 39.9 12.3 3.8

Sphinx3 3.7×1010 46.5 37.8 11.3 4.3 1.7×1012 52.0 36.3 7.3 4.4

ECLAT 3.8×107 7.3 21.9 0.0 70.8 1.7×109 7.5 19.8 0.0 73.0

Hmmer 8.5×109 39.5 42.1 2.6 15.8 5.1×1011 39.5 42.1 2.6 15.8

H264ref

1.6×1010 31.8 48.8 13.4 6.0 2.6×1011 32.5 46.8 13.8 6.9

9.3×109 26.6 57.0 11.2 5.1 2.1×1011 18.9 69.0 8.0 4.1

7.7×1011 26.3 56.0 10.8 6.9 2.1×1012 19.5 76.8 7.6 5.0

Table 5.2: Distribution of vector memory and computation instructions and op-

erations.

5.4.3 Distribution of Vector Memory and Computation

Instructions

In table 5.2, we have included the distribution of vector instructions and oper-

ations for the set of vectorized applications. We have classified all instructions

executed by each application into four categories. These four categories are:

arithmetic&logical, memory, reduction, and bit&element manipulation instruc-

tions. The arithmetic&logical category includes all arithmetic and logical vector

instructions presented in tables 3.1 and 3.2. The memory category includes all

types of vector memory instructions. The reduction category includes all types

of reduction instructions such as sum, sum sub-reduction, minimum and maxi-

mum. The bit&element manipulation category includes vector instructions that

manipulate in the level of bits or elements in vector registers.

What we can see from table 5.2 is that instructions from memory category

are in the range from 35% to 42% of all vector instructions, except for ECLAT

application, in which this percentage is lower, about 22%. It means that if we have

a configuration of the vector processor with more functional units than memory

ports, it is likely that our applications will be memory bound.

We can also see that the distribution of vector instructions and vector oper-

ations for some benchmarks is the same (Hmmer), while for some other is not

the same (Sphinx3, FaceRec). The reason why we have different distributions for
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some benchmarks is that some vector instructions were executed with different

vector lengths. For example, in FaceRec there is a lot of setelem and getelem

instructions that operate on just one element of vector register and it is the rea-

son why we have 11.5% vector instructions from this bit&element manipulation

category and only 3.8% vector operations from the same category. On the other

hand, in Hmmer only one kernel was vectorized and that is the reason why we

have the same distribution for both vector instructions and operations.

The dominant computation category is arithmetic&logical, except for the

ECLAT application where bit&element manipulation category is dominant with

70.8% executed vector instructions. During the process of vectorization one goal

was to avoid reduction instructions wherever is possible, because reduction in-

structions are expensive, but still reduction instructions are significant in Sphinx3,

FaceRec, H264refI and H264refII applications with the range between 10% and

15%.

Table 5.2 presents the distribution of vector instructions and operations just

for one input data set for Hmmer application, because we observed that the

distribution is the same for the different input data sets. It is not case for the

H264ref application. We have almost the same distribution of vector instructions

and operations for second and third input data sets, while distribution of vector

instructions and operations is different for the first data input set. In the following

figures, we didn’t show the distribution of vector instructions for the third data

input set of H264ref, because it has the same distribution as second data input

set.

To understand the distribution of vector instructions better, we present the de-

tailed distribution of vector instruction for each category. The figure 5.3 presents

the distribution of vector instructions from arithmetic&logical category. The

dominant instructions are multiplication and addition (including subtraction) in

all applications, except ECLAT which contains only compare instruction in this

category.

Overall, additions and multiplications appear to be approximately in 1 to 1

proportion, except for the H264ref application where more than 90% are add-like

instructions, and for a well balanced architecture (in terms of functional units),
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the number of units able to perform a multiplication and the number of units

able to perform add-like instructions should be the same.
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Figure 5.3: Distribution of arithmetic and logical vector instructions.
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Figure 5.4: Distribution of vector memory instructions.
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Figure 5.4 presents the distribution of vector memory instructions. We can

see that vector load instructions are dominant compared to vector store instruc-

tions. It is interesting that for all applications vector store instructions are in the

range from 10% to 15%, except for ECLAT where we have 33.3% of vector store

instructions.

Unit-stride vector memory instructions are dominant in all applications, ex-

cept in ECLAT. In Hmmer application, almost all memory instructions are unit-

stride, more than 99%. Strided memory instructions play an important role in

Sphinx and FaceRec with 27.1% and 20.8%, respectively.

Memory shape instructions are used in FaceRec, H264refI and H264refII ap-

plications with 8.1%, 4.3% and 3%, respectively. They helped in the vectorization

of some kernels and the increase of the average vector length (FaceRec).

Indexed vector instruction, scatter and gather, were also executed in some ap-

plications. Gather instruction is dominant in ECLAT application with 60% of all

memory instructions, and this instruction is also significant in H264refI, H264refII

and Sphinx3 with 25.2%, 18.14%, and 9.3%, respectively. Scatter instruction is

used in H264refI, H264refII and Spihnx3 applications.

Another interesting point in the figure 5.4 is the different distribution of mem-

ory instructions for different input data sets of H264ref application. We investi-

gated H264ref and found that function memcpy is more significant for the second

input data set because it copies larger blocks of data from one to another memory

location. Since this function is vectorized using unit-stride vector load and store

instructions, it reflects on a higher percentage of unit-stride vector store.

The distribution of reduction instructions is presented in figure 5.5. These

instructions are significant in all applications, except in Hmmer with 2.6% and

ECLAT which does not use reduction instructions (it does not appear in figure).

Sub-reduction instruction is dominant in H264ref application with more than 90%

and this instruction was also used in FaceRec and Sphinx3. Sum instruction was

used in the same applications, but this instrucion is dominant in FaceRec and

Sphinx3. Instructions that find the maximum or minimum in a vector are also

used in Sphinx3 and H264ref.

Figure 5.6 presents the distribution of vector instructions from bit&element

manipulation category. As we can observe from the figure, the usage and dis-
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Figure 5.5: Distribution of vector reduction instructions.
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Figure 5.6: Distribution of vector bit and element manipulation instructions.
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tribution of vector instructions from bit&element manipulation category vary a

lot.

Instruction select is relevant in FaceRec, Sphinx3 and Hmmer applications.

Bitscan instruction in different forms is relevant in all applications, except Hm-

mer, while vsets instruction is relevant in Sphinx3, H264refI and H264refII.

Getelem instruction is relevant in FaceRec, H264refI and H264refII.

5.4.4 Distribution of Data Types

The usage of data types in computation for an application is very important

for determining the types of functional units in a processor. Tables 5.3 and 5.4

present the distribution of data types for computational vector instructions in

our vectorized applications and memory vector instructions, respectively.

ECLAT and HmmerI use only integer data type of 32 bits. H264ref also uses

only integer data types, but of different sizes: 16, 32 and 64 bites. FaceRec

and Sphinx3 are floating-point applications. FaceRec only uses 32 bits float and

integer data types, while Sphinx3 uses floating-point data types: (64 bits) and

float (32 bits); and integer data types of 16 and 32 bits.

Hmmer, ECLAT and H264ref require only ALU units with support for integer

data types. FaceRec and Sphinx3 require a lot of support for floating-point data

with single precision, while Sphinx3 also needs support for floating-point data

with double precision.

We counted the distribution of data types using destination type. The conver-

sion is possible in some vector instructions. That is the reason why the Sphinx3

has 0% of double data in memory instructions, but 63.8% double data in the

computational instructions.

5.4.5 Vector Stride Distribution

The vector stride, used in the vector memory access, is an important metric of the

vectorized programs. The vector stride is the number of elements that separate

two consecutive elements of a vector memory access.

Unit-stride memory access provide the best performance results when memory

hierarchy consist of a cache hierarchy because it results in a better utilization
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type FaceRec Sphinx3 ECLAT HmmerI H264refI

int16 0.0% 3.9% 0.0% 0.0% 21.2%

int32 19.3% 11.9% 0.0% 100% 77.5%

uint32 0.0% 0.0% 100% 0.0% 0.0%

uint64 0.0% 0.0% 0.0% 0.0% 1.3%

float 80.7% 20.4% 0.0% 0.0% 0.0%

double 0.0% 63.8% 0.0% 0.0% 0.0%

Table 5.3: Distribution of data types for computational vector instructions.

type FaceRec Sphinx3 ECLAT HmmerI H264refI

int16 0.0% 8.5% 0.0% 0.0% 57.7%

int32 1.3% 14.4% 0.0% 100% 39.0%

uint32 0.0% 0.0% 100% 0.0% 0.0%

uint64 0.0% 0.0% 0.0% 0.0% 3.3%

float 98.7% 77.0% 0.0% 0.0% 0.0%

double 0.0% 0.0% 0.0% 0.0% 0.0%

Table 5.4: Distribution of data types for memory vector instructions.

of the memory bandwidth. In unit-stride memory access, the full cache line

is delivered to the processor, while for strided memory access it is not case.

A memory access with stride two only uses half of the elements in the cache

line. When the stride is larger than the number of elements in a cache line,

each accessed cache line provides only one element. It minimizes the benefits of

exploiting the memory bandwidth.

Figure 5.7 presents the vector stride distribution for the set of vectorized ap-

plication. It does not include scatter/gather vector instructions. Some of the

applications, like ECLAT, Hmmer and H264ref, execute the majority of their

memory access with stride equal one. In this case, applications directly benefits

from the memory bandwidth. In FaceRec, the most significant memory accesses

are with stride one and two. This application also has a small percentage of mem-

ory accesses with stride 8. In Sphinx3, all memory accesses were performed with
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Figure 5.7: Distribution of strides for vector memory instructions.
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strides one and 13. Applications that execute memory accesses with unit-stride

and strides greater than one, and indexed memory accesses will have performance

loss due to memory hierarchy with caches.

5.4.6 Impact of maximum vector register length

As stated at the beginning of this chapter, the maximum length of vector register

is a key decision in the design of a vector unit. A larger vector length potentially

decreases the number of executed vector instructions and scalar operations, but

increases the chip area that is a critical parameter in the design of any micropro-

cessor.

In this section, we make a study about the behavior of the vectorized appli-

cations when varying the maximum vector length from 16, to 32, 64, 128 or 256

elements. The study has been made by measuring the degree of vectorization and

the number of executed vector instructions and operations with different vector

lengths.

As the vector length increases, the total number of executed operation de-

creases due to the lower number of loop iterations carried out in each vectorized

loop where strip-mining is performed. This effect should increase the degree of

vectorization. The table 5.5 presents the degree of vectorization (see section 5.3.1)

using different maximum vector lengths. As was it expected, the degree of vec-

torization increases for FaceRec, Sphinx3 and H264ref applications if we increase

maximum vector length. The degree of vectorization is the same for all maximum

vector lengths in Hmmer and ECLAT applications. We investigated these two

applications. We found that only one kernel is vectorized in both applications

and the control scalar instructions in vectorized loop were discarded (not included

into instruction trace) because the threshold (section 3.6) was high.

Figure 5.8 presents the vector length distribution for the set of vectorized

application, when varying the maximum vector length. We plot the cumulative

percentage of executed vector instructions for each vector length used in a vector

instruction. The X-axis plots the vector length value and the Y-axis plots the

cumulative percentage of instructions that have used a certain vector length.
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Application Maximum Vector Length

16 32 64 128 256

FaceRec 78.68% 80.83% 81.81% 81.93% 81.98%

Sphinx3 80.54% 81.40% 82.46% 83.57% 85.36%

ECLAT 91.06% 91.06% 91.06% 91.06% 91.06%

Hmmer
71.82% 71.82% 71.82% 71.82% 71.82%

69.12% 69.12% 69.12% 69.18% 69.18%

H264ref 64.89% 62.76% 62.89% 63.42% 64.54%

Table 5.5: Degree of vectorization for different maximum vector register lengths.

As we can see, the vector length distribution follows several patterns. ECLAT

has most of its vector lengths concentrated around maximum vector length, but

it does not cause a huge increase in the number of instructions with the maximum

vector length, as the maximum vector lengths decreases. It means that usage of

vector registers is almost independent of maximum vector length.

HmmerI and HmmerII have a single dominant vector length, which is the

number of iteration in the vectorized loop, i.e. 300 and 100, respectively. When

the maximum vector length is 256, an instruction with 300 operations in HmmerI

must be carried out by using two vector instructions; one with vector length 256

and the other with vector length 44. This is reason for the step in figure 5.8 for

VL 256 plot. When the maximum vector length is set to 128, each instruction

with vector length 256 is carried out two instructions with vector length 128, and

there is one more instruction with vector length 44. This is the explanation of

the step in the VL 128 plot. For VL 64, 32 and 16 plots, the same phenomenon

happens.

A single vector instruction can carry out 100 operations in a single go in

HmmerII for maximum vector length 128 and 256. If we use shorter vector

lengths, there is the same phenomenon as for HmmerI.

FaceRec and Sphinx3 have a distribution that follows a staircase, having sev-

eral dominant vector lengths. As the maximum vector length decreases, the

number of vector instructions that use the maximum vector length increases. In
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Href264refI, the dominant vector length is 16, although there is a minor use of

other values.
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Figure 5.8: Vector length distribution for different maximum vector lengths.
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Chapter 6

Timing Analysis

In this chapter, we study the impact of the parameters of the ETModel on an

application’s execution time. In particular we are interested in the following:

• Impact of memory latency and sizes of L1 and L2 caches. As it is well

known, long vectors hide the memory latency. We want to check what

is the behavior of the set of vectorized applications using different cache

configuration and memory latencies.

• Impact of different configuration of functional units. It is very difficult to

determine the best configuration of functional units. We want to see what

is the impact on execution time of the set of vectorized application when

using different configuration of functional units.

6.1 Memory latency and cache configurations

In this section, we are interested in the impact of memory latency on execution

time of the vectorized applications, as well as, impact of different configuration

of cache hierarchy.

In the experiments, we use three different memory latencies for main memory:

100, 200 and 400 cycles. Table 6.1 presents different configuration of caches used

in our experiments. We use four different configurations, ranging from small

caches (L1 2KB, L2 32KB) to very large caches (L1 1MB, L2 16MB). The L2 cache
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# L1 L2 L1 hit L2 hit L1 line L2 line

cache cache latency latency size size

1 2KB 32KB 1 6 32 64

2 16KB 256KB 1 6 32 64

3 128KB 2MB 2 6 32 64

4 1MB 16MB 4 6 32 64

Table 6.1: Different configurations of cache hierarchy.

is sixteen times larger than the L1 cache for all configurations, while every next

configuration has eight times larger L1 and L2 caches than previous configuration.

L1 cache hit latency is one cycle for the first two configurations, while two and

four cycles are used for third and fourth configurations, respectively. The L2

cache hit latency, associativity, sizes of L1 and L2 cache line are the same for all

configurations. All caches are 4-way set associative.

A fixed configuration of functional units with two ALU units and two memory

units is used in all experiments. ALU units support all vector arithmetic and logic

instructions with any data types, while memory units support all types of vector

memory instructions. Instruction and address traces with the maximum vector

length (MVL) of 32, 64, 128 and 256 are used as input traces for the experiments.

Figures 6.1 and 6.2 present execution times for the set of vectorized applica-

tions using different sizes of L1 and L1 caches and different latencies for main

memory. Y-axis displays the number of cycles and X-axis the different configu-

rations of main memory latencies and MVLs. We show the result for the best

configuration (the fourth configuration or blue bar) and then stack difference be-

tween the third and the fourth, the second and the third, and finally between the

first and the second configurations. A smaller number of cycles presents better

result.

We can compare several things on these figures:

• Different cache configuration for the same MVL and main memory latency.

• Different MVLs for the same main memory latency and cache configuration.
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• Different main memory latencies for the same MVL and cache configuration.

The first observation for all applications is that we have better execution

time for larger caches for all MVLs and all main memory latencies. The only

exceptions are HmmerI for main memory latency of 100 cycles and all MVLs,

and H264refI for all combinations of latency and MVL. In HmmerI, the best

execution is obtained for third cache configuration, as it is shown in figure 6.3.

We analysed obtained statistics and found that we have very low L1 miss rate

in both cases (less than 0.1%), but L1 cache hit latency is two cycles for third

configuration and four cycles for fourth configuration. For the other two main

memory latencies, fourth configuration is a little bit better because main memory

latency has more impact on execution time (L2 miss rate is one order of magnitude

smaller for fourth configuration - 0.007%).

In the H264refI application, the third configuration is the best for all latencies

and MVLs, as figure 6.4 shows it. We analysed the statistics. The reason is again

the same, but for this application, the L1 miss rate is even lower (0.001% for the

fourth configuration).

With this very small L1 miss rate, the L1 hit latency has a bigger impact on

the execution time than the main memory latency. It is the reason why the third

configuration is the best for all latencies and MVLs. The second configuration is

also better than the fourth one for a main memory latency of 100 cycles, because

the second configuration has one cycle L1 cache hit latency.

The second interesting point for the set of applications is that there is very

small difference between the third and fourth configuration. It means that L1

cache of 128KB and L2 cache is 2MB is enough for very good performance,

further increasing does not improve so much the execution time.

One expected behavior is to have better execution time if we use the same

main memory latency and cache configuration but larger MVL (FaceRec, ECLAT,

HmmerI). It is not the case for Sphinx3 and H264refI. In the H264ref application,

all vectorized kernels use the vector length of 16 or smaller lengths, except the

Kernel1 described in the section 5.3.5 and the kernel that copies an array from

one to another memory location. The second kernel does not have an impact on
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Figure 6.1: Application’s execution time for different memory latencies and con-

figurations of cache hierarchy for FaceRec, Sphinx3 and ECLAT.

71



6. TIMING ANALYSIS 6.1 Memory latency and cache configurations

1
0
0
 V

L
=
3
2

1
0
0
 V

L
=
6
4

1
0
0
 V

L
=
1
2
8

1
0
0
 V

L
=
2
5
6

2
0
0
 V

L
=
3
2

2
0
0
 V

L
=
6
4

2
0
0
 V

L
=
1
2
8

2
0
0
 V

L
=
2
5
6

4
0
0
 V

L
=
3
2

4
0
0
 V

L
=
6
4

4
0
0
 V

L
=
1
2
8

4
0
0
 V

L
=
2
5
6

0.00E+00

1.00E+11

2.00E+11

3.00E+11

4.00E+11

5.00E+11

H264refI

L1=2KB, L2=32KB

L1=16KB, L2=256KB

L1=128KB, L2=2MB

L1=1MB, L2=16MB

1
0
0
 V

L
=
3
2

1
0
0
 V

L
=
6
4

1
0
0
 V

L
=
1
2
8

1
0
0
 V

L
=
2
5
6

2
0
0
 V

L
=
3
2

2
0
0
 V

L
=
6
4

2
0
0
 V

L
=
1
2
8

2
0
0
 V

L
=
2
5
6

4
0
0
 V

L
=
3
2

4
0
0
 V

L
=
6
4

4
0
0
 V

L
=
1
2
8

4
0
0
 V

L
=
2
5
6

0.00E+00

1.00E+11

2.00E+11

3.00E+11

4.00E+11

5.00E+11

6.00E+11

7.00E+11

8.00E+11

HmmerI

L1=2KB, L2=32KB

L1=16KB, L2=256KB

L1=128KB, L2=2MB

L1=1MB, L2=16MB

Figure 6.2: Application’s execution time for different memory latencies and con-

figurations of cache hierarchy for HmmerI and H264refI.
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execution time if different MVLs are used. It means that only the first kernel has

an impact on the execution time with different MVLs.

We analyzed the collected statistics of Kernel1 for MVL of 64, 127 and 256.

The only difference that we observed is the number of executed vector operations.

A larger number of vector operation is executed with longer MVLs. It means

that the vectorized kernel causes the execution of useless vector operations. Our

conclusion is that the number of useless instructions grows with larger MVL and

decreases the performance.

Table 6.2 presents statistics for Sphinx3 using the fourth configuration of

table 6.1 with a main memory latency of 100 cycles and three different MVLs: 64,

128 and 256. Two memory units and two ALU units are used in the experiments.

It is obvious that chained and non-chained instructions are not the problem, as

well as memory units. The ALU units can be the potential problem, because the

time spent on waiting for free ALU unit is increasing if we increase the MVL.

After that, we did the same experiments, but with four ALU units. Statistics

are presented in table 6.3 and again we have the worst results for the MVL of

256. Our hypothesis that the number if ALU units causes the problem is wrong.

Then we noticed that the number of vector operations was increased 8% for the

MVL of 128 and 24% for the MVL of 256 over the version with MVL of 64.

We investigated the vectorized kernels and found that two kernels (see sections

5.3.1: Kernel3 and Kernel4) cause this increase in the number of vector operations

if we increase the MVL. The approach that we used for vectorization of these

kernels in inefficient if we increase the MVL. The number of useless operations

rapidly grow for larger MVLs.

The third interesting and expected point for applications is that if we just

increase main memory latency and keep the same configuration and MVL, the

execution time is also increased. We can also observe that larger caches and

MVL longer than 64 very efficient hide main memory latency. There is very

small difference in the execution time for different main memory latencies.

In FaceRec, the execution time is almost the same for all MVLs greater or

equal to 64 and main memory latencies if large caches are used. There are two

reasons for that: very large caches efficiently hide memory latency and just a
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VL 64 VL 128 VL 256

# of vector ins 37,356,562,539 30,379,155,993 26,856,952,827

# of issued 13,281,546,824 11,294,402,511 10,299,505,495

chained ins 35.5% 37.1% 38.3%

# of issued 1,072,629,363 1,043,396,498 1,023,718,732

non-chained ins 2.8% 3.4% 3.8%

Execution time 1,008,398,908,647 1,043,157,410,086 1,127,667,894,353

# of cycles waiting 26,179,667,429 25,957,119,671 25,848,595,780

for non-chained ins 2.5% 2.4% 2.2%

# of cycles waiting 393,743,461,782 443,172,579,752 534,759,004,284

for ALU units 39.0% 42.4% 47.4%

# of cycles waiting 4,043,538,904 6,634,680,448 10,158,002,143

for mem units 0.4% 0.6% 0.9%

Table 6.2: Statistics for Sphinx3 application with two ALU and two memory

units.

VL 64 VL 128 VL 256

# of vector ins 37,356,562,539 30,379,155,993 26,856,952,827

# of issued 23,072,615,866 17,441,777,540 14,626,782,064

chained ins 61.7% 57.4% 54.4%

# of issued 1,714,936,764 1,659,553,915 1,655,349,130

non-chained ins 4.5% 5.4% 6.1%

Execution time 828,126,965,262 849,009,773,643 925,992,549,247

# of cycles waiting 36,606,611,354 36,501,315,238 36,489,244,465

for non-chained ins 4.4% 4.2% 3.9%

# of cycles waiting 9,044,243,498 9,217,876,247 9,333,152,357

for ALU units 1.1% 1.1% 1.0%

# of cycles waiting 45,434,665,765 81,485,034,085 100,470,022,047

for mem units 5.4% 9.5% 10.8%

Table 6.3: Statistics for Sphinx3 application with four ALU and two memory

units.
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Figure 6.3: Execution time for HmmerI application.
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Figure 6.4: Execution time for H264refI application.
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small number of instructions are executed with vector length larger than 64 (see

figure 5.8).

In Hmmer and H264refI application, the different configurations of the cache

hierarchy have a small impact on execution time, except for a main memory

latency of 400 cycles.

A general conclusion is that a L1 cache of 128KB and a L2 cache of 2MB are

enough to provide sustainable performance and hide main memory latencies for

all applications for MVLs larger or equal to 64 elements.

6.2 Functional units

In this section, we explore different configurations of functional units. Table 6.4

presents four different configurations of functional units. For simplicity, in our

experiments ALU units support all vector arithmetic and logic instructions with

all data types, while memory units support all types of vector memory instruc-

tions. Instruction and address traces with the maximum vector length (MVL) of

32, 64, 128 and 256 are used as input traces for the experiments.

In all the experiments, the same configuration of cache hierarchy is used, with

a L1 cache of 128KB and a L2 cache of 2MB. It is the third configuration in

table 6.1. Again three different memory latencies for main memory (100, 200 and

400 cycles) are used.

Figures 6.1 and 6.2 present the execution time for the set of vectorized ap-

plications using different configurations of functional units. The Y-axis displays

the number of cycles and the X-axis the different configurations of main memory

latencies and MVLs.

The first interesting point is that the fourth configuration with two memory

and two ALU units is the best in all applications. That is reasonable because

it has more resources than the other configurations. The first configuration is

always the worst because it has less resources than the other configurations. The

third configuration with one memory unit and two ALU units is better than the

second configuration with two memory units and one ALU unit in all applications,

except in ECLAT for some configurations, as figure 6.7 shows.
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Figure 6.5: Application’s execution time for different configurations of functional

units for FaceRec, Sphinx3 and ECLAT.
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# ALU mem

units units

1 1 1

2 1 2

3 2 1

4 2 2

Table 6.4: Different configurations of functional units.
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Figure 6.6: Application’s execution time for different configurations of functional

units for HmmerI and H264refI.
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The ECLAT application has a lot of indexed memory instructions. The impact

of indexed instructions cannot be hidden when the main memory latency is high

and MVL is short. It is the reason why the second configuration performs better

than the third for shorter maximum vector lengths and higher main memory

latencies.

In Sphinx3, HmmerI and H264refI there is a very small difference between

the fourth and the third configuration, as well between the second and the first

configuration. It means that these applications are computational bound. An

additional memory unit provides very small performance improvements.
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Figure 6.7: ECLAT’s execution time for configurations of functional units where

the second configuration is betther then the third.

In FacRec, the fourth configuration improves performance over the third con-

figuration. It is also the case in ECLAT for configurations with smaller main

memory latencies or large main memory latencies with longer maximum vector

lengths.

Another interesting point is that, for the H264ref, there is a small difference

between the best and the worst configuration.

Different maximum vector lengths and main memory latencies do not have a

big impact for the fixed configuration of functional units, except for ECLAT.

Table 6.5 presents the usage of ALU and memory units for the different con-

figurations of functional units. In all the experiments, the third configuration
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from table 6.1 is used as cache hierarchy. Main memory latency is 100 cycles

while the MVL is 64.

The first column in this table contains the names of vectorized applications.

The second column contains the different configurations of functional units, the

same as in table 6.4. The next four columns contain the percentage of usage

for functional units used in the tested configurations. If a configuration does

not have two ALU units or two memory units, ”-” is in the field for the second

ALU or memory unit. The sixth column contains the execution time presented in

cycles. The last two columns contain the percentage of execution time for which

computation or memory instructions wait for free ALU or memory unit.

The first interesting point is that if we use the the configurations with one

ALU unit, all applications spend at least 46.6% of the execution time waiting

for free ALU unit, except H264refI which spends 27.3% and 29.3% for the first

two configurations of functional units, respectively. The second interesting point

is that all applications spend less than 10% of the execution time waiting for

free memory unit for all configurations of functional units, except for the third

configuration in FaceRec, Sphinx3 and ECLAT.

If we use the third configuration from the table 6.4, the execution time is

reduced for all applications. In the FaceRec, the third configuration reduces the

waiting time from 47.6% for the first configuration to 20.2%. One more memory

unit provides very small speed-up over the third configuration, while the waiting

time for ALU units is almost the same.

In the Sphinx3, the third configuration causes almost the same behaviour

as in FaceRec. Only difference is that the waiting time for free memory unit

is dominant now. The fourth configuration removes the waiting time for free

memory unit, but does not provide speed-up because the waiting time for free

ALU unit is again significant (39.2% of the execution time).

The conclusion is the same for the ECLAT and HmmerI as for the FaceRec,

if we use the third configuration. Only difference is that the waiting time for

free ALU unit is still significant for the ECLAT (40.2% of the execution time).

One more memory unit again provides very small speed-up over the third config-

uration. It reduces the waiting time for free memory unit but also increases the

waiting time for free ALU unit.
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The third configuration almost removes the waiting time for free ALU unit and

the waiting time for free memory unit in the H264refI. The fourth configuration

has very small impact on the execution time.

We can also observe that the second memory unit has the usage less than 5%

in the HmmerI and H264refI.

All these data suggest that the vectorized applications are computational-

bound. Therefore, the target vector processor should have more ALU units than

memory units.
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Apps configu- 1st 2nd 1st 2nd execution wait wait

ration ALU ALU mem mem time ALU mem

FaceRec

1alu-1mem 65.0% - 23.3% - 9.16×1010 47.6% 9.1%

1alu-2mem 68.9% - 15.9% 9.0% 8.63×1010 50.6% 2.9%

2alu-1mem 47.3% 43.6% 31.7% - 6.75×1010 20.2% 14.2%

2alu-2mem 51.1% 48.3% 23.0% 12.1% 6.17×1010 22.1% 5.6%

Sphinx3

1alu-1mem 74.2% - 28.2% - 1.56×1012 62.6% 2.4%

1alu-2mem 74.6% - 25.6% 2.9% 1.55×1012 63.9% 0.1%

2alu-1mem 59.0% 55.3% 42.1% - 1.05×1012 18.7% 23.2%

2alu-2mem 58.8% 57.4% 29.9% 14.8% 1.02×1012 39.2% 0.5%

ECLAT

1alu-1mem 79.9% - 28.4% - 1.70×109 63.8% 9.5%

1alu-2mem 85.6% - 20.6% 11.8% 1.58×109 74.9% 0.7%

2alu-1mem 63.5% 53.9% 41.3% - 1.17×109 40.2% 21.0%

2alu-2mem 72.3% 61.4% 32.3% 15.6% 1.03×109 45.8% 8.4%

HmmerI

1alu-1mem 58.1% - 12.5% - 4.91×1011 46.6% 8.0%

1alu-2mem 58.5% - 9.4% 3.2% 4.86×1011 53.3% 0.6%

2alu-1mem 43.0% 36.0% 16.8% - 3.64×1011 27.0% 11.5%

2alu-2mem 41.7% 38.7% 12.5% 4.7% 3.56×1011 33.4% 1.2%

H264refI

1alu-1mem 50.3% - 22.3% - 3.11×1011 27.3% 3.1%

1alu-2mem 50.9% - 17.9% 3.9% 3.07×1011 29.3% 0.0%

2alu-1mem 33.7% 24.1% 25.1% - 2.87×1011 4.4% 3.5%

2alu-2mem 34.8% 24.8% 20.6% 4.4% 2.78×1011 6.2% 0.0%

Table 6.5: The usage of of ALU and memory units for the different configurations

of functional units.
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Chapter 7

Related Work

7.1 Profiling and characterization of workloads

Espasa [15, 40] and Quintana [34] present a detailed instruction level characteri-

sation of the selected programs from the Perfect Club programs [10], SPECfp92

benchmarks [2] including distribution of operations, average vector lengths and

percentage of spill code in each program, etc. Quintana also included several

benchmarks for the Mediabench suit [25], modified some benchmarks in order to

get them to vectorize, and did manual strip-minig of all programs. They used

a trace-driven approach to gather all the data. They compiled programs with

the compiler for Convex C3400 [33] vector machine and then the instrumented

output of the compiler with a tracing tool called Dixie [17] to produce the traces.

Janin develops vector simulation library for the purpose of his thesis [22]. The

library implements many common instructions that are present in a register-based

vector architecture and allows simulation of a subset of the features of a vector

processor. The library does not simulate the performance of any particular ar-

chitecture (e.g. cache, memory, chaining, etc.). The library was used to vectorize

speech recognition algorithms.

Asanovic [3] presents the design, implementation, and evaluation of the first

single-chip vector microprocessor (T0). He also proposes future vector micro-

processor designs. He presents the results and statistics for several applications,

which have been evaluated on T0. The presented statistics are similar to the
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statistics presented in chapter 5 (e.g. distribution of vector lengths, vector regis-

ter usage, ratio of arithmetic to memory instructions, etc.).

In our thesis, we have vectorized some new, non-traditional vector applica-

tions. Unlike most previous work, we didn’t have access to any compiler for a

vector processor. Therefore, we decided to develop the vector library and vector-

ize applications manually.

7.2 Vector ISA and vector micro-architecture

One of our goals was to implement common vector instructions. VMIPS [20],

CRAY [1] and CONVEX [33] ISAs are used as a base for our vector instruction

set. All ISAs are register-based vector instruction sets.

In the first version of the vector library, we implemented common vector

instruction that we found in VMIPS [20], CRAY [1] and CONVEX [33] ISAs.

When we started with the vectorization of the chosen applications, we also im-

plemented some new instruction in order to vectorize some kernels or to improve

some already vectorized kernels.

7.3 Analytical modelling

Karkhanis and Smith [23] proposed a performance model for superscalar proces-

sors which uses trace-derived data dependence information, data and instruction

cache miss rates and branch miss-prediction rates as inputs. This model consists

of a component that models the relationship between instruction issued per cycle

and the size of the instruction window under ideal condition, and methods for

calculating transient performance penalties due to branch misprediction, instruc-

tion cache misses, and data cache misses. The model can arrive at performance

estimate that are within 5.8% of detailed simulation.

Eyerman, Eechkhout et al [18] extended the work done by Karkhanis and

Smith [23]. In this work, interval analysis focuses on the flow of instructions

through dispatch stage that leads to simpler formulation of proposed model, while

the focus was on the issue stage in previous work.
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Chen [11, 12] proposed techniques to predict the impact of pending cache

hits, hardware prefetching, and realistic miss status holding register (MSHR)

resources on superscalar performance in the presence of long latency memory

systems when employing hybrid analytical models that apply instruction trace

analysis, and presented techniques to estimate the performance impact of data

prefetching.

Analytical performance modeling is the topic of one chapter in Eeckhout’s

book [14] in which he discussed three major flavors of analytical modeling: mech-

anistic modeling, empirical modeling, and hybrid mechanistic-empirical modeling.

Mechanistic modeling or white- box modeling builds a model based on first prin-

ciples, along with a good understanding of the system under study. Empirical

modeling or black-box modeling builds a model through training based simulation

results (e.g. regression model or a neural network). Finally, hybrid mechanistic-

empirical modeling aims at combining the best of worlds: it provides insight

(which it inherits from mechanistic modeling) while easing model construction

(which it inherits from empirical modeling).

All these analytical models motivated us to develop own analytical model for

vector processors, but during the process of development, we decided to create

simple trace-driven simulator because we do not have any measurements of a

vector micro-architecture that are necessary to create an analytical model. Some

parts of our simulator are modeled in an analytical way. One of them is the simple

memory model, where we modeled access to memory using parameter such as L1

hit rate, L2 hit rate, etc. Scalar instructions are also modeled in an analytical

way using IPC as a parameter of the ETModel.
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Chapter 8

Conclusion and Future Work

This thesis presented the vector library and ETModel, tools that help in rapid

evaluation of micro-architectural requirements for the target applications, as well

as a detailed analysis of the set of vectorized kernels. This section discusses the

contributions and conclusions of this thesis.

8.1 Contributions

The main contributions of this thesis are the following:

• Developed a vector library. The library implements an ISA similar to

VMIPS and also contains some new instructions such as sub-reduction

and memory shape instructions. It also collects statistics of the vector-

ized applications and generates instruction and address traces of the vector

instructions.

• Vectorized applications. We vectorized five non-traditional vector applica-

tions and provided a detailed description of their instruction level charac-

teristics.

• Developed ETModel. The ETModel allows us to estimate the execution

time and to perform a detailed analysis of micro-architectural requirements

of our vectorized applications using traces.
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• Detailed timing analysis. We performed a detailed timing analysis with em-

phasis on different main memory latencies, cache configurations, maximum

vector lengths (MVL) and configurations of functional units.

8.2 Conclusions

The achievements and conclusions of this work are:

The vector library can help in the vectorization of desired application and

provide detailed information related with vectorizable characteristics of a vector-

ized application. The library can be easily extended with new instructions if the

process of vectorization requires that.

We vectorized five applications using the vector library. The process of vec-

torization was not trivial for most kernels and required a lot of effort. The results

show that these applications are highly vectorizable; the highest degree of vec-

torization is 91% for the ECLAT while the lowest degree is 62.9% for the H264ref

using the first ref input data set. The distribution of vector lengths varies a lot

and depends on the input data sets used to at run time.

Memory instructions are in the range from 35% to 42% of all vector instruc-

tions, except for the ECLAT application, in which this percentage is lower, about

22%. The dominant computation category is arithmetic&logical, except for the

ECLAT application where bit&element manipulation category is dominant with

70.8% executed vector instructions. Reduction instructions are significant in

Sphinx3, FaceRec, H264refI and H264refII applications with the range between

10% and 15%. We will need a lot of bandwidths and a balanced number of

functional units.

ECLAT, Hmmer and H264ref just use integer data types, while in FaceRec

and Sphinx3 the dominant data types are floating point with single or double

precision.

The ETModel uses instruction and address traces of the vectorized applica-

tions as inputs to estimate the execution time on the specified micro-architecuture

of vector processor. We performed detailed analysis for different cache configu-

ration, main memory latencies, MVLs and configuration of functional units.

87



8. CONCLUSION AND FUTURE WORK 8.3 Future Research

The cache configuration with L1 cache of 128KB and L2 cache of 2MB (the

third configuration in table 6.1) is enough to provide sustainable perfomance and

to hide increasing of main memory latencies for applications for the MVLs larger

or equal to 64 elements.

We also found that for Sphinx3 and H264ref we have worse perfomance when

increasing the MVL. The reason for that is the approach used to vectorize some

kernels. It causes the execution of useless vector operations. The number of these

operations grows with larger MVL and decreases the performance.

The configuration with two ALU units and two memory units provide the

best results among tested configuration. Different maximum vector lengths and

main memory latencies do not a have big impact for the fixed configuration of

functional units, except for ECLAT.

8.3 Future Research

This section discusses several directions of future work stemmed from this thesis.

The possible directions are:

• Releasing of the vectorized applications. The idea is to release the vectorized

applications as benchmark suit for vector processors.

• Real vector instructions. The idea is to automatically substitute the calls

to vector library with real vector instructions to feed simulators.

• Scalar version of timing simulator. The idea is to implement simple scalar

in-order simulator and estimate the speed-up of the vectorized applications

over their sequential version.

• More timing analysis. The idea is to evaluate more parameters related with

micro-architecture of vector processor. We would like to access directly

to L2 cache with vector memory instructions, while scalar instruction will

access to L1 cache.

• Improvement in some kernels. Use a different approach to vectorize kernels

from Sphinx3 and H264ref that cause performance loss with longer MVLs.
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