Purdue University

Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

11-2020

Low Frequency Absorption Enhancement by Modification of Poro-Elastic Layered Sound Package

Yutong Xue Purdue University, xyt@alumni.purdue.edu

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Xue, Yutong and Bolton, J Stuart, "Low Frequency Absorption Enhancement by Modification of Poro-Elastic Layered Sound Package" (2020). *Publications of the Ray W. Herrick Laboratories.* Paper 233. https://docs.lib.purdue.edu/herrick/233

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Low Frequency Absorption Enhancement by Modification of Poro-Elastic Layered Sound Package

Yutong (Tony) Xue* and J. Stuart Bolton Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907 *now at Seagate Technology, MN

This presentation will be posted at Herrick E-Pubs: http://docs.lib.purdue.edu/herrick/

Mechanical Engineering

Motivation

Low Frequency Noise Control

- "The attenuation of low-frequency sound has been a challenging task because the intrinsic dissipation of materials is inherently weak in this regime." [1]
- "The acoustic response of any structure or material must obey the causality principle, which relates the absorption spectrum of a sample to its required minimum thickness." [2]

Existing Solutions and their Limitations

- Metamaterials weight, volume, manufacturability, cost
- Active Noise Control (ANC) robustness, multiple sources, latency, cost

Current Study

Optimization of poro-elastic sound package using layered structure modeling tool

Modeling of Layered Sound Packages

- Transfer Matrix Method (TMM) [3]
 - Efficient modeling tool to predict absorption coefficient and transmission loss for complex multi-layer acoustical systems
 - Enabling design and optimization based on parametric study of sound packages

• Big idea: [2x2] matrices multiplied in a series

• Poro-elastic layer modeling example [4]

Effect of Additional Top Absorbent

Effect of Additional Top Absorbent

Effect of Additional Top Absorbent

Effect of Flexible Backing

Effect of Flexible Backing

Effect of Flexible Backing

Low Frequency Absorption Optimization

Two optimal solutions were acquired, in both of which the performance was dominated by the airflow resistivity

0.9 Solution 1: σ =10⁵ Rayls/m, m_s=10³ gsm 0.1 - - Solution 2: σ =6.31x10⁴ Rayls/m, m =1 gsm 0 10^{2} 10^{3} 10⁴ Frequency [Hz]

- Two optimal solutions were acquired, in both of which the performance was dominated by the airflow resistivity
- The optimal absorption can be achieved by either an extreme light or heavy membrane, which indicates that the performance was controlled by B.C.s

6

Low Frequency Absorption Optimization

Airspace

Limp porous layer (32mm, 40kg/m³, σ)

PURDIF

Mechanical Engineering

LABORA

Ray W. Herrick 🗖 🖻

- Two optimal solutions were acquired, in both of which the performance was dominated by the airflow resistivity
- The optimal absorption can be achieved by either an extreme light or heavy membrane, which indicates that the performance was controlled by B.C.s
- Switching off the foam would not affect much of the optimal absorption

Low Frequency Absorption Optimization

Low Frequency Absorption Optimization

Optimizing averaged-absorption in 100-1000Hz

• One optimal solutions were captured with top membrane~120 gsm, bottom membrane~80 gsm, and limp porous layer σ =~4x10⁵ Rayls/m, in which the airflow resistivity of the limp porous layer still dominates the performance

Airspace

Limp porous layer (32mm, 40kg/m³, σ) 0.9 0.1 ·······Solution: σ =3.98x10⁴ Rayls/m, m_{s1}=123 gsm, m_{s2}=77 gsm 0 10^{2} 10^{3} 10^{4}

One optimal solutions were captured with top membrane~120 gsm, bottom membrane~80 gsm, and limp porous layer σ =~4x10⁵ Rayls/m, in which the airflow resistivity of the limp porous layer still dominates the performance

Frequency [Hz]

- Averaging among a continuous band of frequencies does not help the whole picture and does not guarantee good performance at all frequencies
- This configuration provides +0.1 absorption than previous one, but would trade off high frequency performance

Low Frequency Absorption Optimization

Limp membrane (m_{s1})

Limp membrane (m_{s2})

- Low frequency sound absorption can be optimized for conventional sound package involving porous layers (fibers, foam) to provide industry-acceptable performance while maintaining costeffective features including lightweight and thinness
- TMM model serves as an efficient multi-layer sound package modeling tool to enable optimization of complex layered structures
- Boundary conditions (unbonding vs. bonding) plays an significant role for low frequency absorption
- Finite impedance backing (panel) is more practical when optimizing absorption
- An optimized sound package (40mm, 1520 gsm) with a highly-resistive absorbent (32mm, at front) and a surface-bonded foam (8mm, at back) can achieve an averaged sound absorption > 0.55 among 100-1000Hz
- An alternative optimized sound package (40mm, 1435 gsm) with a highly-resistive absorbent (32mm) plus two limp membranes without the foam layer can achieve an averaged sound absorption > 0.65 among 100-1000Hz, but would trade off high frequency performance

References

[1] J. Mei et al., "Dark acoustic metamaterials as super absorbers for low-frequency sound," *Nature Communications* Vol.**3**: Article 756 (2012). <u>https://doi.org/10.1038/ncomms1758</u>.

[2] M. Yang and P. Sheng, "Sound absorption structures: from porous media to acoustic metamaterials," Annu. Rev. Mater. Res. Vol. **47**: pp. 83–114 (2017). <u>https://doi.org/10.1146/annurev-matsci-070616-124032</u>.

[3] Y. Xue, J. S. Bolton and Y. Liu, "Modeling and coupling of acoustical layered systems that consist of elements having different transfer matrix dimensions", *J. Appl. Phys.* Vol. **126**: 165012 (2019). <u>https://doi.org/10.1063/1.5108635</u>.

[4] J. S. Bolton, "Poro-elastic materials and the control of low frequency sound," Plenary speech at Noise-Con 2019, San Diego, CA.

[5] A. Parrett et al., "Application of micro-perforated composite acoustic material to a vehicle dash mat," SAE Technical Paper 2011-01-1623, 2011, <u>https://doi.org/10.4271/2011-01-1623</u>.

Thanks for your attention!

And a special THANKS to the Organization Committee

Please follow Herrick E-Pubs: http://docs.lib.purdue.edu/herrick/ for presentations and more