Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

7-2020

Noise Source Identification and Noise Directivity Analysis of Bladeless Fans by Combined CFD and CAA Method

Ang Li Purdue University, li2467@purdue.edu

Jun Chen Purdue University

Yangfan Liu Purdue University

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Patricia Davies Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Li, Ang; Chen, Jun; Liu, Yangfan; Bolton, J Stuart; and Davies, Patricia, "Noise Source Identification and Noise Directivity Analysis of Bladeless Fans by Combined CFD and CAA Method" (2020). *Publications of the Ray W. Herrick Laboratories*. Paper 232. https://docs.lib.purdue.edu/herrick/232

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Influence of Geometric Parameters on Aerodynamic and Aeroacoustic Performance of Bladeless Fans

<u>Ang Li</u>, Jun Chen, Yangfan Liu, Stuart Bolton, Patricia Davies Ray W. Herrick Laboratories Purdue University West Lafayette, 47907, USA

August 1st, 2019

AJKFLUIDS 2019-5220

OUTLINE

- Background & Motivation
- Methodology
 - > Experiments
 - > Numerical Simulations
- Results
- Conclusions

BACKGROUND: FANS IN INDUSTRY

Vehicle Engine

HVAC

CPU Radiator Fan

Applications

- Cooling system
- Ventilation
- Thermal comfort

Features

- High flow rate
- Low noise level

BLADELESS FAN

• Bladeless fans launched by Dyson[©]

Advantages

- The produced wind is softer and more uniform.
- Flow rate at downstream is larger.
- No visible rotating blade is safer for children.

Working mechanism of the bladeless fan

Jafari et al. (2015)

AN EXAMPLE OF THE BLADELESS FAN

- UK, Dyson. "Dyson Cool Fans - Air Multiplier Technology Explained - Official Video." YouTube, YouTube, 5 Mar. 2014, www.youtube.com/watch?v=bUJ-X1rsKV4.

PREVIOUS WORK

Flow field structure outside the bladeless fan over the center plane

Jafari et al. (2015)

Jafari et al. (2016)

Jafari et al. (2016)

rate at downstream

AJKFLUIDS 2019-5220

OBJECTIVE & RESEARCH STRATEGY

- Characterize the aerodynamic and aeroacoustic performances of the bladeless fan by a combined 3D numerical and experimental study
- Investigate the influence of geometric parameters of the wind channel on bladeless fan's performance

METHODOLOGY: VELOCITY MEASUREMENT AT FAR FIELD

3D ultrasonic

anemometer

Measurement in Herrick PBE Lab

- Measurement position: 837
- Measurement duration at each position: 30s
- Sampling rate: 1s
- Accuracy: ±(2%+0.03m/s of indicated values)

METHODOLOGY: SOUND PRESSURE MEASUREMENT AT RECEIVERS

07.28 - 08.01, 2019, San Francisco, CA, USA

PROTOTYPE OF THE BLADELESS FAN

d=2mm, H=3cm, c=12cm, x₀/c=10% Cross-section of the wind channel

Wind channel

Computational domain

Simulation Set-up

- The number of grids: 6,320,000
- Steady RANS: $k \varepsilon$ model
- LES: Smagorinsky-Lilly model
- Time step: $1\times 10^{-4} s$
- Flow solver: SIMPLE

MESH GENERATION OF THE BLADELESS FAN

Mesh for the computational domain •

- Mesh independency test

METHODOLOGY: DATA POSTPROCESSING

RESULTS: INSTANTANEOUS FLOW FIELD

AERODYNAMIC CHARACTERISTICS: MEAN FLOW

07.28 - 08.01, 2019, San Francisco, CA, USA

AJKFLUIDS 2019-5220

AERODYNAMIC CHARACTERISTICS: MEAN PRESSURE

EFFECT OF THE SLIT WIDTH

Slit Width X velocity component(m/s) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 c = 12cm d/c = 1.25%d/c = 2.50% *d/c* = 1.67% (baseline) *d/c* = 2.08% d/c = 1.25%u_x/u_{inlet} d/c = 1.67%0.8 1.2 1.6 0.0 0.4 d/c = 2.08%x = 0.1 mx = 0.5mx = 1.5md/c = 2.50%3.34 0.4 @ z = 0.8m 0.2 1.67 Ч (m) 0.0 ^{0.00} √ -0.2 -1.67 X -3.34 -0.4 3 2 u_x (m/s)

LES, time averaged for t = 4s to 15s, @x = 1.5 m

07.28 - 08.01, 2019, San Francisco, CA, USA

AJKFLUIDS 2019-5220

EFFECT OF THE CROSS-SECTION HEIGHT

EFFECT OF THE SLIT LOCATION

EFFECT OF THE PROFILE OF CROSS-SECTION

RATIO OF MASS FLOW RATE

07.28 - 08.01, 2019, San Francisco, CA, USA

AEROACOUSTIC CHARACTERISTICS

- Acoustic model: FW H model
- Density: 1. $225 kg/m^3$
- Sound speed: 340 m/s
- Reference acoustic pressure: $20 \mu Pa$
- Noise source: Bladeless fan

EFFECT OF THE GEOMETRIC PARAMETERS ON AEROACOUSTIC PERFORMANCE

07.28 - 08.01, 2019, San Francisco, CA, USA

AJKFLUIDS 2019-5220

CONCLUSIONS

- When the wind produced by the bladeless fan becomes more powerful, the aerodynamic noise is louder.
- With the decrease of the slit width, the wind strength becomes more powerful. The generated noise increases at the same time.
- The bladeless fan with the cross-section of 4cm has the best aerodynamic performance, but the generated noise is the loudest.
- With the slit moves away from the leading edge, both wind strength and noise level increase.
- The profile of the cross-section affect the shape of the influence zone, but has insignificant effect on outflow mass flow rate and the generated noise.

ONGOING EFFORT

- Investigate the performance of the bladeless fan prototype with the impeller in the base
- Identify the main noise source
- Analyze the noise directivity of the bladeless fan
- Come up with a general criteria to evaluate the aerodynamic performance of the bladeless fan (i.e. strength, uniformity and steadiness of the wind)
- Propose a criteria to evaluate the compromise between the aerodynamic and aeroacoustic performance
- Apply the results to optimize the design of the new-generation bladeless fan.

ACKNOWLEDGEMENT

Thanks to the financial support and professional feedback
 provided by M

07.28 - 08.01, 2019, San Francisco, CA, USA

AJKFLUIDS 2019-5220