

Investigation and validation of the

OpenFlow protocol for next generation

converged optical networks

Master Thesis Report

July 2011

Student

Pavle Vujošević

Mentor

Salvatore Spadaro

Optical Communication Group (GCO)

Barcelona School of Telecommunication Engineering

(ETSETB)

Universitat Politècnica de Catalunya

Barcelona, Spain

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41804078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

July 2011 Page ii

July 2011 Page iii

Abstract

OpenFlow protocol is a new communication protocol which has attracted a lot

of attention among IT researchers in the last couple of years. With respect to that,

this work investigates its abilities and limitations in both packet and circuit

networks, as well as in the converged environment. For the packet switching

environment, the work clearly separates the roles and achievements of OpenFlow,

NOX and FlowVisor within the virtualization tool that comprises all the three.

Furthermore, the work introduces out-of-band distributed control of OpenFlow

packet switches by specifying advantages of out-of-band controlling and its

realization.

 Considering the extension to the circuit switching environment, the work

describes abilities of converged packet and circuit networks such as: dynamic

packet link establishing, application-aware traffic aggregation and service specific

routing. In addition to this, the overlay architecture for interoperability of GMPLS

and OpenFlow has been suggested and FlowVisor capabilities in virtualization of

optical networks have been investigated.

 At the end, the architecture of a real OpenFlow network comprising OpenFlow

packet switches, FlowVisor and NOX controllers has been described, emphasizing

detours from the theoretical architecture due to financial considerations.

July 2011 Page iv

Acknowledgements

 I would like to express my gratitude towards Professor Salvatore Spadaro for

proposing the initial idea of this work, for introducing me to the world of OpenFlow

and for guiding me throughout this project for the last 9 months.

 I would also like to thank the Catalan research foundation i2Cat for providing

their OpenFlow equipment and for their help during familiarization with the

architecture of their OpenFlow island.

 Special thanks go to my parents Mihailo and Vinka, my two brothers Danilo

and Marko and my girlfriend Sanja, for their unconditional support on this endeavor

of mine. At the end, I want to thank to my grandmother Marija for everything she

has done for me in my life. I know that you would be proud of me for getting here.

July 2011 Page v

Table of Figures

Figure 1.1 - Network Virtualization Environment [2] ... 3

Figure 2.1 – Non-OpenFlow Ethernet switch architecture with unified data and
control path (left) and OpenFlow Switch architecture with separated OpenFlow
Table and Controller, communicating over SSL using OpenFlow Protocol (right) ... 10

Figure 2.2 - Flow Table with entries comprising headers actions and counters 11

Figure 2.3 - Header field of a Flow Table entry comprising: Ingress port, Ethernet
source and destination address, Ethernet type, VLAN ID and priority, IP source and
destination addresses and ToS bits and TCP/UDP source and destination port [6] 12

Figure 2.4 - Matching algorithm for packet checking against the flow table [7] 14

Figure 2.5 - Dedicated OpenFlow Switch (left) vs. OpenFlow Enabled Switch (right)
 ... 15

Figure 3.1 - Components of a NOX-based network: Open Flow switches, Server with
NOX controller and Database with Network View [8]... 24

Figure 4.1 - Architecture of computer virtualization environment (left) compared
with the architecture of network virtualization environment (right) emphasizing
basic building block of general virtualization tool (centre) [9] 30

Figure 4.2 - FlowVisor architecture and functional units 32

Figure 5.1 - Distributed OpenFlow Topology with 3 islands and 3 controllers 43

Figure 5.2 - Message Flow describing one side of control channel establishment
between controllers 1 and 3 .. 47

Figure 6.1 OpenFlow Switch Table entries for packet switches (up) and circuit
switches (down) [13] ... 52

Figure 6.2 - OpenFlow Circuit Switch Architecture .. 54

Figure 6.3 - Interconnection of 6 core routers into a full mesh topology using 15
direct IP links .. 56

Figure 6.4 – Interconnection of IP routers using SDH links showing the reduction in
the number of routing adjacencies ... 57

Figure 6.5 - Unified Packet and Circuit OpenFlow Network [17] 62

Figure 6.6 - GMPLS network integrated with OpenFlow network in overlay model . 69

Figure 6.7 - Flowchart describing messages exchange during packet forwarding to
another domain ... 72

Figure 7.1 - Flow Table Virtualization in OpenFlow Circuit Switches 78

Figure 8.1 - Topology of the OpenFlow island used for experimentation 82

Figure 8.2 - A Flowspace example specifying traffic with IP addresses from
192.168.10.10 to 192.168.10.20 ... 85

July 2011 Page vi

July 2011 Page vii

Table of Contents

1. Introduction .. 1

1.1 Network Virtualization .. 2

1.2 Main Objectives of this project... 5

2. Programmable Packet Switches .. 7

2.1 Open Flow Switch .. 9

2.1.1 Secure Channel ... 17

3. Remote Control in Open Flow-enabled Networks 21

3.1 Centralized Control in Open Flow Networks ... 21

3.1.1 NOX Components .. 23

3.1.2 NOX Programmatic Interface .. 26

4. FlowVisor .. 29

4.1 Design goals ... 31

4.2 Working principle and architecture ... 32

5. Distributed Control in Open Flow-enabled Networks 41

5.1 Scalability Issue in Centralized Networks .. 41

5.2 Benefits of Distributed Control ... 42

6. Open Flow in Transport Networks ... 51

6.1 Packet and Circuit Network Convergence .. 54

6.1.1 Interconnection with direct IP and SDH links 55

6.1.2 Interconnection with OpenFlow-enabled Optical network links 58

6.1.3 Abilities of Unified packet and circuit OpenFlow-enabled network 62

6.2 Alternative OpenFlow Solutions ... 66

6.2.1. GMPLS-OpenFlow Interoperability ... 67

7. Virtualization of OpenFlow Circuit Switching Networks 75

7.1 Optical Network Virtualization with FlowVisor .. 76

8. Experimental Part .. 81

8.1 Testing Environment .. 81

9. Conclusions ... 87

10. Bibliography ... 89

July 2011 Page viii

July 2011 Page ix

List of Acronyms

ACL – Access Control List

BGP - Border Gateway Protocol

CAPEX – Capital Expenses

CIDR - Classless Inter-Domain Routing

CPU – Central Processing Unit

CSPF – Constraint-Based Shortest Path First

DNS - Domain Name Server

DWDM – Dense Wavelength Division Multiplexing

EGP – Exterior Gateway Protocol

GENI – Global Environment for Network Innovation

GMPLS – Generalized Multi Protocol Label Switching

HDLC – High-Level Data Link Control

HTTP – Hyper Text Transfer Protocol

IaaS – Infrastructure as a Service

IGP – Interior Gateway Protocol

InP – Infrastructure Provider

IP – Internet Protocol

ISP -Internet Service Provider

IS-IS – Intermediate System to Intermediate System

IT – Information Technology

LAN – Local Area Network

LHC – Large Hadron Collider

LLDP – Link Layer Discovery Protocol

MAC – Media Access Control

MPLS – Multi Protocol Label Switching

NCP - Network Control Program

NFS – Network File System

NGN - Next Generation Network

NOX – Network Operating System

July 2011 Page x

OEO – Opto-electro-optical

OOFDM – Optical Orthogonal Frequency Division Multiplexing

OPEX – Operational Expenses

OTN – Optical Transport Network

OXC – Optical Cross-connect

PAC.C – Packet and Circuit network Convergence

PC – Personal Computer

PCP – Priority Code Point

PPP – Point to Point Protocol

QoS – Quality of Service

ROADM – Reconfigurable Optical Add Drop Multiplexer

RSVP – Resource Reservation Protocol

SDH – Synchronous Digital Hierarchy

SFP – Small Factor Pluggable

SP - Service Provider

SONET – Synchronous Optical Networking

SU – Stanford University

TCP - Transmission Control Protocol

TDM – Time Domain Multiplexing

UDP – User Datagram Protocol

UNI – User-Network Interface

VCG – Virtual Concatenation Group

VLAN – Virtual Local Area Network

VM – Virtual Machine

VN - Virtual Network

VPN – Virtual Private Network

July 2011 Page 1

1. Introduction

Internet, as a global network, changes constantly. However, in the past

years changes in its core have been very rare. Main changes in this area occurred

some 20 years ago. These included changes from Network Control Program (NCP)

to Transmission Control Protocol (TCP) and Internet Protocol (IP), introduction of

Domain Name Server (DNS) instead of hosts.txt files as well as the introduction of

link state routing and Border Gateway Protocol (BGP). The last core change was the

introduction of Classless Inter-Domain Routing (CIDR) in 1993. [1]. There are two

main reasons behind the avoidance of core changes. Firstly, core changes require

huge modifications in both hardware and software which consequently necessitate

large investments. Secondly, core changes need to be implemented by all Internet

Service Providers (ISP-s) in order to take effect and it is very difficult to reach

agreement between that many companies/organizations. Considering that ISPs

have been investing money only when they have been faced with imminent

problems in their networks, the Internet has not seen any significant core change

since CIDR and 1993. Justification for more core changes prior to 1993 can be the

fact that the network has not been commercial at that time as well as not that

large. Consequently, core changes required less investment.

The absence of significant core changes in Internet has been recognized by

the IT community as ossification of Internet architecture [2]. Nowadays, this

picturesque phrase draws more and more attention. Namely, while evolution of

Internet has been halted for almost 20 years, the requirements placed upon the

network have dramatically changed. Today we have a trend of digital convergence

in which data, voice and multimedia traffic are supposed to be transmitted as IP

traffic. High definition video channels will put additional burden on IP networks and

it is a question whether Internet can cope with this. The new services have

introduced some new issues such as: IP Mobility, Quality of Service (QoS), IP

Multicasting etc. However, the problem with these issues is not the lack of

solutions. The solutions exist. IP mobility has been standardized for more than 10

years. IP Multicasting also has been around for many years. But since they require

July 2011 Page 2

architectural changes of Internet’s “bones”, neither one of them has seen network-

wide deployment. Despite this, as abovementioned problems become more

pressing day by day, deployment of solutions that require architectural changes

gains more and more attention. Considering that network-wide deployment of a

solution must be preceded by its exhaustive testing, another problem arises: “How

to test new solutions in today’s networking environment?”

 Traditionally, solutions for testing of new research proposals have been

physical testbeds. However, their inability to provide cohabitation of production and

experimental traffic severely limits their usefulness in case of wide-spread,

extensive and cost-efficient testing. Overlays on the other hand suffer from limited

flexibility. Being based on today’s Internet architecture, they are more a solution

for some fixes in existing architecture than a solution for a serious departure from

it. Since advantages and drawbacks of these two solutions are not primary

objectives of this work, the interested reader is highly encouraged to refer to [3] for

more details.

1.1 Network Virtualization

 For some years, the hot prospect for solving the testing problem of today’s

networks has been network virtualization. It has been widely recognized throughout

IT community as the fundamental feature of next generation networks (NGN) aimed

to eradicate ossification forces of today’s Internet [1], [2], [3]. The main idea of

Network Virtualization is providing of isolated logical (virtual) networks on top of

same physical infrastructure. This is done by decoupling the role of traditional ISP-s

into two parts:

• Infrastructure Providers (InP-s) - that manage physical infrastructure

and lease it through programmable interfaces to various Service

Providers, and

• Service Providers (SP-s) – that create virtual networks (VN-s) by

aggregating resources from several InPs. On top of aggregated

July 2011 Page 3

resources, service providers run any type of control they want

providing end-to-end services not just to end users, but also to other

providers.

 The described separation enables coexistence of heterogeneous virtual

networks that reside on top of the same physical infrastructure. An example of

network virtualization environment is shown in Figure 1.1.

Figure 1.1 - Network Virtualization Environment [2]

 From the Figure 1.1 it can be seen that service providers (SP1 and SP2) are

allowed to build different networks on top of the same physical infrastructure

offered by infrastructure providers (InP1 and InP2). This particular case shows also

that a service provider can lease parts of its network to another service provider.

End nodes U1, U2 and U3 although physically connected to the physical devices can

choose without any restrictions which virtual network(s) to use. In this

environment, they are allowed to connect to an arbitrary number of virtual

networks belonging to different service providers in order to obtain the desired

service.

 Following the described architecture, the main characteristics of a network

virtualization solution should be:

• Flexibility – meaning that every service provider should have freedom

to implement any topology, routing protocols and other controlling

July 2011 Page 4

mechanism on the resources it has leased from infrastructure provider.

Implemented control should not be restricted neither by underlying

physical infrastructure, nor by other virtual networks.

• Programmability – meaning that service provider should be able to

implement customized controlling protocols on leased infrastructure.

Programmability is indeed the enabling tool for the previously

described flexibility.

• Scalability – meaning that the number of virtual networks should not

be the limiting factor of the system. InP-s must scale to support

increase in number of virtual networks without affecting their

performance.

• Isolation – meaning that different virtual networks should be isolated

from each other such that operation of one does not affect the others.

This is especially important in cases of erroneous operation of a virtual

network.

• Heterogeneity – that can be divided into two categories: heterogeneity

with respect to underlying technologies and heterogeneity with respect

to virtual networks on top of these technologies. The former supposes

that various technologies comprising physical infrastructure should not

affect network virtualization process, while the latter specifies that

many heterogeneous virtual networks should be able to coexist.

• Legacy Support – supposes dealing with the question of backwards

compatibility which is very important every time when implementation

of new technologies is considered. This means that current Internet

network should be supported in the Network Virtualization

environment.

 Specified like this, network virtualization looks as a perfect solution for

building testing infrastructure for future networks. Nevertheless, since it is a broad

topic with many possible approaches only some aspects of network virtualization

will be considered in this work. The next section briefly outlines these aspects,

together with the motivation for their choosing.

July 2011 Page 5

1.2 Main Objectives of this project

 Being present for some years, the concept of network virtualization has

gained a lot of research attention resulting in many virtualization solutions. Some of

them are well known (VLANs, VPNs, Planet Lab), some are still being developed

(GENI, AKARI, CABO) but not all of them completely follow the above-described

characteristics. Most of network virtualization solutions are designed for specific

network technology (e.g. IP or SDH) or for specific layer (link, network or physical

layer). The comprehensive overview of network virtualization solutions can be

found in [2], while the focus of this work will be on presenting OpenFlow as an

enabling tool for full heterogeneous virtualization. Virtualization with OpenFlow has

been chosen since it is a relatively new approach which has recently gained a lot of

interest within the IT community. Its ability to be applied in both packet and circuit

networks as well as to provide flexible control, have been a good motivation to

explore the possibilities it opens. In line with this, the rest of material is organized

in the following manner.

 Introductory Chapter 1 is followed by first part of this thesis, Part I. In the

chapters 2-5, Part I deals with OpenFlow in packet networks. Chapter 2 introduces

the main concepts of OpenFlow: architecture, features and working principles while

Chapter 3 explains centralized control on top of OpenFlow. In Chapter 4, FlowVisor

will be described as a network virtualization tool based on OpenFlow. Considering

OpenFlow features laid down in Chapters 2-4, in Chapter 5 we have investigated

the possibilities of implementing distributed control on top of OpenFlow devices. As

a result of that, some advantages of distributed control implementation have been

pointed out together with its main problem. With this contribution, theoretical

discussion about OpenFlow in packet networks has been rounded closing the Part I.

Part II, in Chapters 6-8, extends OpenFlow to circuit switching networks showing its

abilities and limitations in the environment traditionally different from its original

one – the packet switching networks. Chapter 6 will discuss OpenFlow circuit

switches and their role in unification of packet and circuit switching networks using

OpenFlow. Besides this, it will contain our proposal of the network architecture for

interoperability between GMPLS and OpenFlow. Chapter 7 will provide our

July 2011 Page 6

investigation and conclusions on virtualization of Optical Networks using OpenFlow

and FlowVisor. By reusing the concepts from Chapter 4, applicability of FlowVisor to

OpenFlow-enabled optical nodes will be examined. Experimental part of the work

done in this thesis is sublimed in Chapter 8, representing familiarization with

OpenFlow packet switches and corresponding networks, in order to contest some

of the concepts laid down in Part I. Conclusions derived from presented material,

will be provided in Chapter 9 together with the proposals for future research.

July 2011 Page 7

PART I – OPEN FLOW

2. Programmable Packet Switches

In their attempt to fight with lack of experimental facilities for testing of new

research solutions, a group of researchers and visionaries from Stanford University

(SU) has recognized the importance of making open infrastructure which will be

used for running experiments within university campuses. Considering that most

campuses have networks based on Ethernet switches/routers, they have decided to

create programmable Ethernet switches. Taking into account that realistic

experiments require production traffic and environment, they have decided to run

experiments on production network devices alongside production traffic.

Nevertheless, experimenting on a production network raises several questions such

as:

• How to separate experimental from production traffic?

• How to allow researchers to control just their portion of experimental

traffic?

• Which functionality is needed to enable experimenting on a production

network?

One answer to these questions could be to force equipment vendors to open

their equipment by implementing programmable software platforms. In this way

both administrators and researchers would have what they need. Researchers could

program the switches through the interface provided by the vendor. This would not

cause any problem to production traffic so network administrators would have

nothing to worry about. Naturally, vendors are reluctant to give away their

technologies and proprietary algorithms in which they have invested a lot of money.

Moreover, by opening their boxes they are reducing the entry-barrier for

July 2011 Page 8

competitors and put their profit at risk. Consequently, this scenario is not likely to

happen in a foreseeable future.

The second solution could be to use one of the existing open platforms.

Unfortunately they lack in performance, port number or both. For example: a

simple PC offers several interfaces and an operating system over which applications

can be written to process packets in any way (full controlling flexibility). The

problem is that PC does not support a hundred or more ports needed in campus

networks and 100Gbps processing speed (PC offers up to 1Gbps). Another example

is NetFPGA, low cost user programmable PCI card which supports line rate

processing but has only 4 Gigabit Ethernet ports [4]. An ATCA-based programmable

router is a research project that satisfies both requirements, offering full

programmability, but currently is too expensive for widespread use [5].

Having in mind that commercial solutions, which offer full programmability,

do not satisfy performance requirements and research solutions (that also offer full

flexibility in packet control) that provide good performance are too expensive, the

researchers from SU have decided to trade off controlling flexibility for price

reduction [6]. Their solution, named Open Flow switch, has been designed to

provide:

• Reasonable experimenting flexibility – rather than full controllability,

aim was to provide several operations which will offer reasonable

flexibility in control.

• Low cost and high performances – without low prices it is impossible

to deploy these devices in campus networks. However, the cost

limitation should not degrade performance.

• Isolation of experimental traffic from the production traffic –

cohabitation of production and experimental network greatly depends

on isolation between them. It is clear that production traffic must be

well-protected against error prone experiments and tests conducted

on experimental traffic.

• Support of the black box concept – all mentioned requirements should

be realized without revealing internal structure of the switch. This is

July 2011 Page 9

the only way in which vendor’s could agree to discuss implementation

of any changes on their equipment.

The enlisted four requirements are cornerstone characteristics of Open Flow

switch, which is described in more details in the next section of this chapter.

2.1 Open Flow Switch

In today’s networks, Ethernet switches are used to connect different Local

Area Networks (LANs). Their task is to forward Ethernet frames according to their

Media Access Control (MAC) addresses. From the functional point of view Ethernet

switches can be divided into a data plane and a control plane. The data plane

represents a forwarding table according to which packets coming to an Ethernet

switch are forwarded. Forwarding tables consist of entries which tell to which output

port received Ethernet frames should be sent. Populating of forwarding table with

these entries is the task of the control plane. The control plane is a set of actions

exerted on received Ethernet frames to decide their destination ports. In order to

quickly perform frame processing, these actions are implemented in hardware

together with the forwarding table. This architecture, depicted on the left side of

Figure 2.1, is known as the integration or coupling of data and control path (plane)

and represents the main characteristic of today’s Ethernet switches. Coupled data

and control plane provide fast execution of actions specified in the control plane,

but does not offer any flexibility in control. In this environment, changing of control

plane action would require hardware redesign and reintegration which is not flexible

at all.

In order to provide more controlling flexibility, the OpenFlow switch is

designed as a generalization of an Ethernet switch with two big changes: separation

of control and data plane and data plane abstraction using OpenFlow tables.

The main idea of the OpenFlow is moving of control plane outside the switch.

This is done in order to enable external control of the data plane through a secure

channel. However, Ethernet switches are produced by many vendors and

consequently their realizations differ a lot. Separation of control and data plane

July 2011

results not just in external control

want, but also in a number of different data plane realizations. In order to be able

to apply Open Flow vendor

abstraction of the data plane. To be general enough, this abstraction should contain

only those things that are common for majority of switches. Luckily, although

switches from different vendors differ a

forwarding table. Consequently, Open Flow switches use Flow Tables to represent

forwarding tables (data planes)

Figure 2.1 – Non-OpenFlow
control path (left) and OpenFlow Switch architecture
Table and Controller, communicating over SSL using OpenFlow Protocol (right)

 Altogether, an Open Flow Switch comprises the fol

are also shown on right side of

• Flow table – that represents data plane of the switch. Structurally, it is

a set of entries used to forward packets. From architectural point of

view, it is a generalization of

abstraction of data plane offered to remote cont

purposes.

• Remote Controller

simple PC, server or any other kind of machine

software defined by a researcher. The remote controller defines the

behaviour of the sw

table. This is done mainly by adding or deleting entries.

• Secure Channel

controller and the flow table. It uses Open Flow Protocol which

results not just in external controller on which we can run any type of control

number of different data plane realizations. In order to be able

dor-independently, it is necessary to make a simple

abstraction of the data plane. To be general enough, this abstraction should contain

only those things that are common for majority of switches. Luckily, although

switches from different vendors differ a lot, they all have one common thing, the

forwarding table. Consequently, Open Flow switches use Flow Tables to represent

forwarding tables (data planes) of various switches.

OpenFlow Ethernet switch architecture with unified data and
OpenFlow Switch architecture with separated Open
communicating over SSL using OpenFlow Protocol (right)

Open Flow Switch comprises the following components

on right side of Figure 2.1:

that represents data plane of the switch. Structurally, it is

a set of entries used to forward packets. From architectural point of

view, it is a generalization of an Ethernet switch’s flow table,

abstraction of data plane offered to remote controller for controlling

Remote Controller – represents control plane of the switch. It can be a

server or any other kind of machine running control

software defined by a researcher. The remote controller defines the

of the switch by manipulating with entries inside the flow

table. This is done mainly by adding or deleting entries.

Secure Channel – is used for communication between the remote

controller and the flow table. It uses Open Flow Protocol which

Page 10

ler on which we can run any type of control we

number of different data plane realizations. In order to be able

, it is necessary to make a simple

abstraction of the data plane. To be general enough, this abstraction should contain

only those things that are common for majority of switches. Luckily, although

lot, they all have one common thing, the

forwarding table. Consequently, Open Flow switches use Flow Tables to represent

Ethernet switch architecture with unified data and
separated OpenFlow

communicating over SSL using OpenFlow Protocol (right)

lowing components, which

that represents data plane of the switch. Structurally, it is

a set of entries used to forward packets. From architectural point of

Ethernet switch’s flow table, i.e. an

roller for controlling

represents control plane of the switch. It can be a

running control

software defined by a researcher. The remote controller defines the

itch by manipulating with entries inside the flow

is used for communication between the remote

controller and the flow table. It uses Open Flow Protocol which

July 2011 Page 11

specifies format of the messages exchanged between the flow table

and controller.

Prior to describing OpenFlow’s building blocks in more details, it is important

once more to emphasize changes that OpenFlow has brought into Ethernet

switches. Instead of having coupled control and data plane able to perform only one

type of control, OpenFlow has separated the two planes. Moreover, it has

abstracted the data plane with the Flow Table and offered it to the remote

controller over the secure channel. In this manner, controlling has become

completely independent of underlying data plane allowing much more flexibility.

Flow Table

As previously stated and represented in Figure 2.2, flow table is a set of

entries. Each entry in the table has:

• Header field - which is used for packet matching

• Counter field - which is used for statistical purposes

• Action field - stating one or more actions associated with a packet

matched against an entry.

Figure 2.2 - Flow Table with entries comprising headers actions and counters

Every packet processed by an OpenFlow switch, must be compared against

the entries in the flow table. If a match is found, specified action is taken (e.g.

forward to a specific port). Otherwise, packet is forwarded to the controller which

defines further steps according to the routing algorithm.

July 2011 Page 12

However, although OpenFlow switch provides per packet processing at a line

rate, for the sake of performance it cannot provide per packet control. Namely, by

decoupling control plane from the data plane, the ability to process control actions

quickly has been lost. This means that controlling actions cannot be calculated for

every packet. Instead of this, according to different options found in the header

field, packets are grouped into flows and controlled as flows. Namely when a packet

from a new flow comes to an OpenFlow switch, it is forwarded to the controller. The

controller determines how the packet should be forwarded and puts that

information in a new entry. The entry is added to the flow table where it is used for

the further packet look up. Every following packet from the same flow will be

forwarded according to the added entry without forwarding to the controller. In this

manner, OpenFlow switch has traded controlling flexibility for controlling

granularity. Instead of per packet control and zero control flexibility found at non-

OpenFlow Ethernet switches, an Open Flow switch has some of both properties. In

this way the first requirement from the Chapter 2 has been fulfilled. Nevertheless,

the described trade-off has introduced a new important concept, a packet flow.

A packet flow, or simply a flow, is nothing more than a group of packets with

similar properties. These properties can be represented as any subset of the fields

defined in the header field of a flow table entry. The format of the header field is

shown in Figure 2.3.

In

port

Ethernet VLAN IP TCP/UDP

Src. Dst. Type ID Prio. Src. Dst. ToS Src. Dst.

Figure 2.3 - Header field of a Flow Table entry comprising: Ingress port, Ethernet
source and destination address, Ethernet type, VLAN ID and priority, IP source and
destination addresses and ToS bits and TCP/UDP source and destination port [6]

As it can be seen from the figure, header field comprises many different

fields including Layer 2, Layer 3 and Layer 4 parameters. Together, these fields

provide wide flexibility in flow definition. Moreover, it offers a lot of possibilities for

flow aggregation and separation of different traffic types. For example: a flow with

specific source IP will catch the whole traffic from the device with that IP. If we

additionally specify TCP port as 80, we can catch HTTP traffic generated by that

July 2011 Page 13

device. The same thing can be done for any other type of traffic which is always

expected at certain port.

Using the header format from Figure 2.3, when a packet comes to an Open

Flow switch it is parsed and compared against the headers of all entries in the flow

table. Matching algorithm follows the header structure from the Figure 2.3 and goes

as it is presented in the flowchart shown in Figure 2.4.

After packet parsing, as a first step, the ingress port, Ethernet source and

destination addresses as well as Ethernet type are set. All other fields in the format

from the Figure 2.3 are zero. The Ethernet type is first checked against value

0x8100. If the match exists VLAN ID and PCP fields are added to the header and

used for the look up. If this is not a case Ethernet type is checked against 0x0800

to see if an IP packet is carried by the Ethernet frame. In the case of matching, IP

source and destination address are added and used for table look up. Between

these two steps, optionally, ARP check can be done. After IP, the next performed

check is fragmentation check, i.e. if the IP packet is fragmented or not. In the case

of no match, packet is looked up normally while in case of yes additional checks are

provided. First is run check for transport layer protocol (UDP and TCP) and after

that a check for ICMP protocol. For the former, UDP/TCP source and destination

ports are included in the header while for the latter ICMP type and code fields are

added. Header generated in this way is checked against all entries in the flow table

[7].

If the match exists, action specified inside the action field of the matching

entry is taken. Specification of the OpenFlow switch provides only minimal number

of actions that has to be supported. List of actions can be extended, but this should

be done with a lot of consideration. The list of supported actions has been chosen

small such to provide reasonable amount of flexibility and generality [6]. In this

manner price of the equipment is kept low, satisfying the second basic requirement

of Open Flow switch (Chapter 2) and providing applicability to almost all available

switches on the market. By extending the list of actions, generality could be

jeopardized because Ethernet switches are very diverse and do not share a large

group of common functions.

July 2011 Page 14

Figure 2.4 - Matching algorithm for packet checking against the flow table [7]

Nevertheless, all actions that an OpenFlow switch can perform are divided

into Required Actions and Optional Actions. As the names say, required actions

have to be implemented in every OpenFlow switch. Depending on optional actions

they implement, OpenFlow switches can be divided into two categories: dedicated

OpenFlow switches and OpenFlow enabled switches. The architecture of these two

types of switches is shown in Figure 2.5.

July 2011 Page 15

Figure 2.5 - Dedicated OpenFlow Switch (left) vs. OpenFlow Enabled Switch (right)

• Dedicated OpenFlow switches – support only required actions.

Required actions are:

� Forwarding of packets to a specific port physical port - in order to

provide forwarding across the network.

� Forwarding of the packets to the following virtual ports: ALL – to all

ports except for the incoming, IN_PORT – only to the input port,

LOCAL – to the switch’s local networking stack (used for bypassing

of the remote controller and direct control of the switch), TABLE –

perform actions from the flow table and can be applied only to the

packets sent from the controller and CONTROLLER – encapsulation

and forwarding of the packet to the remote controller. This is

usually done for the first packets in a flow, so called flow initiations,

in order to decide whether a new entry should be added.

� Discarding of packets – in order to be able to deal with broadcast

traffic or denial of service attacks.

However, as it can be seen, this switch does not have any mean to provide

normal switch processing. It only executes control instructions from the remote

controller. Because of that, up to today, dedicated OpenFlow switches have not

found any significant practical importance.

• Open Flow Enabled Switches – besides all required actions, support

also the optional action “forward to the virtual port NORMAL”. This represents

forwarding of the packets through the switch’s normal L2/L3 processing.

Considering this, an OpenFlow enabled switch can be seen as a commercial

July 2011 Page 16

Ethernet switch enhanced with the OpenFlow features by implementing Flow Table

and OpenFlow Protocol. The flow table implemented in this switch re-uses the

existing hardware while OpenFlow protocol runs on switch’s operating system. This

suggest that implementation of OpenFlow to the existing switches should not cause

any hardware changes and thus can be done relatively easy and inexpensively,

while preserving the black box concept. With this, it is clear that Open Flow Enabled

Switches satisfy the fourth requirement from the list in the Chapter 2.

The only requirement that is left and needs to be taken care off is the clear

separation between production and experimental traffic. Namely, as OpenFlow

Enabled switch can process incoming packets both as a “normal” and a researcher-

defined switch, we need a clear separation between traffic that is processed with

the normal (production traffic) and with the researcher-defined switch

(experimental traffic). In the most primitive way, this can be done by network

administrator who can tag production and experimental traffic with different VLAN

ID-s. In this manner, the two can be easily separated by flow aggregation. In

practice this is done in different way outside OpenFlow, as it will be shown in the

Chapter 4. Disregarding this for a moment and thinking about VLAN tagging as a

traffic separation tool, it is clear that Open Flow Enabled switch fulfils all

requirements necessary for achieving flexible but affordable control.

Nevertheless, although all needed requirements can be implemented just

with the optional action “forward to the virtual port NORMAL”, Open Flow specifies

some additional optional actions. These actions can be used to increase

management abilities of the remote controller defined on top of Open Flow Enabled

Switch. They are:

• FLOOD – action that performs packet forwarding according to the

spanning tree protocol

• MODIFY FIELD –action that allows changing of different header fields.

This action can increases usefulness of the open flow very much. A

possible application of this action is implementation of NAT tables.

An OpenFlow switch reports the list of supported action to the controller when

connecting to it for the first time.

July 2011 Page 17

Eventually, besides header and action field, a flow table entry consist also a

field used for statistical purposes. It comprises a set of counters which are used to

statistically describe operation of an OpenFlow switch. By observing these counters

controller is able to monitor performance of the switch. Information obtained from

these counters is used mainly for management decision making. These counters, as

well as all other information kept in Flow Table, are communicated to the remote

controller over the secure channel.

2.1.1 Secure Channel

Secure Channel is the interface that connects OpenFlow switch to the

controller, Figure 1.1. Interface between the switch’s datapath and secure channel

is implementation specific, but formats of all messages transferred across the

secure channel must conform to the formats specified by OpenFlow Protocol [7].

OpenFlow protocol specifies three types of messages: controller to switch

(generated by the controller), asynchronous (generated by the switch) and

symmetric (generated at both sides, without need for solicitation).

Controller-switch messages are generated by the controller in order to manage

or inspect the state of the switch. They include:

• Feature messages - request and reply feature message through which

controller learns about switch’s capabilities

• Configuration messages – that are used to query or set configuration

parameters of the switch

• Modify State messages – that are used for addition/removal of the

flows in the flow table

• Read State messages – that are used to collect statistics from the flow

tables, ports or individual entries

• Send Packet messages – that are used to send a packet out specified

port on the switch

• Barrier messages - that are used to ensure that dependencies between

different messages have been met.

July 2011 Page 18

Asynchronous messages are sent by the switch without controller soliciting for

them. Four main messages of this kind are:

• Packet-in message – that is sent when there is no matching entry or

matching entry’s action specifies forwarding to the controller. If switch

supports buffering, it usually buffers the packet and forwards only part

of the header together with buffer ID. Otherwise, whole packet is

forwarded to the controller.

• Flow removed message – signalizes that a flow has been deleted as a

result of timeout.

• Port status message - reports port status change to the controller, no

matter whether it was asked for or not.

• Error message - notifies the controller that error has occurred

Symmetric messages are messages that can be sent by both sides without

solicitation. They include:

• Hello message – that is sent by both controller and switch immediately

after the connection set up. Using these messages, both sides send the

version of the Open Flow protocol that they support in order to

negotiate the highest version which is commonly supported.

• Echo messages – are sent to collect the parameters of the connection.

However, they are also used to keep alive the connection between the

switch and the controller.

• Vendor messages – that provide a standard way for offering additional

functionality to the vendor.

With Flow Table and Secure Channel described, the only part of the

OpenFlow Switch left to discuss is the Remote Controller. Nevertheless, OpenFlow

has been designed to offer flexibility in controlling so it does not specify any

particular controller on top of the OpenFlow switches. Consequently, Flow Table and

Secure Channel discussion rounds the description of OpenFlow protocol. With

respect to that it should be clear that OpenFlow protocol is nothing more but a

July 2011 Page 19

communication protocol that enables some controlling flexibility by introducing

architectural changes in packet switches. It is a set of messages which supports

external control of switches. The controller choice is not part of the OpenFlow and it

is left to the administrators and researchers. With respect to this, two different

possibilities in controlling of OpenFlow switches will be discussed in the next

chapter (centralized control) as well as in Chapter 5 (distributed control).

July 2011 Page 20

July 2011 Page 21

3. Remote Control in Open Flow-enabled Networks

On top of Open Flow switches, administrators and researchers have a

freedom to implement any type of control. The only constraint they have is in the

number of actions that can be used to control the switches. As it is mentioned in

the previous chapter, Open Flow specifies only limited number of controlling actions

divided into required and optional actions. Nevertheless, these actions can be used

to build centralized as well as distributed control on top of Open Flow switches. In

this chapter, Network Operating System (NOX) will be presented as an existing

solution for the centralized control.

3.1 Centralized Control in Open Flow Networks

In the second chapter it has been shown that is possible to run experimental

traffic on existing Ethernet switches alongside with production traffic. All that has

been provided at relatively low cost while preserving black box concept and

isolating experimental from production traffic.

However, the original goal of the Open Flow has been to provide an

environment which will allow two things: easy writing of control applications as well

as their testing. Open Flow switches have made possible testing of control

applications. The other part of the initial task, the easy writing of applications

should be provided by controller. Hence, the goal is to create an Open Flow network

management tool which will allow easy writing of control applications. For this

purpose the researchers from Stanford University have designed a centralized Open

Flow controller, the Network Operating System or shorter NOX [8]. Compared with

network management solutions found in today’s networks, NOX represents a shift

in network management approach.

Namely, in today’s networks, network management is done as low level

configuration that requires a lot of knowledge about underlying physical equipment.

Controlling applications of today’s management tools have to deal with different

kind of addresses (MAC, IP addresses…), a lot of topology information and so on.

July 2011 Page 22

For example: in order to block a user, the knowledge about its IP address is

needed. For more complex tasks more knowledge about the network is needed.

Consequently, it is clear, that this programming environment will not lead to

blossoming of network controlling applications. However, this situation looks very

similar to a problem that has been already seen (and solved) in the engineering

world.

As it is well known, in the early days of computers, programs were written in

machine languages which did not provide any abstraction of physical resources.

This has meant that programmers needed to take care of resource allocation,

management and so on. Consequently, programs were difficult to write and

understand. When introduced, operating systems provided programmers with an

abstraction of physical resources (memory, processor, communication) and

information (files and directories) allowing them to efficiently solve complex

problems on different machines.

 Comparing the two, it is obvious that today’s networks are “computers

without an operating system” [8]. Considering this, NOX has been introduced as a

kind of operating system for Open Flow networks. Although it has operating system

in its name, NOX is more a programmable interface. Namely, the only thing that

NOX does is abstraction of the underlying resources. Speaking about resource

abstraction, it is very important to distinguish between abstraction done by

OpenFlow and the one done by NOX. OpenFlow abstracts resources of a switch, a

single network element, while NOX abstracts resources of a whole network.

Unlike, computer operating systems it does not perform any resource

management. Management or controlling of resources (in this case Open Flow

switches) is done solely by application residing on top of NOX. NOX only gathers

network information and out of them builds simplified network view which offers to

the controlling applications as a centralized network representation. Hence, the

precise description would be that NOX is a uniform and centralized programmable

interface to the entire underlying Open Flow Network. To provide its main goal,

easy writing of controlling applications, NOX is based on following two properties:

July 2011 Page 23

• Applications running on network OS should have centralized

programming model, i.e. they should be written as if the network were

a single machine. To provide this, centralized network state needs to

be created.

• Network OS should provide applications with highly abstracted physical

topology view. This means that instead of IP and MAC addresses,

applications will work with host and user names. In order to achieve

this, mappings between abstracted view and physical parameters need

to be updated constantly and regularly.

These two features represent the shift in management approach that has

been introduced at the beginning of the section. Instead of IP and MAC addresses

as well as port numbers, controlling applications are written with highly abstracted

host and user names. Moreover, network information is gathered by a single

centralized device unlike today’s management systems where many devices gather

local information and exchange them over complex distributed protocols. This shift

from distributed to centralized approach clearly makes application writing a lot

easier. However, it also brings some limitations and trade-offs that will be explained

in the next section.

3.1.1 NOX Components

Components of a NOX-based network are depicted in the Figure 3.1. The

system comprises several OpenFlow switches that are managed by a NOX controller

running on one or more network attached servers. On these servers run NOX

software and management (control) applications. NOX software includes several

control processes as well as applications used to build and update unified network

view. The network view is kept in a database. It is created by observing the

network and offered to controlling applications running on top of NOX. All

controlling decisions made by the applications are used to modify flow tables in the

Open Flow switches and in that way manage the network.

July 2011 Page 24

Figure 3.1 - Components of a NOX-based network: Open Flow switches, Server with
NOX controller and Database with Network View [8]

One of the main components of the NOX-based network is Network View.

Making of centralized network state is the main technical issue in NOX. Knowing

that Network View is created by network observation, observation granularity is a

very important system design issue. It is obvious that large number of real time

changing parameters originating from large number of switches cannot be part of

the network view. A single device cannot process all these parameters and keep the

network view regularly updated. Trade-off between scalability and management

flexibility is needed. Inclusion of larger number of network parameters, that change

really fast, provides a lot of information about the network and its state. The more

management information is available, the more controlling flexibility will be offered

to management applications. In simple words, the more network parameters are

available through the network view, the wider range of applications could be

created. On the other hand, this limits scalability because all those information from

large number of nodes cannot be maintained fast enough. By maintaining of

Network View it is meant that network view should be updated regularly as well as

mappings between abstractions used by applications and low level network

parameters. Taking this in mind, observation granularity in NOX based networks

has been chosen such that network view contains:

July 2011 Page 25

• Switch level topology

• Locations of users, hosts, middle-boxes and other network elements

• Services being offered (HTTP, NFS etc.).

The scalability of the chosen network view is relative since it also depends on the

complexity of controlling applications build on top of it. Hence, it is impossible to

state explicitly how many switches a specific network view will be able to handle.

Nevertheless, the chosen network view is able to provide adequate input for many

network management tasks [8]. Information that it includes changes slowly and

provides scalable maintenance in large networks. Justification for this choice of

observation granularity can be the timing requirements. Considering them:

• Packets arrive at the rate of ten millions per second for 10Gbs

Ethernet link.

• Flow initiations arrive at the rate one or two orders of magnitude lower

than packets.

• Network view, as specified above, experience approximately 100

changes per second.

By keeping packets and flows out of the consistent network view they can be

processed in parallel. In this situation, a packet arriving to a switch is processed

independently of a packet arriving to another switch. Hence each switch can

process packets by keeping their state locally. Same thing stands for flow

initiations. No matter to which control process flow initiation is forwarded, the

controlling result will be the same. Consequently, the flow initiations can be

processed in parallel by many different control processes since all of them share the

same network view. This is very important for scalability because new control

processes can be introduced by adding new servers.

Besides observing granularity needed for setting up the network view, there

is also an issue with controlling granularity. The controlling granularity specifies

which actions controllers can use to enforce calculated controlling decisions. Unlike

observing granularity which introduces some design decisions in NOX, controlling

granularity is defined by underlying Open Flow switches. A set of required and

July 2011 Page 26

optional actions they offer to the controller (Chapter 2.1), defines controlling

granularity. In addition to this difference, it is worth noticing that controlling

granularity is a result of low price and generality vs. controlling flexibility trade-off,

while observing granularity comes from scalability vs. controlling flexibility trade-

off.

With both observing and controlling granularity specified, the network view is

rounded up. The only thing needed is to present it somehow to the controlling

applications. The interface that bridges network view and controlling application is

described in the next section.

3.1.2 NOX Programmatic Interface

Programmatic interface specifies two things:

• Information that NOX offers to programmers/researchers/network

administrators such that they can program controlling applications

• Means that programmers can use to modify the network view.

Conceptually NOX’s programmatic interface is very simple. It revolves around

events, a namespace and the network view [8].

Events – Network is a dynamic system in which some changes always occur

(attachment/detachment of a node, link fail etc). NOX applications deal with these

changes by utilizing event handlers which are registered to execute when a specific

event occurs. The event handlers are executed according to their priority (set up

during registration) and their return value indicate to NOX whether the event

execution should be stopped or the event should be passed to the next registered

handler. Events can be generated by both OpenFlow messages (packet in, switch

join, switch leave, statistics received) and NOX applications by processing low level

events or other applications’ events.

Network view and namespace – Network view and namespace are

constructed and maintained by a set of control applications so called base

applications. These applications perform user and host authentication and conclude

host names by using DNS. High level names which are bound to the host names

July 2011 Page 27

and low level addresses allow topologically independent writing of applications.

Conversion between the two can be done by “compiling” high level declarations

against the network view in which manner low address look-up functions are

produced. Considering that high consistency of network view is a must do,

applications write to the network view only when a change is detected in the

network.

With these three means, programmers are enabled to write applications

whose results will be controlling commands to the underlying OpenFlow switches.

According to the OpenFlow architecture and concepts controllers are allowed to

read/delete entries from the flow table and obtain statistics by reading counters

within an entry. In this way full control over L2 forwarding is achieved as well as

packet header manipulation and ACLs (Access Network List).

Specified like this, NOX today represents the most popular and widely used

controlling interface for Open Flow devices. By sacrificing some controlling flexibility

and allowing parallel control processes on top of consistent network view, it has

succeeded to gather enough scalability for deployment in small networks, such as

university campuses. For example, Stanford University has been running their

production network on NOX controlled Open Flow switches for two years [8], [9].

Many other Open Flow islands, all around the world, are being created with NOX

interface on top of them.

However, everything described so far, including Open Flow and NOX

controllers, assumed only one type of control on top of our testing infrastructure.

Principally, Open Flow can support various types of controllers, but from its point of

view not simultaneously. Consequently Open Flow is not a network virtualization

tool, i.e. it cannot provide several virtual networks on top of OpenFlow switches.

However, although not being by itself a network virtualization tool, it is a quite

powerful tool for its enabling. The next chapter will introduce FlowVisor as a

network virtualization tool inextricably bounded to OpenFlow.

July 2011 Page 28

July 2011 Page 29

4. FlowVisor

FlowVisor is a network virtualization tool whose aim is to allow coexistence of

multiple, diverse and mutually isolated logical networks on top of same physical

infrastructure [9]. In terms of testing of research ideas, this is necessary in order to

allow multiple researchers to conduct their experiments simultaneously and

independently of each other.

In order to better understand FlowVisor’s architecture and functional units,

basic principles of computer virtualization will be shortly introduced. In computer

virtualization, the instruction set provides abstraction of hardware resources. On

top of it, some virtualization tool (e.g. Xen) performs slicing and sharing of

abstracted physical resources. In this manner different guest operating systems can

be supported on top of same physical infrastructure. This is depicted in the left part

of Fig. 4.1.

Similarly, FlowVisor as a network virtualization tool also requires some kind

of hardware abstraction. The abstraction should be easy to slice and general

enough to encompass various devices. Considering that OpenFlow fulfils these

requirements it has been chosen as a hardware abstraction tool on which FlowVisor

is based. Consequently, it is now clear why at the end of previous chapter

OpenFlow has been described as an enabling tool for network virtualization.

Having the OpenFlow as its enabling tool, FlowVisor collocates itself in

between the OpenFlow and remote controllers. Its job is to slice provided

abstracted hardware (Open Flow tables) such that it can offer isolated infrastructure

portions to the controllers above itself. Prior to considering how FlowVisor does this,

it is necessary to specify which resources need to be abstracted and sliced within

network virtualization process.

As it is shown in Figure 4.1, network virtualization is nothing more but the

virtualization of network resources. While in computer systems Central Processing

Unit (CPU), memory and input/output interfaces are virtualized, network

July 2011 Page 30

virtualization requires abstraction of: traffic, topology, forwarding tables, switch

CPU time and bandwidth.

Figure 4.1 - Architecture of computer virtualization environment (left) compared
with the architecture of network virtualization environment (right) emphasizing

basic building block of general virtualization tool (centre) [9]

Selection of resources that should be abstracted is based on the fact that

abstraction should provide only the necessary information about a network. In

every representation of a network, its topology and traffic are inevitable factors.

Bandwidth (data rate) is needed for traffic transportation while forwarding tables

and switch CPU time are selected based on forwarding mechanism provided by

OpenFlow switches. Virtualization of these resources means that every logical

network provided by the FlowVisor should have its own topology, traffic, bandwidth,

forwarding tables and switch CPU time. As, previously said, the first step in this

virtualization is hardware abstraction and it is performed by OpenFlow. It offers

flow tables as representations of switches and flows as abstraction of traffic. How,

with this inputs, FlowVisor succeeds to virtualize a network over the five mentioned

dimensions (traffic, topology, bandwidth, forwarding tables and switch CPU time) it

will be shown in the next sections of this chapter.

July 2011 Page 31

4.1 Design goals

Main design goals of Flow Visor are:

• Flexible definition of virtual networks – since there is no clear idea

what do we need on top of our physical infrastructure, resource

allocation and sharing should be flexible enough to support creating of

highly diverse virtual networks. Virtualized networks are supposed to

be used for testing of new controlling solutions, so it is of utmost

importance that they can be allocated with arbitrary topology, amount

of bandwidth, traffic, switch CPU time and forwarding table entries.

• Transparency - Both controllers and physical layer should not be aware

of virtualization layer. A controller should act as it controls the whole

network, while the network should act as it has only one controller on

top of it. This is important for two reasons. Firstly, network controllers

should be designed on top of realistic topologies. By being aware of

virtualization layer they are being designed for virtualization

environment, not for the underlying real topology. Secondly, the aim

of network virtualization is flexibility in control, which can be achieved

only by maximal possible decoupling of control plane from anything

residing below it. Consequently, virtualization layer should be

transparent to controllers and network hardware.

• Isolation – existence of multiple virtual networks is not a significant

achievement unless they are securely isolated from each other. Only in

that case they can be independent and only than it is possible to speak

about multiple networks coexisting on top of same physical

infrastructure.

Fulfilling of these three goals, at the first look, does not satisfy all the

requirements of network virtualization tool that were laid down in the Chapter 1.1.

Out of specified six characteristics FlowVisor by itself provides only: isolation and

flexibility. Programmability, heterogeneity, scalability and legacy support are

July 2011 Page 32

provided by OpenFlow while FlowVisor with its transparency only keeps them intact.

Namely, programmability is provided by the OpenFlow through the support of every

type of control that can be built with the specified controlling actions (Chapter 2.1).

Scalability is the matter of controlling solution but the only solution specified so far

(NOX controller platform) has taken it into account as a part of network view

(Chapter 3.1.1). Heterogeneity and Legacy support are provided by OpenFlow’s

generality, i.e. its ability to be implemented on wide variety of switches (Chapter

2.1). Consequently, it is clear that OpenFlow plays a huge role in FlowVisor’s ability

to act as a network virtualization tool. With the task and roles of FlowVisor and

OpenFlow clearly specified and separated, it is time to describe how FlowVisor

performs its part of duties.

4.2 Working principle and architecture

Figure 4.2 - FlowVisor architecture and functional units

As it is depicted in Figure 4.2, FlowVisor has three functional entities:

Resource Allocation Policy, Translation and Forwarding [9]. Residing on top of Open

Flow, it only sees OpenFlow tables as abstractions of physical switches and flows as

abstractions of traffic. These two together with bandwidth, topology and switch CPU

time are partitioned by Resource Allocation Policy entity and assigned to different

controllers. In this manner FlowVisor create slices keeping at the same time each

July 2011 Page 33

slice’s policy. Slice policies are descriptions of virtual networks and they contain

information such as which traffic or flow table portion controllers are allowed to use.

Consequently, when a message from a controller comes to the FlowVisor, it knows

which slice that controller belongs to (slices and controllers have 1:1 relation). It

checks with the slice whether the controller is allowed to perform the action carried

within the message. If it is not allowed, FlowVisor rewrites the message according

to its slice policy. This rewriting is done by Translation functional unit. Similarly,

when the FlowVisor receives an OpenFlow message from a switch, it checks all the

policies to see which slice the message should go to. After the checking, the

message is delivered only to the slice whose policy matches the message

description. This is performed by the Forwarding functional unit. In this manner,

using the all three functional units, FlowVisor assures that every controller gets and

modifies only the traffic assigned to its slice, i.e. it performs traffic isolation.

Consequently, it is clear that FlowVisor acts as a transparent OpenFlow proxy that

speaks OpenFlow with both OpenFlow switches and controllers. By intercepting

messages from both parties and rewriting/forwarding them it is able to provide

coexistence of many isolated slices on top of same physical architecture.

 Each virtual network is described by its slice policy which in essence is a text-

configuration file [9]. Slice polices generally contain information about assigned

traffic, network topology, allocated bandwidth, CPU switch time and forwarding

table entries. They are results of network resources partitioning which is together

with isolation of portioned resources main task of virtualization. Since FlowVisor

virtualizes five resources the task can be divided into five subtasks: traffic

virtualization, topology virtualization, switch CPU time virtualization, flow table

virtualization and bandwidth virtualization. Each of them will be described in little

bit more details starting with traffic virtualization.

Being represented by flows, total traffic is partitioned by assigning different

groups of flows to different networks. Each group of flows assigned to a particular

virtual network is named a flowspace. Flowspaces are defined as sets of

descriptions that consist of a rule and associated action. The rule defines the traffic

while the action describes what should be done with that traffic. Possible actions

are allow, deny and read-only where allow is used to permit full control on specified

July 2011 Page 34

traffic, deny to refuse it and read-only to permit reception but not control. While

allow and deny are usually complementary and used for providing/prohibiting of

control, read only is used for traffic monitoring purposes.

 To provide a clear picture of slice policies and FlowVisor operation (in

particular traffic slicing and traffic isolation) let’s consider an example in which a

researcher that has a new protocol for control of voice traffic wants to test it in an

OpenFlow network that is run by an administrator. Rather than assigning whole

voice traffic to the researcher, the administrator gives him/her only the voice traffic

of people (researchers) who decide to participate in the experiment by allowing

experimental control of their traffic. This is done by specifying researcher’s

flowspace as a set of entries:

Allow: tcp_port=5060 ip=user1_ip

Allow: tcp_port=5060 ip=user2_ip

…

where user1_ip, user2_ip … are IP addresses of researchers willing to participate in

the experiment. Considering that researcher is not aware of flowspace existence, he

thinks that he controls the whole network. At the controller he can issue a control

action for traffic outside its flow space and send it to the switch. However,

FlowVisor will intercept its message and rewrite it such to be applied only to traffic

it is allowed to control. In this particular case OpenFlow will assure that every

message from the controller applies only to the traffic with TCP port 5060 and IP

addresses specified in its policy. Nevertheless, in some cases message rewriting

cannot be done. If the researcher that controls voice traffic tries to exert a

command on video traffic, his command will not be rewritten to apply to voice

traffic. Such commands are rejected and error message is sent indicating that the

requested flow cannot be added. Furthermore, besides taking care that controller

modifies only its own traffic, FlowVisor will handle messages coming from the

switches such that any packet with TCP port 5060 and specific IP addresses

(use1_ip, user2_ip) goes only to the researcher.

July 2011 Page 35

On the other hand, the administrator will sent the rest of traffic to production

network by specifying production network slice policy with:

Deny: tcp_port=5060 ip=user1_ip

Deny: tcp_port=5060 ip=user2_ip

…

 Allow: all

This will result in rejection of experimental traffic and accepting of everything else

that will be controlled and forwarded using production network mechanisms.

Moreover, administrator can specify the third network which it can use for

monitoring purposes. Its slice police should be:

 Read-Only: all

saying that monitoring network can receive all traffic but not exert on it any

controlling functions. In this manner, by defining the three flowspaces FlowVisor

slices the traffic while message intercepting and rewriting provide traffic isolation.

With these two issues solved virtualization of traffic is fully provided.

The next subtask, topology virtualization, differs a little bit from traffic

virtualization. Unlike traffic, network topology is not an exhaustive resource that

has to be shared among several users carefully preventing possible overlaps.

Hence, instead of topology slicing and isolation it makes more sense to talk just

about topology virtualization. Aim of topology virtualization is to provide slices with

the possibility to run various virtual topologies. In non-virtual environment,

topology discovery is done in two steps: device discovery and link discovery. Device

discovery is done when a switch connects to a TCP port on which controller listens

for connection requests. Creation of virtual topologies in terms of device discovery,

FlowVisor provides by proxying the connections between switches and controller.

When a slice owner (researcher) specifies topology he would like to run, FlowVisor

accordingly just blocks/lets through TCP connections from switches to the

controller.

July 2011 Page 36

 Considering the second part of topology discovery, the link discovery, things

are a little bit different. Since link discovery is not specified by OpenFlow, FlowVisor

so far only provides support for Discovery application which performs link discovery

and management within NOX. As it will be described in Chapter 5.2, the Discovery

application sends LLDP packets over all switch ports. These packets FlowVisor

should deliver independently of assigned flowspaces. Namely, every slice (i.e. its

controller) should be enabled to gather link information no matter which traffic it is

allowed to control, i.e. FlowVisor should just forward LLDP packets. To provide this,

FlowVisor recognizes the specific format of messages carrying LLDP packets and

tags them with an ID representing sending slice. Once when such a message

arrives to another switch, FlowVisor knows from the ID tag to which slice the packet

should be forwarded. In this manner, both device and link discovery are enabled in

each slice and topology virtualization is provided.

When compared to topology and traffic, switch CPU time should be classified

alongside the traffic as an exhaustive resource which needs to be sliced and

isolated. However, as it will be shown, switch CPU time slicing cannot be separated

from isolation. The main aim of switch CPU isolation is to prevent CPU overloading.

The overloading of switch CPU does not lead to disrupts in forwarding. As long as

flow tables are occupied, switches will perform forwarding of data. However, it will

disable processing of new OpenFlow messages such as new flow table entries or

LLDP messages. This will lead to link failures on logical level although there are not

any physical problems on them. To avoid this problem, it is necessary to avoid

monopolization of CPU time by particular data sources. Three main sources of load

on a switch CPU are [9]:

• Packet-in messages – these messages occur when a packet belonging

to a new flow comes to the switch. Since there is no flow table match

the packet has to be forwarded to the controller. However, prior to

forwarding to the controller, all flow table entries have to be checked

for possible match. This requires a lot of switch CPU resources and if

these packets are frequent, they can overload the CPU. To prevent

this, FlowVisor tracks the number of flow initiations per each slice by

July 2011 Page 37

counting packet-in messages. When rate of these messages exerts

certain threshold, FlowVisor installs temporarily a flow which dumps all

packets that does not have a match in the flow table. In this manner,

flow initiation rate is limited for all slices.

• Controller requests – are messages that controller sends in order to

modify the forwarding table entries or query statistics. Amount of time

these messages consume depends on message type and the hardware

implementation of flow table. Since the discussion of the former goes

out of the scope of this work and the latter is locked under the black

box concept, it will not be discussed how much CPU time individual

request consume. However, the controller can generate these as

frequently as it wants without any limitations dictated by OpenFlow.

Considering that these requests can lead to CPU starvation, FlowVisor

also limits the rate of controller request messages.

• Keeping of internal state – CPU is also used to process instructions

that all switches uses for their own counters and processes. These

processes are essential for normal functioning of non OpenFlow part of

the switches and certain amount of CPU time has to be reserved for

them. Nevertheless, this reservation is done by adjusting the two

previously mentioned limits.

Consequently, most of the job in virtualization of switch CPU time is done by

limiting rate of packet-in and controller request messages. By limiting message

rate, both slicing and isolation are performed at the same time proving that

partitioning and isolation cannot be separated in case of switch CPU time, as it has

been stated at the beginning of this subsection. As it can be seen, specification of

even provisionary rate limits has been avoided since this highly depends on the

switch’s internal hardware and its implementation.

Network resource that is supposed to be virtualized in the fourth subtask is

forwarding table. Similarly like switch CPU time, forwarding table virtualization is

done by limiting the number of flow entries that each slice can have inside the flow

table at any time. This is done for each slice by implementing a counter that is

incremented every time a new flow is installed and decreased every time a flow is

July 2011 Page 38

deleted or expired. In this way, once the counter exceeds certain threshold, an

error message is sent indicating “full flow table”. In this way slices are prevented

from monopolizing forwarding table allowing each slice to obtain a share of the

table. Consequently, forwarding table virtualization is provided in an elegant

manner solving the fourth subtask of network virtualization.

The last subtask is bandwidth virtualization. Although bandwidth is an

exhaustive resource, its virtualization is not clearly divided into slicing and isolation

procedure. Due to problems with precise bandwidth sharing in packet switching

networks, bandwidth virtualization is based on mapping traffic flows to different

QoS classes. These classes are defined using the three bit Priority Code Point (PCP)

field of the VLAN tag. The field defines eight different classes of traffic and as it can

be seen from Figure 2.3, it is a part of flow entry header structure. Characteristics

of the eight QoS classes are not specified either by OpenFlow or by FlowVisor. Their

definition is left to the network administrator. For example, by assigning traffic from

a slice to a QoS class with higher minimal provided bandwidth we can give it more

chances to compete with some high and constant bit rate traffic. In this way, the

later is prevented from monopolizing the link bandwidth and bandwidth isolation is

provided to some extent. Clearly, this way of isolation between slices is not totally

efficient. But same as OpenFlow, FlowVisor is being developing trying to solve this

problem. In line with this, OpenFlow version 1.1 specifies additional QoS features.

However, considering that the whole work has been based on version 1.0, these

new features will not be discussed. However, the interested reader is highly

encouraged to refer to [10].

Nevertheless, besides virtualization and isolation of the five resources the

choice of OpenFlow as hardware abstraction tool introduces the necessity for

virtualization of OpenFlow control channel. There are three reasons for this. Firstly,

in non-virtualized environment, every OpenFlow message has a transaction id

which is used for reliable transmission. Reply to a specific OpenFlow message must

have the transaction ID carried by original message. In a virtualized environment it

is possible that controllers belonging to two different slices create messages with a

same transaction ID. If FlowVisor does not rewrite one of these two, it will not know

to which of the two slices to forward the reply. Secondly, packets that are being

July 2011 Page 39

forwarded to the controller are stored in buffers on the switch. These buffers also

have to be shared and isolated. Since they are represented by 32 bits buffer ID-s a

disjoint set of these IDs is assigned to each slice. Finally, status messages

generated by switches which are supposed to inform controller that port status has

been changed need to be replicated at the FlowVisor and sent to all affected slices.

 Eventually, with all dimensions virtualized it is worth noting that FlowVisor

has not been exactly designed following the architecture framework laid down in

Chapter 1.1. However, it is quite easy to put OpenFlow and FlowVisor in the

architectural framework of a network virtualization environment that has been

described there. With the exception of resource management, OpenFlow fully fits

into the role of Infrastructure Provider. Moreover, taking into account that

FlowVisor slices the abstracted resources and creates virtual networks, it can act as

a service provider. However, it is should be noticed that control providing on top of

the sliced resources is not the task of FlowVisor but different controllers.

Consequently, it is not fully justified to denote FlowVisor as service provider. This

departure from the architecture can be a result of the fact that FlowVisor and

OpenFlow have not been developed in parallel as independent modules. On the

contrary, OpenFlow has been specified first and then FlowVisor has been built on

top of it. Nevertheless, this does not diminish the functionality and efficiency of

FlowVisor and OpenFlow as the network virtualization solution in which OpenFlow

provides hardware abstraction and FlowVisor extends it to a complete virtualization

solution.

July 2011 Page 40

July 2011 Page 41

5. Distributed Control in Open Flow-enabled Networks

Centralized control based on NOX, introduced in Chapter 3, so far is the only

type of control used on top of OpenFlow devices. However, this does not mean that

it is the best solution. Its inherently build problem of scalability is a good enough

reason to consider advantages and disadvantages of other approaches such as

distributed control.

5.1 Scalability Issue in Centralized Networks

Today, OpenFlow networks are deployed as university campus networks.

These small networks can be successfully controlled in a centralized manner. The

proof for this is the fact that SU runs their campus network with centralized NOX

controllers [8]. However, as it and other OpenFlow networks grow they will have to

deal with more and more traffic. Consequently, they are going to encounter many

problems related with scalability. Namely, experiments in a centralized OpenFlow

network have shown that a generic PC running simple MAC forwarding can handle

around 100000 flow initiations per second [8]. Taking into account that number of

flow initiations is two orders of magnitude lower than number of packet arrivals,

this corresponds to a 10 Mbps link. Consequently for larger LAN networks, NOX

needs to run on powerful servers or even cluster of servers. Servers available today

are powerful enough to handle the requirements of current OpenFlow networks.

Nevertheless, as OpenFlow gains on popularity, as networks expand and amount of

traffic in the networks increases, the requirements will be harder to meet.

Loosening of scalability restrictions can bring two benefits. The first is an

increase in number of nodes connected to the controllers and the second is

additional space for improvements in controlling granularity. Considering the

second one, as it has been described in Chapter 3.1.1, packet state and flow state

information have been omitted from the network view in order to allow more

devices to connect to the same controller. In this way, network manager gets

limited information about the network, what limits the possibilities of its controller.

July 2011 Page 42

By reducing scalability requirements it could be possible to introduce more data in

the network view and provide researchers with more controlling flexibility in their

applications. However, scalability requirements cannot be loosen only by improving

performance or increasing number of servers on which controllers run. Traffic is

expected to grow at much faster rate than enhancements in processing speed of

computers/servers. While it becomes much more difficult to produce faster

processors, Cisco predicts fourfold increase of global IP traffic in the next five years

[11]. Consequently, while piling up servers to allow more devices in OpenFlow

networks it makes sense to consider abilities as well as requirements of distributed

control in Open Flow networks. The next section of this chapter will be devoted to

this issue.

5.2 Benefits of Distributed Control

Discussion about distributed control in OpenFlow networks necessitates

topology and architecture a little bit different from the centralized networks. The

architecture and topology used in this work, do not differ significantly from a

general framework of distributed systems such as e.g. Internet routing. The

considered topology supposes a set of Open Flow switches divided into N

administrative domains (islands), which are controlled by a set of centralized

controllers. Relation between Open Flow islands and controllers is a dedicated 1:1

relation. Moreover, the controllers are interconnected forming a control network. An

example of such a topology for N=3 is depicted on Figure 5.1.

For simplicity, it is assumed that each controller runs an instance of the NOX

operating system and same controlling applications. In this environment, the main

aim of distributed control is to control packets not by one but all N controllers which

are spatially distributed across the network. This means that every controller is

supposed to be able to forward packets coming from its part of the network (i.e. its

island) all over the network, independently of the island to which destination node

belongs to. Obviously this improves scalability but at cost of increase in complexity.

However, prior to performance discussion, the requirements for implementation of

such a control system will be discussed.

July 2011 Page 43

Figure 5.1 - Distributed OpenFlow Topology with 3 islands and 3 controllers

Introduction of distributed control plane and more controllers results in the

need for control information exchange between them. This information exchange

can be done in three different ways: in-band OpenFlow signalling, out-of-band

OpenFlow signalling or by using a separate non-OpenFlow network. Usage of

separate network introduces more stability into the system since control traffic and

data traffic are fully separated. This can be important in case of misconfiguration of

network parameters or failures in isolation between slices, since it leaves a path for

intervention. In the cases of control signalling over OpenFlow ports (both in-band

and out-of-band), these failures would leave network administrator without any

possibility to intervene. Nevertheless, in properly configured and isolated networks,

control signalling over OpenFlow ports can work without any problems.

While in-band signalling supposes sending of control packets through any

available port, alongside the data traffic, out of band signalling supposes sending of

the packets to dedicated OpenFlow port(s). Implementation of in-band control

signalling does not require any change in the Open Flow protocol specification,

while out of band signalling results in minor changes to Open Flow port number

enumeration definition [7]. Namely, dedication of small amount of OpenFlow ports

to control traffic and marking them as CONTROL PORTS would enable out-of band

signalling. Moreover, exact specification of ports from which control traffic can be

sent or received would allow filtering of control traffic through flow aggregation. In

this manner, for every CONTROL PORT, we could define a flow and thus have full

July 2011 Page 44

control over the control traffic. In order to implement this, only two minor

modifications in the Open Flow specification are needed. The first one assumes

extending ofp-port enumeration [7] such that ports with port numbers between

0xfe00 and 0xff00 are specified as control ports. The extended enumeration would

be:

Enum ofp-port {

 /* Switch control ports – 0xfe00 to 0xff00*/

/* Maximum number of physical ports. */

 OFPP_MAX = 0xff00

 /* Fake Output Ports */

 OFPP_IN_PORT = 0xfff8

 OFPP_TABLE = 0xfff9

 OFPP_NORMAL = 0xfffa

 OFPP_FLOAD = 0xfffb

 OFPP_ALL = 0xfffc

 OFPP_CONTROLLER = 0xfffd

 OFPP_LOCAL = 0xfffe

 OFPP_NONE = 0xffff

 }

where the introduced change has been marked in italic. The other required change

is modification of packet matching procedure such that ingress port of incoming

traffic is first checked against CONTROL PORTS. If the match of the ingress port

against CONTROL PORTS is positive, the received packet belongs to control traffic

and should be routed by procedure specified for control traffic. Otherwise, packet

belongs to data traffic and should be matched using the algorithm shown in Figure

2.3. These two modifications would allow separation of control and data traffic.

Moreover, this possibility combined with the Open Flow ability to support any type

of control, provides a lot of flexibility in routing and protection of control traffic. By

July 2011 Page 45

being able to separate it from other traffic, network administrator can route the

control traffic using a routing scheme that best fit traffic’s properties. Eventually,

considering that out of band control channels bring negligibly small modifications in

Open Flow and provide control traffic filtering and traffic specific routing, control

channels in distributed control Open Flow networks should be implemented as out

of band channels.

Out-of-bad control channels between controllers are established over the

control ports of OpenFlow switches residing inside corresponding OpenFlow islands.

Nevertheless, only one switch per island is needed for this purpose, so called edge-

OpenFlow Switch. This fact brings the question of distinguishing between edge-

OpenFlow switches (OpenFlow switches with dedicated control ports) and normal

OpenFlow switches. This issue can be solved by using Feature Request/Reply

messages that switches use to advertise their capabilities. However, it requires one

line extension in original ofp_capabilities enumeration [7]. The new enumeration

should look like:

enum ofp_capabilities {

 OFPC_FLOW_STATS = 1<< 0

 OFPC_TABLE_STATS = 1<< 1

 OFPC_PORT_STATS = 1<< 2

 OFPC_STP = 1<< 3

 OFPC_MULTI_PHY_TX = 1<< 4

 OFPC_IP_REASM = 1<< 5

 OFPC_CONT_PORTS = 1<< 6

 }

where, once again, the change has been represented in italic. Consequently, by

sending ofp_capabilities bitmap with seventh bit set switch can report to the

controller that it is an edge-OpenFlow switch (i.e. the switch with OpenFlow control

ports). Naturally, normal OpenFlow switches should have this bit reset.

Establishing and testing of the control channels can be performed without

any Open Flow modifications. Control channel establishing can be performed by

July 2011 Page 46

utilizing Open Flow Hello messages. These messages, introduced in Chapter 2.1.1,

are normally exchanged between the switch and the controller to establish control

channel between them. As specified in the OpenFlow specification [7], they contain

only Open Flow header consisting of:

o 8 bit value representing Open Flow protocol version.

o 8 bit value representing Open Flow message type. (In this case it is

Hello message type).

o 16 bit value representing the length of the message, including the

header.

o 32 bit value representing transaction id. This id is copied in the reply

message to facilitate pairing.

Both switch and the controller are supposed to send this message as first

messages transmitted over the channel. Upon reception, each side checks the

protocol version field of the received message in order to check it against values it

supports. If the check is positive, the connection proceeds with Feature Request

and Feature Response Open Flow messages which the switch uses to communicate

its features to the controller. After this exchange, channel is established and

lightweight Echo messages are used to keep it alive. If one side does not support

received protocol version, it must send a reply containing an error message.

 The same concept can be easily reused for control channel establishing

between two controllers. When a controller wants to connect to a neighbouring

controller, it sends the Hello message over a specific CONTROL PORT (e.g. 0xfe11),

Figure 5.2. The neighbouring node, upon reception forwards the packet to the

controller which recognizes it as control traffic (since it was received on a CONTROL

PORT). The receiving controller performs the protocol version check. When protocol

check is passed, the controllers can start communicating, without sending Feature

Request/Reply Messages.

July 2011 Page 47

Figure 5.2 - Message Flow describing one side of control channel establishment
between controllers 1 and 3

Testing of the control channel between controllers can be also done by

reusing Open Flow messages used between controller and the switch for the same

purpose. The Echo messages used for this purpose contain also only Open Flow

header. However, compared to Hello message, they have different Open Flow type

field and parameter of interest is transaction ID not the protocol version number.

The Echo Request message is sent first. Assurance that channel is alive, is

reception of Echo Response message that must contain transaction ID transmitted

in the request message. Reception of such a message on a control port means that

the channel is up. On the other side, not receiving the expected response message,

within a certain period of time, would mean that channel is dead. In this case, the

flow modification message can be used to change the output port of a failed

channel (flow) to another available CONTROL PORT, yielding fast rerouting of the

failed channel.

 After control channel establishment, the path for control information

exchange is paved. One of the most important data exchanged over control channel

is topology information. Namely, in order to have a distributed control network that

functions properly it is of utmost importance that complete topology is created at

every node. This requires two actions:

o Creation of local topology by every controller in the network

July 2011 Page 48

o Dissemination of local topology information towards all nodes in the

network

Creation of local topology can be done at every controller, independently of

each other, using Discovery application defined as a part of NOX [12]. The

application utilizes basic Link Layer Discovery Protocol (LLDP) packets in order to

infer link connectivity. Namely, as a part of Feature Response message, the switch

communicates to the controller the list of all its ports. Discovery application uses

this list to create a LLDP packet for each port. The packets containing MAC address

of the switch as well as port number identifier are periodically sent, iterating over

all ports. In each period, only one LLDP packet is sent. When an Open Flow switch

receives such a packet, it combines its MAC address and the ingress port identifier

with received information, MAC address and egress port of the source switch to

create a link association. Created link associations last for a certain timeout period.

If they are not refreshed by reception of another LLDP message, the link

associations are deleted after expiration of time out period. Using this simple

application, every controller creates one part of its local network view. The other

part are associations between addresses and names which are established in the

same way as in NOX [12] and will not be discussed in more details.

The second step towards the formation of global topology is the

dissemination of local topology information in order to build global topology. This

can be done by broadcasting local topologies over control channels. Once when

every node has all local topologies, each of them can create its own global

topology. However, considering that local topologies are dynamic, it is necessary to

advertise over the whole network all changes occurring at the local level. Moreover,

global topologies calculated at different nodes need to be checked against each

other in order to have synchronized network view at all nodes. Only synchronized

topology information can be offered to controllers for management purposes.

However, this synchronization of topologies, together with initial dissemination of

local topologies, requires a lot of information exchange between distant nodes. As a

result of that the whole process is rather slow and unreliable, at least considering

the solutions that are available at this moment. Consequently, dissemination of

July 2011 Page 49

local topology information over the network is considered as one of the biggest

issues in distributed control networks.

Unfortunately, Open Flow does not provide any mean which would fight

directly with the problems of control information dissemination in distributed control

networks. Nevertheless, it has a few interesting features that can be useful during

design of control solution for distributed OpenFlow networks. Namely, it allows

flexible aggregation of the traffic, full and easy separation of data and control traffic

and a special routing for control traffic. It offers a possibility to use an existing or

create a new routing scheme which will be completely adapted to the peculiarities

of control traffic. Although they are useful, these features do not make a controlling

solution for distributed OpenFlow networks. Moreover, a well accepted one, to the

best of our knowledge, does not even exist.

Without such a solution, comparing performances of Open Flow networks

with distributed and centralized control is impossible. Nevertheless, the aim of

discussion presented in this chapter has not been performance comparison between

centralized and distributed control in OpenFlow networks. For that, we lack a

distributed control solution whose performance should be compared to NOX

performance. Designing of such a solution goes beyond the scope of this master

thesis and could be a good topic for further research. However, the main goal of

this chapter has been recognition of advantages and main problems in

implementation of distributed control on top of OpenFlow switches. Consequently it

has been concluded that:

• The best control signalling scheme for OpenFlow networks is out-of-

band signalling.

• The out-of-band signalling enables easy and fast separation of data

and control traffic.

• The control traffic can be routed separately from the data traffic in an

arbitrary way which can be completely adjusted to its peculiarities.

• Out-of-band control channels can be established and tested with only

minor modifications of existing OpenFlow switch specification.

July 2011 Page 50

• Local topology can be discovered using LLDP packets and NOX

Discovery application.

• The main problem of distributed control is topology dissemination

and that OpenFlow does not have any mean to directly solve this

problem. However it can facilitate its solving by providing something

that is not available in today’s networks: flexible aggregation of

traffic and traffic specific control.

July 2011 Page 51

PART II – OPEN FLOW IN CIRCUIT NETWORKS

6. Open Flow in Transport Networks

Although Open Flow has been originally designed for L2/L3/L4 packet

networks, there has been recently a lot of research effort to extend it to physical

layer (L1/L0 layer) and transport networks. As the first step in clarification of this

process, it is important to point out two fundamental differences between (non

Open Flow) transport and packet networks:

• Transport networks are circuit switching networks. This means that

channels between communication ends are provided by circuit

establishing and switching. Circuits are first negotiated and after that

set up. Once set up, they offer guaranteed performance to the

transmitted data since there is no packet processing and all data follow

the same path.

• Unlike packet networks that have integrated data and control plane,

the control plane of transport networks has been always separated

from the data plane.

With these differences in mind, in order to explain how OpenFlow paradigm

can be extended to transport networks, the guideline from the packet networks will

be followed.

 The first task of Open Flow in packet networks was the separation of control

and data plane. However, traditional separation of data and control plane in

transport networks implies that Open Flow implementation in these networks does

not require any architectural changes.

Once when the two planes were separated, the second step was the

abstraction of data plane such that it can be applied to wide variety of switches

from many different vendors. The same approach will be followed also for circuit

July 2011 Page 52

switches. In today’s networks there are many different circuit switches such as:

SONET/SDH switches, wavelength switches (OXC), fibre switches etc. Though they

are based on very different technologies, they have one thing in common, a cross-

connection table. The cross-connection table keeps information about cross-

connections existing in a circuit switch, i.e. which input port has been physically

connected to which output port. The main idea of OpenFlow extension for circuit

switching is to abstract data plane by representing cross-connection tables of

different switches as OpenFlow tables with generalized bidirectional entries [13].

Each entry in such a table should represent a cross-connection in the switch. The

format of these entries, compared with the format of an OpenFlow table entry from

packet networks, is shown in the Figure 6.1:

Figure 6.1 OpenFlow Switch Table entries for packet switches (up) and circuit

switches (down) [13]

The entries in the flow table of circuit switches contain the following information:

• Input and output port

• Input and output wavelength

• Virtual Concatenation Group (VCG)

• Starting Time-Slot

• Signal Type

While some of these fields such as In/Out port are used for all the switches, other

fields like In/Out Lambda and VCG are used only with specific technologies. In/Out

Lambda are specific for wavelength and fibre switches while VCG field is used in

SONET/SDH switches. In this way there has been created a flow table that

successfully abstracts a wide variety of physical switches.

July 2011 Page 53

 With physical layer abstraction done, the only thing needed to round up

programming interface between data and control plane are controlling actions that

management (control) applications can use to control the circuit switch. Since

management applications do not see the full switch but the flow table as its

representation and abstraction, the controlling actions are defined as actions which

modify the flow table entries. These actions are:

• Add flow – establish a new cross-connection (circuit flow)

• Modify flow – modify an existing cross-connection (e.g. change its

output port)

• Delete flow – tear down an existing cross-connection (circuit flow)

• Drop flow – terminate an existing cross-connection (circuit flow),

meaning that data from the circuit flow are adapted to a packet

interface [14]

As it can be seen, the only actions that can be applied on an OpenFlow circuit

switch are: establish, modify or terminate a connection. Compared to OpenFlow

packet switches, in OpenFlow circuit switching there is no traffic forwarding to the

controller. This important distinction comes from the difference in switching

technologies and is very important for proper understanding of Open Flow circuit

switches.

Combined with Open Flow table representation of switches, these actions

provide the controller with a possibility to flexibly control various circuit switches,

independently of its technology and the vendor (assuming that vendors agree to

implement OpenFlow on their equipment). To enable this, only a few modifications

to OpenFlow specifications for packet switches are needed. These modifications are

described in detail in [14]. The resulting architecture of OpenFlow Circuit Switch

comprising: Data Plane, OpenFlow Table as its abstraction and OpenFlow controller

on top of it is shown in the Figure 6.2.

However, even without OpenFlow we had a possibility to establish and tear

down circuits and use whatever control we want on top of our equipment. In that

sense, OpenFlow does not introduce any novelties in transport networks. The real

advantage of OpenFlow extension to transport networks is the ability to control

July 2011 Page 54

both packet and circuit switches with the same messages and controls, enabling in

this way the convergence between packet and circuit networks. In order to

understand importance of this accomplishment we will detour for a second from the

OpenFlow and describe in more details the problem of packet and circuit network

convergence. After that it will be described how OpenFlow can be used to control

both packet and circuit messages.

Figure 6.2 - OpenFlow Circuit Switch Architecture

6.1 Packet and Circuit Network Convergence

Packet (IP) networks and transport networks are very different networks.

Their main differences are enlisted in the Table 6-1 given below.

Packet networks have coupled control and data plane, meaning that lot of

control functions are performed automatically (e.g. IGP routing) leaving only a few

things that has to be managed manually (e.g. EGP routing parameters). Due to

their switching technology they are “best effort”, dynamic and highly resilient

networks. Transport networks on the other side have decoupled data and control

plane, what means that there is no automated control at all. All management is

centralized, manual and consequently slow. Due to that, networks are static or

semi-static. However, switching technology allows reliable transmission with QoS

guarantees.

 It can be clearly seen from the Table 6-1 that two networks have completely

opposite properties and requirements, especially regarding management issues Due

to this, most network operators run and manage packet and transport networks as

two separate networks. But what is wrong with that? What would be the benefits of

July 2011 Page 55

packet and circuit network convergence? In order to answer this question, a set of

core IP/MPLS nodes will be observed as well as the possible ways to interconnect

them.

Table 6-1 Properties of Packet and Transport Networks

6.1.1 Interconnection with direct IP and SDH links

The simplest way of interconnecting core IP/MPLS nodes is via direct IP links

Figure 6.3. This way of interconnection supposes encapsulation of IP traffic from

router ports into Ethernet frames and their sending over a DWDM link from one

router to another without any switching. After encapsulation, packets coming from

the router’s port are converted to optical signals through a small factor pluggable

module (SFP) transceiver and then transmitted over an optical channel. At the

other end, the optical signal is converted to electrical (with another SFP module)

and fed to the other router.

July 2011 Page 56

Figure 6.3 - Interconnection of 6 core routers into a full mesh topology using 15
direct IP links

The only advantage of this system is simplicity. On the other hand it has

many disadvantages such as:

• Efficiency - IP traffic shows bursty nature even when it is aggregated.

Links between routers must be able to support traffic peeks what

means that they are underutilized most of the time.

• Large number of routing adjacencies - in order to connect N routers in

a full mesh with direct links, each router needs to have N-1 links.

• Restoration and protection – having only links as interconnections

(without any intermediate switching) means that network reliability

can be increased only by over-provisioning. In order to be effective,

this requires a lot of spare resources.

Routers interconnected in this way represent a packet network fully

separated from the transport network. As it is described, the disadvantages of this

architecture highly outweigh its advantages. To cope with this disbalance, SDH

transport network links can be used as interconnections between IP routers, Figure

6.4. Considering that in this architecture IP links are provided by transport network,

it represents a solution that integrates packet and transport networks to some

extent.

July 2011 Page 57

Figure 6.4 – Interconnection of IP routers using SDH links showing the reduction in
the number of routing adjacencies

This approach in interconnection of IP/MPLS routers supposes packing of IP

packets into SDH frames (with prior point to point protocol (PPP) – high level data

link control (HDLC) protocol encapsulation) and their sending over SDH links [15].

The SDH links are provided by a SDH transport network which comprises dense

wavelength division multiplexing (DWDM) links with OEO conversion and electrical

data processing in digital cross connects (DXC). The transport network provides

SDH links by circuit switching what automatically reduces number of routing

adjacencies and improves restoration. Namely, an IP router connected to a single

SDH node can be switched to any other router. Compared with direct IP links, this

reduces number of routing adjacencies N-1 times, Figure 6.4. Moreover, by utilizing

the advantages of circuit switching and ring topologies, SDH networks are able to

perform restoration in tens of milliseconds. Compared with direct IP links,

improvement is clear. However, some major drawbacks are still present:

• Scalability problem - Considering that IP/SDH has scalability problems

even after 2.5Gbps [15], in order to cope with increasing traffic,

operators need to install more SDH rings to increase network capacity.

However, not just that deployment of new rings requires a lot of time,

but it also increases operational costs (OPEX) as management between

different rings is needed.

• Same QoS for all types of traffic – SDH network, threats all types of

traffic with the same high QoS level. This approach works, but it is not

July 2011 Page 58

efficient since some data does not need high QoS level assigned to

them in this way.

• Efficiency – the problem of link utilization neither SDH transport

network can solve efficiently. SDH networks are able to establish links

only semi-statically. This is due to long link provisioning times caused

by both technical (element by element manual configuration of devices

from various vendors that have different management solutions) and

bureaucratic reasons (time spent on communication during circuit

request and price negotiation). Consequently SDH links provisioning

can last even several days, which is way too slow to handle millisecond

bursts in IP traffic.

Generally, although they offer improvements in restoration and number of

routing adjacencies, SDH links struggle with a very important issue, efficient link

utilization. However, this is not the only stepping stone towards their

implementation. Management of a SDH transport network is vastly different than

management of IP/MPLS routers that should reside on top of it. This means that the

two networks have to be managed separately, with different protocols what

increases operational expenses (OPEX). Depending on network topology and its size

it is not always clear whether advantages of SDH network introduction are worth of

additional expenses it produces (both CAPEX and OPEX). Consequently, direct IP

links are still present in some networks as interconnections between IP routers.

6.1.2 Interconnection with OpenFlow-enabled Optical network links

Direct IP and SDH links are not complete solutions for interconnection of

IP/MPLS core devices since they both have many important drawbacks. However,

from the discussion about their pros and cons it is possible to derive requirements

for a cost-efficient transport network used below the IP/MPLS layer. These

requirements are:

July 2011 Page 59

• Scalability in order to follow constant increase of IP traffic

• Fast circuit provisioning in order to deal with link utilization and

restoration

• A control plane that can be used for both IP/MPLS and transport

network

A transport network that satisfies these requirements would be a good match

to IP/MPLS network residing on top of it. It would lead to the unification of two

networks that would result in numerous improvements both to operators and

customers. Customers would benefit from faster service provisioning and higher

quality of service, while operators would have more flexible, efficient and reliable

network together with significant decrease in expenses due to two reasons. Firstly,

better link utilization would result in decrease of their number as well as the

amount of network equipment (fibre, interfaces, SFP modules…). Secondly, unified

control would eliminate one management tool from the network and produce

significant reduction in expenses. Comparing all mentioned advantages (coming

straight from the convergence of two networks) with the drawbacks of the “direct

IP links” architecture (representing total separation between packet and circuit

networks) it is clear why the convergence is highly desirable. Consequently, now

when the reasons for convergence of transport and packet network are clear as well

as the requirements for it, the transport network able to achieve convergence will

be described.

It has been recognized within the IT community that only optical networks

will be able to deal with constant increase of IP traffic [16]. Optical link and

switching capacities are widely recognized as the only possible solution for the

scalability requirement specified above. Consequently, optical transport networks

(OTN) are generally accepted as the transport networks that should reside below

IP/MPLS devices. However, the selection of OTN as transport network does not

facilitate significantly dealing with other two requirements for packet and circuit

network convergence.

In the last decade the most known solution that aimed to fulfil the two

requirements has been Generalized Multi Protocol Label Switching (GMPLS) [16]. It

is a set of protocols aimed to provide unified control of packet and circuit networks

July 2011 Page 60

and through it dynamic and fast circuit establishing and restoration. However,

although being present for more than a decade it has not seen significant practical

deployment yet. Furthermore, today it is considered more as a control plane for

transport networks than a control plane unification tool [17].

On the other side, OpenFlow as a novel approach and paradigm shows a lot

of promises when it comes to the fulfilling of requirements needed for unification of

packet and circuit networks. Namely, in packet networks Open Flow brings

architectural changes. It decouples control plane from the data plane in order to

introduce controlling flexibility. Furthermore, although it defines per packet

processing it performs per flow control. Consequently, what controller sees are not

packets but flows. In addition to this, OpenFlow abstracts packet switches with flow

tables and manages them by modifying their entries. Similarly, in circuit networks

Open Flow abstracts circuit switches with flow tables. A controller sees circuit flows

(cross-connections) and manage them by adding/removing entries in the flow

tables. Consequently, if we define Open Flow packet and circuit networks as

networks consisting of Open Flow enabled packet and circuit switches and put their

properties next to each other in a table, we will see some important similarities

between the two (Table 6-2).

Table 6-2 Properties of Open Flow Packet and Transport Networks

Compared with the Table 6-1, which represents characteristics of non-

OpenFlow packet and transport networks, Table 6-2 shows several important

changes. The first notable change is the switching granularity. While non Open Flow

packet and circuit networks have dealt with packets and circuits, Open Flow

equivalents of these networks both work with flows. The second big change is in the

network architecture where Open Flow creates a full match between packet and

July 2011 Page 61

transport networks. These two similarities, together with the common flow table

switch abstraction provide a base for unified control of packet and circuit networks.

Namely, in a network with both packet and circuit OpenFlow switches a

controller sees only OpenFlow tables. Independently of switch type, features,

technology and vendor the switch is represented by an OpenFlow table. It is true,

that packet and circuit switch tables are different and usually kept separate [14].

However, this does not make any problems to the controller since both of them are

comprised of flow entries and both are managed in the same way, using the same

messages and actions. The same thing stands for the difference between packet

and circuit flows. They are represented by different structures and have different

granularities but since they are controlled in a same way, these differences do not

cause any difficulties. On the other side, comparison of Table 6-1 and Table 6-2

shows clear difference in number of entries. However, control and management

related characteristics have been deliberately left out from the Table 6-2 since Open

Flow does not suppose any specific control on top of it. Choosing between

distributed and centralized, manual and automated control and so on is left to the

network administrator/researcher in order to adapt the control to the network’s

needs.

Eventually, Open Flow protocol offers unified control of heterogeneous

networks that comprise both packet and circuit switches, independently of the

equipment vendor. At the same time it provides wide flexibility in choosing the

most suitable control mechanism. In this way, a transport network consisting of

OpenFlow enabled optical switches shows ability to fulfil scalability and unified

control plane requirements of the transport network specified at the beginning of

this section (6.1.2). With these two problems solved, the only requirement left is

fast circuit provisioning. To which extend optical OpenFlow transport network can

satisfy the last requirement, will be described in the next section. It will be done by

observing the transport network performance in its complete working environment,

a unified packet and circuit OpenFlow network.

July 2011 Page 62

6.1.3 Abilities of Unified packet and circuit OpenFlow-enabled network

Generally, a network comprising both OpenFlow-enabled packet and circuit

switches (unified OpenFlow network) is supposed to have a topology like the one

shown in Figure 6.5. In this topology OpenFlow packet switches form two or more

administrative domains, called OpenFlow islands, while OpenFlow circuit switches

are used to provide interconnections between the islands. These interconnections

are supposed to be established between edge nodes in each island. The edge nodes

are hybrid nodes that have both packet and circuit interfaces. Packet interfaces of

each hybrid node are connected with packet switches from the island it belongs to,

while their circuit interfaces are connected to the other hybrid nodes.

Figure 6.5 - Unified Packet and Circuit OpenFlow Network [17]

Nevertheless, discussing performance and abilities of the unified OpenFlow

network is inextricably bounded to the control implemented on top of it. This

immediately invokes the question of choosing between distributed and centralized

controller. Since the OpenFlow circuit switches present an immature technology and

cannot be found in the market, unified packet and circuit OpenFlow networks are to

a great extent an unexplored topic. Consequently, as a simpler approach

centralized control of all devices sounds like a better starting solution.

July 2011 Page 63

Using of centralized control on top of the described topology simplifies things

a lot. Considering packet islands, their controlling does not differ at all from the

control described in Chapter 3.1. The only novelty is that the packets can be

forwarded to another island. When such a request arrives to the controller, i.e.

when controller calculates that the packet should be forwarded to an address

belonging to different island, it has to provide forwarding path over the circuit

switches. To achieve this it requires: circuit network topology, routing algorithm

and a way to signalize calculated route.

 Circuit network topology in centralized controlling environment is mostly

predefined. Preconfigured permanent or static links as well as all available (but not

configured at the start up) links are provided to the controller prior to its running.

Considering the topology, the controller’s job is only to update information about

occupied and available links as new connections are established. Same stands for

the available wavelengths in the network. The available topology information is

used by a routing algorithm to calculate the path across the transport network.

However, since its function is independent of the physical layer and OpenFlow, this

topic will not be discussed in more details. Nevertheless, once when the path is

calculated it has to be signalled, i.e. the switches on the path need to be

configured. Signalling in the described environment is completely done by using

OpenFlow messages. Configuring of circuit switches is nothing else but establishing

of bidirectional cross-connections between its input and output port. As described in

Chapter 6, this is done by sending a simple OpenFlow message which installs the

corresponding flow entry in the flow table of the switch.

Taking all three steps into account, it is obvious that dynamic establishing of

circuits across the transport network is possible in Unified OpenFlow networks. This

feature combined with other OpenFlow characteristics introduces the following

possibilities:

• Creation of dynamic packet links – being provided over dynamic circuit

links, packet links between routers can be provided at the similar

speed as circuit links, i.e. with a negligible delay. Moreover as a result

of centralized control decisions, new links do not have to be

July 2011 Page 64

disseminated across the network. Consequently, there are no

convergence times which are encountered in distributed systems. In

other words, having link establishing which is non-disruptive to other

flows decreases the link set up time and improves the dynamics of link

set up/tear down procedure.

• Dynamic Service-aware Aggregation and Mapping – Flexible flow

aggregation is an inherit feature of OpenFlow packet switches. By

specifying flows with the corresponding TCP/IP parameters it is very

easy: to aggregate traffic coming from a certain user(s), to divide

voice, data and video traffic or just put whole traffic together. For

example: specifying a flow with TCP port 80 will aggregate web traffic

from all users. In similar manner, voice and video traffic can be

aggregated by specifying flows with TCP port 5060 and UDP port 1234

respectively. Moreover, the described traffic aggregation is helpful not

just for its easier handling but also to facilitate the problem of huge

number of entries in core routers. However, the significance of flexible

traffic handling gains on importance even more when it is known that

OpenFlow devices can support different controlling mechanisms.

• Application-Aware Routing – Using the benefits of first two features

together with OpenFlow support of various controllers it is possible to

create paths that are tailored to specific applications. While the second

feature allows aggregation of application specific traffic (e.g. voice,

data, video traffic), the dynamic packet link feature allows path

creation according to different controlling mechanisms, totally adjusted

to accommodate needs of application specific traffic we want to

transmit. For example, for latency sensitive voice traffic there can be

dynamically created a circuit over shortest possible path in order to

minimize packet latency. For latency jitter sensitive video traffic a non

shortest optical path can be created keeping the traffic in optical

domain. Avoiding of routers and electrical processing in this case is

important due to the constant latency requirement.

July 2011 Page 65

• Variable Bandwidth Packet Links - By monitoring bandwidth usage of

the circuits that are used to build a packet link, new circuits can be

dynamically added when they are needed. In this way congestion

could be avoided leading to higher utilization of available links. For

example, video traffic is much more “traffic hungry” than voice or http

traffic and hence can much easier lead to link congestion. This can be

monitored by checking how much buffer at the transmitting side is

filled with packets. When certain threshold value is passed, procedure

for establishing of a new link may be triggered.

• Unified Recovery – With all routing information and decision making

centralized it is possible to perform network recovery from failures

according to specific needs of some services. For example, voice traffic

can be dynamically re-routed (since it is relatively small and sensitive

to latency, it should be quickly re-routed); video can be protected with

pre-provisioned bandwidth while http can be re-routed over packet

topology.

As it can be seen, the enlisted features and abilities of unified OpenFlow

networks include dynamic packet link establishing and its usage for restoration and

dealing with the link efficiency. However, it is very important to distinguish between

ability to provide dynamic links and the speed at which they are provided. Bursts in

aggregated traffic are characterized with durations in millisecond region while

proper restoration should be done within 50 ms time interval. Consequently, it is

not enough to provide packet links dynamically. They have to be provided in tens of

milliseconds times.

 Unfortunately, these set up times still cannot be achieved [18]. However

there should be taken into account that only couple of demo experiments with

Unified OpenFlow networks have been done so far [17], [18]. Their aim has been to

experimentally prove that above-described features are possible and this aim has

been successfully fulfilled. On the other hand, improving of link set up times

requires a dedicated research and can be an interesting topic for a further research.

 Eventually, Unified OpenFlow Networks at the moment cannot satisfy all the

requirements that have been placed upon them. The main problem of these

July 2011 Page 66

networks so far has been speed at which circuits are established and tore down.

However, its immatureness, list of improvements that were achieved in just couple

of years as well as its possibility to support various control mechanisms and ideas

make it a good prospect for the future considering unification of packet and circuit

networks.

6.2 Alternative OpenFlow Solutions

Unlike OpenFlow Packet switches that are currently produced by top network

equipment vendors such as NEC, IBM, Juniper and Hewlett-Packard, OpenFlow

Circuit switches are not available on the market. There are several reasons for this:

• OpenFlow has been originally designed for packet switches. Only recently

its extension to circuit switches have been considered. Consequently,

developing of OpenFlow specification for circuit switches lags a lot behind

specification for packet switches. Namely, while circuit switch specification

is in draft phase [14], specification for packet switches has experienced its

second implemented version [10]. Without clear specifications, there is not

anything to be implemented.

• Optical circuit switches required in Unified OpenFlow Networks are still

immature devices with many unsolved and pressing issues. Consequently,

vendors are more focused on solving of these issues than on enabling

programmability of their devices. Prior to providing optical circuit switching

technology with some additional functionality (such as OpenFlow), the

technology should be first well established both in the market and in the

field. Considering that there are no pressing urges for development of

OpenFlow enabled circuit switches, vendors are still reluctant to enable

their devices with OpenFlow functionality.

Having this in mind and not being eager to wait for circuit switches vendors’

approval of OpenFlow, research community is trying to work with existing non-

July 2011 Page 67

OpenFlow circuit switches and use them to connect OpenFlow islands. One such

solution will be presented in the next section.

6.2.1. GMPLS-OpenFlow Interoperability

 Discussion about integration of OpenFlow and GMPLS requires a short

introduction about the latter. More details about it can be found in [16] and

especially in [19], a book written by one of the fathers of GMPLS, Adrian Farrel.

 GMPLS has originated as an extension of MPLS which in turn has been

designed as an extension of IP routing aimed to provide virtual circuit switching at

the IP layer. MPLS provides its goal using the concept of constraint based routing.

In this concept, extended IP link-state routing protocols like Open Shortest Path

First (OSPF) or Intermediate System to Intermediate System (IS-IS) are used to

gather topology information. Their extension is needed in order to include available

link bandwidth as a parameter in routing process. Topology information gathered by

these protocols is used by Constraint Shortest Path First (CSPF) heuristic to

calculate forwarding paths across the network. Calculated paths are established

using the Resource Reservation Protocol (RSVP) protocol that configures the nodes

along them. One by one, all nodes on the desired path are checked if they can

reserve enough bandwidth as it is required. The last checked node sets the label for

the required destination and informs the previous node. The label assignment

process goes backwards. Once when labels are assigned, incoming packets that

arrive to a MPLS domain are checked against routing table. When a match is found,

the label from the matching entry is added to the packet and it is forwarded to the

next hop. From that point on, packet is forwarded only according to its label,

without looking into its content.

 The described concept of path establishing, known as virtual circuit

establishing, is quite similar to the circuit establishing of optical networks.

Consequently, protocols utilized in MPLS have been extended under generalized

MPLS umbrella, in order to be used in optical circuit switching networks. That

resulted in a protocol set, known as GMPLS, which is able to control optical

networks in distributed and automated fashion. Without going into details of all

July 2011 Page 68

protocols included into GMPLS suite, it is clear that GMPLS is a full controlling

solution.

 The fact that GMPLS specifies how control should be done, distinguishes itself

very much from OpenFlow which leaves the control choice and design to

researchers or administrators. Considering that the two have different aims it may

sound wise to question the rightness of GMPLS incorporation under OpenFlow

umbrella. However, in the absence of OpenFlow enabled optical switches it does

make sense to try to use GMPLS controlled transport networks for lightpath

provisioning between different OpenFlow packet domains. Furthermore, considering

that GMPLS has been being developed for more than a decade, there are a lot of

GMPLS test-beds at many research institutions around the world. Inclusion of this

infrastructure to the global OpenFlow network would increase its capability

significantly. At the end, if in some near future OpenFlow reaches global popularity

and becomes widely accepted networking standard, by that time GMPLS can have

some share of the circuit switching market and it would have to be included as a

legacy technology. With these reasons in mind, there will be described an

architecture for integration of OpenFlow packet islands and GMPLS transport

network(s).

In order to describe requirements for GMPLS integration with OpenFlow,

there will be considered a topology that comprises two OpenFlow packet islands

(domains) physically interconnected by GMPLS transport network links, Figure 6.6.

The proposed architecture, assumes that all packet domains are controlled by

a single NOX controller, which is responsible for topology discovery and packet

forwarding inside the domains. The GMPLS transport network is controlled by

GMPLS controllers independently of the NOX controlling mechanisms and routines.

This means that the two networks are interconnected in an overlay model where

the upper layer packet network, acting like a client, requests service from the lower

layer GMPLS transport network, that acts like a service provider. The two do not

have any visibility inside each other and the whole communication between them

occurs via user-to-network (UNI) interface. Over it, NOX controller requests a

GMPLS path, whose data GMPLS transport plane provides in the response.

July 2011 Page 69

Figure 6.6 - GMPLS network integrated with OpenFlow network in overlay model

To support this topology, it is necessary to convert electrical signals from the

packet switching domain to optical signals that are transmitted over the GMPLS

network. This has to be done at the border of packet domains for every out-band

connection towards other domains. The easiest way to achieve this is to use hybrid

nodes that have both packet and circuit (optical) interfaces. Their packet interfaces

can be connected to other switches from the domain while the optical interfaces can

serve as connections to the ROADMs in the GMPLS network. Nevertheless, due to

the fact that optical links usually carry more than one wavelength, optical interfaces

are specified not just by port number but also by supported wavelengths on each

port. This means that NOX controller cannot perform flow establishing by specifying

only output port. To establish a flow both output port and selected wavelength on it

need to be specified. Consequently, NOX has to be aware of ports with circuit

interfaces what requires some changes in original OpenFlow specifications. More

importantly, usage of the hybrid nodes beneath the NOX controller requires that

they are OpenFlow enabled. Considering that OpenFlow enabled hybrid switches are

not commercially available, their usage in integration of GMPLS and OpenFlow is

not viable so far.

Another solution for matching the gap between optical and electrical devices

is to use optical transceivers after packet interfaces of the edge switch. To support

more than one wavelength per GMPLS link, the transceivers need to be tunable.

However, since tunable transceivers are still immature and very expensive, the only

solution is to use fixed-wavelength transceivers. Usage of transceivers at different

July 2011 Page 70

but fixed wavelengths causes underutilization of GMPLS devices because in that

environment they can work with only one wavelength per port. Nevertheless, since

fixed transceivers are the only possible solution, they will be considered in the rest

of the chapter.

The existence of optical links after packet switching ports suggests that these

ports cannot be treated like other packet switching ports. This fact yields several

changes in the way NOX controller should treat edge nodes compared to legacy

OpenFlow switches. Identifiers (numbers) of the ports that have transceivers should

be provided to the controller prior to its starting. These ports should be observed as

optical and kept separately from the electrical ports. Since NOX controller is

implemented in Python programming language, the list of all “optical” ports can be

stored as a nested dictionary. An example is given below:

edge_switch_1 = {op1: [GMPLS_port1, lambda1], op2: [GMPLS_port2,

lambda2], op3 : [GMPLS_port3, lambda3] …}

edge_switch_2 = {op1: [GMPLS_port1, lambda1], op2: [GMPLS_port2,

lambda2], op3 : [GMPLS_port3, lambda3] …}

….

optical_port_list = {dpID_1: edge_switch_1, dpID_2:edge_switch_2,…}

Dictionary optical_port_list contains descriptions of all optical ports from all

domains. For the specified datapath ID of an edge switch, it returns another

dictionary (edge_switch_X) which associates “optical” port identifiers (opX) with the

list containing the corresponding GMPLS port and the wavelength used on the link.

The separation of packet and “optical” ports can be justified by the fact that the two

kinds of ports are used for different purposes. Namely, while packet ports are used

for intra-domain forwarding, circuit ports are used solely for inter-domain exchange

of information. Moreover, separation of ports according to their types prevents

iterative sending of LLDP packets through the optical ports, restraining Discovery

application function to the packet ports for which it has been designed. This

restraint is needed due to two reasons. Firstly, sending of several light-weight

packets over the optical ports in every second leads to severe underutilization of

July 2011 Page 71

GMPLS resources. Secondly, since these packets cannot be forwarded back to the

NOX controller, link state cannot be inferred from them. Consequently, their

sending over optical port is totally useless and must be prevented either by

separation of packet switching and optical ports or in some other way. Since the

separation can be provided quite simply, in this work, it has been proposed as a

solution for this problem.

 In the described environment, packet forwarding goes as it is depicted in

Figure 6.7. When a packet is forwarded to the controller for the first time, there

should be decided to which domain it is supposed to be forwarded. Performing of

this task is highly dependent on an addressing scheme used inside domains. Since

this is left to the administrator/researcher that writes the controlling application, it

is impossible to provide general solution for distinguishing between domains.

However, if OpenFlow packet domains are realized as IP networks, with all devices

in the domain having the same network ID, the task can be done easily. With the

use of IP source and destination addresses and the subnet mask information, it can

be checked whether the network part of IP destination address matches the IP

address of the domain in which it has originated. If the match exists, NOX controller

can easily forward it according to the specified routing utilizing only packet

switching ports (i.e. there is no need for involvement of optical ports and GMPLS

service). In case that the match does not exist, packet should be forwarded using

the service of GMPLS transport network. Nevertheless, in order to be able to extract

IP address information from the packet, the whole packet has to be forwarded to

the controller. By default, OpenFlow is configured such to forward only the header

of a transmitted Ethernet packet (first 128Bytes), while the original packet is

buffered at the switch. In this way, the amount of traffic exchanged between

controller and switches is minimized, leading to faster performance. However, this

forwarding can be configured by controller designer. Since the IP header, containing

source and address destinations, is contained in the payload of the Ethernet packet,

the whole packet has to be forwarded to the controller. This can be achieved by

changing NOX file openflow.h in order to specify maximal number of bytes that are

forwarded to the controller as 1538.

July 2011 Page 72

Figure 6.7 - Flowchart describing messages exchange during packet forwarding to

another domain

 With the whole packet at its disposal, the controller has all information it

needs to decide to which domain the packet should go. When it decides to forward

the packet to a domain different then the source domain, it requests service from

the GMPLS transport network. For this, it should send a message that contains IP

address of the destination node and the IP address of the interface through which

source packet domain is connected to the GMPLS network. Since format of this

message depends on GMPLS controller realization and is not restrained by

OpenFlow protocol in any way, its implementation goes out of the scope of this

work and will not be discussed in any more details.

After the reception of this message, based on the requested destination

address GMPLS performs routing, path selection and node configuration. Upon path

establishing, GMPLS controller should communicate necessary details of the

established path to the controller. Generally, these details should include: path ID,

ingress switch port and wavelength as well as egress switch port and associated

wavelength. Since in our case, wavelength and ports on “optical” links are mapped

in 1:1 relation, it is enough to specify only the ports. Ingress and egress switch

ports sent by GMPLS control plane to the NOX controller are real optical ports of

ROAMDs. Since NOX controller does not see these devices and their ports, by using

the mapping between packet port (opX in edge_switch dictionary) and optical port

(GMPLS_portX in edge_switch dictionary), the NOX controller is able to identify the

packet port over which it is supposed to connect to the specified GMPLS port. That

July 2011 Page 73

information (port ID) NOX controller puts in the ofp_flow_mod OpenFlow message

used for establishing of new flows.

struct ofp_flow_mod {

struct ofp_header header;
struct ofp_match match; /* Fields to match */

uint64_t cookie; /* Opaque controller-issued identifier.
*/

/* Flow actions. */
uint16_t command; /* Bitmap specifying what is to be

done with the flow: addition, deletion,
modification */

uint16_t idle_timeout; /* Idle time before flow expires

(seconds) */
uint16_t hard_timeout; /* Max time before flow expires

(seconds) */
uint16_t priority; /* Priority level of flow entry. */
uint32_t buffer_id; /* Buffered packet to apply to (or -

1).*/
uint16_t out_port; /* Port to which packet will be

forwarded */
uint16_t flags; /* Flags for management issues*/
struct ofp_action_header actions[0]; /* Action header specifying the action

type*/
};

With the command bitmap set to ADD option (0x01 value) and out_port set

to port number of packet port leading to the GMPLS port (e.g. op1) this message,

installs the new flow and sets up the connection to the established path in the

GMPLS network. The other parameters like idle timeout, hard timeout, priority or

flags can be chosen according to administrator preferences. The same procedure is

performed at the destination domain, where the corresponding edge node is

configured in the same manner in order to connect established GMPLS path to the

destination domain.

In this way it is possible to integrate GMPLS networks with OpenFlow without

any changes in OpenFlow and with only minimal modifications of the controller.

Their interconnection using overlay model, means that fundamental problems in

each layer will stay intact, but all the motives laid down in Chapter 6.2.2 will be

fulfilled.

July 2011 Page 74

July 2011 Page 75

7. Virtualization of OpenFlow Circuit Switching Networks

When it has been introduced in Chapter 6, extension of OpenFlow from

packet to circuit switches has been justified by its ability to provide packet and

circuit network convergence. However, considering that controller sees OpenFlow

circuit switches as flow tables and manages them in the same manner like packet

switches, it sounds reasonable to check whether FlowVisor can be used to virtualize

circuit networks in the similar way like packet networks. Nevertheless, prior to

investigating FlowVisor’s abilities in OpenFlow circuit switching networks, it will be

explained shortly where virtualization of optical networks can be applied and why it

has not been achieved so far.

Within this work, network virtualization has been introduced and mainly

considered as an enabling tool for testing of new research ideas. For this purpose,

virtualization of packet networks on university campuses has been described.

Virtualization of optical circuit networks owned by big telecommunications

companies could also go under “enable innovation” umbrella, but telco operators

have traditionally sought for more convincing reasons before allowing architectural

changes in their networks. Their main “more convincing” reason has usually been

an increase in their profit. Operators are not willing to jeopardize their current profit

by installing new equipment, just to enable more research possibilities. In order to

agree to virtualize their networks, they need to gain something more from it.

First thing that operators can gain from network virtualization is reduction of

expenses. With network virtualization they can run different service networks as

virtual networks on top of same physical infrastructure. This could allow merging of

existing voice, video and data networks onto same physical network. Moreover, it

would make provisioning of future services much faster and cheaper. Instead of

developing a new separate physical network, a new service could be provided on a

virtual network.

Besides using the infrastructure for providing its own services, with network

virtualization operators can provide virtual networks to other customers in what is

known as Infrastructure as a Service (IaaS). In this manner operators could provide

July 2011 Page 76

network resources (topology, bandwidth, links and QoS…) requested by another

service provider in terms of a virtual network, allowing both arbitrary and specific

control on top of it. An example of such interaction can be virtual optical networks

used for grid computing networks. Namely, data gathered in big experimental

facilities like Large Hadron Collider (LHC) are usually distributed and computed on

different geographical locations. Scheduling of data computation is done by Joint

Task Scheduler whose proper working requires flexible and reconfigurable networks

with huge bandwidth links. Perfect match for this can be virtual optical networks

leased from telecommunication companies [20].

With these few short case-studies showing how telecommunication

companies can benefit from virtualization of their optical infrastructure, it is clear

that virtual optical networks are highly desirable. Their advantages have been

recognized for some years by research community but not a single architecture

proposal has been realized. The main reason for this has been the analogue nature

of physical layer resources and transmission formats. Successful solutions for layer

2 (L2) and layer 3 (L3) networks, such as VLANs and VPNs, are mainly based on

discrete nature of L2 and L3 network resources and transport formats. These

advantages do not exist in optical layer 1 networks which deal with wavelengths, so

some new approaches have to be tried. Consequently, with the serious lack of layer

1 virtualization solutions it is worth checking out whether FlowVisor on top of

OpenFlow enabled switches can provide desired virtual optical networks.

7.1 Optical Network Virtualization with FlowVisor

FlowVisor has been designed as a virtualization layer for packet switches.

However, it works with flow tables that represent packet switches. Consequently, it

sounds reasonable to check whether virtualization of 5 networks resources (traffic,

topology, bandwidth, switch CPU time and flow table) achieved in packet networks,

can also work for Open Flow tables that abstract circuit switches. Nevertheless,

although OpenFlow circuit switches encompass both optical (OXCs and ROADMs)

and SDH switches, our attention will be focused on virtualization of optical switches.

Reason for this is the fact that optical switches are seen as main and most

July 2011 Page 77

important devices of future circuit networks. Hence, from now on, term optical

network will be used to refer to a network comprising of OpenFlow enabled OXCs or

ROADMs.

Considering topology virtualization in optical networks, approach is the same

as in packet networks. The problem is again divided into two: virtual node

discovery and link discovery. By proxying connections between switches and

controllers, FlowVisor is able block or allow connection of a physical node to a

particular controller. By blocking connection requests from the switches that are left

out from the virtual topology and allowing others, FlowVisor is able to meet

demands for arbitrary virtual topologies based on the real one. When considering

link discovery between virtual circuit switches, there is no need for Discovery

application used in packet networks. As it has been mentioned before, optical

network topology is built using the static links that are provided at the start up. As

new links are established or torn down the topology is dynamically updated by the

controller. During this process FlowVisor does not have any special role.

Consequently, this means that it can provide virtual topology virtualizing the first

resource of optical networks.

Same like topology, flow table virtualization in optical networks can be also

done reusing the mechanism defined for packet networks. Being made of entries,

flow table of an optical node can be virtualized by assigning disjoint subsets of

entries to different virtual networks (slices), Figure 7.1. However, the big difference

between circuit (optical node) and packet flow table entries is the granularity of the

flows their represent. Namely, circuit flow entries are bidirectional entries that

represent cross-connections between input and output interfaces of the switch.

These interfaces are specified as [port, wavelength] pairs, so optical circuit flow is

nothing else but a wavelength between two ports. The stated fact has two

important implications. Firstly, in today’s systems a single wavelength can carry 10,

40 or even 100Gbps what means that every optical flow entry represents much

more traffic than its packet network peer. Secondly, by assigning a flow entry to a

slice we are assigning a wavelength together with its associated spectrum.

Consequently, by virtualizing flow table we implicitly virtualize available bandwidth,

where available bandwidth is defined by total number of ports and wavelengths per

July 2011 Page 78

port supported in the optical circuit switch. Moreover, since resource allocation is

dedicated (i.e. only one slice can use the assigned wavelength) and every

wavelength works at exactly specified bit rate, every flow table entry has some QoS

level guaranteed.

Figure 7.1 - Flow Table Virtualization in OpenFlow Circuit Switches

 Switch CPU time virtualization is also much easier to handle in optical than

in packet switches. As it has been stated in section 4.2, in packet switches there

are two possible data sources that can lead to CPU overload: packet-in messages,

and controller requests. In circuit switches there is no checking of incoming data

against the flow table entries. In addition to this, there are no packet-in messages

so the first cause of CPU overload in circuit switches does not play any role CPU

time virtualization. Unlike packet-in messages, controller requests exist also in

optical switches. However, since there are no counters used for per packet and per

flow statistics, rate of port status and other similar requests can be higher than in

packet networks. Nevertheless, since controller does not have any limitation when

generation of these requests is considered, it is capable of overloading the CPU.

However, FlowVisor can prevent this easily by specifying maximal rate of controller

requests for each slice. In addition to all this, circuit flows are established, torn

July 2011 Page 79

down, modified at much slower rate than packet flows so theoretically there should

not be many problems with switch CPU overloading in OpenFlow circuit networks.

Traffic virtualization in packet networks, as specified by FlowVisor, is done by

defining slice policies which contain description of traffic every slice is allowed to

control. Since in circuit switches there is no traffic inspection, this approach cannot

be utilized. Moreover, without any insight into traffic carried by each wavelength,

the only traffic virtualization possible in circuit switches is assigning of traffic

portions carried by each wavelength to a specific slice. Since this is done by flow

table virtualization, it is clear that in optical switches: bandwidth virtualization,

traffic virtualization and flow table virtualization are done in a single step.

Considering that topology and switch CPU time virtualization are done without

many problems, conclusion is that FlowVisor can be used to virtualize OpenFlow

enabled circuit switches. However, it is questionable how efficient this virtualization

is.

Assigning of 100Gbps traffic portions to virtual optical networks can lead to

the problems with efficient link utilization. Moreover, independently of traffic

engineering algorithm used for putting packet flows into circuit flows, absence of

finer granularities creates a lot of problems when it comes to flexible forwarding of

traffic. In addition to this, the number of different wavelengths supported by

today’s switches is pretty low. Consequently, total available wavelength pool is

quite scarce what severely limits the number of virtual optical networks that can be

created on top of available physical architecture.

As it can been seen, optical network virtualization with FlowVisor running on

top of OpenFlow enabled circuit switches has quite limited performance. However,

all these limitations are not products of OpenFlow or FlowVisor’s characteristics.

They result from the architectural characteristics of today’s optical switches. Their

inability to provide granularities finer than a wavelength granularity makes optical

network virtualization inefficient. A solution for these problems can be Optical

Orthogonal Frequency Division Multiplexing (OOFDM) which aims to provide sub-

wavelength granularities by using overlapped orthogonal carriers running at lower

speeds [21]. Since they are modulated and transmitted independently of each other

they can be flexibly combined into optical links of different granularities ranging

July 2011 Page 80

from sub-wavelength to wavelength-band bandwidths. Nevertheless, this

technology is highly immature and currently considers only single link transmission

systems. Optical switches with sub-wavelength granularities, which are needed in

order to speak about networks and network virtualizations, to the best of our

knowledge, have not seen any serious architecture proposals.

Eventually, FlowVisor and OpenFlow theoretically could virtualize optical

switches available today, extracting out of them the performance they offer. For the

fact that the extracted performance probably could not satisfy the needs of virtual

optical networks, the two are not to be blamed for. As stated in the introductory

part of this work, aim of virtualization is to create virtual devices and networks

which will mimic the behaviour and performance of their physical representatives.

Virtualization cannot go beyond performances of real devices creating something

that does not exist in physical equipment.

July 2011 Page 81

8. Experimental Part

In the previous seven chapters many concepts have been described and laid

down, both for packet and circuit OpenFlow networks. This chapter describes

results obtained during a familiarization with the architecture of a real system

comprising OpenFlow-enabled packet switches, FlowVisor and NOX controllers.

The equipment used for this purpose, both hardware and software, has been

provided by Catalan research foundation i2Cat who were kind enough to let us

experiment on their OpenFlow network. Providing of results that will be described in

this chapter would be much harder without their help. Namely, today there are only

a dozen of OpenFlow networks in the world. They are spread all over the world and

act as independent OpenFlow islands. In such environment, “hands on” experience

with OpenFlow switches represents a real privilege.

8.1 Testing Environment

The i2Cat's OpenFlow island, that has been used to conduct experiments

described later in this work, comprises:

• 5 NEC IP8800/S3640-24T2XW switches – The switches are Open Flow

enabled running OpenFlow protocol version 1.0. Physically they have 24 x

1Gigabit Ethernet ports and 2 x 10 Gigabit Ethernet ports. 16 ports are

OpenFlow enabled while the others work as “normal” Ethernet ports.

• 4 XEN virtualized SuperMicro SYS-6016T-T servers. Two of them have 2 x

Intel DP Nehalem E5506 2,13GHz,12GB DDR3 RAM 2x 1TB HD RAID1, 6 x

1GB Ethernet interfaces while the other two have 2 x Intel DP WestMere

E5620 2,4GHz,12GB DDR3 RAM ,2x 1TB HD RAID1, 6 x 1GB Ethernet

interfaces.

July 2011

The switches are interconnected in a full mesh topology as it is shown in the

Figure 8.1. On the figure they are represented by their extended MAC addresses

(00:10:00:00:00:00:00:01 to 00:10:00:00:00:00:00:05), which are in OpenFl

terminology known as 64-bits

IDs differ only by their last number, from now on, the switches will be referred to as

Switch 1 – Switch 5. The switches are interconnected such that Switch 1 is

connected to port 1 of other 4 switches, Switch 2 to port 2 and so on.

Figure 8.1 - Topology of the OpenFlow island used for experimentation

The virtualized servers host Virtual Machines (VM

control the network consisting of five OpenFlow switches. Unlike switches, the

servers are known by their string names: March, Rodoreda, Llull and Foix. Three of

them (March, Rodoreda and Foix) are shown in the

omitted since in our experimentation it has been used only for accessing the control

framework. As it can be seen from the

connected to all switches. Although in ideal configuration every server should be

connected to all switches, in practice it requires a lot of interfaces on both

connection which automatically increases the equipment cost significantly.

Consequently, each server is connected to only 1 or 2 switches. The

interconnections are presented in the

The switches are interconnected in a full mesh topology as it is shown in the

. On the figure they are represented by their extended MAC addresses

(00:10:00:00:00:00:00:01 to 00:10:00:00:00:00:00:05), which are in OpenFl

bits datapath ID-s. However, considering that datapath

s differ only by their last number, from now on, the switches will be referred to as

The switches are interconnected such that Switch 1 is

port 1 of other 4 switches, Switch 2 to port 2 and so on.

Topology of the OpenFlow island used for experimentation

The virtualized servers host Virtual Machines (VM-s) that are used to run and

control the network consisting of five OpenFlow switches. Unlike switches, the

string names: March, Rodoreda, Llull and Foix. Three of

oreda and Foix) are shown in the Figure 8.1 while Llull has been

experimentation it has been used only for accessing the control

framework. As it can be seen from the Figure 8.1 the three servers are not

connected to all switches. Although in ideal configuration every server should be

connected to all switches, in practice it requires a lot of interfaces on both

connection which automatically increases the equipment cost significantly.

Consequently, each server is connected to only 1 or 2 switches. The

interconnections are presented in the Table 8-1.

Page 82

The switches are interconnected in a full mesh topology as it is shown in the

. On the figure they are represented by their extended MAC addresses

(00:10:00:00:00:00:00:01 to 00:10:00:00:00:00:00:05), which are in OpenFlow

r, considering that datapath

s differ only by their last number, from now on, the switches will be referred to as

The switches are interconnected such that Switch 1 is

port 1 of other 4 switches, Switch 2 to port 2 and so on.

Topology of the OpenFlow island used for experimentation

s) that are used to run and

control the network consisting of five OpenFlow switches. Unlike switches, the

string names: March, Rodoreda, Llull and Foix. Three of

while Llull has been

experimentation it has been used only for accessing the control

the three servers are not

connected to all switches. Although in ideal configuration every server should be

connected to all switches, in practice it requires a lot of interfaces on both sides of

connection which automatically increases the equipment cost significantly.

Consequently, each server is connected to only 1 or 2 switches. The

July 2011 Page 83

Table 8-1 Interconnection between switches and servers in the OpenFlow island

 The table shows that, for example, server March is connected to the port 12

of the Switch 4 via its interface 2 and to the port 11 of the Switch 5 via its interface

3. In this way out of 16 available OpenFlow ports at each switch 4 ports are used

for interconnections towards other switches and two/one are used for connections

towards the servers. The remaining 10/11 ports (depending on the switch) are not

used in this configuration.

 Considering servers and their connections, besides the two interfaces

connected to OpenFlow ports of two switches, every server has one of its interfaces

connected to a non-OpenFlow port on one of the switches. The purpose of this

connection will be described later in this section as a part of discussion about

controlling network.

The described physical infrastructure, consisting of servers and switches, is

offered to researchers through the controlling framework. The controlling

framework virtualizes the physical infrastructure and offers it to various

researchers. Namely, each switch is connected through the control network to the

FlowVisor. The FlowVisor runs on VM hosted on one of the servers, but its exact

deployment is not visible to researchers. Once when a researcher registers with the

network administrator for the service of controlling framework, it can start creating

its experiment. Inside the framework, researchers are allowed to create projects

and within those projects:

July 2011 Page 84

• to add new members which will contribute their traffic to the experiment

• to create various slices representing different networks

For each of its slices, the researcher is able to choose two types of resources:

• OpenFlow switch resources – that represent OpenFlow switches and

corresponding ports the researcher plans to use. By choosing these

resources, the researcher generates network part of its virtual topology,

i.e. nodes and links.

• Virtualized server resources - that represent VM-s on various servers.

Researcher creates these VMs by himself. They are pre-configured Linux

Debian 6.0 machines which can be used: to run controllers, to act like

traffic generators or sinks or for any other purpose.

 After selecting these two types of resources, the next steps towards slice

creation are flowspace selection and controller specification. The flowspace selection

is supposed to be done right after choosing of OpenFlow resources. Its aim is to

allow the researcher to specify the traffic which FlowVisor will assign to the slice

and forward it to the corresponding controller. This traffic is specified as a set of

flowspaces using the tables such as the one depicted in Figure 8.2. Each table

specifies one flowspace where each slice can have an arbitrary number of them. As

it can be seen from the Figure 8.2, within the tables the desired traffic is specified

in terms of 9 fields found in Open Flow header (Figure 2.3). For each of the fields,

values are specified as ranges from value1 to value2.

Consequently, the flowspace defined in the Figure 8.2 specifies all packets

with IP source address between 192.168.10.10 and 192.168.10.20. This means

that any packet with an IP address belonging to the specified range is considered as

traffic belonging to the slice. Accordingly, FlowVisor will forward it only to that

slice's controller, performing traffic virtualization described in the previous chapter.

Considering that there can be an arbitrary number of these tables within a slice, in

order to get total traffic assigned to the slice the tables are XOR-ed.

July 2011 Page 85

Figure 8.2 - A Flowspace example specifying traffic with IP addresses from
192.168.10.10 to 192.168.10.20

 After selecting the traffic it wants to control, the researcher makes the

selection official by issuing a request for the selected resources. This request needs

to be approved by network administrator, after which the virtual network is almost

complete. The only thing missing is the network control. To discuss its

implementation in a little bit more details, here we consider the case of a

centralized controller, the only type of control which has been used so far in

OpenFlow networks.

 In described environment the controller is supposed to run on a VM created

on a server. As specified by OpenFlow and supported by FlowVisor, it can be any

type of control. Independently of how the controller is implemented, there should

be a connection between it and switches, i.e. all switches should be able to send

packets to the controller and the controller should be able to modify tables of all the

switches. Considering that this exchange must go over FlowVisor, the FlowVisor

should have connections towards all the switches and a connection to the controller.

While the connection towards the controller is not o problem, connecting the

FlowVisor with the switches using direct connections might be a one. Namely, by

using this way of interconnection, N switches require N interfaces on a machine

(server) running FlowVisor. This automatically places high burden on the server

running the FlowVisor and increases expenses. To avoid spending more money

without essential improvement in performance, control channels from the FlowVisor

towards the switches have been realized using a single direct connection from one

of its interfaces to a non-OpenFlow port (“production” port) of a switch and

July 2011 Page 86

controlling network. The controlling network is a LAN network consisting of

interconnections between switches over non-OpenFlow ports such that packets

traversing it are forwarded using the normal L2 forwarding mechanisms.

Consequently, no matter which switch decides to forward them to the controller, the

controlling packets traverse the controlling network using L2 mechanisms until they

reach the switch which has a direct connection to the FlowVisor. There they are

forwarded to the FlowVisor which delivers them to the assigned controller.

Nevertheless, as it has been previously said, FlowVisor and controlling network

deployment are fully transparent to the controller. The only thing the researcher

needs to do is create a VM, run controller on it and to specify to controlling

framework at which IP address and TCP port the controller is listening for the

incoming connection requests from the switches. FlowVisor uses this information to

connect to the controller and transparently provide paths between the controller

and the switches. Considering the controller itself, the VM comes with an installation

of NOX which only needs to be compiled. Consequently, the researcher can develop

its controller as a new NOX application or use one of reference NOX controllers

shipped with the installation. In both cases, with the controller listening for the

incoming connection requests and its address specified, the slice (virtual network)

is ready for running.

 Considering that i2Cat’s OpenFlow island is still under development,

especially in terms of management software and server virtualization, it could not

be used for anything more than familiarization with the architecture. Nevertheless,

it provided a valuable insight into practical implementation of concepts discussed in

Part I.

July 2011 Page 87

9. Conclusions

In this work abilities of OpenFlow communication protocol have been

investigated in both packet and circuit networks, as well as in the unified

environment. After the introduction in which the need for a heterogeneous network

virtualization tool has been stated, OpenFlow, NOX and FlowVisor have been

introduced showing that only together the three of them form a complete network

virtualization tool. To avoid possible misunderstandings and confusion between

their roles, achievements of all three systems have been distinguished and clearly

stated. It has been described in details that OpenFlow, as a communication

protocol, provides only reasonable controlling flexibility on top of a single device.

Easy writing of various applications on top of centralized network view has been

credited to NOX, while FlowVisor has been recognized as a network virtualization

tool based on OpenFlow.

Following the scalability problem of centralized NOX, introduction of

distributed control in OpenFlow packet networks has been considered. The resulting

conclusion was that OpenFlow cannot directly solve the topology dissemination

problem of distributed control. However, it has been also pointed out that with out-

of-band control it is possible to provide full separation of control and data traffic

and to design control traffic routing scheme completely adjusted to control traffic

peculiarities. Moreover, solutions for control channel establishing and testing have

been proposed utilizing the existing OpenFlow mechanisms. All this has been

considered for packet switching environment.

In the Part 2, it has been shown that extending of OpenFlow to circuit

switching environment, can lead to packet and circuit network convergence and

various new features such as: dynamic establishing of variable size packet links

across transport network, application specific aggregation, faster restoration and

service aware routing. Moreover, it has been shown that interoperability between

OpenFlow and GMPLS devices can be easily achieved in the overlay model. For

realization of this model we have proposed separation of packet and optical ports

on edge nodes which are to be kept in two separate Python dictionaries.

July 2011 Page 88

By reusing the FlowVisor concepts defined for packet networks, we have

investigated applicability of OpenFlow and FlowVisor for virtualization of optical

networks. Although it is possible and very easy to implement, we have made

theoretical predictions that the resulting virtual networks will probably lack in

efficiency. However, this problem has been credited to the limitations of today’s

optical switching devices. Their inability to inspect the traffic carried within a single

wavelength, causes efficiency problems in resulting virtualized networks. With

respect to that, we have concluded that, in order to provide efficient and flexible

solution working at sub-wavelength range, virtualization of optical networks must

wait for new breakthroughs in optical devices.

At the end, description of an existing OpenFlow island, comprising OpenFlow

switches, FlowVisor and NOX controllers, has been described showing how financial

issues can carve the theoretical architecture.

Eventually, work presented in this thesis has opened many issues whose

investigation can be continued in the future, either as a part of Master or PhD

thesis. These issues include:

• Testing of OpenFlow, NOX and FlowVisor scalability in the i2Cat’s

OpenFlow island using the described architecture.

• Implementing of out-of-band distributed control on top of OpenFlow

packet switches, and its comparison with centralized control

performance.

• Using of UPC’s GMPLS test-bed to connect distant OpenFlow packet

islands (e.g. OpenFlow islands in Catalunya and Brazil that collaborate

within FIBER FP7 project).

• Examining the possibilities of OOFDM in optical network virtualization.

July 2011 Page 89

10. Bibliography

[1] M. Handley, “Why the Internet only just works”, BT Technology Journal, vol.

24, no. 3 , July 2006

[2] N. M. Chowdhury and R. Boutaba, “Network Virtualization: State of Art and

Research Challenges”, IEEE Communications Magazine, Vol. 47, Issue: 7,

pp. 20-26, July 2009

[3] T. Anderson et. al., “Overcoming the Internet Impasse through Virtualization”,

Computer, Vol. 38, Issue: 4, pp. 34-41, April 2005

[4] NetFPGA: Programmable Networking Hardware. Web site: http://netfpga.org

[5] J. Turner, P. Crowley et al., “Supercharging Planet Lab – High Performance,

Multi-Application Overlay Network Platform”, ACM SIGCOMM ’07, August

2007, Kyoto, Japan

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, S. Shenker and J. Turner, “OpenFlow: enabling innovation in campus

networks”, ACM SIGCOMM, Computer Communication Review, Vol. 38, Issue:

2, March 2008

[7] OpenFlow Switch Specification v1.0. Web site: http://www.openflowswitch.org

[8] N. Gude et. al., ”NOX: Towards an Operating System for Networks”, SIGCOMM

Computer Communication Review, Vol. 38, Issue: 3, July 2008

[9] R. Sherwood et. al., “FlowVisor: A Network Virtualization Layer”, October 2009

[10] Open Flow Switch Specification v1.1. Web site: http://www.openflowswitch.org

[11] Cisco Visual Networking Index: Forecast and Methodology, 2009-2014. Web

site: http://www.cisco.com/en/US/solutions/

[12] NOX Repository. Web site:

http://www.noxrepo.org/noxwiki/index.php/Main_Page.

[13] S. Das, G. Parulkar and N. McKeown, “Simple Unified Control for Packet and

Circuit Networks”, IEEE Photonics Society Summer Topical on Future Global

Networks, July 2009

[14] S. Das, “Extensions to OpenFLow to support Circuit Switching draft v0.2”, Web

site: http://openflowsitch.org

July 2011 Page 90

[15] J. Manchester et. al., “IP over SONET”, IEEE Communications Magazine, Vol.

36, Issue: 5, May 1998

[16] A. Banerjee et. al., “Generalized Multi Protocol Label Switching: An Overview

of Routing and Management Enhancements”, IEEE Communications Magazine,

Vol. 39, Issue: 1, pp. 144-150, January 2001

[17] S. Das and Y. Yiakoumis, “Application-Aware Aggregation and Traffic

Engineering in a Converged Packet-Circuit Network”, OFC/NFOEC, March 2010

[18] V Gudla et. al., “Experimental Demonstration of OpenFlow Control of Packet

and Circuit Switches”, OFC/NFOEC, March 2010

[19] A. Farrel, “GMPLS Architecture and Applications”, Morgan Kaufmann, 2006

[20] Y. Wang et. al., “Virtualized Optical Network Services across Multiple Domains

for Grid Applications”, Communication Magazine, Vol. 49, Issue: 5, pp. 92-101,

May 2011.

[21] R. Nejabati et.al., “Optical Network Virtualization”, 15th International

Conference on Optical Design and Modeling, 2011.

[22] S. Das et. al., “Packet and Circuit Convergence with OpenFlow”, OFC/NFOEC,

March 2010

[23] Packet and Circuit Convergence (PAC.C) with OpenFlow. Web site:

http://openflowswitch.org/wk/index.php/PAC.C

