
SENSOR NETWORK INFERENCE FROM PARTIAL

AND CORRELATED OBSERVATIONS

Submission to Ecole Polytechnique Federale de Lausanne

by

Xavier Contijoch Cullere

Supervised by:

Pascal Frossard

Tamara Tosic

July, 2011

Acknowledgements

“I want to thank Tamara Tosic for the excellent assistance, advice and encouragement along

all the different stages of the project. Also to Pascal Frossard to allow me to take part of the LTS4

department, which has been a motivating and enriching experience.”

ii

Contents

Acknowledgements ii

List of Tables v

1 Introduction 1

2 Related work 3

2.1 Data Gathering in Wireless sensor network . 3

2.2 The inverse problem . 4

2.3 Compressive sensing . 4

2.4 Discrete minimization for scalar data setup . 6

2.5 Convex minimization problem for continuous data 6

3 Framework model 8

3.1 Sensor network model . 8

3.2 Routing algorithm and signal model for scalar sensor measurements 8

3.3 Routing algorithm and signal model for high dimensional sensor measurements . . 10

4 Problem formulation 13

4.1 Reconstruction of discrete scalar sensor network readings 13

4.1.1 Absolute value regularization . 14

4.1.2 Total Variation regularization . 14

4.1.3 Weighted distance regularization . 15

4.2 Reconstruction of High dimensional sensor network readings 15

4.2.1 Joint Total Variation . 16

4.2.2 Joint Matching Pursuit . 17

iii

5 Proposed solutions 18

5.1 Discrete minimization algorithm for scalar sensor data 18

5.1.1 Basic reconstruction Algorithm . 18

5.1.2 Viterbi list algorithm . 19

5.1.3 Possible solution: Truncated Viterbi list algorithm 19

5.2 Minimization algorithms for high dimensional data 21

5.2.1 Joint total variation . 21

5.2.2 Joint Matching Pursuit . 22

6 Experimental setup 25

6.1 Algorithm and network parameters analysis for scalar sensor data 25

6.2 Algorithm and network parameters analysis for high dimensional sensor data . . . 27

6.2.1 Joint Matching Pursuit . 27

6.2.2 Joint Total Variation . 28

7 Final Discussion 29

7.1 Scalar data discussion . 29

7.1.1 PSNR and convergence for TVLA . 30

7.1.2 Sumary for TVLA vs VLA . 31

7.1.3 Conclusions of TVLA for 2Best . 31

7.2 High dimensional data discussion . 32

7.2.1 Joint Total Variation . 32

7.2.2 Conclusions of JTV . 34

7.2.3 Joint Matching pursuit . 35

7.2.4 Conclusions of JMP . 38

References 40

A Appendix title 43

A.1 6 Sensors network . 43

A.1.1 Lambda selection . 44

A.2 11 Sensors network . 46

A.2.1 Lambda selection . 46

A.3 20 Sensors network . 49

A.3.1 Lambda selection . 49

A.3.2 Update point for the Viterbi List algorithm 51

iv

List of Tables

5.1 Basic Viterbi List algorithm for 4 sensors (2Best) 20

5.2 Truncated Viterbi List algorithm for 4 sensors (2Best) and update = 2 20

7.1 PSNR (dB) for 6 sensors with the classic Viterbi List algorithm 29

7.2 PSNR (dB) for 11 sensors with the classic Viterbi List algorithm 30

7.3 PSNR (dB) for 20 sensors with the classic Viterbi List algorithm 30

7.4 TVLA for 20 sensors (2Best) . 32

A.1 Viterbi algorithm’s time analisis along different update values 52

v

Chapter 1

Introduction

The target of this work is to study the problem of data reconstruction from partial observations

in a Wireless sensor network (WSN) environment. We analyze two different data cases: In the

first one, sensor measurements are scalar magnitudes (temperatures). In the second case we

extend the model for high dimensional signals (images). When sensor data is scalar, we approach

the problem by solving a discrete minimization problem for non-convex functions. Moreover, for

multidimensional data we solve a continuous-convex minimization problem by modifying both

Total Variation and Matching Pursuit algorithms.

Consider a WSN where links can fail and the structure is varying a lot in function of the

application implemented [6].We implement a routing and encoding algorithm robust to arbitrary

wireless connection. We also need a distributed data gathering in order to be able to reconstruct

the signal from any vertex of the graph and make the encoding and routing process independent

from each other. We achieve all this requirements by implementing a gossip algorithm [3].

For the first case, we want to reconstruct the temperature field values by observing partial

sensor network measurements. Sensors disseminate their observation in network to one randomly

chosen neighbor sensor by the gossip algorithm. After a certain number M of message exchange

cycles that is less than the total number of sensors N in the network (under-determined system),

we want to guarantee the accurate reconstruction of the network data. The obtained inverse

problem based on node observations can be solved if we in addition introduce a priory data

knowledge (smoothness). Our data is discretized so we develop an algorithm to minimize a non

convex function, which is the hardest computational case due to the slow convergence of the classic

numerical algorithms [19], [20] . At first, we propose the basic algorithm, which is not achieving

good PSNR results so we develop a Viterbi List algorithm-based to increase the quality of the

reconstruction, using different techniques of energy regularization. The results are clearly better,

1

but for more than a certain number of sensors the computational cost is unaffordable, so we modify

the method to avoid the processing of such amount of information. We denote this algorithm

Truncated Viterbi List algorithm which basically discards the most irrelevant information in the

reconstructions steps.

Moreover, when the dimensions of sensed data is higher we treat the problem from another

point of view. We assume that all the sensors participate in the data gathering process, hence we

receive observations from all the nodes in the network. Furthermore, each image is compressed

before sending it using compressed sensing techniques, therefore data is assumed to be sparse

or compressible in some basis. On the decoding side we have M samples of each sensor image,

where M << P and P is the image size. To solve the obtained inverse problem we assume a

priory data knowledge of the signal (sparsity) and certain correlation amongst neighbor data.

We propose two solutions, the first is a joint total variation (JTV) model based on the classical

total variation regularization [26] for the minimization of convex-continuous functions. In this

case we assume that we know the correlation model between neighbors views. Thus, we use the

transforms amongst views within a neighborhood to jointly decode the signals. On the other hand

we approach the problem with a Basis Pursuit algorithm based on the l1 − l2 minimization of a

given cost function [21]. We solve it by a joint matching pursuit (JMP) technique, which exploits

the correlations amongst the different images to increase the performance of the reconstruction.

2

Chapter 2

Related work

2.1 Data Gathering in Wireless sensor network

As our framework is a wireless sensor network (WSN), we need a distributed data gathering

process for exchange information in an arbitrarily connected network of nodes. The topology of

such networks changes continuously, so algorithms under this conditions have to be robust against

this changes; in addition, nodes operate under limited energy resources. These constrains motivate

the implementation of the gossip algorithm for the WNS data gathering.

In the gossip algorithms, all nodes wants to transmit their message to the rest of the network

sensors. The sender, selects a receiver to exchange information and pulls its message. After

receiving this message this node repeats the same procedure to keep the message running over the

network. When all nodes know the original data, the data gathering process finishes.

Gossip algorithms are useful to information exchange and processing in arbitrarily networks.

The algorithm is robust to failures in the network nodes and topology changes. All this charac-

teristics make the gossip algorithms practical for WNS.

The first application for the gossip algorithms were the consensus problem [2]. The different

nodes in the network have to decide the value of some global parameter exchanging information

within a certain neighborhood. For example, if we have temperature sensors, the goal is to know

the mean value of temperature within the area covered by the WNS.

In gossip-based protocols, at each time-step, the nodes forward information to one or more

random nodes with a certain probability. In function of this probability we can classify the

methods into static or adaptive. Pair-wise randomized gossip [3] is a static approach where a

random node selects a random neighbor and sends its message to it. Broadcast gossip [4] is

basically the same protocol but in each transmission all nodes within a certain area receive the

3

information of the sender. Geographic gossip [12] combines the geographic routing with the

Broadcast gossip, assuming that each node knows exactly its relative position in the network.

Thus, they exploit the network topology so the extra cost of communication within multi-hop

neighbors is compensated by the number of communications needed to spread the information over

all the nodes in the network. Smart gossip [5] is an adaptive method where the probability of each

node transmitting is adapted in function of the local topological properties in its surroundings.

So, when the topology of the network changes smart gossip allows the distributed adaptation of

the data-gathering process.

As we explained before, Gossip algorithms can be applied to solve problem in a WNS in a

distributed manner [6], our data gathering process is the same as described in [3].

2.2 The inverse problem

The inverse problem consists in infer the values that characterizes a system with only some mea-

surements of it (less than the number of unknowns). There are many fields where undetermined

system must be solved to find an accurate reconstruction of the initial signal. In signal and im-

age processing many studies have been developed on the recovery of initial information from M

observations of an N -dimensional signal M << N , assuming that the a signal is sparse. We can

write the collected observations as:

y =Wx,

where W is the measurement matrix and x is the original data of dimensions M × N and

N × 1 respectively. In the WSN framework, the recovery of x, can be addressed by a l0 combina-

torial optimization problem, but this is NP-complete and numerically unstable. However, if the

measurement matrix W is random and the RIP [1] is guaranteed, then, there are a equivalence

between l1 and l0, which is more relaxed and stable problem [7]. This works assume that the

minimization problem is convex, so data x ∈ R
N . There exist several linear programing techniques

that can recover the original signal [16] [17] under this requirements.

2.3 Compressive sensing

Compressive sensing (CS) [17] [1] is a method which captures compressible signals at a rate

significantly below the Nyquist one and recovers it from a small number of linear measurements. If

the original signal is x ∈ R
N , CS states that the N samples of it can be recovered by onlyM << N

4

linearly projected measurements. In the classical compression algorithms data is first acquired at

Nyquist- Shannon sampling rate, and then compressed for efficient storage or transmission. In CS

the two processes are combined into a single compressive sampling process, greatly reducing the

complexities in data acquisition. The main assumption of CS is the sparsity of data, if we can

express a signal x in function of a set of basis Ψ = [ψ1, ψ2, ..ψN], x = Ψs, like:

x =

N∑

i=1

siψi =

K∑

i=1

siΨi, (2.1)

where s is the N × 1 column vector of weighting coefficients si =< x,ψi >= ψT
i x. The signal

is K-sparse if there are only K(K << N) non zero coefficients in s; we expose deeply the sparse

properties in Chapter 4. If Φ is a M ×N dimension matrix:

y = Φx,

the reconstruction of the N -dimensional signal is possible if K ≤ 1
2M [18] solving a combina-

torial minimization problem:

argmins
{
‖s‖l0 s.t ΦΨs = y

}
, (2.2)

this is an NP-complete problem and numerically untestable. If we guarantee the incoherence

between Φ and Ψ, the restricted isometry property (RIP) [7] of the matrix Θ = ΦΨ is fullfilied

and we can solve the problem as using the l1-minimization technique:

argmins
{
‖s‖l1 s.t ΦΨs = y

}
. (2.3)

An easy way to do it is to construct the measurement matrix as a random matrix whose entries

are samples of a Gaussian complying to N(1, 1
M
). There is some studies [7] [8] that exploit the

sparsity of sensor readings by applying compressive sensing theory to sensor data gathering. This

is, they collect only M << N measurements, which are linear combinations of sensor readings,

as a result the final observations are Y = ΦΨs, where s = {si}
N
1 . Thus, the computational cost

is reduced and and the network lifetime is prolonged. The inconvenience of this algorithms is

that the topology of the network is well defined (as a chain or tree distributions). In [13] we can

observe an example of distributed algorithm via sparse Random projections.

5

2.4 Discrete minimization for scalar data setup

In [19] some techniques for inverse problems with discrete data are discussed. They give a

general formulation of the problem by extending the continuous data case and by defining a

mapping from an infinite-dimensional function space into a finite-dimensional vector space. In

this context they can analyze the normal and least-squares solutions. The main problem is the

lack of numerically stability, that derives from the fact that in most cases the problem is the

projection on a finite-dimensional space of an ill-posed problem. They consider discrete data but

they maintain reconstructed solutions in infinite-dimensional spaces and only at the last stage

perform a fine discretization of the solution in order to produce a numerical or graphical result.

So data have to be quantized twice, first at the emisor side and after the minimization process, at

the fusion center to recover data on the discrete domain again. This method can induce problems

when minimizing the function in the continuous domain, since the solution can be far removed

from the optimum on the discrete one. The solution achieved is closely related to the power of the

computer used for the numerical analysis. We avoid this problem by processing the information

always in the discrete domain.

2.5 Convex minimization problem for continuous data

The literature of convex optimization has provided a long list of solvers for the l1-minimization

problem in Eq.(2.3), such as Matching Pursuit(MP) [22], least angle regression (LARS) [24]

and the absolute shrinkage and selection operator (LASSO) [25]. The first method we propose in

our work is based on the constrained minimization of the total variation (TV) [26] of the image.

Thus, the equation Eq.(2.3) has to be modified as:

argmins {‖s‖TV s.t ΦΨs = y} , (2.4)

We will give more details of TV operators and parameters in the following chapters. Our TV

method is based on the Chambolle algorithm [27], They propose a fast way to solve different

types of inverse problems in image processing like image denoising and zooming.

On the other hand we work with an MP algorithm [22] [23], since the correlation model

between the sensor data can be incorporated within it in conveniently. It is an algorithm that

iteratively decomposes any function f in a set of redundant functions called atoms. This atoms

are chosen in order to best match the signal structures, so MP are procedures to compute adaptive

signal representations. We select the appropriate atoms from an extremely redundant dictionary

6

D = gγγ∈τ
, where τ are the indices of the full set of functions generating the dictionary and

||gγ || = 1. The vector f can be decomposed into:

f = 〈f, gγ0
〉 gγ0

+ ‖Rf‖
2
, (2.5)

where Rf is the residual vector after approximating f in the direction of gγ0
. We can deduce

from Eq.(2.5) that gγ0
is orthogonal to Rf , hence:

‖f‖
2
= |〈f, gγ0

〉|
2
+ ‖Rf‖

2
. (2.6)

To minimize ‖Rf‖, we must choose gγ0
∈ D such that |〈f, gγ0

〉| is maximum. MP applies

iteratively the same strategy to the residual component. Using this principles we propose an

implementation of an algorithm for a multi view setup, exploiting the correlations amongst images

within a sensor neighborhood.

7

Chapter 3

Framework model

3.1 Sensor network model

We can define a Graph with G = (V ;E) where V is a finite set of numbered vertices (sensors)

and E represents the edges of the graph, or in other words different paths which connects one

vertex to the other. A self-loop is an edge which starts and ends at the same vertex. A path is a

sequence of vertices (v1, v2, ..., vm) such that [vi−1, vi] is an edge for all 1 < i < m and a graph is

connected when there is a path between any two vertices. Further, a graph is undirected when the

set of edges is symmetric, i.e., for each edge [u, v] ∈ E we also have [v, u] ∈ E. In this work, the

graphs are always assumed to be connected, undirected, and have no self-loops or multiple edges.

We assume that a network topology (sensor positions) is fixed and known, and the total number

of sensors is N . Connections e(vi, vj) ∈ E amongst sensors vi, vj ∈ V , where i, j ∈ [1; ...;N] are

nonzero values if sensors are located closer then a predefined threshold and zero otherwise.The

threshold value is set to be proportional to the distance amongst sensors.

3.2 Routing algorithm and signal model for scalar sensor

measurements

The constraints for the Wireless sensor networks have motivated the design of gossip algorithms.

In this work we implement the simplest version of this algorithm.

First of all, the devices capture the real initial sensed values xk for k = 1; ...;N , and request

the data from one of they neighbor nodes uniformly at random. The senders are nodes which

answer this request, making an aleatory choice from the connection matrix, which contains the

8

direct paths between all vertices in a matrix format. Senders calculate aleatory values, which can

be represented as a matrix A filled with the random values of sensor s that wants to transmit to r

at time step t, this is a
(t)
sr , therefore this matrix can be viewed as an identifier of each transmitting

node. Then, senders multiply a
(t)
sr by the observation of the previous time step y

(t−1)
s . After, they

send the result to the arbitrary destinations chose. The receiver makes the addition between this

value and his initial sensed value xr multiplied by his own aleatory value a
(t)
rr , and this will be its

current observation for the time step t, y
(t)
r . The observation for a concrete sensor is:

yr =
M∑

t=1

xra
(t)
rr + y(t−1)

s a(t)sr p
(t)
sr , (3.1)

where M is the number of iterations, this is the number of cycles (time steps), done before the

fusion center collects the data (M << N).

We want to rewrite Eq.(3.1) as a function of the initial data xk for k = 1; ...;N and a set of

weights W that represent the M linear combinations amongst data available in the fusion side.

The [M × N] dimensional matrix W , is obtained from the random values used to compute the

observations along the different iterations. The random values are sent like a header information

in each time step. We can write full observations Y , [N × 1] system in function of X, [N × 1]

Y =WX, (3.2)

where ǫ is noise.

We model the energy differences between sensors with a Markov Random Field (MRF). MRF

for an undirected graph is a graphical model in which a set of random variables have a Markov

property. In the 2-D setting, assume that S = [1; ...;N] × [1; ...;N] is the set of points called

sites. We refer to neighborhood of a fixed s like N(s), meaning that for the site (k, l) N(k, l) =

(k + 1, l), (k − 1, l), (k, l + 1), (k, l − 1). A random field X if said to be an MRF on S with respect

to a neighborhood system N if and only if: P (x) ≥ 0 ∀x ∈ X and P (xi|xS−i) = P (xi|xNi) ∀i ∈ S

. According to the Hammersley-Clifford theorem [28], an MRF can equivalently be characterized

by a Gibbs distribution:

P (xi) =
1

Z

N∏

i=1

e−Ψ(xi), (3.3)

where Z =
∑N

i=1 e
−Ψ(xi) is the normalization term called partition function and Ψ is the potential

or energy function. A clique c ∈ C is defined as a subset of sites in S in which every pair of

distinct sites are neighbors (2-clique). Ψ is a sum of clique potentials over all possible cliques,

Ψ =
∑

c∈C Vc(xi). We can approximate our potential function model using 2-clique notation as

9

Ψ(xi) =
∑

i∈S

∑

j∈N(i)

(xi − xj)
2
, (3.4)

replacing Eq.(3.4) into Eq.(3.3) we can write:

P (x) =
1

Z
e−

∑
i∈S

∑
j∈N(i)(xi−xj)

2

. (3.5)

Our model data xi, i ∈ [1, ..., S] are samples of a Gaussian to satisfy the MRF properties

explained in this section

3.3 Routing algorithm and signal model for high dimen-

sional sensor measurements

Basically, the routing algorithm protocol is the same as the described in the last section for scalar

data. However, for high dimensional data additional processing is performed prior to the data

gathering process, described in Eq.(3.1). As our signal is sparse we use this knowledge to reduce

the computational burden of the algorithm. We define the image of sensor i with Xi, of dimension

P = Size × Size, Xi ∈ R
P .We treat a high dimensional matrix data by vectorizing it into a

P × 1 vector. Due to its sparsity, M << P coefficients in the appropriate basis are sufficient to

exactly recover the signal Xi. Therefore, sensors computeM inner products between Xi and a col-

lection of vectors Φj
M
j=1 as in zj =< Xi,Φj >. We can write the measurements of each sensors like:




z11 . . . z1S
...

. . .
...

zM1 . . . zMS


 =




φ11 . . . φ1P
...

. . .
...

φM1 . . . φMP







x11 . . . x1S
...

. . .
...

xP1 . . . xPS


 ,

where S is the number of sensors. We can define the compressed data obtained during the

measurement process as ZT
i = [z1i, ..., zMi], which are the columns of the matrix Z. Analogously,

initial sensor data is given with XT
i = [x1i, ..., xPi]. We set ΦT

j = [φ1j , ...φMj] to be the columns

of Φ so we can write the analytic expression for the compressed signal in each sensor as:

Zi =

P∑

j=1

xjiΦj i = [1, ..., S], (3.6)

10

where the observation Zi belongs to R
M after the compressing step in each sensor. Thus the

signal dimensions have been reduced from P to M before being sent through the network.

To propagate the sensors compressed data Zi we use again the gossip algorithm proposed in

Eq.(3.1). As a result, the current measurement of sensor i combined with the neighbor informa-

tion forms the observation sent to the fusion center: Yi = wiZi +wjYj . After a certain number of

message exchange cycles, the network data gathering process can be described as:




y11 . . . y1M
...

. . .
...

yM ′1 . . . yM ′M


 =




ω11 . . . ω1S

...
. . .

...

ωM ′1 . . . ωM ′S







z11 . . . z1M
...

. . .
...

zS1 . . . zSM


 ,

Y =WZT =WXTΦT .

Where Y = [M ′ ×M] are the final observations, W = [M ′ × S] is the network measurement

matrix and Z = [S×M] are the compressed signals representations. If the number of observations

M ′ is lower than the number of sensors, we obtain a matrix W which represents the network

compression stage. In this work we assume that W is full rank or what is the same we avoid the

network compression stage for high dimensional data.

Note that the compressed image representation of the sensor i and the observation sent to the

fusion center (FC) are represented by the rows of Z, Zi = [zi1, ..., ziM] and Y , Yi = [yi1, ..., yiM],

respectively. We can rewrite the received data in the FC as:




Y1
...

YS


 =




ω11 . . . ω1S

...
. . .

...

ωS1 . . . ωSS







Z1

...

ZS




Finally we have obtained the same expressions for the measurements in the FC than in the

unidimensional case, but each value is now a M dimensional vector. With this notation we can

state the observation of sensor i as:

Yi =

S∑

i=1

ωijZi. (3.7)

For high dimensional data our a priory knowledge is the sparsity of data. In our concrete

framework we built a simple set of sensor images composed by three different geometric shapes: a

square, a triangle and a sphere. Therefore, we can represent our signal as in Eq.(2.1) with K = 3

11

if we construct our basis functions shifting this geometric figures along the image size range.

This property of the data allows us to use Matching pursuit-based algorithms and total variation

regulation for smoothing the noise and preserve the edges. On the other hand, to generate all the

views from the network we can define some global lineal transforms amongst images that allow us

to model the shifts between sensors data. We set ψim and ψjm for m = [1, S] to be the same basis

of S × 1 vectors but with different labels to distinguish the data generating functions of sensor

sensor i and j respectively. In the same way we represent the coefficients of sensors i and j like

sim and sjm for m = [1, S], then we can write:

xi =
N∑

m=1

simψim

xj =
N∑

m=1

sjmψjm =
N∑

m=1

sjmFij(ψim).

Note that Fij is the same for all the ψim, ∀m , so is a global transform that affects in the same

way to all the image basis vectors. To work with high dimensional signals we assume that in all

the views we can observe the same image but with different translations, which are modeled by

the transforms Fij(·). When we work with the Joint Total Variation algorithm we assume that

we know this linear transforms between images Fij(·). Otherwise, for JMP we do not assume the

knowledge of the transforms amongst views, but we can estimate them with our algorithm. After

the approximation, we can model them as F̃ji = Fji + ǫ where ǫ denotes the uncertainty.

12

Chapter 4

Problem formulation

4.1 Reconstruction of discrete scalar sensor network read-

ings

In the temperature sensor network, we assume that sensor capture measurements that lay within

a set of integer values, and we solve the associated discrete minimization problem. We avoid the

algorithms for the minimization of convex functions because this implies the interpolation of the

signal to obtain a continuous curve, then find the optimal solution in this domain and finally

quantize this value to make the solution fit with the original data. To convert a discrete signal

into a continuous one is always problematic, because if the interpolation is not accurately done

we can minimize a curve which is not representing the real case.

Our routing and encoding techniques allows a extremely flexible choice of the fusion center

(FC), which collects data from the network, so we assume that every sensor needs to reconstruct

the network values. Underdetermined set of observations Y and set of weights W Eq.(3.2) are

available on the fusion side. We want to find a solution for the discreet set of sensor readings X

with M << N measurements:

X∗ = argminX ||Y −WX||
2
2 + λR(f(x)). (4.1)

Using the observations Y and the measurement matrix W we have to be able to approximate

the best solution for the initial N signal X. We solve this problem under the assumption that

data is smooth. This constraint is represented with the term R(f(x)), where λ is a constant. This

second part of the optimization problem is the regularization term, which increases the energy

13

calculation for values that diverge from values of its neighbors, in other words it penalizes data

which is not smooth. We compare three types of regularization, two of them are non-weighted

and the last one is weighted. For the first two cases, data is compared with the neighborhood

of the sensor we are analyzing. They give the same importance to all of them, instead, in the

weighted type more relevance is given to vertex which are closer to the sensor that we are trying

to approximate. We start defining the non-weighted methods, followed by the weighted one.

4.1.1 Absolute value regularization

The Absolute value (ABS) method for regularization is defined as

X∗ = argminX ||Y −WX||
2
2 + λ

N∑

i=1

∑

j∈N(vi)

||xi − xj ||1 , (4.2)

where j ∈ N(vi) denotes the set of vertices adjacent to vi. For each sensor the algorithm computes

the l1 norm of the difference between its and its neighborhood’s.

4.1.2 Total Variation regularization

Total Variation (TV) is a bit different technique of regularization. Most of the methods only

assume that data is smooth, but total variation is also able to detect discontinuities on the set

of data [14]. Thus, TV preserves the ’edges’ of the signal and at the same time smooths the

data within this edges. The regularization term can compute now the discontinuity or the total

variation of the signal. We define the gradient operators as in [15], the degree function is given

with:

d(i) =
∑

j∈N(vi)

c(i, j), (4.3)

and the graph gradient is given by:

(∇ϕ)([i, j]) =

√
c([i, j])

d(j)
ϕ(j)−

√
c([i, j])

d(i)
ϕ(i), for all [i, j] ∈ E. (4.4)

We can also define the gradient norm on the vertex j as:

∇ϕj =

√ ∑

i∈N(vj)

(∇ϕ)
2
([i, j]), (4.5)

Thus, the global equation that has to be minimized is given with:

X∗ = argminX ||Y −WX||
2
2 + λ

N∑

i=1

∑

j∈N(vi)

||(∇ϕ) ([i, j])||2 (4.6)

14

4.1.3 Weighted distance regularization

Weighted distance (WD) is a particular case of the absolute one, which distributes the energy

of each estimation depending on the location of the neighborhood vertex. The influence of the

neighbors decays with distance. The global equation that we have to minimize is given with:

X∗ = argminX ||Y −WX||
2
2 + λ

N∑

i=1

∑

j∈N(vi)

∣∣∣∣
∣∣∣∣xi −

1

dij
xj

∣∣∣∣
∣∣∣∣
1

, (4.7)

where dij is the distance between vertex i and j.

4.2 Reconstruction of High dimensional sensor network read-

ings

In this case, the inverse problem is due to the compression at the encoding side, since we assume

that the network measurement matrix W is full rank. Using the notation defined in 3.3 we can

write:

X̃ = argminX
∣∣∣∣Y −WXTΦT

∣∣∣∣2
2
+ λR(f(x)). (4.8)

As W is a full rank matrix, we can assume that the linear projection ΦX is the resultant

inverse problem we have to solve. We address the problem from two point of views: the joint TV

minimization problem and the joint MP minimization problem. The sets of multi-view images that

capture information from different viewpoints are typically related by geometric constraints, so we

exploit this correlation for joint sparse approximation of multi-view images. We consider that the

neighborhood of a concrete sensor i accomplishes the previous requirements of correlation, because

the sensors in the neighborhood area are spatially close, so the geometric relations between them

are strong enough. If Fji(·) is the linear transform between signal j to i, the approximation of

sensor i is given by:

x̃i = argminx




∣∣∣∣yi − xTi Φ

T
∣∣∣∣2
2
+ λ

∑

j∈Ni

(yi − Fji(xj))



 . (4.9)

Note that ifW has a full rank we can consider that the observations yi in Eq.(4.9) are obtained

as yi =W−1WxTi Φ
T . As a result, we eliminate W from the minimization problem.

15

4.2.1 Joint Total Variation

Consider the single total variation (STV) denoising model (this is for one single image), it solves:

x̃i = argminx

{
1

2
||yi − xi||

2
2 + λJ(x),

}
, (4.10)

where yi is the noisy image from sensor i represented as 2-dimensional matrix of size P × P

and J(xi) =
∑

1≥m,n≤P |(∇xi
)m,n|. We define the discrete gradient operator as in [27], if ui ∈ X,

∇u is a vector in Y = X ×X. Then: (∇ui)m,n = ((∇ui)
1
m,n, (∇ui)

2
m,n)

(∇ui)
1
m,n =




(ui)m+1,n − (ui)m,n if m < P

0 if m = P

(∇ui)
2
m,n =




(ui)m,n+1 − (ui)m,n if n < P

0 if n = P ,

form,n = [1; ...;P]. The idea is to replace the optimization of the image xi by the optimization

of a vector field G that is related to xi by xi = y − div(G) and G = [Gx, Gy] ∈ R
2. The vector

field is the one that minimizes:

G̃ = argminG {||yi − λdiv(G)||2} . (4.11)

We introduce a discrete divergence operator div : Y → X, therefore div : R2 → R with:

(div(G))m,n =





G1
m,n −G1

m−1,n if 1 < m < P

G1
m,n if m = 1

−G1
m−1,n if m = P

+





G2
m,n −G2

m,n−1 if 1 < n < P

G2
m,n if n = 1

−G2
m,n−1 if n = P .

To adapt the problem to our framework, this is, to take advantage of the correlations amongst

neighborhoods and implement a joint total variation (JTV) model we redefine the STV formulation

16

in Eq.(4.10):

x̃i = argminx

{
1

2
||yi − xi||

2
2 + λ

[
αJ(xi) + βJ ′(xi)

α+ β

]}
(4.12)

Where J ′(xi) =
∑

1≥m,n≤P

∣∣(∇′
xi
)m,n

∣∣. Thus, we introduce the discrete gradient amongst

neighborhood images as:

(∇′ui)
1
m,n =





1
M

∑
j∈Ni

Fji [(uj)m+1,n]− (ui)m,n if m < P,

0 if m = P ,

(∇′ui)
2
m,n =





1
M

∑
j∈Ni

Fji [(uj)m,n+1]− (ui)m,n if n < P,

0 if n = P ,

(4.13)

where M is the sensor i neighborhood size. At this point, we proceed as in the STV case,

optimizing the vector field G like in Eq.(4.11). We illustrate deeply the impact of the cross

gradient (∇′ui) instead of (∇ui) in the optimization algorithm in the following chapter.

4.2.2 Joint Matching Pursuit

We propose a joint MP model (JMP) in order to exploit the geometric constraints of a multi view

scene. However, JMP improves the PSNR over the classical single MP (SMP). We maximize the

following equation:

g̃γm
, F̃m

i = argmaxgγm ,Fm
i





N∑

i=1


〈Rmxi, Fi(gγ)〉+ λ

∑

j∈Ni

F̃ji(〈R
mxj , gγ〉)





 , (4.14)

where Rmxi is the residual signal of sensor i left after subtracting results of previous m − 1

iterations. Moreover, gγm
is the atom that best fits the residual signal of sensor i on the iteration

m and Fm
i () is the linear transform of this atom. As we will see in the following chapter we

can estimate F̃ji(·) using some data prior knowledge. After finding the M atoms that maximize

Eq.(4.14) and their transforms we can compute the signal reconstruction as:

x̃i =
M∑

m=1

〈Rmxi, F
m
i (gγm

)〉 gγm
.

17

Chapter 5

Proposed solutions

5.1 Discrete minimization algorithm for scalar sensor data

5.1.1 Basic reconstruction Algorithm

To decode the signal, value Basic reconstruction Algorithm (BR) suppose that a discrete set of

possible values is known. Obviously the range of this set must be large enough to include all the

possible values of the original data. We assume that we posses previous knowledge of the signal,

so is possible to estimate a certain range of data values v ∈ T where T is the discrete set. The

algorithm is given in several stages:

1. Initialize the values of sensors x ∈ R
N to 0. Note that x is the minimization function domain

in Eq.(4.1).

2. Compute the energy of x given by Eq.(4.1) varying the value of sensor n, this is x[n] in the

range of data set candidates v ∈ T , f : x→ e, where e ∈ R are the set of energies.

3. Find the minimum energy value for all e ∈ R, and store the value v ∈ T associated to this

energy. We fix this value in x[n], this is the approximation of sensor n in the iteration t. BR

follows the following steps:

* Repeat the step 2 and 3 for all n = [1, .., N] fixing the values of the previous sensors

obtained in the second step x[k] where k = [1, .., n− 1].

The process is done for the N sensors, the first approximation of the network values is x∗(t)

where t is the iteration number.

4. Compute the global energy of the approximation x∗(t).

18

5. If
∣∣x∗(t) − x∗(t−1)

∣∣ < δ, the minimization problem ends and the best approximation is x∗(t).

If not, the process is repeated from 2 but starting from the solution found in the current

iteration, x = x∗(t)

This is the simplest algorithm, but it converges too fast and the total combinations of the

discrete set v ∈ T is not large enough. We try to solve this problem introducing a variant on the

step 3.

5.1.2 Viterbi list algorithm

The Viterbi List algorithm (VLA) is similar to the basic one, but in the third step instead of saving

only the lower energy case, it saves the S lowest energy values. If we want to store two values for

each case, we propose to implement the 2Best Viterbi algorithm. Note that the computational

cost is increasing exponentially as (SBest)N where N are the number of sensors. The Basic

reconstruction algorithm is a particular case of the Viterbi List one, that saves one value for each

sensor,(S = 1, 1Best). For the case of large networks, the amount of information to be processed

is huge, so the VLA, even for 2Best is non-viable. Data increases exponentially with the number

of sensors, so for example for N=20 and 2Bests 335.5MB of information have to be processed.

The implementation of the algorithm in real cases is difficult with this large processing method,

so we consider a variant of the Viterbi List algorithm that reduces the computational cost and

achieves improvements over the simplest case 1Best (or BR).

5.1.3 Possible solution: Truncated Viterbi list algorithm

For the moment we consider only the 2Best case to implement the Truncated Viterbi List Al-

gorithm (TVLA). The VLA accumulate large amount of data to analyze more combinations of

it than the absolute (1Best) case (that only stores the lower-energy value for each sensor esti-

mation), so we ’re-start’ the process in some point of the algorithm such that we can still have

more combinations of data to analyze than in the absolute case. This implementation cuts the

exponential cost increase by choosing only the two lower energy vectors of all the amount of data

in one selected point. We denote the point of the algorithm wich re-starts the process as the

update point. When the fusion center is estimating the best value for the x[k], where k = update

the algorithm preserves only the two lowest energy samples calculated by that moment, after that,

it launch the algorithm as this sensor was the first. In the tables 5.1 and 5.2 we can observe an

example of the first iteration for both VLA and TVLA reconstruction in a 4 sensor network and

2Best. The final reconstruction for this iteration can be understood as [a1a2a3a4], where ai is the

19

estimated value for the sensor i. For the TVLA ′∗′ and ′ ∗ ∗′ denotes the lower energy cases.

Table 5.1: Basic Viterbi List algorithm for 4 sensors (2Best)

S1 S2 S3 S4

5000 5100 5110 5113

4000 5200 5120 5112

4300 5210 5121

4400 5220 5122

4330 5212

4320 5214

4490 5222

4480 5226

4332

4331

4323

4322

4492

4491

4483

4482

Table 5.2: Truncated Viterbi List algorithm for 4 sensors (2Best) and update = 2

S1 S2 S3 S4

5000 5100 5210 5212

4000 5200* 4330 5214

4300** 4332

4400 4331

Its important to note that the information collected with few sensors is not enough to imple-

ment the Truncated Viterbi algorithm. In our scenario (20 sensors) we have relevant amount of

information to avoid the full Viterbi algorithm and achieve benefits in terms of memory, speed

20

processing.

5.2 Minimization algorithms for high dimensional data

We propose two different algorithms for the high dimensional setup. For the Joint matching

pursuit we relax the problem, since we assume that we perfectly know the transforms between

views Fij(·). For the joint matching pursuit we assume that we can approximate the transforms

with certain error F̃ji = Fji + ǫ.

5.2.1 Joint total variation

We adapt the Chambolle algorithm for single image denoising for our joint method. To minimize

the vector field G, Chambolle proposed to perform the minimization of the vector field in Eq.(4.11)

with a fixed point iteration.

Gl+1
i = Proj

(
x̃li − τ∇′′

xi

(
div(Gl

i)−
yi

λ

))
.

As a result of the variations in the minimization equation in Eq.(4.12) the gradient definition

changes to ∇′′
xi

=
α∇xi

+β∇′xi

α+β
, using the cross gradient ∇′xi defined in 4.13. Proj is the orthog-

onal projector on the constraint ‖Gi‖ ≤ 1. Usually, τ value is set to be τ < 2
‖∇·div‖ = 1

4 . The

signal reconstruction is then x̃i = yi − λdiv(GL
i), where L is the number of final iterations. To fix

L, we have to guarantee the energy convergence of the second term in the reconstruction ecuation

λdiv(Gl
i) → 0 if l → L.

The gradient is a directional change in the intensity in an image, so with the incorporation of the

cross-images gradient ∇′xi we can extract information from the sensor i neighborhood to increase

the denoise efficiency. We add information to compute the horizontal and vertical variations of an

image i, thus in a concrete pixel located in (m,n)i, the variations with the classical gradient are

function of V ar = f((m + 1)i, (n + 1)i). Otherwise if we introduce,in addition, the cross-image

gradient V ar = f((m + 1)i, (n + 1)i, (m + 1)j , (n + 1)j) for all j ∈ Ni. Note that the α and

β parameters are a weighted average of the variance bring by the own signal and the neighbors

respectively. Therefore, there is a tradeoff between them that have to be studied carefully.

Obviously in the definition of ∇′xi there is implycity the function Fji to find the equivalent

pixel from image i to j, Fji[(m,n)j] → (m,n)i.

We can resume our JTV algorithm as:

21

Algorithm 1 Joint Matching Pursuit algorithm

1: Gi = (Gx, Gy) = 0 i = [1; ...;nS]

2: for k = 1 → L do

3: for i = 1 → nS do

4: Di = div(Gi)

5: sGi = ∇′′(Di −
yi

λ
)

6: Gi = Gi + τGi

7: Gi =
Gi

‖Gi‖

8: end for

9: end for

10: x̃i = yi − λdiv(gi)

5.2.2 Joint Matching Pursuit

We modify the classical matching pursuit algorithm to take advantage of the knowledge of the

relative positions amongst sensors and the signal correlations within a neighborhood. First we

introduce some notation: Z is the number of atoms that we use four our final reconstruction, L is

the size of the dictionary and N is the number of sensors. Fm
i is the transformation of at the atom

m for the image i. We define a set of N test = [T1, ...TN], where each Ti contains the sensor i

and the closest neighbors of i. With this, we want to exploit only the correlations between sensors

that are within a certain spatial distance. Is logical to think that the differences increases as the

distance does.

We use the transformation amongst views Fji to enhance the performance of the algorithm.

Obviously, we do not know exactly this transformations, although we can model it as F̃ji = Fji+ǫ,

where ǫ denotes the uncertainty. MP is an iterative algorithm that computes the atom of the

dictionary that best fits the residual image in each iteration. If m is the current iteration we

approximate the transform as:

F̃ ∗
jim = F ∗m

i − F ∗m
j , (5.1)

where F ∗m
i denotes the transform of the atom that gives the highest projection coefficient until

the iteration m. We define Am =
∑N

i=1 a
m
i as the best coefficient for the iteration m, where a

(
im)

is the best projection for each view. Then, A∗m = max[Ak]k=m−1
k=1 is the best coefficient until the

iteration m, thus we use the associated transforms F ∗m
i to compute the approximations F̃ ∗m

ji with

Eq(5.2).

The first step of our algorithm is to compute jointly the coefficients and their associated

22

transforms for all the atoms within the different tests Ti, minimizing Eq.(4.14). We can organize

the data in two matrices for both coefficients and transforms, where the rows are the atoms in the

dictionary and the columns are the set of tests. We denote Coeff and Trans for the coefficients

and transforms matrix respectively.

We can see the transform amongst images F̃ ∗
jim as a 2 dimensional vector, mapping the distance

’x’ and ’y’ from one image to the other. The optimal transform lies within the range ~Fij ∈

[(F̃ ∗
ij)1 ∓∆F , F̃ ∗

ij)2 ∓∆F]. As our transformation F̃ ∗
ij is not the ideal one, we have to take into

account the possible variations within a certain range. We define f l1,l2ij where l1, l2 ∈ [−∆F,+∆F]

and f l1,l2ij = [(F̃ ∗
ij)1 ∓ l1 , [(F̃

∗
ij)2 ∓ l2]. When we compute the correlation amongst the different

neighbors in each test we have to take the maximum value for all the possible set of variations of

a concrete transform F̃ ∗
ij . Thus, given a concrete atom k of the dictionary on the iteration m, to

estimate the proper transform approximation for each sensor we maximize the equation:

F̃m
ij = argmaxl1,l2



〈Rmyi, gγk

〉+ λ
∑

j∈Ti

f
l1,l2
ji (〈Rmyj , gγk

〉)



 . (5.2)

Note that this maximization is the same as search jointly the maximum value of the projection

within a certain window for all the neighbors.

Finding the maximum of the sum of the rows in Coeff we select the best atom for the iteration

m, this is Am. If this coefficient is given by the atom (the row) k, we find the test which achieves

the best projection within this row, coeff(k, t) = maxcoeff(k, i)
i=N
i=1 . We fix the transformations

of the sensors belonging to this test, Fm ∀m ∈ Tt. Then, we replace this transformations in all

the test that have common neighbors with the test Tt. We repeat iteratively the process until the

transforms of all the nodes are fixed. Before going through the next iteration, we compute the

global approximation F ∗
jim using Eq.(5.2).

We illustrate here an example of one entry of the coor matrix used in the algorithm:

coor(atom, test) =




x y

F 1
ij1

(x) F 2
ij1

(y)

F 1
ij2

(x) F 2
ij2

(y)

F 1
ijm

(x) F 2
ijm

(y)




23

Algorithm 2 Joint Matching Pursuit algorithm
1: while m < N do

2: for n = 1→ L do

3: for i = 1→ N do

4: [coeff(n, i), coor(n, i)] = max(gγn ,l1,l2)

[

corr
(

Fn
i (gγn), R

myi
)

+
∑

j∈Ti
corr(Fn

j (gγn), f
l1,l2
ij (Rmyj))

]

5: end for

6: end for

7: for n = 1→ L do

8: MaxCof(n) =
∑nS

i=1 coeff(n, i)

9: end for

10: Am = max(MaxCof)

11: if Am is given by index k then

12: Atom = gγk

13: end if

14: Tt = max(coeff(k, t ∈ [1, ..., N]))

15: for l ∈ Tt do

16: Fm
l

= coor(k, Tt)l

17: FixedCoor ← l

18: end for

19: {Recalculate the coefficients of the different tests fixing the transforms Fm
l
}

20: while FixedCoor < N do

21: for i = 1→ N do

22: if i /∈ FixedCoor then

23: [coeff(k, i), coor(k, i)] = maxl1,l2)

[

corr (gγk
, Rmyi) +

∑

j∈Ti
corr(gγk

, f l1,l2
ij (Rmyj))

]

24: end if

25: end for

26: [Tt] = max(coeff(k, t /∈ FixedCoor))

27: for l ∈ Tt do

28: Fm
l

= coor(k, Tt)l

29: FixedCoor ← l

30: end for

31: end while

32: for i = 1→ nS do

33: Recmi =
〈

Fm
i (gγk

), Rmyi
〉

Fm
i (gγk

)

34: Rm+1yi = Rmyi − Fm
i (gγk

)

35: end for

36: end while

37: for n = 1→ L do

38: MaxCof(n) =
∑nS

i=1 coeff(n, i)

39: end for

40: Am = max(MaxCof)

41: if Am > Am−1 then

42: for i = 1→ N do

43: for j = 1→ N do

44: F ∗

jim = Fm
i − Fm

j

45: end for

46: end for

47: end if

24

Chapter 6

Experimental setup

6.1 Algorithm and network parameters analysis for scalar

sensor data

Our final goal is to simulate a 20 sensor network using the Truncated Viterbi algorithm presented

before. Due to the computational cost, we work previously with less sensors (6 and 11) to see the

general behavior of certain parameters of the minimization function. This allows us to formulate

some hypothesis to work on in the 20 sensors case. As we explain in previous chapters, we

implement the minimization algorithm with three different regularization techniques: the absolute

value (ABS), total variation (TV), and weighted distance (WD). In low sensors scale we use

the classic VLA to see the general behavior amongst different parameters, then we can use this

information for the TVLA for 20 sensor network. Concretely, we notice that the maximum PSNR

is achieved for similar λ values for 1Best, 2Best and 3Best for 6 and 11 sensors, so we estimate

this parameter for the 20 sensor network and TVLA simulating only the 1Best case. This is useful

because the parameter analysis for 20 sensor networks and NBest for N > 1 is computationally

non-viable.

In practice, most of the regularizations of the inverse problems suffers from a trade-off between

the data-fidelity-term and the smoothness term. Different regularization techniques deal with this

trade off. This trade off can be controlled by the selection of proper regularization parameter.

Various methods have been developed for the optimal selection of these regularization parameters

[14], but the goal of this work is not the optimum selection of λ. Our discrete minimization

algorithm differs a bit on the classical ones, so is not easy to compute this type of numerical

analysis. We select λ by simulating the data reconstruction performance in a large range of this

25

parameter. To see the process convergence, we average the results over 150 different experiments.

We change randomly the sender nodes and the receiver sensors in the graph model. The set of

experiments for 6, 11 and 20 sensors we illustrate in appendix A. We conclude that for λ = 0.75

and TV regularization, TVLA is achieving the best PSNR results.

As we mention in section 5.1.3, another key parameter is update point (update), because this

is the parameter which controls the trade off between the data processed and the computational

cost. As the information computed increases the PSNR does the same, but it’s important to find

a point where the time spent in the process is reasonable.

As we can see in A.1, the computational cost is progressively decreasing from the eight sensor

estimation, but then increases again from the twelfth. This shows that if we cut the algorithm

when the fusion center is processing the first or last sensors approximations the amount of data is

so large to be processed efficiently. We have to find a intermediate point where the exponentially

increasing of information does not make our algorithm too slow. The PSNR values will be showed

deeply on 7, but the best updates points are Update = [8, 10]. So obviously, the choice will be

update = 10 because the time spent in the process is much lower.

Finally, the topology graph and the data model for 20 sensors is represented in figure A.9.

For this, we use a 2D-Gaussian with variance , with the values varying between [7...15].

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8
2D correlated field under observation

0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.1: Graph and data model for 20 sensors

26

6.2 Algorithm and network parameters analysis for high

dimensional sensor data

We work with a twelve sensor network, we can see the topology graph in 6.2.

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5
Graph model for high dimensional data

Figure 6.2: Graph model for 20 sensors

6.2.1 Joint Matching Pursuit

As we explained before, our input signal is a sparse image composed by three atoms. We built

artificially the dictionary, using a 2D-view generator software. We denote each element of this

dictionary as gγk
for k = [1, ..., 33]. We incorporate in the dictionary eleven scaled versions of

each atom that generates the input data. Note that each element of the dictionary is an image of

the same size as the input data which contains an atom in the center of it. So gγk
is not the full

dictionary, we use the full dictionary in the MP algorithm translating the atoms in each position

of the view. Therefore if our image size is 64× 64 pixels, we use 64× 64× 33 atoms to reconstruct

the signal. So the transforms for an atom m for the sensor i, Fm
i gγk

can also be understood as

the displacement of a certain atom to fit the original image. We can see an example of the atoms

27

included in our dictionary in picture.

In this work we compare two methods of MP algorithms: the single matching pursuit (SMP)

and our method, the joint matching pursuit (JMP). The first one, decodes independently the

signal of each sensor without using any information about the neighbors or its relative position

in the network. The second one, decides the atom that match best the signal in each iteration

by projecting it along the image residues of all the sensors. Our algorithm JMP as we explained

in the previous chapters exploits the correlations amongst views as well as the knowledge of the

relative positions of nodes in the network.

6.2.2 Joint Total Variation

On the same context, we compare our method with the classical total variation one, which we

denote as single total variation (STV). This technique minimizes the total variation of each image

independently, without assuming any prior of the network topology or the correlation within

neighbor views.

For our joint total variation algorithm is necessary to fix the regularization parameter λ and the

constants α and β, which control the contributions of neighbors information and the own sensor

image. We use an experimental method to approximate a proper value for this parameters. We

simulate the algorithm varying the constants within a certain range, as we did in the scalar case

for the regularization parameter λ. Due to the lack of relevance we omit this plots, and we give

only the final results. The best performance is achieved for λ=0.125, α=1 and β=5. Obviously,

we use the same λ to contrast both STV and JTV methods.

To exploit the correlation between neighbors, we work with different measurement matrix for

each sensor image. Therefore the matrix Φ in equation Eq.(3.6) varies in function of the node

in the network, Φi, i = [1, ..., N], where N is the number of sensors. The fact of having different

measurement matrices, implies that the information from the neighbors is more relevant. If we

compress the signal with a constant Φ for all the sensors the observations within a neighborhood

becomes more redundant.

28

Chapter 7

Final Discussion

7.1 Scalar data discussion

We gather information of both 2 and 3 Best only for the 6 sensor network case, due to the

computation limitations. It’s interesting to see that in the 6 sensor network for 2 and 3 best the

method achieving the best PSNR is the WD, despite being deficient for 1Best (see table 7.1). We

allow less variance on data as the number of sensors increases, and for more nodes the smoothness

of data is better characterized. As a result, TV estimates better the signal under this assumptions

(20 sensors) as we can see in table 7.3. Otherwise, for 6 sensors where data can change a bit more

within a neighborhood TV results are the worst.

We discard the regularization methods ABD and WD for 20 sensors due to the poor results

obtained for the 1Best simulations. The 2Best implementation with TVLA, is an extension of

the simple VLA for 1Best, so is logical to think that if the basic construction is not achieving

acceptable PSNR, the extension will do not too.

Table 7.1: PSNR (dB) for 6 sensors with the classic Viterbi List algorithm

1Best 2Best 3Best

WD 18.1 23.2 25.3

ABS 19.5 22.8 22.9

TV 19.4 21 21.3

29

Table 7.2: PSNR (dB) for 11 sensors with the classic Viterbi List algorithm

1Best 2Best

WD 20.9 22.2

ABS 23.4 24.7

TV 19.3 19.7

Table 7.3: PSNR (dB) for 20 sensors with the classic Viterbi List algorithm

1Best

WD 13.9

ABS 18.3

TV 22.2

7.1.1 PSNR and convergence for TVLA

After the simulations of low sensor networks and analyze the results to know the behavior of the

final 20 sensor network, we can obtain relevant information for the selection of our regulariza-

tion parameter λ = 0.75 for TV. It’s important because the quality of the final reconstruction is

extremely related with this value. We also decide the update parameter knowing that the compu-

tational cost of the Viterbi List algorithm is exponentially increasing with the number of sensors.

As we can see in table 7.4 TVLA for 2Best achieves better PSNR compared to BR defined in

5.1.1. Remember that BR is equivalent to the VLA for 1Best. If we select update=8 the improve-

ment in the PSNR is around 1.1 dB, on the other hand the increase is 0.7 dB for update=10.

The improvement in dB for update = 8 compared to undate = 10 is 0.4 but the time spent in

the entire reconstruction process is more than two times larger. So if our framework do not have

time or computation limitations and the main goal is to achieve the best PSNR as possible, the

best update choice will be update = 8. Otherwise, as the increase in the PSNR is not extremely

relevant, the best option for applications where the computational cost has to be considered is

update = 10. The other point showed in 7.1(a) and 7.1(b) is that for update = 8, the algorithm

convergence is slow, so for few experiments the results are more random.

30

0 10 20 30 40 50 60 70 80 90 100
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Independent experiments

A
ve

ra
ge

d
M

S
E

MSE average for 100 independent experiments and λ= 0.75

1Bests

2Bests

(a)

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

Independent experiments

A
ve

ra
ge

d
M

S
E

MSE average for 100 independent experiments and λ= 0.75

1Bests

2Bests

(b)

Figure 7.1: (a) Convergence of 1Best VLA and 2Best TVLA for update = 8 , (b) Convergence of

1Best VLA and 2Best TVLA for update = 10

7.1.2 Sumary for TVLA vs VLA

We can consider that we can represent a wide ride of temperatures with 6 bits. The implementation

of the VLA for 20 sensors and 2Best requires in terms of memory:

N∑

i=1

si ×N × b, (7.1)

where N is the number of sensors, s the elements saved in TVLA and b the bits used. For our

study 31.4MB. On the other hand if we use the TVLA the computational cost can be calculated

as




u−1∑

i=1

si +

N−(u−1)∑

i=1

si


×N × b, (7.2)

where u is the update point. For this case the amount of data processed is 161KB for update = 8

and 40.6KB for update = 10. This means that we use the 0.55% and 0.13% of the information

that is required for VLA, in terms of computational cost is a great improvement.

7.1.3 Conclusions of TVLA for 2Best

Is clear that 2Best TVLA is better that 1Best VLA (or BR). If we analyze the energy cost

function Eq.(4.1) is easy to conclude that with our algorithm we consider more points of the

function domain to compute the energy minimum. These increasing of computational burden

31

Table 7.4: TVLA for 20 sensors (2Best)

Update8 Update10

PSNR(dB) 23.3 22.9

Improvement respect BR (dB) 1.1 0.7

Time Spent (sec) 1000 300

Data needed (KB) 161 40.6

Data used respect VLA (%) 0.55 0.13

or what is the same, the higher number of possible sensor values processed, is beneficial for the

localization of the absolute energy minimum.

7.2 High dimensional data discussion

7.2.1 Joint Total Variation

We try to compare the PSNR and the final reconstruction images for different number of measure-

ments with both classical single total Variation (STV) and our method, the Joint Total Variation

(JTV). We did the experiments with a range of measurements M , varying from the 20% to the

60 % of the total image size P .

If we observe the PSNR plot in 7.2, the JTV model is achieving best results for the full range

of measurements. But the PSNR in this case is not the best representation of the algorithm

performance. If we observe the final reconstruction images, we realize that the improvement in

terms of PSNR is not reflected in the final quality of the image. We can not distinguish visually

the differences between both methods, so we can conclude that our algorithm is not exploiting as

much as we expect the information of the neighborhood nodes.

32

20 25 30 35 40 45 50 55 60
14

16

18

20

22

24

26

% of measurements

P
S

N
R

 (
d

B
)

PSNR for JTV vs. STV

JTV
STV

Figure 7.2: PSNR for STV and JTV

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

Pseudoinverse−noisy data for M=225

20 40 60

20

40

60 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

STV Data reconstruction for M=225

20 40 60

20

40

60
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

(b)

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

JTV Data reconstruction for M=225

20 40 60

20

40

60

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

(c)

Figure 7.3: Reconstruction for both STV and JTV methods. (a) Noisy images for M= 15 × 15

measurements , (b) STV for M=15 × 15 measurements, (c) JTV for M=15 × 15 measurements

33

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

Pseudoinverse−noisy data for M=1521

20 40 60

20

40

60 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

STV Data reconstruction for M=1521

20 40 60

20

40

60
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

(b)

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

JTV Data reconstruction for M=1521

20 40 60

20

40

60 0.3

0.35

0.4

0.45

0.5

0.55

0.6

(c)

Figure 7.4: Reconstruction for both STV and JTV methods. (a) Noisy images for M= 39 × 39

measurements , (b) STV for M=39 × 39 measurements, (c) JTV for M=39 × 39 measurements

7.2.2 Conclusions of JTV

Our noisy images for this case are the result of ’decompress’ the signal. The total variation of an

image have to be computed in the signal domain, so when we multiply the observations by the

pseudo inverse of the measurement matrix x̃i = Φtyi the ’noise’ added don’t allow the method

work properly. When we work with a low compressing ratio as we can see in figure 7.4 the method

reconstructs the signal with an acceptable quality, but there is not any significant difference

between STV and JTV. By the other hand, when we reduce the number of measurements both

methods obtain a poor representation of the original image, see figure 7.3.

34

7.2.3 Joint Matching pursuit

We want to compare our joint matching pursuit (JMP) algorithm with the classical single match-

ing pursuit (SMP), which decodes independently each image. We test the algorithms for set of

measurements M varying from the 15% to the 55% of the total number of pixels in the image.

15 20 25 30 35 40 45 50 55
19

20

21

22

23

24

25

26

27

28

% of measurements

P
S

N
R

 (
d

B
)

PSNR for JMP vs. SMP

JMP
SMP

Figure 7.5: PSNR for SMP and JMP

As we can see in fig. 7.5 our proposed algorithm achieves significant improvements in terms

of PSNR for the low range of measurements. From M=35% to 55% of the mesureaments the

methods converge to the same value, since the number of measurements is already high enough.

35

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

SMP Data reconstruction for M=100 mesureaments

20 40 60

20

40

60 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

JMP Data reconstruction for M=100 mesureaments

20 40 60

20

40

60 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

SMP Data reconstruction for M=484 mesureaments

20 40 60

20

40

60 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

JMP Data reconstruction for M=484 mesureaments

20 40 60

20

40

60 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d)

Figure 7.6: Reconstruction for both SMP and JMP methods. (a) SMP for M=10 × 10 measure-

ments , (b) JMP for M=10 × 10 measurements , (c) SMP for M=20 × 20 measurements , (d)

JMP for M=20 × 20 measurements

In figure 7.6(a) SMP includes a lot of wrong atoms in the decoded image. The transformations

of this atoms are clearly far away from the ideal ones. Otherwise in figure 7.6(b), there are also

some mistaken atoms and transformations but the error is clearly lower compared to the SMP.

Note that for JMP we recover three different atoms for all the signals and their relative position.

Instead JMP enhance the final PSNR, the final reconstruction do not produce relevant visual

differences when we increase the number of measurements, see figure 7.6(c) and figure 7.6(d).

Despite the improvements achieved, our method fails when M <15% of the image pixels.

The JMP algorithm approximates the transformations amongs views F̃ij(·) in each iteration after

the computation of the best atom for the full set of images. The estimation of this transforms

constraints a lot the performance of the algorithm. We want to see the behavior of JMP if we

36

assume that we perfectly know the transformations Fij(·). This method can be viewed as an upper

bound of the JMP and we denote it Ideal Joint Matching Pursuit (IJMP).

10 15 20 25 30 35 40 45 50 55
14

16

18

20

22

24

26

28

% of measurements

P
S

N
R

 (
d

B
)

PSNR for IJMP vs. JMP & SMP

IJMP
JMP
SMP

Figure 7.7: PSNR for STV,JTV and IJMP

As we can see in figure 7.7 IJMP enhances a lot the PSNR for low values of M , about 5dB

for 49 measurements over 64 × 64 image pixels. On the other hand, the reconstructed signals

illustrate clearly the benefits of the algorithm if we increase the quality of the transformations

amongst views.

37

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

SMP Data reconstruction for M=49 mesureaments

20 40 60

20

40

60 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

JMP Data reconstruction for M=49 mesureaments

20 40 60

20

40

60 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

20 40 60

20

40

60
20 40 60

20

40

60
20 40 60

20

40

60

IJMP Data reconstruction for M=49 mesureaments

20 40 60

20

40

60 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)

Figure 7.8: Reconstruction for SMP, JMP and IJMP methods. (a) SMP for M=7 × 7 measure-

ments , (b) JMP for M=7 × 7 measurements , (c) IJMP for M=7 × 7 measurements.

If we observe the decoded signals in figures 7.8(a), 7.8(b) and 7.8(c) we corroborate visually

the results of the PSNR plot. IJMP estimates the correct atoms, but the transforms Fii of this

atoms are not perfectly recovered. Otherwise SMP and JMP do not recover correctly either the

atoms or the transforms.

7.2.4 Conclusions of JMP

Our method is able to decode compressed signals for lower number of measurements than the

SMP. Thus, it exploits the correlation amongst a neighborhood to increase the performance of the

algorithm. Despite the improvement compared to SMP, our solution for M¡15% of the image size,

do not achieve acceptable results. We use IJMP to prove empirically that with better estimations

of the transformations amongst views, the reconstruction quality enhances for lower M. We can

38

conclude that the technique used to approximate this transforms is the main handicap of our

algorithm. If we were able to estimate F̃ij(·) with less error the quality of JMP would increase.

39

Bibliography

[1] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde.

“Compressive Sensing”, 2007.

[2] D. Kempe, A. Dobra, and J. Gehrke.

“Gossip-Based Computation of Aggregate Information”, 2003.

[3] S. Boyd, A. Ghosh, B. Prabhakar and D. Shah.

“Randomized Gossip Algorithms”, 2006.

[4] C. Aysal, E. Yildiz and A. Scaglione.

“Broadcast Gossip algorithms”, 2008.

[5] P. Kyasanur, R. Choudhury and I. Gupta.

“Smart gossip: An adaptive gossip-based broadcasting service for sensor networks”, 2006.

[6] G. Dimakis, S. Kar, M. Moura, F. Michael, G. Rabbat, and A. Scaglione.

“Gossip Algorithms for Distributed Signal Processing”, 2010.

[7] C. Luo, F. Wu, J. Sun and C. Chen.

“Efficient Measurement Generation and Pervasive Sparsity for Compressive Data Gathering”,

2010.

[8] C. Luo, F. Wu, J. Sun and C. Chen.

“Compressive Data Gathering for Large-Scale Wireless Sensor Networks”, 2009.

[9] J. Wright, M. Yi, J. Mairal, G. Sapiro, T.S. Huang and S. Yan.

“Sparse Representation for Computer Vision and Pattern Recognition”, 2010.

[10] A.Y. Yang, M. Gastpar, R.Bajcsy and S.S. Sastry.

“Distributed Sensor Perception via Sparse Representation”, 2010.

40

[11] W. Wang and K. Ramchandran.

“Random distributed multiresolution representations with significance querying”, 2006.

[12] G. Dimakis, D. Sarwate and J. Wainwright.

“Geographic gossip: efficient aggregation for sensor networks”, 2006.

[13] W. Wang, M. Garofalakis and K. Ramchandran.

“Distributed sparse random projections for refinable approximation”, 2007.

[14] V. Agarwal.

“Total Variation Regularization and L-curve method for the selection of regularization pa-

rameter”, 2003.

[15] D. Zhou and B. Scholkopf.

“Regularization on Discrete Spaces”, 2005.

[16] E. Candes and T. Tao.

“Decoding by linear programming”, 2005.

[17] D. Donoho.

“Compressed sensing”, 2006.

[18] E. Candes, J. Romberg and T. Tao.

“Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency

information”, 2006.

[19] M. Bertero, C. De Mol and E. R. Pike.

“Linear inverse problems with discrete data. I. General formulation and singular system anal-

ysis”, 1985.

[20] M. Bertero, C. De Mol and E. R. Pike.

“Linear inverse problems with discrete data: II. Stability and regularisation”, 1988.

[21] S. S. Chen, D. L. Donoho, and M. A. Saunders.

“Atomic Decomposition by Basis Pursuit”, 1998.

[22] S. G. Mallat and Z. Zhang.

“Matching pursuits with time-frequency dictionaries”, 1993.

[23] P. Frossard, P. Vandergheynst, R.M. Figueras i Ventura, and M. Kunt.

“A posteriori quantization of progressive matching pursuit streams”, 2004.

41

[24] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani.

“Least angle regression”, 2004.

[25] R. Tibshirani.

“Regression Shrinkage and Selection via the Lasso”, 1996.

[26] A. Chambolle and P. Lions.

“Image recovery via total minimization and related”, 1997.

[27] A. Chambolle.

“An Algorithm for Total Variation Minimization and Applications”, 2004.

[28] J. Besag.

“Spatial Interaction and the Statistical Analysis of Lattice Systems”, 1974.

[29] Blender software.

“http://www.blender.org”.

42

Appendix A

Appendix title

Our final goal is to simulate a 20 sensor network using the Truncated Viterbi algorithm presented

before, but due to the computational cost, we work previously with less sensors (6 and 11) to see

the general behavior of certain parameters of the minimization function. This will allow us to

formulate some hypothesis to work on in the 20 sensors case.

A.1 6 Sensors network

We can see the topology graph and the data model in A.1. We design a random geometric graph,

of the size 6 × 6, where all the sensors are initially placed. An edge between two nodes is added

if they are positioned within a communication radius r of each other. As proposed in [11] the

critical threshold above which the graph is connected is Θ

(√
logn
n

)
. As the computational cost

of this case is not too high, we allow a large variance on data, when building matrix field. For

this, we use a 2 dimensional Gaussian with variance σ ∈ [4, ..., 29].

As we explain in previous chapters, we implement the minimization algorithm with three

different regularization techniques: the absolute value (abs), total variation (TV), and weighted

distance (WD). In low sensors scale we use the classic VLA to see the general behavior amongst

different parameters, then with this information we can improve the performance of the TVLA for

20 sensor network. Concretely, if we observe that the maximum PSNR is achieved for similar λ

for 1Best, 2Best and 3Best for 6 and 11 sensors, we can estimate this parameter for the 20 sensor

network and TVLA simulating only the 1Best case. This will be useful because the parameter

analysis for 20 sensor networks and NBest for N > 1 is computationally non-viable.

43

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
2D correlated field under observation

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure A.1: Graph and data model for 6 sensors

A.1.1 Lambda selection

In practice, most of the regularizations of the inverse problems suffers from a trade-off between

the size of the regularized solution and the quantity of the fit that it provides to the given data.

Different regularization techniques differ on the basis on how they minimize this trade off. This

trade-off can be controlled by the selection of proper regularization parameter. Various methods

have been developed for the optimal selection of these regularization parameters [14], but the goal

of this work is not the optimum selection of λ, due to our discrete minimization algorithm differs a

bit on the classical ones. Thus, is difficult to compute the numerical analysis proposed in [14] for

the regularization parameter selection . We select the proper λ simulating the network gathering

process in a large range of this parameter. To see the process convergence, we average the results

over 150 different experiments, this is, we change randomly the senders and the receivers in the

graph model.

As we can see in A.4 WD method is achieving best results for 6 sensors, maybe because we

allow more variance on data as the computational cost is low for 6 sensor case. The other key

point is that in A.3 the PSNR peak for 1Best and TV is shifted, so is important to consider it for

the λ selection in higher sensor networks. Note that the improvement on the SNR between 1Best

44

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

12

14

16

18

20

22

24

λ

S
N

R

Snr representation in function of λ

1Bests

2Bests
3Bests

Figure A.2: Abs regularization

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
12

13

14

15

16

17

18

19

20

21

22

λ

S
N

R

Snr representation in function of λ

1Bests

2Bests
3Bests

Figure A.3: TV regularization

45

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
12

14

16

18

20

22

24

26

λ

S
N

R

Snr representation in function of λ

1Bests
2Bests
3Bests

Figure A.4: Wd regularization

and 2Best is much higher than 2-3Best. If the behavior for more sensors were the same, will be

reasonable to consider only the 2Best case because the tradeoff between PSNR and computational

cost is not acceptable for 3Best.

A.2 11 Sensors network

The graph was constructed with the same criterion explained before for 6 sensor network. Now

the data is modeled as a 2 dimensional Gaussian with variance σ ∈ [7, ..., 24] ,we can see both

data and graph model in A.5.

A.2.1 Lambda selection

In this case, the 3Best case is already too computationally expensive, this is the reason why we

realize the experiments for 1 and 2Best, to observe the behavior and extrapolate conclusions for

the final 20 sensors scenario.

In A.8 the SNR peaks between 1 and 2Best are also shifted, so this fact must be considered

for higher sensors network.

46

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
2D correlated field under observation

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure A.5: Graph and data model for 11 sensors

0 0.5 1 1.5
17

18

19

20

21

22

23

24

25

λ

S
N

R

Snr representation in function of λ

1Bests
2Bests

Figure A.6: Abs regularization

47

0 0.5 1 1.5
18

18.5

19

19.5

20

20.5

21

21.5

22

22.5

λ

S
N

R

Snr representation in function of λ

1Best
2Best

Figure A.7: Wd regularization

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
17

17.5

18

18.5

19

19.5

20

λ

S
N

R

Snr representation in function of λ

1Bests
2Bests

Figure A.8: TV regularization

48

A.3 20 Sensors network

Now the data is modeled as a 2 dimensional Gaussian with variance σ ∈ [7, ..., 24]. We can see

both data and graph model in A.9

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8
2D correlated field under observation

0.4 0.5 0.6 0.7 0.8 0.9 1

Figure A.9: Graph and data model for 20 sensors

A.3.1 Lambda selection

First of all we have to select the optimal lambda. For computational cost reasons, we experiment

only with 1Best VLA and later using the conclusions deducted from 6 and 11 sensors networks

we can approximate λ for 2Best and TVLA.

For 20 sensors, there have more samples of data, so the smoothness is represented with more

fidelity. We can observe that TV is clearly achieving the best PSNR values, abs regularization

have good behavior with less sensors but if we increase the number of nodes this method can

not be considered as a real alternative. We avoid the WD regularization because is the worst

method and we want to focus our efforts on the study of TV. Is reasonable to think that the best

regularization for 1Best case will be also the most appropriate for the implementation of our 2Best

TVLA algorithm. Note that for this simulations of 1Best we can still use the VLA, since we want

49

0 0.5 1 1.5
12

13

14

15

16

17

18

19

λ

S
N

R

Snr representation in function of λ

1Bests

Figure A.10: Abs regularization

0 0.5 1 1.5
10

10.5

11

11.5

12

12.5

13

13.5

14

λ

S
N

R

Snr representation in function of λ

1Bests

Figure A.11: Wd regularization

50

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
14

15

16

17

18

19

20

21

22

23

λ

S
N

R

Snr representation in function of λ

1Bests

Figure A.12: TV regularization

to represent the optimal lambda for 1Best and avoid the large amount of information required

in 2 or 3Best. For TV the PSNR peak is shifted from 1Best to 2Best for 6 and 11 sensors. The

selection of λ depends on the norm of the reconstructed signal (exactly on the l2 norm). We can

use Eq.(A.1) to calculate λ for TV and 2Best in the 20 sensor network.

λ ≈
d12 |x|6−11s

|x|20s
(A.1)

In A.1 d12 is the averaged distance between 1-2Best peaks for 6 and 11 sensors, |x|6−11s is

the averaged norm of reconstructed signal for 6 and 11 sensors. Analogously, |x|20s is the norm of

the reconstructed signal for 20 nodes. Using A.1 we can find a acceptable value for the constant

under analysis, λ = 0.75.

A.3.2 Update point for the Viterbi List algorithm

Since the increase of required computational resources of data is exponential, if we cut the algo-

rithm while approximating the first sensors values or the lasts, the time processing will be still

unacceptable. We perform experiments by re-starting the process between the eighth and four-

51

Table A.1: Viterbi algorithm’s time analisis along different update values

Update 8 9 10 11 12

Time (sec) 1000 450 300 230 280

teenth sensor estimation values. We average the time spent to do one entire process along 100

experiments.

As we can see in A.1, the computational cost is progressively decreasing from the eight sensor

estimation, but then increases again from the twelfth. This shows that if we cut the algorithm

when the fusion center is processing the first or last sensors approximations the amount of data is

so large to be processed efficiently. We have to find a intermediate point where the exponentially

increasing of information does not make our algorithm too slow.

The PSNR values will be showed deeply on 7, but the best updates points are Update = [8, 10].

So obviously, the choice will be update = 10 because the time spent in the process is much lower.

52

