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Abstract

Title: Mathematical morphology on the sphere: Application to Polarimetric Image process-
ing
Author: Joana Maria Frontera Pons
Department: Centre de morphologie mathématique
Advisor: Dr. Jesús Angulo

Abstract:
The fully polarimetric synthetic aperture radar (PolSAR) provides data containing the com-
plete scattering information. Therefore, these data have drawn more attention in recent
years. PolSAR data can be represented as polarization states on a sphere. We present image
processing techniques based on the analysis of the polarimetric information within its loca-
tion on the sphere.
Mathematical morphology is a well-known nonlinear approach for image processing. It is
based on the computation of minimum and maximum values of local neighborhoods. That
necessitates the existence of an ordering relationship between the points to be treated. The
lack of a natural ordering on the sphere presents an inherent problem when defining morpho-
logical operators extended to unit sphere. We analyze in this project some proposals to the
problem of ordering on the unit sphere, leading to formulations of morphological operators
suited to the configuration of the data. The notion of local supremum and infimum is intro-
duced, which allows to define the dilation and erosion on the sphere. Supervised orderings
are considered and its associated operators for target recognition issues. We also present
various filtering procedures for denoising purposes. The different methods studied in this
project pursuit the generalization of the morphological operators on the sphere. Through the
analysis performed, we pretend to achieve an understanding of the data and automation of
the target detection.

Keywords: Image processing, Mathematical morphology, Sphere, SAR Processing, Po-
larimetry
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Résumé

Titre: Morphologie mathématique sur la sphère: Application à le traitement des Images
Polarimetrics
Auteur: Joana Maria Frontera Pons
Département : Centre de morphologie mathématique
Advisor: Dr. Jesús Angulo

Résumé
Le radar à ouverture synthetique polarimétrique (PolSAR) fournit des données polarimétriques,
qui restituent la totalité de l’information portée par les ondes recueillies. Ces données, qui
peuvent être représentées comme des états de polarisation sur une sphère, ont fait l’objet de
nombreuses recherches au cours des dernières années. Nous nous intéressons dans le cadre
de ce mémoire à des techniques de traitement d’image basées sur l’analyse de l’information
polarimétrique directement sur la sphère.
La morphologie mathématique offre une approche non-linéaire éprouvée dans le domaine du
traitement d’image. Cette théorie est basée sur le calcul de valeurs minimales et maximales
dans des voisinages locaux, ce qui nécessite l’existence d’une relation d’ordre entre les points
à traiter. L’absence d’une relation d’ordre naturelle sur la sphère constitue donc un problème
délicat si l’on souhaite étendre la définition des divers opérateurs morphologiques au cas de
la sphère unité.
Nous analysons dans ce projet plusieurs relations d’ordre sur la sphère unité, qui conduisent
à différentes formulations des opérateurs morphologiques adaptées à la configuration des
données. Les notions de supremum et infimum locaux sont introduites, qui permettent de
définir les opérateurs de dilatation et d’érosion. Des opérateurs associés à des ordres su-
pervisés sont en particulier considérés pour les questions de reconnaissance de cibles. Nous
présentons également différentes procédures de filtrage à des fins de débruitage. Les différentes
méthodes étudiées au cours de ce projet s’inscrivent dans le cadre de la généralisation des
opérateurs morphologiques à la géométrie intrinsèque de la sphère. L’analyse effectuée con-
duit à une compréhension extensive des données, qui permet l’automatisation de la détection
de cibles.
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Resum del projecte

T́ıtol: Morfologia matemàtica a l’esfera: Aplicació a tractament d’Imatges Polarimètriques
Autor: Joana Maria Frontera Pons
Departament: Centre de morphologie mathématique
Director: Dr. Jesús Angulo

Resum:
El radar d’obertura sintètica totalment polarimètric (PolSAR) proporciona dades que con-
tenen la informació completa de dispersió. Aquestes dades han captat més atenció en els
últims anys. Les dades PolSAR poden ser representades com a estats de polarizació en una
esfera. Es presenten tècniques de processament d’imatge basades en l’anàlisi de la informació
polarimètrica i en la seva ubicació en l’esfera.
La morfologia matemàtica és una tècnica no lineal per al processament d’imatges. Es basa
en el càlcul dels valors mı́nim i màxim al voltant d’un punt. Precisa de l’existència d’una
relació d’ordre entre els punts a tractar. La manca d’un ordre natural en l’esfera presenta
un problema inherent a l’hora de definir els operadors morfològics estesos a l’esfera unitat.
En aquest projecte s’analitzen algunes propostes per al problema de l’ordre en l’esfera uni-
tat, el que dóna lloc a formulacions dels operadors morfològics adaptats a la configuració de
les dades. S’introdueix la noció de suprem i ı́nfim local, el que permet definir la dilatació i
l’erosió en l’esfera. Considerem ordres supervisats i els seus operadors associats per a prob-
lemes de reconeixement d’objectius. També es presenten diversos procediments de filtratge
per a la eliminació de soroll. Els diferents mètodes estudiats en aquest projecte busquen la
generalizació dels operadors morfològics a l’esfera. Mitjançant l’anàlisi realitzat, es pretén
aconseguir la comprensió de les dades i l’automatització en la detecció de blancs.

Paraules clau: Tractament d’imatge, Morfologia matemàtica, Esfera, Processament
SAR, Polarimetria

9





Resumen del proyecto

T́ıtulol: Morfoloǵıa matemática en la esfera: Aplicación a Procesado de Imágenes Po-
larimétricas
Autor: Joana Maria Frontera Pons
Departamento: Centre de morphologie mathématique
Director: Dr. Jesús Angulo

Resumen:
El radar de apertura sintética totalmente polarimétrico (PolSAR) proporciona datos que con-
tienen la información completa de dispersión. Estos datos han captado más atención en los
últimos años. Los datos PolSAR pueden ser representados como estados de polarización en
una esfera. Se presentan las técnicas de procesamiento de imágenes basadas en el análisis de
la información polarimétrica y en su ubicación en la esfera.
La morfoloǵıa matemática es una técnica no lineal para el procesamiento de imágenes. Se
basa en el cálculo de los valores mı́nimo y máximo alrededor de un punto. Precisa de la
existencia de una relación de orden entre los puntos a tratar. La falta de un orden natural en
la esfera presenta un problema inherente a la hora de definir los operadores morfológicos ex-
tendidos a la esfera unidad. En este proyecto se analizan algunas propuestas para el problema
del orden en la esfera unidad, lo que da lugar a formulaciones de los operadores morfológicos
adaptados a la configuración de los datos. Se introduce la noción de supremo e ı́nfimo local, lo
que permite definir la dilatación y la erosión en la esfera. Consideramos órdenes supervisados
y sus operadores asociados para problemas de reconocimiento de objetivos. También se pre-
sentan varios procedimientos de filtrado para la eliminación de ruido. Los diferentes métodos
estudiados en este proyecto persiguen la generalización de los operadores morfológicos a la
esfera. A través del análisis realizado, se pretende lograr una comprensión de los datos y la
automatización en la detección de blancos.

Palabras clave: Procesado de Imagen, Morfoloǵıa matemática, Esfera, Procesado SAR,
Polarimetŕıa
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Chapter 1

Introduction

1.1 Objectives of this Master Thesis

This report is the result of our master thesis project carried out in the Centre de Morphologie
Mathématique at MINES ParisTech, France.

The methodological aim of this project is to explore the generalization of mathematical
morphology operators to images valued in the unit sphere of R3.

It is well known in the state-of-the-art of signal and image processing that mathematical
morphology is a nonlinear approach based on the computation of minimum and maximum
values of local neighborhoods. That requires the existence of an ordering between the points
to select the maximum or the minimum between them. It is also obvious that there is no
natural ordering in the sphere and consequently there is no straightforward generalization of
morphological operators to the sphere.

In this context, we have introduced in the project some original contributions to the
problem of ordering on the unit sphere which allow us defining morphological (or pseudo-
morphological) filters for images valued on the sphere. Some of our ideas are inspired from
the works on morphology on the unit circle [11], but most of results introduce a new insight
into ordering for this kind of non Euclidean valued space.

The values on the unit sphere may represent different kinds of physical information.
In imaging applications, the most classical case is the orientation images, obtained after
estimating the local orientation of each pixel. In modern medical imaging, High Angular
Resolution Imaging (HARDI) produces also images with values on the sphere. Nevertheless
the application domain considered in the project is the polarimetric radar data defined on
spatial support (a 2D space).

Hence, the next paragraph of this introduction chapter is devoted to a remind about
polarimetric radar data and its various representations, which allow us to interpret the sphere-
valued images as polarimetric images (polarization states on Poincaré sphere). We have used
mainly simulated images for the pedagogical examples which illustrate the developments of
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the project. Consequently, a validation of the methods on real polarimetric radar images is
required. In spite of this lack of validation, we consider that the application of morphological
operators may yield to innovative algorithms in different radar applications: denoising and
target detection in uneven backgrounds, segmentation of radar clutters, etc.

1.2 Polarimetric Radar Data and its various representations

1.2.1 Introduction

In an electromagnetic plane wave, Electric and Magnetic fields have a temporal variation
in the plane perpendicular to the direction of travel. The two fields are orthogonal to one
another, and are described by Maxwell’s equations. We need three parameters to describe the
propagation of EM waves in a medium: dielectric constant, permeability and conductivity.
In general, far enough from the source of the wave, we assume the wavefront is flat, as it is
contained on a plane. Polarization refers to the alignment and regularity of the Electric and
Magnetic fields in the plane perpendicular to the propagation direction.

The electromagnetic wave is characterized by the behavior of the Electric field vector as
a time depending function. The waveform can be deterministic or random, or a combination
of both of them. Random wave is like pure noise, and deterministic wave can be formulated
as a sine wave. An electromagnetic wave, without random component is called completely
polarized.

1.2.2 The Polarization Ellipse

The Electric field of a plane wave is described as the sum of two orthogonal components
(horizontal and vertical). Each one with different amplitude and phase, being able to define
a relative phase between them. The tip of Electric field vector of a totally polarized wave
describes a regular pattern, in general cases elliptical.

The angle between the semi-major axis and the positive x-axis measured counter-clockwise
is the ”orientation”, ψ. It can take values between 0o and 180o. The shape parameter to
describe the oval is called eccentricity or ”ellipticity”, defined as

χ = arctan(b/a) (1.1)

And it lies within [-45o,45o]. The shape of the ellipse is linked to the amplitude and
relative phase between horizontal and vertical components.

• When components are in phase, the polarization is linear, χ = 0

∆φ = 2kπ

As components may have different amplitudes, orientation can take any value. The two
linear polarizations in common use are:
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Figure 1.1: Polarization ellipse.

– ψ=0o,180o Horizontal linear polarization (Ey=0)

– ψ=90o Vertical linear polarization (Ex=0)

• When relative phase is 90o, and horizontal and vertical components are equal, polar-
ization is circular.

∆φ = (2k + 1)
π

2
Ex = Ey

Orientation is not defined. Then if

– ψ=45o Left circular polarization

– ψ=-45o Right circular polarization

Observing the wave along the direction of propagation, the polarization is left-handed
if the rotation of the Electric Field vector is counter-clockwise.

In SAR system analysis, we usually assume there is a single carrier. This is a valid approach,
as SAR systems usually have very narrow bandwidth.

1.2.3 Polarization in Radar Systems

In a radar, the antenna transmits and receives EM waves of a specific polarization. The
transmitted wave is almost purely polarized (with a certain known polarization). In some
simple radar systems, the same antenna is configured to receive the polarization it has been
sent.
A basis polarizations are needed to create any polarization. The two most common po-
larizations are horizontal linear(H), and vertical linear(V). Circular polarizations Right(R)
and Left(L) Hand can also be used as basis. In more complex systems, the antenna can
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transmit and receive more than one polarization. In transmission can be combined H and V
components, creating, for example, a circular polarization. The scattered wave may present
different polarization from the incident wave. The radar antenna is often designed to receive
the different polarization components of the wave. For example, the H and V parts of the
antenna can receive the two orthogonals components of the incoming wave and process them
separately.
In a radar system using H and V linear polarizations, we have the following channels:

• HH for horizontal transmit and horizontal received (like-polarized)

• VV for vertical transmit and vertical received (like-polarized)

• HV for horizontal transmit and vertical received (cross-polarized)

• VH for vertical transmit and horizontal received (cross-polarized)

A radar system has different levels of complexity of polarizations:

• Single polarized - HH or VV or HV or VH

• Dual polarized - HH and HV, VV and VH, or HH and VV

• Four polarizations - HH, VV, HV and VH

A polarimetric radar uses the four polarizations channels and measures the phase dif-
ference and the amplitude. Some dual polarized radars also measure the phase difference
between channels, this parameter plays a key role in polarimetric information extraction.

1.2.4 The Polarization State

The polarization state of a plane wave is described by orientation, ψ and ellipticity χ and a
parameter S0 proportional to the total intensity of the wave. Gabriel Stokes described the
polarization state of the EM wave by a vector, known as the Stokes vector:

S0

S1

S2

S3

 =


|Ev|2 + |Eh|2

|Ev|2 − |Eh|2

2<{EvE∗h}
2={EvE∗h}

 =


S0

S0 cos 2ψ cos 2χ
S0 sin 2ψ cos 2χ

S0 sin 2χ

 (1.2)

An EM plane wave can be completely polarized, partially polarized or completely unpo-
larized. If it is totally polarized, only three of the Stokes parameters are independent, because
of the total power relation,

S2
0 = S2

1 + S2
2 + S2

3 (1.3)
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If the wave is partially polarized we can rewrite it as the sum of a completely polarized
wave and a completely unpolarized (noise). The degree of polarization is the relation be-
tween the power of the polarized wave and the total power. Written according to the Stokes
parameters

√
S2

1 + S2
2 + S2

3

S0
(1.4)

1.2.5 Polarimetric Scattering

We introduce how an EM wave having a certain polarization is scattered by a target. The
scattering properties of a target are measured with a polarimetric radar. The radar illumi-
nates the target with an incident wave that is scattered by the target. Some of this scattered
wave returns to the receiving antenna. The transmitting and receiving antenna are often in
the same place, mono-static case, and the energy received is called backscatter. The polar-
ization of the incident wave is known and all polarization properties are measured from the
backscattered wave.
A polarimetric radar transmits in two orthogonal polarizations, usually H and V, and receives
the backscattered wave in the same two polarizations. It measures the difference in phase
and amplitude in the four channels received, where there is all the information to measure
the polarimetric scattering properties of the target.

1.2.6 Scattering Matrix

If the incident wave is horizontally polarized, the backscattered wave will have contributions
in the vertical and horizontal polarizations. As the components H and V form a basis that
can describe the electromagnetic wave, the backscattering properties of the target can be
completely described by the scattering matrix, S[

Esh
Esv

]
=

[
Shh Shv
Svh Svv

][
Eih
Eiv

]
(1.5)

The matrix describes the transformation of the electric field. The four elements are
complex numbers and are obtained by measuring amplitudes and phases in the four channels
of polarimetric radar. A calibration process is needed. Properties described are valid only
at that frequency and the beam angle the radar has used. We have to ensure that it is
sufficiently representative for the desired scenario. In mono-static radars, the majority of
targets have reciprocity, ie. Shv=Svh, the scattering matrix is symmetric. As its components
are complex, if there is a phase change during the process of dispersion, is represented in the
matrix.
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1.2.7 Polarimetric Data in the Power Domain

Scattering properties can be represented also in the power domain. These versions of the
scattering matrix completely describe the dispersive behavior of the target. The covariance
and coherency matrices are the two most widely used representations. Another examples are
the Stokes and Mueller Matrices, which also transform the incident wave into the backscat-
tered wave.
The average of adjacent samples is very useful in polarimetric radar, and the analysis of their
data. The effect of noise and spots are reduced at the expense of degrading the image resolu-
tion. When averaged values in the proximity of a sample, the scatterers that were represented
by different samples are consolidated in the image. The spots and noise reduction, and the
grouping of scatters facilitate the interpretation of the image. The average is in the domain
of power, because it preserves the energy of the individual components in the representations
of power (this does not happen in voltage). In general, the average is a post-processing oper-
ation,values of the power matrix adjacent samples are averaged . You can reduce the volume
of data and can be used to create equally spaced pixels in ground range and azimuth. It also
supports the representation of several dispersive mechanisms and noise.

1.3 The Sphere S2

For a completely polarized wave, the polarization state can be described by a point on the
Poincaré sphere. The radius of the sphere is S0, the intensity of the wave. The latitude of the
point corresponds to 2χ and the longitude to 2ψ, see Fig.1.3(a). Then the linear polarizations
lie on the equator, with horizontal and vertical polarizations opposite each other. Moreover,
left-hand circular and right-hand circular polarizations are placed on the north and south
poles respectively, see Fig.1.3(b). All other points represent elliptical polarization with certain
χ and ψ. Opposite points on the sphere, antipodal points, represent polarizations that are
orthogonal to one another and are called cross-polarizations. To place the polarization on the
sphere, we represent the last three Stokes parameters as components in a three-dimensional
vector space, as in Fig.1.3(a).

The four dimensional Stokes vector can be also interpreted as four-vectors of Minkowski
space. Then all possible polarization states correspond to time-like, future-directed vectors.

As mentioned above, the sphere S2 is also the space of definition for 3D orientation
information and consequently, all the methods discussed in the project are not limited to the
polarimetry and can be applied, without any modification, to orientation-valued images, e.g.,
3D images of vector gradient, HARDI images, etc.
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(a) (b)

Figure 1.2: (a) Stokes parameters and latitude/longitude on the sphere. (b) Polarization
states on the Poincaré sphere.

1.3.1 Distance on the sphere

Let ξi,ξj ∈ S2 be two points lying on the sphere, which are not antipodal points. The shortest
distance between them is the one measured along a path on the surface of the sphere; rather
than going through the interior of the sphere. In non-Euclidean geometry, straight lines have
to be replaced with their correspondent geodesics.

On the sphere the geodesics are the great circles, circles whose center is the same as that
of the sphere. The two points separate the great circle into two arcs. The length of the
shortest arc is the distance to determine. For a sphere of radius one, we can formulate,

d(ξi, ξj) = arccos(ξi · ξj) (1.6)

d(ξi, ξj) = arcsin(|ξi × ξj |) (1.7)

d(ξi, ξj) = arctan
(
|ξi × ξj |
ξi · ξj

)
(1.8)

where · denotes the scalar (or dot) product and × the vector (or cross) product. The ex-
pression (1.8) using computation function atan2 gives more accurate results and is the one
used when a distance on the sphere is referred. If the radius of the sphere is not one, simply
multiply the distance obtained by the value of the radius.
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1.4 Examples of images valued on S2

The proposed methods and morphological operators in this project are related to data lying
on the surface of a sphere. The examples analyzed are simulated images presenting a simple
scenario, with several targets of different sizes to be detected.

An image valued on the sphere is a mapping from the space of pixels E, the support space
of the image, onto the sphere:

f(x, y) =

{
E −→ S2

(x, y) 7−→ ξi

Let us denote by F(E,S2) the space of 2D images with pixel values on the sphere: f(x, y) ∈
F(E,S2). Typically, for 2D image the support space of pixels is E ⊂ Z2. The data placed in
a position of the sphere represent a specific polarization state. These values onto the sphere
S2 are given in their 3D coordinates:

ξi = (s1,i, s2,i, s3,i) :
√
s2

1,i + s2
2,i + s2

3,i = 1

Therefore the images valued on the sphere can be considered as a 3-component image, i.e.,

f(x, y) = (fS1(x, y), fS2(x, y), fS3(x, y))

where each component represents the values for each coordinate of the 3D space, i.e., f(x, y) =
ξi ⇔ fSj (x, y) = sj,i, for j = 1, 2, 3.

The developed operators, for instance ϑ, involve a processing of images according to this
representation, i.e.,

ϑ :

{
F(E,S2)→ F(E,S2)
g(x, y) = ϑ(f)(x, y)

where f(x, y) is the input image and g(x, y) is the output image, result of processing f(x, y)
with operator ϑ.

Fig. 1.3 provides a typical example of polarimetric simulated image which has been used
in this project, which includes objects (target) of different sizes, with different values onto
the sphere and an homogeneous background (clutter). Then, various levels of “noise” are
also considered in the simulated examples, also with different dispersions, and example can
be observed in Fig. 1.4

Another example used in the illustration, which has more complexity is the one given in
Fig. 1.5. In this case, there are three different clutters represented and three types of targets,
with their corresponding states of polarization.

We point out that in order to illustrate the results obtained by the different filters and
transformations, 2D images corresponding exclusively to one of the components are displayed
in the examples.
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CHAPTER 1. INTRODUCTION

1.5 Image and data processing for polarimetric data

Polarimetric radar processing is already well established methodology, see for instance the
excellent monograph [16].

Concerning the application of image processing tools for the analysis of polarimetric
data, the state-of-the-art is still limited, can correspond mainly to the used of pixel-based
classification techniques. For instance, [29], [32].

1.6 Organisation of the document

The report of this Master thesis is organized into the following chapters.

• In chapter 2, various methods are proposed for filtering images valued on S2 and some
examples that show the performance of different filters.

• A background on the basic morphological operators for scalar images is given in chapter
3. This short review is necessary to fix the notation and to make easier the definition
of the new operators for images valued on S2.

• Chapter 4 discusses the use of morphological operators such as gradient and the top-hat
and its application to detection of targets in S2-valued radar data.

• Chapter 5 poses the need for a partial ordering on S2 and proposes a solution based
on the notion of local supremum/infimum, which allows to introduce the (pseudo-)
dilation/erosion on the sphere. The interest for image enhancement and target detection
is considered.

• Chapter 6 deals with supervised ordering on S2, which yields a rich framework for the
generalization of all morphological operators on the sphere. In particular, supervised
openings/closings and supervised hit-or-miss are introduced. Various strategies on the
computation of the supervised ordering are considered and the different alternatives are
studied for the purpose of target detection.
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Figure 1.3: Simulated image, valued on the sphere f(x, y) ∈ F(E,S2) and used to illustrate
the proposed methods: (a) (b) and (c) show the value of each of the coordinates in R2. While
their situation on S2 and the corresponding polarization states are displayed in (d).
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Figure 1.4: Image valued on S2 with a higher degree of noise.
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Figure 1.5: Image valued on S2 that shows a more complex scenario with several types of
targets and clutters.
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Chapter 2

Averaging-based filtering on images

valued on S2

By the nature of polarimetric radar, the corresponding data to be processed are very noisy.
It is necessary therefore a pre-filtering stage in order to denoise as well as possible, but
preserving also the structures of the image (targets, changes in clutter, etc.). We propose the
following methods appropriate to the nature of radar data defined on S2.

2.1 Vector Mean and Median

Let us consider that we have set R of N points from S2: R = {ξi}Ni=1, with ξi = (s1,i, s2,i, s3,i).
The simplest form of averaging is to compute the arithmetic mean of each component, i.e.,

µ (R) =

(
1
N

N∑
1

s1,i,
1
N

N∑
1

s2,i,
1
N

N∑
1

s3,i

)

If this value exists, arithmetic averaging estimates the true expected value in an unbiased
manner. The vector obtained minimizes the sum of squared Euclidean distances between
the mean and the sample data set since the following expression is valid for each vectorial
component:

µ (x1, · · · , xN )
def
= arg min

x∈R

1
N

N∑
i=1

(x− xi)2

It may happen that the mean value µ (R) does not correspond to any of the original elements
of the set. Moreover, as we average points lying on the sphere, the result is possible to drop
into the sphere.

In order to the average vector remains on the surface of the sphere, the median can be
considered as an alternative. Median is defined as the value separating higher half of the
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sample set, from the lower part; which can also obtained as a central point that minimizes
the average of the absolute deviations:

med (x1, · · · , xN )
def
= arg min

x∈R

1
N

N∑
i=1

|x− xi|

This definition has been adapted to vector spaces and the vector median [1] of a set of points
is defined as the one that minimizes the accumulated distances between vectors. It can be
also considered for our problem on S2 as follows:

med (R) = arg min
ξk∈R

N∑
i=1

d(ξi, ξk)

We notice that according to this definition, the value of the median is one of the elements of
the initial set, i.e., med (R) ∈ R. Therefore, if the distribution of the set has a large dispersion,
median is often unrepresentative. Furthermore, vector median has a large computational cost:
we should compute all the pairs of distances between the point of R.

Fig. 2.1 provided two examples of point distributions on S2 and the corresponding vector
mean and median obtained for each set of points.
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Figure 2.1: The two sets show different distributions on S2. In yellow, the median value and
in green, the mean, which is located inside the sphere.29



2.2 Fréchet-Karcher Barycenter

A more suitable approach for averaging over the unit sphere is given by using the Fréchet
mean. Fréchet mean minimizes the sum of squared distances along geodesics on Riemannian
manifolds [9] [13], i.e., for a given set of points R = {ξi}Ni=1 on the sphere, we have

µ◦ (R) = arg min
ξ∈S2

N∑
i=1

d(ξi, ξk)2 (2.1)

The problem of computation of the Fréchet mean on the sphere µ◦ have studied in various
works [4] [18] [2] [8] including the recent paper [7], and it is usually solved using a gradient de-
scent method as proposed by Karcher [13]. Some of the properties of unicity were particulary
studied in [4]

At every point ξi ∈ S2, with the Riemannian metric induced by the Euclidean metric on
R3, the linear space TξiS2 tangent to the sphere is given by the exponential map expξi(~νj) at

ξi, such that TξiS2 =
{
~νj ∈ R3 : ~νTj · ξi = 0

}
, where the vector point is ~νj = (ν1,j , ν2,j , ν3,j).

We note also that the exponential map expξ is defined by the correspondence ~ν 7→ γ~ν(1),
where γ~ν : t 7→ γ~ν(t) is the unique geodesic satisfying for initial point γ~ν(0) = ξ and initial
tangent vector γ̇(0) = ~ν, provided γ~ν(t) extends at least to t = 1.

The method to estimate the Fréchet mean on a sphere consists first projecting the points
ξi ∈ S2 onto a tangent plane TytS2 at an initial point yt ∈ S2 by an inverse projection

~νi = exp−1
yt (ξi) (2.2)

where ~νi ∈ R3. Then, an expectation E[·] is calculated on the tangent plane TytS2 and
projected back onto S2 by a projection expyt , i.e.,

yt+1 = expyt

(
E
[
{ν̃i}Ni=1

])
(2.3)

where

E
[
{ν̃i}Ni=1

]
=

(
1
N

N∑
1

ν1,i,
1
N

N∑
1

ν2,i,
1
N

N∑
1

ν3,i

)
For the unit sphere S2 , with the Riemannian metric induced by the Euclidian metric on

R3, the inverse exponential map (or logarithmic map) is given by

exp−1
y (ξ) = [1− (y · ξ)2]−1/2(ξ − (y · ξ)y)) arccos(y · ξ) (2.4)

where y, ξ ∈ S2. The explicit expression for the exponential map is

expy(~ν) = cos(‖~ν‖)y + sin(‖~ν‖) ~ν

‖~ν‖
(2.5)
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Figure 2.2: Iterative method for computing the Fréchet mean for data on the sphere: (a) All
the points are projected onto the plane tangent (b) at the starting point yt (c) an expectation
is calculated on the tangent space and the result is projected back onto the sphere.

where ~ν ∈ TyS2 and ~ν 6= (0, 0, 0)
Using t as an iteration index, Eq. (2.2) and (2.3) leads to a gradient descent iterative

algorithm Choosing an appropriate starting point y0 the algorithm converges within a few
iterations to the Fréchet mean:

yT = µ◦ (R)

such that yT+1 = yT . When the set has a low dispersion and data are concentrated around a
“barycenter”, Fréchet mean converges within one or two iterations. In these cases the value
is nearly the same as the mean and median. Figure 2.3 shows an example where the data are
widely scattered over the sphere, and the evolution up to the mean value µ◦.

The Fréchet mean can be now used to define an averaging filter for images valued on the
sphere. Hence, given an image f ∈ F(E,S2), we define the Fréchet mean filter on the sphere
as the following operator

M◦B(f)(x, y) = {µ◦ ([f(v, w)]) ; (v, w) ∈ B(x, y)}
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where B is the window which defines the averaging zone for each pixel and B(x, y) is the
neighbourhood centered at pixel (x, y).

Fig. 2.4 depicts two examples of noisy images and the corresponding denoising obtained
by means of the Fréchet mean filter on the sphere. The improvement is more remarkable if
the images are very noisy. Otherwise contours of the objects become fuzzy. Comparing the
results with the median filter, the Fréchet mean filtered data are less homogeneous but more
robust to aberrant samples, as Fréchet mean gives and good estimate of the barycenter of
the set of values belonging to each neighbourhood.
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CHAPTER 2. AVERAGING-BASED FILTERING ON IMAGES VALUED ON S2

Figure 2.3: Fréchet mean for two sets with different distributions of point on S2. In black
the starting point, different colors points correspond to the consecutive iterations until the
algorithm converges to the yellow point.
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Figure 2.4: Noisy images and the output of filtering using the Fréchet mean: (a) and (c)
original images, (b) and (d) filtered images. The window B is a square of size 5× 5 pixels.
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2.3 Bilateral filtering for S2-valued images

In the proposed filter M◦B(f)(x, y), each output pixel value is processed jointly with its
neighbours, assigning to each one the same fixed weight. An interesting case in image filtering
gives more importance to those pixels closer to pixel the window is centered on. The weights
are not fixed anymore but they decrease as far as they are to the pixel to treat. These weights
are usually computed with a Gaussian kernel kσ(τ) (other kernels could be used instead) of
width parameter σ, i.e.,

kσ(τ) = e
−τ2

2σ2 (2.6)

In a particular neighbourhood B centered at pixel (x, y), the weight for each pixel (u, v) ∈
B(x, y) is given by kσ(τ) where τ =

√
(x− u)2 + (y − u)2. Therefore, we define the Fréchet

Gaussian filter on the sphere as the following operator

M◦B,σ(f)(x, y) = {µ◦σ ([f(v, w)]) ; (v, w) ∈ B(x, y)}

where µ◦σ is the weighted Fréchet mean using the Gaussian weights, i.e.,

µ◦σ ([f(v, w)]) = arg min
ξ∈S2

∑
(u,v)∈B(x,y)

Wσ(u, v)d(ξ, f(u, v))2 (2.7)

where

Wσ(u, v) =
e−

(x−u)2+(y−u)2

2σ2∑
(u,v)∈B(x,y) e

− (x−u)2+(y−u)2

2σ2

(2.8)

The weighted Fréchet mean defined in Eq. (2.9) can be solved using the iterative gradient
descent algorithm, where the effect of the coefficients is introduced once all the neighbours
are already projected into the tangent plane, to calculate a weighted average. An example of
spatial weighting filtering is given in Fig. 2.5.

A more selective smoothing is obtained if another contribution is introduced in the weight
for each neighbour, which depends on the difference between the intensity value of the central
pixel and the value of the corresponding neighbour. That corresponds to the definition of the
bilateral filter. Bilateral filtering [26] is a locally adaptive Gaussian convolution technique
to smooth images while preserving edges, where the Gaussian coefficients at a point are
weighted jointly by the spatial distance and the intensity distance between its neighbours.
Its formulation is quite simple and requires only two easily tunable parameters: the size and
the contrast of the image features to preserve. A recent systematic study on the theory and
applications of bilateral filtering can be found in [17]. As it was shown in [6], bilateral filtering
is strongly related to weighted least squares filtering [15], robust estimation filtering [31, 3]
and anisotropic diffusion [30, 24]. In particular, bilateral filtering is a discrete filter equivalent
asymptotically to the Perona and Malik PDE equation [19, 5].
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Figure 2.5: Original image (a) and comparison between mean filtering by regular Fréchet
mean (b) and by Weighted Fréchet mean with weights in the pixels space E(c). In both cases
B is a square of size 5× 5 pixels and σ = 0.9.

The Fréchet bilateral filter on the sphere of image f(x, y) ∈ F(E,S2) is a spatially-variant
averaging filter defined as follows:

BL◦B,σs,σi(f)(x, y) =
{
µ◦σs,σi ([f(v, w)]) ; (v, w) ∈ B(x, y)

}
where µ◦σs,σi is the weighted Fréchet mean using the bilateral weights, i.e.,

µ◦σs,σi ([f(v, w)]) = arg min
ξ∈S2

∑
(u,v)∈B(x,y)

Wσs,σi(u, v)d(ξ, f(u, v))2 (2.9)

where

Wσs,σi(u, v) =
1

W̃ (x, y)
e
− (x−u)2+(y−u)2

2σ2
s e

−d(f(u,v),f(x,y))2

2σ2
i (2.10)
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and W̃ (x, y) is the normalization factor

W̃ (x, y) =
∑

(u,v)∈B(x,y)

Wσs,σi(u, v)

The pair of width parameters defines the vector scale (σs, σi), with σs is the spatial (or size)
scale and σi the intensity (or tonal or range) scale. The intensity distances are computed as
the distance between two points on the sphere. It is also possible to measure the difference on
the tangent plane. Thus the distance becomes a regular Euclidean distance. By adding the
intensity component and combining it with the distance dependent component, the points
far on the sphere from the pixel of interest will have a small contribution.
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(a) f(x, y) (b) BL◦B,σs,σi
(f)(x, y)

Figure 2.6: Noise reduction of original image (a) using the bilateral filter (b), with parameters
σs = 0.9 and σi = 0.9 in a window B of size 5× 5 pixels.

Weighted Fréchet mean results show a great improvement over regular Fréchet mean. It
is an useful tool to remove noise, as illustrated in Fig. 2.6. But it does not make any better
when applied to erosion and dilation operators introduced further below.

2.3.1 Trilateral filtering

If a prior information about the data is available, detecting a specific type of known target
can be required. Let us consider that the “target” has a particular distribution of values
on the sphere. This is formed by a set of points characterized with its mean and variance:
ξ̄ref and σ2

ξref
. For the purpose of denoising, appears reasonable to introduce a new weight

component in the averaging that penalizes the points that have values far from the intended
target values.

Indeed, we can combine by product the coefficients of the bilateral filter, with the ones
obtained from the distance between the pixel and the mean of the target set ξ̄ref . The Fréchet
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trilateral filter on the sphere of image f(x, y) ∈ F(E,S2) adapted to target of mean value
ξ̄ref given by:

TL
◦,ξ̄ref
B,σs,σi,σr

(f)(x, y) =
{
µ
◦,ξ̄ref
σs,σi,σr ([f(v, w)]) ; (v, w) ∈ B(x, y)

}
where µ◦,ξ̄refσs,σi,σr is the weighted Fréchet mean using the trilateral weights given by

W
ξ̄ref
σs,σi,σr(u, v) =

1

W̃ ξ̄ref (x, y)
e
− (x−u)2+(y−u)2

2σ2
s e

−d(f(u,v),f(x,y))2

2σ2
i e

−d(f(u,v),ξ̄ref )2

2σ2
r (2.11)

and the normalization factor

W̃ ξ̄ref (x, y) =
∑

(u,v)∈B(x,y)

e
−(x−u)2+(y−u)2

2σ2
s e

−d(f(u,v),f(x,y))2

2σ2
i e

−d(f(u,v),ξ̄ref )2

2σ2
r

The key parameter to optimize here, in order to preserve the small targets but simulta-
neously denoise the image, is the dispersion used for computing the coefficient associated to
the reference, i.e., σr. In fact, this parameter is related to the variance of the target values
σ2
ξref

and a more deeper study on the question is required to conclude about the appropriate
approach for tuning this parameter.

As it is illustrated in Fig. 2.7, the (unsupervised) bilateral filter set out above are not
sufficient to enhance small targets, often hidden by noise. This supervised trilateral method
brings off better results losing resolution in the images.
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(b) BL◦B,σs,σi
(f)(x, y) (c) TL◦,ξ̄ref

B,σs,σi,σr
(f)(x, y)

Figure 2.7: When the targets to be detected are small in the original image (a), the trilateral
filter adapted to this particular targets achieves better performance (c) than bilateral filter
(b).
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Chapter 3

Short review on morphological

operators for scalar images

Mathematical morphology is a well-known nonlinear image processing methodology based on
the application of lattice theory to spatial structures [21, 22] [12] [25].

The aim of this chapter is to provide a background on the basic morphological operators
for scalar images. This short review is necessary to fix the notation and to make easier the
definition of the new operators for images valued on S2.

3.1 Scalar images

Let E be a subset of the Euclidean Rd or the discrete space Zd, considered as the support
space of the image, and let T be a set of grey-levels, corresponding to the space of values of
the image. It is assumed that T = R = R ∪ {−∞,+∞}. A grey-level image is represented
by a function,

f :

{
E → T
x 7→ t

(3.1)

i.e., f ∈ F(E, T ) maps each pixel x ∈ E into a grey-level value t ∈ T : t = f(x).

3.2 Dilation and erosion

The two basic morphological mappings F(E, T ) → F(E, T ) are the grey-level dilation and
the grey-level erosion given respectively by

δb(f)(x) = sup
h∈E

(f(x− h) + b(h)) (3.2)

and
εb(f)(x) = inf

h∈E
(f(x + h)− b(h)) , (3.3)
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IMAGES

where f ∈ F(E, T ) is the original grey-level image and b ∈ F(E, T ) is the fixed structuring
function. The further convention for ambiguous expression is considered: f(x− h) + b(h) =
−∞ when f(x−h) = −∞ or b(h) = −∞, and that f(x+h)−b(h) = +∞ when f(x+h) = +∞
or b(h) = −∞.

Particularly interesting in theory and in practical applications [25], the flat grey-level di-
lation and erosion is obtained when the structuring function is flat and becomes a structuring
element. More precisely, a flat structuring function of support subspace B is defined as

b(x) =

{
0 x ∈ B
−∞ x ∈ Bc ,

where B is a Boolean set, i.e., B ⊆ E or B ∈ P(E), which defines the “shape” of the
structuring element. We notice that Bc denotes the complement set of B (i.e., B ∩ Bc = ∅
and B ∪Bc = E). The structuring element is defined at the origin o ∈ E, then to each point
p of E corresponds the translation mapping o to p, and this translation maps B onto Bp,
i.e., Bp = {b + p : b ∈ B}. Therefore, the flat dilation and erosion of a grey-level image
f(x) with respect to the structuring element B are respectively

δB(f)(x) = sup
h∈B

(f(x− h)) (3.4)

= {f(y) | f(y) = sup[f(z)], z ∈ Bx}

and

εB(f)(x) = inf
h∈B

(f(x + h)) (3.5)

= {f(y) | f(y) = inf[f(z)], z ∈ B̌x},

where B̌ is the reflection of B with respect to the origin, i.e., B̌ = {−b | b ∈ B}. Dilation
and erosion are dual operators with respect to the image complement (negative), i.e.,

δB(f) = (εB(f c))c

where f c(x) = −f(x). Dilation and erosion are increasing operators: if f ≤ g, ∀x ∈ E, then
δB(f) ≤ δB(g) and εB(f) ≤ εB(g), ∀x ∈ E. Dilation (erosion) is an extensive (anti-extensive)
operator, i.e., f ≤ δB(f) (εB(f) ≤ f), ∀x ∈ E, when the structuring element B contains the
origin. The two following properties also hold:

• Distributivity:
δB(f

∨
g)(x) = δB(f)(x) ∨ δB(f)(x)

εB(f
∧
g) = εB(f)(x) ∧ εB(g)(x)

• Associativity:
δB2 (δB1(f)) (x) = δB1⊕B2(f)(x)

εB2 (εB1(f)) (x) = εB1⊕B2(f)(x)

where B1 ⊕B2 is the Minkowski addition of the structuring elements.
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3.3 Opening and closing

The two elementary operations of grey-level erosion and dilation can be composed together
to yield a new set of grey-level operators having desirable feature extractor properties which
are the opening and the closing. More precisely, starting from the adjunction pair {δb, εb},
the opening and closing of a grey-level image f according to the structuring function b are
the mappings F(E, T )→ F(E, T ) given respectively by

γb(f)(x) = [δb(εb(f))] (x), (3.6)

and
ϕb(f)(x) = [εb(δb(f))] (x). (3.7)

The flat counterparts are obtained by using the flat erosion and flat erosion by the structuring
element B. The opening and closing are dual operators, i.e.,

γB(f) = (ϕB(f c))c

Opening (closing) removes positive (negative) structures according to the predefined size and
shape criterion of the structuring element B: they smooth in a nonlinear way the image.

The pair (γB, ϕB) is called adjunction opening and adjunction closing. Let f, g ∈ F(E, T )
be two grey-level images. The opening γB and closing ϕB verify the following properties.

• Increasingness (ordering preservation): γB and ϕB are increasing as products of in-
creasing operators, i.e., f(x) ≤ g(x)⇒ γB(f)(x) ≤ γB(g)(x), ϕB(f)(x) ≤ ϕB(g)(x).

• Idempotence (invariance with respect to the transformation itself): γB and ϕB are
idempotent, i.e., γB(γB(f)) = γB(f), ϕB(ϕB(f)) = ϕB(f).

• Extensivity and anti-extensivity: γ is anti-extensive, i.e., γB(f)(x) ≤ f(x); and ϕ is
extensive, i.e., f(x) ≤ ϕB(f)(x).

The other morphological operators are obtained as products of openings/closings or by
residues between erosion/dilation and opening/closing.
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Chapter 4

Morphological residues-based on

distances as target detectors

Some other morphological operators obtained combining erosion and dilation are explained
below. These are widely used to detect objects as regions rather homogeneous. Either we
can display the contours of the objects, or extract image structures for a given structuring
element shape.

4.1 Nonlinear-gradient based on distances

Gradient operators enhance intensity variations in images, in order to detect object bound-
aries. The gradient calculus is based on the difference between dilations and erosions, or
more generally between anti-extensive transformations.

gB(f)(x, y) = δB(f)(x, y)− εB(f)(x, y) (4.1)

where B describes an structuring element centered on x and δ and ε are dilation and erosion
respectively. It has been showed in [11] that the operator behavior differs when applied to
image data distributed on the unit circle. The expression (4.1) can be rewritten according to
the following relation

g◦B(f)(x, y) =
∨

(u, v) ∈ B(x, y)
(u, v) 6= (x, y)

d(f(x, y), f(u, v))−
∧

(u, v) ∈ B(x, y)
(u, v) 6= (x, y)

d(f(x, y), f(x, y) (4.2)

with
∨

and
∧

the supremum and infimum respectively and d(f(x, y), f(u, v)) can be
replaced with the corresponding metric. In the case of interest, the exposed concepts are
extended to the unit sphere, where the distance measure used is the geodesic distance of S2.
Note that the resulting image is a grey-level escalar image, ie. it has only one component.
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(b)g◦B(f1)(x, y) σ = 0.1 (c) g◦B(f1)(x, y) σ = 0.3 (d)g◦B(f1)(x, y) σ = 1
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(f)g◦B(f2)(x, y) σ = 0.1 (g) g◦B(f2)(x, y) σ = 0.3 (h)g◦B(f2)(x, y) σ = 1
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(j)g◦B(f3)(x, y) σ = 0.1 (k) g◦B(f3)(x, y) σ = 0.3 (l)g◦B(f3)(x, y) σ = 1

Figure 4.1: Original images (a),(e),(i), (first coordenate on S2). Morphological gradient for
three different noise levels σ = 0.1,σ = 0.3 and σ = 1, with B a square of size 3× 3.
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4.2 Top-hat based on distances

The Top-hat operators extract all contrasted components that can not contain the structuring
element (ie. peaks and troughs). Three different formulations are found in literature:

• The white Top-hat is the residue between the original image f and its opening γ.

ρ+
B(f)(x, y) = f(x, y)− γB(f)(x, y) (4.3)

and it extracts positive components.

• The black Top-hat is defined as the difference between the closing ϕ of the original
image and the original image

ρ−B(f)(x, y) = ϕB(f)(x, y)− f(x, y) (4.4)

it extracts the negative components.

• The self-complementary Top-hat is the sum of the white and black Top-hats. It leads
to the difference between the closing and the opening of the image.

ρ = ρ+ + ρ− = ϕ− γ (4.5)

According to [11] it involves only increments and then the expression (4.5) can be rewritten
as

ρ◦B(f)(x, y) =
∨

(u,v)∈B(x,y)

−V◦B(u, v) (4.6)

where
V◦B(x, y) =

∧
(u,v)∈B(x,y)

−d(f(x, y), f(u, v))

And in this particular case d(f(x, y), f(u, v)) corresponds to the Riemannian distance on
S2. Top-hat operator also leads to a grey-level escalar image.
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(f)ρ◦B7
(f2)(x, y) (c)ρ◦B15

(f2)(x, y) (d)ρ◦B22
(f2)(x, y)

Figure 4.2: Self-complementary Top-Hat for three different sizes of the structuring element
B.
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4.3 Application to target detection

For target detection purposes we intend to identify zones strong contrasted with the clutter.
Gradient is an useful operator to detect the edges of the objects. While top-hat extracts
highly contrasted structures smaller than the structuring element. The problem is that they
are very sensitive to noise. ROC curves depict the performance of the operators, thresholding
values for different detection levels. Fig. 4.3 reveals the great improvement introduced by a
pre-filtering stage using the filters described in chapter chapter2. Third image achieves better
results because the different objects in the image are located far apart from each other on
the sphere.

The morphological operators based on residues can be generalized to S2 replacing the
grey-level difference by the distance on the sphere. This is limited to a few operators. Below
in the document, we propose several generalizations of dilation and erosion, such that the
morphological operators could be completely defined on the sphere.
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Figure 4.3: ROC curves representing the performance of the gradient for different noise
levels. For σ = 1 the different filters results are compared.
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Chapter 5

Supremum and infimum on S2

This chapter deals with a formulation of partial ordering indicated when the data set is
embedded on the sphere surface. In particular, we develop two algorithms to determine
supremum and infimum values for a set of points lying on S2. They are applied to the
corresponding sup and inf operators found in the definitions of dilation and erosion, which
lead to pseudo-dilation and pseudo-erosion S2. Other evolved morphological operators are
studied considering this new approach.

5.1 Local origin on the sphere and supremum/infimum com-

putation on tangent space

Computation of the supremum and infimum of a set of points requires defining an ordering
relationship between them. It is obvious that there is no natural ordering on the sphere. In
fact, the sphere is probably one of the more complex geometrical objects for the notion of
ordering and consequently for the computation of supremum and infimum values.

The notion of supremum in vectorial spaces is usually associated to a marginal compu-
tation of maximum coordinates, which involves also a value which has maximal Euclidean
distance to the origin. The latter considered as the smallest element of the space. A possible
solution to deal with S2 will consist just in defining a local origin on the sphere and try after
projecting on the tangent space, compute a vectorial-like supremum.

This is the idea which introduced in this section. The approach induces a partial ordering
“adapted” to a particular set of values on the sphere, and it is related to the definition of a
barycenter, which allows defining a local Euclidean coordinate system.
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CHAPTER 5. SUPREMUM AND INFIMUM ON S2

5.1.1 Supremum

Let R = {ξi}Ni=1 be a set of points lying on the sphere surface. First, the Fréchet mean of the
set is computed, as explained in Section 2.2:

ξ̄ = µ◦ (R) (5.1)

Considering this center as the origin of R, we use it to carry out a rotation on S2 of each
point belonging to the set R. The barycenter is moved to the “north pole”, N = (0, 0, 1), and
this translation completely describes the axis and the angle needed to determine the rotation
matrix MN(ξ̄), which is then applied to all the points for the points of R:

ξi 7→ ξ̃i =MN(ξ̄) · ξTi ∀ξi ∈ R (5.2)

where T is the transpose operator and ˜ indicates the locations once rotated. Therefore,
all ξ̃i ∈ R̃ and ˜̄ξ = (0, 0, 1), the previously computed Fréchet mean, are placed around N,
preserving the same configuration they had, see Fig. 5.1(a)-(b).

Next step, all ξ̃i ∈ R̃ will be projected to the space tangent at N, denoted TNS2, using
the expression referred in Eq. (2.4). Let us denote by ~νi = (ν1,i, ν2,i, ν3,i) are the projected
points on TNS2:

~νi = exp−1
˜̄ξ

(ξ̃i) (5.3)

Thus, having N = (0, 0, 1) as the projection point leads to a tangent plane contained in R2,
i.e., TNS2 ⊂ R2 such that ν3,j = 0, ∀j.

The smallest box that may contain these points in TNS2 is defined by its four corners,
obtained as the minimum and maximum values of each of the coordinates for both axes, and
the combinations between them, i.e., ∨ν1,i, ∧ν1,i and ∨ν2,i, ∧ν2,i, see Fig. 5.2. We consider
these four points as the four candidates to calculate the supremum:

~νsup ∈ {~ν�
1 = (∨ν1,i,∨ν2,i), ~ν�

2 = (∧ν1,i,∧ν2,i), ~ν�
3 = (∨ν1,i,∧ν2,i), ~ν�

4 = (∧ν1,i,∨ν2,i)} (5.4)

Then, we select as supremum the one furthest from ˜̄ξ. As ˜̄ξ in tangent space TNS2 corresponds
to the origin (0, 0), it is equivalent to say that ~νsup is the corner of the box having the largest
norm, i.e.,

~νsup = arg max
j=1,··· ,4

‖~ν�
j ‖ (5.5)

Now, ~νsup is projected back to the sphere, according to Eq. (2.5):

ξ̃sup = exp ˜̄ξ
(~νsup) (5.6)

and finally moved to its original polarization states by reversing the rotation:
◦

sup
ξ̄

[
{ξi}Ni=1

]
=MN(ξ̄)T · ξ̃Tsup (5.7)

A example of these two last steps is given in Fig. 5.1(c).
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(a) (b)

(c)

Figure 5.1: Figure (a) shows the original set R, and its Fréchet mean in green. Figure (b) is
the result of the rotation of the set to N. Figure (c) illustrates how ~νsup is projected back to
the sphere and the rotation is reversed, in yellow the value of the supremum.
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Tangent Plane Supremum

Figure 5.2: Tangent plane TNS2, with all the projected points ~νi. We note that ˜̄ξ, in green,
is found at the origin. The red dots are the four candidates ~ν�

j , j = 1, · · · , 4, and the yellow
one is the furthest from the origin ~νsup.
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5.1.2 Infimum

The method proposed to calculate the infimum is similar to the one presented for the supre-
mum. In fact, we will introduce a duality in TNS2 which is associated to the inversion of
coordinates.

We start by same steps as for the supremum: after computing the Fréchet mean Eq.(5.1),
and performing the rotation of the set Eq.(5.2), all ξ̃i ∈ R̃ are projected to the plane tangent
at N using Eq.(5.3).

−2500 −2000 −1500 −1000 −500 0 500 1000
−800

−600

−400

−200

0
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400
Tangent plane Infimum

Figure 5.3: Inverted plane from tangent plane TNS2. The points are displayed once their
coordinates have been inverted, ~θi, ˜̄ξ in green is found at the origin (without inversion since
its inversion correspond to the infinity). The four red dots are the candidates to infimum and
in yellow, the chosen one.

Now, the coordinates of each ~νi lying on TNS2 are inverted to obtain a set of point given
by

~θi =
(

1
ν1,i

,
1
ν2,i

, 0
)

(5.8)

Computing the maximum and minimum for inverted coordinates θ1,i and θ2,i, i = 1 · · ·N , it
is obtained, as for the supremum, the four candidates to the infimum:

~θinf ∈ {~θ�
1 ,
~θ�

2 ,
~θ�

3 ,
~θ�

4 } (5.9)

where

~θ�
1 =

(∨ 1
ν1,i

,
∨ 1

ν2,i

)
, ~θ�

2 =
(∧ 1

ν1,i
,
∧ 1

ν2,i

)
~θ�

3 =
(∨ 1

ν1,i
,
∧ 1

ν2,i

)
, ~θ�

4 =
(∧ 1

ν1,i
,
∨ 1

ν2,i

)
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and the one furthest from the Fréchet mean is chosen:

~θinf = arg max
j=1,··· ,4

‖~θ�
j ‖ (5.10)
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Figure 5.4: Tangent plane TNS2. The four red dots are the four candidates for the supremum
~ν�
j , j = 1, · · · , 4, and the yellow is the furthest from the origin ~νsup. While the four dots in

pink are the candidates for the infimum, obtained by inversion of ~θ�
j , j = 1, · · · , 4, and the

black is the closest to the Fréchet mean ~νinf .

The coordinates of the point ~θinf are reinverted to obtain the infimum in original tangent
space TNS2:

~νinf =
(

1
θ1,inf

,
1

θ2,inf
, 0
)

and then, ~νinf on TNS2 is projected back onto the sphere:

ξ̃inf = exp ˜̄ξ
(~νinf ) (5.11)

In the last step, the infimum for R is obtained once the rotation is undone:
◦

inf̄
ξ

[
{ξi}Ni=1

]
=MN(ξ̄)T · ξ̃Tinf (5.12)

An example of the computation of supremum and infimum in the tangent space TNS2 is given
in Fig. 5.4.

As shown in Fig. 5.5 the value of the infimum is often close to the Fréchet mean, due
to the fact that the points are highly concentrated around ξ̄. It may happen that either ν1,i

or ν2,i were zero, and so the coordinates could not be inverted, as illustrated in Fig. 5.6. In
that case, the infimum value is decided to be the same value as the Fréchet mean.
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Figure 5.5: Computation of infimum for a set of points, including the result of projecting
back to the sphere and undoing the rotation. In yellow the value of the infimum.
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Figure 5.6: Case of computation of the imfimum where the coordinates can not be inverted.

58



CHAPTER 5. SUPREMUM AND INFIMUM ON S2

5.2 Pseudo-dilation and pseudo-erosion

In this section we extend the algorithms set forth to compute the supremum and the infimum,
for the morphological erosion and dilation. Leading to a new formulation of these operators
appropriate to the configuration of the data on typical images valued on the sphere.

5.2.1 Definition of sup/inf-based operators

As mentioned in Chapter 3, morphological flat dilation and erosion for grey-level images,
f ∈ F(E,R) are defined

δB(f)(x, y) = {sup [f(u, v)] , (u, v) ∈ B(x, y)} (5.13)

and
εB(f)(x, y) = {inf [f(u, v)] , (u, v) ∈ B̌(x, y)}, (5.14)

respectively.
Therefore, given an image valued on the sphere f(x, y) ∈ F(E,S2), we introduce the flat

pseudo-dilation on the sphere as the operator defined by
δ◦W,B(f)(x, y) =

{
sup◦

ξ̄
[f(u, v) = ξj ] , (u, v) ∈ B(x, y)

}
with ξ̄ = µ◦ ([f(n,m) = ξi]) , (n,m) ∈W (x, y)

(5.15)

where B defines the shape of the structuring element and W is the window used for computing
the Fréchet mean ξ̄. Similarly, the flat pseudo-erosion on the sphere is defined by

ε◦W,B(f)(x, y) =
{

inf◦
ξ̄

[f(u, v) = ξj ] , (u, v) ∈ B̌(x, y)
}

with ξ̄ = µ◦ ([f(n,m) = ξi]) , (n,m) ∈W (x, y)

(5.16)

5.2.2 Some properties and their use

A first remark concerning the name operators as pseudo-dilation/erosion. In fact, it is referred
as “pseudo-dilation” (resp. “pseudo-erosion”) because, although its behavior is intuitively co-
herent with the dilation (resp. erosion) defined in Section 3.2, they are not fully equivalent.
More precisely, the distributivity and associativity properties are not satisfied for the oper-
ators (5.15) and (5.16) described above. These limitations are well known for the “locally
adaptive” operators [20]; we note that here the adaptavility is appears in the computation of
the local origin.

As discussed above, there is a notion of duality between the supremum and infimum.
From different tests, we have observed that the size of the window W should be larger

than the structuring element B, and B(x, y) ⊂ W (x, y) as they both have the same origin.
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In fact, we need to use two different sizes to solve the instability of the Fréchet mean in
neighborhoods near the edge of an object. Hence, the size of the window for the Fréchet
mean computation is increased to make it more robust to the variability of the barycenter
near edges. By this technique we can guarantee that the supremum/infimum for two close
pixels is computed in the same tangent space, that is, the origin on the sphere will be the
same. Note that the use of weighted Fréchet mean discussed in Chapter 2 will not introduce
any improvement in the calculations of pseudo-dilation/erosion.

In Fig. 5.7 shows the results of pseudo-dilations and pseudo-erosions, using structuring
elements de different size, for a simulated image f(x, y) ∈ S2. As we can observe, pseudo-
dilations (resp. pseudo-erosions) increases (resp. reduces) the size of the objects since the
local origin is generally the background for pixels close to the edges, and the value of the
objects for pixels belonging to object.
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Figure 5.7: Examples of pseudo-dilation δ◦W,Bn(f)(x, y) and pseudo-erosion ε◦W,Bn(f)(x, y) of
image f(x, y) ∈ S2 in (a). The structuring element Bn is a square of size n× n pixels and W
is a square of size ×. Note that in the Figures is shown only the image of the first coordinate
on S2.
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5.3 Derived operators

Using the pseudo-dilation and pseudo-erosion on the sphere as basic bricks, other derived
operators morphological can be extended to images valued on the sphere

5.3.1 Gradient on the sphere

As discussed above in the document, morphological gradient operator is obtained according
to (4.1) as the difference between a flat dilation and a flat erosion using a structuring element
B. Using the proposed formulations on the sphere for pseudo-dilation (5.15) and pseudo-
erosion (5.16), we define the morphological gradient on the sphere of image f ∈ F(E,S2)
as

g◦W,B(f)(x, y) = d
(
δ◦W,B(f)(x, y), ε◦W,B(f)(x, y)

)
(5.17)

where d(ξi, ξj) is the Riemannian distance on S2.
Fig. 5.8 provides an example of the performance of the gradient operator, two different

sizes of the structuring element are displayed.

5.3.2 Pseudo-opening and pseudo-closing on the sphere

In mathematical morphology, opening and closing are two key transformations for filtering
purposes, as shown in Chapter 3 both derived from erosion and dilation by their direct
products.

Now, using the proposed formulations on the sphere, we define the flat pseudo-opening
on the sphere of image f ∈ F(E,S2) as the flat pseudo-dilation (5.15) applied on the pseudo-
erosion (5.16) of original image f), i.e.,

γ◦W,B(f) = δ◦W,B
(
ε◦W,B(f)

)
(5.18)

Similarly, the flat pseudo-closing on the sphere is defined as

ϕ◦W,B(f) = ε◦W,B
(
δ◦W,B(f)

)
(5.19)

Some examples for pseudo-opening on the sphere shown in Fig. 5.9, using different struc-
turing elements. The interpretation of these operators is exactly the same than for the
opening/closing of grey-level images: opening removes objects from the foreground smaller
than the structuring element and closing eliminates small holes in the background.

5.3.3 Top-hat on the sphere

Once the pseudo-opening and pseudo-closing on the sphere have been well-defined, we can
also generalize the corresponding residue-based operators. Indeed the white top-hat on the
sphere is the residue between the original image and its pseudo-opening transformation:

ρ+,◦
W,B(f)(x, y) = d

(
f(x, y), γ◦W,B(f)(x, y)

)
(5.20)
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(b) g◦W,Bn
(f)(x, y), Bn = 3× 3 (c) g◦W,Bn

(f)(x, y), Bn = 5× 5

Figure 5.8: Examples of gradient g◦W,Bn(f)(x, y) of image f(x, y) ∈ S2. The image of the
first coordinate on S2 of original image is given in (a). Note that the result of the gradient
correspond to the scalar image given in (b) and (c).

and the black top-hat on the sphere is the residue between the original image and its pseudo-
closing:

ρ−,◦W,B(f)(x, y) = d
(
f(x, y), ϕ◦W,B(f)(x, y)

)
(5.21)

where, obviously, in both cases d(ξi, ξj) is the Riemannian distance on S2.
As for the grey-level case, the white (resp. black) top-hat allows extracting the image

structures which have been removed by the opening (resp. the closing). For the examples
given in Fig. 5.9, we observe that the white top-hat extract the targets of a particular scale,
independently of their values on the sphere.

In the figures is shown only the image of the first coordinate on S2 for the original image
and the dilations/erosion and the openings; however we should remark that the result top-hats
ρ+,◦
W,B(f) and ρ−,◦W,B(f) are scalar images. This is also the case for the gradient g◦W,B(f)(x, y).
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5.3.4 Contrast on the sphere

The contrast mapping is a particular operator from a more general class of transformations
called toggle mappings [23]. A contrast mapping is defined, on the one hand, by two primitives
φ1 and φ2 applied to the initial function, and on the other hand, by a decision rule which
makes, at each point (x, y) the output of this mapping toggles between the value of φ1 at
(x, y) and the value of φ2, according to which is closer to the input value of the function at
(x, y). If the primitives are an erosion and a dilation, the contrast mapping correspond to
the shock filter [14]. This morphological transformation enhances the local contrast of of the
image by sharpening its edges. It is usually applied more than once, being iterated, and the
iterations converge to a limit reached after a finite number of iterations.

Let us consider the generalization for the images f(x, y) ∈ F(E,S2). The contrast on
the sphere using the pseudo-dilation and pseudo-erosion is the operators which returns the
closest transformation value of the original image, i.e.,

κ◦W,B(f)(x, y) =


δ◦W,B(f)(x, y) if d

(
f(x, y), δ◦W,B(f)(x, y)

)
< d

(
f(x, y), ε◦W,B(f)(x, y)

)
ε◦W,B(f)(x, y) if d

(
f(x, y), δ◦W,B(f)(x, y)

)
> d

(
f(x, y), ε◦W,B(f)(x, y)

)
f(x, y) if d

(
f(x, y), δ◦W,B(f)(x, y)

)
= d

(
f(x, y), ε◦W,B(f)(x, y)

)
(5.22)

where B is an unitary structuring elements.
The operator κ◦W,B(f)(x, y) provides interesting results when, after the trilateral filtering

described in Section 2.3.1 the contours of the objects are blurry. Hence, if the goal is detecting
small targets, the filtering stage removes the noise and contrast operator recover the edges.
Fig. 5.10illustrates just the performance of the contrast to create a highly contrasted signal
after an averaging filter.

5.4 Conclusions and perspectives

We have explored in this chapter a first approach to the computation of supremum and
infimum of a set of points on S2, which is based on the notion of local origin to obtain the
best tangent space where the supremum and infimum are computed as a vector notion. This
methodology seems interesting from a practical viewpoint since the obtained morphological
filters produce useful results.

However, there are many questions which should be explored in detail in subsequent
studies. On the one hand, it should be proved that this local approach is more appropriate
than a global one, typically computing the supremum and infimum in the space associated to
the stereographic projection. On the other hand, there are some limited invariance properties
of the supremum and infimum which are due to the computation in a rectangular box. It
seems more interesting to consider a Euclidean ball (i.e., the supremum can be the point of
the minimum enclosing ball which have the largest norm). It is necessary also to consider the
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interest of defining the supremum (resp. infimum) as the center of the minimum enclosing
disk (resp. of the maximum enclosed disk). A deeper study on the mathematical properties
of these alternative pseudo-dilation and pseudo-erosion will be also required.
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(b) γ◦W,B3
(f)(x, y) (c) γ◦W,B5
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(e) ρ+,◦
W,B3

(f)(x, y) (f) ρ+,◦
W,B5

(f)(x, y) (g) ρ+,◦
W,B7

(f)(x, y)

Figure 5.9: Examples of pseudo-opening γ◦W,Bn(f)(x, y) of image f(x, y) ∈ S2, given in (a),
and its residue (top-hat) ρ+,◦

W,Bn
(f)(x, y). The structuring element Bn is a square of size n×n

pixels and W is a square of size ×. Note that in the Figures (a)-(d) is shown only the image
of the first coordinate on S2, however for top-hat images, the result is the given scalar image.
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(b) f1(x, y) = TL
◦,ξ̄ref

B,σs,σi,σr
(f)(x, y) (c) κ◦W,B(f1)(x, y)

Figure 5.10: Example of denoising by averaging + enhancement by contrast: (a) Original
noisy image f(x, y) ∈ S2 including with small targets; (b) results of denoising with the
trilateral filter on the sphere (see Section 2.3.1), (c) enhancement of filtered image using
the contrast) on the sphere. Note that in the Figures is shown only the image of the first
coordinate on S2.
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Chapter 6

Supervised ordering on S2

When the image scenario to be analyzed includes small targets or clutter abrupt changes, the
tools provided so far do not solve satisfactorily the detection of the desired targets. Fig. 6.1
provides an example of gradient on the sphere and postive top-hat on the sphere as they
were described in Chapter 5. If a prior information about the data is available, it is used in
the methods introduced in this chapter to accomplish the correct target detection. For this
supervised approaches, a training set for each type of target and clutter are needed. The
well-known hit-or-miss transform and a supervised approach for the top-hat are developed
for images valued on S2.

6.1 Complete lattices in S2

A partially ordered set (L,≤) is a complete lattice if every subset A ⊂ L has both a greatest
lower bound (the infimum, also called the meet) and a least upper bound (the supremum,
also called the join). The meet is denoted by

∧
A and the join by

∨
A. A nonempty set A

of L is a chain in L if A is totally ordered by ≤. The largest element of L is denoted > (top)
and the smallest ⊥ (bottom).

Let L be a complete lattice and R a nonempty set. Furthermore, let h : R → L be a
surjective mapping. We define a relation on R as follows

r ≤h r′ ⇐⇒ h(r) ≤ h(r′), r, r′ ∈ R

It is apparent that this relation ≤h preserves reflexivity (r ≤h r) and transitivity (r1 ≤h r2

and r2 ≤h r3 implies that r1 ≤h r3). However, ≤h is not a partial ordering because r ≤h r′

and r′ ≤h r implies only that r =h r
′ but not r = r′. This relation defines an h-ordering, as

it was described in [10].
Using the classical taxonomy of orderings, an h-ordering is a reduced ordering.
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(b) g◦W,B(f)(x, y) (c) ρ+,◦
W,B(f)(x, y)

Figure 6.1: Original image (a) (first coordinate on S2) and its gradient on the sphere (b) and
top-hat transformation on the sphere. False target detections are introduced. Note that the
result of the gradient and the top-hat correspond are scalar images.

6.1.1 h-supervised orderings on S2

For image processing on the sphere S2, it is necessary to define a bijective mapping h that
establishes a complete lattice structure on set L, i.e.,

h : S2 → L

where typically, L can be identified as the real values set. Once an ordering is determined
for a set R ⊂ S2, morphological processing can be directly performed.

The notion of h-supervised ordering was recently introduced in [27]. Let us particularize
this approach to the case of S2 in the context of radar polarimetric imaging, which involves
the notions of target and clutter.

From a nonempty set S of values on S2 (the training set), which is composed of the subsets
T and C, such that S = T ∪ C and T ∩ C = ∅, a h-supervised ordering from S satisfies the
conditions:

• h(t) = > if t ∈ T ,

• h(c) = ⊥ if c ∈ C.
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where > denotes the maximum element in L, whilst ⊥ refers to the minimum element of L.
Therefore, taking into account the information contained in the data, we identify

• T as the target training set T ≡ V> = {ti}Ii=1, which is related to the distribution of
values of the image structures we intend to detect;

• C as the clutter training set C ≡ V⊥ = {cj}Jj=1, which sorts the corresponding back-
ground of the scenario to analyze.

Now, for any subset of values R = {ξk}Nk=1, ξk ∈ S2 we define the supervised ordering
mapping

h(ξk) = K(ξk, T )−K(ξk, C) (6.1)

where the kernel K(·, ·) : S2×
{
S2
}
→ R+ is a function based on distances between a point ξk

and a set of points (training sets target or clutter). We notice that in that case h : S2 → R.
A first single way consists in characterizing sets of training T and C by their first order

statistics (averages on the sphere): t = µ◦(T ) and c = µ◦(T ). Then, an useful value of the
target/clutter kernels is obtained by

K(ξk, T ) = e−
d(ξk,t)

α (6.2)

K(ξk, C) = e−
d(ξk,c)

α (6.3)

where d(ξk, ξ) is the geodesic distance of S2 and α is a normalization parameter. Note that
a position on the sphere ξk has a high value in the ordering function h(ξk) when is located
close to the target set and far from the set clutter.

When dealing with multimodal clutter, the information from the various clutters has to be
included. Thus, in K(ξk, C) the contributions of all the different clutters should be combined.
The mapping has to be balanced, i.e., for monomodal target training set, its weight has to be
as significant as the combination of the clutters. Otherwise, points belonging to T are drawn
to the clutter and its values in the ordering function are erroneously decreased.

Let us assume P different clutters, characterized by their corresponding Fréchet means
on the sphere:

C1 = V1
⊥ = {cj}J1

j=1 −→ c1 = µ◦(C1)

C2 = V2
⊥ = {cj}J2

j=1 −→ c2 = µ◦(C2)
...

CP = VP⊥ = {cj}JPj=1 −→ cP = µ◦(CP )

The proposed formulations for computing the kernels are detailed below.
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Combination by addition Having identified all clutter training sets and characterized
them by their Fréchet mean ci = µ◦(Ci). The kernel for each set is computed individually,
i.e.,

K(ξk, Ci) = e−
d(ξk,ci)

α

For the whole clutter, the values from all the kernels are added up, i.e.,

K(ξk, C) =
P∑
p=1

K(ξk, Cp) (6.4)

In order to keep the balance for the target training set, its corresponding kernel is weighted
according to the number of clutter, i.e.,

K(ξk, T ) = P ·K(ξk,VT ) = P · e−
d(ξk,t)

α (6.5)

Combination by distance For a given ξk, we compute the kernels for each training set
Ci and we select the kernel with the largest value to describe the whole clutter set, i.e.,

K(ξk, C) = K(ξk, Cp), such that K(ξk, Cp) > K(ξk, Cp),∀q 6= p (6.6)

For the position ξk, the chosen clutter is the more restrictive and representative. Due to
the fact that the clutter Cp is the closest set to ξk, i.e. at minimum distance. The kernel
referred in Eq. (6.2) is used for the training target set.

Combination by grouping We define a global clutter set which is the result of lumping
together all Ci

C = C1 ∪ C2 ∪ · · · ∪ CP = {cj}Mj=1 where M =
P∑
p=1

Jp

The Fréchet mean of the global set C has no geometrical sense anymore: as it is located
at the barycenter of C, most of the points belonging to the different original clutter sets
would be far from it, and so, it would not be representative. The distance accumulated to
each element of the set C is computed instead as

K(ξk, C) =
M∑
j=1

1
1 + d(ξk, cj)

(6.7)

Similarly the kernel for the training set is given by

K(ξk, T ) =
I∑
i=1

1
1 + d(ξk, ti)

(6.8)

Remark that it is necessary that M = I for a balanced mapping function.

When target is multimodal instead, the same considerations need to be done, as for both
multimodal target and clutter.
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6.2 Mathematical morphology in Complete Lattices

Morphological operators used in mathematical morphology lie on complete lattice theory. We
extend here, some of the morphological transformations using the h-ordering above developed.

Let f(x, y) ∈ F(E,S2) be an image valued on the sphere. Using the family of h-supervised
orderings introduced in previous section, the values of image f(x, y) can mapped on a com-
plete lattice space, which correspond in fact to the real values. Therefore, we can write

h : F(E,S2) 7→ F(E,R)

and say that h(·, ·) creates a complete lattice structure for images valued on the sphere.
Given the partial ordering induced by h, denoted by ≤h, the supervised dilation on the

sphere and supervised erosion on the sphere of an image f(x, y) ∈ F(E,L) are obtained
replacing the operators sup and inf for ∨h and ∧h according to ≤h, i.e.,

δh,B(f)(x, y) = {∨h [f(u, v)] , (u, v) ∈ B(x, y)} (6.9)

and
εh,B(f)(x, y) = {∧h [f(u, v)] , (u, v) ∈ B̌(x, y)} (6.10)

The supervised erosion εh,B(f) typically contracts the structures of image f with a value
on the sphere close to the training set T of foreground (usually associated to target to be
detected). It also expands the regions close to the training set C of background (or clutter
zones). Dually, the dilation performs an enlargement of the structures located near fore-
ground and dwarfs the corresponding pre-defined background.

All the other morphological operators, defined as products of dilations and erosions are
generalized to the supervised framework of S2.

6.3 Hit-or-miss transform

In mathematical morphology, hit-or-miss transform (HMT) is an operation that detects a
given configuration or pattern in a binary image, using the morphological erosion operator
and a pair of disjoint structuring elements. The result of the hit-or-miss transform is the set
of positions, where the first structuring element has to match in the foreground, while the
second structuring element has to match the background.

Let us denote S1 ⊂ E, S2 ⊂ E the pair of SEs, where S1 ∩ S2 = 0. Then we look for all
the positions where S1 fits within a binary image I and S2 within its complement image Ic.
That can be formulated in terms of the morphological erosion, i.e.,

HMT (I;S1, S2) = εS1(I) ∩ εS2(Ic) (6.11)
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6.3.1 Supervised hit-or-miss transformation in S2

Let us generalize the hit-or-miss transformation to images valued on the sphere. It can be
used to point out and to extract those structures on an image f(x, y) ∈ F(E,S2) with a prior
known shape and placed on a specific location on the sphere surface.

For the HMT, the first structuring element has to match in the foreground. Once we
have established the h-supervised ordering for the pair of sets {T,C}, the supervised erosion
associated to S1 is directly computed. Whereas matching the background, we induce an
inverse ordering by interchanging the sets V> by V⊥, i.e., {T,C} is treated as {C, T}. The
expression of the hit-or-miss transform on the sphere can be written as

HMT (f ;S1, S2)(x, y) = εh1,S1(f)(x, y) ∧ εh2,S2(f)(x, y) (6.12)

where
h1 = h{T,C}|h(b) = ⊥, h(t) = >}

h2 = h{C, T}|h(b) = >, h(t) = ⊥}

Each structuring element Si has a training set associated {S1, T}, {S2, C}. Thus, the
formulation given in (6.12) can be generalized based on the sets of couples {Si, Bi}i=1,··· ,I ,
with all the SEs Si disjoint where the Bi represent the sets of values on the sphere associated.
This approach is widely explained in [28]. However, we limit here our developments on the
sphere to the HMT formulation for a single pair {T,C} and a single pair of structuring
elements for the target S1 and for the clutter S2. In the multimodal cases, the different sets
are rather combined while defining the function h of ordering.

We can also include a threshold ε to allow a degree of noise in the detection. This
parameter needs to take the same value for both erosions, meaning the mapping that defines
the ordering is balanced. More precisely, it is defined by

HMTε(f ;S1, S2)(x, y) = (εh1,S1(f)(x, y) ∧ εh2,S2(f)(x, y)) < ε (6.13)

Fig. 6.2 depicts various examples of HMTε for different types of targets to be detected
over different clutters. Performance of the operator for the possible combinations used in
the kernel is compared in Fig. 6.3. The ROC curves evaluate the ability of the detector as a
function of noise allowed, by varying the values of ε.
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(d) HMT (f ;S′′1 , S
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2 )(x, y)

Figure 6.2: (a) Original image (first coordinate on S2), (b) monomodal target and clutter case,
(c) monomodal target and multimodal clutter and (d) multimodal target and monomodal
clutter. The sets can be combined as defined in the h-ordering definition. The structuring
elements are ...
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Figure 6.3: ROC curves comparing the performance of the different ordering constructions
for target detection using hit-or-miss transform, obtained according to the variation of the
threshold ε for the HMTε.
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6.4 Supervised opening and supervised top-hat

A natural extension for the supervised opening on the sphere is defined as a supervised erosion
followed by a supervised dilation

γh,B(f)(x, y) = δh,B (εh,B(f)(x, y)) (6.14)

Its corresponding supervised positive top-hat on the sphere is the residue between the
original image and its supervised opening

ρ+
h,B(f)(x, y) = d(f(x, y), γh,B(f)(x, y)) (6.15)

with d(ξi, ξj) the Riemannian distance on S2.
Abrupt changes in the clutter and targets, smaller than the structuring element B and

different from the ilk intended to detect, are removed when computing the opening and con-
sequently appears in the top-hat. They introduce false positive detections, as illustrated in
Fig. 6.4. A different methodology based on the decomposition of the sets in h-supervised
ordering is proposed. Ultimately, the supervised Top-Hat proposal is detailed.
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(a) f(x, y) (b) ρ+
h,B(f)(x, y)

Figure 6.4: (a) Original image (first coordinate on S2), (b) positive top-Hat with the h-
supervised ordering proposed. Abrupt changes in the clutter are enhanced and cross form
object on the bottom right sight of the image does not correspond to the set desired targets
TK .

6.4.1 Restricted supervised top-hat in S2

Let f(x, y) ∈ F(E,S2) be an image on the sphere. Let Ti, i = 1, · · · , I the target sets found
in the image and Cj , j = 1, · · · , J the corresponding clutter sets. Moreover, the type of
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target expected to be detected conforms the particular set Tm.

Fixing Tm, marginal orderings can be defined for each pair {Tm, Cj}, ∀j and {Tm, Ti}
∀i 6= m. According to the analysis given in Section 6.1.1, we can formulate the ordering
mappings:

hi(ξk) = K(ξk, Tm)−K(ξk, Ti) = e−
d(ξk,tm)

α − e−
d(ξk,ti)

α

and
hj(ξk) = K(ξk, Tm)−K(ξk, Cj) = e−

d(ξk,tm)

α − e−
d(ξk,cj)

α

with i = 1, · · · , I but i 6= m and j = 1, · · · , J . Hence, we construct every supervised opening
γhl,B(f) according to every marginal ordering hl, l = 1, · · · , L (with L = I + J − 1). The
difference between the original image and the supervised openings form the ensemble of
marginal top-hats,

ρ+
hl,B

(f)(x, y) = d(f(x, y), γhl,B(x, y))

Now, we can define the restricted supervised top-hat on the sphere with respect to target
Tm as the pixelwise minimum of all the supervised top-hats {ρ+

hl,B
}Ll=1:

ρ+
Tm,B

(f)(x, y) = min
l=1,··· ,L

{ρ+
hl,B

(f)(x, y)} (6.16)

False positive detections can appear in some of the marginal supervised top-hats, its value
may be even higher than the value required for a target. For a structure to be hold in the
restricted supervised top-hat, it has to be present in all the marginal top-hats ρ+

hl,B
, ∀l with a

significant value. By choosing the minimum, the target expected takes the lower value found,
and detection resolution is deteriorated. On the other hand, not desired targets and clutter
changes are detected as they are not present in all ρ+

hl,B
, ∀l. Fig. 6.5 illustrate an example of

the performance of restricted supervised top-hat, in comparison with the marginal ones.

6.5 Conclusions and perspectives

The supervied ordering methods proposed in this chapter allow an extension formally correct
of the mathematical morphology on images valued on S2. As described above, it is required
a strong a priori knowledge about the kinds of values in the image. If this training set is
available, the associated operators may be extremely accurate in the target detection.

Since in many practical applications a priori information is limited, it would be interesting
in continuing this work, conceiving new strategies of ordering for the data lying on the sphere.
Strategies capable to automatically determine the kinds of targets, clutters in the image.
For example, clustering algorithms on the sphere (e.g. k-means) or statistical modeling of
distributions (e.g. E-M algorithm) are lines that might be considered.
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Figure 6.5: (a) Original image (first coordinate on S2), all marginal supervised top-hats
(b)(c)(d)(e)(f) and the minimum pixel to pixel for all of them leads to the restricted supervised
top-hat (g).
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Chapter 7

Conclusions and perspectives

The main goal of this project is to survey the generalization of mathematical morphology to
images valued on the unit sphere and develop some improved techniques for target detection.
In this chapter a conclusion is given based on the analysis performed followed by additional
guidelines for future work.

7.1 Main contributions

This reserach has contributed to image processing when data set is embedded on the sphere
surface. Various filtering methods are described according to the configuration of the data.
The performance of the different techniques are compared and its suitability for denoising
issues is discussed. We propose an extension for classical gradient and top-hat for data dis-
tributed on the unit sphere, and evaluate their response for target detection purposes. The
need for a partial ordering on S2 has a particular interst for the generalization of all morpho-
logical operators. We introduce an approach to dispose local supremum and infimum, which
allows to define the (pseudo-) dilation/erosion on the sphere. Other tools commonly used
to identify structures on an image emerge from this new approach, such as opening/closing,
gradient and top-hat, or contrast operators for enhancing contours. Finally, supervised order-
ings on S2 are explored. The different proposals for the ordering computation are analyzed
and compared. These orderings may ultimately provide a generalization of all morphological
operators on the sphere. Supervised hit-or-miss and supervised top-hat are detailed for its
particular pertinence in target detection.

From the analysis performed, it can be concluded that mathematical morphology proffers
a wide variety of tools appropiate for target detection issues. Its extension to S2 presents a
challenging topic to be subject to further studies.

79



7.2 Future work

The different methods exposed in this project require of a validation on real polarimetric data.
The interest of this operators for the treatment of other images valued on the sphere might
be studied. As for the mentioned orientation-valued images, 3D images of vector gradient
and HARDI medical images.
The scenario would be different if data where located inside the sphere instead. Morphological
operators restricted to the variability of the radius may be explored. Thus, the data would
be represented as a four components vector. Different methods of averaging quaternions can
be considered for denoising purposes.
An extensive analysis, when other spaces of representation are used, could be done. The
definition of the supremum and infimum in the space associated to stereographic projection
and to the Poincaré disk.
Moreover, including the Doppler information contained in the data may reveal new interesting
approaches.
If there were a formulation of quantum mathematical morphology, the state of every pixel
would be a linear combination of the pure states of the system. Similarly as we described
for the Poincaré sphere, in quantum mechanics the geometrical model corresponds to the
Bloch sphere. And its model in physics is associated to the space of a two-level quantum
mechanical system, called qubit. The extension of morphology operators on the sphere to
quantum mechanics remains to further studies which are out of the scope of this project.
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