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Abstract 

 

OpenFlow protocol is a new communication protocol which has attracted a lot 

of attention among IT researchers in the last couple of years. With respect to that, 

this work investigates its abilities and limitations in both packet and circuit 

networks, as well as in the converged environment. For the packet switching 

environment, the work clearly separates the roles and achievements of OpenFlow, 

NOX and FlowVisor within the virtualization tool that comprises all the three. 

Furthermore, the work introduces out-of-band distributed control of OpenFlow 

packet switches by specifying advantages of out-of-band controlling and its 

realization.   

 Considering the extension to the circuit switching environment, the work 

describes abilities of converged packet and circuit networks such as: dynamic 

packet link establishing, application-aware traffic aggregation and service specific 

routing. In addition to this, the overlay architecture for interoperability of GMPLS 

and OpenFlow has been suggested and FlowVisor capabilities in virtualization of 

optical networks have been investigated. 

 At the end, the architecture of a real OpenFlow network comprising OpenFlow 

packet switches, FlowVisor and NOX controllers has been described, emphasizing 

detours from the theoretical architecture due to financial considerations. 
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1. Introduction  
 

Internet, as a global network, changes constantly. However, in the past 

years changes in its core have been very rare. Main changes in this area occurred 

some 20 years ago. These included changes from Network Control Program (NCP) 

to Transmission Control Protocol (TCP) and Internet Protocol (IP), introduction of 

Domain Name Server (DNS) instead of hosts.txt files as well as the introduction of 

link state routing and Border Gateway Protocol (BGP). The last core change was the 

introduction of Classless Inter-Domain Routing (CIDR) in 1993. [1]. There are two 

main reasons behind the avoidance of core changes. Firstly, core changes require 

huge modifications in both hardware and software which consequently necessitate 

large investments. Secondly, core changes need to be implemented by all Internet 

Service Providers (ISP-s) in order to take effect and it is very difficult to reach 

agreement between that many companies/organizations. Considering that ISPs 

have been investing money only when they have been faced with imminent 

problems in their networks, the Internet has not seen any significant core change 

since CIDR and 1993. Justification for more core changes prior to 1993 can be the 

fact that the network has not been commercial at that time as well as not that 

large. Consequently, core changes required less investment.  

The absence of significant core changes in Internet has been recognized by 

the IT community as ossification of Internet architecture [2]. Nowadays, this 

picturesque phrase draws more and more attention. Namely, while evolution of 

Internet has been halted for almost 20 years, the requirements placed upon the 

network have dramatically changed. Today we have a trend of digital convergence 

in which data, voice and multimedia traffic are supposed to be transmitted as IP 

traffic. High definition video channels will put additional burden on IP networks and 

it is a question whether Internet can cope with this. The new services have 

introduced some new issues such as: IP Mobility, Quality of Service (QoS), IP 

Multicasting etc. However, the problem with these issues is not the lack of 

solutions. The solutions exist. IP mobility has been standardized for more than 10 

years. IP Multicasting also has been around for many years. But since they require 
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architectural changes of Internet’s “bones”, neither one of them has seen network-

wide deployment. Despite this, as abovementioned problems become more 

pressing day by day, deployment of solutions that require architectural changes 

gains more and more attention. Considering that network-wide deployment of a 

solution must be preceded by its exhaustive testing, another problem arises: “How 

to test new solutions in today’s networking environment?”   

 Traditionally, solutions for testing of new research proposals have been 

physical testbeds. However, their inability to provide cohabitation of production and 

experimental traffic severely limits their usefulness in case of wide-spread, 

extensive and cost-efficient testing. Overlays on the other hand suffer from limited 

flexibility. Being based on today’s Internet architecture, they are more a solution 

for some fixes in existing architecture than a solution for a serious departure from 

it. Since advantages and drawbacks of these two solutions are not primary 

objectives of this work, the interested reader is highly encouraged to refer to [3] for 

more details. 

 

1.1 Network Virtualization 

  

 For some years, the hot prospect for solving the testing problem of today’s 

networks has been network virtualization. It has been widely recognized throughout 

IT community as the fundamental feature of next generation networks (NGN) aimed 

to eradicate ossification forces of today’s Internet [1], [2], [3]. The main idea of 

Network Virtualization is providing of isolated logical (virtual) networks on top of 

same physical infrastructure. This is done by decoupling the role of traditional ISP-s 

into two parts: 

 

• Infrastructure Providers (InP-s) - that manage physical infrastructure 

and lease it through programmable interfaces to various Service 

Providers, and  

• Service Providers (SP-s) – that create virtual networks (VN-s) by 

aggregating resources from several InPs. On top of aggregated 
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resources, service providers run any type of control they want 

providing end-to-end services not just to end users, but also to other 

providers. 

 The described separation enables coexistence of heterogeneous virtual 

networks that reside on top of the same physical infrastructure. An example of 

network virtualization environment is shown in Figure 1.1. 

 

Figure 1.1 - Network Virtualization Environment [2]  

 From the Figure 1.1 it can be seen that service providers (SP1 and SP2) are 

allowed to build different networks on top of the same physical infrastructure 

offered by infrastructure providers (InP1 and InP2). This particular case shows also 

that a service provider can lease parts of its network to another service provider. 

End nodes U1, U2 and U3 although physically connected to the physical devices can 

choose without any restrictions which virtual network(s) to use. In this 

environment, they are allowed to connect to an arbitrary number of virtual 

networks belonging to different service providers in order to obtain the desired 

service. 

 Following the described architecture, the main characteristics of a network 

virtualization solution should be: 

 

• Flexibility – meaning that every service provider should have freedom 

to implement any topology, routing protocols and other controlling 
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mechanism on the resources it has leased from infrastructure provider. 

Implemented control should not be restricted neither by underlying 

physical infrastructure, nor by other virtual networks. 

• Programmability – meaning that service provider should be able to 

implement customized controlling protocols on leased infrastructure. 

Programmability is indeed the enabling tool for the previously 

described flexibility. 

• Scalability – meaning that the number of virtual networks should not 

be the limiting factor of the system. InP-s must scale to support 

increase in number of virtual networks without affecting their 

performance. 

• Isolation – meaning that different virtual networks should be isolated 

from each other such that operation of one does not affect the others. 

This is especially important in cases of erroneous operation of a virtual 

network.  

• Heterogeneity – that can be divided into two categories: heterogeneity 

with respect to underlying technologies and heterogeneity with respect 

to virtual networks on top of these technologies. The former supposes 

that various technologies comprising physical infrastructure should not 

affect network virtualization process, while the latter specifies that 

many heterogeneous virtual networks should be able to coexist. 

• Legacy Support – supposes dealing with the question of backwards 

compatibility which is very important every time when implementation 

of new technologies is considered. This means that current Internet 

network should be supported in the Network Virtualization 

environment. 

 Specified like this, network virtualization looks as a perfect solution for 

building testing infrastructure for future networks. Nevertheless, since it is a broad 

topic with many possible approaches only some aspects of network virtualization 

will be considered in this work. The next section briefly outlines these aspects, 

together with the motivation for their choosing.  
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1.2  Main Objectives of this project 

 

 Being present for some years, the concept of network virtualization has 

gained a lot of research attention resulting in many virtualization solutions. Some of 

them are well known (VLANs, VPNs, Planet Lab), some are still being developed 

(GENI, AKARI, CABO) but not all of them completely follow the above-described 

characteristics. Most of network virtualization solutions are designed for specific 

network technology (e.g. IP or SDH) or for specific layer (link, network or physical 

layer). The comprehensive overview of network virtualization solutions can be 

found in [2], while the focus of this work will be on presenting OpenFlow as an 

enabling tool for full heterogeneous virtualization. Virtualization with OpenFlow has 

been chosen since it is a relatively new approach which has recently gained a lot of 

interest within the IT community. Its ability to be applied in both packet and circuit 

networks as well as to provide flexible control, have been a good motivation to 

explore the possibilities it opens. In line with this, the rest of material is organized 

in the following manner. 

 Introductory Chapter 1 is followed by first part of this thesis, Part I. In the 

chapters 2-5, Part I deals with OpenFlow in packet networks. Chapter 2 introduces 

the main concepts of OpenFlow: architecture, features and working principles while 

Chapter 3 explains centralized control on top of OpenFlow. In Chapter 4, FlowVisor 

will be described as a network virtualization tool based on OpenFlow. Considering 

OpenFlow features laid down in Chapters 2-4, in Chapter 5 we have investigated 

the possibilities of implementing distributed control on top of OpenFlow devices. As 

a result of that, some advantages of distributed control implementation have been 

pointed out together with its main problem. With this contribution, theoretical 

discussion about OpenFlow in packet networks has been rounded closing the Part I. 

Part II, in Chapters 6-8, extends OpenFlow to circuit switching networks showing its 

abilities and limitations in the environment traditionally different from its original 

one – the packet switching networks.  Chapter 6 will discuss OpenFlow circuit 

switches and their role in unification of packet and circuit switching networks using 

OpenFlow. Besides this, it will contain our proposal of the network architecture for 

interoperability between GMPLS and OpenFlow. Chapter 7 will provide our 
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investigation and conclusions on virtualization of Optical Networks using OpenFlow 

and FlowVisor. By reusing the concepts from Chapter 4, applicability of FlowVisor to 

OpenFlow-enabled optical nodes will be examined. Experimental part of the work 

done in this thesis is sublimed in Chapter 8, representing familiarization with 

OpenFlow packet switches and corresponding networks,  in order to contest some 

of the concepts laid down in Part I. Conclusions derived from presented material, 

will be provided in Chapter 9 together with the proposals for future research.   
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PART I – OPEN FLOW 

 

2. Programmable Packet Switches  
 

In their attempt to fight with lack of experimental facilities for testing of new 

research solutions, a group of researchers and visionaries from Stanford University 

(SU) has recognized the importance of making open infrastructure which will be 

used for running experiments within university campuses. Considering that most 

campuses have networks based on Ethernet switches/routers, they have decided to 

create programmable Ethernet switches. Taking into account that realistic 

experiments require production traffic and environment, they have decided to run 

experiments on production network devices alongside production traffic. 

Nevertheless, experimenting on a production network raises several questions such 

as: 

 

• How to separate experimental from production traffic? 

• How to allow researchers to control just their portion of experimental 

traffic? 

• Which functionality is needed to enable experimenting on a production 

network? 

One answer to these questions could be to force equipment vendors to open 

their equipment by implementing programmable software platforms. In this way 

both administrators and researchers would have what they need. Researchers could 

program the switches through the interface provided by the vendor.  This would not 

cause any problem to production traffic so network administrators would have 

nothing to worry about. Naturally, vendors are reluctant to give away their 

technologies and proprietary algorithms in which they have invested a lot of money. 

Moreover, by opening their boxes they are reducing the entry-barrier for 
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competitors and put their profit at risk. Consequently, this scenario is not likely to 

happen in a foreseeable future. 

The second solution could be to use one of the existing open platforms. 

Unfortunately they lack in performance, port number or both. For example: a 

simple PC offers several interfaces and an operating system over which applications 

can be written to process packets in any way (full controlling flexibility). The 

problem is that PC does not support a hundred or more ports needed in campus 

networks and 100Gbps processing speed (PC offers up to 1Gbps). Another example 

is NetFPGA, low cost user programmable PCI card which supports line rate 

processing but has only 4 Gigabit Ethernet ports [4]. An ATCA-based programmable 

router is a research project that satisfies both requirements, offering full 

programmability, but currently is too expensive for widespread use [5]. 

Having in mind that commercial solutions, which offer full programmability, 

do not satisfy performance requirements and research solutions (that also offer full 

flexibility in packet control) that provide good performance are too expensive, the 

researchers from SU have decided to trade off controlling flexibility for price 

reduction [6]. Their solution, named Open Flow switch, has been designed to 

provide: 

 

• Reasonable experimenting flexibility – rather than full controllability, 

aim was to provide several operations which will offer reasonable 

flexibility in control. 

• Low cost and high performances – without low prices it is impossible 

to deploy these devices in campus networks. However, the cost 

limitation should not degrade performance. 

• Isolation of experimental traffic from the production traffic – 

cohabitation of production and experimental network greatly depends 

on isolation between them. It is clear that production traffic must be 

well-protected against error prone experiments and tests conducted 

on experimental traffic. 

• Support of the black box concept – all mentioned requirements should 

be realized without revealing internal structure of the switch. This is 
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the only way in which vendor’s could agree to discuss implementation 

of any changes on their equipment. 

The enlisted four requirements are cornerstone characteristics of Open Flow 

switch, which is described in more details in the next section of this chapter.  

 

2.1 Open Flow Switch 

 

In today’s networks, Ethernet switches are used to connect different Local 

Area Networks (LANs). Their task is to forward Ethernet frames according to their 

Media Access Control (MAC) addresses. From the functional point of view Ethernet 

switches can be divided into a data plane and a control plane. The data plane 

represents a forwarding table according to which packets coming to an Ethernet 

switch are forwarded. Forwarding tables consist of entries which tell to which output 

port received Ethernet frames should be sent. Populating of forwarding table with 

these entries is the task of the control plane. The control plane is a set of actions 

exerted on received Ethernet frames to decide their destination ports. In order to 

quickly perform frame processing, these actions are implemented in hardware 

together with the forwarding table. This architecture, depicted on the left side of 

Figure 2.1, is known as the integration or coupling of data and control path (plane) 

and represents the main characteristic of today’s Ethernet switches. Coupled data 

and control plane provide fast execution of actions specified in the control plane, 

but does not offer any flexibility in control. In this environment, changing of control 

plane action would require hardware redesign and reintegration which is not flexible 

at all. 

In order to provide more controlling flexibility, the OpenFlow switch is 

designed as a generalization of an Ethernet switch with two big changes: separation 

of control and data plane and data plane abstraction using OpenFlow tables. 

The main idea of the OpenFlow is moving of control plane outside the switch. 

This is done in order to enable external control of the data plane through a secure 

channel. However, Ethernet switches are produced by many vendors and 

consequently their realizations differ a lot. Separation of control and data plane 
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results not just in external control

want, but also in a number of different data plane realizations. In order to be able 

to apply Open Flow vendor

abstraction of the data plane. To be general enough, this abstraction should contain 

only those things that are common for majority of switches. Luckily, although 

switches from different vendors differ a 

forwarding table. Consequently, Open Flow switches use Flow Tables to represent 

forwarding tables (data planes)

Figure 2.1 – Non-OpenFlow
control path (left) and OpenFlow Switch architecture 
Table and Controller, communicating over SSL using OpenFlow Protocol (right)

 Altogether, an Open Flow Switch comprises the fol

are also shown on right side of

  

• Flow table – that represents data plane of the switch. Structurally, it is 

a set of entries used to forward packets. From architectural point of 

view, it is a generalization of 

abstraction of data plane offered to remote cont

purposes.  

• Remote Controller

simple PC, server or any other kind of machine 

software defined by a researcher. The remote controller defines the 

behaviour of the sw

table. This is done mainly by adding or deleting entries.

• Secure Channel

controller and the flow table. It uses Open Flow Protocol which 

 

results not just in external controller on which we can run any type of control

number of different data plane realizations. In order to be able 

dor-independently, it is necessary to make a simple 

abstraction of the data plane. To be general enough, this abstraction should contain 

only those things that are common for majority of switches. Luckily, although 

switches from different vendors differ a lot, they all have one common thing, the 

forwarding table. Consequently, Open Flow switches use Flow Tables to represent 

forwarding tables (data planes) of various switches. 

 

OpenFlow Ethernet switch architecture with unified data and 
OpenFlow Switch architecture with separated Open
communicating over SSL using OpenFlow Protocol (right)

Open Flow Switch comprises the following components

on right side of Figure 2.1: 

that represents data plane of the switch. Structurally, it is 

a set of entries used to forward packets. From architectural point of 

view, it is a generalization of an Ethernet switch’s flow table,

abstraction of data plane offered to remote controller for controlling 

Remote Controller – represents control plane of the switch. It can be a 

server or any other kind of machine running control 

software defined by a researcher. The remote controller defines the 

of the switch by manipulating with entries inside the flow 

table. This is done mainly by adding or deleting entries. 

Secure Channel – is used for communication between the remote 

controller and the flow table. It uses Open Flow Protocol which 

Page 10 

ler on which we can run any type of control we 

number of different data plane realizations. In order to be able 

, it is necessary to make a simple 

abstraction of the data plane. To be general enough, this abstraction should contain 

only those things that are common for majority of switches. Luckily, although 

lot, they all have one common thing, the 

forwarding table. Consequently, Open Flow switches use Flow Tables to represent 

 

Ethernet switch architecture with unified data and 
separated OpenFlow 

communicating over SSL using OpenFlow Protocol (right) 

lowing components, which 

that represents data plane of the switch. Structurally, it is 

a set of entries used to forward packets. From architectural point of 

Ethernet switch’s flow table, i.e. an 

roller for controlling 

represents control plane of the switch. It can be a 

running control 

software defined by a researcher. The remote controller defines the 

itch by manipulating with entries inside the flow 

 

is used for communication between the remote 

controller and the flow table. It uses Open Flow Protocol which 
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specifies format of the messages exchanged between the flow table 

and controller. 

Prior to describing OpenFlow’s building blocks in more details, it is important 

once more to emphasize changes that OpenFlow has brought into Ethernet 

switches. Instead of having coupled control and data plane able to perform only one 

type of control, OpenFlow has separated the two planes. Moreover, it has 

abstracted the data plane with the Flow Table and offered it to the remote 

controller over the secure channel. In this manner, controlling has become 

completely independent of underlying data plane allowing much more flexibility. 

   

Flow Table 
 

As previously stated and represented in Figure 2.2, flow table is a set of 

entries. Each entry in the table has:  

 

• Header field - which is used for packet matching 

• Counter field - which is used for statistical purposes  

• Action field - stating one or more actions associated with a packet 

matched against an entry.  

 

Figure 2.2 - Flow Table with entries comprising headers actions and counters 

Every packet processed by an OpenFlow switch, must be compared against 

the entries in the flow table. If a match is found, specified action is taken (e.g. 

forward to a specific port). Otherwise, packet is forwarded to the controller which 

defines further steps according to the routing algorithm.  



 

July 2011 Page 12 

 

However, although OpenFlow switch provides per packet processing at a line 

rate, for the sake of performance it cannot provide per packet control. Namely, by 

decoupling control plane from the data plane, the ability to process control actions 

quickly has been lost. This means that controlling actions cannot be calculated for 

every packet. Instead of this, according to different options found in the header 

field, packets are grouped into flows and controlled as flows. Namely when a packet 

from a new flow comes to an OpenFlow switch, it is forwarded to the controller. The 

controller determines how the packet should be forwarded and puts that 

information in a new entry. The entry is added to the flow table where it is used for 

the further packet look up. Every following packet from the same flow will be 

forwarded according to the added entry without forwarding to the controller. In this 

manner, OpenFlow switch has traded controlling flexibility for controlling 

granularity. Instead of per packet control and zero control flexibility found at non-

OpenFlow Ethernet switches, an Open Flow switch has some of both properties. In 

this way the first requirement from the Chapter 2 has been fulfilled. Nevertheless, 

the described trade-off has introduced a new important concept, a packet flow. 

A packet flow, or simply a flow, is nothing more than a group of packets with 

similar properties. These properties can be represented as any subset of the fields 

defined in the header field of a flow table entry. The format of the header field is 

shown in Figure 2.3. 

In 

port 

Ethernet VLAN IP TCP/UDP 

Src. Dst. Type ID Prio. Src. Dst. ToS Src. Dst. 

Figure 2.3 - Header field of a Flow Table entry comprising: Ingress port, Ethernet 
source and destination address, Ethernet type, VLAN ID and priority, IP source and 
destination addresses and ToS bits and TCP/UDP source and destination port [6] 

As it can be seen from the figure, header field comprises many different 

fields including Layer 2, Layer 3 and Layer 4 parameters. Together, these fields 

provide wide flexibility in flow definition. Moreover, it offers a lot of possibilities for 

flow aggregation and separation of different traffic types. For example: a flow with 

specific source IP will catch the whole traffic from the device with that IP. If we 

additionally specify TCP port as 80, we can catch HTTP traffic generated by that 
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device. The same thing can be done for any other type of traffic which is always 

expected at certain port.  

Using the header format from Figure 2.3, when a packet comes to an Open 

Flow switch it is parsed and compared against the headers of all entries in the flow 

table. Matching algorithm follows the header structure from the Figure 2.3 and goes 

as it is presented in the flowchart shown in Figure 2.4. 

After packet parsing, as a first step, the ingress port, Ethernet source and 

destination addresses as well as Ethernet type are set. All other fields in the format 

from the Figure 2.3 are zero. The Ethernet type is first checked against value 

0x8100. If the match exists VLAN ID and PCP fields are added to the header and 

used for the look up. If this is not a case Ethernet type is checked against 0x0800 

to see if an IP packet is carried by the Ethernet frame. In the case of matching, IP 

source and destination address are added and used for table look up. Between 

these two steps, optionally, ARP check can be done. After IP, the next performed 

check is fragmentation check, i.e. if the IP packet is fragmented or not. In the case 

of no match, packet is looked up normally while in case of yes additional checks are 

provided. First is run check for transport layer protocol (UDP and TCP) and after 

that a check for ICMP protocol. For the former, UDP/TCP source and destination 

ports are included in the header while for the latter ICMP type and code fields are 

added. Header generated in this way is checked against all entries in the flow table 

[7]. 

If the match exists, action specified inside the action field of the matching 

entry is taken. Specification of the OpenFlow switch provides only minimal number 

of actions that has to be supported. List of actions can be extended, but this should 

be done with a lot of consideration. The list of supported actions has been chosen 

small such to provide reasonable amount of flexibility and generality [6]. In this 

manner price of the equipment is kept low, satisfying the second basic requirement 

of Open Flow switch (Chapter 2) and providing applicability to almost all available 

switches on the market. By extending the list of actions, generality could be 

jeopardized because Ethernet switches are very diverse and do not share a large 

group of common functions.  
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Figure 2.4 - Matching algorithm for packet checking against the flow table [7] 

 

Nevertheless, all actions that an OpenFlow switch can perform are divided 

into Required Actions and Optional Actions. As the names say, required actions 

have to be implemented in every OpenFlow switch. Depending on optional actions 

they implement, OpenFlow switches can be divided into two categories: dedicated 

OpenFlow switches and OpenFlow enabled switches. The architecture of these two 

types of switches is shown in Figure 2.5. 
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Figure 2.5 - Dedicated OpenFlow Switch (left) vs. OpenFlow Enabled Switch (right) 

 

• Dedicated OpenFlow switches – support only required actions. 

Required actions are:  

 

� Forwarding of packets to a specific port physical port - in order to 

provide forwarding across the network. 

� Forwarding of the packets to the following virtual ports: ALL – to all 

ports except for the incoming, IN_PORT – only to the input port, 

LOCAL – to the switch’s local networking stack (used for bypassing 

of the remote controller and direct control of the switch), TABLE – 

perform actions from the flow table and can be applied only to the 

packets sent from the controller and CONTROLLER – encapsulation 

and forwarding of the packet to the remote controller. This is 

usually done for the first packets in a flow, so called flow initiations, 

in order to decide whether a new entry should be added.  

� Discarding of packets – in order to be able to deal with broadcast 

traffic or denial of service attacks.  

However, as it can be seen, this switch does not have any mean to provide 

normal switch processing. It only executes control instructions from the remote 

controller. Because of that, up to today, dedicated OpenFlow switches have not 

found any significant practical importance.  

• Open Flow Enabled Switches – besides all required actions, support 

also the optional action “forward to the virtual port NORMAL”. This represents 

forwarding of the packets through the switch’s normal L2/L3 processing. 

Considering this, an OpenFlow enabled switch can be seen as a commercial 
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Ethernet switch enhanced with the OpenFlow features by implementing Flow Table 

and OpenFlow Protocol. The flow table implemented in this switch re-uses the 

existing hardware while OpenFlow protocol runs on switch’s operating system. This 

suggest that implementation of OpenFlow to the existing switches should not cause 

any hardware changes and thus can be done relatively easy and inexpensively, 

while preserving the black box concept. With this, it is clear that Open Flow Enabled 

Switches satisfy the fourth requirement from the list in the Chapter 2.  

The only requirement that is left and needs to be taken care off is the clear 

separation between production and experimental traffic. Namely, as OpenFlow 

Enabled switch can process incoming packets both as a “normal” and a researcher-

defined switch, we need a clear separation between traffic that is processed with 

the normal (production traffic) and with the researcher-defined switch 

(experimental traffic). In the most primitive way, this can be done by network 

administrator who can tag production and experimental traffic with different VLAN 

ID-s. In this manner, the two can be easily separated by flow aggregation. In 

practice this is done in different way outside OpenFlow, as it will be shown in the 

Chapter 4. Disregarding this for a moment and thinking about VLAN tagging as a 

traffic separation tool, it is clear that Open Flow Enabled switch fulfils all 

requirements necessary for achieving flexible but affordable control.      

Nevertheless, although all needed requirements can be implemented just 

with the optional action “forward to the virtual port NORMAL”, Open Flow specifies 

some additional optional actions. These actions can be used to increase 

management abilities of the remote controller defined on top of Open Flow Enabled 

Switch. They are:  

• FLOOD – action that performs packet forwarding according to the 

spanning tree protocol  

• MODIFY FIELD –action that allows changing of different header fields. 

This action can increases usefulness of the open flow very much. A 

possible application of this action is implementation of NAT tables.  

An OpenFlow switch reports the list of supported action to the controller when 

connecting to it for the first time. 
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Eventually, besides header and action field, a flow table entry consist also a 

field used for statistical purposes. It comprises a set of counters which are used to 

statistically describe operation of an OpenFlow switch. By observing these counters 

controller is able to monitor performance of the switch. Information obtained from 

these counters is used mainly for management decision making. These counters, as 

well as all other information kept in Flow Table, are communicated to the remote 

controller over the secure channel. 

2.1.1 Secure Channel 

 

Secure Channel is the interface that connects OpenFlow switch to the 

controller, Figure 1.1. Interface between the switch’s datapath and secure channel 

is implementation specific, but formats of all messages transferred across the 

secure channel must conform to the formats specified by OpenFlow Protocol [7].  

OpenFlow protocol specifies three types of messages: controller to switch 

(generated by the controller), asynchronous (generated by the switch) and 

symmetric (generated at both sides, without need for solicitation). 

Controller-switch messages are generated by the controller in order to manage 

or inspect the state of the switch. They include: 

  

• Feature messages - request and reply feature message through which 

controller learns about switch’s capabilities 

• Configuration messages – that are used to query or set configuration 

parameters of the switch  

• Modify State messages – that are used for addition/removal of the 

flows in the flow table  

• Read State messages – that are used to collect statistics from the flow 

tables, ports or individual entries  

• Send Packet messages – that are used to send a packet out specified 

port on the switch  

• Barrier messages - that are used to ensure that dependencies between 

different messages have been met. 
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Asynchronous messages are sent by the switch without controller soliciting for 

them. Four main messages of this kind are: 

  

• Packet-in message – that is sent when there is no matching entry or 

matching entry’s action specifies forwarding to the controller. If switch 

supports buffering, it usually buffers the packet and forwards only part 

of the header together with buffer ID. Otherwise, whole packet is 

forwarded to the controller.  

• Flow removed message – signalizes that a flow has been deleted as a 

result of timeout. 

• Port status message - reports port status change to the controller, no 

matter whether it was asked for or not.  

• Error message - notifies the controller that error has occurred 

Symmetric messages are messages that can be sent by both sides without 

solicitation. They include: 

 

• Hello message – that is sent by both controller and switch immediately 

after the connection set up. Using these messages, both sides send the 

version of the Open Flow protocol that they support in order to 

negotiate the highest version which is commonly supported. 

• Echo messages – are sent to collect the parameters of the connection. 

However, they are also used to keep alive the connection between the 

switch and the controller. 

• Vendor messages – that provide a standard way for offering additional 

functionality to the vendor.   

With Flow Table and Secure Channel described, the only part of the 

OpenFlow Switch left to discuss is the Remote Controller. Nevertheless, OpenFlow 

has been designed to offer flexibility in controlling so it does not specify any 

particular controller on top of the OpenFlow switches. Consequently, Flow Table and 

Secure Channel discussion rounds the description of OpenFlow protocol. With 

respect to that it should be clear that OpenFlow protocol is nothing more but a 
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communication protocol that enables some controlling flexibility by introducing 

architectural changes in packet switches. It is a set of messages which supports 

external control of switches. The controller choice is not part of the OpenFlow and it 

is left to the administrators and researchers. With respect to this, two different 

possibilities in controlling of OpenFlow switches will be discussed in the next 

chapter (centralized control) as well as in Chapter 5 (distributed control).  

  



 

July 2011 Page 20 

 

 

  



 

July 2011 Page 21 

 

3. Remote Control in Open Flow-enabled Networks 

 

On top of Open Flow switches, administrators and researchers have a 

freedom to implement any type of control. The only constraint they have is in the 

number of actions that can be used to control the switches. As it is mentioned in 

the previous chapter, Open Flow specifies only limited number of controlling actions 

divided into required and optional actions. Nevertheless, these actions can be used 

to build centralized as well as distributed control on top of Open Flow switches. In 

this chapter, Network Operating System (NOX) will be presented as an existing 

solution for the centralized control.  

 

3.1 Centralized Control in Open Flow Networks 

 

In the second chapter it has been shown that is possible to run experimental 

traffic on existing Ethernet switches alongside with production traffic. All that has 

been provided at relatively low cost while preserving black box concept and 

isolating experimental from production traffic.  

However, the original goal of the Open Flow has been to provide an 

environment which will allow two things: easy writing of control applications as well 

as their testing. Open Flow switches have made possible testing of control 

applications. The other part of the initial task, the easy writing of applications 

should be provided by controller. Hence, the goal is to create an Open Flow network 

management tool which will allow easy writing of control applications. For this 

purpose the researchers from Stanford University have designed a centralized Open 

Flow controller, the Network Operating System or shorter NOX [8]. Compared with 

network management solutions found in today’s networks, NOX represents a shift 

in network management approach. 

Namely, in today’s networks, network management is done as low level 

configuration that requires a lot of knowledge about underlying physical equipment. 

Controlling applications of today’s management tools have to deal with different 

kind of addresses (MAC, IP addresses…), a lot of topology information and so on. 
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For example: in order to block a user, the knowledge about its IP address is 

needed. For more complex tasks more knowledge about the network is needed. 

Consequently, it is clear, that this programming environment will not lead to 

blossoming of network controlling applications. However, this situation looks very 

similar to a problem that has been already seen (and solved) in the engineering 

world. 

As it is well known, in the early days of computers, programs were written in 

machine languages which did not provide any abstraction of physical resources. 

This has meant that programmers needed to take care of resource allocation, 

management and so on. Consequently, programs were difficult to write and 

understand. When introduced, operating systems provided programmers with an 

abstraction of physical resources (memory, processor, communication) and 

information (files and directories) allowing them to efficiently solve complex 

problems on different machines.  

     Comparing the two, it is obvious that today’s networks are “computers 

without an operating system” [8]. Considering this, NOX has been introduced as a 

kind of operating system for Open Flow networks. Although it has operating system 

in its name, NOX is more a programmable interface. Namely, the only thing that 

NOX does is abstraction of the underlying resources. Speaking about resource 

abstraction, it is very important to distinguish between abstraction done by 

OpenFlow and the one done by NOX. OpenFlow abstracts resources of a switch, a 

single network element, while NOX abstracts resources of a whole network.  

Unlike, computer operating systems it does not perform any resource 

management. Management or controlling of resources (in this case Open Flow 

switches) is done solely by application residing on top of NOX. NOX only gathers 

network information and out of them builds simplified network view which offers to 

the controlling applications as a centralized network representation. Hence, the 

precise description would be that NOX is a uniform and centralized programmable 

interface to the entire underlying Open Flow Network. To provide its main goal, 

easy writing of controlling applications, NOX is based on following two properties: 
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• Applications running on network OS should have centralized 

programming model, i.e. they should be written as if the network were 

a single machine. To provide this, centralized network state needs to 

be created.  

• Network OS should provide applications with highly abstracted physical 

topology view. This means that instead of IP and MAC addresses, 

applications will work with host and user names. In order to achieve 

this, mappings between abstracted view and physical parameters need 

to be updated constantly and regularly.  

These two features represent the shift in management approach that has 

been introduced at the beginning of the section. Instead of IP and MAC addresses 

as well as port numbers, controlling applications are written with highly abstracted 

host and user names. Moreover, network information is gathered by a single 

centralized device unlike today’s management systems where many devices gather 

local information and exchange them over complex distributed protocols. This shift 

from distributed to centralized approach clearly makes application writing a lot 

easier. However, it also brings some limitations and trade-offs that will be explained 

in the next section. 

 

3.1.1 NOX Components 

 

Components of a NOX-based network are depicted in the Figure 3.1. The 

system comprises several OpenFlow switches that are managed by a NOX controller 

running on one or more network attached servers. On these servers run NOX 

software and management (control) applications. NOX software includes several 

control processes as well as applications used to build and update unified network 

view. The network view is kept in a database. It is created by observing the 

network and offered to controlling applications running on top of NOX. All 

controlling decisions made by the applications are used to modify flow tables in the 

Open Flow switches and in that way manage the network.  
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Figure 3.1 - Components of a NOX-based network: Open Flow switches, Server with 
NOX controller and Database with Network View [8] 

One of the main components of the NOX-based network is Network View. 

Making of centralized network state is the main technical issue in NOX. Knowing 

that Network View is created by network observation, observation granularity is a 

very important system design issue. It is obvious that large number of real time 

changing parameters originating from large number of switches cannot be part of 

the network view. A single device cannot process all these parameters and keep the 

network view regularly updated. Trade-off between scalability and management 

flexibility is needed. Inclusion of larger number of network parameters, that change 

really fast, provides a lot of information about the network and its state. The more 

management information is available, the more controlling flexibility will be offered 

to management applications. In simple words, the more network parameters are 

available through the network view, the wider range of applications could be 

created. On the other hand, this limits scalability because all those information from 

large number of nodes cannot be maintained fast enough. By maintaining of 

Network View it is meant that network view should be updated regularly as well as 

mappings between abstractions used by applications and low level network 

parameters. Taking this in mind, observation granularity in NOX based networks 

has been chosen such that network view contains: 
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• Switch level topology 

• Locations of users, hosts, middle-boxes and other network elements  

• Services being offered (HTTP, NFS etc.).  

The scalability of the chosen network view is relative since it also depends on the 

complexity of controlling applications build on top of it. Hence, it is impossible to 

state explicitly how many switches a specific network view will be able to handle. 

Nevertheless, the chosen network view is able to provide adequate input for many 

network management tasks [8]. Information that it includes changes slowly and 

provides scalable maintenance in large networks. Justification for this choice of 

observation granularity can be the timing requirements. Considering them: 

 

• Packets arrive at the rate of ten millions per second for 10Gbs 

Ethernet link.  

• Flow initiations arrive at the rate one or two orders of magnitude lower 

than packets.  

• Network view, as specified above, experience approximately 100 

changes per second. 

By keeping packets and flows out of the consistent network view they can be 

processed in parallel. In this situation, a packet arriving to a switch is processed 

independently of a packet arriving to another switch. Hence each switch can 

process packets by keeping their state locally. Same thing stands for flow 

initiations. No matter to which control process flow initiation is forwarded, the 

controlling result will be the same. Consequently, the flow initiations can be 

processed in parallel by many different control processes since all of them share the 

same network view. This is very important for scalability because new control 

processes can be introduced by adding new servers.  

Besides observing granularity needed for setting up the network view, there 

is also an issue with controlling granularity. The controlling granularity specifies 

which actions controllers can use to enforce calculated controlling decisions. Unlike 

observing granularity which introduces some design decisions in NOX, controlling 

granularity is defined by underlying Open Flow switches. A set of required and 
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optional actions they offer to the controller (Chapter 2.1), defines controlling 

granularity. In addition to this difference, it is worth noticing that controlling 

granularity is a result of low price and generality vs. controlling flexibility trade-off, 

while observing granularity comes from scalability vs. controlling flexibility trade-

off.  

With both observing and controlling granularity specified, the network view is 

rounded up. The only thing needed is to present it somehow to the controlling 

applications. The interface that bridges network view and controlling application is 

described in the next section. 

 

3.1.2 NOX Programmatic Interface 

 

Programmatic interface specifies two things:  

• Information that NOX offers to programmers/researchers/network 

administrators such that they can program controlling applications 

• Means that programmers can use to modify the network view.  

Conceptually NOX’s programmatic interface is very simple. It revolves around 

events, a namespace and the network view [8]. 

Events – Network is a dynamic system in which some changes always occur 

(attachment/detachment of a node, link fail etc). NOX applications deal with these 

changes by utilizing event handlers which are registered to execute when a specific 

event occurs. The event handlers are executed according to their priority (set up 

during registration) and their return value indicate to NOX whether the event 

execution should be stopped or the event should be passed to the next registered 

handler. Events can be generated by both OpenFlow messages (packet in, switch 

join, switch leave, statistics received) and NOX applications by processing low level 

events or other applications’ events.  

Network view and namespace – Network view and namespace are 

constructed and maintained by a set of control applications so called base 

applications. These applications perform user and host authentication and conclude 

host names by using DNS. High level names which are bound to the host names 
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and low level addresses allow topologically independent writing of applications. 

Conversion between the two can be done by “compiling” high level declarations 

against the network view in which manner low address look-up functions are 

produced. Considering that high consistency of network view is a must do, 

applications write to the network view only when a change is detected in the 

network. 

With these three means, programmers are enabled to write applications 

whose results will be controlling commands to the underlying OpenFlow switches. 

According to the OpenFlow architecture and concepts controllers are allowed to 

read/delete entries from the flow table and obtain statistics by reading counters 

within an entry. In this way full control over L2 forwarding is achieved as well as 

packet header manipulation and ACLs (Access Network List).  

Specified like this, NOX today represents the most popular and widely used 

controlling interface for Open Flow devices. By sacrificing some controlling flexibility 

and allowing parallel control processes on top of consistent network view, it has 

succeeded to gather enough scalability for deployment in small networks, such as 

university campuses. For example, Stanford University has been running their 

production network on NOX controlled Open Flow switches for two years [8], [9]. 

Many other Open Flow islands, all around the world, are being created with NOX 

interface on top of them. 

However, everything described so far, including Open Flow and NOX 

controllers, assumed only one type of control on top of our testing infrastructure. 

Principally, Open Flow can support various types of controllers, but from its point of 

view not simultaneously. Consequently Open Flow is not a network virtualization 

tool, i.e. it cannot provide several virtual networks on top of OpenFlow switches. 

However, although not being by itself a network virtualization tool, it is a quite 

powerful tool for its enabling. The next chapter will introduce FlowVisor as a 

network virtualization tool inextricably bounded to OpenFlow. 
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4. FlowVisor  

 

FlowVisor is a network virtualization tool whose aim is to allow coexistence of 

multiple, diverse and mutually isolated logical networks on top of same physical 

infrastructure [9]. In terms of testing of research ideas, this is necessary in order to 

allow multiple researchers to conduct their experiments simultaneously and 

independently of each other. 

In order to better understand FlowVisor’s architecture and functional units, 

basic principles of computer virtualization will be shortly introduced. In computer 

virtualization, the instruction set provides abstraction of hardware resources. On 

top of it, some virtualization tool (e.g. Xen) performs slicing and sharing of 

abstracted physical resources. In this manner different guest operating systems can 

be supported on top of same physical infrastructure. This is depicted in the left part 

of Fig. 4.1. 

Similarly, FlowVisor as a network virtualization tool also requires some kind 

of hardware abstraction. The abstraction should be easy to slice and general 

enough to encompass various devices. Considering that OpenFlow fulfils these 

requirements it has been chosen as a hardware abstraction tool on which FlowVisor 

is based. Consequently, it is now clear why at the end of previous chapter 

OpenFlow has been described as an enabling tool for network virtualization. 

Having the OpenFlow as its enabling tool, FlowVisor collocates itself in 

between the OpenFlow and remote controllers. Its job is to slice provided 

abstracted hardware (Open Flow tables) such that it can offer isolated infrastructure 

portions to the controllers above itself. Prior to considering how FlowVisor does this, 

it is necessary to specify which resources need to be abstracted and sliced within 

network virtualization process. 

As it is shown in Figure 4.1, network virtualization is nothing more but the 

virtualization of network resources. While in computer systems Central Processing 

Unit (CPU), memory and input/output interfaces are virtualized, network 
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virtualization requires abstraction of: traffic, topology, forwarding tables, switch 

CPU time and bandwidth. 

 

Figure 4.1 - Architecture of computer virtualization environment (left) compared 
with the architecture of network virtualization environment (right) emphasizing 

basic building block of general virtualization tool (centre) [9] 

Selection of resources that should be abstracted is based on the fact that 

abstraction should provide only the necessary information about a network. In 

every representation of a network, its topology and traffic are inevitable factors. 

Bandwidth (data rate) is needed for traffic transportation while forwarding tables 

and switch CPU time are selected based on forwarding mechanism provided by 

OpenFlow switches. Virtualization of these resources means that every logical 

network provided by the FlowVisor should have its own topology, traffic, bandwidth, 

forwarding tables and switch CPU time. As, previously said, the first step in this 

virtualization is hardware abstraction and it is performed by OpenFlow. It offers 

flow tables as representations of switches and flows as abstraction of traffic. How, 

with this inputs, FlowVisor succeeds to virtualize a network over the five mentioned 

dimensions (traffic, topology, bandwidth, forwarding tables and switch CPU time) it 

will be shown in the next sections of this chapter. 
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4.1 Design goals  

 

Main design goals of Flow Visor are: 

• Flexible definition of virtual networks – since there is no clear idea 

what do we need on top of our physical infrastructure, resource 

allocation and sharing should be flexible enough to support creating of 

highly diverse virtual networks. Virtualized networks are supposed to 

be used for testing of new controlling solutions, so it is of utmost 

importance that they can be allocated with arbitrary topology, amount 

of bandwidth, traffic, switch CPU time and forwarding table entries. 

• Transparency - Both controllers and physical layer should not be aware 

of virtualization layer. A controller should act as it controls the whole 

network, while the network should act as it has only one controller on 

top of it. This is important for two reasons. Firstly, network controllers 

should be designed on top of realistic topologies. By being aware of 

virtualization layer they are being designed for virtualization 

environment, not for the underlying real topology. Secondly, the aim 

of network virtualization is flexibility in control, which can be achieved 

only by maximal possible decoupling of control plane from anything 

residing below it. Consequently, virtualization layer should be 

transparent to controllers and network hardware. 

• Isolation – existence of multiple virtual networks is not a significant 

achievement unless they are securely isolated from each other. Only in 

that case they can be independent and only than it is possible to speak 

about multiple networks coexisting on top of same physical 

infrastructure.  

Fulfilling of these three goals, at the first look, does not satisfy all the 

requirements of network virtualization tool that were laid down in the Chapter 1.1. 

Out of specified six characteristics FlowVisor by itself provides only: isolation and 

flexibility. Programmability, heterogeneity, scalability and legacy support are 
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provided by OpenFlow while FlowVisor with its transparency only keeps them intact. 

Namely, programmability is provided by the OpenFlow through the support of every 

type of control that can be built with the specified controlling actions (Chapter 2.1). 

Scalability is the matter of controlling solution but the only solution specified so far 

(NOX controller platform) has taken it into account as a part of network view 

(Chapter 3.1.1). Heterogeneity and Legacy support are provided by OpenFlow’s 

generality, i.e. its ability to be implemented on wide variety of switches (Chapter 

2.1). Consequently, it is clear that OpenFlow plays a huge role in FlowVisor’s ability 

to act as a network virtualization tool. With the task and roles of FlowVisor and 

OpenFlow clearly specified and separated, it is time to describe how FlowVisor 

performs its part of duties. 

 

4.2 Working principle and architecture 

 

 

Figure 4.2 - FlowVisor architecture and functional units 

As it is depicted in Figure 4.2, FlowVisor has three functional entities: 

Resource Allocation Policy, Translation and Forwarding [9]. Residing on top of Open 

Flow, it only sees OpenFlow tables as abstractions of physical switches and flows as 

abstractions of traffic. These two together with bandwidth, topology and switch CPU 

time are partitioned by Resource Allocation Policy entity and assigned to different 

controllers. In this manner FlowVisor create slices keeping at the same time each 
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slice’s policy. Slice policies are descriptions of virtual networks and they contain 

information such as which traffic or flow table portion controllers are allowed to use. 

Consequently, when a message from a controller comes to the FlowVisor, it knows 

which slice that controller belongs to (slices and controllers have 1:1 relation). It 

checks with the slice whether the controller is allowed to perform the action carried 

within the message. If it is not allowed, FlowVisor rewrites the message according 

to its slice policy. This rewriting is done by Translation functional unit. Similarly, 

when the FlowVisor receives an OpenFlow message from a switch, it checks all the 

policies to see which slice the message should go to. After the checking, the 

message is delivered only to the slice whose policy matches the message 

description. This is performed by the Forwarding functional unit. In this manner, 

using the all three functional units, FlowVisor assures that every controller gets and 

modifies only the traffic assigned to its slice, i.e. it performs traffic isolation. 

Consequently, it is clear that FlowVisor acts as a transparent OpenFlow proxy that 

speaks OpenFlow with both OpenFlow switches and controllers. By intercepting 

messages from both parties and rewriting/forwarding them it is able to provide 

coexistence of many isolated slices on top of same physical architecture.  

 Each virtual network is described by its slice policy which in essence is a text-

configuration file [9]. Slice polices generally contain information about assigned 

traffic, network topology, allocated bandwidth, CPU switch time and forwarding 

table entries. They are results of network resources partitioning which is together 

with isolation of portioned resources main task of virtualization. Since FlowVisor 

virtualizes five resources the task can be divided into five subtasks: traffic 

virtualization, topology virtualization, switch CPU time virtualization, flow table 

virtualization and bandwidth virtualization. Each of them will be described in little 

bit more details starting with traffic virtualization.  

Being represented by flows, total traffic is partitioned by assigning different 

groups of flows to different networks. Each group of flows assigned to a particular 

virtual network is named a flowspace. Flowspaces are defined as sets of 

descriptions that consist of a rule and associated action. The rule defines the traffic 

while the action describes what should be done with that traffic. Possible actions 

are allow, deny and read-only where allow is used to permit full control on specified 
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traffic, deny to refuse it and read-only to permit reception but not control. While 

allow and deny are usually complementary and used for providing/prohibiting of 

control, read only is used for traffic monitoring purposes. 

 To provide a clear picture of slice policies and FlowVisor operation (in 

particular traffic slicing and traffic isolation) let’s consider an example in which a 

researcher that has a new protocol for control of voice traffic wants to test it in an 

OpenFlow network that is run by an administrator. Rather than assigning whole 

voice traffic to the researcher, the administrator gives him/her only the voice traffic 

of people (researchers) who decide to participate in the experiment by allowing 

experimental control of their traffic. This is done by specifying researcher’s 

flowspace as a set of entries: 

 

Allow: tcp_port=5060 ip=user1_ip 

Allow: tcp_port=5060 ip=user2_ip 

… 

where user1_ip, user2_ip … are IP addresses of researchers willing to participate in 

the experiment. Considering that researcher is not aware of flowspace existence, he 

thinks that he controls the whole network. At the controller he can issue a control 

action for traffic outside its flow space and send it to the switch. However, 

FlowVisor will intercept its message and rewrite it such to be applied only to traffic 

it is allowed to control. In this particular case OpenFlow will assure that every 

message from the controller applies only to the traffic with TCP port 5060 and IP 

addresses specified in its policy. Nevertheless, in some cases message rewriting 

cannot be done. If the researcher that controls voice traffic tries to exert a 

command on video traffic, his command will not be rewritten to apply to voice 

traffic. Such commands are rejected and error message is sent indicating that the 

requested flow cannot be added. Furthermore, besides taking care that controller 

modifies only its own traffic, FlowVisor will handle messages coming from the 

switches such that any packet with TCP port 5060 and specific IP addresses 

(use1_ip, user2_ip) goes only to the researcher.  
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On the other hand, the administrator will sent the rest of traffic to production 

network by specifying production network slice policy with: 

 

Deny: tcp_port=5060 ip=user1_ip 

Deny: tcp_port=5060 ip=user2_ip 

… 

         Allow: all 

This will result in rejection of experimental traffic and accepting of everything else 

that will be controlled and forwarded using production network mechanisms. 

Moreover, administrator can specify the third network which it can use for 

monitoring purposes. Its slice police should be: 

 

       Read-Only: all 

 

saying that monitoring network can receive all traffic but not exert on it any 

controlling functions. In this manner, by defining the three flowspaces FlowVisor 

slices the traffic while message intercepting and rewriting provide traffic isolation. 

With these two issues solved virtualization of traffic is fully provided.  

The next subtask, topology virtualization, differs a little bit from traffic 

virtualization. Unlike traffic, network topology is not an exhaustive resource that 

has to be shared among several users carefully preventing possible overlaps. 

Hence, instead of topology slicing and isolation it makes more sense to talk just 

about topology virtualization. Aim of topology virtualization is to provide slices with 

the possibility to run various virtual topologies. In non-virtual environment, 

topology discovery is done in two steps: device discovery and link discovery. Device 

discovery is done when a switch connects to a TCP port on which controller listens 

for connection requests. Creation of virtual topologies in terms of device discovery, 

FlowVisor provides by proxying the connections between switches and controller. 

When a slice owner (researcher) specifies topology he would like to run, FlowVisor 

accordingly just blocks/lets through TCP connections from switches to the 

controller. 
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 Considering the second part of topology discovery, the link discovery, things 

are a little bit different. Since link discovery is not specified by OpenFlow, FlowVisor 

so far only provides support for Discovery application which performs link discovery 

and management within NOX. As it will be described in Chapter 5.2, the Discovery 

application sends LLDP packets over all switch ports. These packets FlowVisor 

should deliver independently of assigned flowspaces. Namely, every slice (i.e. its 

controller) should be enabled to gather link information no matter which traffic it is 

allowed to control, i.e. FlowVisor should just forward LLDP packets. To provide this, 

FlowVisor recognizes the specific format of messages carrying LLDP packets and 

tags them with an ID representing sending slice. Once when such a message 

arrives to another switch, FlowVisor knows from the ID tag to which slice the packet 

should be forwarded. In this manner, both device and link discovery are enabled in 

each slice and topology virtualization is provided. 

When compared to topology and traffic, switch CPU time should be classified 

alongside the traffic as an exhaustive resource which needs to be sliced and 

isolated. However, as it will be shown, switch CPU time slicing cannot be separated 

from isolation. The main aim of switch CPU isolation is to prevent CPU overloading. 

The overloading of switch CPU does not lead to disrupts in forwarding. As long as 

flow tables are occupied, switches will perform forwarding of data. However, it will 

disable processing of new OpenFlow messages such as new flow table entries or 

LLDP messages. This will lead to link failures on logical level although there are not 

any physical problems on them. To avoid this problem, it is necessary to avoid 

monopolization of CPU time by particular data sources. Three main sources of load 

on a switch CPU are [9]: 

 

• Packet-in messages – these messages occur when a packet belonging 

to a new flow comes to the switch. Since there is no flow table match 

the packet has to be forwarded to the controller. However, prior to 

forwarding to the controller, all flow table entries have to be checked 

for possible match. This requires a lot of switch CPU resources and if 

these packets are frequent, they can overload the CPU. To prevent 

this, FlowVisor tracks the number of flow initiations per each slice by 
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counting packet-in messages. When rate of these messages exerts 

certain threshold, FlowVisor installs temporarily a flow which dumps all 

packets that does not have a match in the flow table. In this manner, 

flow initiation rate is limited for all slices. 

• Controller requests – are messages that controller sends in order to 

modify the forwarding table entries or query statistics. Amount of time 

these messages consume depends on message type and the hardware 

implementation of flow table. Since the discussion of the former goes 

out of the scope of this work and the latter is locked under the black 

box concept, it will not be discussed how much CPU time individual 

request consume. However, the controller can generate these as 

frequently as it wants without any limitations dictated by OpenFlow. 

Considering that these requests can lead to CPU starvation, FlowVisor 

also limits the rate of controller request messages.  

• Keeping of internal state – CPU is also used to process instructions 

that all switches uses for their own counters and processes. These 

processes are essential for normal functioning of non OpenFlow part of 

the switches and certain amount of CPU time has to be reserved for 

them. Nevertheless, this reservation is done by adjusting the two 

previously mentioned limits. 

Consequently, most of the job in virtualization of switch CPU time is done by 

limiting rate of packet-in and controller request messages. By limiting message 

rate, both slicing and isolation are performed at the same time proving that 

partitioning and isolation cannot be separated in case of switch CPU time, as it has 

been stated at the beginning of this subsection. As it can be seen, specification of 

even provisionary rate limits has been avoided since this highly depends on the 

switch’s internal hardware and its implementation. 

Network resource that is supposed to be virtualized in the fourth subtask is 

forwarding table. Similarly like switch CPU time, forwarding table virtualization is 

done by limiting the number of flow entries that each slice can have inside the flow 

table at any time. This is done for each slice by implementing a counter that is 

incremented every time a new flow is installed and decreased every time a flow is 
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deleted or expired. In this way, once the counter exceeds certain threshold, an 

error message is sent indicating “full flow table”. In this way slices are prevented 

from monopolizing forwarding table allowing each slice to obtain a share of the 

table. Consequently, forwarding table virtualization is provided in an elegant 

manner solving the fourth subtask of network virtualization.  

The last subtask is bandwidth virtualization. Although bandwidth is an 

exhaustive resource, its virtualization is not clearly divided into slicing and isolation 

procedure. Due to problems with precise bandwidth sharing in packet switching 

networks, bandwidth virtualization is based on mapping traffic flows to different 

QoS classes. These classes are defined using the three bit Priority Code Point (PCP) 

field of the VLAN tag. The field defines eight different classes of traffic and as it can 

be seen from Figure 2.3, it is a part of flow entry header structure. Characteristics 

of the eight QoS classes are not specified either by OpenFlow or by FlowVisor. Their 

definition is left to the network administrator. For example, by assigning traffic from 

a slice to a QoS class with higher minimal provided bandwidth we can give it more 

chances to compete with some high and constant bit rate traffic. In this way, the 

later is prevented from monopolizing the link bandwidth and bandwidth isolation is 

provided to some extent. Clearly, this way of isolation between slices is not totally 

efficient. But same as OpenFlow, FlowVisor is being developing trying to solve this 

problem.  In line with this, OpenFlow version 1.1 specifies additional QoS features. 

However, considering that the whole work has been based on version 1.0, these 

new features will not be discussed. However, the interested reader is highly 

encouraged to refer to [10]. 

Nevertheless, besides virtualization and isolation of the five resources the 

choice of OpenFlow as hardware abstraction tool introduces the necessity for 

virtualization of OpenFlow control channel. There are three reasons for this. Firstly, 

in non-virtualized environment, every OpenFlow message has a transaction id 

which is used for reliable transmission. Reply to a specific OpenFlow message must 

have the transaction ID carried by original message. In a virtualized environment it 

is possible that controllers belonging to two different slices create messages with a 

same transaction ID. If FlowVisor does not rewrite one of these two, it will not know 

to which of the two slices to forward the reply. Secondly, packets that are being 



 

July 2011 Page 39 

 

forwarded to the controller are stored in buffers on the switch. These buffers also 

have to be shared and isolated. Since they are represented by 32 bits buffer ID-s a 

disjoint set of these IDs is assigned to each slice. Finally, status messages 

generated by switches which are supposed to inform controller that port status has 

been changed need to be replicated at the FlowVisor and sent to all affected slices. 

 Eventually, with all dimensions virtualized it is worth noting that FlowVisor 

has not been exactly designed following the architecture framework laid down in 

Chapter 1.1. However, it is quite easy to put OpenFlow and FlowVisor in the 

architectural framework of a network virtualization environment that has been 

described there. With the exception of resource management, OpenFlow fully fits 

into the role of Infrastructure Provider. Moreover, taking into account that 

FlowVisor slices the abstracted resources and creates virtual networks, it can act as 

a service provider. However, it is should be noticed that control providing on top of 

the sliced resources is not the task of FlowVisor but different controllers. 

Consequently, it is not fully justified to denote FlowVisor as service provider. This 

departure from the architecture can be a result of the fact that FlowVisor and 

OpenFlow have not been developed in parallel as independent modules. On the 

contrary, OpenFlow has been specified first and then FlowVisor has been built on 

top of it. Nevertheless, this does not diminish the functionality and efficiency of 

FlowVisor and OpenFlow as the network virtualization solution in which OpenFlow 

provides hardware abstraction and FlowVisor extends it to a complete virtualization 

solution. 
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5. Distributed Control in Open Flow-enabled Networks 
 

Centralized control based on NOX, introduced in Chapter 3, so far is the only 

type of control used on top of OpenFlow devices. However, this does not mean that 

it is the best solution. Its inherently build problem of scalability is a good enough 

reason to consider advantages and disadvantages of other approaches such as 

distributed control. 

 

5.1  Scalability Issue in Centralized Networks 

 

Today, OpenFlow networks are deployed as university campus networks. 

These small networks can be successfully controlled in a centralized manner. The 

proof for this is the fact that SU runs their campus network with centralized NOX 

controllers [8]. However, as it and other OpenFlow networks grow they will have to 

deal with more and more traffic. Consequently, they are going to encounter many 

problems related with scalability. Namely, experiments in a centralized OpenFlow 

network have shown that a generic PC running simple MAC forwarding can handle 

around 100000 flow initiations per second [8]. Taking into account that number of 

flow initiations is two orders of magnitude lower than number of packet arrivals, 

this corresponds to a 10 Mbps link. Consequently for larger LAN networks, NOX 

needs to run on powerful servers or even cluster of servers. Servers available today 

are powerful enough to handle the requirements of current OpenFlow networks. 

Nevertheless, as OpenFlow gains on popularity, as networks expand and amount of 

traffic in the networks increases, the requirements will be harder to meet.   

Loosening of scalability restrictions can bring two benefits. The first is an 

increase in number of nodes connected to the controllers and the second is 

additional space for improvements in controlling granularity. Considering the 

second one, as it has been described in Chapter 3.1.1, packet state and flow state 

information have been omitted from the network view in order to allow more 

devices to connect to the same controller. In this way, network manager gets 

limited information about the network, what limits the possibilities of its controller. 
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By reducing scalability requirements it could be possible to introduce more data in 

the network view and provide researchers with more controlling flexibility in their 

applications.  However, scalability requirements cannot be loosen only by improving 

performance or increasing number of servers on which controllers run. Traffic is 

expected to grow at much faster rate than enhancements in processing speed of 

computers/servers. While it becomes much more difficult to produce faster 

processors, Cisco predicts fourfold increase of global IP traffic in the next five years 

[11]. Consequently, while piling up servers to allow more devices in OpenFlow 

networks it makes sense to consider abilities as well as requirements of distributed 

control in Open Flow networks. The next section of this chapter will be devoted to 

this issue. 

 

5.2 Benefits of Distributed Control 

 

Discussion about distributed control in OpenFlow networks necessitates 

topology and architecture a little bit different from the centralized networks. The 

architecture and topology used in this work, do not differ significantly from a 

general framework of distributed systems such as e.g. Internet routing. The 

considered topology supposes a set of Open Flow switches divided into N 

administrative domains (islands), which are controlled by a set of centralized 

controllers. Relation between Open Flow islands and controllers is a dedicated 1:1 

relation. Moreover, the controllers are interconnected forming a control network. An 

example of such a topology for N=3 is depicted on Figure 5.1. 

For simplicity, it is assumed that each controller runs an instance of the NOX 

operating system and same controlling applications. In this environment, the main 

aim of distributed control is to control packets not by one but all N controllers which 

are spatially distributed across the network. This means that every controller is 

supposed to be able to forward packets coming from its part of the network (i.e. its 

island) all over the network, independently of the island to which destination node 

belongs to. Obviously this improves scalability but at cost of increase in complexity. 

However, prior to performance discussion, the requirements for implementation of 

such a control system will be discussed.  
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Figure 5.1 - Distributed OpenFlow Topology with 3 islands and 3 controllers 

 

Introduction of distributed control plane and more controllers results in the 

need for control information exchange between them. This information exchange 

can be done in three different ways: in-band OpenFlow signalling, out-of-band 

OpenFlow signalling or by using a separate non-OpenFlow network. Usage of 

separate network introduces more stability into the system since control traffic and 

data traffic are fully separated. This can be important in case of misconfiguration of 

network parameters or failures in isolation between slices, since it leaves a path for 

intervention. In the cases of control signalling over OpenFlow ports (both in-band 

and out-of-band), these failures would leave network administrator without any 

possibility to intervene. Nevertheless, in properly configured and isolated networks, 

control signalling over OpenFlow ports can work without any problems.  

While in-band signalling supposes sending of control packets through any 

available port, alongside the data traffic, out of band signalling supposes sending of 

the packets to dedicated OpenFlow port(s). Implementation of in-band control 

signalling does not require any change in the Open Flow protocol specification, 

while out of band signalling results in minor changes to Open Flow port number 

enumeration definition [7]. Namely, dedication of small amount of OpenFlow ports 

to control traffic and marking them as CONTROL PORTS would enable out-of band 

signalling. Moreover, exact specification of ports from which control traffic can be 

sent or received would allow filtering of control traffic through flow aggregation. In 

this manner, for every CONTROL PORT, we could define a flow and thus have full 
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control over the control traffic. In order to implement this, only two minor 

modifications in the Open Flow specification are needed. The first one assumes 

extending ofp-port enumeration [7] such that ports with port numbers between 

0xfe00 and 0xff00 are specified as control ports. The extended enumeration would 

be: 

 

Enum ofp-port  { 

 /* Switch control ports – 0xfe00 to 0xff00*/ 

 

/* Maximum number of physical ports. */ 

 OFPP_MAX    = 0xff00 

 

 /* Fake Output Ports */ 

  OFPP_IN_PORT   = 0xfff8 

  OFPP_TABLE   = 0xfff9 

  OFPP_NORMAL  = 0xfffa 

  OFPP_FLOAD  = 0xfffb 

  OFPP_ALL   = 0xfffc 

  OFPP_CONTROLLER = 0xfffd 

 OFPP_LOCAL   = 0xfffe 

 OFPP_NONE   = 0xffff 

   } 

 

where the introduced change has been marked in italic. The other required change 

is modification of packet matching procedure such that ingress port of incoming 

traffic is first checked against CONTROL PORTS. If the match of the ingress port 

against CONTROL PORTS is positive, the received packet belongs to control traffic 

and should be routed by procedure specified for control traffic. Otherwise, packet 

belongs to data traffic and should be matched using the algorithm shown in Figure 

2.3. These two modifications would allow separation of control and data traffic. 

Moreover, this possibility combined with the Open Flow ability to support any type 

of control, provides a lot of flexibility in routing and protection of control traffic. By 
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being able to separate it from other traffic, network administrator can route the 

control traffic using a routing scheme that best fit traffic’s properties. Eventually, 

considering that out of band control channels bring negligibly small modifications in 

Open Flow and provide control traffic filtering and traffic specific routing, control 

channels in distributed control Open Flow networks should be implemented as out 

of band channels. 

Out-of-bad control channels between controllers are established over the 

control ports of OpenFlow switches residing inside corresponding OpenFlow islands. 

Nevertheless, only one switch per island is needed for this purpose, so called edge-

OpenFlow Switch. This fact brings the question of distinguishing between edge-

OpenFlow switches (OpenFlow switches with dedicated control ports) and normal 

OpenFlow switches. This issue can be solved by using Feature Request/Reply 

messages that switches use to advertise their capabilities. However, it requires one 

line extension in original ofp_capabilities enumeration [7]. The new enumeration 

should look like: 

 

enum ofp_capabilities  { 

 OFPC_FLOW_STATS  = 1<< 0 

 OFPC_TABLE_STATS = 1<< 1 

 OFPC_PORT_STATS = 1<< 2 

 OFPC_STP   = 1<< 3 

 OFPC_MULTI_PHY_TX = 1<< 4 

 OFPC_IP_REASM  = 1<< 5 

 OFPC_CONT_PORTS = 1<< 6 

    } 

 

where, once again, the change has been represented in italic. Consequently, by 

sending ofp_capabilities bitmap with seventh bit set switch can report to the 

controller that it is an edge-OpenFlow switch (i.e. the switch with OpenFlow control 

ports). Naturally, normal OpenFlow switches should have this bit reset.   

Establishing and testing of the control channels can be performed without 

any Open Flow modifications. Control channel establishing can be performed by 
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utilizing Open Flow Hello messages. These messages, introduced in Chapter 2.1.1, 

are normally exchanged between the switch and the controller to establish control 

channel between them. As specified in the OpenFlow specification [7], they contain 

only Open Flow header consisting of: 

 

o 8 bit value representing Open Flow protocol version. 

o 8 bit value representing Open Flow message type. (In this case it is 

Hello message type). 

o 16 bit value representing the length of the message, including the 

header. 

o 32 bit value representing transaction id. This id is copied in the reply 

message to facilitate pairing. 

Both switch and the controller are supposed to send this message as first 

messages transmitted over the channel. Upon reception, each side checks the 

protocol version field of the received message in order to check it against values it 

supports. If the check is positive, the connection proceeds with Feature Request 

and Feature Response Open Flow messages which the switch uses to communicate 

its features to the controller. After this exchange, channel is established and 

lightweight Echo messages are used to keep it alive. If one side does not support 

received protocol version, it must send a reply containing an error message. 

 The same concept can be easily reused for control channel establishing 

between two controllers. When a controller wants to connect to a neighbouring 

controller, it sends the Hello message over a specific CONTROL PORT (e.g. 0xfe11), 

Figure 5.2. The neighbouring node, upon reception forwards the packet to the 

controller which recognizes it as control traffic (since it was received on a CONTROL 

PORT). The receiving controller performs the protocol version check. When protocol 

check is passed, the controllers can start communicating, without sending Feature 

Request/Reply Messages. 
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Figure 5.2 - Message Flow describing one side of control channel establishment 
between controllers 1 and 3 

Testing of the control channel between controllers can be also done by 

reusing Open Flow messages used between controller and the switch for the same 

purpose. The Echo messages used for this purpose contain also only Open Flow 

header. However, compared to Hello message, they have different Open Flow type 

field and parameter of interest is transaction ID not the protocol version number. 

The Echo Request message is sent first. Assurance that channel is alive, is 

reception of Echo Response message that must contain transaction ID transmitted 

in the request message. Reception of such a message on a control port means that 

the channel is up. On the other side, not receiving the expected response message, 

within a certain period of time, would mean that channel is dead. In this case, the 

flow modification message can be used to change the output port of a failed 

channel (flow) to another available CONTROL PORT, yielding fast rerouting of the 

failed channel. 

 After control channel establishment, the path for control information 

exchange is paved. One of the most important data exchanged over control channel 

is topology information. Namely, in order to have a distributed control network that 

functions properly it is of utmost importance that complete topology is created at 

every node. This requires two actions: 

 

 

 

o Creation of local topology by every controller in the network 
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o Dissemination of local topology information towards all nodes in the 

network  

Creation of local topology can be done at every controller, independently of 

each other, using Discovery application defined as a part of NOX [12]. The 

application utilizes basic Link Layer Discovery Protocol (LLDP) packets in order to 

infer link connectivity. Namely, as a part of Feature Response message, the switch 

communicates to the controller the list of all its ports. Discovery application uses 

this list to create a LLDP packet for each port. The packets containing MAC address 

of the switch as well as port number identifier are periodically sent, iterating over 

all ports. In each period, only one LLDP packet is sent. When an Open Flow switch 

receives such a packet, it combines its MAC address and the ingress port identifier 

with received information, MAC address and egress port of the source switch to 

create a link association. Created link associations last for a certain timeout period. 

If they are not refreshed by reception of another LLDP message, the link 

associations are deleted after expiration of time out period. Using this simple 

application, every controller creates one part of its local network view. The other 

part are associations between addresses and names which are established in the 

same way as in NOX [12] and will not be discussed in more details. 

The second step towards the formation of global topology is the 

dissemination of local topology information in order to build global topology. This 

can be done by broadcasting local topologies over control channels. Once when 

every node has all local topologies, each of them can create its own global 

topology. However, considering that local topologies are dynamic, it is necessary to 

advertise over the whole network all changes occurring at the local level. Moreover, 

global topologies calculated at different nodes need to be checked against each 

other in order to have synchronized network view at all nodes. Only synchronized 

topology information can be offered to controllers for management purposes. 

However, this synchronization of topologies, together with initial dissemination of 

local topologies, requires a lot of information exchange between distant nodes. As a 

result of that the whole process is rather slow and unreliable, at least considering 

the solutions that are available at this moment. Consequently, dissemination of 
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local topology information over the network is considered as one of the biggest 

issues in distributed control networks.  

Unfortunately, Open Flow does not provide any mean which would fight 

directly with the problems of control information dissemination in distributed control 

networks. Nevertheless, it has a few interesting features that can be useful during 

design of control solution for distributed OpenFlow networks. Namely, it allows 

flexible aggregation of the traffic, full and easy separation of data and control traffic 

and a special routing for control traffic. It offers a possibility to use an existing or 

create a new routing scheme which will be completely adapted to the peculiarities 

of control traffic. Although they are useful, these features do not make a controlling 

solution for distributed OpenFlow networks. Moreover, a well accepted one, to the 

best of our knowledge, does not even exist.  

Without such a solution, comparing performances of Open Flow networks 

with distributed and centralized control is impossible. Nevertheless, the aim of 

discussion presented in this chapter has not been performance comparison between 

centralized and distributed control in OpenFlow networks. For that, we lack a 

distributed control solution whose performance should be compared to NOX 

performance. Designing of such a solution goes beyond the scope of this master 

thesis and could be a good topic for further research. However, the main goal of 

this chapter has been recognition of advantages and main problems in 

implementation of distributed control on top of OpenFlow switches. Consequently it 

has been concluded that: 

 

• The best control signalling scheme for OpenFlow networks is out-of-

band signalling. 

• The out-of-band signalling enables easy and fast separation of data 

and control traffic. 

• The control traffic can be routed separately from the data traffic in an 

arbitrary way which can be completely adjusted to its peculiarities. 

• Out-of-band control channels can be established and tested with only 

minor modifications of existing OpenFlow switch specification.  
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• Local topology can be discovered using LLDP packets and NOX 

Discovery application. 

• The main problem of distributed control is topology dissemination 

and that OpenFlow does not have any mean to directly solve this 

problem. However it can facilitate its solving by providing something 

that is not available in today’s networks: flexible aggregation of 

traffic and traffic specific control. 
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PART II – OPEN FLOW IN CIRCUIT NETWORKS 

 

6. Open Flow in Transport Networks 

 

Although Open Flow has been originally designed for L2/L3/L4 packet 

networks, there has been recently a lot of research effort to extend it to physical 

layer (L1/L0 layer) and transport networks. As the first step in clarification of this 

process, it is important to point out two fundamental differences between (non 

Open Flow) transport and packet networks: 

 

• Transport networks are circuit switching networks. This means that 

channels between communication ends are provided by circuit 

establishing and switching. Circuits are first negotiated and after that 

set up. Once set up, they offer guaranteed performance to the 

transmitted data since there is no packet processing and all data follow 

the same path. 

• Unlike packet networks that have integrated data and control plane, 

the control plane of transport networks has been always separated 

from the data plane.  

With these differences in mind, in order to explain how OpenFlow paradigm 

can be extended to transport networks, the guideline from the packet networks will 

be followed. 

 The first task of Open Flow in packet networks was the separation of control 

and data plane. However, traditional separation of data and control plane in 

transport networks implies that Open Flow implementation in these networks does 

not require any architectural changes.  

Once when the two planes were separated, the second step was the 

abstraction of data plane such that it can be applied to wide variety of switches 

from many different vendors. The same approach will be followed also for circuit 
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switches. In today’s networks there are many different circuit switches such as: 

SONET/SDH switches, wavelength switches (OXC), fibre switches etc. Though they 

are based on very different technologies, they have one thing in common, a cross-

connection table. The cross-connection table keeps information about cross-

connections existing in a circuit switch, i.e. which input port has been physically 

connected to which output port. The main idea of OpenFlow extension for circuit 

switching is to abstract data plane by representing cross-connection tables of 

different switches as OpenFlow tables with generalized bidirectional entries [13]. 

Each entry in such a table should represent a cross-connection in the switch. The 

format of these entries, compared with the format of an OpenFlow table entry from 

packet networks, is shown in the Figure 6.1: 

 

Figure 6.1 OpenFlow Switch Table entries for packet switches (up) and circuit 

switches (down) [13] 

The entries in the flow table of circuit switches contain the following information: 

 

• Input and output port 

• Input and output wavelength 

• Virtual Concatenation Group (VCG) 

• Starting Time-Slot 

• Signal Type 

While some of these fields such as In/Out port are used for all the switches, other 

fields like In/Out Lambda and VCG are used only with specific technologies. In/Out 

Lambda are specific for wavelength and fibre switches while VCG field is used in 

SONET/SDH switches. In this way there has been created a flow table that 

successfully abstracts a wide variety of physical switches. 
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 With physical layer abstraction done, the only thing needed to round up 

programming interface between data and control plane are controlling actions that 

management (control) applications can use to control the circuit switch. Since 

management applications do not see the full switch but the flow table as its 

representation and abstraction, the controlling actions are defined as actions which 

modify the flow table entries. These actions are: 

 

• Add flow – establish a new cross-connection (circuit flow) 

• Modify flow – modify an existing cross-connection (e.g. change its 

output port) 

• Delete flow – tear down an existing cross-connection (circuit flow) 

• Drop flow – terminate an existing cross-connection (circuit flow), 

meaning that data from the circuit flow are adapted to a packet 

interface [14] 

As it can be seen, the only actions that can be applied on an OpenFlow circuit 

switch are: establish, modify or terminate a connection. Compared to OpenFlow 

packet switches, in OpenFlow circuit switching there is no traffic forwarding to the 

controller. This important distinction comes from the difference in switching 

technologies and is very important for proper understanding of Open Flow circuit 

switches. 

Combined with Open Flow table representation of switches, these actions 

provide the controller with a possibility to flexibly control various circuit switches, 

independently of its technology and the vendor (assuming that vendors agree to 

implement OpenFlow on their equipment). To enable this, only a few modifications 

to OpenFlow specifications for packet switches are needed. These modifications are 

described in detail in [14]. The resulting architecture of OpenFlow Circuit Switch 

comprising: Data Plane, OpenFlow Table as its abstraction and OpenFlow controller 

on top of it is shown in the Figure 6.2.  

However, even without OpenFlow we had a possibility to establish and tear 

down circuits and use whatever control we want on top of our equipment. In that 

sense, OpenFlow does not introduce any novelties in transport networks. The real 

advantage of OpenFlow extension to transport networks is the ability to control 
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both packet and circuit switches with the same messages and controls, enabling in 

this way the convergence between packet and circuit networks. In order to 

understand importance of this accomplishment we will detour for a second from the 

OpenFlow and describe in more details the problem of packet and circuit network 

convergence. After that it will be described how OpenFlow can be used to control 

both packet and circuit messages. 

 

Figure 6.2 - OpenFlow Circuit Switch Architecture 

 

6.1 Packet and Circuit Network Convergence 

 

Packet (IP) networks and transport networks are very different networks. 

Their main differences are enlisted in the Table 6-1 given below. 

Packet networks have coupled control and data plane, meaning that lot of 

control functions are performed automatically (e.g. IGP routing) leaving only a few 

things that has to be managed manually (e.g. EGP routing parameters). Due to 

their switching technology they are “best effort”, dynamic and highly resilient 

networks. Transport networks on the other side have decoupled data and control 

plane, what means that there is no automated control at all. All management is 

centralized, manual and consequently slow. Due to that, networks are static or 

semi-static. However, switching technology allows reliable transmission with QoS 

guarantees. 

 It can be clearly seen from the Table 6-1 that two networks have completely 

opposite properties and requirements, especially regarding management issues Due 

to this, most network operators run and manage packet and transport networks as 

two separate networks. But what is wrong with that? What would be the benefits of 
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packet and circuit network convergence? In order to answer this question, a set of 

core IP/MPLS nodes will be observed as well as the possible ways to interconnect 

them. 

 

Table 6-1 Properties of Packet and Transport Networks 

 

6.1.1 Interconnection with direct IP and SDH links 

 

The simplest way of interconnecting core IP/MPLS nodes is via direct IP links 

Figure 6.3. This way of interconnection supposes encapsulation of IP traffic from 

router ports into Ethernet frames and their sending over a DWDM link from one 

router to another without any switching. After encapsulation, packets coming from 

the router’s port are converted to optical signals through a small factor pluggable 

module (SFP) transceiver and then transmitted over an optical channel. At the 

other end, the optical signal is converted to electrical (with another SFP module) 

and fed to the other router.  
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Figure 6.3 - Interconnection of 6 core routers into a full mesh topology using 15 
direct IP links 

The only advantage of this system is simplicity. On the other hand it has 

many disadvantages such as:  

 

• Efficiency - IP traffic shows bursty nature even when it is aggregated. 

Links between routers must be able to support traffic peeks what 

means that they are underutilized most of the time. 

• Large number of routing adjacencies - in order to connect N routers in 

a full mesh with direct links, each router needs to have N-1 links. 

• Restoration and protection – having only links as interconnections 

(without any intermediate switching) means that network reliability 

can be increased only by over-provisioning. In order to be effective, 

this requires a lot of spare resources.  

Routers interconnected in this way represent a packet network fully 

separated from the transport network. As it is described, the disadvantages of this 

architecture highly outweigh its advantages. To cope with this disbalance, SDH 

transport network links can be used as interconnections between IP routers, Figure 

6.4. Considering that in this architecture IP links are provided by transport network, 

it represents a solution that integrates packet and transport networks to some 

extent. 
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Figure 6.4 – Interconnection of IP routers using SDH links showing the reduction in 
the number of routing adjacencies  

 

This approach in interconnection of IP/MPLS routers supposes packing of IP 

packets into SDH frames (with prior point to point protocol (PPP) – high level data 

link control (HDLC) protocol encapsulation) and their sending over SDH links [15]. 

The SDH links are provided by a SDH transport network which comprises dense 

wavelength division multiplexing (DWDM) links with OEO conversion and electrical 

data processing in digital cross connects (DXC). The transport network provides 

SDH links by circuit switching what automatically reduces number of routing 

adjacencies and improves restoration. Namely, an IP router connected to a single 

SDH node can be switched to any other router. Compared with direct IP links, this 

reduces number of routing adjacencies N-1 times, Figure 6.4. Moreover, by utilizing 

the advantages of circuit switching and ring topologies, SDH networks are able to 

perform restoration in tens of milliseconds. Compared with direct IP links, 

improvement is clear. However, some major drawbacks are still present: 

 

• Scalability problem - Considering that IP/SDH has scalability problems 

even after 2.5Gbps [15], in order to cope with increasing traffic, 

operators need to install more SDH rings to increase network capacity. 

However, not just that deployment of new rings requires a lot of time, 

but it also increases operational costs (OPEX) as management between 

different rings is needed. 

• Same QoS for all types of traffic – SDH network, threats all types of 

traffic with the same high QoS level. This approach works, but it is not 
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efficient since some data does not need high QoS level assigned to 

them in this way. 

• Efficiency – the problem of link utilization neither SDH transport 

network can solve efficiently. SDH networks are able to establish links 

only semi-statically. This is due to long link provisioning times caused 

by both technical (element by element manual configuration of devices 

from various vendors that have different management solutions) and 

bureaucratic reasons (time spent on communication during circuit 

request and price negotiation). Consequently SDH links provisioning 

can last even several days, which is way too slow to handle millisecond 

bursts in IP traffic. 

Generally, although they offer improvements in restoration and number of 

routing adjacencies, SDH links struggle with a very important issue, efficient link 

utilization. However, this is not the only stepping stone towards their 

implementation. Management of a SDH transport network is vastly different than 

management of IP/MPLS routers that should reside on top of it. This means that the 

two networks have to be managed separately, with different protocols what 

increases operational expenses (OPEX). Depending on network topology and its size 

it is not always clear whether advantages of SDH network introduction are worth of 

additional expenses it produces (both CAPEX and OPEX). Consequently, direct IP 

links are still present in some networks as interconnections between IP routers.  

 

6.1.2 Interconnection with OpenFlow-enabled Optical network links 

 

Direct IP and SDH links are not complete solutions for interconnection of 

IP/MPLS core devices since they both have many important drawbacks. However, 

from the discussion about their pros and cons it is possible to derive requirements 

for a cost-efficient transport network used below the IP/MPLS layer. These 

requirements are: 
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• Scalability in order to follow constant increase of IP traffic 

• Fast circuit provisioning in order to deal with link utilization and 

restoration  

• A control plane that can be used for both IP/MPLS and transport 

network  

A transport network that satisfies these requirements would be a good match 

to IP/MPLS network residing on top of it. It would lead to the unification of two 

networks that would result in numerous improvements both to operators and 

customers. Customers would benefit from faster service provisioning and higher 

quality of service, while operators would have more flexible, efficient and reliable 

network together with significant decrease in expenses due to two reasons. Firstly, 

better link utilization would result in decrease of their number as well as the 

amount of network equipment (fibre, interfaces, SFP modules…). Secondly, unified 

control would eliminate one management tool from the network and produce 

significant reduction in expenses. Comparing all mentioned advantages (coming 

straight from the convergence of two networks) with the drawbacks of the “direct 

IP links” architecture (representing total separation between packet and circuit 

networks) it is clear why the convergence is highly desirable. Consequently, now 

when the reasons for convergence of transport and packet network are clear as well 

as the requirements for it, the transport network able to achieve convergence will 

be described. 

It has been recognized within the IT community that only optical networks 

will be able to deal with constant increase of IP traffic [16]. Optical link and 

switching capacities are widely recognized as the only possible solution for the 

scalability requirement specified above. Consequently, optical transport networks 

(OTN) are generally accepted as the transport networks that should reside below 

IP/MPLS devices. However, the selection of OTN as transport network does not 

facilitate significantly dealing with other two requirements for packet and circuit 

network convergence.  

In the last decade the most known solution that aimed to fulfil the two 

requirements has been Generalized Multi Protocol Label Switching (GMPLS) [16]. It 

is a set of protocols aimed to provide unified control of packet and circuit networks 
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and through it dynamic and fast circuit establishing and restoration. However, 

although being present for more than a decade it has not seen significant practical 

deployment yet. Furthermore, today it is considered more as a control plane for 

transport networks than a control plane unification tool [17].  

On the other side, OpenFlow as a novel approach and paradigm shows a lot 

of promises when it comes to the fulfilling of requirements needed for unification of 

packet and circuit networks. Namely, in packet networks Open Flow brings 

architectural changes. It decouples control plane from the data plane in order to 

introduce controlling flexibility. Furthermore, although it defines per packet 

processing it performs per flow control. Consequently, what controller sees are not 

packets but flows. In addition to this, OpenFlow abstracts packet switches with flow 

tables and manages them by modifying their entries. Similarly, in circuit networks 

Open Flow abstracts circuit switches with flow tables. A controller sees circuit flows 

(cross-connections) and manage them by adding/removing entries in the flow 

tables. Consequently, if we define Open Flow packet and circuit networks as 

networks consisting of Open Flow enabled packet and circuit switches and put their 

properties next to each other in a table, we will see some important similarities 

between the two (Table 6-2). 

 

Table 6-2 Properties of Open Flow Packet and Transport Networks 

 
Compared with the Table 6-1, which represents characteristics of non-

OpenFlow packet and transport networks, Table 6-2 shows several important 

changes. The first notable change is the switching granularity. While non Open Flow 

packet and circuit networks have dealt with packets and circuits, Open Flow 

equivalents of these networks both work with flows. The second big change is in the 

network architecture where Open Flow creates a full match between packet and 
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transport networks. These two similarities, together with the common flow table 

switch abstraction provide a base for unified control of packet and circuit networks. 

Namely, in a network with both packet and circuit OpenFlow switches a 

controller sees only OpenFlow tables. Independently of switch type, features, 

technology and vendor the switch is represented by an OpenFlow table. It is true, 

that packet and circuit switch tables are different and usually kept separate [14]. 

However, this does not make any problems to the controller since both of them are 

comprised of flow entries and both are managed in the same way, using the same 

messages and actions. The same thing stands for the difference between packet 

and circuit flows. They are represented by different structures and have different 

granularities but since they are controlled in a same way, these differences do not 

cause any difficulties. On the other side, comparison of Table 6-1 and Table 6-2 

shows clear difference in number of entries. However, control and management 

related characteristics have been deliberately left out from the Table 6-2 since Open 

Flow does not suppose any specific control on top of it. Choosing between 

distributed and centralized, manual and automated control and so on is left to the 

network administrator/researcher in order to adapt the control to the network’s 

needs. 

Eventually, Open Flow protocol offers unified control of heterogeneous 

networks that comprise both packet and circuit switches, independently of the 

equipment vendor. At the same time it provides wide flexibility in choosing the 

most suitable control mechanism. In this way, a transport network consisting of 

OpenFlow enabled optical switches shows ability to fulfil scalability and unified 

control plane requirements of the transport network specified at the beginning of 

this section (6.1.2). With these two problems solved, the only requirement left is 

fast circuit provisioning. To which extend optical OpenFlow transport network can 

satisfy the last requirement, will be described in the next section. It will be done by 

observing the transport network performance in its complete working environment, 

a unified packet and circuit OpenFlow network. 
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6.1.3 Abilities of Unified packet and circuit OpenFlow-enabled network  

 

Generally, a network comprising both OpenFlow-enabled packet and circuit 

switches (unified OpenFlow network) is supposed to have a topology like the one 

shown in Figure 6.5. In this topology OpenFlow packet switches form two or more 

administrative domains, called OpenFlow islands, while OpenFlow circuit switches 

are used to provide interconnections between the islands. These interconnections 

are supposed to be established between edge nodes in each island. The edge nodes 

are hybrid nodes that have both packet and circuit interfaces. Packet interfaces of 

each hybrid node are connected with packet switches from the island it belongs to, 

while their circuit interfaces are connected to the other hybrid nodes. 

 

 

Figure 6.5 - Unified Packet and Circuit OpenFlow Network [17] 

Nevertheless, discussing performance and abilities of the unified OpenFlow 

network is inextricably bounded to the control implemented on top of it. This 

immediately invokes the question of choosing between distributed and centralized 

controller. Since the OpenFlow circuit switches present an immature technology and 

cannot be found in the market, unified packet and circuit OpenFlow networks are to 

a great extent an unexplored topic. Consequently, as a simpler approach 

centralized control of all devices sounds like a better starting solution. 
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Using of centralized control on top of the described topology simplifies things 

a lot. Considering packet islands, their controlling does not differ at all from the 

control described in Chapter 3.1. The only novelty is that the packets can be 

forwarded to another island. When such a request arrives to the controller, i.e. 

when controller calculates that the packet should be forwarded to an address 

belonging to different island, it has to provide forwarding path over the circuit 

switches. To achieve this it requires: circuit network topology, routing algorithm 

and a way to signalize calculated route.  

 Circuit network topology in centralized controlling environment is mostly 

predefined. Preconfigured permanent or static links as well as all available (but not 

configured at the start up) links are provided to the controller prior to its running. 

Considering the topology, the controller’s job is only to update information about 

occupied and available links as new connections are established. Same stands for 

the available wavelengths in the network. The available topology information is 

used by a routing algorithm to calculate the path across the transport network. 

However, since its function is independent of the physical layer and OpenFlow, this 

topic will not be discussed in more details. Nevertheless, once when the path is 

calculated it has to be signalled, i.e. the switches on the path need to be 

configured. Signalling in the described environment is completely done by using 

OpenFlow messages. Configuring of circuit switches is nothing else but establishing 

of bidirectional cross-connections between its input and output port. As described in 

Chapter 6, this is done by sending a simple OpenFlow message which installs the 

corresponding flow entry in the flow table of the switch. 

Taking all three steps into account, it is obvious that dynamic establishing of 

circuits across the transport network is possible in Unified OpenFlow networks. This 

feature combined with other OpenFlow characteristics introduces the following 

possibilities: 

 

• Creation of dynamic packet links – being provided over dynamic circuit 

links, packet links between routers can be provided at the similar 

speed as circuit links, i.e. with a negligible delay. Moreover as a result 

of centralized control decisions, new links do not have to be 
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disseminated across the network. Consequently, there are no 

convergence times which are encountered in distributed systems. In 

other words, having link establishing which is non-disruptive to other 

flows decreases the link set up time and improves the dynamics of link 

set up/tear down procedure.  

• Dynamic Service-aware Aggregation and Mapping – Flexible flow 

aggregation is an inherit feature of OpenFlow packet switches. By 

specifying flows with the corresponding TCP/IP parameters it is very 

easy: to aggregate traffic coming from a certain user(s), to divide 

voice, data and video traffic or just put whole traffic together. For 

example: specifying a flow with TCP port 80 will aggregate web traffic 

from all users. In similar manner, voice and video traffic can be 

aggregated by specifying flows with TCP port 5060 and UDP port 1234 

respectively. Moreover, the described traffic aggregation is helpful not 

just for its easier handling but also to facilitate the problem of huge 

number of entries in core routers. However, the significance of flexible 

traffic handling gains on importance even more when it is known that 

OpenFlow devices can support different controlling mechanisms.  

• Application-Aware Routing – Using the benefits of first two features 

together with OpenFlow support of various controllers it is possible to 

create paths that are tailored to specific applications. While the second 

feature allows aggregation of application specific traffic (e.g. voice, 

data, video traffic), the dynamic packet link feature allows path 

creation according to different controlling mechanisms, totally adjusted 

to accommodate needs of application specific traffic we want to 

transmit. For example, for latency sensitive voice traffic there can be 

dynamically created a circuit over shortest possible path in order to 

minimize packet latency. For latency jitter sensitive video traffic a non 

shortest optical path can be created keeping the traffic in optical 

domain. Avoiding of routers and electrical processing in this case is 

important due to the constant latency requirement.  



 

July 2011 Page 65 

 

• Variable Bandwidth Packet Links - By monitoring bandwidth usage of 

the circuits that are used to build a packet link, new circuits can be 

dynamically added when they are needed. In this way congestion 

could be avoided leading to higher utilization of available links. For 

example, video traffic is much more “traffic hungry” than voice or http 

traffic and hence can much easier lead to link congestion. This can be 

monitored by checking how much buffer at the transmitting side is 

filled with packets. When certain threshold value is passed, procedure 

for establishing of a new link may be triggered.  

• Unified Recovery – With all routing information and decision making 

centralized it is possible to perform network recovery from failures 

according to specific needs of some services. For example, voice traffic 

can be dynamically re-routed (since it is relatively small and sensitive 

to latency, it should be quickly re-routed); video can be protected with 

pre-provisioned bandwidth while http can be re-routed over packet 

topology.  

As it can be seen, the enlisted features and abilities of unified OpenFlow 

networks include dynamic packet link establishing and its usage for restoration and 

dealing with the link efficiency. However, it is very important to distinguish between 

ability to provide dynamic links and the speed at which they are provided. Bursts in 

aggregated traffic are characterized with durations in millisecond region while 

proper restoration should be done within 50 ms time interval. Consequently, it is 

not enough to provide packet links dynamically. They have to be provided in tens of 

milliseconds times.    

 Unfortunately, these set up times still cannot be achieved [18]. However 

there should be taken into account that only couple of demo experiments with 

Unified OpenFlow networks have been done so far [17], [18]. Their aim has been to 

experimentally prove that above-described features are possible and this aim has 

been successfully fulfilled. On the other hand, improving of link set up times 

requires a dedicated research and can be an interesting topic for a further research.  

 Eventually, Unified OpenFlow Networks at the moment cannot satisfy all the 

requirements that have been placed upon them. The main problem of these 
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networks so far has been speed at which circuits are established and tore down. 

However, its immatureness, list of improvements that were achieved in just couple 

of years as well as its possibility to support various control mechanisms and ideas 

make it a good prospect for the future considering unification of packet and circuit 

networks. 

 

6.2 Alternative OpenFlow Solutions 

 

Unlike OpenFlow Packet switches that are currently produced by top network 

equipment vendors such as NEC, IBM, Juniper and Hewlett-Packard, OpenFlow 

Circuit switches are not available on the market. There are several reasons for this: 

 

• OpenFlow has been originally designed for packet switches. Only recently 

its extension to circuit switches have been considered. Consequently, 

developing of OpenFlow specification for circuit switches lags a lot behind 

specification for packet switches. Namely, while circuit switch specification 

is in draft phase [14], specification for packet switches has experienced its 

second implemented version [10]. Without clear specifications, there is not 

anything to be implemented.  

• Optical circuit switches required in Unified OpenFlow Networks are still 

immature devices with many unsolved and pressing issues. Consequently, 

vendors are more focused on solving of these issues than on enabling 

programmability of their devices. Prior to providing optical circuit switching 

technology with some additional functionality (such as OpenFlow), the 

technology should be first well established both in the market and in the 

field. Considering that there are no pressing urges for development of 

OpenFlow enabled circuit switches, vendors are still reluctant to enable 

their devices with OpenFlow functionality. 

Having this in mind and not being eager to wait for circuit switches vendors’ 

approval of OpenFlow, research community is trying to work with existing non-
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OpenFlow circuit switches and use them to connect OpenFlow islands. One such 

solution will be presented in the next section. 

 

6.2.1.   GMPLS-OpenFlow Interoperability 

 

 Discussion about integration of OpenFlow and GMPLS requires a short 

introduction about the latter. More details about it can be found in [16] and 

especially in [19], a book written by one of the fathers of GMPLS, Adrian Farrel.  

 GMPLS has originated as an extension of MPLS which in turn has been 

designed as an extension of IP routing aimed to provide virtual circuit switching at 

the IP layer. MPLS provides its goal using the concept of constraint based routing. 

In this concept, extended IP link-state routing protocols like Open Shortest Path 

First (OSPF) or Intermediate System to Intermediate System (IS-IS) are used to 

gather topology information. Their extension is needed in order to include available 

link bandwidth as a parameter in routing process. Topology information gathered by 

these protocols is used by Constraint Shortest Path First (CSPF) heuristic to 

calculate forwarding paths across the network. Calculated paths are established 

using the Resource Reservation Protocol (RSVP) protocol that configures the nodes 

along them. One by one, all nodes on the desired path are checked if they can 

reserve enough bandwidth as it is required. The last checked node sets the label for 

the required destination and informs the previous node. The label assignment 

process goes backwards. Once when labels are assigned, incoming packets that 

arrive to a MPLS domain are checked against routing table. When a match is found, 

the label from the matching entry is added to the packet and it is forwarded to the 

next hop. From that point on, packet is forwarded only according to its label, 

without looking into its content. 

 The described concept of path establishing, known as virtual circuit 

establishing, is quite similar to the circuit establishing of optical networks. 

Consequently, protocols utilized in MPLS have been extended under generalized 

MPLS umbrella, in order to be used in optical circuit switching networks. That 

resulted in a protocol set, known as GMPLS, which is able to control optical 

networks in distributed and automated fashion. Without going into details of all 
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protocols included into GMPLS suite, it is clear that GMPLS is a full controlling 

solution.  

 The fact that GMPLS specifies how control should be done, distinguishes itself 

very much from OpenFlow which leaves the control choice and design to 

researchers or administrators. Considering that the two have different aims it may 

sound wise to question the rightness of GMPLS incorporation under OpenFlow 

umbrella. However, in the absence of OpenFlow enabled optical switches it does 

make sense to try to use GMPLS controlled transport networks for lightpath 

provisioning between different OpenFlow packet domains. Furthermore, considering 

that GMPLS has been being developed for more than a decade, there are a lot of 

GMPLS test-beds at many research institutions around the world. Inclusion of this 

infrastructure to the global OpenFlow network would increase its capability 

significantly. At the end, if in some near future OpenFlow reaches global popularity 

and becomes widely accepted networking standard, by that time GMPLS can have 

some share of the circuit switching market and it would have to be included as a 

legacy technology. With these reasons in mind, there will be described an 

architecture for integration of OpenFlow packet islands and GMPLS transport 

network(s). 

In order to describe requirements for GMPLS integration with OpenFlow, 

there will be considered a topology that comprises two OpenFlow packet islands 

(domains) physically interconnected by GMPLS transport network links, Figure 6.6. 

The proposed architecture, assumes that all packet domains are controlled by 

a single NOX controller, which is responsible for topology discovery and packet 

forwarding inside the domains. The GMPLS transport network is controlled by 

GMPLS controllers independently of the NOX controlling mechanisms and routines. 

This means that the two networks are interconnected in an overlay model where 

the upper layer packet network, acting like a client, requests service from the lower 

layer GMPLS transport network, that acts like a service provider. The two do not 

have any visibility inside each other and the whole communication between them 

occurs via user-to-network (UNI) interface. Over it, NOX controller requests a 

GMPLS path, whose data GMPLS transport plane provides in the response. 
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Figure 6.6 - GMPLS network integrated with OpenFlow network in overlay model 

 

To support this topology, it is necessary to convert electrical signals from the 

packet switching domain to optical signals that are transmitted over the GMPLS 

network. This has to be done at the border of packet domains for every out-band 

connection towards other domains. The easiest way to achieve this is to use hybrid 

nodes that have both packet and circuit (optical) interfaces. Their packet interfaces 

can be connected to other switches from the domain while the optical interfaces can 

serve as connections to the ROADMs in the GMPLS network. Nevertheless, due to 

the fact that optical links usually carry more than one wavelength, optical interfaces 

are specified not just by port number but also by supported wavelengths on each 

port. This means that NOX controller cannot perform flow establishing by specifying 

only output port. To establish a flow both output port and selected wavelength on it 

need to be specified. Consequently, NOX has to be aware of ports with circuit 

interfaces what requires some changes in original OpenFlow specifications. More 

importantly, usage of the hybrid nodes beneath the NOX controller requires that 

they are OpenFlow enabled. Considering that OpenFlow enabled hybrid switches are 

not commercially available, their usage in integration of GMPLS and OpenFlow is 

not viable so far.  

Another solution for matching the gap between optical and electrical devices 

is to use optical transceivers after packet interfaces of the edge switch. To support 

more than one wavelength per GMPLS link, the transceivers need to be tunable. 

However, since tunable transceivers are still immature and very expensive, the only 

solution is to use fixed-wavelength transceivers. Usage of transceivers at different 
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but fixed wavelengths causes underutilization of GMPLS devices because in that 

environment they can work with only one wavelength per port. Nevertheless, since 

fixed transceivers are the only possible solution, they will be considered in the rest 

of the chapter.  

The existence of optical links after packet switching ports suggests that these 

ports cannot be treated like other packet switching ports. This fact yields several 

changes in the way NOX controller should treat edge nodes compared to legacy 

OpenFlow switches. Identifiers (numbers) of the ports that have transceivers should 

be provided to the controller prior to its starting. These ports should be observed as 

optical and kept separately from the electrical ports. Since NOX controller is 

implemented in Python programming language, the list of all “optical” ports can be 

stored as a nested dictionary. An example is given below: 

 

edge_switch_1 = {op1: [GMPLS_port1, lambda1], op2: [GMPLS_port2, 

lambda2], op3 : [GMPLS_port3, lambda3] …} 

edge_switch_2 = {op1: [GMPLS_port1, lambda1], op2: [GMPLS_port2, 

lambda2], op3 : [GMPLS_port3, lambda3] …} 

…. 

optical_port_list = {dpID_1: edge_switch_1, dpID_2:edge_switch_2,…} 

  

Dictionary optical_port_list contains descriptions of all optical ports from all 

domains. For the specified datapath ID of an edge switch, it returns another 

dictionary (edge_switch_X) which associates “optical” port identifiers (opX) with the 

list containing the corresponding GMPLS port and the wavelength used on the link. 

The separation of packet and “optical” ports can be justified by the fact that the two 

kinds of ports are used for different purposes. Namely, while packet ports are used 

for intra-domain forwarding, circuit ports are used solely for inter-domain exchange 

of information. Moreover, separation of ports according to their types prevents 

iterative sending of LLDP packets through the optical ports, restraining Discovery 

application function to the packet ports for which it has been designed. This 

restraint is needed due to two reasons. Firstly, sending of several light-weight 

packets over the optical ports in every second leads to severe underutilization of 
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GMPLS resources. Secondly, since these packets cannot be forwarded back to the 

NOX controller, link state cannot be inferred from them. Consequently, their 

sending over optical port is totally useless and must be prevented either by 

separation of packet switching and optical ports or in some other way. Since the 

separation can be provided quite simply, in this work, it has been proposed as a 

solution for this problem.   

 In the described environment, packet forwarding goes as it is depicted in 

Figure 6.7. When a packet is forwarded to the controller for the first time, there 

should be decided to which domain it is supposed to be forwarded. Performing of 

this task is highly dependent on an addressing scheme used inside domains. Since 

this is left to the administrator/researcher that writes the controlling application, it 

is impossible to provide general solution for distinguishing between domains. 

However, if OpenFlow packet domains are realized as IP networks, with all devices 

in the domain having the same network ID, the task can be done easily. With the 

use of IP source and destination addresses and the subnet mask information, it can 

be checked whether the network part of IP destination address matches the IP 

address of the domain in which it has originated. If the match exists, NOX controller 

can easily forward it according to the specified routing utilizing only packet 

switching ports (i.e. there is no need for involvement of optical ports and GMPLS 

service). In case that the match does not exist, packet should be forwarded using 

the service of GMPLS transport network. Nevertheless, in order to be able to extract 

IP address information from the packet, the whole packet has to be forwarded to 

the controller. By default, OpenFlow is configured such to forward only the header 

of a transmitted Ethernet packet (first 128Bytes), while the original packet is 

buffered at the switch. In this way, the amount of traffic exchanged between 

controller and switches is minimized, leading to faster performance. However, this 

forwarding can be configured by controller designer. Since the IP header, containing 

source and address destinations, is contained in the payload of the Ethernet packet, 

the whole packet has to be forwarded to the controller. This can be achieved by 

changing NOX file openflow.h in order to specify maximal number of bytes that are 

forwarded to the controller as 1538. 
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Figure 6.7 - Flowchart describing messages exchange during packet forwarding to 

another domain 

 With the whole packet at its disposal, the controller has all information it 

needs to decide to which domain the packet should go. When it decides to forward 

the packet to a domain different then the source domain, it requests service from 

the GMPLS transport network. For this, it should send a message that contains IP 

address of the destination node and the IP address of the interface through which 

source packet domain is connected to the GMPLS network. Since format of this 

message depends on GMPLS controller realization and is not restrained by 

OpenFlow protocol in any way, its implementation goes out of the scope of this 

work and will not be discussed in any more details.  

After the reception of this message, based on the requested destination 

address GMPLS performs routing, path selection and node configuration. Upon path 

establishing, GMPLS controller should communicate necessary details of the 

established path to the controller. Generally, these details should include: path ID, 

ingress switch port and wavelength as well as egress switch port and associated 

wavelength. Since in our case, wavelength and ports on “optical” links are mapped 

in 1:1 relation, it is enough to specify only the ports. Ingress and egress switch 

ports sent by GMPLS control plane to the NOX controller are real optical ports of 

ROAMDs. Since NOX controller does not see these devices and their ports, by using 

the mapping between packet port (opX in edge_switch dictionary) and optical port 

(GMPLS_portX in edge_switch dictionary), the NOX controller is able to identify the 

packet port over which it is supposed to connect to the specified GMPLS port. That 
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information (port ID) NOX controller puts in the ofp_flow_mod OpenFlow message 

used for establishing of new flows.  

 

struct ofp_flow_mod { 

struct ofp_header header; 
struct ofp_match match;    /* Fields to match */ 

uint64_t cookie;     /* Opaque controller-issued identifier. 
*/ 

 

/* Flow actions. */ 
uint16_t command; /* Bitmap specifying what is to be 

done with the flow: addition, deletion, 
modification */ 

uint16_t idle_timeout;    /* Idle time before flow expires 

(seconds) */ 
uint16_t hard_timeout;    /* Max time before flow expires 

(seconds) */ 
uint16_t priority;     /* Priority level of flow entry. */ 
uint32_t buffer_id;     /* Buffered packet to apply to (or -

1).*/ 
uint16_t out_port;     /* Port to which packet will be 

forwarded */ 
uint16_t flags;     /* Flags for management issues*/ 
struct ofp_action_header actions[0]; /* Action header specifying the action 

type*/ 
}; 

 
With the command bitmap set to ADD option (0x01 value) and out_port set 

to port number of packet port leading to the GMPLS port (e.g. op1) this message, 

installs the new flow and sets up the connection to the established path in the 

GMPLS network. The other parameters like idle timeout, hard timeout, priority or 

flags can be chosen according to administrator preferences. The same procedure is 

performed at the destination domain, where the corresponding edge node is 

configured in the same manner in order to connect established GMPLS path to the 

destination domain. 

In this way it is possible to integrate GMPLS networks with OpenFlow without 

any changes in OpenFlow and with only minimal modifications of the controller. 

Their interconnection using overlay model, means that fundamental problems in 

each layer will stay intact, but all the motives laid down in Chapter 6.2.2 will be 

fulfilled.  
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7. Virtualization of OpenFlow Circuit Switching Networks 
 

 

When it has been introduced in Chapter 6, extension of OpenFlow from 

packet to circuit switches has been justified by its ability to provide packet and 

circuit network convergence. However, considering that controller sees OpenFlow 

circuit switches as flow tables and manages them in the same manner like packet 

switches, it sounds reasonable to check whether FlowVisor can be used to virtualize 

circuit networks in the similar way like packet networks. Nevertheless, prior to 

investigating FlowVisor’s abilities in OpenFlow circuit switching networks, it will be 

explained shortly where virtualization of optical networks can be applied and why it 

has not been achieved so far.  

Within this work, network virtualization has been introduced and mainly 

considered as an enabling tool for testing of new research ideas. For this purpose, 

virtualization of packet networks on university campuses has been described. 

Virtualization of optical circuit networks owned by big telecommunications 

companies could also go under “enable innovation” umbrella, but telco operators 

have traditionally sought for more convincing reasons before allowing architectural 

changes in their networks. Their main “more convincing” reason has usually been 

an increase in their profit. Operators are not willing to jeopardize their current profit 

by installing new equipment, just to enable more research possibilities. In order to 

agree to virtualize their networks, they need to gain something more from it.  

First thing that operators can gain from network virtualization is reduction of 

expenses. With network virtualization they can run different service networks as 

virtual networks on top of same physical infrastructure. This could allow merging of 

existing voice, video and data networks onto same physical network. Moreover, it 

would make provisioning of future services much faster and cheaper. Instead of 

developing a new separate physical network, a new service could be provided on a 

virtual network.  

Besides using the infrastructure for providing its own services, with network 

virtualization operators can provide virtual networks to other customers in what is 

known as Infrastructure as a Service (IaaS). In this manner operators could provide 
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network resources (topology, bandwidth, links and QoS…) requested by another 

service provider in terms of a virtual network, allowing both arbitrary and specific 

control on top of it. An example of such interaction can be virtual optical networks 

used for grid computing networks. Namely, data gathered in big experimental 

facilities like Large Hadron Collider (LHC) are usually distributed and computed on 

different geographical locations. Scheduling of data computation is done by Joint 

Task Scheduler whose proper working requires flexible and reconfigurable networks 

with huge bandwidth links. Perfect match for this can be virtual optical networks 

leased from telecommunication companies [20].  

With these few short case-studies showing how telecommunication 

companies can benefit from virtualization of their optical infrastructure, it is clear 

that virtual optical networks are highly desirable. Their advantages have been 

recognized for some years by research community but not a single architecture 

proposal has been realized. The main reason for this has been the analogue nature 

of physical layer resources and transmission formats. Successful solutions for layer 

2 (L2) and layer 3 (L3) networks, such as VLANs and VPNs, are mainly based on 

discrete nature of L2 and L3 network resources and transport formats. These 

advantages do not exist in optical layer 1 networks which deal with wavelengths, so 

some new approaches have to be tried. Consequently, with the serious lack of layer 

1 virtualization solutions it is worth checking out whether FlowVisor on top of 

OpenFlow enabled switches can provide desired virtual optical networks.   

 

7.1 Optical Network Virtualization with FlowVisor 

 

FlowVisor has been designed as a virtualization layer for packet switches. 

However, it works with flow tables that represent packet switches. Consequently, it 

sounds reasonable to check whether virtualization of 5 networks resources (traffic, 

topology, bandwidth, switch CPU time and flow table) achieved in packet networks, 

can also work for Open Flow tables that abstract circuit switches. Nevertheless, 

although OpenFlow circuit switches encompass both optical (OXCs and ROADMs) 

and SDH switches, our attention will be focused on virtualization of optical switches. 

Reason for this is the fact that optical switches are seen as main and most 
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important devices of future circuit networks. Hence, from now on, term optical 

network will be used to refer to a network comprising of OpenFlow enabled OXCs or 

ROADMs.  

Considering topology virtualization in optical networks, approach is the same 

as in packet networks. The problem is again divided into two: virtual node 

discovery and link discovery. By proxying connections between switches and 

controllers, FlowVisor is able block or allow connection of a physical node to a 

particular controller. By blocking connection requests from the switches that are left 

out from the virtual topology and allowing others, FlowVisor is able to meet 

demands for arbitrary virtual topologies based on the real one. When considering 

link discovery between virtual circuit switches, there is no need for Discovery 

application used in packet networks. As it has been mentioned before, optical 

network topology is built using the static links that are provided at the start up. As 

new links are established or torn down the topology is dynamically updated by the 

controller. During this process FlowVisor does not have any special role. 

Consequently, this means that it can provide virtual topology virtualizing the first 

resource of optical networks.  

Same like topology, flow table virtualization in optical networks can be also 

done reusing the mechanism defined for packet networks. Being made of entries, 

flow table of an optical node can be virtualized by assigning disjoint subsets of 

entries to different virtual networks (slices), Figure 7.1. However, the big difference 

between circuit (optical node) and packet flow table entries is the granularity of the 

flows their represent. Namely, circuit flow entries are bidirectional entries that 

represent cross-connections between input and output interfaces of the switch. 

These interfaces are specified as [port, wavelength] pairs, so optical circuit flow is 

nothing else but a wavelength between two ports. The stated fact has two 

important implications. Firstly, in today’s systems a single wavelength can carry 10, 

40 or even 100Gbps what means that every optical flow entry represents much 

more traffic than its packet network peer. Secondly, by assigning a flow entry to a 

slice we are assigning a wavelength together with its associated spectrum. 

Consequently, by virtualizing flow table we implicitly virtualize available bandwidth, 

where available bandwidth is defined by total number of ports and wavelengths per 
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port supported in the optical circuit switch. Moreover, since resource allocation is 

dedicated (i.e. only one slice can use the assigned wavelength) and every 

wavelength works at exactly specified bit rate, every flow table entry has some QoS 

level guaranteed.  

 

Figure 7.1 - Flow Table Virtualization in OpenFlow Circuit Switches 

 

  Switch CPU time virtualization is also much easier to handle in optical than 

in packet switches. As it has been stated in section 4.2, in packet switches there 

are two possible data sources that can lead to CPU overload: packet-in messages, 

and controller requests. In circuit switches there is no checking of incoming data 

against the flow table entries. In addition to this, there are no packet-in messages 

so the first cause of CPU overload in circuit switches does not play any role CPU 

time virtualization. Unlike packet-in messages, controller requests exist also in 

optical switches. However, since there are no counters used for per packet and per 

flow statistics, rate of port status and other similar requests can be higher than in 

packet networks. Nevertheless, since controller does not have any limitation when 

generation of these requests is considered, it is capable of overloading the CPU. 

However, FlowVisor can prevent this easily by specifying maximal rate of controller 

requests for each slice. In addition to all this, circuit flows are established, torn 
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down, modified at much slower rate than packet flows so theoretically there should 

not be many problems with switch CPU overloading in OpenFlow circuit networks. 

Traffic virtualization in packet networks, as specified by FlowVisor, is done by 

defining slice policies which contain description of traffic every slice is allowed to 

control.  Since in circuit switches there is no traffic inspection, this approach cannot 

be utilized. Moreover, without any insight into traffic carried by each wavelength, 

the only traffic virtualization possible in circuit switches is assigning of traffic 

portions carried by each wavelength to a specific slice. Since this is done by flow 

table virtualization, it is clear that in optical switches: bandwidth virtualization, 

traffic virtualization and flow table virtualization are done in a single step. 

Considering that topology and switch CPU time virtualization are done without 

many problems, conclusion is that FlowVisor can be used to virtualize OpenFlow 

enabled circuit switches. However, it is questionable how efficient this virtualization 

is. 

Assigning of 100Gbps traffic portions to virtual optical networks can lead to 

the problems with efficient link utilization. Moreover, independently of traffic 

engineering algorithm used for putting packet flows into circuit flows, absence of 

finer granularities creates a lot of problems when it comes to flexible forwarding of 

traffic. In addition to this, the number of different wavelengths supported by 

today’s switches is pretty low. Consequently, total available wavelength pool is 

quite scarce what severely limits the number of virtual optical networks that can be 

created on top of available physical architecture.  

As it can been seen, optical network virtualization with FlowVisor running on 

top of OpenFlow enabled circuit switches has quite limited performance. However, 

all these limitations are not products of OpenFlow or FlowVisor’s characteristics. 

They result from the architectural characteristics of today’s optical switches. Their 

inability to provide granularities finer than a wavelength granularity makes optical 

network virtualization inefficient. A solution for these problems can be Optical 

Orthogonal Frequency Division Multiplexing (OOFDM) which aims to provide sub-

wavelength granularities by using overlapped orthogonal carriers running at lower 

speeds [21]. Since they are modulated and transmitted independently of each other 

they can be flexibly combined into optical links of different granularities ranging 
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from sub-wavelength to wavelength-band bandwidths. Nevertheless, this 

technology is highly immature and currently considers only single link transmission 

systems. Optical switches with sub-wavelength granularities, which are needed in 

order to speak about networks and network virtualizations, to the best of our 

knowledge, have not seen any serious architecture proposals. 

Eventually, FlowVisor and OpenFlow theoretically could virtualize optical 

switches available today, extracting out of them the performance they offer. For the 

fact that the extracted performance probably could not satisfy the needs of virtual 

optical networks, the two are not to be blamed for. As stated in the introductory 

part of this work, aim of virtualization is to create virtual devices and networks 

which will mimic the behaviour and performance of their physical representatives. 

Virtualization cannot go beyond performances of real devices creating something 

that does not exist in physical equipment.  
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8. Experimental Part 

 

In the previous seven chapters many concepts have been described and laid 

down, both for packet and circuit OpenFlow networks. This chapter describes 

results obtained during a familiarization with the architecture of a real system 

comprising OpenFlow-enabled packet switches, FlowVisor and NOX controllers.  

The equipment used for this purpose, both hardware and software, has been 

provided by Catalan research foundation i2Cat who were kind enough to let us 

experiment on their OpenFlow network. Providing of results that will be described in 

this chapter would be much harder without their help. Namely, today there are only 

a dozen of OpenFlow networks in the world. They are spread all over the world and 

act as independent OpenFlow islands. In such environment, “hands on” experience 

with OpenFlow switches represents a real privilege.  

 

8.1 Testing Environment 

 

The i2Cat's OpenFlow island, that has been used to conduct experiments 

described later in this work, comprises: 

 

• 5 NEC IP8800/S3640-24T2XW switches – The switches are Open Flow 

enabled running OpenFlow protocol version 1.0. Physically they have 24 x 

1Gigabit Ethernet ports and 2 x 10 Gigabit Ethernet ports. 16 ports are 

OpenFlow enabled while the others work as “normal” Ethernet ports. 

• 4 XEN virtualized SuperMicro SYS-6016T-T servers. Two of them have 2 x 

Intel DP Nehalem E5506 2,13GHz,12GB DDR3 RAM 2x 1TB HD RAID1, 6 x 

1GB Ethernet interfaces while the other two have 2 x Intel DP WestMere 

E5620 2,4GHz,12GB DDR3 RAM ,2x 1TB HD RAID1, 6 x 1GB Ethernet 

interfaces. 
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The switches are interconnected in a full mesh topology as it is shown in the 

Figure 8.1. On the figure they are represented by their extended MAC addresses 

(00:10:00:00:00:00:00:01 to 00:10:00:00:00:00:00:05), which are in OpenFl

terminology known as 64-bits 

IDs differ only by their last number, from now on, the switches will be referred to as 

Switch 1 – Switch 5. The switches are interconnected such that Switch 1 is 

connected to port 1 of other 4 switches, Switch 2 to port 2 and so on.

 

 

 

 

 

 

 

 

 

 

Figure 8.1 - Topology of the OpenFlow island used for experimentation
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Table 8-1 Interconnection between switches and servers in the OpenFlow island 

 The table shows that, for example, server March is connected to the port 12 

of the Switch 4 via its interface 2 and to the port 11 of the Switch 5 via its interface 

3. In this way out of 16 available OpenFlow ports at each switch 4 ports are used 

for interconnections towards other switches and two/one are used for connections 

towards the servers. The remaining 10/11 ports (depending on the switch) are not 

used in this configuration. 

 Considering servers and their connections, besides the two interfaces 

connected to OpenFlow ports of two switches, every server has one of its interfaces 

connected to a non-OpenFlow port on one of the switches. The purpose of this 

connection will be described later in this section as a part of discussion about 

controlling network.   

The described physical infrastructure, consisting of servers and switches, is 

offered to researchers through the controlling framework. The controlling 

framework virtualizes the physical infrastructure and offers it to various 

researchers. Namely, each switch is connected through the control network to the 

FlowVisor. The FlowVisor runs on VM hosted on one of the servers, but its exact 

deployment is not visible to researchers. Once when a researcher registers with the 

network administrator for the service of controlling framework, it can start creating 

its experiment. Inside the framework, researchers are allowed to create projects 

and within those projects: 
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• to add new members which will contribute their traffic to the experiment  

• to create various slices  representing different networks   

 

For each of its slices, the researcher is able to choose two types of resources: 

 

• OpenFlow switch resources – that represent OpenFlow switches and 

corresponding ports the researcher plans to use. By choosing these 

resources, the researcher generates network part of its virtual topology, 

i.e. nodes and links. 

• Virtualized server resources - that represent VM-s on various servers. 

Researcher creates these VMs by himself. They are pre-configured Linux 

Debian 6.0 machines which can be used: to run controllers, to act like 

traffic generators or sinks or for any other purpose.   

 

 After selecting these two types of resources, the next steps towards slice 

creation are flowspace selection and controller specification. The flowspace selection 

is supposed to be done right after choosing of OpenFlow resources. Its aim is to 

allow the researcher to specify the traffic which FlowVisor will assign to the slice 

and forward it to the corresponding controller. This traffic is specified as a set of 

flowspaces using the tables such as the one depicted in Figure 8.2. Each table 

specifies one flowspace where each slice can have an arbitrary number of them. As 

it can be seen from the Figure 8.2, within the tables the desired traffic is specified 

in terms of 9 fields found in Open Flow header (Figure 2.3). For each of the fields, 

values are specified as ranges from value1 to value2. 

Consequently, the flowspace defined in the Figure 8.2 specifies all packets 

with IP source address between 192.168.10.10 and 192.168.10.20. This means 

that any packet with an IP address belonging to the specified range is considered as 

traffic belonging to the slice. Accordingly, FlowVisor will forward it only to that 

slice's controller, performing traffic virtualization described in the previous chapter. 

Considering that there can be an arbitrary number of these tables within a slice, in 

order to get total traffic assigned to the slice the tables are XOR-ed. 
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Figure 8.2 - A Flowspace example specifying traffic with IP addresses from 
192.168.10.10 to 192.168.10.20 

 After selecting the traffic it wants to control, the researcher makes the 

selection official by issuing a request for the selected resources. This request needs 

to be approved by network administrator, after which the virtual network is almost 

complete. The only thing missing is the network control. To discuss its 

implementation in a little bit more details, here we consider the case of a 

centralized controller, the only type of control which has been used so far in 

OpenFlow networks.   

 In described environment the controller is supposed to run on a VM created 

on a server. As specified by OpenFlow and supported by FlowVisor, it can be any 

type of control. Independently of how the controller is implemented, there should 

be a connection between it and switches, i.e. all switches should be able to send 

packets to the controller and the controller should be able to modify tables of all the 

switches. Considering that this exchange must go over FlowVisor, the FlowVisor 

should have connections towards all the switches and a connection to the controller. 

While the connection towards the controller is not o problem, connecting the 

FlowVisor with the switches using direct connections might be a one. Namely, by 

using this way of interconnection, N switches require N interfaces on a machine 

(server) running FlowVisor. This automatically places high burden on the server 

running the FlowVisor and increases expenses. To avoid spending more money 

without essential improvement in performance, control channels from the FlowVisor 

towards the switches have been realized using a single direct connection from one 

of its interfaces to a non-OpenFlow port (“production” port) of a switch and 
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controlling network. The controlling network is a LAN network consisting of 

interconnections between switches over non-OpenFlow ports such that packets 

traversing it are forwarded using the normal L2 forwarding mechanisms. 

Consequently, no matter which switch decides to forward them to the controller, the 

controlling packets traverse the controlling network using L2 mechanisms until they 

reach the switch which has a direct connection to the FlowVisor. There they are 

forwarded to the FlowVisor which delivers them to the assigned controller. 

Nevertheless, as it has been previously said, FlowVisor and controlling network 

deployment are fully transparent to the controller. The only thing the researcher 

needs to do is create a VM, run controller on it and to specify to controlling 

framework at which IP address and TCP port the controller is listening for the 

incoming connection requests from the switches. FlowVisor uses this information to 

connect to the controller and transparently provide paths between the controller 

and the switches. Considering the controller itself, the VM comes with an installation 

of NOX which only needs to be compiled. Consequently, the researcher can develop 

its controller as a new NOX application or use one of reference NOX controllers 

shipped with the installation. In both cases, with the controller listening for the 

incoming connection requests and its address specified, the slice (virtual network) 

is ready for running.   

 Considering that i2Cat’s OpenFlow island is still under development, 

especially in terms of management software and server virtualization, it could not 

be used for anything more than familiarization with the architecture. Nevertheless, 

it provided a valuable insight into practical implementation of concepts discussed in 

Part I. 
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9. Conclusions 
  

In this work abilities of OpenFlow communication protocol have been 

investigated in both packet and circuit networks, as well as in the unified 

environment. After the introduction in which the need for a heterogeneous network 

virtualization tool has been stated, OpenFlow, NOX and FlowVisor have been 

introduced showing that only together the three of them form a complete network 

virtualization tool. To avoid possible misunderstandings and confusion between 

their roles, achievements of all three systems have been distinguished and clearly 

stated. It has been described in details that OpenFlow, as a communication 

protocol, provides only reasonable controlling flexibility on top of a single device. 

Easy writing of various applications on top of centralized network view has been 

credited to NOX, while FlowVisor has been recognized as a network virtualization 

tool based on OpenFlow. 

Following the scalability problem of centralized NOX, introduction of 

distributed control in OpenFlow packet networks has been considered. The resulting 

conclusion was that OpenFlow cannot directly solve the topology dissemination 

problem of distributed control. However, it has been also pointed out that with out-

of-band control it is possible to provide full separation of control and data traffic 

and to design control traffic routing scheme completely adjusted to control traffic 

peculiarities. Moreover, solutions for control channel establishing and testing have 

been proposed utilizing the existing OpenFlow mechanisms. All this has been 

considered for packet switching environment. 

In the Part 2, it has been shown that extending of OpenFlow to circuit 

switching environment, can lead to packet and circuit network convergence and 

various new features such as: dynamic establishing of variable size packet links 

across transport network, application specific aggregation, faster restoration and 

service aware routing. Moreover, it has been shown that interoperability between 

OpenFlow and GMPLS devices can be easily achieved in the overlay model. For 

realization of this model we have proposed separation of packet and optical ports 

on edge nodes which are to be kept in two separate Python dictionaries. 
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By reusing the FlowVisor concepts defined for packet networks, we have 

investigated applicability of OpenFlow and FlowVisor for virtualization of optical 

networks. Although it is possible and very easy to implement, we have made 

theoretical predictions that the resulting virtual networks will probably lack in 

efficiency. However, this problem has been credited to the limitations of today’s 

optical switching devices. Their inability to inspect the traffic carried within a single 

wavelength, causes efficiency problems in resulting virtualized networks. With 

respect to that, we have concluded that, in order to provide efficient and flexible 

solution working at sub-wavelength range, virtualization of optical networks must 

wait for new breakthroughs in optical devices.  

At the end, description of an existing OpenFlow island, comprising OpenFlow 

switches, FlowVisor and NOX controllers, has been described showing how financial 

issues can carve the theoretical architecture. 

Eventually, work presented in this thesis has opened many issues whose 

investigation can be continued in the future, either as a part of Master or PhD 

thesis. These issues include: 

• Testing of OpenFlow, NOX and FlowVisor scalability in the i2Cat’s 

OpenFlow island using the described architecture. 

• Implementing of out-of-band distributed control on top of OpenFlow 

packet switches, and its comparison with centralized control 

performance. 

• Using of UPC’s GMPLS test-bed to connect distant OpenFlow packet 

islands (e.g. OpenFlow islands in Catalunya and Brazil that collaborate 

within FIBER FP7 project). 

• Examining the possibilities of OOFDM in optical network virtualization. 
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