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Abstract

This work takes a top-down approach to accelerating decision support systems (DSS) on x86-64

microprocessors using true vector ISA extensions. First, a state of art DSS database manage-

ment system (DBMS) is profiled and bottlenecks are identified. From this, the bottlenecked

functions are analysed for data-level parallelism and a discussion is given as to why the existing

multimedia SIMD extensions (SSE) are not suitable for capturing this parallelism. A vector ISA

is derived from what is found to be necessary in these functions; additionally, a complementary

microarchitecture is proposed that draws on prior research done in vector microprocessors but

is also optimised for the properties found in the profiled application. Finally, the ISA and mi-

croarchitecture are implemented and evaluated using a cycle-accurate x86-64 microarchitecture

simulator.



Acknowledgements

I would like to thank Adrián Cristal and Osman Unsal, my two supervisors at the Barcelona

Supercomputing Center, and Eduard Ayguadé for directing this master’s thesis.
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Chapter 1

Introduction

Database management systems (DBMS) have become an essential tool for research and indus-

try and are often a significant component of data centres. They can be used in a multitude

of scenarios including online analytical processing [7], data mining, e-commerce and scientific

analysis. As the amount of information to manage grows exponentially each year [19], there is

a pressure on software and hardware developers to create data centres that can cope with the

increasing requirements. At the same time, there is now also an additional demand to provide

greener [34] and more power-efficient data centres without compromising their performance [26].

Modern microprocessors often include SIMD multimedia extensions that can be used to

exploit data-level parallelism [46, 51]. There has been some prior work [59, 55] using these

extensions to accelerate database software. These works were successful to some extent however

multimedia extensions tend to be very limited. They often lack the flexibility to describe non-

trivial data-level parallelism found in DBMS software. There is generally an upper threshold

of two or four elements that can be operated on in parallel and code must be restructured and

recompiled if this threshold should increase in the future. The extensions are typically targeted

at multimedia and scientific application with the bulk of support geared towards floating point

operations. Integer code found in DBMS software was not its intended purpose, this can be a

limiting factor to exploit the parallelism in such applications.

VectorWise [9, 27] performed research into hardware-conscious DBMS systems. Using only

commodity processors, they identified where previous database solutions were bottlenecked and

structured their own software to exploit the full capabilities of a modern superscalar micropro-

cessor. It transformed the data-level parallelism into instruction-level parallelism to keep the

processor utilised fully. While the performance is much better, optimising a database by exploit-

ing the data-level parallelism as instruction-level parallelism is not an efficient solution. Modern

5



CHAPTER 1. INTRODUCTION

microprocessors found in servers are generally superscalar/out of order and can achieve this to

some extent; the problem is that the hardware complexity and power consumption of finding

more independent instructions this way increases quadratically [42] making this an unscalable

solution and not suitable in the long term.

Vector architectures [16] are highly scalable and overcome the limitations imposed by su-

perscalar design as well as SIMD multimedia extensions. They have the flexibility to represent

complex data-level parallelism where multimedia extensions are lacking. More importantly, they

are energy-efficient [35] and can be implemented on-chip using simple and efficient hardware [3].

In the past, vector processors were also used to tolerate long latencies to main memory. As mem-

ory latency has become a significant issue for both computer architects and software developers,

vector support could be instrumental in optimising databases which are typically memory-bound

[8]. Vector architectures have traditionally been used for scientific applications with floating-

point code, however it is felt that a lot of the concepts can be applied to business-domain

(integer) applications too.

This work takes a top-down methodology and profiles VectorWise, a database management

system optimised for modern out of order superscalar microprocessors, looking for opportunities

to use vector technology. From this, software bottlenecks caused by unscalable scalar hardware

structures are identified. A discussion is given as to why multimedia instruction sets such as SSE

are insufficient to express the potential data-level parallelism in this application; consequently,

new vector ISA extensions for x86-64 are proposed as a solution. These ISA extensions have been

implemented using a cycle-accurate microprocessor simulator and experiments show speedups

in performance between 1.3x and 6.2x with the possibility to scale further.

This document is structured as follows. Chapter 2 provides a short overview of technical

details relevant to this work. Chapter 3 is an exploration section that analyses VectorWise and

discusses bottlenecks due to being run on a scalar processor. Chapter 4 proposes a vector ISA

and complementary microarchitecture based on the results of the exploration section. Chapter

5 discusses the issues, choices and decisions of implementing the design using a cycle-accurate

microprocessor simulator. Chapter 6 shows experiments and results of running a vectorised

version of the application on the modified simulator. Chapter 7 discusses related work regarding

database acceleration and vector microprocessors. Finally, chapter 8 concludes this document

and hints at ideas for future work.
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Chapter 2

Technical Background

This chapter gives a short overview of technical concepts used in this work. It is not intended

to be exhaustive and references are given for further reading.

2.1 Vector Architectures

Vector architectures [16] have been around since the early 1970s and were traditionally used

in the supercomputer market. They provide instruction set architectures (ISAs) to express

data-level parallelism concisely. The main advantages are listed here, but for a comprehensive

overview of vector architectures the reader is referred to [24] and [3].

Vector hardware is typically much more simple than their aggressive out of order superscalar

equivalents and yet can provide strong computational performance when the application is suit-

able (vectorisable). Parallelism can be exploited through pipelining or through parallel vector

lanes.

Vector architectures have a reputation of being more energy efficient [35] and scalable over

scalar microprocessors. There can be a large reduction in the pipeline’s fetch and decode stages

and scalability is generally not inhibited by associative hardware structure as with out of order

superscalar microarchitectures [42].

Vector architectures also have the potential to reduce the penalties of branch mispredictions

by predicating operations using masks. It is even possible to accelerate performance further by

completely bypassing blocks of masked operands [52]. Additionally, there is less requirement for

aggressive speculation and memory prefetching since execution and memory access patterns are

7



CHAPTER 2. TECHNICAL BACKGROUND

fully encoded into a single instruction.

2.1.1 Vectors vs. Multimedia Extensions

Streaming SIMD Extensions [46], the multimedia extensions offered in all the current x86/x86-

64, microprocessors can be considered vectors but with limitations. True vectors offer several

advantages not found in these multimedia extensions.

At the time of this writing, the latest multimedia extensions offered by Intel are the Advanced

Vector Extensions (AVX) [29] which offers sixteen 256-bit SIMD registers. 256 bits can contain

four long integers or four double-precision floats. Vectors typically have larger registers which

can hold dozens to hundreds of elements.

Traditional vector architectures typically include a programmable vector length register. In

the SIMD multimedia extensions, this length is fixed. There is a consequence of this: if the

maximum vector length can be detected at runtime through an instruction, manufacturers can

vary this length whilst keeping the ISA the same. In contrast, with every generation of the

SIMD multimedia extensions that have increased the register width, code must be rewritten

and recompiled to take advantage of it.

One the strongest advantages of vector processors is their ability to tolerate long latency

instructions, of particular important memory operations. In contrast, the SIMD multimedia

extensions have a much more limited access to memory. As an example, Sandy Bridge [28], a

microarchitecture that implements AVX, provides a 16-byte bus from the SIMD registers to the

level 1 cache. If there is a cache miss, the instruction is treated the same as any scalar load that

misses cache. The benefit is that the bandwidth is doubled, but only if the working set is cache

resident.

Historically, vector architectures fully pipelined operations through its functional units to

hide execution latency. SIMD multimedia extensions are instead executed using very wide func-

tional units. The functional units can be fully pipelined, but with respect to unique instructions

rather than elements within the same instruction. Vector architectures have often employed

chaining to pipe the output of one instruction into the input of another instruction before the

former fully completes. SIMD multimedia extensions don’t do this because they don’t fully

pipeline the elements of their inputs. In fact, their register widths are too short take advantage

of chaining.

Vector architectures have often included a separate set of architectural registers to enable

masking. Masking allows turning conditional branches into predicated instructions thus elim-
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inating many conditional branches. The SIMD multimedia extensions has some support for

masking, although not through separate registers, and is very limited. The most lacking feature

in the SIMD multimedia extensions’ idea of masking is that it cannot conditionally execute

parts of a memory operation. This has changed recently in AVX which allows a limited form of

masked load/store instructions.

Vector architectures have had more flexibility when it comes to memory instructions. Vector

machines typically support unit-stride memory accesses, strided memory accesses and indexed

memory accesses. The SIMD multimedia extensions require that all data be stored in contiguous

locations in memory.

Vector architectures have usually included more flexible instructions than those found in

the SIMD multimedia extensions. For example, the compress instruction found in many vector

architectures [52] allows an input vector register to be rearranged based on a mask. The SIMD

multimedia extensions have some position manipulation instructions, but are generally not as

powerful as those in their vector counterparts.

Finally, some vector architectures have included support for reductions operations. These

allow a vector of values to be aggregated into a single scalar value. The SIMD multimedia

extensions offer no equivalent to this.

2.2 Databases

2.2.1 Database Categories

Databases Management Systems (DBMSs) can be broadly categorised into two main categories:

1. Online Transaction Processing (OLTP)

2. Online Analytical Processing (OLAP)

OLTP is characterised by small to medium sized databases, frequent updates and short

queries. OLAP, in contrast, is characterised by very large databases, infrequent updates (usu-

ally done in batch) and typically long and compute-intensive queries. Typically a DBMS will be

implemented and optimised targeting either OLTP or OLAP, furthermore its design and archi-

tecture will be quite different depending on the area chosen. OLAP is the fundamental part of

a decision support system (DSS) which allows users to ask complex business-oriented questions

over huge amounts of data.
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CHAPTER 2. TECHNICAL BACKGROUND

2.2.2 Query Engines

The query engine is the heart of a DBMS. There are three primary ways a query engine can

operate on data when executing a query:

1. Tuple at a time processing

2. Column-wise processing

3. Block at a time processing

Tuple at a time processing, also known as the volcano model [18], is a technique to implement

a query engine by processing tuples, i.e. rows, one at a time. This essentially means that in a

database query, a single row traverses the entire query tree tree before the next row is processed.

The primary advantage is that as a row traverses the query tree, there is a lot of temporal

locality as the output of one operator is the input to the next one. This can be beneficial for

microprocessors with a cache hierarchy. The primary disadvantage is that for every row that

passes through every operator in the query tree, there is a function call. This can lead to a

large function call overhead and poor performance due to a lack of regularity in the code e.g.

no loops.

Column-wise processing [7] is almost the exact opposite. Instead of traversing the query tree

one row at a time, all of the rows are sent through a single operator of the query tree together.

The output is pruned, stored back into memory and the process starts again for the next operator

in the query tree. The advantage here is that the function overhead can be reduced considerably.

For all the rows processed, the operator only needs to be called once. The advantage here is

that the function call overhead is reduced and there is a lot of regularity in the data access

patterns. The disadvantage is that for large databases, the input and temporary results must

come from and go to main memory. Main memory is orders of magnitude slower than the cache

hierarchy. Data is typically stored in columns [12, 61] rather than rows for accelerated I/O

access and may consequently reveal more data-level parallelism to the functions, depending on

the implementation.

Block at a time processing [41] is a novel implementation that takes the middle ground

between tuple at a time and column-wise processing. Instead of operating on one row at a time

per function like the former, it operates on a cache-resident block of rows per function. This

means that intermediate results need not go to main memory and remain in the cache between

operators. Additionally, the per-operator function call can be amortised if the block size is large

enough.
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2.2.3 VectorWise

VectorWise [27] is a block at a time query engine based MonetDB/x100 [9]. It is highly optimised

for modern superscalar processors. Its operator functions are designed to be instruction cache

friendly and as well as to reduce branch misprediction penalties. Its block at a time technique

is highly optimised for the data cache [50]. Its functions are written to be data-level parallel

and try to expose independent loop iterations to the underlying out of order execution core.

SSE intrinsics are used in some parts, but the majority of functions are left to the compiler to

autovectorise.

With respect to blocks and memory, VectorWise can store a table in a columnar fashion

[12]. This means that arrays in memory contain columns of a table. When the functons access

data like this, it can help expose data-level parallelism and generate better hardware prefetching

requests.
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Chapter 3

Exploration

This chapter describes the process of profiling VectorWise in order to find computational bot-

tlenecks. Later, an analysis is given on the most significant functions. Potential data-level

parallelism is identified and a discussion is given as to why SSE is often insufficient to capture

this parallelism. This exploration serves as an input to defining an instruction set architecture

(ISA) and influences many decisions made in the design phase of the vector microarchitecture.

3.1 Baseline

3.1.1 VectorWise

For our experiments we use a standalone edition of x100 [9] that ultimately serves as the query

engine of VectorWise v1.0 [27]. The software is compiled with the Intel C Compiler (ICC)

v12. The specific optimisations are chosen by VectorWise’s configure script and include an

optimisation level of -O6.

Although VectorWise offers multithreaded query execution, the objective here is to observe

per-thread performance. For this reason benchmarks have been limited to a single thread. It

should be noted that while the query-related computations are being performed in one thread,

there are still additional helper threads in VectorWise that must co-exist e.g. there is a separate

thread in charge of bringing data from disk and uncompressing it.

In all our tests a block length of 1024 is used i.e. each database operator processes 1024

elements before passing the results to the next operator in the query tree.
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3.1.2 TPC-H

The standard benchmark used for decision support databases is the Transaction Processing

Performance Council benchmark H (TPC-H) [54]. TPC-H consists of 22 ad-hoc queries posing

complex business-oriented questions on a large relational database. The benchmark also defines

the schema of the database whereas content itself is dummy data generated by the council’s

official DBGEN tool.

The size of database is determined by a scale factor number; a scale factor of 1 represents an

input set of 1 GB however when placed within the database it could be more or less depending on

how the vendor decides to store the information. Some databases have a lot of redundancy e.g.

storing tables multiple times sorted on different columns; other databases reduce the amount

of space required by compressing the tables on disk and only decompressing them on demand.

Even with redundancy or compression, the database is expected to stay in the same order of

magnitude of its input size.

Typical scale factors are powers of 10, starting from 1 GB and growing as high as 30,000

GB. For our experiments we have chosen 100 GB as 10 GB did not stress the system enough

and 1,000 GB would need more disk space than is available on our system.

3.1.3 System Setup

The following is a description of the hardware used to profile VectorWise. It contains the most

elemental properties of the system; a more comprehensive and detailed look at the microarchi-

tecture is given in chapter 6.

Microprocessor

All our experiments were conducted on two Intel Xeon X5650s clocked 2.67 GHz. The Xeon’s

microarchitecture is Westmere which is a derivative of Nehalem fabricated at 32 nm. Each chip

multiprocessor (CMP) contains six cores which in turn contain two thread contexts that can

perform simultaneous multithreading (SMT). The ISA used is x86-64 with multimedia extensions

up to and including SSE4.2.
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Memory

There is a three-tiered cache hierarchy per chip with the following properties:

• L3 cache: shared 2 MB local per core and 12 MB overall

• L2 cache: private 256 KB

• L1 data cache: private 64 KB

• L1 instruction cache: private 64 KB

This is backed by a total of 16 GB of main memory. The system has four DIMMs of 4 GB

DDR3 1333 memory. These are placed into slots 1, 2, 5 and 6 giving each microprocessor chip

local access to two modules each. This configuration is balanced and economical but it does not

take advantage of the potential triple-channel memory access that is possible with the Westmere

architecture. This would require two extra memory DIMMs located slots 3 and 6.

Disk

The properties of the disk are not given intentionally as these experiments are focused purely

on microprocessor utilization; I/O performance is an orthogonal study. Three techniques for

reducing I/O impact are: Redundant Array of Independent Disks (RAID) [10]; VectorWise’s

own ColumnBM buffer manager [9]; and more recently there have been studies into utilizing

solid state drives in databases [5].

It should be noted that although the disk performance did not concern these experiments,

the disk capacity limited the possible TPC-H scale factors. A scale factor of 100 GB is used

as it is the largest size using power of 10 that can be contained on the disk before its capacity

becomes a problem.

Operating System

All experiments have been carried out using Fedora 13 x86-64.
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3.2 Profiling

In order to get a feeling for the presence and location of bottlenecks, a combination of techniques

is employed. First each of the TPC-H queries’ CPU usage is measured. This is followed by a

breakdown by database operation of the longest query. Finally hardware counters are used to

look at the performance of important functions in more detail.

3.2.1 Query Timings

Each query of the TPC-H suite was measured individually for CPU execution time. Intel’s

VTune Amplifier XE [30] has been used instead of the typical BASH time utility. This is

because, as mentioned in subsection 3.1.1, VectorWise is multithreaded and it is necessary to

single out the thread assigned to the query’s execution. This is made possible by using VTune

which has an advanced thread filtering mechanism.

[17] discusses the impact of TLB misses on DBMS software and how to reduce their number

by making use of HugeTLBfs (huge pages). VectorWise can optionally use HugeTLBfs if it

is supported by the underlying microprocessor. To show how much performance is gained by

reducing the TLB miss overhead, all queries are run with and without HugeTLBfs support.

Showing that the number of TLB misses can be minimised is an important fact later used in

chapter 5.

Figure 3.1: TPC-H SF 100 query CPU times

Figure 3.1 shows each query’s time spent in the CPU. Of the 22 queries, one of them (21)

did not complete successfully due to additional memory requirements. It has been subsequently

omitted from further experiments.
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It is clear that TLB misses can be a significant contributor to avoidable overhead and has

been significantly reduced by using HugeTLBfs. The longest query is number nine which takes

75 seconds of CPU time when HugeTLBfs is enabled. Due to its significance relative to the

other times, this query has been chosen for a more detailed analysis.

3.2.2 TPC-H Query Nine

VectorWise is written such that it can optionally profile itself with minimal overhead. Its

mechanism uses the x86-64 time stamp counter (RDTSC) to record the current cycle number on

entry to and exit from database operators. From this, a difference can be obtained in order to

show how much time is spent in any particular operator. The data collected from this profiler

has been used to generate a graph of query nine’s query tree including a percentage of time

spent in each operator.

Figure 3.2 shows a breakdown of query nine. The rectangular boxes represent the input

tables of the query. The striped horizontal rectangles display the table name whereas the

vertical rectangles display the name of each of the columns needed in the query. The rounded

rectangles illustrate an operator of the query tree. These can be unary (single input) or binary

(two inputs) and always have one output keeping in line with relational algebra rules. Each

operator also contains a percentage of the overall CPU time which is also shown visually by

varying the intensity of its fill colour. There are also directed lines connecting the inputs and

operators together. Each line has an associated number; this value is the number of rows (or

tuples) flowing from one node to the next.

From the diagram it can be seen that of the nine operators of the query tree, five of these

are hash joins. These five hash joins account for 93.74% of the total CPU time. Of particular

interest is the hash join that takes 63.49% of the CPU time. This is very large operation joining

600 M rows on the left-hand side (LHS) on a hash table containing more than 4.5 M rows. The

operator itself uses two columns (keys) for its join criteria i.e. two rows can only be joined if the

left-hand side and right-hand side (RHS) both contain matching partkey and suppkey values.

It is clear that hash join is an important operator in query nine, but what about the other

queries? Figure 3.3 shows a percentage of time spent in a hash join operator for each query in

TPC-H. Only queries one, six and fifteen don’t use a hash join and for the remaining queries, it

is evident that it is a very significant function. For six queries alone, it takes more than 90% of

the execution.

It is desirable at this point to focus on the hash join operator. The operation itself can be

categorised further by describing it as two phases. In order for a hash join to work, first the hash
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Figure 3.2: TPC-H query nine breakdown
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Figure 3.3: TPC-H SF 100 percentage of CPU time spent in hash join

Figure 3.4: TPC-H SF 100 hash join phase breakdowns

table must be constructed using inputs from the RHS; this is called the build phase. After, the

table can be queried with values from the LHS; this is called the probe phase. Figure 3.4 shows

a breakdown of each query’s hash joins by build phase and probe phase. Overall the probe phase

is significantly more dominant than the build phase; the notable exceptions to this are queries

four, twenty and twenty-two. These three queries are using variants of the join operator called

semi-join and anti-join. In both cases the RHS has a larger input than the LHS making the

build phase more substantial.
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3.2.3 Hash Probing

It has been shown that the probe phase of the hash join operator is very significant and warrants

further investigation. This section first explains the VectorWise implementation of hash probing.

After, more profiling is performed at the function level using hardware counters. From this,

possible reasons for its high CPU usage are given.

Step by Step

To explain the functionality of VectorWise’s hash probing mechanism, the dominant join of

query nine is used as a reference example. The process is broken into discrete steps which are

in turn explained diagrammatically.

The function definitions have been simplified slightly into C-like pseudocode for clarity.

Many of the following functions are not written by hand but instead generated from a generic

description of the task to be done. This way many variations of the function can be created for

different data types. This is analogous to templates used by C++. For the sake of readability,

all integer-based data types are represented in the pseudocode using the int keyword.

Step 1 The first step is to take the keys on the LHS table and transform them into something

that can index into the hash table. Since the query uses two keys in the join, both need to be

inputs to the hash function.

void hash ( int N, int∗ res , int∗ co l 1 )
{

for ( i =0; i<N; i++)
{

r e s [ i ] = HASH( co l 1 [ i ] ) ;
}

}

Listing 3.1: code for hash()

Figure 3.5 shows how two columns, each containing a key, can be combined into one hash

value. First a hash is made from partkey using the function hash() found in listing 3.1. After,

a new hash is generated by combining the first hash and the values from suppkey using the

function rehash() found in listing 3.2. The resulting hash is stored in the temporary space T0.

The HASH macro is omitted for simplicity however it is a simple routine based on prime number

multiplication and logical bitwise operations.
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Figure 3.5: hash probing: step one

void rehash ( int N, int∗ res , int∗ co l1 , int∗ co l 2 )
{

for ( i =0; i<N; i++)
{

r e s [ i ] = co l 1 [ i ] ˆ HASH( co l 2 [ i ] ) ;
}

}

Listing 3.2: code for rehash()

Step 2 The next step transforms the hash into something that can index into the hash table.

To avoid expensive modulo instructions, the number of buckets (i.e. size) of VectorWise’s hash

tables is a power of 2. This way the numberofbuckets−1 can be used to create a bitmask. This

is then logically ANDed over the hash which in turn produces a value that can offset into the

hash table.

Figure 3.6 illustrates the process. In the reference query the number of buckets in the hash

table is 8,388,608. When one is subtracted from this number, the mask is 0x7FFFFF. Listing 3.3

shows the code of the bitand() function.

20



CHAPTER 3. EXPLORATION

Figure 3.6: hash probing: step two

void bitand ( int N, int∗ res , int∗ co l1 , int va l )
{

for ( i =0; i<N; i++)
{

r e s [ i ] = co l 1 [ i ] & va l ;
}

}

Listing 3.3: code for bitand()

Step 3 The prior step generated an index or offset to the hash table. This step retrieves the

value contained at that location and also determines if there is a candidate match or not.

int l o o k u p i n i t i a l ( int N, int∗ h i t s , int∗ hashes ,
int∗ buckets , int∗ r h s i n d i c e s )

{
k = 0 ;
for ( i =0; i<N; i++)
{

int h i t = buckets [ hashes [ i ] ] ;
r h s i n d i c e s [ i ] = h i t ;
i f ( h i t )
{

h i t s [ k++] = i ;
}

}
return k ;

}

Listing 3.4: code for lookup initial()

Figure 3.7 illustrates the process; the corresponding function is lookup initial() contained
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Figure 3.7: hash probing: step three

in listing 3.4. First, T1 (the previously generated hash) is used to offset into the hash table and

retrieve its value. The hash table itself is simply an array named buckets; in the example query

this is 32 MB. This value is immediately stored in the array named rhs indices. The value is

then checked for zero, and if it is non-zero, another array named hits is updated. The value

that is entered into hits is an offset into the array rhs indices. Therefore, all non-zero values

can be quickly retrieved using this indirection vector. Zero is the default value for each entry

in the hash table. If a bucket contains a zero it implies that nothing from the right-hand side

table hashed to that location, ergo it is guaranteed that there will be no match.

Step 4 Step 3 located a set of offsets into the RHS table. This step now verifies if those offsets

produce a real match or if they are consequences of hash collisions to the same bucket (false

positives). Figure 3.8 illustrates the process. Note that the RHS table is named temporary

table; this is due to the fact that in the example query, the RHS is materialised from other
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operators and is not present in the database schema. Similar to hash() and rehash(), there

is check() and recheck() shown in listings 3.5 and 3.6 respectively. Again, this is due to the

example query using two keys to join the tables together.

Figure 3.8: hash probing: step four

In each function the hits array is used to avoid trying to match rows that are guaranteed

not to match. Its values offset into the LHS table and rhs indices. The values in rhs indices

are then used to offset into the RHS table (temporary table). The values from the LHS and

RHS are then compared against each other and if they are not equal, the result is set to true.

This may seem counter-intuitive but its rationale is explained in the next step. recheck() takes

the Boolean output of check() and logically ORs its own result onto it. This implies that both

keys must match in order for the join to succeed.
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check ( int N, bool ∗ res , int∗ lh s key , int∗ r h s i n d i c e s ,
int∗ rhs key , int∗ h i t s )

{
for ( i =0; i<N; i++)
{

j = h i t s [ i ] ;
i f ( l h s k e y [ j ] != rhs key [ r h s i n d i c e s [ j ] )
{ r e s [ j ] = true ; }

else
{ r e s [ j ] = f a l s e ; }

}
}

Listing 3.5: code for check()

recheck ( int N, bool ∗ res , bool ∗ co l1 , int∗ lh s key , int∗ r h s i n d i c e s ,
int∗ rhs keys , int∗ h i t s )

{
for ( i =0; i<N; i++)
{

j = h i t s [ i ] ;
i f ( l h s k e y [ j ] != rhs key [ r h s i n d i c e s [ j ] )
{ temp = true ; }

else
{ temp = f a l s e ; }

r e s [ j ] = co l 1 [ j ] | temp ;
}

}

Listing 3.6: code for recheck()

Step 5 Step 4 compared keys from both tables and created a list of Booleans specifying whether

the match succeeded or not. The reason behind this is because multiple rows on the right hand

side may have gone to the same bucket in the hash table causing a conflict. To resolve this, a

technique called bucket chaining is used.

VectorWise uses a complementary array called next that is used to contain bucket collisions

on the main hash table and also on itself. next contains as many buckets as there are rows in

the RHS table.

Figure 3.9 illustrates the process. Notice it is very similar to the process in step 3. Essen-

tially it is doing the same thing except that buckets is now replaced with next and here the

function only works on a subset of the input. The output of step 4 is fed into the function

select nonzero(), shown in listing 3.7, which generates an array of offsets into rhs indices.
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Figure 3.9: hash probing: step five

The values contained at these offsets are the addresses into the RHS table where the check failed.

This implies there is still a possibility for a match but the correct row is in another location.

These addresses are then used in lookup next(), shown in listing 3.8, which indexes into the

next array. Here an address is returned which is a new candidate to join the tables.

What happens next is an iterative process. The results of lookup next() go into check()

and recheck() again. After this, select nonzero() and lookup next() are called again. This

happens until lookup next() returns all zeros i.e. there are no more hits in the next array.

Theoretically this looped logic could have many iterations but in practise one to three are typical.
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s e l e c t n o n z e r o ( int N, int∗ res , bool ∗ co l1 , int∗ s e l )
{

k=0;
for ( i =0; i<N; i++)
{

j = s e l [ i ] ;
i f ( co l 1 [ i ] )
{

r e s [ k++] = j ;
}

}
}

Listing 3.7: code for select nonzero()

lookup next ( int N, int∗ h i t s , int∗ next , int∗ r h s i n d i c e s )
{

k=0;
for ( i =0; i<N; i++)
{

int h i t = next [ r h s i n d i c e s [ h i t s [ i ] ] ] ;
r h s i n d i c e s [ h i t s [ i ] ] = h i t ;
i f ( h i t )
{

h i t s [ k++] = h i t s [ i ] ;
}

}
return k ;

}

Listing 3.8: code for lookup next()

Step 6 Step 5 iterates for a number of cycles until all possible matches are found. Step 6

completes the join by retrieving the appropriate input columns from both tables and forming a

new table which will be the hash join’s output.

f e t c h ( int N, int∗ res , int∗ co l1 , int∗ co l 2 )
{

for ( i =0; i<N; i++)
{

r e s [ i ] = co l 2 [ co l 1 [ i ] ] ;
}

}

Listing 3.9: code for fetch()
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Figure 3.10: hash probing: step six

Figure 3.10 illustrates the process. The rhs indices array can contain an address or a zero.

If there is an address, it means the value should be retrieved from that location from the right

hand side table. If there is a zero, there was no match and nothing should be retrieved. The

array also encodes which rows to take from the left-hand side; the position of a non-zero entry

in rhs indices corresponds to the matching position in the left-hand side table. To implement

this, the function fetch(), shown in listing 3.9, is used and is called once for every column to

be retrieved.
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Function Analysis

This section looks at the performance of each of the functions that comprise the hash probe

phase.

TPC-H query nine is run again, this time collecting various hardware counters using VTune.

This can help identify bottlenecks caused by the microarchitecture’s structures. Note that in

the results there are variations of fetch(); this is due to VectorWise’s code generation based

on templates. fetch x() implies that it is retrieving values from a column of width x.

Function Reorder Buffer Reservation Station Load Queue Store Queue

bitand 5.56% 20.32% 0.00% 2.41%
check 28.68% 55.19% 0.00% 0.00%

fetch 32 77.26% 0.66% 0.00% 0.00%
fetch 64 81.68% 0.00% 0.00% 0.35%
fetch 8 54.33% 1.96% 0.00% 0.08%

hash 0.16% 63.24% 0.00% 0.00%
lookup initial 9.89% 30.51% 0.00% 0.03%

lookup next 27.72% 36.56% 0.00% 0.00%
recheck 7.82% 74.56% 0.00% 0.00%
rehash 0.11% 51.84% 0.00% 0.00%

select nonzero 0.11% 0.44% 0.00% 0.00%

Table 3.1: TPC-H query nine: percentage of time structure is full

Table 3.1 shows the results of measuring query nine for reorder buffer (ROB) stalls, reserva-

tion stations stalls, load queue stalls and store queue stalls. The values shown are percentages

of time that the CPU spends in that function where that particular resource is full.

A full ROB and full reservation station is indicative that instructions can’t complete as fast

as they are arriving into the pipeline. There are many different reasons to explain these resources

being full. Since many of the functions address large data structures that don’t fit into the cache,

it is likely that cache misses is the culprit. Cache misses cause chains of instructions dependent

on memory operations to stall and thus filling up the structures quickly.

In any cases where the ROB is full, the oldest instruction in the pipeline is probably a cache

miss. Since it can’t commit and retire, the reorder buffer becomes full and new instructions can’t

enter the pipeline until the problematic memory instruction completes. Instructions already in

the ROB are free to execute if they are not dependent on the stalling memory operation, but

the number of instructions available is limited by the size of the ROB itself. This is a typical

structural bottleneck that can hurt scalar code performance.
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In cases where the reservation station is full, it means that there is a long chain, or more

likely, several short chains, of dependencies that are stalled waiting for some memory operation.

This is even worse for performance because there may be instructions in the ROB but not in

the reservation station that could complete. If these were to be executed during a cache miss,

the penalty could be partially hidden. Unfortunately reservation stations are small and often

hurt scalar performance for this reason.

Cache hit/miss ratio has been omitted intentionally. A poor hit/miss ratio implies that

execution performance will be bad, but a good hit/miss ratio does not necessarily imply that

performance will be good (nor that cache misses are not a problem). It is very difficult to

measure the impact of a cache miss as sometimes it can be hidden and sometimes not. The

resource stalls in table 3.1 give more of an indication of cache miss penalties than the cache

hit/miss rate can.

Discussion

VectorWise is a very good query engine in that it makes a compromise between function call

overhead and data/code locality. It takes a block of input values at a time and passes them

from the bottom of the query tree all the way to the top. From this there is an advantage of

running the query operators over multiple values to amortise the cost and, if the block size is

chosen well, there is data locality between the output of one operator and the input to next.

This new model works better on modern microprocessors than the tuple-at-a-time model and

the column-wise processing model.

The problem is that this philosophy is more difficult to apply to hash joins. Unfortunately

it is necessary that the hash table is fully built before it can be probed. This means that for

any hash join operator, the entire right-hand side must be evaluated before any work on the

left-hand side can begin. If the right hand side has many values, the hash table will become

large and, in many cases, not cache resident thus reducing the benefit of data locality.

This is further exacerbated by the fact that if short blocks (e.g. 1024 elements) are used,

data locality is sacrificed more. Since the lookup to the hash table is at pseudorandom locations,

a lot of effort is spent bringing in various sections of the hash table into the cache. However,

when the block moves to the next operator, the whole tree must be traversed again before the

hash join operator and its tables are used again. As the query becomes larger and more complex,

there is more chance of the hash table being evicted from the cache before it is needed again.
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3.2.4 Data-Level Parallelism

For each of the functions in the hash probe operation, all of them are loops with independent

operations, thus allowing for data-level parallelism. Even though the iterations are independent,

many of the loops contain logic that makes it difficult to parallelise using the current generation

of SSE instructions.

Of all the functions that comprise hash probing, only hash(), rehash() and bitand() could

be autovectorised with SSE instructions by the GNU and Intel compilers.

lookup initial()and lookup next() share similar characteristics to each other. The main

loop is data parallel however it is not suitable to be vectorised with SSE. There is a level of

indirection that requires an indexed load instruction and SSE requires that all data is stored

contiguously. check(), recheck() and fetch() have the problem of indirection as well. There

needs to be an indexed load instruction in order to capture the data-level parallelism.

The conditional part of the loops, which also resembles select nonzero(), cannot be easily

vectorised using SSE. It is possible to store the variable i in an SSE register by adding the scalar

variable i to an SSE register containing the constants [0, 1, 2, 3] but it is also necessary

to reorder the positions of this register dynamically based on a mask. If the register could be

rearranged and stored consecutively, it may be possible.

SSE3 introduced the packed shuffle bytes instruction that can permute a source SSE register

based on a set of offsets contained in another SSE register. The difficulty lies in generating

the offset vector dynamically using only SSE instructions. An alternative approach would be

to generate a mask and use it to offset into a lookup table in order to retrieve the permutation

input; the consequence of this is having an extra load and more a complex loop body.

SSE is not expressible enough to capture the data-level parallelism in these functions. It

should be stated, however, that even if SSE were to introduce instructions like gather/scatter

it would not necessarily make them suitable for these kernels. Intel’s LRBni [1] instruction set

includes gather/scatter instructions however their implementation in the Larrabee microarchi-

tecture [49] is built assuming all values will hit the same L1 cache line. Clearly that isn’t the

case in hash probe kernels. This assumption also limits the scalability of the architecture.

In contrast, vector architectures have traditionally been built to tolerate the penalty of long

latency operations and, depending on the ISA, contain instructions more suitable to capture

non-trivial data-level parallelism. What has been seen in the hash probe functions is directly

applicable to a vector ISA.
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Chapter 4

Design Decisions

This chapter discusses many of the design choices made in order create a vector microprocessor.

Design decisions have been made based on what has found to be required in chapter 3. Many

ideas are inspired by prior research in vector microprocessors discussed in chapter 7.

4.1 Instruction Set Architecture

This section examines the design choices in the user-visible portion of the architecture.

4.1.1 Base ISA

x86-64 was chosen as the base ISA to extend for several reasons. It is the leading ISA in the

server market [13] having roughly 60% of the market share. It is a very universal ISA with

mature optimising compilers and toolchains. VectorWise, although not exclusively written for

x86-64, has several opimisations made for x86-64 and the Intel Xeon 5500 series [27]. x86-64 is

also a large improvement over the archaic 686 ISA and many impovements have been made e.g.

the number of general purpose registers is doubled, and some legacy features have been removed

e.g. memory segmenting.

Additionally, using x86-64 also allows for any simulated experiments to be compared against

modern commodity hardware. Chapter 3 explored VectorWise using an x86-64 microprocessor;

using x86-64 and modelling the same microarchitecture would allow a baseline scalar simulation

to be verified against real hardware. Furthermore, any improvements made to the architecture
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would be more transparent when comparing the results of scalar and vector experiments.

Finally, because x86-64 already has SIMD extensions i.e. SSE instructions, it can be inter-

esting to see where these are insufficient to capture the data-level parallelism in the profiled

functions of chapter 3. Although different x86-64 incarnations contain varying support of dif-

ferent SSE version, x86-64 has SSE and SSE2 integrated into its core ISA.

4.1.2 Memory or Registers

A major design decision was whether to have a memory-memory based ISA like the CDC-STAR

100 [25] or a vector-based ISA like the Cray 1 [48].

x86-64 has very strict rules regarding its instructions. Instructions must change the state

(main memory, architectural registers) in linear order. Additionally, instructions must commit

atomically i.e. either the instruction does everything together or it does nothing at all. With

these rules in mind, it could be very difficult to implement a memory-memory ISA that also

uses many of the optimisations found in current-generation microarchitectures. For example,

to allow instructions to issue speculatively is a very useful optimisation; allowing instructions

that change the state of the main memory to issue speculatively could be dangerous and very

difficult to reason about correctness. Servicing exceptions and interrupts becomes more difficult

for the same reasons.

Using vector registers is in-theme with the existing x86-64 ISA. Architectural registers can

be part of the user-visible state and rules of atomicity and order can be more easily applied.

Aside from the complications of the x86-64 semantics, there are many optimisations that can

be performed when vector registers are used, such as speculation, register renaming and out of

order execution [15]. For all these reasons, a register-based ISA was chosen for this design.

4.1.3 Registers

The registers used for the ISA have been chosen based on the requirements of functions explored

in chapter 3.

Sixteen general purpose vector registers were added. Each vector register is further parti-

tioned into a discrete number of elements; this number is known as the maximum vector length

(MVL). The MVL has not been hardcoded into the ISA, instead instructions are introduced to

allow the programmer retrieve its value at runtime. This way loops can be vectorised generically

using stripmining [3] and the number of iterations needed can be decided dynamically.
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To make the hardware simpler there is no subword parallelism i.e. the MVL doesn’t change

depending on the datatype used. For example, if the MVL is 32 this implies an instruction can

operate on 32 qwords, 32 dwords or 32 words. This is in contrast to the SSE instructions that

can operate on four qwords, eight dwords or sixteen words. This design decision can be wasteful

or not depending on the datatypes being used.

The motivation behind this choice came from the necessity of indexed memory operations.

Gather and scatter take a base address plus a vector of offsets. The datatype of the instruction

should refer to element being pushed to or pulled from memory. If subword parallelism is

allowed, it means that an indexed memory instruction could operate on x qword elements, 2x

word elements, 4x word elements or 8x byte elements and thus requires an equivalent number of

offsets too. The consequence of this is that the maximum offset decreases by a factor of 2 each

time the datatype is shrunk. From the programmer’s point of view this can be confusing and

if the range of the offsets is not known before runtime, it can lead to bugs in the code quickly.

For this reason subword parallelism has been omitted in favour of a more simple model.

In addition to the general purpose vector registers, there are also eight vector mask registers.

Each register contains a number of bits that correspond to exactly one element in a general

purpose vector register. Some vector architectures, e.g. Tarantula [14], contain a single vector

mask register. The reason for introducing multiple registers is to allow the programmer to

perform bitwise manipulation instructions on the masks. Some of the kernels found in chapter 4

can benefit from instructions like logical ORing two masks together. The consequence of this is

that every maskable instruction in the ISA must encode the mask register to be used. Finally,

a vector length register was added, however this can be seen as an additional scalar register to

x86-64.

Although the ISA brings sixteen vector registers and eight mask registers, these numbers are

a little bit arbitrary. Sixteen was chosen for two reasons. First, x86-64 contains sixteen general

purpose registers and sixteen XMM (SSE) registers. Secondly, sixteen can be encoded into a

single nyble which allows a much clearer presentation when writing/debugging the vectorised

programs. Because there were no assemblers that could handle the new instructions, this had

to be done at the binary level. In reality, sixteen and eight are very much in excess of what is

required by the vectorised kernels. Six vector registers and three mask registers are all that is

really needed, but for simulation purposes this has little bearing.

4.1.4 Instructions

The reader is referred to appendix A for a detailed listing of all the new instructions introduced.

In general, the new ISA has a lot more flexibility than the SSE versions. Currently it only works
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with integer datatyps, as required by the profiled functions. It can easily be further extended

to incorporate floating point datatypes. The new ISA includes the following features:

• unit-stride and indexed memory operations

• vector/mask register initialisers

• vectorised logical and arithmetic instructions

• comparison instructions that write to the mask registers

• more suitable position manipulation instructions

• mask-mask logical instructions

• vector register length manipulation instructions

• the majority of instructions can take an optional vector mask

4.2 Microarchitecture

This section examines the design choices of the microarchitecture that implements the vector

ISA.

4.2.1 Out of Order Execution

One of the biggest design decisions made was to allow vector instructions to issue out of order.

[15] showed that by using register renaming and out of order execution, additional performance

can be gained. An out of order execution engine can begin memory operations early and utilise

the memory ports much more efficiently hence hiding long memory latencies. Vectors are already

tolerant of long memory latencies in their own right; combining them with an out of order core

can further enhance this quality. The decision to allow issuing vector instructions out of order

affects many of the subsequent design decisions.

There are also drawbacks to an out of order microarchitecture. The structures used to

achieve out of order execution don’t scale well and very power-hungry [42]. Fortunately a single

vector instruction can represent a lot of work and reduce the need to scale these structures more

than what already exists in current scalar out of order microprocessors.
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4.2.2 Memory

Cache Integration

The block at a time processing technique as used by VectorWise is very cache conscientious.

Although as seen in chapter 3 large structures like the hash tables have trouble fitting in the

cache hierarchy, many other structures can. Of particular importance are the blocks which flows

through various data operators storing intermediate results in cache-resident arrays. For this

reason it is highly desirable to take advantage of the cache hierarchy when possible.

[45] proposes a solution to integrating vector support into an existing superscalar processor.

Part of the work is integrating the vector units with the cache hierarchy. Their novel solution

involves bypassing the level 1 data cache and going directly to the level 2 cache. The main

motivation behind this was that adding the logic necessary to support vector loads at the level

1 data cache could compromise its performance for the scalar units.

Because unit-stride loads and cache lines match quite well, this solution can pull many

elements from the cache at once and hide the additional latency of going to the level 2 cache

instead. The level 1 cache is typically banked at the word level as scalar units will load and

store single words at a time. In contrast, the level 2 cache is typically banked at the line level

as transfers to and from the cache are always entire cache lines making it more ideal for vector

access patterns.

The level 2 cache is always larger than the level 1 data cache so there is the additional benefit

of the potential to have a larger working set. This design was later used in Tarantula [14] which

had a 4 MB banked level 2 cache which the vector unit could take advantage of. For these

reasons, this technique is used in our design.

Aliasing

One of the problems of allowing out of order memory operations is that loads and stores may

have implicit dependencies, i.e. they operate on the same memory locations in a strict order.

This is known as a memory aliasing problem and in modern out of order scalar microprocessors,

there is typically an internal structure called the load/store queue that checks for and resolves

these scenarios. The problem is that this structure must be fast and for that reason must also

be small because it is associative. Checking vector memory operations on top of the scalar ones

would be problematic as the vector memory operations address a larger range of memory, and

in the case of indexed operations, can be in very random locations.
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The profiled application exhibits complete data-level parallelism per function and it is already

known there are no carried dependencies, implicit or explicit, within the main-body loops.

In contrast, one function’s output is very often another function’s input and these values are

generally held in array structures in memory. If fun1() writes its results to memory and then

later fun2() accesses these these results, there is a dependency that must be honoured.

Adding logic to detect this infrequent cases would be overkill and would hurt performance.

Instead, the ISA is appended with a set of vector memory fence instructions. They are cate-

gorised as follows:

• vector memory store → vector memory operation

• vector memory store → scalar memory operation

• scalar memory store → vector memory operation

Only the first fence is needed to correctly vectorise the profiled functions with correct memory

interaction. The second and third are for scalar/vector interaction and are used primarily here

for debugging purpose. It is possible that they could be more useful in other codes and future

work. There is no scalar store → scalar memory operation fence as this already included in the

x86-64 ISA.

Cache Level Coherency

One of the issues that crops up by accessing the L2 cache directly is keeping the data coherent

with respect to the L1 data cache. The vectorised kernels have almost no scalar/vector interac-

tion so there is never a case when a vector store will write to the cache immediately followed by

a scalar load reading from the same location. It is still necessary to have some form of coherency

as a safety net, so a simple technique is proposed.

The cache hierarchy should be inclusive. The L1 data cache is expected to use a write-

through policy meaning that anything that is written to this cache will also be written to the

L2 cache. When there is a vector store to the L2 cache and this line is also present in the L1

data cache, it is invalidated in the L1. If a vector store evicts a line from the L2, it must also

be invalidated in the L1. This is not an efficient solution, but in practise storing a vector to a

location already present in the L1 data cache seldom happens.
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4.2.3 Chaining

In the functions listed in chapter 3, there are often chains of dependencies from the head to the

tail of the loop bodies. For this reason it is desirable to introduce chaining. If the vector length

in a chain of instructions is particularly long, chaining can help to minimise the penalty of each

instruction’s startup time. Chaining requires that the output of a vector instruction is generated

at a regular and predictable rate. For the majority of instructions, this property holds however

the exceptions are the memory instructions.

Vector loads pose the most problematic situations. Because of the use the memory hierarchy,

it is uncertain if the data is cached or not until the load issues. Even trickier is when some of

the data is cached and the rest is in main memory. It could be possible to implement chaining

from loads under these circumstances, but the hardware implementation would be excessively

complicated. For this reason loads are not allowed to chain.

Vector stores have a different behaviour. The input to a store instruction must already be

in a vector register and thus can be fed a new element every cycle without stalling. Stores can

therefore be chained in from other vector instructions.

The following is a list of chainable pairs. mask register → scalar register (e.g. mask popu-

lation count) instructions are not chainable as the full contents of the register must be present

before an evaluation can take place.

• vector register → vector register

• vector register → mask register

• mask register → vector register

• vector register → store

4.2.4 Vector Lanes

A fully pipelined vector instruction without lanes will take startup+vlen cycles where startup is

the startup time i.e. the time it takes to produce the first element, and vlen is the vector length

of the instruction. Vector lanes allow a simple way to exploit the data-level parallelism in the

vector ISA. If there are x lanes then an instruction’s time can be reduced to startup + vlen/x

cycles.

This is useful for all the vector instructions, but it is the loads that will likely benefit the

most. The loads cannot be chained and therefore there is a penalty where dependent instructions
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cannot issue until the load fully completes. This is exacerbated by the fact that the loads are

often keystones of the loop body and must be executed before any other work can begin. Lanes

can help reduce this penalty by generating the addresses of indexed loads in parallel. Unit-stride

loads don’t need this mechanism as they tend to access a small amount of contiguous cache lines.
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Implementation

This chapter takes the ideas from chapter 4 and implements them using a cycle-accurate hard-

ware simulator.

5.1 Choice of Simulator

This section discusses the reasoning behind the choice of simulator to implement the design.

It was paramount that the simulator be cycle-accurate and give sufficient statistics about its

microarchitectural structures. It was also important that the simulator has some support for

the x86-64 ISA. The choice was narrowed down to three simulators.

1. PTLsim

2. MARRSx86

3. M5

Each choice was evaluated considering its advantages and disadvantages. Here the principal pros

and cons of each option are given.

5.1.1 PTLsim

PTLsim is a cycle-accurate x86-64 microprocessor simulator. There is an academic paper de-

scribing the overview of the project [56] and also a very detailed user manual [57] explaining its

internals.
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Pros

• Full x86-64 implementation

• SSE implementation up to SSE3

• Relatively fast (between 100,000 and 500,000 instructions retired per second on our test

machine)

• Very well documented

• Codebase nicely structured and extensible

• Statistics for relevant microarchitectural structures present

• Good implementation of statistics collection and management

Cons

• Codebase no longer maintained

• Full-system simulation mode uses Xen and is very cumbersome

• TLB simulation is restricted to full-system simulation

• Memory model is highly simplified

• Caches all use a write-through policy

• All configurable parameters must be hard coded thus forcing a recompilation of the binary

per simulation

5.1.2 MARSSx86

MARSSx86 is a full-system cycle-accurate accurate simulator based on MPTLsim [58], itself

based on PTLsim. The principal differences between it and PTLsim are that it can model a

variety of cache-coherency protocols and the full-system simulation mode is removed from Xen

and placed into QEMU instead.

Pros

• Based on PTLsim which has many advantages independently

• Replaces Xen with QEMU. Full-system simulation easier to use

• Active albeit slow development with a small community

• Work being done on an Intel Atom core model which could be useful for simulating an in

order core

• Some work done integrating DRAMSIM2 [47] which could improve the memory model

considerably
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Cons

• Its raison d’être is to simulate cache coherency protocols which is not in theme with this

project

• All changes to the PTLsim side are undocumented and often difficult to infer a meaning

• Statistics are difficult to interpret as there are many redundant counters from PTLsim

that conflict with the new ones

• Its stability is not as good as the original PTLsim

• The official contributions don’t change the memory model outside of the caches

5.1.3 M5

M5 [6] is a multi-ISA cycle-accurate full-system simulator. It was originally designed to model

networked systems based on the Alpha ISA but has since grown into a rich featured general

purpose microarchitecture simulator.

Pros

• Actively developed with a large community of users

• Configurable parameters are input to the simulator at runtime

• Very detailed and intuitive statistics

Cons

• Slower simulation speed than PTLsim

• Documentation very outdated

• The Alpha model is the most stable

– This architecture is no longer developed

– Using it would introduce cross-compilation into the experiments

– Using it makes it more difficult to compare against profiled results on the x86-64

microprocessor

– There was already a proposal for vector extensions to the Alpha named Tarantula

[14]. By reproposing vector extensions for this ISA, the novelty of the project may

diminish.

• the x86 model is not nearly as mature as the Alpha model
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5.1.4 Verdict

The three options for the simulator presented a difficult choice. Each had their share of advan-

tages and disadvantages. It was decided that simulating an x86-64-compatible microprocessor

is very important in order to simulate the same binaries that had been measured in chapter 3.

M5’s support for x86-64 was too lacking and so was removed from the equation.

The choice between PTLsim and MARSSx86 was also difficult. On one hand, MARSSx86

was actively maintained and solved many the problems involving full-system simulation. On

the other hand, its codebase was undocumented and often difficult to follow; additionally, most

of the benefits it offered were for modelling cache coherency protocols. The primary reason

why full-system simulation is appealing is because the TLBs could be modelled, however it was

demonstrated in chapter 3 that using huge pages [17] with VectorWise can reduce TLB misses

and hence reduce the requirement of the TLB modelling. The choice was thus narrowed down

to PTLsim.

5.2 PTLsim

This section provides an overview of PTLsim’s modelling capabilities. For a full explanation of

PTLsim’s features, the reader is referred to [56] and [57].

PTLsim is intended to model a modern out of order x86-64 microarchitecture. It implements

the full x86-64 ISA; fully supports MMX, SSE and SSE2; and contains partial support for some

instructions of SSE3. Its modelled microarchitecture is not specific to any x86-64 implementation

but instead derives its own based on major features from the then (circa 2007) current-generation

x86-64 processors. It is highly configurable meaning that any current x86-64 implementation

should be able to be modelled within an acceptable margin of error.

PTLsim is bundled with two models which, in their own terminology, are named cores.

1. seq - A functional core intended to gather simple statistics regarding the instruction stream

and verify the correctness of a program’s output

2. OoO - A timing core intended to accurately model the internals of an out of order mi-

croarchitecture
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5.2.1 Out of Order Core Features

The OoO core is separated into an in order pipelined frontend; an out of order execution engine;

and an in order retirement stage.

In order Frontend

The frontend models a variety of different features. It models a configurable instruction cache

(icache) that fills a fetch buffer structure. The width of the icache to the fetch buffer is config-

urable. From the fetch buffer, the rest of the pipeline takes instructions as they are available

and passes them down the pipeline that:

• decodes instructions into µops [44]

• renames the architectural registers to physical registers

• allocates key structures such as reorder buffer entries and load/store queue entries

• places the instruction in a ready-to-dispatch state

In reality PTLsim has an internal cache filled with basic blocks of pre-decoded instructions in

order to speed up simulation. The frontend’s pipeline width and length are both configurable.

All key data structures accessed here are configurable in size e.g. the physical register file,

reorder buffer and load/store queue.

Out of Order Engine

The out of order engine is implemented using using a clustering mechanism [42]. Instead of a

unified reservation station, there are several smaller ones named issue queues that can access a

subset of the total available functional units. An issue queue coupled with its functional units

is called a cluster. Issue queues and functional units are placed into exactly one cluster.

Every cycle, the oldest µop in the ready-to-dispatch state attempts to find a suitable cluster

that it can execute on. If one is found, the instruction is copied from the reorder buffer into

the issue queue (there is no separate dispatch queue). The µop remains in the issue queue until

all its operands are ready and then proceeds to execute on one of the available functional units.

The functional units are fully pipelined meaning that a new instruction can issue each cycle

irrespective of whether an older instruction is already occupying the unit. In the beginning this

was seen as a problem, but when looking through the Intel’s documentation [28] it was seen that

Westwere can issue a new instruction per cluster per cycle too.
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After execution, there is a forwarding stage that feeds the completed instruction back into

the clusters before its result is written to a register. Here a bypass network is modelled with

configurable parameters for inter-cluster latencies and bandwidth. After, the result moves to a

writeback stage and can write to its physical register.

Memory instructions are allowed to execute out of order as well. Every memory request

requires an entry in the load/store queue which detects memory aliasing conflicts. In the event

of a memory instruction issuing earlier than it should, the load/store queue will detect this

and redispatch the problematic instruction also adding the conflicting memory instruction as an

extra dependency. There is also a configurable memory alias predictor that can add these extra

dependencies in the initial dispatch stage.

Instructions are allowed to execute speculatively using a branch predictor and a speculative

register rename table. One downside is that there is no simulation of hardware prefetching.

There are several recovery mechanisms in the event of misspeculation: replaying the instruction,

redispatching the instruction and annuling the instruction.

In order Retirement

Executed µops remain in the reorder buffer until they can be committed i.e. change the archi-

tectural state. µops must commit in order and atomically i.e. if an x86-64 instruction is broken

into multiple µops, then all must commit together or nothing can be committed at all. Each

cycle the commit stage looks at the head of the reorder buffer to see if the oldest instruction is

ready. If this is the case, the commit will retire the instruction and reflect any changes of the

architectural register file or main memory to the user-visible state.

Memory

PTLsim models a cache hierarchy of up to three levels. There are separate level 1 (L1) instruction

and data caches, a unified level 2 (L2) cache and an optional level 3 (L3) cache. The caches

are inclusive meaning that: L1 ⊂ L2 ⊂ L3 ⊂ main memory. The caches use a write-through

policy meaning that stores update all levels of the hierarchy and main memory in the same

moment. This is modelled with zero cost meaning that stores can write through all the way to

main memory with no penalty.

Cache misses are implemented using two structures: the Load Store Request Queue (LSRQ)

and the Miss Buffer (MB); these roughly compare with the Miss Handling Status Registers

(MSHR) [32] used to implement non-blocking caches. The LSRQ is responsible for individual
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loads that miss the L1 cache whereas the MB tracks outstanding cache lines at any given level.

Multiple missed loads to the same line will take multiple entries in the LSRQ but only a single

entry in the MB.

Loads that miss the L1 cache do not remain in the issue queue. Instead, they are considered

as complete and the reorder buffer entry is put into a waiting-for-cache-miss state. It is not

allowed to commit and any dependent instructions are stalled until the cache miss is serviced.

PTLsim uses an asynchronous wakeup mechanism. The caches work autonomously and brings

the requested data from the closest cache or memory main memory. When it reaches the L1

data cache, the LSRQ is checked and its corresponding ROB is woken up. At this point the

data can be broadcast to any dependent instructions and execution resumes normally.

Two absent features of PTLsim are a) the lack of bus modelling for memory operations;

and b) its Miss Buffer cannot be configured/restricted per cache level. If not modelled, both of

these things would give vectors an unfair advantage. They have been addressed in the vector

implementation but left as is in the scalar implementation, essentially cheating against our

favour. Fortunately their impact on the scalar performance is much less profound than what

would be observed with unrestricted vector performance.

5.3 Vector Extensions

This section discusses the additions that have been made to PTLsim in order to accommodate

the new vector instructions.

It was desirable to reuse as much as possible from the original PTLsim architecture so the

additions necessary to implement the vector ISA would be minimal. One of the key design

decisions made was integrating the vector units into the core itself, this is in contrast to a design

like Tarantula [14] which is more like a co-processor for the Alpha. Almost all the structures of

the original microarchitecture were reused with minimal modification. The major changes came

from implementing vector memory operations that required two new structures: the Vector

Memory Request File (VMRF) and the Vector Memory Fence Queue (VMFQ). First the simple

changes are listed and then the new vector memory request structures are explained separately.

5.3.1 Minor Changes

The decode units had to be modified to incorporate the new vector ISA. The changes were

minimal because the new instructions all have a fixed length and start with the same prefix.
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Each x86-64 instruction is decoded into a single µop. The µop structure itself had to change in

order to accommodate the new architectural registers and be expanded to hold more than four

operands. The list of all the new instructions can be found in appendix A. Of interest is the

indexed memory operations which require five operands in addition to the vector length register

(an implicit source). This variation of the µop structure is named a vop for vector µop.

The register rename tables had to be changed to rename the new vector/mask/vector length

architectural registers. Two new physical register files were added in order to support vectors

and masks. Although not modelled in the simulator, it is assumed that these register files will

be partitioned depending on the number of lanes used.

New functional units and issue queues were added. The original issue queues can handle up

to four operands which is sufficient for the existing x86-64 instructions; in fact, only memory

operations utilise the fourth operand. The new vector instructions needed two extra operands

on top of the existing four. This is due to three reasons: 1) the vector length register is allowed

to be renamed and thus it is necessary to have it as an operand in the issue queue. 2) The

destination register is also a source register. This is in case masking or a shorter vector length

overwrites a part, but not all, of the register. 3) The implementation of vector memory fences

(discussed later). The scalar issue queues using four operands can co-exist with the vector issue

queues using six operands.

The issuing mechanism must change too. In the original PTLsim model, the functional

units are fully pipelined i.e. they can handle one new instruction every cycle regardless of

their latency. The vector functional units had to simulate pipelining a single vop at a time.

This involved constraining the functional units so that only a single vop could be present in a

given cycle. In order to implement chaining, chainable vector instructions dependent on other

chainable vector instructions must be allowed to begin issuing before the dependent instruction

completes. To accomplish this, another state is added called first result which is different from

issuing or finished issuing. The first result state allows dependent vops to begin issuing but it

does not allow the instruction itself to commit from the reorder buffer.

Finally, the Miss Buffer was modified to restrict the number of outstanding L2 cache misses

permitted. In the scalar this is not such a problem. The Load Fill Request Queue limits the

number of outstanding L1 data cache misses specifically and the Miss Buffer handles cache misses

on all levels. When these structures are properly sized, it can estimate the number of permitted

misses at the L1/L2 within a reasonable margin of error. The vector memory instructions bypass

the L1 cache so it is not restricted by the LFRQ. The Miss Buffer was modified to have a finite

number of outstanding permitted L2 cache misses.

46



CHAPTER 5. IMPLEMENTATION

5.3.2 Vector Memory Request File

Vector memory requests had to be handled differently from all other operations. PTLsim can

issue memory requests out of order but to achieve this, a complex associative hardware structure

called the Load/Store Queue (LSQ) must be used. The LSQ searches for memory aliases i.e.

loads and stores that go to the same address, that may cause problems when issued out of order.

When an alias is found, a recovery mechanism must be used so the memory operations appear

to be ultimately executed in order.

The vector memory operations are known to be data independent at the element level and

in most cases also data independent with respect to one another. There is no need to check

for memory aliases in these operations and using the LSQ, a small associative structure, would

limit the number of in-flight vector memory operations in the core.

It is also advantageous to take advantage of the regular patterns found in vector memory

operations. Unit-stride loads/stores use consecutive elements that have a lot of spatial locality.

It is therefore preferable to work with whole cache lines when possible. For indexed memory

operations with less spatial locality, it is important to reduce the penalty of discarding irrelevant

parts of the cache line.

Finally it is also preferable to reuse the existing asynchronous register wakeup mechanism

in the PTLsim microarchitecture. This will allow the issue queues to be reused with little

modification. It will also allow multiple outstanding vector memory requests and the ability to

issue them out of order.

To achieve all this, a structure called the Vector Memory Request File (VMRF) was imple-

mented. This structure itself contains three substructures:

• Vectore Load Request File (VLRF)

• Vector Store Request File (VSRF)

• Vector Cache Line Request File (VCLRF)

The VLRF manages all vector load requests; the VSRF manages all vector store requests;

and the VCLRF manages cache line to physical register transfers and is utilised by both the

VLRF and VSRF.
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Vector Load Request File

Because one load may generate multiple cache line requests, it is desirable to separate the data

structures to reduce redundant metadata. All vector loads, no matter how many cache lines they

request, will take exactly one entry in the VLRF. The structure is simple and is considerably

smaller than the VCLRF.

Figure 5.1: Vector Load Request File

Figure 5.1 displays the structure of the VLRF. There is one bit F that indicates if the line

is free or not. register is the index of the physical register to write to. rob is the index of the

reorder buffer entry. vclrf waiting is a bitmap of any entries in the VCLRF used by this load.

vclrf arrived is a bitmap of any VCLRF entries the load is using that have already returned

and placed the data into the physical register. Not shown is an implicit index of the structure

itself, 0 to size− 1.

By using this schema, every cycle all the non-free entries in the VLRF can do a bitwise

comparison with the two bitmasks. If there is a match, the reorder buffer entry can be woken

up and the load can wakeup its dependents and complete.

Vector Store Request File

The VSRF is very similar to the VLRF. Figure 5.2 shows the structure. The biggest difference

is that the ROB entry is omitted; this is due to stores not needing a wakeup mechanism like the

loads. The bitmaps are still there but renamed to vclrf tosend and vclrf sent. The former

records which of the VCLRF are associated with the store and the latter tracks which lines

have been successfully sent to the cache. Once again a bitwise comparison is used on the two

bitmasks to detect completion.
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Figure 5.2: Vector Store Request File

Vector Cache Line Request File

The VCLRF is a structure that manages all cache line requests, both loads and stores. Each

entry contains all the necessary information to make a request to the cache.

Figure 5.3: Vector Cache Line Request File

Figure 5.3 illustrates the VCLRF structure. There is a 1-bit field F to indicate whether the

entry is free or not. A 1-bit field L to specify if the entry is a load or a store. A 1-bit field R

that has a different meaning depending on whether it’s load or store. For a load this indicates

that the memory request has been sent to the cache. For a store, this isn’t necessary because

the entry can be recycled as soon the line is sent to the cache. Instead entries for stores use

this to specify that the instruction has reached the head of the reorder buffer and is safe to

commit. idx contains the implicit entry number of either the VLRF or VSRF, depending on

what the line is used for. This is necessary to update the corresponding entry’s vclrf arrived

or vclrf sent bitmaps.

address contains the physical address of the cache line, for x86-64 - 42 bits are required.
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bytes needed is a bitmap that has a length the as the number of bytes found in an L2 cache

line. reg el is the first element of the physical register where the data should be read/written

to. If a load/store single request has a complex memory pattern, multiple entries in the VCLRF

must be used. This was necessary in order to avoid complex logic for shifting/masking cache

lines to/from the physical register file.

Reorder Buffer Modification

Reorder buffer entries must be modified to contain a Vector Memory Request File identifier:

VMRF IDX. This will refer to either the VLRF or VSRF depending on the context. For

vector stores, it is necessary to be able to read its entry in the VSRF at commit to ensure all of

its data has been successfully written to the cache. Due to i asynchronous wakeup mechanism,

loads don’t actually need this entry for normal execution however both loads and stores need

to have this information when misspeculation recovery occurs. In these cases, the entry in the

VLRF or VSRF and all its corresponding VCLRF entries must be annulled and recycled.

Clocking the VCLRF

Once a load or a store has taken entries in the VCLRF, the structure is autonomous and can

make forward progress by itself. Every cycle, the VCLRF will check for entries that have the F

bit unset, the L bit set and the R bit unset. Of all the candidates, it will choose an entry based

on a round-robin scheduling scheme hence making the structure behave like a list. If an entry is

found, the Miss Buffer (outstanding cache misses) must be checked for a free entry. This may

or may not be used, but the logic is much simpler if the check is made before any request is sent

to the cache. Assuming an entry is available, the request to the L2 cache can be sent and the R

bit is set. From here the cache manages the request and the entry is idle until the cache’s data

is written to the physical register. At this point the bitmap in the VLRF is updated to indicate

that this cache line request has completed and the entry is recycled by setting the F bit.

On the same cycle, the VCLRF will also check for entries that have the F bit unset, the

L bit unset and the R bit set. These entries belong to stores that are known to be safe to

commit. The entry chosen here is less important because they should also belong to the same

store instruction i.e the oldest store in the pipeline. The VCLRF will initiate the transfer of data

to the cache and on completion update the relevant bitmap in the VSRF. Because of the x86-64

atomic commit property, it assumed that when a vector store is the oldest instruction in the

pipeline and without exceptions, the stores from the VCLRF to the cache won’t be interrupted.
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To model all this, two configurable busses were added that connect the physical register

file to the L2 cache. One for load requests, another for store requests and both are managed

by the VCLRF. As an optimisation, the structure can handle partial cache line transfers. The

bytes needed structure in each entry indicates which bytes within the cache line will be needed.

This can be broken into discrete sectors, the size of an L2 cache line divided by the width of

the bus. To save bus cycles, only necessary sectors need to be sent. Indexed operations benefit

from this especially as their requested bytes from each cache line tends to be small.

When a load request is sent to the L2 cache, it is processed for x cycles where x is the L2

latency minus the time spent on the bus. After, the L2 checks if another request is currently

occupying the bus. If not, the transfer can initiate immediately, otherwise the transfer must

wait y cycles for the bus to become free. The number of cycles that a request will occupy the

bus is determined by the number of sectors requested from the cache line.

5.3.3 Vector Memory Fences

In the design phase of this work, it was decided to allow vector instructions to issue out of order.

Observing the profiled kernels in chapter 3, there were few constraints needed on the ordering

of memory operations and so these were allowed to be executed out of order as well. In chapter

4 it was decided to give the programmer a set of memory fence instructions so that load/store

dependencies could be honoured without resorting to hardware detection. This section looks at

how the vector memory fences have been implemented in the PTLsim microarchitecture.

x86-64 already includes fences in its ISA for scalar memory ordering. PTLsim’s implemen-

tation of these fence instructions involve stalling the frontend when renamed and only continues

execution after the fence has commited. Doing this to achieve vector memory ordering would be

drastic and detrimental to performance. An alternative solution is provided that has a simple

implementation and much less impact on the execution pipeline.

As mentioned in chapter 4, there are three types of fence instruction. Scalar store → vector

memory; vector store → scalar memory; and vector store → vector memory. The first two were

used primarily for debugging and the third was used to constrain the hash probing functions.

For simplicity we discuss the implementation of the third type of fence but the description is

just as applicable to the other two. Figure 5.4 is provided to aid the explanation.

To create a fence it was first necessary to keep a record of the newest vector store in flight.

This involved adding a register named nvsreg that points to the store’s reorder buffer entry. In

the rename stage of the frontend, the nvsreg is updated if the current instruction is a store.

When the store commits, its ROB id is compared with the contents of the nvsreg. If there is a
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Figure 5.4: Vector Memory Fence Implementation

match, the nvsreg is nullified and if not it is left unchanged. Finding a match means that no

additional store entered the frontend during the current store’s entire execution.

When a fence instruction enters the pipeline, two additional steps must take place. First, the

instruction takes a dependency on the ROB entry pointed to by the nvsreg. This is either the

latest in-flight store or NULL. Next, the fetch must be allocated an entry in a custom structure

called the Vector Memory Fence Queue (VMFQ). The VMFQ is a simple queue structure that

manages any in-flight fences. It is intended to be very small (one to four entries) as the number

of expected in-flight fences is quite low. In fact, in our tests no more than two fences are in

flight at once. Each entry in the VMFQ contains the value of the ROB id of the associated fence

instruction.

The fence instruction proceeds through the pipeline normally until the dispatch stage. Here it

must be dispatched to a special cluster called the Memory Fence Cluster (MFC). The reasoning

behind this is that in PTLsim, a store is considered “complete” after it has issued, and any

dependents will start issuing at that point. For the memory fences to be effective, dependent

instructions should not issue until stores older than the fence have committed to memory and

retired from the instruction pipeline. To solve this, the issue queue in the VMFQ is disconnected

from the main operand broadcast network; instead, whenever a store commits to memory it also

broadcasts its ROB id to the VMFQ. Now a fence cannot issue until the store has fully retired
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from the pipeline. When the fence instruction commits, it frees its entry in the MFC.

The next change is concerning vector memory operations that are newer than an in-flight

fence. When a vector memory instruction is allocated its ROB entry, the MFC is also checked

for emptiness. If it is not empty, the current instruction must take the most recent fence as

a dependency. This means that the current memory instruction can only issue after the fence

has issued. If there is a misspeculated stream of instructions, during their annulment any MFC

entries must be freed and the nvsreg must be corrected. Other than this, the recovery mechanism

is the same as scalar instructions.
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Chapter 6

Experiments

This chapter discusses the experiments and results done using the extended version of PTLsim.

6.1 Reducing VectorWise

6.1.1 Benchmark for Simulation

Simulating the entire VectorWise software would be complicated; error-prone; very slow; and

the results would be difficult to interpret. [31] discusses many of issues and difficulties that

arise from simulating an entire database management system. VectorWise is a multithreaded

application and is broken down into server/client executables. PTLsim run in userspace mode

does not support multithreaded simulations. Furthermore, this study is particularly interested

in the hash join implementation discussed in chapter 3. For this reason it was decided to build

a reduced standalone version of the VectorWise hash join implementation.

All of the functions and macros that comprise the VectorWise hash join were extracted into

a separate program. The large hash join in TPC-H query nine was created as a benchmark for

the simulation. To achieve this, the VectorWise was traced in order to obtain any input related

to this query. In total, 11 GB of raw data was extracted. The caveat of doing this is that when

the hash join is called in isolation, there is less interference with its working set. This could

mean that the cache performance is better. Experiments varying the cache size are run later to

address this.
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6.1.2 Vectorising the Benchmark

In order to make a vectorised version of the benchmark, it was necessary to use the new ISA

defined in appendix A. The problem is that no existing assemblers recognised this new ISA.

To circumvent this, instructions were inlined into the C source code in their hexidecimal form.

Listing 6.1 gives an example of the set maximum vector length encoded into the source file.

asm volatile (".byte 0xF1 , 0x26 , 0x00 , 0x00 , 0x00 , 0x00");

Listing 6.1: inlining hexidecimal

Some vector instructions interact with the existing x86-64 general purpose registers. This

means that it is necessary to control the placement of variables in the registers. GCC allows

this using the register keyword. Listing 6.2 illustrates a value being assigned to the variable t0

that is held in the register r8.

register unsigned long t0 asm ("r8") = 1234;

Listing 6.2: register definition

It was also necessary to stop GCC’s optimisations from eliminating registers/variables from

the source code. This can happen because GCC has no notion as to what the new vector

instructions actually do. To solve this, GCC’s assembly input/output lists are used. This allows

the programmer to inline assembly and explicitly specify what registers will be read and what

registers will be written to. GCC’s register allocator takes this information into account when

assigning variables to registers. Listing 6.3 shows and example of the instruction set vector

length and uses the value stored in r11 as input. When compiled, GCC will make sure that r11

is not modified until after this instruction.

asm volatile (".byte 0xF1 , 0x24 , 0xB0 , 0x00 , 0x00 , 0x00"

: /* no output */

: "q" (r11) );

Listing 6.3: register dependency modelling

The reduced scalar and vector versions of the VectorWise hash join was compiled with GCC

4.0.3 with -O6 optimisations and loop/function alignment turned on. Additionally, all the input

data arrays were aligned to 64-bytes i.e. the size of a cache line. This reduces the number of

cache line accesses for unit-stride vector loads/stores.
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6.2 Baseline Parameters

This section lists the parameters of the baseline setup. In all the proceeding experiments, the

variables are taken from these tables unless explicitly stated otherwise. The parameters of the

scalar baseline are based on the Intel Westmere microarchitecture used to profile VectorWise in

chapter 3. Values were obtained from the Intel Optimisation Reference Manual [28].

parameter value

fetch width 4
frontend width 4
frontend stages 7
dispatch width 4
maximum issue width 6 (1 per cluster)
writeback width 4
commit width 4

Table 6.1: superscalar width parameters

Table 6.1 lists the superscalar parameters. These are correct except that the Westmere

architecture can use micro-op fusion which occasionally allows decoding five microps into the

frontend pipline. This is not modelled in PTLsim.

parameter value

reorder buffer 128
issue queue 8 (per cluster)
load queue 48
store queue 32
fetch queue 28
outstanding L1 misses 10
outstanding L2 misses 16

Table 6.2: out of order structure parameters

Table 6.2 shows the sizes of various structures in the microarchitecture. The only difference

is the issue queue configuration. In Westmere the equivalent to an issue queue is the reservation

station and it is a single structure with 36 entries shared by all the clusters. It is not possible

to model clusters as well as a shared issue queue in PTLsim. To solve this, the reservation

station is divided into six parts (there are six clusters) and each given an extra two each to

compensate. Subsequent experiments will increase each issue queue size and measure its impact

on performance.

Table 6.3 shows the cache hierarchy and main memory parameters. The main memory

latency was chosen based on a benchmark run the system used to profile vectorwise in chapter

3. LMbench [37] was used to generate an estimate of main memory latency. The size of working
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cache level size latency line size ways sets

level 1 instruction 32 KB 1 64 4 128
level 1 data 32 KB 4 64 8 64
level 2 256 KB 10 64 8 512
level 3 12 MB 35 64 16 12288
memory ∞ 357 n/a n/a n/a

Table 6.3: cache hierarchy parameters

set of the application is taken into account with this.

parameter value

physical vector registers 32
physical mask registers 32
lanes 1
chaining on
L2 → vector register bus width 32 bytes
vector load request file entries 12
vector store request file entries 8
vector cache line request file entries 128

Table 6.4: vector parameters

Table 6.4 shows the default configuration of the vector parameters. The number of physical

vector registers has been made double the amount of architectural vector registers. This is

based on [15] that states for register renaming to be effective, there should be at minimum twice

as many physical registers to architectural registers. We have noted that sixteen architectural

vector registers is far too excessive for our workload. Six architectural registers would be enough

meaning that the physical register file could be reduced to 12 entries.

The level 2 cache to vector register file bus width was made 32 bytes; this the bus width that

connects the level 1 data cache to the level 2 cache in Westmere. The Vector Cache Line Request

File was made 128 entries. This number was chosen to allow two indexed memory operations

in flight when the maximum vector length is 64. The VCLRF is not associative and should be

allowed to grow larger if space permits.

Table 6.5 shows the configuration of the clusters. The Westmere has six clusters (ports 0 to

5) and four additional clusters have been added for vector support. The scalar clusters attempt

to model the Westmere as close as possible, however it is not precise due to the difference in

µop generation in PTLsim and the Westmere (which is not publicly available). The scalar

functional units are fully pipelined meaning that a new instruction can issue every cycle. The

vector functional units are fully pipelined but with respect to a single instruction. They cannot

issue a new vector instruction until the occupying instruction has fully completed. The vectors

clusters vexec0 and vexec1 are able to execute any vector instructions bar memory requests and
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cluster functional unit functional unit functional unit functional unit

port0 int alu fp mult divide sse alu
port1 int alu fp add complex int sse alu
port2 load - - -
port3 store - - -
port4 store - - -
port5 int alu branch sse alu -
vmem memory: unit-stride memory: indexed - -
vexec0 vector alu mask alu vector length mask pop
vexec1 vector alu maskalu vector length mask pop
vfence fence - - -

Table 6.5: cluster parameters

fences. Chaining can occur between the two exec clusters and between functional units in the

same cluster.

6.3 Reducing Simulation Time

One run of execution of the scalar implementation using PTLsim takes over 110 hours, roughly

five days long. This is impractical when doing many experiments that vary a single parameter of

the configuration at a time. In order to reduce the time spent simulating, the number of tuples

processed needed to be reduced first. This is possible because the most active parts of the code

are repetitive functions executed in a loop.

Figure 6.1: accumulated IPC over the application’s full run

It was important first to verify that this is true. To do this, a full simulation was run taking
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a snapshot of the accumulated statistics every 1,000,000,000 simulated cycles. Each snapshot

contains the average instructions per cycle at that moment. Figure 6.1 shows the average IPC

plotted against the cycle number. It can be seen that the IPC is very stable and doesn’t fluctuate

after several billion cycles. The binary was changed from operating on 600 million tuples to 12

and a half million instead. This reduced the scalar simulation time to roughly two hours.

6.4 Results

This section covers all the simulated experiments. The VectorWise block length is fixed at 1024

until the final experiment. It should be noted that whenever the term performance is used, it is

referring to a relative measure of execution time; shorter is better and longer is worse. Speedup

refers to the reduction of execution time related to the scalar version of the code simulated using

the default configuration.

6.4.1 Average Vector Length

The average vector length is an important statistic. It can show the (lack of) scalability of

vectorised code and if there can be additional benefits increasing the maximum vector length

(MVL) i.e. the size of the vector registers.

Figure 6.2: average vector length

Figure 6.2 shows the results. The horizontal axis varies the MVL whereas the vertical axis

shows how many elements were operated on by a single vector instruction on average. There

are two lines shown: one uses the vector length of the instruction as its reference [inc. masked];
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the other uses the vector length but subtracts any elements that have been masked out [ex.

masked]. The results are good and show that the application scales well whilst varying the

maximum vector length. In VectorWise, the scalability should sustain until the MVL exceeds

the block length.

6.4.2 Maximum Vector Length

Figure 6.3 shows the results of an experiment that varies the maximum vector length. There

are two runs per MVL value, one with chaining disabled and another with chaining enabled.

The results are relative to the baseline scalar performance and display the vectorised version’s

speedup.

Figure 6.3: varying the maximum vector length

From the diagram it can be seen that performance is handicapped when the MVL is two

or four. This most likely happens due to the extra overhead associated with accessing the L2

cache in lieu of the L1. Additionally, the advantage of accessing entire cache lines is weakened;

a maximum vector length of four can address a maximum of 32 bytes (4x an 8-byte datatype)

which is only half of a line cache. The performance benefits kick in when an MVL of eight is used.

The performance grows steeply until an MVL of sixteen is used. After this point, performance

continues to increase but at a steadier rate. With an MVL of 64 there is a performance gain of

2.9x.

It can be seen that the use of chaining offers very little benefit. There are three reasons that

can explain this. The first reason is that the loads cannot be chained into other operations. The

loads are keystones in the loop bodies and are often the root of dependency chains. The second

reason is that there just isn’t enough functional units in the configuration. The third reason
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is that by employing an out of order execution engine, the functional units can be kept busy

without resorting to chaining.

6.4.3 Vector Lanes

Figure 6.4 shows the results of an experiment that varies the number of vector lanes. Here the

MVL is fixed at 64. Like before, there is a run with chaining disabled and another run with

chaining enabled.

Figure 6.4: varying the number of vector lanes

The results show that lanes can bring some performance advantages. There is a steep slope

between one lane and four lanes, there doesn’t appear to be much more advantage when the

number of lanes is greater than sixteen. The indexed memory operations can take advantage of

lanes to generate multiple addresses in parallel and reducing the drawback of not allowing loads

to be chained.

It should be noted that the scale of the vertical axis of this diagram is much smaller than

the one in figure 6.3. Using 64 lanes over one lane will give an extra 1.3% of performance when

chaining is enabled or 1.6% when chaining is disabled.

6.4.4 Cache Size

VectorWise is very conscientious of the cache hierarchy, however it was analysed in chapter 3

that the hash probing operation has a working set larger the any of the cache levels. To see

how the size of the cache can impact both the scalar and vector implementations, an experiment
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varying the cache sizes was performed. In each experiment, the number of sets of each cache

level is doubled. For simplicity the L3 has been removed from this experiment. Table 6.6 shows

the configurations and figure 6.5 shows the results.

configuration L1 size L2 size

x 32 KB 256 KB
x2 64 KB 512 KB
x4 128 KB 1 MB
x8 256 KB 2 MB
x16 512 KB 4 MB
x32 1 MB 8 MB
x64 2 MB 16 MB
x128 4 MB 32 MB
x256 8 MB 64 MB

Table 6.6: cache hierarchy configuration

Figure 6.5: Increasing the cache size

The results show that increasing the cache size has little benefit for either the scalar or vector

versions of the application. When the caches become exceedingly large and begin to comfortably

fit the hash table and bucket chain (32 MB and 17 MB respectively), the performance starts

to increase. Both the scalar and the vector versions of the application exhibit a similar trend

except that the vector implementation benefits a bit sooner as the L2 cache is larger than the

L1 cache size. There is little benefit in increasing the cache sizes unless the extra space allows

the entire working set to become resident.
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6.4.5 Outstanding Cache Misses

It has been demonstrated that the cache hierarchy must be unrealistically large before it can

offer additional performance gains to either the scalar and vector versions of the application. It

is therefore desirable that the application can issue many requests to main memory in parallel

to tolerate this cache behaviour. An experiment has been performed varying the number of

outstanding misses allowed in the L1 and L2 caches. Table 6.7 shows the configurations and

figure 6.6 shows the results. The experiment was run for the scalar implementation and also for

the vector implementation with MVLs of 16 and 64.

configuration L1 misses L2 misses

x 10 16
x2 20 32
x4 40 64

Table 6.7: outstanding misses configuration

Figure 6.6: Increasing the amount of outstanding cache misses

The diagram shows that increasing the number of cache misses allowed has no influence on

the scalar code’s performance. The scalar implementation cannot generate cache misses fast

enough to saturate the Load Fill Request Queue (LFRQ) or Miss Buffer (MB). The same can be

said regarding the vector implementation when the MVL is sixteen. Although the performance

is better relative to the scalar implementation, it also cannot saturate the LFRQ or MB. When

an MVL of 64 is used, it generates a lot more misses in parallel. This is likely due to the indexed

memory operations generating many cache line requests.
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6.4.6 Latency Tolerance

Vector processors have a reputation for being more tolerant of long latency operations than scalar

processors. This experiment varies the main memory latency in multiples of two, both shorter

and longer than the baseline. The experiment has been run with the scalar implementation and

the vector implementation using MVLs of 16 and 64. Figure 6.7 shows the results. It should be

noted that the vertical axis has been changed from speedup to relative time.

Figure 6.7: varying main memory latency

It can be seen that the main memory latency contributes quite a lot towards both the scalar

and vector implementation’s performance. When the baseline’s main memory latency is halved,

the scalar performance is 1.54x better and both vector versions perform roughly 1.7x better.

When the graph is examined in the other direction and memory latency is made longer, it can

be seen that the scalar implementation suffers a lot more than the vector implementation. The

slope of the scalar implementation is much steeper than either of the vector implementations. It

can further be observed that using a larger MVL, latency can be tolerated even more as the slope

when the MVL is 16 is steeper than the slope when the MVL is 64. It can also be observed that

when the latency is doubled, the vector implementations still perform better than the original

baseline.

6.4.7 Number of Physical Registers

In this experiment the number of physical registers is increased. Because there are two sets

of new architectural registers (16 vector registers, 8 mask registers) both of these numbers are

increased in multiples of two. It should be noted that there is no equivalent experiment for the

scalar version because the baseline microarchitecture does not use physical registers and instead
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utilises the reorder buffer for the same purpose. Table 6.8 shows the configuration figure 6.8

shows the results.

configuration vector registers mask registers

x 16 8
x2 32 16
x4 64 32
x8 128 64
x16 256 128

Table 6.8: physical registers configuration

Figure 6.8: varying the number of physical registers

It can be seen a large number of physical registers isn’t necessary. Double the number of

architectural registers appears to be a good choice which is a similar configuration used in the

vector baseline. This is primarily due to the reorder buffer becoming a structural bottleneck

when the physical register file becomes excessively large. Figure 6.9 shows the same experiment

but this time the vertical axis shows the number of cycles the frontend is stalled due to the

reorder buffer being full.

6.4.8 Reorder Buffer Size

This experiment varies the number of entries in the reorder buffer. It is performed with the

scalar implementation and the vector implementation with MVLs of 16 and 64. Figure 6.10

shows the results.

It can be seen that the baseline value (128 entries) is suitable in all cases. There is very little

benefit increasing it larger than this. As mentioned in the previous section, the frontend may be
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Figure 6.9: ROB bottleneck when varying the number of physical registers

Figure 6.10: Increasing the reorder buffer size

stalling for lack of a vector physical register, a lack of a reorder buffer entry or a combination of

both. An experiment is performed increasing both of these. Table 6.9 shows the configuration

and figure 6.11 shows the results.

configuration rob entries vector registers mask registers

x 64 16 8
x2 128 32 16
x4 256 64 32
x8 512 128 64

Table 6.9: rob and physical registers configuration
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Figure 6.11: Increasing the reorder buffer size and physical registers

It is seen that even increasing the physical registers and reorder buffer together has little

benefit. At this point the bottleneck becomes the number of outstanding misses allowed. It has

already been shown in section 6.4.5 that for an MVL of 64, the number of cache misses can be

increased without increasing the size of the reorder buffer or physical register file.

6.4.9 Issue Queue Size

This experiment varies the size of the issue queues. The baseline uses clusters to partition work

and each cluster has an issue queue with eight entries. The Westmere microarchitecture used

to profile VectorWise is chapter 3 has a single shared issue queue called a reservation station

with 36 entries. In order to model the Westmere’s clusters using PTLsim, it was necessary

to partition this. This experiment increases the issue queue size of each cluster, therefore any

benefits of using a large shared issue queue should be revealed. Figure 6.12 shows the results.

It can be seen that there are some additional scalar performance by increasing the issue

queues from eight to sixteen, but it is relatively small at 1.12x. After sixteen entries there

is no additional performance gains. The vector implementations show no improvements from

increasing the issue queues.

6.4.10 Load Units

One feature that may be seen as unfair when comparing the vector baseline to the scalar baseline

is the distribution of memory functional units. The scalar baseline has one load and two store
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Figure 6.12: varying the size of the issue queues

functional units as found in the Westmere microarchitecture. The vector baseline has two

memory functional units: one for unit-stride requests and another for indexed requests, these

are used by both loads and store instructions. The ability to issue two loads in parallel might be

seen as an unfair advantage. To address this, an experiment is performed increasing the number

of load functional units in the scalar baseline. Figure 6.13 shows the results.

Figure 6.13: increasing the number of scalar load functional units

Any benefit is barely measurable and too small to be justifiable. The problem is that the

issue queue can’t find enough loads to issue in the same cycle. Figure 6.14 shows a breakdown

of the number of loads that can be issued in each cycle. One load unit is sufficient and two

units can give a very small amount of extra benefit. Anything more than two is overkill. This

could be due to the fact that the load units are fully pipelined and so multiple units won’t have

a major impact on performance.
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Figure 6.14: number of loads issued each cycle

6.4.11 Super Superscalar

This experiment tries to resolve the scalar baseline’s bottlenecks by increasing all of its major

structures at once. Here the following structures are increased in multiples of two:

• reorder buffer

• issue queues

• load queue

• store queue

• outstanding L1 misses

• outstanding L2 misses

Table 6.10 shows the configuration and figure 6.15 shows the results. Doubling the amount

of resources available does boost the performance, but quadrupling the resources doesn’t have

the same impact. With four times the resources, there is only an improvement of 1.56x. This is

in stark contrast to the vector performance increase of 6.18x in section 6.4.5. It should be noted

that many of these structures are associative and cannot be scaled anyway. This demonstrates

that a vector architecture can scale much better with fewer resources than a scalar architecture.

6.4.12 VectorWise Block Length

In this experiment we vary the VectorWise block length i.e. how many tuples are processed

together in a group. Figure 6.16 shows the results.
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configuration rob issue queue load queue store queue outstanding L1 outstanding L2

x1
2 64 4 24 16 5 8

x 128 8 48 32 10 16
x2 256 16 96 64 20 32
x4 512 32 192 128 40 64

Table 6.10: major structure configurations

Figure 6.15: increasing multiple scalar structures at once

Figure 6.16: increasing the vectorwise block length

It can be seen that the scalar implementation has no additional benefit from increasing the

block size larger than its default of 1024. For the vector implementations, there is an additional

2% performance increase when the MVL is 16 and 4.4% when the MVL is 64.
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Related Work

This chapter lists various pieces of research that share something in common with our work.

First we list various research related to database acceleration through data-level parallelism.

After, a list of prior vector research is given. For all related works, a list of commonalities and

differences are given.

7.1 DBMS Acceleration

This section examines a list of works related to database acceleration through data-level paral-

lelism.

7.1.1 DBMS and Vector Architectures

[36] is the earliest work found looking at database operator implementations on vector processors.

The report looks specifically at the hash join operator and implements a vectorised version for

the Cray C90 [39].

The methodology of this work takes a different approach to ours. We profile an existing

full-featured DBMS that has been optimised for modern out of order microarchitectures to find

bottlenecks due to scalar inefficiencies. In contrast, this work proposes its own algorithm for

hash joins with no reference to a real DBMS. Additionally, we are proposing vector extensions

to an ISA that already dominates the server marker whereas this work is done exclusively on a

supercomputer. Additionally, their reference scalar implementation is quite naive whereas ours
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is the basis for a commercial product.

In a similar vein to [36], [38] also looks at vectorising database operators. This time the

list is expanded to selection, projection and join operators however the methodology is still the

same. Naive scalar implementations are run against vectorised versions on a supercomputer and

so the same arguments still apply.

7.1.2 DBMS and SIMD Multimedia Extensions

[59] is a broad study accelerating various database operators using the existing SSE instruction

extensions for x86. The work investigates the benefits of data-level parallelism and reduction of

conditional branches in implementations of scans, aggregations, indexed operations and joins.

Since our work is primarily focused on joins, a comparison of this feature is given.

The principal difference between our vectorised join and their SIMDised join is that their

work looks at a simple nested loop implementation whereas our work looks at an optimised hash

join implementation. A nested loop join compares every row from the left hand side table with

every row from the right hand side table. This is not a problem when the tables are small, but

if they are large this is a very inefficient join algorithm. In contrast, we look at a hash join

implementation which is suitable for large tables typically found in decision support systems.

7.1.3 DBMS and the Cell

[23] is a study that ports a DBMS to the Cell Broadband Engine [20], an architecture abundant

with data-level parallelism capabilities. What is interesting is that the query engine used in the

study is MonetDB/X100 [9] which is an earliy version of the query engine used in VectorWise.

The work mostly discusses the challenges that arise from using this esoteric architecture. Fur-

thermore, the work is evaluated using TPC-H query one which lacks a join operation. Our work

is primarily focused on joins so it is difficult to make a comparison.

7.1.4 DBMS and GPGPU

[22] is a very comprehensive work investigating the performance benefits of running DBMS

operations on graphics processing units (GPUs) [40]. The study includes a hash join implemen-

tation that runs on a GPGPU coprocessor. There are some performance benefits but the study

concludes that the necessity to transfer data between the global memory and the GPU’s local
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memory can be a large bottleneck. Our approach adds vector processing capabilities into the

CPU’s execution core so this penalty is never encountered.

7.2 Previous Vector Architectures

The ISA extensions designed and implemented in this work were customised to accelerate hash

joins when implemented using a block at a time query engine. Many of the design decisions

were inspired by previous work in vector architectures. This section details a handful of vector

microprocessors from the past fifteen years which were considered relevant to our work.

7.2.1 Torrent-0

The Torrent-0 (T0) [3] was the first single-chip vector microprocessor. It introduced the VMIPS

ISA, a set of vector extensions for the RISC-like MIPS ISA. It used vector registers, a mask

register and a vector length register. Its pipeline was minimal and in order. There was a single

scalar unit, a single vector memory unit and a two vector execution units that could support

chaining; all of these shared the same fetch and decode stages. It had eight lanes to support

parallel execution of vector instructions. It could support both strided and indexed memory

accesses.

The T0 was a very ambitious piece of work and many features such as vector registers,

masking, chaining, parallel lanes and non unit-stride memory accesses have been incorporated

into our design. The major difference is that we have taken an existing scalar microarchitecture

and modified it to support vectors. In contrast, the T0 was designed from scratch with a focus on

vector processing and consequently the scalar capabilities were made very simple. Additionally,

the T0 uses an in order pipeline whereas our design is out of order.

7.2.2 Out of Order Vector Execution

[15] applies the concepts of register renaming and out of order execution to vector processing.

The advantages of this are 1) a reduction in anti-dependencies, 2) a good mechanism for imple-

menting precise interrupts and 3) that the functional units can be kept busy with useful work a

larger proportion of the time than with an equivalent in order model. The principal advantage

is that an out of order model can keep the memory port busy and hide long memory latencies

even further.
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Our design draws on this work primarily for the benefits of out of order memory scheduling.

The main differences are that our work takes an existing out of order superscalar microarchi-

tecture and appends vector support to it. In contrast, [15] modifies a Convex C3400 - a vector

supercomputer architecture. It also focuses on the SpecFP92 and Perfect Club benchmarks,

whereas our work is primarily concerned with decision support acceleration.

7.2.3 Scalar Processor Integration

[45] takes an existing superscalar microarchitecture, the MIPS R10000, and extends it with a

vector register file and complementary instruction set. Its primary contribution is the integration

of vector support with the existing cache hierarchy. Its novel approach is to bypass the level 1

data cache and go directly to the level 2 cache. This way the level 1 cache access times won’t be

compromised thus not interfering with the existing scalar performance. There is extra latency

when accessing the level 2 cache in lieu of the level 1, but this can be hidden with a vector

instruction’s natural latency-tolerant properties. It takes advantage of the line-based banking

scheme found in many level 2 cache designs. Using the level 2 cache over the level 1 cache also

implies the application’s working set can be larger.

Our work uses the level 2 cache idea from this research. [45] makes uses of cache banking

to access multiple cache lines in parallel; in contrast our design is more simple and accesses a

maximum of one cache line per cycle. [45] supports only strided memory accesses whereas our

work supports indexed memory accesses.

7.2.4 Alpha Tarantula

Tarantula [14] was a proposed extension to the Alpha 21464 that would have appended the

Alpha ISA with a rich set of vector instructions. Its ideas drew on those presented in [15]

and [45] and added a lot of new functionality. Its vector support was fully integrated with the

Alpha’s virtual memory cache coherency scheme. It supports very fast non unit-stride memory

accesses and indexed memory operations.

Our design is very much inspired by Tarantula. There are many features in common includ-

ing the scalar core integration, out of order vector execution, indexed memory operations and L2

cache access. Tarantula is integrated into the existing 21464 without compromising its perfor-

mance; our design also integrates the vector functionality into an existing x86-64 microprocessor,

but we attempt to reuse as much as possible.

Our study focuses on specifically on decision support systems, a class in the business ap-
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plications domain, which exhibits different properties to multimedia and scientific applications.

Tarantula was benchmarked against multimedia and scientific applications that can benefit from

many arithmetic functional units. Our design does not require so many functional units as our

application is mostly memory bound. We demonstrated that adding parallel lanes to our design

only makes a marginal difference whereas with Tarantula and its benchmark suite, the difference

is more profound.

7.2.5 Intel Larrabee

[49] is a many-core x86 architecture which supports vectors through Intel’s new LRBni instruc-

tion set [1]. Larrabee had been intended to compete with graphics processing units by offering

similar performance whilst minimising the amount of fixed-function logic thus allowing the pro-

grammer to configure and fine-tune their own algorithms. Larrabee contains 32 512-bit vector

registers and 8 16-bit mask registers. LRBni supports many useful instructions not found in

Intel’s mainline SIMD multimedia extensions such as gather/scatter and compress/expand.

There are several differences between our work and Larrabee. First, Larrabee’s target market

was principally the graphics/gaming domain whereas our work is focused on business applica-

tions. Intel has since decided to retarget Larrabee for the supercomputing market [53] however

the same argument still appleis as multimedia and scientific applications tend to exhibit different

behaviour to business applications [4].

Larrabee’s cores are based on a modified P5 microarchitecture [2] and are entirely in order.

Our microarchitecture is out of order and have more in common with the P6 microarchitecture

[43, 21]. Larrabee’s maximum vector length is limited to sixteen 4-byte values or eight 8-

byte values. Our work experiments with different maximum vector lengths and demonstrates

performance gains when the value is large (64 values). Larrabee’s vector memory operations go

the level 1 data cache and are optimised when all the elements hit the same cache line. Our

implementation works with the level 2 cache and it is expected that our memory operations

will address several cache lines in a single instruction. Additionally it uses subword parallelism

where we omit this feature from our design.
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Conclusion

8.1 Overview of Work

This work took the application VectorWise, a highly-optimised OLAP DBMS, and used it

as a vehicle to investigate vector microarchitecture. First, the application was profiled for

bottlenecks. We found that performance was often stifled due to the ineffectiveness of exposing

data-level parallelism through instruction-level parallelism. In particular, we looked at the hash

probe phase of the hash join operator. We found that due to the data structures being larger

than the cache hierarchy, many cycles are stalled waiting for cache misses.

From this, a set of vector instruction extensions were proposed for the x86-64 ISA. There

was discussion as to problems of the existing SIMD multimedia instructions and their lack of

expressibility to capture the available data-level parallelism in the profiled part of the appli-

cation. Next, a microarchitecture was conceived, designed and implemented using PTLsim,

a cycle-accurate x86-64 microprocessor simulator. One of the challenges was to get as much

reuse as possible from the existing microarchitecture without compromising the existing scalar

performance.

After all these steps, a rich set of experiments were performed comparing the original scalar

version of the program against a hand-coded vectorised version. Many configurations were tested

and ultimately the consensus is that the scalar microarchitecture doesn’t scale well even when

increasing all the major hardware structures. On the other hand, the vector microarchiecture

exhibits enormous amounts of scalability and performance benefits. Our results show that using

a vanilla vector baseline, there are performance speedups of 1.3x for a short maximum vector

length (8) and 2.9x for a longer maximum length (64). When variables such as the number
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of outstanding cache misses are increased proportionally, the vector units can saturate these

structures and increase the speedup to 6.2x with room for additional scaling. In contrast, the

scalar unit couldn’t take advantage of this at all. From the perspective of the original goal, to

accelerate a decision support system using vectors, this was successful.

8.2 Reflection on DSS Acceleration

Looking for problems in database software and trying to fix them with hardware alone comes

with its own set of issues.

8.2.1 Software Versions

The life cycle of software is generally more rapid and dynamic than that of hardware. Hardware

designers have generally employed benchmarks such as SPEC to evaluate their ideas. SPEC has

a new version approximately every five years which gives the computer architecture research

community something stable to work with. Using commercial software with frequent updates

makes it harder to evaluate a piece of research in this.

When we began working with VectorWise, we chose a stable edition and stuck with it out

of familiarity. As time passed and our research progressed, there were several version updates

to VectorWise. These updates brought new functionality and features to the software, but in

order to retain stability and consistency in our experiments we continued to work with the initial

stable version. It is possible that some of the bottlenecks we found had been addressed in other

ways using only software. We know that the VectorWise team have had some success decreasing

the impact of cache misses in hash joins by using bloom filters, purely a software optimisation.

We intend to continue looking at VectorWise and pay more attention to the features in more

recent releases.

8.2.2 Query Plans

Aside from software updates, there is another variable that contributes to a DBMS’s perfor-

mance. These are the query plans that are executed by the DBMS. A problem can be solved in

many ways, and in the case of query plans, a very large number of ways. When we started this

piece of work, we benchmarked VectorWise with a set of query plans included in the software

package. Much like the software version, these query plans became static in our research. We

looked at VectorWise’s research and saw that they could get radically different performance
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results by changing the query plan. The following is a short list giving examples of some of the

things that can affect a query plan’s behaviour.

Query tree arrangement: A query node’s branches can be arranged so that they are spread out

and balanced or heavier on one side.

Query tree order: The order in which individual operators are resolved with respect to each

other. For example, if there are two criteria in a selection it makes sense to evaluate the

one with the lowest selectivity first and filter the remainder out using the other with high

selectivity.

Hash join variations: There are different ways of implementing hash joins. There are variations

for when the left hand side can have an abitrary number of matches in the right hand side;

other variations for when the left hand side has exactly one match in the right hand side;

and others where the left hand side side can have exactly one or zero matches on the right

hand side. Choosing the correct version can impact performance.

Alternative joins: Sometimes hash joins are not even the most suitable join to begin with.

Sort-merge joins are another major algorithm used in decision support systems and have

very different features and requirements to that of hash joins.

8.3 Reflection on Microarchitecture Simulation

The biggest challenge with hardware simulation is knowing when you are modelling something

correctly and knowing when you are cheating. In our approach to design and implementation,

simple designs were used in favour of overly-ambitious complicated ones. The latter would be

far too difficult to verify with simulators such as PTLsim.

That being said, the opposite is also true. Hardware simulators, in our case PTLsim, often

oversimplify their hardware. In PTLsim we ran our experiments with a very uncomplicated

memory model. Main memory has one configurable parameter: latency; TLBs aren’t modelled;

and there is no simulated hardware prefetcher. We tried to be as careful as possible to ensure

that if the scalar performance would suffer due to one of these abesent features, then the vector

performance should as well. Because of the significance of memory in our profiled application,

the impact of a very incorrect memory model would be catastrophic.
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8.4 Future Work

8.4.1 Simulator

On the simulator side of the research, we plan to improve the cache to register file interface. Right

now the design is very simple and will sometimes serialise memory operations unnecessarily.

Future work will investigate the potential of parallel accesses to the cache hierarchy and more

advanced forms of cache line coalescing. Additionally it would be very beneficial to look at a

simulator such as DRAMSim2 [47] in order to build a more realistic memory model. Finally,

many statements were made regarding vector technology and energy/power savings. Power

estimate functionality should be added to the simulator so we can measure the impact of our

new hardware additions.

8.4.2 DBMS

Although this work looked at a very specific part of VectorWise, many ideas related to DBMS

acceleration were generated in the process. To make this study complete, we would also like

to look at the build phase of hash joins and investigate the possibility of using atomic vector

instructions [33] for acceleration. We also would like to look at alternative join algorithms, for

example the sort-merge join and best-effort partitioning hash joins [60], and investigate if vector

architectures can aid their performance too.
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Appendix A

Vector ISA

This is a formal definition of the vector instruction set architecture used in this project. This

can be seen as an extension to the x86-64 ISA. There is a very important difference here between

the format of x86-64 instructions and the format of our extensions. The former works with two

operands where one of the sources must also be a destination (instructions are destructive to

its operands). This work creates a VMIPS-style ISA [3] for extra flexibility which can have a

different destination register than one of our source operands.

A.1 Registers

The ISA description refers to architectural registers using the following shorthand:

• vl: vector length register

• sr[0] → sr[15]: general purpose scalar registers (these are the existing sixteen 64-bit

registers in x86-64)

• vr[0] → vr[15]: general purpose vector registers

• vm[0] → vm[7]: vector mask registers

A.2 RISC or CISC

x86-64 (and to a larger extent x86) is a CISC ISA for three reasons
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1. the instructions are variable length necessitating complex decoding logic

2. work (e.g. arithmetic) instructions can take operands from registers and/or main memory

3. many instructions express a large amount of work e.g. repeated string instructions

Which category do these vector instructions fall into? The three points are addressed as

follows:

1. the vector ISA will be fixed length in order to have a simple encoding mechanism for our

assembler (an added bonus is simple decoding logic)

2. the vector ISA will require all work instructions to read from and write to architectural

registers

3. a vector instruction represents a lot of work, a lot more than a µop, but the work is regular

and simple

It’s difficult to place the vector ISA into either group, so a new term is invented: Reduced

Complex Instruction Set Computing - RCISC.

A.3 Masks

There are eight mask registers but in all the vectorised kernels the maximum ever used is three,

why so many? It’s nice to have some flexibility with mask manipulation and give the ISA more

than one mask. Eight mask registers can be addressed with 3 bits and then one more bit can

be used to determine if the mask should be used or not. This is because a mask is optional for

most of the instructions. It is far easier to deal with nyble than two or three bits when using a

disassembler.

code mask code mask

0x0 vm0 0x8 NOMASK
0x1 vm1 0x9 NOMASK
0x2 vm2 0xA NOMASK
0x3 vm3 0xB NOMASK
0x4 vm4 0xC NOMASK
0x5 vm5 0xD NOMASK
0x6 vm6 0xE NOMASK
0x7 vm7 0xF NOMASK

Table A.1: mask encoding
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Logical bitwise operations as well as POPCNT already exist in x86-64. Why are there unique

instructions for masks? Because the size of the mask relates to the size of a vector register. Right

now, the largest datatype for x86-64 is 64 bits. If the maximum vector length is increased to > 64

the masks cannot not be stored in a single general purpose register (GPR) thus complicating

things quite a bit for the programmer/compiler.

A.4 Datatypes

A nyble is used to encode the following datatypes into the instructions. Using a nyble allows

the ISA to be extended later when non-integer datatypes are needed.

symbol type size code

sc signed char 1 0x0
ss signed short 2 0x1
si signed int 4 0x2
sl signed long 8 0x3

uc unsigned char 1 0x4
us unsigned short 2 0x5
ui unsigned int 4 0x6
ul unsigned long 8 0x7

Table A.2: datatype encoding

In x86-64 there is implicit zero extension of 32-bit values loaded into 64-bit registers Because

there is no subword parallelism in this vector ISA, integer datatypes can be sign extended.

A.5 General Format

To extend the x86-64 ISA, a prefix is used to distinguish the new instructions from existing ones

from Intel/AMD. The following single-byte prefix is used: 0xF1. This can work however the

prefix actually is reserved for In-Circuit Emulation [11] breakpoints. PTLsim doesn’t decode

any instruction with this opcode/prefix so it is safe to use for simulation purposes.

The longest instructions in the ISA (vldi and vsti) require five nybles for to encode operands.

These together with the single-byte prefix and single-byte opcode suggest a four and a half byte

wide instruction. This is extended to six bytes to reserve space for future instructions and,

additionally it will be easier to view six-byte instructions in a disassembler over four and a half.

[0xF1] [opcode] [0x??] [0x??] [0x??] [0x??]
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A.6 Dependencies

In the instructions that follow, there is a table that lists various properties of the instructions.

Among them are src and dst. These stand for source register and destination register respectively.

The purpose is to highlight anywhere there is a data dependency between architectural registers

to avoid various hazards when pipelining and out of order execution is introduced. Datatypes

and immediates are not considered sources in this sense however the vector length register is

considered a source even though it is never encoded into the instruction itself.

One important observation to make is that the destination is generally considered a source

as well. When there are operations which are masked or where the vector length is less than

MVL, the orthodox behaviour is that the old values of the architectural registers will remain

intact. Unfortunately this implies slightly more complicated hardware and in some cases may

hamper out of order execution.

A.7 Instructions

The new instructions are classified into nine categories

• memory A.7.1

• initialisation A.7.2

• arithmetic A.7.3

• logical A.7.4

• comparisons A.7.5

• position manipulation A.7.6

• mask A.7.7

• vector length A.7.8

• memory fences A.7.9
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A.7.1 memory

• The base address must be aligned to the datatype.

• The base address must be in x86-64 canonical form.

vector load: unit stride

mnemonic opcode

vldus 0x01

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values to load

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

scalar y y n 1 base 64-bit base address

dtype∗ array = ( dtype ∗) base ;

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = array [ i ] ;

}
}
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vector store: unit stride

mnemonic opcode

vstus 0x02

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of source values

mask n y n 1 ~mask optional mask register

vector y y n 1 ~vra vector of source values

scalar y y n 1 base 64-bit base address

dtype∗ array = ( dtype ∗) base ;

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
array [ i ] = vra [ i ] ;

}
}
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vector load: indexed

mnemonic opcode

vldi 0x03

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values to load

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

scalar y y n 1 base 64-bit base address

vector y y n 1 ~vra vector of memory offsets

dtype∗ array = ( dtype ∗) base ;

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = array [ vra [ i ] ] ;

}
}
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vector store: indexed

mnemonic opcode

vsti 0x04

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values to store

mask n y n 1 ~mask optional mask register

scalar y y n 1 base 64-bit base address

vector y y n 1 ~vra vector of memory offsets

vector y y n 1 ~vrb vector of values

dtype∗ array = ( dtype ∗) base ;

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
array [ vra [ i ] ] = vrb [ i ] ;

}
}
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A.7.2 initialisation

scalar-vector set: one

mnemonic opcode

svso 0x05

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of source value

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

scalar y y n 1 val source value

dtype∗ array = ( dtype ∗) base ;

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = va l ;

}
}
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scalar-vector set: iota

mnemonic opcode

svsio 0x06

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of source value

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

scalar y y n 1 val starting value

i o t a = va l ;

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = i o t a ;

}
i o t a++;

}
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vector set: clear

mnemonic opcode

vsc 0x27

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of source value

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = 0 ;

}
}
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A.7.3 arithmetic

vector-vector add

mnemonic opcode

vvadd 0x07

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd vector of sums

vector y y n 1 ~vra vector of first addends

vector y y n 1 ~vrb vector of second addends

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] + vrb [ i ] ;

}
}
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vector-vector subtract

mnemonic opcode

vvsub 0x08

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd vector of differences

vector y y n 1 ~vra vector of minuends

vector y y n 1 ~vrb vector of subtrahends

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] − vrb [ i ] ;

}
}
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vector-vector multiply

mnemonic opcode

vvmul 0x09

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd vector of products

vector y y n 1 ~vra vector of first factors

vector y y n 1 ~vrb vector of second factors

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] ∗ vrb [ i ] ;

}
}
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vector-scalar add

mnemonic opcode

vsadd 0x0A

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd vector of sums

vector y y n 1 ~vra vector of first addends

scalar y y n 1 val second addend

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] + va l ;

}
}
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vector-scalar subtract

mnemonic opcode

vssub 0x0B

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd vector of differences

vector y y n 1 ~vra vector of minuends

scalar y y n 1 val subtrahend

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] − va l ;

}
}
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vector-scalar multiply

mnemonic opcode

vsmul 0x0C

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd vector of products

vector y y n 1 ~vra vector of first factors

scalar y y n 1 val second factor

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] ∗ va l ;

}
}
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scalar-vector subtract

mnemonic opcode

svsub 0x0D

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd vector of differences

vector y y n 1 ~vra vector of subtrahends

scalar y y n 1 val minuend

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = va l − vra [ i ] ;

}
}
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A.7.4 logical

vector-vector bitwise: or

mnemonic opcode

vvbor 0x0E

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

vector y y n 1 ~vra vector of first values

vector y y n 1 ~vrb vector of second values

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] | vrb [ i ] ;

}
}
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vector-vector bitwise: and

mnemonic opcode

vvband 0x0F

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

vector y y n 1 ~vra vector of first values

vector y y n 1 ~vrb vector of second values

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] & vrb [ i ] ;

}
}

105



APPENDIX A. VECTOR ISA

vector-vector bitwise: exclusive or

mnemonic opcode

vvbxor 0x10

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

vector y y n 1 ~vra vector of first values

vector y y n 1 ~vrb vector of second values

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] ˆ vrb [ i ] ;

}
}
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vector-vector bitwise: shift right

mnemonic opcode

vvbshfr 0x11

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

vector y y n 1 ~vra vector of values

vector y y n 1 ~vrb vector of shift amounts

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] >> vrb [ i ] ;

}
}

The shift is arithmetic or logical depending on whether or not the datatype is signed or

unsigned.
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vector-vector bitwise: shift left

mnemonic opcode

vvbshfl 0x12

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

vector y y n 1 ~vra vector of values

vector y y n 1 ~vrb vector of shift amounts

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] << vrb [ i ] ;

}
}
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vector-scalar bitwise: or

mnemonic opcode

vsbor 0x13

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

vector y y n 1 ~vra vector of first values

scalar y y n 1 val second value

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] | va l ;

}
}
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vector-scalar bitwise: and

mnemonic opcode

vsband 0x14

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

vector y y n 1 ~vra vector of first values

scalar y y n 1 val second value

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] & va l ;

}
}
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vector-scalar bitwise: exclusive or

mnemonic opcode

vsbxor 0x15

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

vector y y n 1 ~vra vector of first values

scalar y y n 1 val second value

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] ˆ va l ;

}
}
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vector-scalar bitwise: shift right

mnemonic opcode

vsbshfr 0x16

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

vector y y n 1 ~vra vector of values

scalar y y n 1 val shift amount

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] >> va l ;

}
}

The shift is arithmetic or logical depending on whether or not the datatype is signed or

unsigned.
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vector-scalar bitwise: shift left

mnemonic opcode

vsbshfl 0x17

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

vector y y n 1 ~vra vector of values

scalar y y n 1 val shift amount

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = vra [ i ] << va l ;

}
}

The shift is arithmetic or logical depending on whether or not the datatype is signed or

unsigned.
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vector bitwise: not

mnemonic opcode

vbnot 0x18

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values

mask n y n 1 ~mask optional mask register

vector y y y 1 ~vrd destination vector

vector y y n 1 ~vra vector of values

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
vrd [ i ] = ˜ vra [ i ] ;

}
}
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A.7.5 comparisons

vector-vector compare: not equal

mnemonic opcode

vvcne 0x19

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values to compare

mask n y n 1 ~mask optional mask register

mask y y y 1 ~maskd destination mask

vector y y n 1 ~vra vector of first values

vector y y n 1 ~vrb vector of second values

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
maskd [ i ] = ( vra [ i ] != vrb [ i ] ) ? 1 : 0 ;

}
}
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vector compare: not equal to zero

mnemonic opcode

vcnez 0x1A

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of values to compare

mask n y n 1 ~mask optional mask register

mask y y y 1 ~maskd destination mask

vector y y n 1 ~vra vector of values

for ( i =0; i<vlen ; i++)

{
i f ( ( ! mask ) | | (mask && mask [ i ] ) )

{
maskd [ i ] = ( vra [ i ] != 0) ? 1 : 0 ;

}
}
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A.7.6 position manipulation

vector compress

mnemonic opcode

vcprs 0x1B

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of source values

mask y y n 1 ~mask required mask register

vector y y y 1 ~vrd destination vector

vector y y n 1 ~vra vector of source values

k=0;

for ( i =0; i<vlen ; i++)

{
i f (mask [ i ] )

{
vrd [ k++] = vra [ i ] ;

}
}

This interesting instruction can be found in the NEC SX, Fujitsu VP, Cyber and Convex

machines.
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vector expand

mnemonic opcode

vexpd 0x1C

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

dtype y n n 1 dtype datatype of source values

mask y y n 1 ~mask required mask register

vector y y y 1 ~vrd destination vector

vector y y n 1 ~vra vector of source values

k=0;

for ( i =0; i<vlen ; i++)

{
i f (mask [ i ] )

{
vrd [ i ] = vra [ k++];

}
}
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A.7.7 mask

mask-mask bitwise: or

mnemonic opcode

mmbor 0x1D

type required src dst nybles symbol comment

mask y n y 1 ~md destination mask

mask y y n 1 ~ma first source mask

mask y y n 1 ~mb second source mask

for ( i =0; i<MAXVL; i++)

{
md[ i ] = ma[ i ] | mb[ i ] ;

}
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mask-mask bitwise: and

mnemonic opcode

mmband 0x1E

type required src dst nybles symbol comment

mask y n y 1 ~md destination mask

mask y y n 1 ~ma first source mask

mask y y n 1 ~mb second source mask

for ( i =0; i<MAXVL; i++)

{
md[ i ] = ma[ i ] & mb[ i ] ;

}
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mask-mask bitwise: exclusive or

mnemonic opcode

mmbxor 0x1F

type required src dst nybles symbol comment

mask y n y 1 ~md destination mask

mask y y n 1 ~ma first source mask

mask y y n 1 ~mb second source mask

for ( i =0; i<MAXVL; i++)

{
md[ i ] = ma[ i ] ˆ mb[ i ] ;

}
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mask bitwise: not

mnemonic opcode

mbn 0x20

type required src dst nybles symbol comment

mask y n y 1 ~md destination mask

mask y y n 1 ~ma source mask

for ( i =0; i<MAXVL; i++)

{
md[ i ] = ˜ma[ i ] ;

}
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mask set all

mnemonic opcode

msa 0x21

type required src dst nybles symbol comment

mask y n y 1 ~md destination mask

for ( i =0; i<MAXVL; i++)

{
md[ i ] = 1 ;

}
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mask clear all

mnemonic opcode

mca 0x22

type required src dst nybles symbol comment

mask y n y 1 ~md destination mask

for ( i =0; i<MAXVL; i++)

{
md[ i ] = 0 ;

}
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mask population

mnemonic opcode

mpop 0x23

type required src dst nybles symbol comment

vlen y y n 0 vlen vector length (implicit argument)

mask y y n 1 ~mask source mask

scalar y n y 1 srd destination scalar

srd =0;

for ( i =0; i<vlen ; i++)

{
i f (mask [ i ] ) s rd++

}

Assume it zero extends the scalar value to 64 bits, that way we need not specify a datatype.
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A.7.8 vector length

set vector length

mnemonic opcode

svl 0x24

type required src dst nybles symbol comment

scalar y y n 1 vra source value

vl y n y 0 vlen implicit destination

v len = sra ;
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get vector length

mnemonic opcode

gvl 0x25

type required src dst nybles symbol comment

vl y y n 0 vlen implicit source

scalar y n y 1 srd destination scalar

srd = vlen ;
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set maximum vector length

mnemonic opcode

smvl 0x26

type required src dst nybles symbol comment

vl y n y 0 vlen implicit destination

v len = MAXVL;
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A.7.9 memory fences

These instructions are relevant to out of order execution and have no semantic meaning by

themselves.

fence: scalar store to vector memory operation

mnemonic opcode

fssvm 0x28

Commits all prior scalar stores before any subsequent vector memory operation can issue.

fence: vector store to scalar memory operation

mnemonic opcode

fvssm 0x29

Commits all prior vector stores before any subsequent scalar memory operation can issue.

fence: vector store to vector memory operation

mnemonic opcode

fvsvm 0x2A

Commits all prior vector stores before any subsequent vector memory operation can issue.
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