

Department of Electronic and Computer Engineering

FINAL DEGREE PROJECT

June 2011

IMAGE STITCHING

 Studies: Telecommunications Engineering

 Author: Oscar Soler Cubero

 Supervisors: Dr. Sean McGrath, Dr. Colin Flanagan

Image Stitching 1

CONTENTS

Abstract .. 3

Resum .. 4

Resumen .. 5

1. Introduction .. 6

1.1. General Introduction .. 6

1.2. Image .. 7

1.2.1. Still Image ... 7

1.2.2. Moving Image ... 10

2. Image Processing .. 11

2.1. Points Operators ... 11

2.2. Neighbourhood Operators ... 13

2.2.1. Linear Filtering .. 13

2.2.2. Non-linear Filtering.. 14

2.3. Image Pyramids and Wavelets .. 14

2.3.1. Pyramids ... 15

2.3.2. Wavelets ... 15

2.4. Geometric Transformations ... 16

3. Stitching Process ... 18

3.1. History ... 18

3.2. Image Registration .. 19

3.2.1. Direct (Pixel-Based) Registration .. 19

3.2.2. Feature-Based Registration .. 21

3.3. Image Calibration .. 28

3.3.1. Bundle Adjustment .. 28

3.3.2. Parallax Removal .. 29

3.4. Image Blending ... 30

3.4.1. Compositing Surface ... 30

3.4.2. Pixel/Seam Selection and Weighting .. 31

3.4.2. Blending .. 32

4. Stitching Issues ... 35

4.1. Algorithms ... 35

4.1.1. Scale Invariant Feature Transform .. 35

4.1.2. Random Sample Consensus .. 38

4.1.3. Kd-Tree Nearest Neighbour Search .. 39

Image Stitching 2

4.2. Common Problems .. 40

4.2.1. Exposure .. 40

4.2.2. Lens Distortion .. 41

4.2.3. Parallax Error .. 42

4.2.4. Ghosting ... 42

4.2.5. Overlapping .. 43

4.2.6. HFOV and Image Resolution .. 44

4.3. Software .. 45

4.3.1. Panorama Tools ... 45

4.3.2. Hugin .. 46

4.3.3. PTGui ... 46

4.3.4. AutoStitch and AutopanoPro ... 47

4.3.5. Microsoft Image Composite Editor .. 48

4.3.6. CleVR ... 48

5. Stitching Application ... 49

5.1. Smart Tour UL project ... 49

5.2. Panorama Stitching Formats ... 50

5.3. Script ... 53

5.3.1. Package and Libraries .. 53

5.3.2. Panorama_Script.sh ... 54

5.4. Results .. 59

5.4.1. Original Image Re-Stitched .. 59

5.4.2. Camera Phone .. 60

5.4.2. University of Limerick .. 61

6. Conclusions ... 63

6.1. Future Work Development ... 63

7. References ... 65

Appendix A. Panorama_Script.sh ... 66

Appendix B. Manual Pages ... 67

Appendix C. Project Files Examples .. 86

C.1. Project File for autooptimiser .. 86

C.1. Project File for nona .. 91

Image Stitching 3

ABSTRACT

 Image processing is any form of signal processing for which the input is an image,

such as a photograph or video frame; the output of image processing may be either an

image or, a set of characteristics or parameters related to the image. Most image processing

techniques involve treating the image as a two-dimensional signal and applying standard

signal processing techniques to it. Specifically, image stitching presents different stages to

render two or more overlapping images into a seamless stitched image, from the detection of

features to blending in a final image. In this process, Scale Invariant Feature Transform

(SIFT) algorithm can be applied to perform the detection and matching control points step,

due to its good properties.

 The process of create an automatic and effective whole stitching process leads to

analyze different methods of the stitching stages. Several commercial and online software

tools are available to perform the stitching process, offering diverse options in different

situations. This analysis involves the creation of a script to deal with images and project data

files. Once the whole script is generated, the stitching process is able to achieve an

automatic execution allowing good quality results in the final composite image.

Image Stitching 4

RESUM

 Processament d'imatge és qualsevol tipus de processat de senyal en aquell que

l'entrada és una imatge, com una fotografia o fotograma de vídeo, i la sortida pot ser una

imatge o conjunt de característiques i paràmetres relacionats amb la imatge. Moltes de les

tècniques de processat d'imatge impliquen un tractament de la imatge com a senyal en dues

dimensions, i per això s'apliquen tècniques estàndard de processament de senyal.

Concretament, la costura o unió d'imatges presenta diferents etapes per unir dues o més

imatges superposades en una imatge perfecta sense costures, des de la detecció de punts

clau en les imatges fins a la seva barreja en la imatge final. En aquest procés, l'algoritme

Scale Invariant Feature Transform (SIFT) pot ser aplicat per desenvolupar la fase de

detecció i selecció de correspondències entre imatges a causa de les seves bones qualitats.

 El desenvolupament de la creació d'un complet procés de costura automàtic i efectiu,

passa per analitzar diferents mètodes de les etapes del cosit de les imatges. Diversos

programari comercials i gratuïts són capaços de dur a terme el procés de costura, oferint

diferents alternatives en diverses situacions. Aquesta anàlisi implica la creació d'una

seqüència de commandes que treballa amb les imatges i amb arxius de dades del projecte

generat. Un cop aquesta seqüència és creada, el procés de cosit d'imatges és capaç

d'aconseguir una execució automàtica permetent uns resultats de qualitat en la imatge final.

Image Stitching 5

 RESUMEN

 Procesado de imagen es cualquier tipo de procesado de señal en aquel que la

entrada es una imagen, como una fotografía o fotograma de video; la salida puede ser una

imagen o conjunto de características y parámetros relacionados con la imagen. Muchas de

las técnicas de procesado de imagen implican un tratamiento de la imagen como señal en

dos dimensiones, y para ello se aplican técnicas estándar de procesado de señal.

Concretamente, la costura o unión de imágenes presenta diferentes etapas para unir dos o

más imágenes superpuestas en una imagen perfecta sin costuras, desde la detección de

puntos clave en las imágenes hasta su mezcla en la imagen final. En este proceso, el

algoritmo Scale Invariant Feature Transform (SIFT) puede ser aplicado para desarrollar la

fase de detección y selección de correspondencias entre imágenes debido a sus buenas

cualidades.

 El desarrollo de la creación de un completo proceso de costura automático y efectivo,

pasa por analizar diferentes métodos de las etapas del cosido de las imágenes. Varios

software comerciales y gratuitos son capaces de llevar a cabo el proceso de costura,

ofreciendo diferentes alternativas en distintas situaciones. Este análisis implica la creación

de una secuencia de comandos que trabaja con las imágenes y con archivos de datos del

proyecto generado. Una vez esta secuencia es creada, el proceso de cosido de imágenes

es capaz de lograr una ejecución automática permitiendo unos resultados de calidad en la

imagen final.

Image Stitching 6

1. INTRODUCTION

1.1. General Introduction

 Signal processing is an area of electrical engineering and applied mathematics that

operates and analyzes signals, in either discrete or continuous time, performing useful

operations on those signals. Some of the most common signals can include sound, images,

time-varying measurement values, sensor data, control system signals,

telecommunication transmission signals and many others. These signals are analog or digital

electrical representations of time-varying or spatial-varying physical magnitude.

 It can differentiate between three types of signal processing, depending on which kind

of signal is used: analog signal processing for not digitized signals, as radio, telephone,

radar, and television systems; discrete time signal processing for sampled signals that are

defined only at discrete points in time; and digital signal processing as the processing of

digitised discrete time sampled signals, done by computers or specialized digital signal

processors.

 Digital signal processing usually aims to measure, filter and/or compress continuous

real analog signals. Its first step is to convert the signal from an analog to a digital

form, sampling it using an analog-to-digital converter, which converts the analog signal into a

stream of numbers. However, the output signal is often another analog signal, which requires

a digital-to-analog converter. Digital signal processing allows many advantages over analog

processing in many applications, such as error detection and correction in transmission as

well as data compression. It includes subfields like: audio and speech signal processing,

sonar and radar signal processing, spectral estimation, statistical signal processing, digital

image processing, signal processing for communications, and many others.

 Concretely in this memory, the subcategory of signal processing analyzed is image

processing, also usually refers to digital image processing. Image processing is a type

of signal processing where the input is an image, such as a photograph or video frame; and

the output of image processing can be an image or a set of parameters related to the image.

Most image processing techniques involve treating images as a two dimensional signals and

applying standard signal processing techniques. Specifically, digital image processing uses a

wide range of computer algorithms to perform image processing on digital images, avoiding

problems such as the increase of noise and signal distortion during the process. Medical and

microscope image processing, face and feature detection, computer vision and image

stitching are some of the different applications in the field of image processing.

Image Stitching 7

1.2. Image

 Before starting to describe the image processing and the image stitching process, it is

required to understand the basic objects that it is going to work with: images. It can

discriminate between still image (digital image) and moving image (digital video). In this

section, first the characteristics and different formats of digital image are explained. After

that, considering video stitching as the next step of image stitching, a brief introduction to the

digital video is presented.

1.2.1. Still Image

 In the field of engineering and computer science, it requires a kind of still image that

can be manipulated by computers. For this reason it is used a numeric representation of a

two-dimensional static image, known as digital image.

 Firstly, to obtain a digital image from an analog image, the digitalization process is

performed in some devices such as scanners or digital cameras. After that, the digital image

is prepared to be processed. There are different digital image formats to work: bitmap or

raster format and vector. Often, it can combine both formats in one image.

Figure 1.1. Raster/Bitmap vs. Vector Image

Raster Image

 Raster graphic image or bitmap is composed by a serial of points, called pixels, that

contains colour information. Bitmap images depend on the resolution, containing a fixed

number of pixels. Each pixel has a concrete location and colour value information, what

convert the pixel to the basic information unit of the image. The pixels are distributed creating

a grid of cells, where each cell is a pixel, and all together build the whole image. When the

Image Stitching 8

grid is modified, it affects the distribution, number and colour information of every pixel, and

therefore, the final image.

 The image resolution is the number of pixels shown per longitude unit printed in an

image, normally in pixel per inch. The quality of a bitmap image is determined in the moment

of its creation, so it cannot amplify its resolution without modifying the image, normally

deforming it and losing definition. This resolution is proportionally related to the file size;

more pixels imply more bits.

 From the previous paragraph, it is easy to see that the size is an important factor to

consider in the image. The solution to manage resolution and size of images is the different

compression techniques, which try to reduce the file volume with algorithms. The different

raster formats achieve to reduce the image weight without modify the number of pixels.

There are two types of compression: lossy and lossless techniques. The first one

compresses keeping image details and colour information, while the second deletes both.

 Some common bitmaps formats are:

 GIF – Graphical Interchange Format: works with two methods to compress, CLUT

(Colour Look-Up Table) and LZW (explained below). It is one of the most used, especially in

web images, because it offers more possibilities and higher level compression than others.

Suitable for 256 colours compression.

 RLE – Run Length Encoding: Lossless compression technique that registers a single

colour value for a group of pixels with the same colour. This technique is exploited in bitmaps

images with a large amount of equal colours, saving a lot of weight and keeping the quality.

 LZW – Lempel-Ziv-Welch: Similar operation to RLE.

 JPEG – Join Photographic Expert Group: is one of the most adequate formats for

images with more than 256 colours, appropriate for colour photos and web images

compression. Although the compression can become high, the visible losses are not very

significant. JPEG saves all the colour information in millions of colours without creating a

large file. Discrete Cosine Transform (DCT) is the compression technique used by JPEG. It

is based in divide the information in two parts, on the one hand the colour data, and on the

other hand the brightness data, compressing separately too. For this reason, JPEG is not

suitable for images with high contrasts of colours or for text with image. Because it is a lossy

compression format, it is recommended to do the JPEG conversion in the last steps, after

have done all the required modifications of the image.

Image Stitching 9

 PNG – Portable Network Graphics: has become important over the last times. It

allows lossless compression, merging perfectly any image edge with the background. It is not

able to play animated images such as GIF, and the images have more weight than in JPEG.

 BMP – BitMaP: is the Windows format, very popular but its compression is poor

compared with other formats such as JPEG.

 PSD – PhotoShop Document: Is the format for the Adobe program, widely used

because it is one of the most powerful photography programs graphically.

 TIFF – Tag Image File Format: is admitted in almost all the edition and image

applications. It allows many possibilities for both Mac and PC.

Vector Image

 Vector images or vector graphics oriented to objects are made by vectors, objects

mathematically created. The most important vector elements are Béizer curves,

mathematically represented. Each vector is defined by a serial of points that have some

handles to control the line shape created between them. The curve is totally defined by

nodes or anchor points, and the handles. Moving the handles it can obtain the wanted curve.

Figure 1.2. Different Béizer Curves.

 These lines or curves of Béizer are quite manageable because give a lot of

possibilities due to their plasticity. These characteristics convert the vector images to the

ideal way to work in the field of graphic design, for example in the creation of drawings or

logos. The versatility of the curves makes them useful to work with text, modifying and

deforming letters without limit.

 Using mathematical coordinates to create images, vectorial formats allow an infinite

image resolution. If an image is enlarged or reduced, its visibility will not change, nor on the

Image Stitching 10

screen or printed. The image conserves its forms and colours. This is the main inconvenient

found in the bitmaps images.

 Some of the most popular and used vector graphics formats are:

 CDR – Corel DRaw: Format generated by the program with the same name.

 AI – Adobe Illustrator: Characteristics similar to Corel DRaw.

 EPS – Encapsulated PostScript: Very adaptable format. It is one of the best formats

to be imported from most of design software.

 WMF – Windows MetaFile: Format developed by Microsoft, and especially suited to

work with Microsoft programs.

1.2.2. Moving Image

 A moving image is typically a movie (film), or video, including digital video.

Specifically, digital video is composed for a series of orthogonal bitmap digital images

displayed in rapid succession at a constant rate. In the context of video these images are

called frames, and typically is measured the rate at which these frames are displayed

in frames per second (FPS).

 There are two different formats to get the images, interlaced and progressive scan.

The interlaced scan gets the image in groups of alternate lines, first the odd lines, and after

the even lines, repeating progressively. In the other case, a progressive scan gets every

image individually, with all scan lines being captured at the same moment in time. Thus,

interlaced video captures samples the scene motion two times faster as often as progressive

video does, for the same number of frames per second.

 The digital video can be copied without losing quality, and many compression and

encoding formats are used, such as WindowsMedia, MPEG2, MPEG4 or AVC. Probably,

MPEG4 and Windows Media are widely the most used in internet, while MPEG2 is almost

exclusive for DVD, giving a good quality image with minimum size.

Image Stitching 11

2. IMAGE PROCESSING

 Now that it has seen how image are formed, it is time to take a look at the stage of

image processing, to pre-process the image and convert it into a form suitable for further

analysis. This chapter reviews standard image processing operators and transforms that

map pixel values from one image to another.

2.1. Point Operators

 The point operators or processes are the simplest kind of image processing

transforms, where each output pixel’s value depends on only the corresponding input pixel

value. This can be denoted as

 ���� = ℎ�����	, (2.1)

a function that takes one or more input images f(x) and produces an output image g(x). For

sampled images, the domain consists of a finite number of pixels locations, replacing the

value � = ��, �� in the equation.

 Two commonly used point operators are multiplication and addition with a constant

 ���� = �������� + ����, (2.2)
where a and b are said to control contrast and brightness, respectively.

 Multiplicative gain is a linear operation related to the superposition principle.

 ℎ��0 + �1� = ℎ��0� + ℎ��1�. (2.3)

 Another commonly used two-input operator is the linear blend operator,

 ���� = �1 ± ���0��� + ��1���, (2.4)
used to perform a temporal cross-dissolve between two images or videos.

 One highly used non-linear transform applied before further processing is gamma

correction, which is used to remove the non-linear mapping.

 ���� = [����]�/� . (2.5)

Image Stitching 12

 Moreover, there are the colour transforms, that adding the same value to each colour

channel not only increases the apparent intensity of each pixel, it can also affect the pixel’s

hue and saturation. This colour balancing can be performed either by multiplying each

channel with a different scale factor or by more complex processes.

 The automatic way to determine the best values of the brightness and gain controls

described before is plotting a histogram of the individual colour channels and luminance

values. From this distribution, we can compute relevant statistics such as the minimum,

maximum and average intensity values. One common solution is to perform histogram

equalization, to find an intensity mapping function such that the resulting histogram is flat.

 The trick to finding such a mapping is the same than to generate random samples

from a probability density function, which is to first compute the cumulative distribution

function. Integrating the distribution h(I) to obtain the cumulative distribution (or percentile)

c(I),

 ���� = �
� ∑ ℎ��� = ��� − 1� + �

� ℎ���, !"# (2.6)

it can determine the final value that pixel should take (N is the number of pixels in the image).

When working with eight-bit pixel values, the I and c axes are rescaled from [0; 255].

(a) (b) (c)

 (d) (e)

Figure 2.1. Histogram analysis and equalization: (a) original image; (b) colour channel and intensity

histograms; (c) cumulative distribution functions; (d) equalization functions; (e) full histogram

equalization.

Image Stitching 13

 While global histogram equalization can be useful, for some images it might be

preferable different equalizations in different regions. One technique is to recompute the

histogram for every MxM non-overlapped block centred at pixels, and then interpolate the

transfer functions as it moves between blocks. This method is known as local adaptative

histogram equalization, and is used in a variety of other applications, including the

construction of SIFT (Scale Invariant Fourier Transform) feature descriptors.

2.2. Neighbourhood Operators

 Locally adaptative histogram equalization is an example of neighbourhood or local

operator, which uses a collection of pixel values in the surrounding area of a given pixel to

determine its final output value. In addition, neighbourhood operators can be used to filter

images in order to add soft blur, sharpen details, accentuate edges, or remove noise. There

are linear filtering operators that involve weighted combinations of pixels in small

neighbourhoods, and non-linear filtering operators such as median or bilateral filters and

distance transforms.

2.2.1. Linear Filtering

 The most commonly used type of neighbourhood operator is linear filter, in which an

output pixel’s value is determined as a weighted sum of input pixel values,

 ���, �� = ∑ ��� + $, � + %�ℎ�$, %�.&,' (2.7)

The entries in the mask h(k,l) or kernel, are often called the filter coefficients. Another

common variant and compactly notated formula is the convolution operator,

 � = � ∗ ℎ , (2.8)

and h is called the impulse response function. Both are linear shift invariant (LSI) operators,

which obey both the superposition principle,

 ℎ) ��# + ��� = ℎ) �# + ℎ) �� (2.9)

and the shift invariance principle,

 ���, �� = ��� + $, � + %� ↔ �ℎ) ����, �� = �ℎ) ���� + $, � + %�. (2.10)

Image Stitching 14

 The simplest filter to implement is the moving average or box filter, which simply

averages the pixel values in a KxK window. It is used as a pre-processing stage to edge

extraction and interest point detection algorithms.

2.2.2. Non-linear filtering

 Linear filters can perform a wide variety of image transformations; however, non-

linear filters can sometimes perform even better. One of these filters, the median filter,

selects the median value form each pixel’s neighbourhood, and is able to filter away such

bad pixels. Other case is the bilateral filter, which simply rejects the pixels whose values

differ too much from the central pixel, and the output pixel value depends on a weighted

combination of neighbouring pixel values.

 Other examples of neighbourhood operators include semi-global operator that

computes distance transforms. The distance transform is useful in quickly precomputing the

distance to a curve or set of points using a two-pass raster algorithm, and is defined as

 +��, �� = min&,':0�&,'�"# 1�� − $, � − %�, (2.11)

where d is the distance metric between pixel offsets, and can be Manhattan distance or

Euclidean distance. It has many applications, including binary image alignment, feathering in

image stitching and blending, and nearest point alignment.

 Finally, another practical semi-global image operation is finding connected

components, defined as regions of adjacent pixels that have the same value or label.

Connected components are used in a variety of applications, such as finding letters in

scanned documents or finding objects in images.

2.3. Image Pyramids and Wavelets

 Neighbourhood operators can be cascaded to form image pyramids and wavelets, for

analyzing images at a variety of resolutions and for accelerating certain operations. There

are two possibilities for changing image resolution: interpolation and decimation.

 In order to interpolate (or up sample) and image to a higher resolution, it is necessary

to select some interpolation mask with which to convolve the image. On the other hand, there

is decimation (or down sample), which is required to reduce the resolutions, where first the

image convolves with a low-pass filter (to avoid aliasing) and then keep every sample.

Image Stitching 15

2.3.1. Pyramids

 With both techniques mentioned before, it can build a complete image pyramid, which

can be used to accelerate coarse-to-fine search algorithms, to look for objects at different

scales, and to perform multi-resolution blending operations. The best known and most widely

used is Laplacian pyramid. To construct it, first the original image is blurred and subsampled

by a factor two and stored in the next level of the pyramid. To compute it, first it interpolates a

lower resolution image to obtain a reconstructed low-pass version from the original to yield

the band-pass “Laplacian” image, stored away for further processing. The resulting pyramid

has perfect reconstruction, sufficient to exactly reconstruct the original image.

 One of the most engaging applications of the Laplacian pyramid is the creation of

blended composite image. The approach is that low-frequency colour variations between the

images are smoothly blended, while the higher-frequency textures on each one are blended

more quickly to avoid ghosting effects when two textures are overlaid. This is particularly

useful in image stitching and compositing applications, where the exposures may vary

between different images.

(a) (b)

Figure 2.2. Laplacian pyramid in image blending: (a) regular splice of original images (b) pyramid

blend.

2.3.2. Wavelets

 An alternative to pyramids is the use of wavelet decompositions. Wavelets are filters

that localize a signal in both space and frequency and are defined over a hierarchy of scales.

Wavelets provide a smooth way to decompose a signal into frequency components without

blocking and are closely related to pyramids.

Image Stitching 16

(a) (b)

Figure 2.3. Multiresolution pyramids: (a) pyramid with half-octave sampling; (b) wavelet pyramid,

where each wavelet level stores 3/4 of the original pixels, so that the total number of wavelet

coefficients and original pixels is the same.

 The main difference between pyramids and wavelets is that traditional pyramids are

over complete, using more pixels than the original image to represent the decomposition,

whereas wavelets keep the size of the decomposition the same as the image, providing a

tight frame.

2.4. Geometric Transformations

 After seeing how to change the resolution of an image in general, geometric

transformations are introduced as another important class of global operators. These perform

more general transformations, such as image rotations or general warps. In contrast to the

point operators or processes, the functions transform the domain, ��2′� = ��4�2�	, and not

the range of the image. Between different geometric transformations, which most concerns to

image stitching is the parametric 2D transformation, where the behaviour of the

transformation is controlled by a small number of parameters.

Figure 2.4. Basic 2D geometric image transformations.

Image Stitching 17

 The examples of transformations shown in Figure 2.4. are based on the formulas

reproduced in the next table, where I is the inverse matrix, 5 = 6�)78 −79:879:8 �)78 ;, s an arbitrary

scale factor, and <= and A arbitraries 3x3 and 3x2 matrix respectively.

Transformation Matrix Preserves Icon

translation [> | @]ABC orientation

rigid (rotation+translation) [D | @]ABC lengths

similarity (scaled rotation) [7D | @]ABC angles

affine [E]ABC parallelism

projective F G=HCBC straight lines

Table 2.1. Hierarchy of 2D coordinate transformations. Each transformation also preserves the

properties listed.

 The process to compute the values in the new image ��2′� is called inverse warping.

Each pixel in the destination image ��2′� is sampled from the original image ��2�. The

procedure for creating the new image is the following: for every pixel 2′ in ��2′�, firstly the

source location 2 = 4I�2J� is computed, and after the ��2� at location 2 is resampled and

copied to ��2′�. This explanation is illustrated in the next figure,

(a) (b)

Figure 2.5. Inverse warping algorithm: (a) a pixel sampled from its corresponding location; (b) detail

of the source and destination pixel locations.

where 4I�2J� is often simply computed as the inverse of ℎ�2�. Since 4I�2J� is defined for all

pixels in ��2′�, there are not holes in the result image.

Image Stitching 18

3. STITCHING PROCESS

 Algorithms for aligning images and stitching them into seamless photo-mosaics are

among the oldest and most widely used in computer vision. Image stitching is the process of

combining multiple images with overlapping fields of view to produce high-resolution photo-

mosaics used for today’s digital maps and satellite photos. Image stitching algorithms can

create wide-angle panoramas, and they also come bundled with most digital cameras.

 Since the pictures are taken until the creation of the stitched image, there are

different processes to follow, starting with the detection of points or features of the single

images, and ending with image merging. The image stitching processes can be classified in

three main modules: registration, optimization and blending.

 In this chapter, first a short history of image stitching is given as a context situation,

continuing with the different stage of the stitching process, describing and covering in detail

each stage.

3.1. History

 Image stitching originated in the photographic community, where more manually

intensive methods based on surveyed ground control points or manually registered tie points

have long been used to register aerial photos into large-scale photo-mosaics. One of the key

advances in this community was the development of bundle adjustment algorithms, which

could simultaneously solve for the locations of all of the camera positions, thus yielding

globally consistent solutions. Another recurring problem in creating photo-mosaics is the

elimination of visible seams, for which a variety of techniques have been developed over the

years.

 In film photography, special cameras were developed in the 1990s to take ultra-wide

angle panoramas, often by exposing the film through a vertical slit as the camera rotated on

its axis. In the middle of 1990s, image alignment techniques started being applied to the

construction of wide-angle seamless panoramas from regular hand-held cameras. More

recent work in this area has addressed the need to compute globally consistent alignments

to remove ghosting due to parallax error and object movement, and to deal with varying

exposures. These techniques have spawned a large number of commercial stitching

products.

Image Stitching 19

3.2. Image Registration

 Image registration involves the detection and matching pixels or features in a set of

images. After that, it estimates the correct alignments relating various pairs o group of

images. Before it can register and align images, it needs to establish the relationships of the

pixel coordinates from one image to another, which is done with the parametric motion

models shown in the previous chapter. Depending on the technique used in registration and

alignment, it can consider two different methods: pixel-based method and feature-based

method. Because of the development of the stitching script in chapter five, it is given more

importance to the feature-based registration method, and it is explained in more detail.

3.2.1. Direct (Pixel-Based) Registration

 This approach consists in to warp the images relative to each other and to look at

how much the pixels agree, using pixel to pixel matching. It is often called direct method. To

use this method, first a suitable error metric must be chosen to compare the images. After

that, a suitable search technique must be devised, where the simplest technique is to do a

full search. Alternatively, hierarchical and Fourier transforms can be used to accelerate the

process.

 The simplest way to establish an alignment between two images is to warp one

image to the other. Given a template image �#�2� sampled at discrete pixel locations

2! = ��!, K!�, the goal is to find where is located in image ���2�. A least-squares solution is to

find the minimum of the sum of squared differences (SSD) function

 LMMN�O� = ∑ [���2! + O� − �#�2!�]A! , (3.1)

where O = �P, Q� is the displacement.

 The above error metric can be made more robust to outliers by replacing the squared

error terms with a robust function R� �,

 LMSN�O� = ∑ R����2! + O� − �#�2!��! , (3.2)

that grows less quickly than the quadratic function associated with least squares. One robust

R� � possibility can be a smoothly varying function that is quadratic for small values but grows

more slowly away from the origin. It is called Geman-McClure function,

 RTU��� = BV
�WBV XVY , (3.3)

Image Stitching 20

where is � constant outlier threshold.

 When stitching a mosaic, unwanted foreground objects have to be erased, because

some of the pixels being compared may lie outside the original image boundaries. Then, the

error metric become the weighted SSD function,

 LZMMN�O� = ∑ [#�2�[��2! + O�[���2! + O� − �#�2!�]A! , (3.4)

and the weighting functions [# and [� are zero outside the valid range of the images.

 Often, the two images to stitch were not taken with the same exposure. The bias and

gain model is a simple model of linear intensity variation between the two images,

���2 + O� = �1 + ���#�2� + \ ⇒ L^T�O� = ∑ [���2! + O� − �1 + ���#�2!� − \]A! , (3.5)

with \ and � as the bias and gain respectively. An alternative to taking intensity differences is

to perform cross-correlation to maximize the product of the two images,

 L__�O� = ∑ �#�2!����2! + O�! . (3.6)

 To accelerate these search processes, hierarchical motion estimation is often used,

where an image pyramid (discussed in the previous chapter) is first constructed, and a

search over a smaller number of discrete pixels is first performed at coarser levels. The

model estimates from one level of the pyramid, and initializes a smaller local search at the

next finer level.

 This estimation is not sufficient if the search range corresponds to a significant

fraction of the larger image, and a Fourier-based approach may be preferable. Fourier-based

alignment relies on the fact that Fourier transform of a warped signal has the same

magnitude as the original, but linearly varying phase,

 ℱa���2 + O�b = ℱa��b9cAdeO·g = ℐ��g�9cAdeO·g. (3.7)

Consequently, to efficiently evaluate the previous models over the range of all possible

values of O, the Fourier transforms of both images are taken, and operate with both

transforms, and the inverse transform is taken of the result. The Fast Fourier Transform

algorithm can be significantly faster than a full search when the full range of image overlaps

is considered.

Image Stitching 21

 Finally, to get sub-pixel precision in the alignment, incremental refinement methods

based on Taylor series and parametric motion models should be used, but it is not interesting

for the goals of this report to go inside the extended approximation computation.

3.2.2. Feature-Based Registration

 The other possible approach to image registration is first to extract distinctive features

from each image, to match these features establishing a global correspondence, and then to

estimate the geometric transformation between the images. This kind of approach has more

recently popularity for image stitching applications, and it will be used in the development of

the script in the next chapter.

 In this subsection, first it is explained the feature detection (extraction) stage, where

each image is searched for locations that are likely to match well in other images. At the

feature description stage, each region around detected keypoint locations is converted into a

more compact and stable (invariant) descriptor that can be matched against other

descriptors. The feature matching stage efficiently searches for likely matching candidates in

other images. Finally, the last step is estimates the motion parameters that best register the

images.

 There are two main approaches to finding feature points and their correspondences.

The first is to independently detect features in all the images under consideration and then

match features based on their local appearance. The second is to find features in one image

that can be accurately tracked using a local search technique, such as correlation or least

squares. The first approach is more suitable when a large amount of motion or appearance

change is expected, e.g., in stitching together panoramas, while the second is more suitable

when images are taken from nearby viewpoints or in rapid succession. Here it is explained

the first approach, due to the relevance of the panoramas creation.

Feature Detectors

 The first kind of feature that you may notice are specific locations in the images, such

as mountain peaks, building corners, doorways, or interestingly shaped patches of snow.

These kinds of localized feature are often called keypoint features or control points and are

often described by the appearance of patches of pixels surrounding the point location.

Image Stitching 22

Figure 3.1. Image pairs with three extracted patches below. Some patches can be localized with

higher accuracy than others.

 Normally, texture-less patches are nearly impossible to localize, while patches with

large contrast changes (or gradients) are easier to localize, although it is only possible to

align patches along the direction normal to the edge direction. Patches with gradients in at

least two different orientations are the easiest to localize.

 These can be formalized by comparing two images patches, in a weighted summed

square difference,

 LZMMN�O� = ∑ [�2!�[���2! + O� − �#�2!�]A! , (3.8)

where �# and �� are the images being compared, O the displacement vector, [�2� is a

spatially varying weighting function, and the summation � is over all the pixels in the patch.

Moreover, if it is wanted how stable this metric is with respect to small variations in position

∆O, it is needed to compare an image patch against itself, known as an auto-correlation

function,

 Lj_�∆O� = ∑ [�2!�[���2! + ∆O� − �#�2!�]A! = ∆OkE∆O , (3.9)

approximating with a Taylor series expansion of the image function, where E is the auto-

correlation matrix, and is written as E = [∗ l �BA �B�m
�B�m �mA n.

 Sometimes, feature detectors can lead to an uneven distribution of control points

across the image. One solution is to use adaptative non-maximal suppression (ANMS),

which only detects features whose response value is significantly greater than that of all of its

neighbours within a certain radius.

Image Stitching 23

 In many situations, detecting features at the finest stable scale possible may not be

appropriate. The way to do it is extracting features at a variety of scales, for example by

performing the same operations at multiple resolutions in a pyramid and then matching

features at the same level. In addition, it is required to work with in-plane image rotation,

estimating a dominant orientation at each detected control point. Once its local orientation

and scale have been estimated, a scaled and oriented patch around the detected keypoint

can be extracted and used to form a feature descriptor. This approach is suitable when the

images being matched do not suffer large scale changes and is called multi-scale oriented

patches (MOPS).

Figure 3.2. Multi-scaled oriented patches (MOPS) extracted at three pyramid level. The boxes show

feature orientation at different scales.

Feature Descriptors

 After detecting control points, in most cases, the local appearance of features

changes in orientation and scale, sometimes even undergoes affine deformations, and

usually varies from image to image. A feature descriptor is created by first computing the

gradient magnitude (or patches with large contrast changes) and orientation at each image

sample point in a region around the control point location. These keypoints descriptors are

created to make the features points detected more invariant to such changes, still

discriminating between different patches. There are a few descriptors which can be used to

improve the keypoints found.

Image Stitching 24

 Image Gradients Feature Descriptors

Figure 3.3. Representation the computation of a feature descriptor

 A simple normalized intensity patches perform reasonably well and are easy to

implement. The multi-scaled oriented patches (MOPS) are sampled, using a coarser level of

the image pyramid to avoid aliasing. To compensate for affine photometric variations, patch

intensities are re-scaled by normalization.

 Scale invariant feature transform (SIFT) features are formed by computing the

gradient at each pixel in a 16x16 window around the detected control point, using the

appropriate level of the pyramid at which the keypoint was detected. This is done in order to

reduce the influence of gradients far from the centre, as these are more affected by small

misregistrations. This algorithm is widely explained in the chapter four of this report.

 Another ways to compute descriptor are inspired by SIFT, for example Using principal

component analysis (PCA-SIFT), or using box filters to approximate the derivatives and

integrals used in SIFT, called SURF (Speeded up robust features). Another popular variant

on SIFT is Gradient location-orientation histogram (GLOH), that usually has the best

performance overall.

Feature Matching

 Once the features and their descriptors have been extracted from two or more

images, the next step is to establish some preliminary feature matches between these

images. The first is to select a matching strategy that determines which correspondences are

passed on to the next stage for further processing. The second is to devise data structures

and algorithms to perform this matching as quickly as possible. This process depends on the

context in which the matching is being performed. For image stitching, two images are given

Image Stitching 25

with a good quality overlap and most of the features in one image are likely to match the

other image, although some may not match because they are occluded or their appearance

has changed too much.

 To begin with, the features descriptors have been designed so that Euclidean

distances in features space can be directly used for ranking potential matches. With this

distance metric, the simplest matching strategy is to set a threshold (maximum distance) and

to return all matches from other images within this threshold. Setting the threshold too high

results in too many false positives, i.e., incorrect matches being returned. But setting the

threshold too low results in too many false negatives, i.e., many correct matches being

missed. In the next figure, this behaviour is shown:

Figure 3.4. Black digits 1 and 2 are features being matched against a database of features in other

images. The solid circles are the current threshold settings. Green 1 is a true positive (good match),

the blue 1 is a false negative (failure to match), and the red 3 a false positive (incorrect match). If the

threshold is set higher (discontinuous circles), blue 1 becomes true positive but brown 4 becomes an

additional false positive.

 It can quantify the performance of matching algorithms at a particular threshold by

counting the number of true and false matches and failures, using the following definitions:

 - TP (True Positives): number of correct matches.

 - FN (False Negatives): matches detected incorrectly.

 - FP (False Positives): proposed incorrect matches.

 - TN (True Negatives): non-matches rejected correctly.

 It can convert these numbers into unit rates by defining the following quantities:

 - TPR (True Positive Rate), op5 = qr
qrWs� = qr

r ; (3.10)

 - FPR (False Positive Rate), tp5 = sr
srWq� = sr

� ; (3.11)

with P as the number of positives.

Image Stitching 26

 Any particular matching strategy can be rated by TPR and FPR numbers; as the

matching threshold is varying, a family of such points are obtained, which are collectively

known as the receiver operating characteristic (ROC curve). ROC curve plots the true

positive rate against the false positive rate for a particular combination of feature extraction

and matching algorithms. The closer this curve lies to the upper corner (or the larger area

under the curve (AUC)), the better its performance.

Figure 3.5. ROC curve and its related rates. Ideally, TPR should be close to 1, while FPR is close to 0.

 Once the matching strategy is decided, it is still needed to search efficiently for

potential candidates. The simplest way to find all corresponding feature points is to compare

all features against all others in each pairs of potentially matching images. Unfortunately, this

is impractical for most applications. A better approach is indexing structures as multi-

dimensional search trees.

 The best known of these are kd-trees, which divide the multi-dimensional feature

space along alternating axis-aligned planes, choosing the threshold along each axis. The kd-

tree recursively splits this plane along axis-aligned cutting planes. Each split can be denoted

using the dimension number and split value. The best bin first (BBF) search searches bins in

order of their spatial proximity to the query point and is therefore usually more efficient.

During a BBF search, the query point first looks in its containing bin and then in its nearest

adjacent bin, rather than its closest neighbour in the tree.

Feature-Based Alignment

 After the feature matching stage across different images, the next step in image

registration is to verify whether the set of these matching features is geometrical consistent.

Image Stitching 27

Feature-based alignment is the problem of estimating the motion between two or more sets

of matched points, by global parametric transformations, explained in the image processing

chapter.

 Given a set of matched feature points a�2!, 2′!�b and a planar parametric

transformation 2J = ��2; v�, it can produce a estimation of the motion parameter pppp using least

squares

 LxX!yz!{|c}M = ∑ ‖��‖A! = ∑ ‖��2�; v� − 2′�‖A! , (3.12)

where �� is the residual between the measured location 2�′� and its corresponding current

predicted location 2�′� = ��2�; v�.

 The above formulation assumes that all the feature points are matched with the same

accuracy, and this is not often the case, because certain points may fall into more textured

regions than others. With the weighted least squares function

 LZ}M = ∑ �!cA‖��‖A! , (3.13)

associates a scalar variance estimated �!A with each correspondence.

 While regular least squares are the methods where noise follows a normal

distribution, more robust versions are required when there are outliers among the

correspondences. Two widely used approaches are called RANdom Sample Consensus

(RANSAC) and least median of squares (LMS). Both techniques start by selecting a subset

of $ correspondences that is used to do an initial estimation for pppp. Now the residuals are

computed as

 �! = 2�′��2�; v� − 2�′� , (3.14)

where 2�′� are the estimated locations and 2�′� are the detected feature point locations.

Image Stitching 28

3.3. Image Calibration

 In the previous section, it has examined how to register pairs of images using both

direct and feature-based methods. In most applications are given more than a single pair of

images to register. In this part of image calibration, firstly it is required a geometric

optimization of the alignment parameters, performing a global consistent set of parameters.

Once the global alignment is computed, local adjustments often are needed, to minimize

differences between images, such as parallax removal or blurring.

3.3.1. Bundle Adjustment

 The process of simultaneously adjusting pose parameters for a large collection of

overlapping images is called bundle adjustment, firstly applied to the general structure from

motion problem and then later specialized for panoramic image stitching. The formulation of

the global alignment is using a featured-based approach, because this results in a simpler

system.

 Considering the feature-based alignment given before in the equation 3.12, for multi-

image alignment there is a collection of : features, with the location of the �th feature point in

the �th image denoted by 2!e and its scalar inverse variance denoted by �!e. Each image also

has some associated pose parameters, consisting of a rotation matrix De and a focal length

�e. Then, to refine these estimates, it can directly extend the pairwise energy LxX!yz!{|c}M to a

multiview formulation,

 LX''cxX!y{cAN = ∑ ∑ �!e�!&�2�!&�2�!e; De, �e, D& , �&	 − 2�!&�Ae&! , (3.15)

with 2�!& ≈ �&D&Dec��ec�2�!e as the predicted location of feature � in frame $, 2�!e is the

observed location, �e = 1�����e, �e, 1� as a calibration matrix, and the “2D” indicates than an

image-plane error is being minimized.

 An alternative way to formulate the optimization is to use true bundle adjustment

 L^jcAN = ∑ ∑ �!e�2�!e�2!; De , �e	 − 2�!e�Ae! , (3.16)

where 2�!e ≈ �eDe2! , and 2! is the point positions. It is the way to solve not only the pose

estimation but also for the 3D point positions a2!b.

Image Stitching 29

 If it is wanted to minimize the error in 3D projected point directions, the previous

equation changes to

 L^jcCN = ∑ ∑ �!e�2�!e�2�!e; De, �e	 − 2!�Ae! , (3.17)

and it also can derive in a pairwise energy in 3D space if the 2! points are eliminated,

 LX''cxX!y{cCN = ∑ ∑ �!e�!&�2�!e�2�!e; De, �e	 − 2�!�2�!&; D& , �&��Ae&! , (3.18)

considered as global bundle adjustment formulation to optimize the poses.

3.3.2. Parallax Removal

 Once optimized the global orientations and focal lengths, it may find that the results

look blurry or ghosted in some places. It can be caused by a variety of factors, including

radial distortion (appearance of visible curvature in the projection of straight lines), 3D

parallax (rotation failure of camera around its optical centre), and small or large scale scene

motions.

 When the motion in a scene is very large, with objects appearing and disappearing

completely, a sensible solution is to select pixels from only one image at a time as the source

for the final combination. However, when the motion is reasonably small (few pixels), general

2D motion estimation can perform an appropriate correction before blending using a local

alignment. This process is also used to compensate for radial distortion and 3D parallax.

 The local alignment technique starts with the global bundle adjustment shown in

equation 3.18, estimating the desired location of a 3D point 2! as the average of the back-

projected 3D locations, 2�! ≈ ∑ �!e e 2�!�2�!e; De, �e	. This can be projected into each image � to

obtain a target location 2�!e. The difference between target locations and original features 2!e

provide a set of local motion estimates O!e = 2�!e − 2!e which can be interpolated to form a

dense correction field Oe�2e� . Finally, the sparse −O!e values are placed at the new target

locations 2�!e, then added to original pixel coordinates when computing the corrected image.

(a) (b)

Figure 3.6. Parallax Removal. (a) Composite image with parallax; (b) image after local alignment

process.

Image Stitching 30

3.4. Image Blending

 After all the input images have been registered with respect to each other, it is time to

decide how to produce the final stitched image. In this last stage of image stitching, image

blending or compositing, involves executing the adjustments figured out in the calibration

stage, combined with remapping of the images to an output projection. It also involves

selecting which pixels contribute to the final composite and how to optimally blend these

pixels to minimize visible seams, blur and ghosting. In this section it is explained how to

choose the final composite, following by techniques for pixel/seam selection, and then the

final blending process.

3.4.1. Compositing Surface

 The first choice to be made is how to represent the final image. If only a few images

are stitched together, a normal approach is to select one of the images as the reference and

to then bend all of the other images into the reference coordinate system. The resulting

composite is usually called a flat panorama, since the projection onto the final surface is still

a perspective projection, and hence straight lines remain straight.

 However, for larger fields of view it cannot maintain a flat representation without

excessively stretching pixels near the border of the image. The usual choice for compositing

larger panoramas is to use cylindrical or spherical projection (described in chapter 5). The

choice of parameterization depends on the application, and involves a trade-off between

keeping the local appearance undistorted and providing a reasonably uniform sampling of

the environment.

 Once it has been chosen the output parameterization, it is needed to determine which

part of the scene will be centred in the final view. For a flat composite, it is normal chosen

one of the images as a reference. Often, another reasonable choice is to select the image

that is geometrically most central. For larger panoramas, it can still use the same method if a

subset of the viewing sphere has been imaged. In the case of 360 degrees panoramas, a

better option is to choose the middle image from the sequence of inputs, or sometimes the

first image, considering this contains the object or image information of greatest interest.

 After the parameterization and reference view have been selected, the mappings

between the input and output pixel coordinates need to be computed. If the final compositing

surface is flat and the input images have no radial distortion, the coordinate transformation is

the simple projective transformation (shown in Table 2.1). However, if the final composite

Image Stitching 31

surface has some other analytic form (cylindrical or spherical), every pixel in the final

panorama has to be converted into a 3D point and then map it back into each image

according to the projection equations.

3.4.2. Pixel/Seam Selection and Weighting

 When the source pixels have been mapped onto the final composite surface, it must

still decide how to blend them in order to create an interesting stitched image or panorama. If

all the images are in perfect registration, calibration and identically exposed, this is not really

difficult. However, for real images, visible seams due to exposures differences, blurring due

to mis-registration, or ghosting due to moving objects can occur. Creating a good panorama

involves both deciding which pixels to use and how to weight or blend them.

 The simplest way to create a final stitched image is to simply take an average value

at each pixel,

 ��2� = ∑ [&�2���&�2�& /∑ [&�2�& , (3.19)

where ��&�2� are the warped images and [&�2� is 1 at valid pixels and 0 elsewhere. One way

to improve it, getting better feathering is to raise the distance map values to some large

power, using [&x�2�. The weighted averages then become dominated by the larger values.

The resulting composite can often provide a reasonable trade-off between visible exposure

and differences and blur.

 In the limit � → ∞, only the pixel with the maximum weight gets selected,

 ��2� = ∑ ��'�2��2�& , (3.20)

where % = ������& [&�2� is the label assignment or pixel selection function that selects

which image to use at each pixel. This pixel selection process produces a visibility mask-

sensitive that assigns each pixel to the nearest image centre in the set. The final composite

tends to have very hard edges with noticeable seams when the exposures vary.

 One way to select optimally the seams is to place these in regions where the images

agree, so that transitions from one source to another are not visible. In this way, the method

avoids cutting through moving objects where a seam would be not natural. For a pair of

images, this technique can be a simple dynamic process starting from one edge of the

overlap region and ending at the other.

Image Stitching 32

 If multiple images are being composite, this dynamic process is not generalized. It

can observe that for well registered images, moving objects produce the most visible objects,

namely ghosts. Then, the system has to decide which objects to keep and which ones to

erase. First, all overlapping input image pairs are compared to determine regions of

difference (RODs) where the images disagree. Next, a graph is constructed with the RODs

as vertices and edges representing ROD pairs that overlap in the final composite. This

technique removes regions that are near the edge of the image, which reduces the

probability that partially visible objects will appear in the final composite. Once desired

excess regions of difference have been removed, the final composite can be created using a

feathered blend.

(a) (b)

Figure 3.7. Computation of regions of differences: (a) overlapping images whit moving object; (b)

corresponding RODs caused by movement.

3.4.3. Blending

 Once the seams have been placed and unwanted object removed, the last step to

blend the images is applied, in order to compensate for exposure differences and other

mis-alignments. To solve these difficulties, some interesting and most used blending

methods are explained below, giving different ways to merge the images into the final

composite image.

Laplacian Pyramid Blending

 This is a solution that uses a frequency adaptative width. First, each warped image is

converted into a band-pass (Laplacian) pyramid, which involves smoothing each level with a

1 16Y �1,4,6,4,1� binomial mask, sub-sampling the smoothed image by a factor of 2, and

subtracting the reconstructed image from the original. This creates a reversible, complete

representation of the image signal, with invalid and edge pixels filled with neighbouring

values to define correctly the process. Next, the mask image (with valid pixels) associated

with each source image is converted to a low-pass (Gaussian) pyramid. These blurred and

Image Stitching 33

subsampled masks are used to perform a level feathered blend. Finally, the composite image

is reconstructed by interpolating and summing all of the pyramid levels (band-pass images).

Gradient Domain Blending

 An alternative method of image blending is to perform the operations in the gradient

(large contrast changes) domain reconstruction. This can be used to do seamless object

insertion in image editing applications. Rather than copying pixels, the gradients of the new

image fragment are copied instead. The actual pixel values for the copied area are then

computed by solving an equation that locally matches the gradients while following the fixed

exact matching conditions at the seam boundary. After, it is also possible add a smooth

function to force a stability along the seam curve.

 This approach is extended to a multi-source formulation, where it no longer makes

sense to talk of a destination image whose exact pixel values must be matched at the seam.

In fact, each source image contributes its own gradient field, and the equation is solved using

boundary conditions, concretely dropping any equations that involve pixels outside the

boundary of the image.

Exposure Compensation

 Pyramid and gradient domain blending are not enough when the exposure

differences become large; hence this alternative approach is applied. Exposure

compensation estimates iteratively a local correction between each source image and a

blended composite. First, a block-based quadratic transfer function is fit between each

source image and an initial feathered composite. Next, transfer functions are averaged with

their neighbours to get a smoother mapping and per-pixel transfer functions are computed by

interpolating between neighbouring block values. Once each source image has been

smoothly adjusted, a new feathered composite is computed and the process is repeated.

High Dynamic Range Imagining

 A more principled approach is to estimate a single high dynamic range (HDR)

radiance map from of the differently exposed images. It assumes that the input images were

taken with fixed camera whose pixel values

 �&�2� = ���&5�2�; v� (3.21)

Image Stitching 34

are the result of applying radiometric transfer function ��5, v� to scaled radiance values

�&5�2�. The form of this parametric function differs depending on the application or the goal

of the stitching process. The exposures values �& are either known by experimental setup or

from a camera Exif data, or are computed as part of the proper process.

 To blend the estimated noisy radiance values into a final composite, different

techniques are used: a hat function (accentuating mid-tone pixels), the derivative of the

response function, and optimizing the signal-to-noise ratio (SNR) that accentuates both

higher pixel values and larger contrast changes in the transfer function.

 Once a radiance map has been calculated, it is usually necessary to display it on 8-bit

screen or printer. A variety of tone mapping techniques have been developed for this

purpose, which involve either computing spatially varying transfer functions or reducing

image large contrast changes to fit the available dynamic range.

(a) (b)

 (c)

Figure 3.8. Blending different exposures to create a high dynamic range composite: (a) and (b) two

different image exposures; (c) merging the exposures in a final composite.

Image Stitching 35

4. STICHING ISSUES

 The creation and execution of the stitching process cause several issues, such as the

algorithms used in the registration stage, kind of problems that appear during or after the

stitching, and the different software available to implement the whole process. In this chapter,

first it is described some of these algorithms, next the most common problems in image

stitching are presented, and finally some interesting stitching software are reviewed.

4.1. Algorithms

 In this section, it is explained with more detail some of those algorithms involved in

the process stitching, which are used by the tools that create the script application on this

project, shown in the next chapter. These algorithms have been mentioned before in the

image registration stage, and they are behind the processing of some specific tools

employed for the stitching application: SIFT, RANSAC and kd-tree nearest neighbour search,

which are specifically related to the control point detection and matching stage.

4.1.1. Scale Invariant Feature Transform (SIFT)

 SIFT is an algorithm to detect and describe local features in images, published by

David Lowe. In practice SIFT detects and uses a large number of features from the images,

which reduces the contribution of the errors caused by local variations in the average error of

all feature matching errors. The method can robustly identify objects even among clutter and

under partial occlusion, because the SIFT feature descriptor is invariant to scale, orientation

and affine distortion, and partially invariant to illumination changes.

Detection

 The first stage in the algorithm is the scale-space extrema detection, where the

interest points, which are called keypoints in the SIFT framework, are detected. The image is

first convolved with ���, K, $�� Gaussian-blurs images (the result of blurring an image by

a Gaussian function) at different scales,

 ���, K, $�� = ���, K, $�� ∗ ���, K� (4.1)

where ���, K� = �
Ad�V 9c�V��V

V�V (4.2)

Image Stitching 36

is at scale $�, and ���, K� is the original image. The convolved images are grouped by

octave, and the value of $! is selected, obtaining a fixed number of convolve images per

octave. Then the Difference-of-Gaussian (DoG) images are taken from adjacent Gaussian-

blurred images per octave,

 +��, K, �� = ���, K, $!�� − ���, K, $e�	. (4.3)

 Now, the keypoints are identified as local minima/maxima of the DoG images across

scales, comparing each pixel to its eight neighbours at the same scales and nine

corresponding neighbouring pixels in each of the neighbouring scales. If the pixel value is the

maximum or minimum among all compared pixels, it is selected as a candidate keypoint.

Localization

 The next step after the production of many keypoints candidates is to perform a

detailed fit of the nearby data for accurate location and scale. This information allows points

to be rejected that have low contrast or are localized along an edge.

 First, for each candidate keypoint, interpolation of nearby data is used to accurately

determine its position. It calculates the interpolated location of the extreme using the

quadratic Taylor expansion of DoG, with the candidate keypoint as the origin

 +�2� = + + �N�
�2 2 + �

A 2q �VN
�2V 2 , (4.4)

evaluated at the candidate keypoint and 2 = ��, K, �� is the offset from this point. The location

of the extreme 2�, is determined by taking the derivative of this function with respect 2 and

setting it to zero. If the offset is larger than 0.5 in any dimension, the extreme lies closer to

another keypoint. Otherwise the offset is added to its candidate keypoint to get the

interpolated estimate for the location of the extreme.

 To discard keypoints with low contrast, the second-order Taylor expansion value of

+�2� is computed at the offset. If this value is less than 0.03, the candidate keypoint is

discarded. Otherwise it is kept, with final location � + 2� and scale �, where � is the original

location of the keypoint at scale �.

 Sometimes, the DoG function has strong responses along the edges, even if the

candidate keypoint is not robust to small amounts of noise. Therefore, in order to increase

Image Stitching 37

stability it needs to eliminate the keypoints that have poorly determined locations but have

high edge responses.

Orientation

 In this stage, each keypoint is assigned one or more orientations, achieving

invariance to rotation as the keypoint descriptor can be represented relative to this

orientation and after achieve invariance to image rotation.

 For an image sample ���, K� at scale �, the gradient magnitude ���, K� and

orientation 8��, K� are calculated using pixel differences

 ���, K� = ����� + 1, K� − ��� − 1, K��A + ����, K + 1� − ���, K − 1��A, (4.5)

 8��, K� = ��:c��
}�B,mW��c}�B,mc��
}�BW�,m�c}�Bc�,m�� . (4.6)

 These calculations are done for every pixel in a region around the keypoint. After that,

an orientation histogram is formed, whose peaks correspond to dominant orientations.

Finally, the orientations corresponding to the highest peak and local peaks that are within

80% of the highest peak are assigned to the keypoint.

Descriptor

 Once it is ensured invariance to image location, scale and rotation, a descriptor

vector is computed for each keypoint such that the descriptor is highly distinctive and partially

invariant to the remaining variations such as illumination or viewpoint, and is performed on

the image closest in scale to the keypoint’s scale.

 A set of orientation histograms are created on 4x4 pixel neighbourhoods with 8 bins

each, and computed from magnitude and orientation values of samples in a 16x16 region

around the keypoint such that each one contains samples from a 4x4 sub-region of the

original neighbourhood region. The magnitudes are weighted, and the descriptor becomes a

vector of all the values of these histograms, it means 128 elements. Then the vector

descriptor is normalized to unit length in order to enhance invariance to affine changes in

illumination, and prepared for further processing.

Image Stitching 38

4.1.2. Random Sample Consensus (RANSAC)

 RANSAC is an iterative method to estimate parameters of a mathematical model from

a set of observed data which contains outliers, published by Robert B. Fisher. Normally, it is

used at the feature matching stage, to determine good and bad keypoints connections

between input images. It is a non-deterministic algorithm in the sense that it produces a

reasonable result only with a certain probability, with this probability increasing as more

iterations are allowed.

(a) (b)

Figure 4.1. RANSAC algorithm: (a) Data set with many outliers which line has to be fitted; (b) Fitted

line with RANSAC, outliers have no influence on the result.

 The data consists of inliers of the predicted locations and outliers that do not fit the

model. Usually, the outliers come from extreme values of noise or from erroneous

measurements. RANSAC is the algorithm for robust fitting of models in the presence of many

data outliers.

 First, it is assumed that:

- Parameters 2��� can be estimated from N data items.

- There are M data items in total.

- The probability of a randomly selected data item being part of a good model is ��.

- The probability that the algorithm will exit without finding a good fit if one exists is � X!'
defined as � X!' = �1 − ����}.

 Then, the algorithm is the following:

1. Selects N data items at random

Image Stitching 39

2. Estimates parameter 2��� .
3. Finds how many data items of M fit the model with parameter vector 2��� within a user

given tolerance. Call this K.

4. If K is big enough, accept fit and exit with success.

5. Repeat 1...4 L times, defined as = ¡¢£�x¤¥¦§�
¡¢£��cx©̈� .

6. Fail if it gets here.

 The refined model is kept if its error is lower than the last saved model. The good

keypoint matches remain to continue the process.

4.1.3. Kd-Tree NN Search

 A k-dimensional tree is a space-partitioning data structure for organizing points in

a k-dimensional space, useful data structure for nearest neighbour searches. In feature

matching, the nearest neighbour (NN) search is the way to find all corresponding feature

points between input images. The algorithm searches keypoints in the constructed tree which

are nearest to the given input keypoint.

 Searching for a nearest neighbour in a kd-tree proceeds as follows:

1. The algorithm moves from the root node down the tree recursively, going right or left

depending on whether the keypoint is greater than or less than the current node in

the split dimension.

2. Once a leaf node is reached, that node point is saved as the current best.

3. The same process at each node: if the current node is closer than the current best,

then it becomes the current best. The algorithm checks if any keypoints on the other

side of the plane are closer to the search keypoint than the current best:

a. If there are nearer keypoints on the other side of the plane, the algorithm

moves down the other branch of the tree from the current node looking for

closer points, following the same recursive process as step 1.

b. If there are not, the algorithm continues going through the tree, and the

branch of the other side is eliminated.

 When the process is finished for the root node, the search is complete and the

corresponding feature points have been matched, discarding all the incorrect matches

previously detected. In this point of the stitching registration, the images are ready to be

aligned, optimized and blended, following the steps commented in the previous chapter.

Image Stitching

Figure 4.2. 2D Kd-tree NN search algorithm. Each interior node (

cutting plane and each leaf node is a keypoint, while node

4.2. Common Problems

 In this section, after

the most common problems found in

each issue, it is pretended to show the cause of the problem, to present some solution and

give visual examples.

4.2.1. Exposure

 Sometimes after stitching the input images together, it might notice some strange

colours or light and dark vertical bands where the photos have been joined. These effects

were not in the original photos; only appear in the finished result.

Figure 4.3. Stitched Image with variations in exposures between frames, clearly noted in the centre of

the image.

 This problem can be caused mainly by variations in exposure when the photos were

taken. The pictures were shot with the camera on automatic exposure mod

image patch can look lighter in one frame and darker in the next. When the images are

stitched together, the result is a weird visible seam. Another major cause of this is

tree NN search algorithm. Each interior node (‘b’ and ‘c’) represents an axis

cutting plane and each leaf node is a keypoint, while node ‘a’ is the root node.

Common Problems

section, after the stitching process has been explained, it has shown some of

the most common problems found in image stitching, also in the creation of panoramas

each issue, it is pretended to show the cause of the problem, to present some solution and

Sometimes after stitching the input images together, it might notice some strange

colours or light and dark vertical bands where the photos have been joined. These effects

were not in the original photos; only appear in the finished result.

Stitched Image with variations in exposures between frames, clearly noted in the centre of

This problem can be caused mainly by variations in exposure when the photos were

taken. The pictures were shot with the camera on automatic exposure mod

image patch can look lighter in one frame and darker in the next. When the images are

stitched together, the result is a weird visible seam. Another major cause of this is

 40

) represents an axis-aligned

is the root node.

has been explained, it has shown some of

, also in the creation of panoramas. In

each issue, it is pretended to show the cause of the problem, to present some solution and

Sometimes after stitching the input images together, it might notice some strange

colours or light and dark vertical bands where the photos have been joined. These effects

Stitched Image with variations in exposures between frames, clearly noted in the centre of

This problem can be caused mainly by variations in exposure when the photos were

taken. The pictures were shot with the camera on automatic exposure mode, so the same

image patch can look lighter in one frame and darker in the next. When the images are

stitched together, the result is a weird visible seam. Another major cause of this is

Image Stitching 41

differences in white balance between frames. This can be more of a problem when shooting

indoor places than landscape, because in an indoor situation there are often a variety of light

sources.

 Normally, some stitching software tries to adjust the colour and brightness of each

image to even them out and smooth out the seams, avoiding the problem. But it works well

when there are only small differences between frames; if the changes are too big, it can get

some unusual colours. Then, the solution is to shoot all the frames with the same exposure

settings, putting the camera into manual exposure mode and choose an exposure that’s in

the middle of the range for the whole scene. Also, in an indoor situation, a good

complementary solution is to lock the white balance setting before take the photos.

4.2.2. Lens Distortion

When original images are taken with a lot of distortion, some coordinates in the

observed images are displaced away (barrel distortion) or towards (pincushion distortion) the

image centre by an amount proportional to their radial distance. Distortion can be caused by

a poor quality lens, by using an extra wide angle lenses, or by having very close objects in

the overlap zone.

 (a) (b)

Figure 4.4. Different types of lens distortion: (a) pincushion distortion; (b) barrel distortion.

 To reduce the problems with distortion, the local alignment is used in the image

calibration stage, optimizing and adjusting distortion parameters until slightly curved lines

become straight as in the original images. Another solution is by allowing plenty of overlap

between input images, because lenses distort the picture more around the very edges of the

frame.

Image Stitching 42

4.2.3. Parallax Error

Image stitching requires that the camera rotates about the optical centre (also known

as the entry pupil or no parallax point) of its lens, thereby maintaining the same point of

perspective for all the photos. If the camera does not rotate about its optical centre, its

images may become impossible to align perfectly; these misalignments are called parallax

error. Usually, this is a problem where close objects seem to change position between

frames because the camera has changed position, due to not being rotated around the entry

pupil.

Figure 4.5. Parallax error problem affects close objects in the final stitched image.

The only way to avoid this error is to rotate the camera exactly around the optical

point of the lens. The best way to do this is using a tripod (simple or with a head attachment),

to adjust the camera position relative to the turning axis. If the photos are taken by shooting a

hand-held camera, parallax error can be made undetectable holding the camera firmly,

rotating the body and keeping the camera horizontal at the same height and distance.

4.2.4. Ghosting

 Ghosting or rapid movement is a problem than often occurs when the scene that is

being captured contains some type of movement, like people, clouds or waves. After the

stitching process, it can see some ghosts or transparent double images in the areas of the

photo where two adjacent pictures overlap. The main cause of this problem is when an

object in the area where two frames overlap has moved position between shooting one frame

and the next. However, the final result depends basically on the technique the software uses

to blend the frames together.

 First, before to solve ghosting problems with the software, it can try to take the photos

avoiding ghosting. In a slow motion situation, to minimize the delay between shots is an

efficient option. Otherwise, for fast-motion scenes, a better approach is to take more time

Image Stitching 43

between frames. Secondly, the software solution involves the choice of an optimal method to

blend the image. Some of them have been explained in the image blending stage, such as

the Laplacian Pyramid method, used in some software applications to solve this problem.

Figure 4.6. Stitched panorama with ghosting or rapid movement problem detected.

4.2.5. Overlapping

 Many of the most common problems in image stitching are originated in the image

registration stage, specifically in the keypoints detection and matching. The two main

problems are vignetting and bad stitched images, a mistake in lining up the images done by

the stitching software, producing a misaligned result. Both are a result of a lack of overlap

between the input images.

 Vignetting is observed when the picture gets noticeably darker in the very corners of

the frame. Normally it is caused if the amount of overlap between frames is small, but also if

the cameras used have a very wide angle lenses. One way to solve vignetting is to allow

plenty of overlap between frames. Even if the individual frames of a wide angle lens are a bit

dark in the corners, the dark areas will be cropped out and will not show up.

Figure 4.7. Stitching problems in final panorama due to lack of enough overlap between frames.

Image Stitching 44

 The second problem can have different causes such as lack of visible features or

highly repetitive features. In the first case exists the difficulty to detect keypoints due to the

picture has large areas without many obvious features (like a clear sky or blue sea). On the

other case, the software can become confused if the images contain a lot of almost identical

features repeated throughout the image, forming repetitive patterns across large portions of

the image. Allowing an overlap of one third between frames is normally enough to solve this

problem. Otherwise, some stitching software can usually solve it by manually adjusting the

control points of each input image.

4.2.6. HFOV and Image Resolution

These two last issues are common when the entire stitching process is automatically

executed. The Horizontal Field Of View (Hfov) information must be present to develop the

stitching, and the image resolution can directly affect the delay time of the implemented

application performance. The solutions for both problems require a manual interaction with

the input pictures or with the application.

HFOV indicates how many degrees are contained within one image. For any stitching

software program it is needed to know the HFOV of the lens of the camera used. Therefore,

several pictures have Exif data (Exchangeable image file format saved with the image data

by the camera) that contains different information, allowing to the stitching program

automatically can detect the focal length that has been used and estimate the HFOV. The

problem is when there is not Exif data, so the only way to solve it is to provide manually

HFOV or a focal length and focal length multiplier for the input images in the appropriate

software.

For high resolution input images, the detection and matching process is much easier

due to the quantity of pixels per image. However, it means more execution time of the whole

stitching process, increasing the time from a few seconds to the order of minutes. One way

to do faster the execution is to take the pictures with a normal resolution or reducing the

resolution of each image before the stitching, although is another way to consume time in the

whole process.

Image Stitching 45

4.3. Software

 In terms of software, there is an extended of dedicated programs related to image

stitching process. Some of the most widely used applications are Panorama Tools, Hugin

and PTGui, and others that are taking relevance, such as AutoStitch, Autopano Pro,

Microsoft Image Composite Editor or CleVR Stitcher.

4.3.1. Panorama Tools

 Also known as PanoTools, Panorama Tools are a suite of GNU Lesser General

Public License (LGPL) programs and libraries written by Professor Helmut Dersch.

Panorama Tools provides an important frame work for re-projecting and blending multiple

source images into immersive panoramic of many types. These libraries serve as the

underlying core engine for many panorama softwares Graphical User Interface (GUI) front-

ends.

 Panorama Tools consists of a variety of components, the most relevant of them are

shown below:

• PTmender – Panorama stitching tool which remaps, adjusts and combines arbitrary

images to panoramic views.

• PTOptimizer – Optimizes positions and sizes of images using control point data.

• PTblender – Implements the rudimentary colour correction algorithm found in

PTmender.

• PTmasker – Computes stitching masks. It implements the ability to increase depth of

field by stacking images.

• PTroller – Takes a set of images and merges them into a single one.

• PTcrop – Crop an image to its outer rectangle.

• pano13library – The last underlying panorama library currently used by several

different panorama front-ends and command line programs.

 Many interactive, graphical front-ends have been developed, to make easier working

and to add functionalities in Panorama Tools, such as Hugin (open source), PTGui

(commercial), and along with a variety of other applications as enblend or enfuse of Andrew

Mihal.

Image Stitching 46

4.3.2. Hugin

 Hugin is a cross-platform open source panorama photo stitching and HDR merging

program developed by Pablo d’Angelo and others. It is a GUI front-end for Panorama Tools

of Helmut Dersch. It also provides a number of additional components and command line

tools, including: autopano-sift, autopano-sift-C, panomatic or autopano for automatic creation

of control points; and enblend and enfuse for seamless blending of output images.

 Hugin allows for the creation of control points between two images, optimization of

the image transforms along with a preview window so the user can see whether the

panorama is acceptable or not. There is the option of create the control points automatically.

When the preview composite is correct, the panorama can be fully stitched, transformed and

saved in a wide variety of standard image format.

 Hugin and the associated tools have a range of advanced features:

• Combine overlapping images for panoramic photography.

• Perform advanced photometric corrections in complete panorama images, in terms of

exposure, vignetting and white balance between photos.

• Stitch large mosaics of images and photos.

• Find control points and optimize parameters with the help of software assistants.

• A full range of lenses are supported, from simple camera phones to obscure fisheye

lenses.

• Output several projection types, such as equirectangular, mercator, cylindrical,

stereographic and sinusoidal.

• Generate HDR, exposure fused or focus stacked output from bracketed photos.

• Use 16-bit and HDR input data originally.

4.3.3. PTGui

 PTGui is a commercial panoramic photo stitching software for Windows and Mac

OSX. PTGui is a product developed by New House Internet Services BV, initially founded in

1996 to provide custom software development and consulting services. Originally developed

as a GUI frontend to Panorama Tools, PTGui now is a full featured photo stitching and

blending application.

Image Stitching 47

 PTGui is usually used to stitch any number of photos into a panoramic image. It can

support telephoto, normal, wide angle and fisheye lenses to create partial cylindrical up to full

spherical panoramas. PTGui Pro also includes HDR and tone mapping support.

 Some of the most interesting features of PTGui program are listing below:

• PTGui can stitch multiple rows of images.

• Create 360 degrees cylindrical panoramas, flat partial panoramas and even spherical

360x180 degrees panoramas.

• No need to keep the camera level because PTGui can stitch rotated and tilted

images.

• Virtually unlimited output size that involves the creation of Giga-pixel panoramas from

hundreds of images.

• Layered output allows full control over the final stitched result.

• PTGui stitches most panoramas fully automatically, but at the same time provides full

manual control over every single parameter. This enables stitching of difficult scenes,

where other programs fail.

• Full 16 bit workflow for best image quality.

4.3.4. AutoStitch and Autopano Pro

 AutoStitch is a proprietary image stitching software tool for creating panoramas,

developed by Matthew Brown and David G. Lowe. This software uses SIFT and RANSAC

methods, and differs from some other applications in that automatically stitches together

even unaligned or zoomed photos seamlessly without user input. The only requirement is

that all images be taken from a single point. A complete panorama stitching suite based on

that same technology is Autopano Pro.

 Autopano Pro is a commercial integrated panorama stitching software for Windows,

Mac OS and Linux created by Alexandre Jenny, which automatically finds and stitches

images. It is based on the AutoStitch project, and is one of the few commercial licensees of

this engine.

 The software has advanced features such as distortion correction, colour correction

multiple blending modes, HDR support, verticals alignment, cropping and re-centring; being

also useful for batch processing. An advanced version of the application is Autopano Giga,

with more and sophisticated features.

Image Stitching 48

4.3.5. Microsoft Image Composite Editor

 This advanced panoramic image stitcher is developed by the research division of

Microsoft Corporation. The application takes a set of overlapping photographs of a scene

shot from a single camera location and creates a high resolution panorama incorporating all

the source images at full resolution. The stitched panorama can be saved in a wide range of

file formats, from common formats like JPEG and TIFF to multi-resolution tiled formats like

HDView and Silverlight DeepZoom, as well as allowing multi-resolution upload to the

Microsoft Photosynth site. Some characteristic features are that the exposure blending uses

Microsoft Research fast Poisson algorithm and has no image size limitation (stitch Giga-pixel

images).

4.3.6. CleVR

 CleVR or Clementine Virtual Reality is a free panoramic photo sharing site and photo

stitching software. The most distinguish feature of CleVR is the way it allows panoramas to

be easily shared and posted on other websites using Flash viewer. This is done in a manner

similar to YouTube, using a Flash based viewer that can be embedded in a web page or

viewed on the CleVR site. Panoramas can be displayed with areas in the scene that can be

clicked to display other content or to navigate to another scene (hotspots). This functionality

is similar to Apple’s QuickTimeVR, but it allows images, text and Flash Video (FLV) to be

displayed within the panorama window.

Image Stitching 49

5. STITCHING APPLICATION

 After studying the image stitching process and its different issues, it is time to apply

this knowledge to create an application that automatically compute the entire process, using

the different software available studied before. Firstly, the application is located into the

Smart Tour UL project, where some previous conditions are defined. After that, the final

panorama format is selected between different projections formats presented. Once these

characteristics are known, the script is created and some results are shown.

5.1. Smart Tour UL Project

 Smart Tour UL Project is a project of the University of Limerick, which is being

developed by the Wireless Access Research group. The main project consists in an

application designed for an Android Smartphone, which tracks its location using GPS and

Wi-Fi systems, and calculates the optimal route to one destiny. For the moment, all this

process is done only in the university campus domain, being useful for new students or

visitors, showing the best routes to their destinies.

 In addition to the path-finding option, the user has the possibility to obtain in specified

points of the route (normally intersection of paths) a 360 degrees panorama image, helping

the user to recognize the current location and the different buildings. The main idea of this

option is to situate cameras around the campus, specifically in the intersection points

previously selected; then to take and send different pictures to the server, where they are

stitched and available to be downloaded by the phone application. The web-server used is

Ubuntu 10.04 server, based on Linux distribution. This process is repeated each default time,

approaching to a real time situation with different weather conditions, changes in number of

people and possible works construction in the campus.

 More in detail, each point location can have different number of cameras that should

take enough pictures (JPEG format), allowing at least one third of overlapping between

images. Afterwards, each camera sends the package of pictures to the server, where there

are different folders for each intersection point. It is in this point where a stitching application

is required. Having a number of inputs images in the server folder, the goal is to stitch all

together creating a full 360 degrees panorama, leaving the input folder empty. Once the

panorama is created, it is moved to a specific folder where the phone application can access

to download the correct panorama. Normally, each model of Android Smartphone allows

different resolution of the final image that must be defined in the script application. The

Image Stitching 50

output format of the panorama is JPEG, due to its good compression and compatibility in

different phones models. In the next section, the script used for the all this stitching process

is explained in detail.

Figure 5.1. Smart Tour UL project diagram concept.

5.2. Panorama Stitching Formats

 Once it is known the goal of the final stitched image, it is time to view the different

possible panoramas available, to choose the most adequate to the project. The most widely

used are presented below with a few characteristics:

 Rectilinear image projections have the primary advantage that they map all straight

lines in three-dimensional space to straight lines on the flattened two-dimensional grid. This

projection type is what most ordinary wide angle lenses aim to produce, so this is perhaps

the most popular projection. Its primary disadvantage is that it can greatly exaggerate

perspective as the angle of view increases, leading to objects appearing skewed at the

edges of the frame. For this reason, rectilinear projections are generally not recommended

for angles of view much greater than 120 degrees.

Image Stitching 51

Figure 5.2. Rectilinear projection format, showing its bad performance in the creation of stitched

pictures with HFOV bigger than 120 degrees.

 Cylindrical projection is similar to equirectangular, except it also vertically stretches

objects as they get closer to the north and south poles, with infinite vertical stretching

occurring at the poles. It allows that the stitched image can show a 360 degrees horizontal

field of view and a limited vertical field of view. It means that cylindrical projections are also

not suitable for images with a very large vertical angle of view. Cylindrical projections are

also the standard type rendered by traditional panoramic film cameras with a swing lens.

Cylindrical projections maintain more accurate relative sizes of objects than rectilinear

projections; however this is done at the expense of rendering lines parallel to the viewer's

line of sight as being curved.

 (a) (b)

Figure 5.3. Cylindrical and spherical projection formats: (a) Limited vertical FOV, like to be inside of a

cylinder, without top and ground; (b) ± 90 degrees of VFOV, like to be inside of a sphere.

 Spherical or Equirectangular image projection, which is concretely one type of

cylindrical projection; maps the latitude and longitude coordinates of a spherical globe

Image Stitching 52

directly onto horizontal and vertical coordinates of a grid, where the stitched image shows a

360 degrees horizontal by 180 degrees vertical field of view, i.e., the whole sphere.

Panoramas in this projection are meant to be viewed as though the image is wrapped into a

sphere and viewed from within. When viewed on a 2D plane, horizontal lines appear curved

as in a cylindrical projection, while vertical lines remain vertical. These characteristics allow a

good complete view of the panorama, and it is for this reason that the script application

creates the output panorama in spherical projection format.

Figure 5.4. Full 360 degrees spherical or equirectangular panorama

 Stereographic or fisheye projection can be used to form a little planet panorama by

pointing the virtual camera straight down and setting the field of view large enough to show

the whole ground and some of the areas above it. These projections are also limited to

vertical and horizontal angles of view of 180 degrees or less, yielding an image which fits

within a circle. These are generally not used as an output format for panoramic photography,

but may instead represent the input images when the camera lens type being used for photo

stitching is a fisheye lens. The difference between them is that the stereographic projection

maintains a better sense of perspective by progressively stretching objects away from the

point of perspective than fisheye projection.

Figure 5.4. Different picture taken with a stereographic or fish-eye lens projection format.

Image Stitching 53

 Mercator image projections are most closely related to the cylindrical and

equirectangular projection types; mercator represents a compromise between these two

types, providing for less vertical stretching and a greater usable vertical angle of view than

cylindrical, but with more line curvature. This projection is perhaps the most recognizable

from its use in flat maps of the earth.

5.3. Script

 In order to generate the panoramic image for Smart Tour UL project, it has been

decided to create the application with open source tools, specifically working in a Linux

context, with an Ubuntu server used in the main project. The idea is create a shell script with

all the execution lines of the different tools used, indicating inputs, outputs, and the best

options for the stitching. Moreover, it is the best option if an automatic stitching process is

wanted. It means that having a number of input images of one place, executing the script,

automatically generates a 360 degrees panorama. In this section, first it is explained how to

get and how to use the tools and packages selected for the application. After, the final script

is presented, explaining each execution line.

5.3.1. Packages and Libraries

 Firstly, after to choose Ubuntu server as work environment, it has to decide the tools

that are going to be used in the application. Some software has been presented in previous

chapters, and comparing between them, one good approach to the project requirements is

Hugin and Panorama Tools, because both of them are open sources. This allows working

separately with the different commands, creating an automatic process execution application.

For this reason, the script is based in Hugin performance, using some of its own tools and

other complementary tools. The list of the tools with its package and libraries required is

shown below:

• Hugin: The software what is based the application, and most of its tools are required.

For this is needed the Hugin 2010.4.0 version, including the command line package

hugin-tools.

• Pano Tools: Because Hugin is essentially a GUI frontend for Panorama Tools, it is

required to get both Pano Tools Utilities and Pano Tools Library. The latest versions

are libpano13-bin and libpano13-1.

• Autopano-sift-C: The autopano-sift-c 2.5.1 version of the automatically creator of

control points of the application.

Image Stitching 54

• Enblend: Image blending tool in its 4.0 version.

• ImageMagick: The package imagemagick with image manipulation programs, and the

libraries libmagickcore3 and libmagickwand3, as interfaces between C programming

language and ImageMagick image processing libraries.

• Exiftool: The libmagickwand3 library and program to read and write metainformation

in image files.

 Depending on the version of Ubuntu Server, some of these tools could need other

libraries or complementary packages to be installed, but it is always specified when the tools

are being installing.

5.3.2. Panorama_Script.sh

 The idea of the script is to create an entire panorama process performed on the

command-line, and therefore to work directly with input images and project files (.pto)

generated. These files are simple plain-text, sometimes it is useful and easy to modify them

directly with a text editor. Obviously, this process could be done in a graphical tool, but it

would not be an automatic stitching execution. In this subsection, it is presented all the tools

and command lines used in the final shell script of the applications, explaining their basic

functions inside the stitching process, and their performance with the options selected for the

script.

 For further detailed information, the final script is shown in appendix A. In addition,

more information about each tool used in the final script can also be found in appendix B,

where all the manual pages of the tools used are presented with different possible options.

Calling the Script

 The command line to call the script can have two inputs, to clarify the location and the

HFOV of the input images, this last when Exif data is missing in the single input images.

$./Panorama_Script.sh number_location HFOV

The inputs number of location and HFOV are saved in the variables $1 and $2 respectively.

Image Stitching 55

Autopano-sift-C

 It is is an automatic executable control point generator, that combines keypoint

finding and matching of a group of overlapping input images, and is based on the SIFT

algorithm. The input image files can have any format (JPEG, PNG, TIFF...), and the output is

a panorama project file.

 The number of inputs can be from two to more images, and it is highly recommended

to be all of the same dimension and scale. Once defined the inputs, the SIFT detection is

performed, following by the RANSAC filtering and the fast kd-tree NN search implementation

for keypoint matching. Autopano-sift-c uses a smooth method for reducing image size, which

leads to stable control point positions. Some notable options are the control of the limit on the

larger image dimension (1600 by default), and the maximum number of control points per

image pair (25 by default). Also the projection format and the HFOV of the input images

should be written, usually selecting 0 for a rectilinear input projection.

 The command line for a complete control point detection and matching, allowing

RANSAC, kd-tree NN search and unlimited control points per image pair is the following:

$ autopano-sift-c --ransac on --maxmatches 0 --projection 0,$2 project.pto input_images[...]

Input: input_images (JPEG)

Output: project.pto

Celeste_Standalone

 Once the project file is created, it is time to clean up some not useful control points of

the file. The reason of using this tool is because of control point generators are not very good

at distinguishing between static objects and objects that change quickly such as clouds. This

causes alignment problems, because clouds can easily move several pixels between shots.

Celeste_standalone is a hugin-tool, which works with sky areas, recognizing clouds. Using

support vector machine (SVM) techniques, it identifies clouds in the input photos and

removes control points from these areas. The control points over one default threshold value

are deleted from the input project file (-i), creating other as output adding _celeste.pto by

default:

$ celeste_standalone -i project.pto

Input: project.pto

Output: project_celeste.pto

Image Stitching 56

CPclean

 In addition to the control points in sky areas, sometimes there are some wrong control

points, with large error distances. Cpclean removes all these bad control points by statistical

filter methods, working with mean and standard deviation for all images pairs and also all the

whole panorama. It deletes by default all the control points that have an error bigger than

�9�: + 27��:1��1_19Q����):, overwriting the project file adding _clean.pto:

$ cpclean project_celeste.pto

Input: project_celeste.pto

Output: project_celeste_clean.pto

Autooptimiser

 Up to now, the project file only contains a simple list of good control points and input

images, so the images are not yet aligned. This step is done by geometric optimization of

images positions, updating the .pto file. Autooptimiser aligns and optimizes position and

geometry in the project file through different options, such as auto align mode (-a), level

horizon (-l) and automatic selection of suitable output projection and size (-s). An example of

input project file appears in appendix C.1, with all the diferents options.

$ autooptimiser -a -l -s -o optimized.pto project_celeste_clean.pto

Input: project_celeste_clean.pto

Output: optimized.pto

Pano_modify

 Before start with the main stitching process, the pano_modify hugin-tool allows to

change some output options of the project file on the command line. It can set the output

panorama projection, commonly cylindrical (1) or spherical (2) formats, but in the case of this

application the spherical is selected. Often, it permits also to calculate the optimal field of

view when the camera lens information is provided by the input images. Other interesting

options are to straighten (-s) and to centre (-c) the panorama, calculate the optimal canvas

size, and to set automatically the optimal crop rectangle of the final result.

$ pano_modify --projection=2 --fov=AUTO -s -c --canvas=AUTO --crop=AUTO optimized.pto

Input: optimized.pto

Output: optimized_mod.pto

Image Stitching 57

Pto2mk and Make

 Once the project file has been created, optimized and modified, it is prepared to start

the stitching. The way to start the stitching is generating a makefile that contains all the rules

to stitch and blend the images. Pto2mk generates the output makefile (-o) from the existing

panorama project file, with a prefix (-p) name. After, the commands make processes this

makefile, with the tools nona, enblend and exiftool, deleting all the intermediate files created

once finished:

$ pto2mk -o final.pto.mk -p final optimized_mod.pto

 $ make -e -f final.pto.mk all clean

Input: optimized_mod.pto

Output: final.pto.mk

Nona

 It is a stitch hugin-tool, where no seam feathering is done. Nona uses functions of

Pano Tools to remap all the images into a panorama. Nona performs geometrical and

photometric distortions on photos and writes the output to image files. However nona doesn't

decide what the distortions are going to be, it just does the remapping part of the stitching

process. The parameters to apply in nona are specified in the final project file, which has

been modified by all the previous stages. Appendix C.2 shows an input project file for nona.

 Multiple TIFF files (TIFF_m) are chosen to be the output format (-m), due to their easy

performance in the next blending stage. The compression type (-z) selected for TIFF output

is LZW, and ldr (low dynamic range) output mode (-r) to keep the original bit depth and

response of the images. Nona command-lines are automatically generated in the makefile,

and any modification is required. The output images are now prepared to be blended:

$ nona -z LZW -r ldr -m TIFF_m -o final optimized_mod.pto input_images[...]

Input: input_images (JPEG), optimized_mod.pto

Output: multiple_final_images (TIFF)

Enblend

 Enblend overlays and combines multiple TIFF images trying to make the seams

between the input images invisible. This tool blends the images in the order specified on the

command line, according to the way that they are overlap. Following with the same kind of

compression, LZW is used for the output image. For a full 360 degrees output panorama is

Image Stitching 58

useful to blend around the -180/+180 degrees boundary (-w). The final size of the output

image has been written by pano_modify previously. As nona, enblend command line is

generated in the makefile just after nona lines:

$ enblend --compression=LZW -w -o final.tif multiple_final_images.tif[...]

Input: multiple_final_images (TIFF)

Output: final (TIFF)

Convert

 Once the final panorama is completely stitched, it is time to prepare the image for the

final device. In the project, the final device is an android phone that will visualize the full

panorama on the screen. The best option is to convert the TIFF file to JPEG, due to its

features of size and compatibility. Depending on the phone model used, the image size in

pixels should be modified too. Sometimes, the stitched image results rotated 180 degrees,

and also a rotation is required. ImageMagick package presents the command line convert,

which allows these conversions in the final panorama:

$ convert –resize widthxheight\! –rotate 180 final.tif pano$1.jpg

Input: final (TIFF)

Output: pano$1 (JPEG)

Exiftool

 Finally, it is interesting to keep the Exif data in the final result, as GPS location, date

and time, camera model, author and other remarkable information. First, this information is

copied from one input image to the final.tif image, specified in the makefile after the enblend

line. But, if some conversion is applied after, as convert line, then the Exif data must be

copied to the last result. Exiftool is used for this task:

$ exiftool -overwrite_original_in_place -TagsFromFile final.tif -ImageDescription -Make -Model -Artist

-WhitePoint -Copyright -GPS:all -DateTimeOriginal -CreateDate –UserComment -ColorSpace -

OwnerName -SerialNumber pano$1.jpg

Remove and Move

 After all the command lines, the final script is completed, only a few additions are

required to adjust the application to the project context. The proposal is to receive the input

Image Stitching 59

JPEG images in a server folder, execute the script, and obtain a final panorama in JPEG

format. For this reason, the folder only has to contain the inputs at the beginning, and the

panorama at the end. All the inputs and intermediate files must be deleted at the end of the

process. The final panorama is moved to the place where the phone can download the

image when is using the Smart Tour UL application, with the name corresponding to the UL

location number where the pictures were taken, previously agreed. The lines that solve these

problems are written with remove and move commands:

$ mv pano$1.jpg /home/smart-tour /www/

 $ rm *.tif *.JPG *.pto *.mk

5.4. Results

 At this point, it can verify the performance and behaviour of the stitching script. In this

section different visual examples are given as results, beginning with a simple re-stitching of

an original photo. Stitched images created from normal phone camera pictures are also

presented in terms to show other common case. Finally, full panoramas of the University of

Limerick are created giving an approximation of what the end user can visualize.

5.4.1. Original Image Re-Stitched

 One simple way to test the script is cutting one original photo from a digital camera in

two parts, allowing at least one third of overlapping between both pictures. Then, they can be

stitched together applying the stitching script, resulting in a seamless re-stitched photo, only

losing a part of the original image in the right side of the photo, with perfect alignement.

Figure 5.5. Re-stitching an image of digital camera: (a) original image cut into two overlapped parts;

(b) re-stitched image aligned with no visible seams.

Image Stitching 60

5.4.2. Camera Phone

 If the photos are taken from a camera of a Smartphone, the stitching result depends

also in the rotation camera level done while the pictures were taken. Precisely, for full 360

degrees panoramas, it is difficult to keep holding at the same level of rotation, often

producing parallax error and lost of VFOV information. For this reason the results of the

script are better for non-full panorama images. One example with two photos and other with

six inputs images from an 8.1 Mega-pixel Sony Ericcson Aino camera phone are shown

below:

Figure 5.6. Two overlapping photos from a Sony Ericcson Aino camera phone merged into a perfect

seamless stitched image.

Figure 5.7. Six photos taken with a camera phone with the same HFOV and size. The equirectangular

result panorama with less than 180 degrees of HFOV has lost image information in both right and left

sides. It also appears changes in exposure between the second and third frame.

Image Stitching 61

5.4.3. University Of Limerick

 For the Smart Tour UL project, some photos have been taken at different locations

of the main campus, using a tripod and allowing overlapping between frames with a known

HFOV. After stitching, the result panoramas can be prepared for be visualized in the user

Smartphone, modifying the format and size image, depending on the phone model. Lastly,

the phone application can show the spherical panorama through scrolling its touch screen,

navigating throughout the panoramic image of the specific location of the campus, giving the

feeling of being in the exact place and helping for orientation and routing problems.

Figure 5.8. Final full spherical panorama just after the stitching process, with its default size image.

Figure 5.9. Full spherical panorama resized to HTC Smartphone suitable resolution (1024x512pixels).

Image Stitching 62

Figure 5.10. Two different Smartphone views of two spherical panoramas, showing two different

locations of the UL campus with buildings and students. Scrolling the touch screen allows to explore

the entire panorama scene.

Image Stitching 63

6. CONCLUSIONS

 The image stitching script presented in this document has been developed for the

Smart Tour UL project, with the purpose to stitch automatically in one web server input

images taken from specific locations in the UL campus. Once the full 360 degrees spherical

stitched images are created, the Android Smartphone application is able to download these

panoramas from the server. Finally, the final user can visualize the panorama of the specified

location, allowing full horizontal field of view and 180 degrees of vertical view.

 While the optimization and blending stages of the stitching process have been

performed by using the open source software belonging to Hugin and Panorama Tools, the

feature detection and matching have been done using the SIFT algorithm. SIFT has been

chosen due to the large number of features from the images used, reducing contribution of

errors caused by variations in the average error of all feature matching errors. In addition,

this algorithm is invariant to scale, orientation, and affine distortion, and partially invariant to

illumination changes. The registration stage with SIFT is complemented with RANSAC and

Kd-Tree NN Search techniques, obtaining a suitable behaviour and good results working with

overlapping images.

 After several tests realized with the script in different conditions, it can conclude that

the image stitching script has a correctly automatic performance, provided there is enough

overlap between images, the HFOV is specified on the images or on the script, and parallax

error is prevented taking pictures with a good rotation level. However, sometimes these

problems can result into stitched images with only few errors or misalignments that do not

affect too much in the final image.

6.1. Future Work Development

 The image stitching process in this project attempts to be always automatic, optimal

and precise. One possible way to ensure these conditions will be creating a project file

template of each camera location. It will require that the cameras must take identical photos

each time, allowing the same level of rotation, HFOV and number of pictures. However,

some previous tests should be performed in order to solve possible stitching problems during

the registration and optimization stages, and leaving prepared the project file for the last

stage of blending. It is a good approach to optimize time of execution and to ensure a better

performance of the script, first modifying the file and then letting it run automatically.

Image Stitching 64

 In order to improve the algorithms used in the script. A new goal could be to classify

different input images according to the feature detection and matching points. Normally, the

input images are connected between control points in the registration stage, discarding

unconnected images. However, if there are amount of pictures of different places, it should

be the option to separate accurately these images according to the feature matches between

them, and then prepare them to the rest of the stitching process. In terms of solving rapid

movement or scene motion problems in the final stitched images, the blending stage could

be improve trying to select better how to render the seams of the images. This selection will

depend on if motion image points are presented or not in the seams, to avoid cut objects in

the final image.

 In the case of wanting to perform the stitching process in the Smartphone device, the

image compression formats and image scales have to be considered. Due to a limited

memory of the device, the image scale during the process must be pre-defined and the

formats to work inside the different algorithms should be compatible with the phone formats.

For those reasons, the algorithms should be prepared with format conversions and scales

modifications of the images, to keep execution time, quality and memory.

 Finally, other possible fields to research are related to video stitching, because it is a

kind of simple generalization of multiple image stitching. For example, the creation of stitched

panoramas from video sources of moving cameras, so that enough overlapping is obtained

of the different video frames. Moreover, objects in the foreground from the same video scene

could be extracted and composited into stitched image, giving the impression of a sequential

scene image. The main problems to deal with in video stitching are often the presence of

large independent movement scenes and the different fields of view caused by changing the

cameras focus.

Image Stitching 65

7. REFERENCES

[1] d'Angelo, Pablo Hugin homepage, <http://hugin.sourceforge.net/>.

[2] Bolles, Robert C.; Fischler, Martin A. “Random Sample Consensus: A Paradigm for

 Model Fitting with Applications to Image Analysis and Automated Cartography” from

 magazine Communications of the ACM Volume 24 Issue 6, June 1981.

[3] Brown, Matthew; Lowe, David G. “Automatic Panoramic Image Stitching using

 Invariant Features”, University of British Columbia, Vancouver, Canada, 2007.

[4] Brown, Matthew; Lowe, David G., AutoStitch website,

 <http://cvlab.epfl.ch/~brown/autostitch/autostitch.html#autostitch>.

[5] Chandran, Sharat “Introduction to kd-trees”, University of Maryland Department of

 Computer Science. <http://www.cs.umd.edu/class/spring2002/cmsc420-

 0401/pbasic.pdf>.

[6] CleVR Ltd., CleVR website, <http://www.clevr.com >.

[7] Community of the PanoTools Yahoo Group Panotools Next Generation,

 <http://wiki.panotools.org.>.

[8] Knight, Denis “The Perfect Panorama”, October 2008.

[9] Lowe, David G. “Distinctive Image Features from Scale-Invariant Keypoints”,

 University of British Columbia, Vancouver, Canada, January 2004.

[10] McHugh, Sean “Cambridge in Colour” website, Photo Stitching & Digital Panoramas

 section <http://www.cambridgeincolour.com/>

[11] Microsoft Research, Microsoft Research Image Composite Editor,

 <http://research.microsoft.com/en-us/um/redmond/groups/ivm/ICE/>.

[12] New House Internet Services BV, PTGUI homepage, <http://www.ptgui.com/>.

[13] Szielski, Richard “Computer Vision: Algorithms and Applications”, September

 2010. <http://szeliski.org/Book>.

[14] Szielski, Richard “Image Alignment and Stitching: A Tutorial”, Technical Report,

 December 2006.

Image Stitching 66

APPENDIX A. Panorama_Script.sh

Panorama Stitching Script File

autopano-sift-c --ransac on --maxmatches 0 --projec tion 0,$2

project.pto *.JPG

celeste_standalone -i project.pto

cpclean project_celeste.pto

autooptimiser -a -l -s -o optimised.pto project_cel este_clean.pto

pano_modify --projection=0 --fov=AUTO -s -c --canva s=AUTO

--output=modified.pto optimised.pto

pto2mk -o panorama.pto.mk -p panorama modified.pto

make -e -f panorama.pto.mk all clean

convert -resize 1024x512\! panorama.tif pano$1.jpg

exiftool -overwrite_original_in_place -TagsFromFile panorama.tif -

ImageDescription -Make -Model -Artist -WhitePoint - Copyright -

GPS:all -DateTimeOriginal -CreateDate -UserComment -ColorSpace -

OwnerName -SerialNumber pano$1.jpg

mv $1.jpg /home/oscar/Escritorio/Formats/

rm *.pto *.mk *.tif *.JPG

Image Stitching 67

APPENDIX B. Manual Pages

NAME
 autooptimiser - Optimize image positions

SYNOPSIS
 autooptimiser [options] project.pto

 (- can be specified to read the project from stdio.)

DESCRIPTION
 autooptimiser works similarly to PToptimizer but with extra
command-line options.

 It is also different in that PToptimizer app ends its output
onto the input file in the form of 'o' lines which need further
processing. Autooptimiser simply updates the proje ct and writes it
to a new file.

OPTIONS
 -o file.pto
 Output file. If omitted, stdout is used.

 Optimisation options (if not specified, no o ptimisation takes
place):

 -a Auto align mode, includes various optimi sation stages,
depending on the amount and distribution of the con trol points

 -p Pairwise optimisation of yaw, pitch and roll, starting
from first image

 -n Optimize parameters specified in script file (like
PToptimizer).

 Post-processing options:

 -l Level horizon (works best for horizontal panoramas)

 -s Automatically select a suitable output p rojection and
size

 Other options:

 -q Quiet operation (no progress is reported)

 -v HFOV
 Specify horizontal field of view of inpu t images. Used if
the .pto file contains invalid HFOV values (autopan o-SIFT writes
.pto files with invalid HFOV)

 When -a, -l, and -s options are used togethe r, an operation
similar to the one of the "Align" button in hugin i s performed.

Image Stitching 68

AUTHORS
 Written by Pablo d'Angelo. Also contains con tributions from
Douglas Wilkins, Ippei Ukai, Ed Halley, Bruno Postl e, Gerry
Patterson and Brent Townshend.

 This man page was written by Cyril Brulebois
<cyril.brulebois@enst-bretagne.fr> and is licensed under the same
terms as the hugin package itself.

Image Stitching 69

NAME
 autopano-sift-c: Find control points giving a Hugi n project
file

SYNOPSIS
 autopano-sift-c [options] output.pto image1 image2 [..]
 hugin project file output.pto gets the results
 input images can be jpeg, tiff, or other f ormats.

 autopano-sift-c [options] output.pto projectfile
 projectfile: a hugin project or other PT compatible
 script with image file names, projections and ang ular
 widths. Enables stereographic projection.

DESCRIPTION
 Options
 --ransac <on|off|1|0> Switch RANSAC filtration on or off
(default: off).
 --maxmatches <matches> Output no more that this many control
points per
 image pair (default: 25, zero means
unlimited)
 --maxdim <n> Make largest image dimen sion <= n
(default: 1600).
 --projection <n>,<d> n = PT format code, d = hfov in
degrees. These
 apply to all images, rep rojection is
enabled.
 --ANNmatch <on|off|1|0> Use fast keypoint matchi ng tree
(default: on).
 --disable-areafilter Do not use max-area filt ration, which
is default.
 See manpage for details.
 --integer-coordinates Truncate match coordinat es to integer
numbers.
 --absolute-pathnames <on|off|1|0> Use the abso lute pathname
of the image
 file in the PTO output f ile. Disabled
by default.

 Alignment options
 --align Automatically pre-align images in PTO
file.
 --bottom-is-left
 --bottom-is-right Use in case the automati c algorithm
fails.
 --generate-horizon <c> Generate up to 'c' horiz on lines.

 Refinement options
 --refine Refine the found control points using
the
 original images.
 --refine-by-middle Use the best middle poin t to refine
(default).
 --refine-by-mean Use the mean of the patc hes control
points.

Image Stitching 70

 --keep-unrefinable <on|off|1|0>
 Keep unrefinable matches (default:
on).
 output.pto: The output PTO panorama project file.
 The filename can be "-", then stdout is used
 image<n>: input image files (any common format: J PEG,
 PNG, TIFF, ..)

 Notice: for the aligning to work, the input images shall be
 1. All of the same dimension and scale
 2. The first images must be an ordered row.

=== ===============
The use of this software is restricted by certain c onditions.
See the "LICENSE" file distributed with the program for details.

The University of British Columbia has applied for a patent on the
SIFT algorithm in the United States. Commercial ap plications of
this software may require a license from the Univer sity of British
Columbia.
=== ==============

Image Stitching 71

NAME
 celeste_standalone - Cloud identification

SYNOPSIS
 celeste_standalone [options] image1 image2 [..]

DESCRIPTION
 Celeste has been trained using Support vecto r machine
techniques to identify clouds in photos and remove control points
from these areas.
 celeste_standalone is a command-line tool wi th all the same
functionality as Celeste in hugin.

 Simple usage is to just 'clean' an existing project file:

 celeste_standalone -i project.pto -o projec t.pto

OPTIONS
 -i <filename>
 Input Hugin PTO file. Control points ove r SVM threshold
will be removed before being written to the output file. If -m is
set to 1, images in the file will be also be masked .

 -o <filename>
 Output Hugin PTO file. Default:'<filenam e>_celeste.pto'

 -d <filename>
 SVM model file. Default: 'data/celeste.m odel'

 -s <int>
 Maximum dimension for re-sized image pri or to processing.
A higher value will increase the resolution of the mask but is
significantly slower. Default:
 800

 -t <float>
 SVM threshold. Raise this value to remov e fewer control
points, lower it to remove more. Range 0 to 1. Defa ult: 0.5

 -m <1|0>
 Create masks when processing Hugin PTO f ile. Default: 0

 -f <string>

 -r <1|0>
 Filter radius. 0 = large (more accurate) , 1 = small
(higher resolution mask, slower, less accurate). De fault: 0

 -h Print usage.

AUTHORS
 Written by Tim Nugent.

Image Stitching 72

NAME
 convert - convert between image formats as w ell as resize an
image, blur, crop, despeckle, dither, draw on, flip , join, re-
sample, and much more.

SYNOPSIS
 convert [input-options] input-file [output-o ptions] output-
file

OVERVIEW
 The convert program is a member of the ImageMagick(1)
suite of tools. Use it to convert between image fo rmats as well as
resize an image, blur, crop, despeckle, dither, dra w on, flip, join,
re-sample, and much more.

DESCRIPTION
 Image Settings:
 -depth value image depth
 -size geometry width and height of i mage
 -resize geometry resize the image
 -rotate degrees apply Paeth rotation to the image

 By default, the image format of `file' is determined by its
magic number. To specify a particular image format , precede the
filename with an image format name and a colon (i.e . ps:image) or
specify the image type as the filename suffix (i.e. image.ps).
Specify 'file' as '-' for standard input or output.

COPYRIGHT
 Copyright © 1999-2010 ImageMagick Studio LLC. Additional
copyrights and licenses apply to this softwar e.

Image Stitching 73

NAME
 cpclean - Remove wrong control points by sta tistical methods

SYNOPSIS
 cpclean [options] input.pto

DESCRIPTION
 cpclean uses statistical methods to remove w rong control
points.

 Step 1 optimises all images pairs, calculate s for each pair
mean and standard deviation and removes all control points with
error bigger than mean+n*sigma.

 Step 2 optimises the whole panorama, calcula tes mean and
standard deviation for all control points and remov es all control
points with error bigger than mean+n*sigma.

OPTIONS
 -o output.pto
 Output Hugin PTO file. Default: '<filena me>_clean.pto'.

 -n num
 distance factor for checking (default: 2)

 -p do only pairwise optimisation (skip step 2)

 -w do optimise whole panorama (skip step 1)

 -h shows help

AUTHORS
 Thomas Modes

Image Stitching 74

NAME
 enblend - combine images using a multiresolu tion spline

SYNOPSIS
 enblend [options] [--output=IMAGE] INPUT...

DESCRIPTION
 Blend INPUT images into a single IMAGE.

 INPUT... are image filenames or response fil enames. Response
filenames start with an "@" character.

 Common options:
 -V, --version
 output version information and exit

 -a pre-assemble non-overlapping images

 -h, --help
 print this help message and exit

 -l, --levels=LEVELS
 number of blending LEVELS to use (1 t o 29); negative
number of LEVELS decreases maximum

 -o, --output=FILE
 write output to FILE; default: "a.tif "

 -v, --verbose[=LEVEL]
 verbosely report progress; repeat to increase
verbosity or directly set to LEVEL

 -w, --wrap[=MODE]
 wrap around image boundary, where MOD E is NONE,
HORIZONTAL, VERTICAL, or BOTH; default: none; witho ut argument the
option selects horizontal wrapping

 -x checkpoint partial results

 --compression=COMPRESSION
 set compression of output image to CO MPRESSION, where
COMPRESSION is: NONE, PACKBITS, LZW, DEFLATE for TI FF files and 0 to
100 for JPEG files

 Extended options:
 -b BLOCKSIZE
 image cache BLOCKSIZE in kilobytes; d efault: 2048KB

 -c use CIECAM02 to blend colors

 -d, --depth=DEPTH
 set the number of bits per channel of the output
image, where DEPTH is 8, 16, 32, r32, or r64

 -g associated-alpha hack for Gimp (befor e version 2) and
Cinepaint

Image Stitching 75

 --gpu use graphics card to accelerate seam- line optimization

 -f WIDTHxHEIGHT[+xXOFFSET+yYOFFSET]
 manually set the size and position of the output
image; useful for cropped and shifted input TIFF im ages, such as
those produced by Nona

 -m CACHESIZE
 set image CACHESIZE in megabytes; def ault: 1024MB

 Mask generation options:
 --coarse-mask[=FACTOR] shrink overlap region s by FACTOR to
speedup mask generation; this is the default; if om itted FACTOR
defaults to 8

 --fine-mask
 generate mask at full image resolutio n; use e.g. if
overlap regions are very narrow

 --smooth-difference=RADIUS
 smooth the difference image prior to seam-line
optimization with a Gaussian blur of RADIUS; defaul t: 0 pixels

 --optimize
 turn on mask optimization; this is th e default

 --no-optimize
 turn off mask optimization

 --optimizer-weights=DISTANCEWEIGHT[:MISMATCH WEIGHT]
 set the optimizer's weigths for dista nce and mismatch;
default: 8:1

 --mask-vectorize=LENGTH
 set LENGTH of single seam segment; ap pend "%" for
relative value; defaults: 4 for coarse masks and 20 for fine masks

 --anneal=TAU[:DELTAEMAX[:DELTAEMIN[:KMAX]]]
 set annealing parameters of optimizer strategy 1;
defaults: 0.75:7000:5:32

 --dijkstra=RADIUS
 set search RADIUS of optimizer strate gy 2; default: 25
pixels

 --save-masks[=TEMPLATE]
 save generated masks in TEMPLATE; default: "mask-
%n.tif"; conversion chars: %i: mask index, %n: mask number, %p: full
path, %d: dirname, %b: baseâ €
 name, %f: filename, %e: extension; lo wercase
characters refer to input images uppercase to the o utput image

 --load-masks[=TEMPLATE]

Image Stitching 76

 use existing masks in TEMPLATE instea d of generating
them; same template characters as "--save-masks"; d efault: "mask-
%n.tif"

 --visualize[=TEMPLATE] save results of optim izer in TEMPLATE;
same template characters as "--save-masks"; default : "vis-%n.tif"

AUTHOR
 Written by Andrew Mihal and others.

REPORTING BUGS
 Report bugs at <http://sourceforge.net/proje cts/enblend/>.

COPYRIGHT
 Copyright © 2004-2009 Andrew Mihal. License GPLv2+: GNU GPL
version 2 or later <http://www.gnu.org/licenses/gpl .html>
 This is free software: you are free to chang e and
redistribute it. There is NO WARRANTY, to the exte nt permitted by
law.

Image Stitching 77

NAME
 exiftool - Read and write meta information i n files

SYNOPSIS
 exiftool [OPTIONS] [-TAG...] [--TAG...] FILE ...

 exiftool [OPTIONS] -TAG[+-<]=[VALUE]... FILE ...

 exiftool [OPTIONS] -tagsFromFile SRCFILE [-
SRCTAG[>DSTTAG]...] FILE...

 exiftool [-ver | -list[w|f|wf|g[NUM]|d|x]]

DESCRIPTION
 A command-line interface to Image::ExifTool, used for reading
and writing meta information in image, audio and vi deo files. FILE
is a source file name, directory name, or "-" for t he standard
input. Information is read from the source file an d output in
readable form to the console (or written to an outp ut text file with
the -w option).

OPTIONS
 Case is not significant for any command-line option
(including tag and group names), except for single- character options
when the corresponding upper-case option is defined . Many single-
character options have equivalent long-name version s (shown in
brackets), and some options have inverses which are invoked with a
leading double-dash. Note that multiple single-cha racter options
may NOT be combined into one argument because this would be
interpreted as a tag name.

 Option Summary
 -c FMT (-coordFormat) Set forma t for GPS
coordinates
 -d FMT (-dateFormat) Set forma t for date/time
values
 -overwrite_original_in_place Overwrite original by
copying tmp file
 -tagsFromFile SRCFILE Copy tag values from file
(ImageDescription, Model, Artist, WhitePoint, Copyr ight,GPS
DateTimeOriginal, CreateDate, UserComment, Colorspa ce, OwnerName,
SerialNumber

DIAGNOSTICS
 The exiftool application exits with a status of 0 on success,
or 1 if an error occured or if all files failed the -if condition.

AUTHOR
 Copyright © 2003-2010, Phil Harvey. This is free software;
you can redistribute it and/or modify it under the same terms as
Perl itself.

Image Stitching 78

NAME
 mv - move (rename) files

SYNOPSIS
 mv [OPTION]... [-T] SOURCE DEST
 mv [OPTION]... SOURCE... DIRECTORY
 mv [OPTION]... -t DIRECTORY SOURCE...

DESCRIPTION
 Rename SOURCE to DEST, or move SOURCE(s) to DIRECTORY.

 Mandatory arguments to long options are mand atory for short
options too.

 --backup[=CONTROL]
 make a backup of each existing destin ation file

 -b like --backup but does not accept an argument

 -f, --force
 do not prompt before overwriting

 -i, --interactive
 prompt before overwrite

 -n, --no-clobber
 do not overwrite an existing file

 If you specify more than one of -i, -f, -n, only the final
one takes effect.

 --strip-trailing-slashes
 remove any trailing slashes from each SOURCE argument

 -S, --suffix=SUFFIX
 override the usual backup suffix

 -t, --target-directory=DIRECTORY
 move all SOURCE arguments into DIRECT ORY

 -T, --no-target-directory
 treat DEST as a normal file

 -u, --update
 move only when the SOURCE file is new er than the
destination file or when the destination file is mi ssing

 -v, --verbose
 explain what is being done

 --help display this help and exit

 --version
 output version information and exit

Image Stitching 79

 The backup suffix is `~', unless set with --suffix or
SIMPLE_BACKUP_SUFFIX. The version control method m ay be selected
via the --backup option or through
 the VERSION_CONTROL environment variable. H ere are the
values:

 none, off
 never make backups (even if --backup is given)

 numbered, t
 make numbered backups

 existing, nil
 numbered if numbered backups exist, s imple otherwise

 simple, never
 always make simple backups

AUTHOR
 Written by Mike Parker, David MacKenzie, and Jim Meyering.

COPYRIGHT
 Copyright © 2010 Free Software Foundation, I nc. License
GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>.

Image Stitching 80

NAME
 nona - Stitch a panorama image

SYNOPSIS
 nona [options] -o output project_file (image files)

DESCRIPTION
 nona uses the transform function from PanoTo ols, the
stitching itself is quite simple, no seam featherin g is done.

 Only the non-antialiasing interpolators of P anoTools are
supported.

 The following output formats (n option of Pa noTools p script
line) are supported:

 JPEG, TIFF, PNG : Single image formats with out feathered
blending
 TIFF_m : multiple tiff files
 TIFF_multilayer : Multilayer tiff files, rea dable by The Gimp
2.0

OPTIONS
 General options:

 -c Create coordinate images (only TIFF_m ou tput)

 -v Quiet, do not output progress indicators

 -t num
 Number of threads to be used (default: n umber of
available cores)

 The following options can be used to overrid e settings in the
project file:

 -i num
 Remap only image with number num (can be specified
multiple times)

 -m str
 Set output file format (TIFF, TIFF_m, TI FF_multilayer,
EXR, EXR_m)

 -r ldr/hdr
 Set output mode:

 ldr - keep original bit depth and respon se
 hdr - merge to hdr
 -e exposure
 Set exposure for ldr mode

 -p TYPE
 Pixel type of the output. Can be one of:

 UINT8 8 bit unsigned integer

Image Stitching 81

 UINT16 16 bit unsigned integer
 INT16 16 bit signed integer
 UINT32 32 bit unsigned integer
 INT32 32 bit signed integer
 FLOAT 32 bit floating point
 -z Set compression type. Possible options f or tiff output:

 NONE no compression
 LZW LZW compression
 DEFLATE deflate compression

AUTHORS
 Written by Pablo d'Angelo. Also contains con tributions from
Douglas Wilkins, Ippei Ukai, Ed Halley, Bruno Postl e, Gerry
Patterson and Brent Townshend.

 This man page was written by Cyril Brulebois
<cyril.brulebois@enst-bretagne.fr> and is licensed under the same
terms as the hugin package itself.

Image Stitching 82

NAME
 pano_modify - Change output parameters of pr oject file

SYNOPSIS
 pano_modify [options] input.pto

DESCRIPTION
 pano_modify modifies a single Hugin .pto pro ject.

OPTIONS
 -o, --output=file.pto
 Output Hugin PTO file. Default: <filenam e>_mod.pto

 -p, --projection=NUMBER
 Sets the output projection to number x

 --fov=AUTO|HFOV|HFOVxVFOV
 Sets field of view.

 AUTO: calculates optimal fov

 HFOV|HFOVxVFOV: set to given fov

 -s, --straighten
 Straightens the panorama

 -c, --center
 Centers the panorama

 --canvas=AUTO|WIDTHxHEIGHT
 Sets the output canvas size

 AUTO: calculate optimal canvas size

 WIDTHxHEIGHT: set to given size

 --crop=AUTO|left,right,top,bottom
 Sets the crop rectangle

 AUTO: autocrop panorama

 left,right,top,bottom: to given size

 -h, --help
 Shows help

AUTHORS
 Thomas Modes

Image Stitching 83

NAME
 pto2mk - Generate hugin stitching Makefiles

SYNOPSIS
 pto2mk -o <output_makefile> -p <output_prefi x> project_file

DESCRIPTION
 Hugin doesn't stitch panoramas, it creates a Makefile
containing all the rules to render, then blend the output image and
processes this Makefile with
 'make'.

 pto2mk will generate a platform specific Mak efile from an
existing hugin .pto project.

OPTIONS
 -o file
 Output Makefile

 -p output_prefix
 Prefix of output panorama

AUTHORS
 Written by Pablo d'Angelo and others.

Image Stitching 84

NAME
 rm - remove files or directories

SYNOPSIS
 rm [OPTION]... FILE...

DESCRIPTION
 This manual page documents the GNU version o f rm. rm removes
each specified file. By default, it does not remov e directories.

 If the -I or --interactive=once option is given, and there
are more than three files or the -r, -R, or --recur sive are given,
then rm prompts the user for
 whether to proceed with the entire operation . If the
response is not affirmative, the entire command is aborted.

 Otherwise, if a file is unwritable, standard input is a
terminal, and the -f or --force option is not given , or the -i or
--interactive=always option is
 given, rm prompts the user for whether to re move the file.
If the response is not affirmative, the file is ski pped.

OPTIONS
 Remove (unlink) the FILE(s).

 -f, --force
 ignore nonexistent files, never promp t

 -i prompt before every removal

 -I prompt once before removing more tha n three files, or
when removing recursively. Less intrusive than -i, while still
giving protection against most mistakes

 --interactive[=WHEN]
 prompt according to WHEN: never, once (-I), or always
(-i). Without WHEN, prompt always

 --one-file-system
 when removing a hierarchy recursively , skip any
directory that is on a file system different from t hat of the
corresponding command line argument

 --no-preserve-root
 do not treat `/' specially

 --preserve-root
 do not remove `/' (default)

 -r, -R, --recursive
 remove directories and their contents recursively

 -v, --verbose
 explain what is being done

 --help display this help and exit

Image Stitching 85

 --version
 output version information and exit

 By default, rm does not remove directories. Use the --
recursive (-r or -R) option to remove each listed d irectory, too,
along with all of its contents.

AUTHOR
 Written by Paul Rubin, David MacKenzie, Rich ard M. Stallman,
and Jim Meyering.

COPYRIGHT
 Copyright © 2010 Free Software Foundation, I nc. License
GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>.
 This is free software: you are free to chang e and
redistribute it. There is NO WARRANTY, to the exte nt permitted by
law.

Image Stitching 86

APPENDIX C. Project Files Examples

C.1 PROJECT FILE FOR AUTOOPTIMISER

This document describes the script supported by t he autooptimiser.

Only lines starting with 'p', 'v', 'i', or 'm' ar e read.
So you can add comments and info as you like by u sing
other line starting characters.
Do not start a line with !, it is used by adjust plugin and scripts.
the * character indicated the end of the script f ile.
The script must contain:
one 'p'- line describing the output image (eg Pan orama)
one 'i'-line for each input image
one or several 'v'- lines listing the variables t o be optimized.
the 'm'-line is optional and allows you to specif y modes for the
#optimization.
one 'c'-line for each pair of control points
'p'-line options
w1000 width in pixels
h600 height in pixels (default: width/2)
f0 projection format,
0 - rectilinear (for printing an d viewing)
1 - Cylindrical (for Printing an d QTVR)
2 - Equirectangular (for Spheri cal panos), default
3 - full-frame fisheye
v360 horizontal field of view of panorama (default 360)
nPICT Panorama file format, one of:
PICT pict-file on macs, bmp-file on win
#(default)
PSD single layer Photo shop file, 48bits
#supported
PNG png-format, 48bits supported
TIFF tiff-format, 48bit s supported
PSD_mask Photoshop file, on e image per layer
+ shape mask & f eathered clip mask at
#overlap center
PSD_nomask Photoshop file, on e image per layer,
TIFF_mask tiff-format, multi -file, one image per
#file, 48bit supported
alpha layer with feathered clip mask at
#overlap center
TIFF_m tiff-format, multi -file, one image per
#file, 48bit supported
alpha layer with non-feathered clip mask
#at image border
+ shape mask & n on-feathered clip mask
#at image border
JPEG Panoramic image in jpeg-format. Use with
#f1
for IBM Hotmedia panoramas.
PAN SmoothMove movie. Use only with f2.
IVR LivePicture IVR mo vie
cylindrical (for mat f1) or spherical
#(format f2)
IVR_java LivePicture Java P anorama,
cylindrical (for mat f1) or spherical
#(format f2)

Image Stitching 87

VRML VRML background no de, use only with f2 for
#panoramas, or
VRML-object for PTStereo
QTVR Apple QTVR-panomov ie. Use only with f1
3DMF 3DMF-object (PTSte reo).
n"QTVR w400 h300 c1" additional viewer options in a quoted
#string together with format
the following options are recognized :
w(width) and h(height) of viewer window (only QTVR on
#Macs)
c(codec: 0-JPEG, 1-Cinepak, 2-So renson) (only QTVR on
#Macs)
q(codec quality):
0-high,1-normal,2-low QTVR on Macs
0-100(highest) on o ther jpeg-formats (PAN,
#IVR, IVR_java, VRML)
g progressive jpeg (0-no, 1-yes) (PAN, IVR, IVR_java,
#VRML)
Optimized JPEG (0-on(default) , 2-disabled), (3-
#progressive with optimized disabled)
p initial pan angle (QTVR on M acs, VRML, IVR)
v field of view (QTVR, VRML, IV R)
Many more options can be set by editing the viewer
#scripts
-buf suppress buffer commands in the stit cher script generated by
#PTOptimizer.
(buffer commands are now obsolet e, -buf and +buf on i
#lines are now
ignored when stitching) This opt ion should be set if you
#wish
to edit the final panoramic imag e, eg for the two PSD
#formats.
a0.0 b1.0 c0.04 Options to create multiple image s in PTInterpolate and
#PTMorpher.
a denotes starting value,
b end value
c increment. 0 is left, 1 is right image.
The above command interpolat es/morphs two images and
creates 25 intermediate fram es.
u10 width of feather for stitching all i mages. default:10
k1 attempt color & brightness correctio n using image number as
#anchor
b1 attempt brightness correction with n o color change using
#image number as anchor
d1 attempt color correction with no bri ghtness change using
#image number as anchor
Do not use more than one of k, d, b.This is new method of
#correcting

p w800 nPSD_mask –buf

The 'i' lines describe input images. One line per image is required
unneeded paramiters for optimizing but needed for stitching can be
set here and the optimizer will automaticaly add them to the o lines

f0 projection format,
0 - rectilinear (no rmal lenses)
1 - Panoramic (Scan ning cameras like
#Noblex)
2 - Circular fishey e
3 - full-frame fish eye

Image Stitching 88

4 - PSphere (equire ctangular)
8 - Orthographic. T his is only allowed in
#PTStereo and
for the firs t image. This indicates
#a map or ground plan.
w600 width in pixels
h1000 height in pixels
v82 horizontal field of view of image (r equired, but ignored for
#f8)
y0 initial yaw angle (required)
p43 initial pitch angle (required)
r0 initial roll angle (required)
a,b,c initial lens correction coefficients (defaults a0 b0 c0,
#optional)
(see
#http://www.panotools.org/dersch/barrel/barrel.html [*])
d,e initial lens offset in pixels(defaul ts d0 e0, optional).
Used to correct for offset from center of image
d - horizontal offset,
e - vertical offset
g,t initial lens shear. Use to remove s light misalignment
of the line scanner relative to the film transport
g - horizontal shear
t - vertical shear
u10 (obsolete, globally used on p line) specify width of feather
#for stitching. default:10
S100,600,100,800 Selection(l,r,t,b), Only pixel s inside the rectangle
#will be used for conversion.
Original image size is used for all image
#parameters
(e.g. field-of-view) refer to the original image.
C100,600,100,800 Crop(l,r,t,b), Only pixels ins ide the rectangle will
#be used for conversion.
Cropped image size is used for all image parameters
(e.g. field-of-view) refer to the cropped part of
#the image.
m20 (obsolete, use S & C) ignore a frame 20 pixels wide.
#default: 0
mx100 (obsolete, use S & C) crop to bright est rectangle with size
#100x200;
my200 (obsolete, use S & C) used only for circular fisheye images
#(f2)
s0 (obsolete, ignored, always blend) sp ecify placement of seam
#between buffer and image:
0-middle of overlap('blend' ,de fault)
1- at edge of image ('paste').
o (the small letter). Morph-to-fit usi ng control points.
k0 (obsolete, use p line correction sti ll used with plugin)
attempt color/brightness correct ion when merging image
#and buffer, one of:
0 - no correction(default);
1 - change image;
2 - change buffer;
3 - change both
this feature does not work very well!
X10 World coordinates of camera position , only used for PTStereo
Y200 If the camera is aligned (yaw = pitc h = roll = 0.0),
Z-13.5 X is coordinate to the right, Y vert ically up and
-Z is forward viewing direction.
nName Name of image (ignored by PTOptimize r used in PTStitcher)

Image Stitching 89

Parameters in different images can be linked using '='
followed by the image number starting with 0 .
Example 'v=0' sets horizontal field of view as in
image number 0. This feature works for the v ariables
v, a, b, c, (r, p, y with caution) d, e, g, and t

i f2 r0 p0 y0 v183 a0 b-0.1 c0 mx40 0 my400
i f2 r-0.5 p1 y182 v=0 a0 b-0.1 c0 mx40 0 my400

'v'-line options:

Please note: the 'v'-line must come after the the 'i'-lines.
Optimization variables are listed together with t he image number
starting at 0. There can be several v-lines.

y0 Optimize yaw in image 0
p1 Optimize pitch in image 1
r2 Optimize roll in image 2
v0 Optimize field of view in image 0
a2 Optimize lens correction parameter ' a' in image 2
b and c can be equally optimized .
X1 Optimize x-coordinate of image 1, on ly for PTStereo
Y2 Optimize y-coordinate of image 2, on ly for PTStereo
Z6 Optimize z-coordinate of image 6, on ly for PTStereo

If a image has a parameter linked to another image only
need to optimize the master.

v v0 r0 p0 r1 p1 y1

'm'-line options

Set mode for stitcher, not required

g2.5 Set gamma value for internal computa tions (default 1.0)
See #<http://www.panotools.org/d ersch/gamma/gamma.html>
i2 Set interpolator, See
#<http://www.panotools.org/dersch/interpolator/inte rpolator.html>
one of:
0 - poly3 (default)
1 - spline16,
2 - spline36,
3 - sinc256,
4 - spline64,
5 - bilinear,
6 - nearest neighbor,
7 - sinc1024
\/ antialiasing filters \/ See
#<http://www.pano2qtvr.com/dll_patch/>
8 - Box
9 - Bartlett/Triangle
10 - Hermite
11 - Hanning
12 - Hamming
13 - Blackmann
14 - Gaussian 1/sqrt(2)
15 - Gaussian 1/2
16 - Quadardic
17 - Cubic
18 - Catmull-Rom

Image Stitching 90

19 - Mitchell
20 - Lanczos2
21 - Lanczos3
22 - Blackman/Bessel
23 - Blackman/sinc

p0 Create panorama after optimizing con trol points
0 no(default), 1 yes

m g1.5 i6

'c' lines

Control point lines
One line per point pair
about one pair of points per image per variable b eing optimized.
The more variables being optimized the more contr ol points needed.

n0 first image
N1 second image
x1066.5 first image x point position
y844.333 first image y point position
X239.52 second image x point position
Y804.64 second image y point position
t0 type of control point (optional)
0 - normal (default)
1 - optimize horizontally only
2 - optimize vertically only
3+ (all other numbers) - straigh t line

Every thing after # is ignored.

Image Stitching 91

C.2 PROJECT FILE FOR NONA

This document describes the script supported by t he nona stitcher.

Based on the PTStitcher documentation

Only lines starting with 'p','o', i', 'm' or 'k' are read,
so you can add comments and info as you like by u sing
other line starting characters.

The stitcher script must contain:
one 'p'-line describing the output image (eg Pano rama)
one 'o'-line for each input image
one 'm'-line for global options

'p'-line options
w1000 width in pixels
h600 height in pixels
f0 projection format,
0 - rectilinear (for printing an d viewing)
1 - Cylindrical (for Printing an d QTVR)
2 - Equirectangular (for Spheri cal panos), default
3 - full-frame fisheye
v360 horizontal field of view of panorama (default 360)
nPICT Panorama file format, one of:
PNG png-format, 8 & 16 bit supported
TIFF tiff-format, all t iff types supported
#(8,16,32 bit int, float, double)
TIFF_m tiff-format, multi -file, one image per
#file
alpha layer with non-feathered clip mask
#3at image border
TIFF_multilayer tiff-format, mu lti-image-file, all
#files in one image
alpha layer with non-feathered clip mask
#at image border
This filetype is supported by The GIMP
JPEG Panoramic image in jpeg-format.
some more supported file formats (m ostly only 8 bit
#support)
PNM, PGM, BMP, SUN, VIFF

Special options for TIFF output:
n"TIFF c:NONE"
c - select TIFF compression, pos sible options: NONE,
#LZW, DEFLATE

Special options for TIFF_m and TIFF_ multilayer output:
n"TIFF c:NONE r:CROP"
c - TIFF compression, possible o ptions NONE, LZW,
#DEFLATE
r - output only used image area (cropped output). The
#crop offsets
are stored in the POSITIONX and POSITONY tiff tags
p1 - save coordinate images (use ful for further
#programs, like vignetting correction)

Special options for JPEG output:
n"JPEG q95"

Image Stitching 92

q - jpeg quality

E12.3 exposure value for final panorama
R1 stitching mode: 0: normal LDR mode, 1: HDR mode
T"UINT8" bitdepth of output images, possible values are
UINT8 - 8 bit unsigned
UINT16 - 16 bit unsigned
FLOAT - 32 bit floating point
By default the bit depth of the inpu t images is use.

S100,600,100,800 Selection(left,right,top,botto m), Only pixels inside
#the rectangle
will be rendered. Images that do not contain pixels in
#this area
are not rendered/created.

k1 Image number of reference image for photometric correction

P"100 12" Parameters for tuning projection, nu mber of parameters
#depends on projection

p w1000 h600 f0 v360 E12.3

The 'i' lines describe input images (nona also ac cepts 'o' line image
#descriptions)

f0 projection format,
0 - rectilinear (normal lenses)
1 - Panoramic (Scanning cameras like Noblex)
2 - Circular fisheye
3 - full-frame fisheye
4 - PSphere, equirectangular
v82 horizontal field of view of image (r equired)
y0 yaw angle (required)
p43 pitch angle (required)
r0 roll angle (required)
a,b,c lens correction coefficients (option al)
(see http://www.fh-
#furtwangen.de/~dersch/barrel/barrel.html)
d,e initial lens offset in pixels(defaul ts d0 e0, optional).
Used to correct for offset from center of image
d - horizontal offset,
e - vertical offset
g,t initial lens shear. Use to remove s light misalignment
of the line scanner relative to the film transport
g - horizontal shear
t - vertical shear

Eev exposure of image in EV (exposure va lues)
Er white balance factor for red channel
Eb white balance factor for blue channe l

Vm vignetting correction mode (default 0):
0: no vignetting correction
1: radial vignetting correction (see j,k,l,o options)
2: flatfield vignetting correcti on (see p option)
4: proportional correction: i_ne w = i / corr.
This mode is recommended fo r use with linear data.
If the input data is gamma corrected, try adding
#g2.2

Image Stitching 93

to the m line.

default is additive correcti on: i_new = i + corr
Both radial and flatfield corr ection can be combined
#with the
proportional correction by ad ding 4.
Examples: i1 - radial polynomial correction by addition.
The coefficients j,k,l,o must be
#specified.
i5 - radial polynomial correction by division.
The coefficients j,k,l,o must be
#specified.
i6 - flatfield correcti on by division.
The flatfield ima ge should be specified
#with the p option

Va,Vb,Vc,Vd vignetting correction coefficients. (defaults: 1,0,0,0)
(0, 2, 4, 6 order polynomial coeff icients):
corr = (i + j*r^2 + k*r^4 + l*r^6), where r is the
#distance from the image center
The corrected pixel value is calcula ted with: i_new = i_old
#+ corr
if additive correction is used (defa ult)
for proportional correction (h5): i_new = i_ old /
#corr;

Vx,Vy radial vignetting correction offset in pixels (defaults Vx0
#Vy0, optional).
Used to correct for offset from c enter of image
Vx - horizontal offset
Vy - vertical offset

Vf filename of flatfield image.
For additive correction the image w ill be used as it is.
In the case of correction by divisi on, the flatfield will
#be divided by
its mean value.

Ra,Rb,Rc,Rd,Re EMoR photometric model parameters. (defaults: 0,0,0,0,0)

TrX,TrY,TrZ mosaic mode translation offsets.

S100,600,100,800 Selection(l,r,t,b), Only pixel s inside the rectangle
#will be used for conversion.
Original image size is used for all image
#parameters
(e.g. field-of-view) refer to the original image.
Selection can be outside im age dimension.
The selection will be circu lar for circular fisheye
#images, and
rectangular for all other p rojection formats

j0 stack number

nName file name of the input image.

i f2 r0 p0 y0 v183 a0 b-0.1 c0 S100,60 0,100,800 n"photo1.jpg"
i f2 r0 p0 y180 v183 a0 b-0.1 c0 S100,60 0,100,800 n"photo1.jpg"

'm'-line options

Image Stitching 94

Set mode for stitcher, not required

g2.5 Set gamma value for internal computa tions (default 1.0)
See <http://www.fh-
#furtwangen.de/~dersch/gamma/gamma.html>
This is especially useful in conjun ction with the
#vignetting correction
by division

i2 Set interpolator, See <http://www.fh -
#furtwangen.de/~dersch/interpolator/interpolator.ht ml>
one of:
0 - poly3 (default)
1 - spline16,
2 - spline36,
3 - sinc256,
4 - spline64,
5 - bilinear,
6 - nearest neighbor,
7 - sinc1024

m i2

'v'-line options

Indicate i-line parameters to optimise
nona ignores all 'v' lines, these lines are used by autooptimiser
(a,b,c,d,e,v,r,p,y geometric parameters) and vig_ optimize
(Eev,Er,Eb,Va,Vb,Vc,Vd,Vx,Vy,Ra,Rb,Rc,Rd,Re photo metric parameters)

The format is described in libpano13 Optimize.txt

'k'-line options

Optional image masks are described by a 'k' line

i2 Set image number this mask applies to

t0 Type for mask:
0 - negative (exclude region)
1 - positive (include region)
2 - negative, stack aware (excl ude region from stack)
3 - positive, stack aware (incl ude region from stack)

p"1262 2159 1402 2065 1468 2003" List of node c oordinates
Coordinates are in pairs, at least three pairs are required

k i2 t0 p"1262 2159 1402 2065 1468 2003"

'c'-lines

Control point lines
nona ignores all 'c' lines, these lines are used by autooptimiser

Every thing after # is ignored.

