

TREBALL DE FI DE CARRERA

TÍTOL DEL TFC: On-Board Autonomous Conflict Detection for UAS
Platforms.

TITULACIÓ: Enginyeria Tècnica Aeronàutica, especialitat Aeronavegació

AUTOR: Óscar Vázquez Navarro

DIRECTOR: Enric Pastor Llorens

DATA: 23 de març de 2011

On-Board Autonomous Conflict Detection for UAS Platforms 2

On-Board Autonomous Conflict Detection for UAS Platforms 3

On-Board Autonomous Conflict Detection for UAS Platforms 4

Títul: On-Board Autonomous Conflict Detection for UAS Platforms.

Autor: Óscar Vázquez Navarro

Director: Enric Pastor Llorens

Data: 23 de març de 2011

Resum

En aquest treball volem crear un algorisme de detecció de conflictes entre
aeronaus, mes especificament per un avió no tripulat (UAV). Per això abans de
tot necessitem saber i coneixer tot referent als missatges ADS-B, els missatges
pels quals es comuniquen les dades del avió al centre de control aeri.

En segon lloc fem un breu estudi sobre els algorismes ja existents tan per
detecció de conflictes com per a resolució de conflictes.

Un cop acabada la investigació previa, harem de investigar una mica sobre els
software que farem servir com es el cas del programa eDEP de simulació de
trafic aeri i el programa C# per la implementació del nostre algorisme.

A continuació ja tenim dades suficients com per poder crear el nostre algorisme
de detecció que un cop acabat podrem evaluar els resultats amb satisfacció.

On-Board Autonomous Conflict Detection for UAS Platforms 5

Title: On-Board Autonomous Conflict Detection for UAS Platforms.

Author: Óscar Vázquez Navarro

Director: Enric Pastor Llorens

Date: March 23rd, 2011

Overview

In this Project we want to create an algorithm for conflict detection between
aircrafts, more specifically for UAV.

 The first thing we need to understand is how the ADS-B messages work and
are sent to the ATC. After this study we also need to know which conflict
detection and resolution algorithms exists and how are implemented.

Once the previous documentation is done we need to know and understand the
software environment we are going to work on. Specially the eDEP simulation
platform and also the C# platform in which we are going to implement our
detection algorithm.

After having done the previous work either in theoretical information or in
software practice we are going to start with the implementation of our detection
algorithm.

On-Board Autonomous Conflict Detection for UAS Platforms 6

Index of Contents

1. Introduction ... 6

1.1 Objectives of the Project. .. 6

1.2 Structure of the Document. ... 6

2. Previous work on conflict detection. 6

2.1 Conflict Detection. ... 6

2.2 Conflict Resolution. ... 6

3. EDEP overview and ADS-B messages. 6

3.1 Early demonstration & Evaluation Platform (eDEP) 6

3.2 The Asterix Messages.. 6

3.3 The ADS-B messages. ... 6

3.3.1 Time of day .. 6

3.3.2 Geometric Altitude. ... 6

3.3.3 Position in WGS-84 Co-ordinates. ... 6

3.3.4 Flight Level. ... 6

3.3.5 Magnetic heading. ... 6

3.3.6 Target Identification. ... 6

3.3.7 Air Speed. .. 6

4. Architecture of the simulation environment. 6

5. Design and implementation of the collision detection
algorithm. ... 6

6. Evaluation .. 6

6.1 Conflict point in a look ahead time. .. 6

6.2 Conflict point behind. .. 6

7. Conclusions ... 6

On-Board Autonomous Conflict Detection for UAS Platforms 7

8. Bibliography. ... 7

On-Board Autonomous Conflict Detection for UAS Platforms 8

Index of Figures

Figure 1: Display of TCAS system situated in the cockpit. 9
Figure 2: Ikhana, an UAV modified predator. 11
Figure 3: Weaponized UAV. 12
Figure 4: CD&R geometry. 13
Figure 5: State propagation methods. 14
Figure 6: Heading changes manoeuvres 15
Figure 7: The roundabout or circle manoeuvre 16
Figure 8: The eDEP Architecture 18
Figure 9: Initial information of aircraft BAG7430 19
Figure 10: eDEP console for time control 19
Figure 11: Screenshot for the main screen used as an air traffic controller 20
Figure 12: Screenshot where we can see all the traffic flow 20
Figure 13: OSI layers 21
Figure 14: Structure of Time of day data 24
Figure 15: Structure of Geometric Altitude data 24
Figure 16: Structure of WGS 84 Co-ordinates data 25
Figure 17: Structure of Flight Level data 25
Figure 18: Structure of magnetic heading data. 26
Figure 19: Structure of Target Identification data 26
Figure 20: Structure of True Air Speed data. 27
Figure 21: Diagram of the C# code files 29
Figure 22: Schematic draw of a conflict 30
Figure 23: Two different cases of convergence points. 32
Figure 24: Schematic draw of a plane with three points 32
Figure 25: eDEP’ screenshot of our UAV route information 35
Figure 26: eDEP’ screenshot for the aircraft in possible collision with our UAV 36
Figure 27: eDEP ‘screenshot for conflict detection involving two aircrafts 36
Figure 28: Csharp console showing the parameters received from eDEP
simulation 38
Figure 29: eDEP ’screenshot showing in red our UAV’s flight plan and in green
DLH3478’s flight plan. Also the estimated point of conflict is situated inside the
blue circle. 39
Figure 30: Csharp console showing the parameters received from eDEP
simulation 40

On-Board Autonomous Conflict Detection for UAS Platforms 9

Index of Tables

Table 1: Data Items of Category 021 in ADS-B messages. 23

On-Board Autonomous Conflict Detection for UAS Platforms 10

Glossary

ADS-B Automatic Dependent Surveillance - Broadcast

ATC Air Traffic Control

CAD Closest Approach Distance

CDR Conflict and Detection Resolution

CDU Control Display Unit

EDEP Early Demonstration & Evaluation Platform

FIS-B Flight Information Services - Broadcast

FMS Flight Management System

IFR Instrumental Flight Rules

RSSP Radar Systems Specialists Panel

SASS-C Surveillance Analysis Support System for ATC-Centre

STFRDE Surveillance Task Force for Radar Data Exchange

TCAP Time of Closest Approach Point.

TCAS Traffic Collision Avoidance System.

TIS-B Traffic Information Service - Broadcast

UAC User Account Control

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

VFR Visual Flight Rules

1. Introduction

Nowadays, passenger’s Air Traffic Transport is considered the safest mean of
transport. According to IATA, in 2010 the air accident rate was 0.61, which is
equivalent to 1 accident for each 1.6 million of flights, the lowest rate of history
followed by 2006 that was 0.65.

To keep the low rates, aircrafts safety either in ground or in air is a very
important factor. For that reason, we need to know their exact position in every
moment and keep them well separated and guarantee a fluid air traffic flow.

For that reason, to keep aircrafts well separated and well communicated we
need the roll of ATC. Air Traffic Control is a service provided by controllers with
the main purpose to separate aircrafts to avoid collisions by providing
information and any support pilots request when possible. Controllers also
organise the flow of traffic which is important because in a “controlled airspace”
safety is ensured and less aircrafts are involved in possible conflicts.

As a backup for controllers the aircrafts have their own technology for conflict
detection, it is called TCAS. Safety studies of TCAS have estimated that this
system improves safety in airspace by a factor between 3 and 5. The display as
shown in Figure 1 below, is located in the cockpit and warns the pilot of the
presence of other aircrafts around. This system works only if the transponder of
the rest of the aircrafts around are active, if not the aircrafts will not be shown in
the screen.

Figure 1: Display of TCAS system situated in the cockpit

On-Board Autonomous Conflict Detection for UAS Platforms 12

The future of this technology will be based on ADS-B messages and data links
between aircrafts themselves or between aircrafts and ground stations. The
existing TCAS are able to process the ADS-B messages. Once the ADS-B
transponders will be compulsory for every aircraft, TCAS performance will be
enhanced using techniques known as “hybrid surveillance”. Making TCAS using
the ADS-B messages will reduce the rate in which the TCAS equipment
interrogates the nearby aircrafts.

In this Project we will focused on conflict detection between aircrafts, but we are
going to be more focused on UAVs. Conflict resolution is as important as
conflict detection, for that reason we are going to make an overview in chapter
2.

Regarding our implementation in C# code we are going to create a program
that will be able to know the exact position of all the aircrafts of a simulation with
the data received by eDEP Platform. Knowing the position of the aircrafts is
basic because having that information we are going to be able to calculate the
possible conflict point between them, the conflict time until they reach the
collision point and the distance to their actual position to the conflict point.
Some other calculations we are going to implement is if the calculated conflict
point is in a look ahead time or just a convergence of the aircrafts ‘headings in
the past.

1.1 Objectives of the Project

• Explain what is a conflict between aircrafts.
• Explain some methods of conflict resolution.
• Localise conflicts between aircrafts.
• What is an UAV and what are they used for.
• To understand the ADS-B messages send by an aircraft.
• Get to know the eDEP environment with Java Eclipse.
• Creation of a C# software for conflict detection through data received

from eDEP Program.

The main objective of this project regarding all the objectives mentioned above
is to achieve that an UAV detects a conflict with another aircraft.

An UAV is an aerial vehicle, powered that doesn’t carry any human crew and
uses aerodynamic forces to fly and can be remotely controlled or can fly
autonomously based on pre-programmed flight plans. The UAV history started
with some drones remotely controlled but now they are very well improved and
they can fly autonomously. Although the main use for UAVs is in a military
concept there are a huge variety of uses for UAVs.

- In the military applications, UAV are used for surveillance and target
designation, weapon delivery or electronic countermeasures among others.

- In the security applications, UAV are used for border surveillance, maritime
surveillance, anti-terrorism or sensitive sites surveillance.

On-Board Autonomous Conflict Detection for UAS Platforms 13

- In the civil applications, UAV are used for forest fire detection, pollution
detection, agriculture and fishing among others.

There is a challenge for UAV that is to design a sense and avoid system that
would sense the presence of other aircrafts nearby and would take some steps
to diverts the UAV from the other aircrafts flight plan. This challenge is
developed by ASTM and the standard is called ASTM F 2411.The main
objective is to create a mechanical system designed to take the place of a pilot
maintaining the level of safety. This sense and avoid system has not yet been
certificated.

The UAV is just the most known part of a bigger system called Unmanned
Aircraft System. To achieve the goals and make a UAV fly, there are a lot of
systems working behind.

A typical UAS consists of the following parts:
Unmanned aircraft
Control system, such as ground control station.
- Control link.
- Other related support equipment.

In figure 2 and 3 we can see two different UAV with different shapes, sizes and
configurations. In figure 2 the UAV is used for forest fire detection and beneath
the left wing carries NASA’s Autonomous Modular Scanner, a self-contained IR-
thermal imager. In figure 3 we can see a weaponized UAV, for military
applications.

Figure 2: Ikhana, an UAV modified predator

On-Board Autonomous Conflict Detection for UAS Platforms 14

Figure 3: Weaponized UAV

1.2 Structure of the Document

In chapter 2, we give some information on previous work done on conflict
detection between aircrafts and also a brief information on conflict resolution.

In chapter 3, eDEP, ADS-B messages and Asterix take place. We will explain
what is eDEP and its software. Regarding ADS-B messages we will introduce
the ADS program and which information will be useful in ADS-B messages for
our project and concerning Asterix we will explain what it is and what it is used
for.

In chapter 4, we are just focused in eDEP software and what we can get from it,
how it is displayed and which screens are we going to use. Afterwards with this
information we are going to program a conflict detection algorithm in C#.

Chapter 5 is fully dedicated to our implementation work. We are going to
describe the calculations we need to implement a C sharp program to receive
data from eDEP software that will detect the conflicts between aircrafts and they
will be shown in a console screen.

In chapter 6, we will analyse our results from C sharp program crossing
references from our C# code and what it is displayed in eDEP consoles.

Chapter 7 brings the Projects conclusions and our final observations.

2. Previous work on conflict detection

2.1 Conflict Detection

One of the most important design parameters for UAV system is the collision
avoidance system. Its design needs to be reliable and intelligent so it can be
integrated in civilian airspace. These algorithms have to assure conflict free
trajectory planning but also provide basic autonomous navigation capabilities.
Conflict detection is useful in a short lookahead time, usually 5 minutes. If this
lookahead time is longer we won’t even look for possible conflicts in real life.
It also has been very studied and there are several different algorithms for
conflict detection. To describe the aircraft trajectory, the simplest algorithms just
need a position, velocity vector and a time interval data.

According to Hyo-Sang Shin [9], to design the CD&R algorithm we first need to
introduce the definitions of conflict detection and conflict resolution as it is done
in TCAS system. These definitions are: Closest Approach Distance (CAD) and
Time to Closest Approach Point (TCAP). His study is based on geometric
conflict detection and resolution system. In the following image we can see the
CD&R geometry.

Figure 4: CD&R geometry

As conflict detection and resolution can be as reliable as the ability of the model
to predict the future, James K. Kuchar [4] has made a study in which the most
concrete difference between modeling approaches involves the method by
which the current states are projected into the future.

Three different extrapolation methods have been identified, termed nominal,
worst case, and probabilistic. The tree methods are shown in Fig 2.1.2, the
nominal projection (a), provides the best estimate of where the aircrafts will be.

On-Board Autonomous Conflict Detection for UAS Platforms 16

Figure 5: State propagation methods

The probabilistic method (c) is the most general: the nominal and worst-case
are subsets of probabilistic trajectories. The worst-case model is one in which
the aircraft will follow any trajectory with equal likelihood.

2.2 Conflict Resolution

The main point in this Project is conflict detection as we said previously but we
also need to make a little overview in Conflict Resolution.

The aircrafts before taking off have their own trajectory planning algorithm that
follows the path from the source airport to the destination airport following a
sequence of waypoints. This path is calculated to be optimal and conflict-free
and then consulted with Air Traffic Control to approve it. However, this path can
be modified due to bad weather, high winds or schedule delays. This deviations
from the original path are calculated by the central ATC and each aircraft before
modifying its course has to have the clearance from ATC. The average of
conflicts occurring between two aircrafts is 90% but conflicts involving three or
four aircrafts may occur.

There are many algorithms to resolve a conflict, the first one is human factor, in
which the air traffic controller receives the state information from the aircrafts
and then he is the one who decides which manoeuvres need to be done to
solve the existing conflict and then he communicates the pilot what to do.

The next resolution method is Altitude step & TCAS manoeuvres, the altitude
step just calculates the altitude needed to reach before the conflicts takes
place. The advantage of TCAS’s manoeuvres is that they are very effective
thanks to the shape of the protected zone, anyway, it avoids a huge bearing
deviation. The disadvantage is that a lot of communication is needed for the
manoeuvres and extra hardware need to be implemented or just increasing the
bandwidth of TCAS system.

Another method exists, cross product of speed vectors. This method uses the
cross product of speed vectors from the aircrafts in conflict. To solve the conflict

On-Board Autonomous Conflict Detection for UAS Platforms 17

we use a non-commutative method to obtain the result. Using this method we
can establish the changing directions of bearing in the speed vector of the
aircraft.

The last method is extended VFR rules. This method is very simple because it
uses the methods from visual flights. EUROCONTROL has modified some
visual rules so we can determine who has the priority in the airspace. For
example, to determine the priority one of the rules is the state of flight
(Ascending, descending, cruise, etc.).

The following two figures show two different conflict resolution methods, in
figure 6 we can see how both aircrafts are going to turn left then continue
straight and finally they will turn right to get to their initial heading and continue
with their flight plan. in figure 7 the three aircrafts that could be in conflict the
three of them turn right and they will start flying in circle like if they were in a
roundabout and then once they reach their opposite site of the roundabout they
will change heading to get the their initial one and continue with their flight plan..

Figure 6: Heading changes maneuvers

On-Board Autonomous Conflict Detection for UAS Platforms 18

Figure 7: The roundabout or circle maneuver

In addition, aircrafts have their own automatic conflict solver that pilots would
use depending on workload in the flight deck.
If pilots use this automatic conflict solver, there are three resolution modes:
automatic, semiautomatic and manual.

- The automatic mode is when the pilot accepts the solution suggested by the
automatic conflict solver.

- The semiautomatic mode is when the pilots accepts the suggestion from the
conflict solver but he introduces some changes such as type of manoeuvre.

- The manual mode is when the pilot defines himself the conflict and introduces
the changes to be done in the flight plan.

All this changes can be done via Flight Management Display (FMS) with this
Control Display Unit (CDU) or directly by manipulating the aircraft Navigation
Display.

3. EDEP overview and ADS-B messages

3.1 Early demonstration & Evaluation Platform (eDEP)

The eDEP software was created by Graffica enterprise for EUROCONTROL.
The aim was to create a low cost, lightweight and web-enabled ATM simulation
platform. The eDEP code has over 400k lines while the other simulation
platforms have between 700,000 to 1.5 million lines.

The eDEP platform has been designed to be compact and to ensure a good
code-reuse, for that reason all subsystems use the same code base. The
optimum code length is the one that a group of 4 people can handle and
maintain according to Graphica philosophy.
Since 2002 the code has increased from 90,269 lines to 399,230 lines in May
2007.

The platform is written in Java language to be executed in different operating
systems; anyway it is a high quality platform since it is well documented about
its progression. The platform offers their users a modern technology as well as
development toolkit. The platform is focused for different purposes:
investigation, advanced projects, human factors studies for ATC as fatigue or
work load, simulations, experiments (HF Lab) and training.

The eDEP architecture is built in layers that encourage the software reuse. In
the next figure the eDEP architecture is shown and the layers are well defined.

The Graffica System Development Kit (GSDK) offers the following functionality1:

• (terrain) map management
• Entity (model) management
• Pluggable entity parser (read-in, write-out) framework
• Scenario & simulation time management
• Efficient graphics engine
• Pre-built widget set
• Application management
• Geometry and projection functionality
• Rich event management
• Middleware functionality (discovery)
• State machine management
• Configuration resource management
• Various conflict (MTCD & HIPS) algorithms
• Simple Trajectory Prediction algorithms

1 Reference: http://www.eurocontrol.fr/projects/edep/

On-Board Autonomous Conflict Detection for UAS Platforms 20

Figure 8: The eDEP Architecture

As eDEP is a program that simulates Air Traffic Control. For our project we just
need any simulation with aircrafts flying.

 In our case we are going to use two different files to make our demonstration
and calculations:
eDEP/ATC-
2009_mellejmi/ATC/src/atcapp/resources/demos/ians/luxdema_ADSB.gsdk
eDEP/ATC-2009_mellejmi/ATC/src/atcapp/resources/demos/ians/luxtraffic.dat

In the first file is where we put our IP address for the UDP connection, we put
the scale values of the screens for the simulation, we write the files we are
going to need to execute the file and we determine the type of message we
want to sent through the UDP port, in our case messages category 021.

In the second file is where all the traffic data is kept in case we want to add
another plane or we want to change their initial values as flight level or change
their flight plan. In figure 9 we can see the information of one plane among
other that will be shown in the simulation.
The target identification of this aircraft is BAG7430, we also can see the
departure and destination point, the flight level during the simulation, the time in
which the aircraft will start in the simulation and among other information the
last information is its flight plan.

On-Board Autonomous Conflict Detection for UAS Platforms 21

Figure 9: Initial information of aircraft BAG7430

Figure 10 shows just the eDEP console, the main purpose of this screen is to
start the simulation, pause it, stop it and the last option is fast forward if we want
to accelerate the time. In figure 11 we can see the main screen as if we were a
traffic controller. In this screen we can select an aircraft and change its altitude,
flight plan, heading, speed, change his frequency to another airspace. In figure
12 we see the traffic flow and the label from each aircrafts showing us their
identification number, their flight level, their next sector.

Figure 10: eDEP console for time control

On-Board Autonomous Conflict Detection for UAS Platforms 22

Figure 11: Screenshot for the main screen used as an air traffic controller where
we can see all the aircrafts controlled by an ATC, from this console we can
change any parameter of any aircraft using the ATC frequency

Figure 12: Screenshot where we can see all the traffic flow from our simulation

On-Board Autonomous Conflict Detection for UAS Platforms 23

3.2 The Asterix Messages

The acronym of Asterix stands for: “All Purpose STructured Eurocontrol
SuRveillance Information EXchange.”

Historically every National Administration had its own format for delivering radar
data to ATC Centres. This caused complications to exchange data from radars
from different countries. In 1984, Maastricht UAC presented to RSSP what a
common European data format could look.Two years after, in 1986 ASTERIX
was officially approved and its manual was presented describing the initial
structure and describing the data items that monoradar and weather data would
cover in 1988. In 1994, the STFRDE was created to continue the work on
ASTERIX Users Group and the responsibilities were passed from RSSP to
Surveillance Team.

Nowadays the main users of ASTERIX are the Air Traffic Control (ATC) Centres
and almost all the ECAC members. An Asterix message is a structured
encoded binary data from ATM surveillance allowing a well synchronised
transmission of information from any surveillance and automation system.The
structure data that has to be exchanged is taken from the first encoded bit of
information up to all the entire block of data without any lose of information
during the whole process.

The transmission of any Asterix message can be done by any of the following
communication medium: Local Area Network (LAN), Wide Area Network
(WAN), Internet Protocols (IP) or any others belonging to lower layers shown in
the next figure.

In the next figure we can see the Open Systems Interconnection (OSI) layers.
Asterix refers just to Presentation and Application layers which are layers six
and seven.

Figure 13: OSI layers

On-Board Autonomous Conflict Detection for UAS Platforms 24

For the transmission of this information there is up to 256 categories of Asterix
Messages, one category for each specific application using this encoding
format.

The use and definition of this categories are as followed:
Data Categories 000 to 127 for standard civil and military applications.
Data Categories 128 to 240 reserved for special civil and military applications.
Data Categories 241 to 255 used for both civil and military non-standard
applications.

For our project the information we are going to need is included in category
021. This category describes the structure of the message from a CNS/ATM
ground station, also covers a multitude of ground stations with different types of
services. Those services are: ADS-B, TIS-B, FIS_B, GRAS and MLT.
So we can say that ADS-B messages are part of Asterix data categories.

The eDEP program is able to send messages with category 021 and category
244, this last category is reserved for the exchange of information for the SASS-
C system. The SASS-C is a software toolbox developed by Eurocontrol to
provide standarised methods and tools for assessing the performance of
Surveillance Infrastructures.

3.3 The ADS-B messages

The Automatic Dependent Surveillance (ADS) is a surveillance technology for
tracking aircrafts as part of the next Generation Air Transportation System
(NextGen). The aim of NextGen is to guide and track air traffic more precisely
and efficiently to save fuel, reduce noise and pollution through a continuous
extended of improvements and upgrades.

Through the data from the positioning satellite system (GNSS), the aircraft
knows its exact position and then broadcasts periodically its position and some
other important informations with ADS-B messages to the ground station and to
the other aircrafts equipped with ADS-B technology. The aircrafts using this
technology have a little screen inside the cockpit to see the information
received.

The ADS-B system works completely different to other systems, every second
the system broadcast its position and other important information calculated on
board to the controllers and airspace users without any action of the pilot or
controller. The ADS-B messages are broadcast in the band of 1090 MHz radio
frequency but they are also carried on a Universal Access Transceiver (UAT) in
the 978 MHz band. The broadcast of the information don't need an
acknowledgment or reply from the users receiving the information, so the ADS-
B system never knows who receives the information.

ADS-B can be used over several different data link technologies:

On-Board Autonomous Conflict Detection for UAS Platforms 25

 Mode-S Extended Squitter operating at 1090 MHz
 Universal Access Transceiver (978 MHz UAT)
 VHF Data Link (VDL Mode 4)

All data sent through an ADS-B message are the following ones shown in the
table.

On-Board Autonomous Conflict Detection for UAS Platforms 26

Table 1: Data Items of Category 021 in ADS-B messages.

We are going to look to the structure of the data we are going to use in this
project.

3.3.1 Time of day

In the figure below we can see the structure of the time in the ADS-B message.
The structure is composed by three octets and the accuracy of the data is 2-7
seconds.

On-Board Autonomous Conflict Detection for UAS Platforms 27

Figure 14: Structure of Time of day data

3.3.2 Geometric Altitude

The geometric altitude data is received in two octets. The altitude is measured
from -1500 feet up to 150000 feet with an accuracy of 6.25 feet.

Figure 15: Structure of Geometric Altitude data

3.3.3 Position in WGS-84 Co-ordinates

The position coordinates data is received in 6 octets. The three firsts octets
include the longitude data and the other three include the latitude data.

On-Board Autonomous Conflict Detection for UAS Platforms 28

Figure 16: Structure of WGS 84 Co-ordinates data

3.3.4 Flight Level

The Flight Level data is received in two octets with a range from -15 FL to 1500
FL. The accuracy of this data is a quarter of FL.

Figure 17: Structure of Flight Level data

On-Board Autonomous Conflict Detection for UAS Platforms 29

3.3.5 Magnetic heading

The magnetic heading is received in two octets with an accuracy of 0.0055
degrees.

Figure 18: Structure of magnetic heading data

3.3.6 Target Identification

The data of the identification of the aircrafts is received in 6 octets. Each octets
is coded in 6 bits. Octet 8 defines the first character of the identification, octet 7
defines the second character and so on until octet 1 that defines the last
character of the target identification.

Figure 19: Structure of Target Identification data

On-Board Autonomous Conflict Detection for UAS Platforms 30

3.3.7 Air Speed

Data from Air Speed is the one we are going to use in our project because all
the other data related to speed as True Air Speed or Velocity Accuracy have no
data in the message.
Air Speed data is received is two octets with an accuracy of 0,001.

Figure 20: Structure of True Air Speed data

The ADS-B technology is not yet compulsory for the aircrafts. Every airspace
has its own programs to implement this technology2.

- In United States, they are implementing the ADS-B technology with UAT
technology for regional level and Extended Squitter for global level. In 2020 the
United States will require to almost all the aircrafts operating within its airspace
to be equipped with this technology.

- The South Pacific airspace is covered with ADS-C thanks to the use of
satellite communication and standard FANS-1/A.

- In the Asian airspace, Japan has introduced ADS-C in its Tokyo's oceanic
airspace and they are evaluating the ADS-B.

- In the Oceanic airspace, Australia has began its operational evaluation project
of ADS-B based on Extended Squitter. They are planning to install 40 ADS-B
ground stations and the will equipped several aircrafts too with ADS-B.

- Referring to Europe, there are several programs trying to find out and testing if
the ADS technology is worthwhile for the nearest future. AENA is ahead of
some programs as SACCAN or SEAP. The main idea is to prove that ADS is a
technology that will make a safer airspace. This technology is not yet validated.

2 Reference: http://www.aena.es/csee/Flash/html/adsImplantacion.jsp

4. Architecture of the simulation environment

In this project we are going to use the latest Java Eclipse Platform which is:
Java Eclipse Helios. With this platform we are going to be able to run the eDEP
program. Once eDEP program is running, we are going to send all the aircraft
data through an UDP port from eDEP simulation to our C# platform.

Our C# platform is MonoDevelop in which, once receiving the data from Eclipse,
we are going to decode that information and then we are going to make all the
calculations for our conflict detection algorithm. This algorithm will be described
in the next point but now I would like to specify the main structure of the code to
understand better the next point.

When do we know that the aircrafts are in possible conflict?

Knowing all the data from each aircraft received through the UDP port and
taking into assumption that our UAV is controlled by us all time. The first thing to
know is the distance between our UAV and the rest of the traffic planes. Once
we know that distance we need to fix a imaginary circle around our UAV as a
protection zone. The zone will have a radius of 10 kilometres.

When we have an aircraft crossing this 10 kilometres boundary we need to
know if they are flying with a vertical secure separation. If this vertical
separation is 1000 feet there will be no conflict. When the vertical separation is
less than 1000 feet, the next thing we need to know is the convergence of their
headings. The different convergence of headings is explained in the following
point.

In case their headings converge in a look ahead point, is now when we
calculate the coordinates of this conflict point and then the distance from each
aircraft to the collision point. We also calculate the time that will last each
aircraft to arrive to that specific point. If the difference between each aircrafts’
time is more than 2 minutes then we are not going to do nothing because there
is no conflict situation.

Once the time difference is less than 2 minutes we need to change heading
from one of the aircrafts to avoid the collision. In our case, we just want to
detect the possible collision. Conflict avoidance is explained a little bit in our
previous work and there are two different ways explained to solve the conflict
among a huge possibilities of conflict resolution ways because every situation is
different and there will be one resolution for each situation that exists.

In the following figure we can see a diagram that shows how the C# code files
are related between them Each name is related to a different file of our Csharp
program. The “CAT21 Message”, “Asterix Message” and “Asterix Factory” are
the files that decode the information received by eDEP program and then the
data is sent directly to “Myplane” and “Traffic” files. All the code the is related as

On-Board Autonomous Conflict Detection for UAS Platforms 32

the arrows show. Each files is directly related with one or more other files, that
way it is easy to get a simple code easy to understand.
The files “Point” and “WgsPoint” are just used to convert the position
coordinates received in degrees by the eDEP program to UTM positions.

Figure 21: Diagram of the C# code files

Referring to the main aspect of how our C# code works, we first have to say
that our code has been implemented with threading. That means that while we
are receiving data from the eDEP simulation our program will not make and
calculation and once we have received the package of data our code will start
automatically to run the algorithm in order to calculate all we have implemented.
We are going to receive data packages each 6 seconds from the simulation. In
this case we can separate our code files in two different blocks. The first block
that will be called the writer is the one in charge of decoding the information
received and the one that stores the information in a local dictionary in order to
keep the information. In this first block the name files among others are: CAT21
Message, Asterix Message, Asterix Factory, Traffic, Myplane The second block
is called the consumer that will use all the information stored in the local
dictionary to make all the calculations implemented. This last block is composed
by the rest of the files that are not included in the writer block.

5. Design and implementation of the collision detection
algorithm

The idea to implement the conflict detection algorithm is very simple. Through
data received by ADS-B messages seen in point 3.2 we know everything we
need to make the calculations.

In the next figure we can see a schematic draw that represents two aircrafts(1
and 2) in conflict and the estimated point of conflict P.

Figure 22: Schematic draw of a conflict

The ADS-B message give us the exact position of the aircrafts in degrees.
Through a specific function explained in the previous point we get the position
in metres that will be much more easier to make the calculations.

The points 1 and 2 (representing the aircrafts) can be described by the next
equation:

 y1 = m1 * x1 + b1
 y2 = m2 * x2 + b2

As we know the exact position of the aircrafts in this equations we know the
value of the variable “y” and “x” thanks to a code that converts from position in
degrees to position in UTM coordinates (meters).

On-Board Autonomous Conflict Detection for UAS Platforms 34

Then we have two equations with two unknown variables “m” and “b”. The “m”
variable is the slope of the equation so knowing the magnetic heading from the
ADS-B message we are going to be able to find “m”.

The problem to determine the “m” variable is that in theoretical estimations or
calculations the magnetic heading is 0 degrees at the North and then 90
degrees at the East, but in real life the East heading equals to 0 degrees and
the north heading equals 90 degrees. Taking this two assumptions, we need to
determine a equation that help us transforming from one heading to the other.
The equation will have this form: µ = ß * x + ∂.

The final equation will be: µ = (-1) * x + 90
 µ = 90 - ß. (ß is equal to our magnetic heading)
 m = tg (µ) (rad)

At this point we have the slope of our aircraft position equation in radians but
we need it in degrees so we transform it: m = tg(µ) * (180 / π).

Now we just need to find the value of the b variable for both equations, one for
each aircraft in conflict.

Lets work out the value of b.

 y1 = m1 * x1 + b1
 b1 = y1 - m1 * x1

 y2 = m2 * x2 + b2

 b2 = y2 - m2 * x2

Now that we have work out the values of the slope m and the independent
variable b, we are going the find the conflict point. For that reason, in both
equation of both aircraft un conflict the variables X and Y will have the same
value. When both equation will have the same value it will mean that the two
aircraft will be in the same place.

So our next step is to equal the two equations:

 m1 * x1 + b1 = m2 * x2 + b2

 x1 = x2
 x = (b1 - b2) / (m2 - m1)

Once we have the value of the variable x we just need to put that value in one
of the equations either aircraft 1 or aircraft 2 and we will find the value of
variable y.

At this point we have the equation of the aircrafts in conflict and the exact point
of conflict.

On-Board Autonomous Conflict Detection for UAS Platforms 35

Once we have all of this, the next step will be to determine if the point found as
the conflict point is a real conflict point for our case or just a point in the past
where the two headings crossed each other in a different time interval.

In the next figure we can see this two different points just explained.

Figure 23: Two different cases of convergence points

This heading interception is called heading convergence. To calculate this we
are going to calculate the equation of a plane knowing three points that belong
to it.
The general equation of this plane is: π: Ax + By+ Cz + D = 0.

Figure 24: Schematic draw of a plane with three points

As it is shown in the figure above, point 1 and 2 are the aircrafts in conflict and
point 3 has the same coordinates than point 1 but the only difference with point

On-Board Autonomous Conflict Detection for UAS Platforms 36

1 is that the value of the variable z for point 3 is 0.Point 3 is chosen with this
specific coordinates because it will help to make easy the following calculations.
With this assumption we will always be able to create this plane and able then
to calculate if there is convergence.

Calculations to create the plane and resolve convergence.

The result of this two first equations are the subtraction o each component of

Now we are going to calculate de coefficients from the general plane equation.
This coefficients are calculated as we calculate the determinant of 2x2 matrix.

On-Board Autonomous Conflict Detection for UAS Platforms 37

Once we have the three first coefficients for the plane equation we just need to
replace it on the equation and with the UTM coordinates from the conflict point
(x, y, z) we will be able to determine the last coefficient D.
This coefficient is going to be very useful because for the same conflict point
between two aircrafts while time increases the coefficient D must decrease in
order to get a conflict point in a look ahead time if not there will be just

convergence between headings in the past but not in the future.

Once we have all this information, we need to calculate the distance from each
aircraft to the conflict point and the time they are going to take to it. The variable
who has the subindex equal to 0 are the UTM coordinates from the conflict
point.

This last equation is going to tell us the time that takes to each aircraft to get to
the conflict point knowing their speed and distance to the conflict point

previously calculated with the above equation.

6. Evaluation

The evaluation of our results is going to be separated in two different scenarios:
Conflict point is behind the aircrafts and in the opposite direction of their current
headings.
Conflict point is in a look ahead time in front of the aircrafts and collision will
take place if we don’t change any parameter of the aircrafts.

6.1 Conflict point in a look ahead time

In this scenario we are going to prove that our Csharp program detects the
possible collision between two aircrafts. However, the same program detects
conflicts between more than 2 aircrafts but it will be easy to show how it works
with two aircrafts in conflict detection.
For this demonstration our UAV’s target identification will be: DAT266. In the
figures 25 and 26 we can see all the information regarding our UAV and the
other aircraft involved in the collision, respectively. We can also see its routes
plotted at the top of the left side.

Figure 25: eDEP’ screenshot of our UAV route information, showing all the
information that can be changed of an aircraft in the simulation and also the
flight plan.

On-Board Autonomous Conflict Detection for UAS Platforms 40

Figure 26: eDEP’ screenshot for the aircraft in possible collision with our UAV
showing the same information than the previous figure.

After a few minutes of simulation the conflict detection take place as we can see
in figure 27 where we have marked a black circle. The aircrafts involved in the
collision are DLH3478 and DAT266. The black circle identifies the collision point
and we know that this point will be inside the circle. At this point we are able to
change headings and avoid the collision.

Figure 27: eDEP ‘screenshot for conflict detection involving two aircrafts.

On-Board Autonomous Conflict Detection for UAS Platforms 41

The next figure, figure 28, shows the parameters of the aircrafts of the eDEP
simulation printed in the Csharp console that shows the evolution of the conflict.
In yellow we can see the information of our UAV:
Callsign.
Latitude position.
Longitude position.
Flight level.
Heading.

The parameters coloured in red show the parameters of the other aircraft
involved in the conflict:
Callsign
Latitude position
Longitude position
Flight level
Heading
Information if the aircraft is inside the security area of the UAV.
Distance between the two aircrafts involved in the conflict expressed in
kilometres.
Distance from the actual position of the aircraft to the collision point expressed
in meters.
Time to get to the collision point expressed in seconds.

As time goes through we can observe that the distance between aircrafts and
distance to get to the conflict point are decreasing and also the time to get to
the conflict point decreases.

On-Board Autonomous Conflict Detection for UAS Platforms 42

F
ig

u
re

 2
8

: C
sh

ar
p

co
ns

ol
e

sh
ow

in
g

th
e

pa
ra

m
et

er
s

re
ce

iv
ed

 fr
om

 e
D

E
P

 s
im

ul
at

io
n.

On-Board Autonomous Conflict Detection for UAS Platforms 43

6.2 Conflict point behind

The next scenario is the one involving two aircrafts. There will be conflict for
short time but then the conflict will disappear because one of the aircrafts
reaches the conflict point before the other with a lap of time of two minutes
before the other aircraft reaches the estimated conflict point.

In figure 29, we can see the routes of each aircraft, in red we have DAT266 ‘s
route and in green DLH3478’s route, and the estimated point of conflict that
would be inside the blue circle. This screenshot shows that the conflict point is
behind both aircrafts so once the last aircraft has passed the estimated point,
the conflict disappears.

Figure 29: eDEP ’screenshot showing in red our UAV’s flight plan and in green
DLH3478’s flight plan. Also the estimated point of conflict is situated inside the
blue circle.

Regarding the Csharp code, once the conflict disappears our program will not
calculate any more the distance conflict and conflict time because its very
unlikely that our two aircrafts will have an intersection in their flight plans. As it is
shown in figure 30, once the last plane has passed through the estimated point
of conflict, the distance between the two aircrafts will start to increase.

On-Board Autonomous Conflict Detection for UAS Platforms 44

Figure 30: Csharp console showing the parameters received from eDEP
simulation

7. Conclusions

To sum up, the objectives of this project at the beginning were to explain what a
conflict is and how can be detected and solved. We also needed to understand
how aircrafts get communicated with the ATC referring to ADS-B messages and
our last point was all the informatics related with the eDEP simulator and C#
platform.

At this point, we can say that the objectives of this Project have been achieved
as we have seen along all the memory. We have seen what is a conflict and
some methods for conflict detection. We also have seen that an UAV is just a
part of an UAS Platform, the different uses and the most important point is that
we have achieved to create a conflict detection algorithm with C# platform using
different mathematic methods. We also have spoken about how we receive the
data from the aircrafts, thanks to the future of data link technology, ADS-B
messages, specially messages category 021, which gives us all the information
needed about an aircraft.

This project can be complemented in the future with a conflict avoidance
algorithm so we could create an autonomous algorithm for an UAV. The main
idea would be to give a flight plan with specific waypoints and in case our UAV
interferes in any flight plan from any aircraft flying around it, we should be able
to change automatically our UAV’s flight plan. This would have a positive impact
in air traffic flow because we would make an algorithm that would disturb the
other aircrafts as less as possible.

8. Bibliography

[1] http://www.eluniversal.com/2011/02/23/bajan-indices-de-accidentes-
aereos.shtml [March, 2011]

[2] http://www.eurocontrol.fr/projects/edep/ [March, 2011]

[3] http://upcommons.upc.edu/pfc/bitstream/2099.1/9660/1/memoria.pdf [March,
2011]

[4] James K. Kuchar and Lee C. Yang, A review of conflict Detection and
Resolution Modeling Methods, IEEE transactions on intelligent transportation
systems, VOL 1, NO 2, DECEMBER 2000.

[5] RTCA Task force 3, Final report of RTCA Task force 3 Free Flight
Implementation, October 26, 1995.

[6] H.A.P Blom, G.J. Bakker, P.J.G. Blanker, J. Daams, M.H.C. Everdij and M.B.
Klompstra. Accident risk assessment for advanced ATM. National Lucht-en
Rulmtevaartlaboratorium 1999.

[7] Nicolas Durand. Algorithmes génétiques et autres outils d’optimisation
appliqués à la gestion detrafic aérien. 5 octobre 2004.

[8] D.J. Brudnicki, K.S. Lindsay and A.L. McFarland. Assessment of field trials,
algorithmic performance, and benefits of the User Request Evaluation Tool
(URET) conflict probe. The MIRET corporation 1997.

[9] Hyo-Sang Shin, A. Tsourdos and B.A. White. UAV Conflict Detection and
Resolution Using Differential Geometry. 2011

[10] J.M. Hoekstra, R.N.H.W van Gent and R.C.J. Ruigrok. Conceptual design
of Free Flight with airborne separation assurance. National Lucht-en
Rulmtevaartlaboratorium 1998

[11] Vu N. Duong and Karim Zeghal. Conflict Resolution Advisory for
Autonomous Airborne Separation un Low-Density Airspace. 1997

[12] Claire Tomlin, George J. Pappas and Shankar Sastry. Conflict Resolution
for Air Traffic Management: A study in Multiagent Hybrid Systems. IEEE
transactions on automatic control, vol 43, no 4, april 1998.

[13] Douglas R. Isaacson and Heinz Erzberger. Desing od a conflict detection
algorithm for the CENTER/TRACON automation system.

[14] Martin S. Eby and Wallace e. Kelly III. Free flight separation assurance
using distributed algorithms.

On-Board Autonomous Conflict Detection for UAS Platforms 48

[15] Nicolas Durant and Jean-Marc Alliot. Optimal Resolution of En Route
Conflicts. Laboratoire d’optimisation globale.

[16] P. K. Menon, G.D. Sweriduk and B. Sridhar. Optimal Strategies for Free
Flight Air Traffic Conflict Resolution.

[17] Lee C. Yang and James K. Kuchar. Performance Metric Alerting: A New
Design Approach for Complex Alerting Problems. 2002

[18] Lee C.Yang and James K. Kuchar. Survey of conflict detection and
resolution modeling methods. 1997

[19] Lee C. Yang and James K. Kuchar. Using intent information in probabilistic
conflict. 1998

[20] http://en.wikipedia.org/wiki/Automatic_dependent_surveillance-
broadcast#cite_note-upgarde-0 [March, 2011]

[21]
http://www.obsa.org/PaginasOBSA/Navegacion/CiasAereas_AirEuropa_2.aspx
[April, 2011]

[22] http://www.aena.es/csee/Flash/html/adsImplantacion.jsp [April, 2011]

[23] http://www.eurocontrol.int/asterix/public/subsite_homepage/homepage.html
[June, 2011]

[24] http://www.eurocontrol.int/sass/public/standard_page/Overview.html [June,
2011]

[25] http://www.faa.gov/nextgen [July, 2011]

