
Master in Computing

Master of Science Thesis

Automatic generation of loop invariants

Daniel Larraz Hurtado

Advisor: Albert Rubio Gimeno

June, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41803991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

Contents
1. Overview . 1

1.1. Introduction . 1

1.2. Tool design . 2

1.3. Structure of the document . 2

2. Preliminaries . 3

2.1. SMT formulas and SMT problems . 3

2.2. Integer Linear formulas and Presburger formulas . 4

2.3. Transition Systems . 5

3. Input program abstraction . 7

3.1. Input language . 7

3.2. Program modeling as Transition System . 8

3.3. Transition System normalization . 9

4. Generation of loop invariants . 13

4.1. Inductive assertions and Farkas’ Lemma . 13

4.2. Inductive assertion maps and Problem encoding 14

4.3. Set of invariants for a cutpoint . 15

4.4. Cutset choice . 16

4.5. Elimination of unfeasible paths . 17

4.6. Extensions of linear invariants . 17

4.7. Adding invariants to path relations . 22

4.8. Cutpoints dependencies . 23

5. Tool implementation . 27

5.1. Environment and dependencies . 27

5.2. Tool function and usage . 27

5.3. Tool distribution . 28

II

6. Conclusions and futher work . 29

6.1. Results of the thesis . 29

6.2. Further work . 29

7. References . 31

A. Applications . 33

A.1. Newton-Raphson’s algorithm . 33

A.2. LCM-GCD Algorithm . 34

A.3. Generalized Readers-Writers . 35

A.4. Heapsort . 35

A.5. MergeSort . 36

1

1 Overview

In this thesis we present CppInv, an automatic loop invariants generator for im-
perative programs written in a subset of the C++ language. Firstly, we start with
an introduction to the problem and the related work. After that, we give a gen-
eral perspective of the tool design. Before concluding this chapter, we describe the
organization of the rest of the document.

1.1. Introduction
An invariant assertion of a program at a location is an assertion over the program
variables that remains true whenever the location is reached. Discovering invariants
is an essential task for verifying the correctness of programs. Since reliable software
design and implementation continues to be an important problem, any progress in
this area will be extremely important in the future.

The field of invariant generation is based on a multitude of techniques such
as computer algebra, theorem proving, constraint solving, abstract interpretation
techniques or model-checking.

A particularly interesting case is the generation of loop invariants for imperative
programs or transition systems in general. In this context, abstract interpretation
[2] is the classical technique for invariant generation. The main idea behind this
approach is to perform an approximate symbolic execution of the program until an
assertion that remains unchanged is reached. However, in order to guarentee termi-
nation, the method introduces imprecision by use of an extrapolation operator called
widening. This operator often causes the technique to produce weak invariants. The
design of a widening operator with some guarantee of completeness remains a key
challenge for abstract interpretation based techniques [12,13].

In this thesis, we will consider an alternative method for automatically generate
linear invariants, i.e. invariants expressed as a linear inequation, which was presented
in [1]. This method uses Farkas Lemma to transform the problem of the existence
of a loop invariant into a satisfiability problem in propositional logic over non-linear
integer arithmetic. Despite the potential of the method, its application [14] has
been limited due to the lack of good solvers for the obtained non-linear constraints.

Solving non-linear arithmetic constraint over the integers is undecidable. The
situation is not much better when considering the reals since, although the problem is
decidable as it was shown in [4], using the related algorithms in practice is unfeasible
due to their complexity.

Therefore, all methods used in practice for both integer or real solution domains
are incomplete and are focused on either proving satisfiability or proving unsatisfia-
bility. In this thesis we are particularly interested on the former because each found

1.Overview

2

solution represents a new discovered invariant. That is the reason we choose the
new solver called Barcelogic presented in [3] to discover the invariants.

1.2. Tool design

CppInv works in two stages. Firstly, it parses a source code written in a subset of
C++ and abstracts all execution paths of the program building a control flow graph
associated to a transition system. Paths are expressed as arbitrary propositional
formulas over linear integer arithmetic including high level operators like integer
division and modulo. That makes easy the initial modeling. Later, formulas are
normalized and only paths between a set of locations that cover every cycle of the
control flow graph are regarded.

Secondly, CppInv generates linear invariants at the selected locations setting out
a constraint solving problem. We present a method to discover all linear invariant
of the considered form.

As a result, our tool can find linear invariants efficiently for a large set of interest-
ing programs. Moreover, CppInv is also able to generate some non-linear invariants
automatically. For instance, it is possible to prove the total correctness of a program
that multiplies two integers from the invariants returned by the tool.

1.3. Structure of the document

The rest of the document is organized as follows: Chapter 2 introduces some basic
concepts and definitions. Chapter 3 describes the input language accepted by the
tool and the abstraction used to model an input program. Chapter 4 presents a
method for generating a set of linear invariants for each loop point of a program.
Chapter 5 explains some aspects of the tool implementation. Chapter 6 presents
the results of this thesis and futher work. Appendix A collects examples taken from
several papers and discusses the outcome obtained using the tool.

3

2 Preliminaries

For reading this document, some knowledge of propositional and first-order logic is
assumed (see [9]), although the notation and the main concepts used in this work
are recalled in this chapter. Besides, we introduce here the notion of SMT problems,
integer linear formulas, Presburger formulas and transition systems, which will be
necessary to follow next chapters.

2.1. SMT formulas and SMT problems

Definition 1 (SMT Formulas) Let P be a fixed finite set of ground (i.e., variable
free) first-order atoms. The set of Satisfiability Modulo Theories (SMT) formulas
over P is the set of boolean formulas over P defined as follows:

• Every p ∈ P is an SMT formula.

• If F and G are SMT formulas, ¬F , (F ∧G) and (F ∨G) are also SMT formulas.

• Nothing else is an SMT formula.

If p ∈ P , then p is an atom and p and ¬p are literals of P . We will write (F → G)
as an abbreviation for (¬F ∨G).

A formula is in Negation Normal Form (NNF) if negation occurs only imme-
diately above an atom, and, it is in Disjunctive Normal Form (DNF) if it is a
disjunction of conjunctions of literals.

Recall that given an arbitrary formula F , we can obtain its NNF applying the
next three transformation rules up to completion:

F [¬¬G] =⇒ F [G]
F [¬(G ∧H)] =⇒ F [¬G ∨ ¬H]
F [¬(G ∨H)] =⇒ F [¬G ∧ ¬H]

Moreover, once a formula F is in NNF, we can obtain its DNF applying the distrib-
utivity rule up to completion:

F [I ∧ (G ∨H)] =⇒ F [(I ∧G) ∨ (I ∧H)]

We will use SMT formulas with theories. A theory T is a set of closed first-order
formulas. An (SMT) formula F is T-satisfiable if F ∧ T is satisfiable in the first-
order sense. Otherwise, it is called T-unsatisfiable. We will say M is a T -model of a
formula F over P , written M |= F , if M is an interpretation over P that T-safisfies
F . Two formulas F and G are logically equivalent, denoted F ≡ G, if F and G have

2.Preliminaries

4

the same T -models. A formula G is a a logical consequence of a formula F , denoted
F |= G, if every T -model of F is a T -model of G. Recall entailment can be captured
with the following known lemma.

Lemma 1. Given a T -model M and two formulas F and G, M |= (F → G) if and
only if (M |= F) implies (M |= G), i.e, G is a logical consequence of F .

In order to generate program invariants we will set out and solve SMT problems.
An SMT problem for a theory T is the problem of determining, given an SMT
formula F , whether F is T -satisfiable, or, equivalently, whether F has a T -model.

When a theory T is implied by the context we will omit prefixes, for instance,
writing satisfiable instead of T -satisfiable.

2.2. Integer Linear formulas and Presburger formulas

Definition 2 (Integer Linear Formula) An integer linear term is either c, cx,
c1
E
c2

(division), or c1(E%c2) (modulus), for constants c, c1 ∈ Z, positive constant
c2 ∈ Z+, integer variable x, and integer linear expression E. An integer linear
expression is the summation of integer linear terms. An integer linear atom is the
comparison E1 ./ E2 of two integer linear expressions, for ./∈ {<,≤,=, 6=,≥, >}.
An integer linear formula is an SMT formula over integer linear atoms.

A integer linear formula F is in Integer Lineal Negation Form (ILNF) if it is
in negation normal form and every integer linear atom E1 ./ E2 contained in F is
negated applying the next standard rules:

(E1 = E2) =⇒ (E1 6= E2), (E1 6= E2) =⇒ (E1 = E2)
(E1 < E2) =⇒ (E1 ≥ E2), (E1 ≤ E2) =⇒ (E1 > E2)
(E1 > E2) =⇒ (E1 ≤ E2), (E1 ≥ E2) =⇒ (E1 < E2)

Definition 3 (Presburger Formula) A Presburger formula is an integer linear
formula that does not involve division or modulo arithmetic. Given an integer linear
formula F , an equisatisfiable Presburger formula is obtained by repeatedly applying
the next rules (taken from [5]):

F [c1
E

c2
]) =⇒

∨
b∈[0..c2−1]

(∃a)
(

[c2a+ b = E ∧ E ≥ 0 ∧ F [c1a]]
∨ [c2a− b = E ∧ E ≤ 0 ∧ F [c1a]]

)

F [c1(E%c2)]) =⇒
∨

b∈[0..c2−1]
(∃a)

(
[c2a+ b = E ∧ E ≥ 0 ∧ F [c1b]]
∨ [c2a− b = E ∧ E ≤ 0 ∧ F [−c1b]]

)

2.3.Transition Systems

5

A Presburger formula is in Equality Normal Form (ENF) if it does not contain
inequalities. Given a Presburger formula F , we can obtain its ENF applying the
next transformation rule up to completion:

F [E1 6= E2] =⇒ F [(E1 < E2) ∨ (E1 > E2)]

In next chapter, we will use integer linear formulas for modeling assertions over
program variables as close to the input program instructions as possible. Then, we
will convert them to normalized Presburger formulas which will allow us to set out
the SMT problem whose solutions give us the loop invariants of the input program.

2.3. Transition Systems

Definition 4 (Transition System) A transition system P : 〈V, L, l0, T 〉 consists
of a set of variables V , a set of locations L, an initial location l0, and a set of
transitions T . Each transition τ ∈ T is a tuple 〈l, l′, ρτ 〉, where l, l′ ∈ L are the
pre and post locations, and ρτ is the transition relation, an assertion over V ∪ V ′,
where V represents current-state variables and its primed version V ′ represents the
next-state variables.

A transition system is an integer linear transition system (IL-TS) if its variables
are integers and all of its transition relations are integer linear formulas.

A transition system is a Presburger transition system (P-TS) if its variables are
integers and all of its transition relations are Presburger formulas.

Example 1. An example of Presburger transition system is shown below:

L = {l0, l1, l2, l3, l4, l5}, V = {x, y, z}

τ0 = 〈l0, l1, x′ = 3 ∧ y′ = 13 ∧ z′ = 7〉
τ1 = 〈l1, l2, (x < z)〉
τ2 = 〈l2, l4, x′ = x+ 1〉
τ3 = 〈l1, l3, (z ≤ x)〉
τ4 = 〈l3, l4, z′ = z + 1〉
τ5 = 〈l4, l1, (x < y ∧ z < y)〉
τ6 = 〈l4, l5, (y ≤ x ∨ z ≥ y)〉

Throughout the document, unless otherwise stated, we assume that the set of
variables V = {x1, · · · , xn} is fixed. Furthermore, given an assertion ψ over the
variables V of a transition system, ψ′ denotes the assertion obtained by replacing
each variable x ∈ V by x′ ∈ V .

2.Preliminaries

6

The control-flow graph (CFG) of a transition system is a graph whose vertices
are the locations and whose edges are the transitions. A path π of the transition
system is a path through its CFG, and the relation ρπ associated with the path is
the composition of the corresponding transition relations.

A cutset C of a transition system P is a subset of the locations of P with the
property that every cyclic path in P passes through some location in C. A location
inside a cutset is called a cutpoint. A basic path π between two cutpoints li and lj
is a simple path that does not go through any cutpoint, other than the end points.

In the next chapter we will use transition systems to model imperative pro-
grams. In order to make easy the translation while being compliant with imperative
programs’ semantic, we introduce the following assumption. Given the relation ρπ
associated with a path π of an IL-TS or a P-TS with set of variables V and a variable
x ∈ V , we assume that ρπ contains an atom x′ = x unless ρπ already includes an
atom of the form x′ = E, where E is an integer linear expression or a Presburger
expression depending on the type of the transition system considered. This assump-
tion ensures that a variable that is not assigned through an excution path keeps its
previous value.

Example 2. All cycles in the P-TS of example 1 are cut by l3. A path that
cycle back to l3 is π1 using τ1, τ2 and τ5. The relation ρπ1 associated with π1 is
(x < z) ∧ x′ = x + 1 ∧ (x < y) ∧ (z < y) ∧ y′ = y ∧ z = z′ where (y′ = y ∧ z = z′)
has been assumed.

7

3 Input program abstraction

In this chapter we introduce the input language accepted by CppInv. Next, we
describe how to model an input program with an integer linear transition system.
Finally, we explain which transformations are necessary before we can set out the
SMT problem that generates the loop invariants.

3.1. Input language
CppInv takes as input a program over integer and boolean expressions and as-
signments given in a subset of the C++ language. Specifically, it accepts a main
function definition (int main() {...}) which can include declarations and initial-
izations of integer variables (int x=...), sequential statements (stmt1;...;stmtN),
if-else conditional statements, while and do-while loops, break and continue
statements, label declarations and goto jumps, integer arithmetic expressions using
addition (+), subtraction (-), multiplication (*), integer division (/) and modulo (%)
operators, boolean expressions using conjunctions (and, &&), disjunctions (or, ||)
and negations (not, !) of boolean values (true, false) and comparisons of integer
expressions using equality, inequality and relational operators (=,!=,<, <=,>,>=), as-
signments (=, +=, -=, *=, /=, %=), pre and post increment (++) and decrement (--)
statements and assertions of boolean expressions (assert(...)).

Additionally, CppInv has syntactic support for integer arrays and function calls
and partial support for boolean variables. An input program can declarate an integer
array (int A[...]) and access and update (A[...]=...) its element values but,
however, those actions are semantically ignored by the tool. A parsed function call
(name(...)) is always treat as a call to an non-deterministic function that returns
an arbitrary integer or a boolean value, depending on the context. Unlike integer
variables, boolean variables are not represented directly in the used logic. Thus, no
assertion about a boolean variable state is possible. However, boolean variables are
replaced with the last expression assigned to them at those locations where they are
used for having more information about integer variables. This technique, although
is useful, is limited since it is not always possible to determine which has been the
last assigned expression when the program reaches some program location.

Notice that according to the explained features of the input language, other
programming languages could be chosen instead of C++. Nevertheless, C++ was
chosen since high level features of the language are expected to be supported in
future doctoral work.

Example 3. Next figure shows an accepted input program that multiplies two
positive integers m1 and m21.

This example is based on one taken from [5]1

3.Input program abstraction

8

int main() {
// Pre: m1=M1 /\ m2=M2
int m1, m2, p=0;
assert(m1>=1 && m2>=1);
while (m1>0) {

if (m1%2==1) p=p+m2;
m1=m1/2;
m2=2*m2;

}
// Post: p = M1*M2

}

3.2. Program modeling as Transition System

The first task of CppInv is to parse the source code of a program given in C++
syntax and build an integer linear transition system that represents it. The trans-
lation is applied in the standard way. Only some cases are problematic and deserve
a special metion. For instance, when an integer variable is assigned to a non-linear
integer expression or the value returned by a function call, a new auxiliary variable
that represents an unknown arbitrary value is used instead. Note that if we simply
remove the instruction it would not be possible to reference this value if the variable
is used later in the program.

Example 4. Next figure shows the integer linear transition system corresponding
to Example 3 together with the labeled version of the program:

L = {l0, l1, l2, l3, l4, l5, l6, l7}, V = {m1,m2, p}
τ0 = 〈l0, l1, p′ = 0〉
τ1 = 〈l1, l2, (m1 ≥ 1) ∧ (m2 ≥ 1)〉
τ2 = 〈l2, l3, (m1 > 0)〉
τ3 = 〈l3, l4, (m1%2 = 1)〉
τ4 = 〈l4, l5, p′ = p+m2〉
τ5 = 〈l3, l5,¬(m1%2 = 1)〉
τ6 = 〈l5, l6,m1′ = m1/2〉
τ7 = 〈l6, l2,m2′ = 2 ∗m2〉
τ8 = 〈l2, l7,¬(m1 > 1)〉

int main()
{

// Pre: m1=M1 /\ m2=M2
int m1, m2;

l0: int p=0;
l1: assert(m1>=1 && m2>=1);
l2: while (m1>0) {
l3: if (m1%2==1)
l4: p=p+m2;
l5: m1=m1/2;
l6: m2=2*m2;

}
l7: // Post: p = M1*M2
}

3.3.Transition System normalization

9

3.3. Transition System normalization

Once an integer linear transition system P is obtained from an input program, we
start a sequence of normalizing steps:

1. Every transition relation in P is converted into its Negation Normal Form.

2. Integer linear transition system P is transformed into a Presburger transition
system P ′.

3. Every transition relation in P ′ is changed into its Equality Normal Form.

4. Every transition relation in P ′ is converted into its Disjunctive Normal Form.

5. Every transition relation of the form C1 ∨ . . . ,∨Cn with n > 1 is replaced with
n transition relation, one for ervery Ci.

The aim of steps 1 and 2 is to remove division operators which can not be handled
by the SMT solver used, while the goal of steps 3, 4 and 5 is to make explicit a set
of transitions encoded implicitly as disjunctions in the logic.

Example 5. Next figure shows the Presburger transition system obtained after
applying step 1 and 2 to the running example.

L = {l0, l1, l2, l3, l4, l5, l6, l7}, V = {m1,m2, p, β1, β2, β3, β4, β5, β6}

τ0 = 〈l0, l1, p′ = 0〉
τ1 = 〈l1, l2, (m1 ≥ 1) ∧ (m2 ≥ 1)〉
τ2 = 〈l2, l3, (m1 > 0)〉
τ3 = 〈l3, l4, (2 ∗ β1 = m1 ∧m1 ≥ 0 ∧ 0 = 1) ∨ (2 ∗ β1 = m1 ∧m1 ≤ 0 ∧ 0 = 1) ∨

(2 ∗ β2 + 1 = m1 ∧m1 ≥ 0 ∧ 1 = 1) ∨ (2 ∗ β2 − 1 = m1 ∧m1 ≤ 0 ∧ −1 = 1)〉
τ4 = 〈l4, l5, p′ = p+m2〉
τ5 = 〈l3, l5, (2 ∗ β3 = m1 ∧m1 ≥ 0 ∧ 0 6= 1) ∨ (2 ∗ β3 = m1 ∧m1 ≤ 0 ∧ 0 6= 1) ∨

(2 ∗ β4 + 1 = m1 ∧m1 ≥ 0 ∧ 1 6= 1) ∨ (2 ∗ β4 − 1 = m1 ∧m1 ≤ 0 ∧ −1 6= 1)〉
τ6 = 〈l5, l6, (2 ∗ β5 = m1 ∧m1 ≥ 0 ∧m1′ = β5) ∨ (2 ∗ β5 = m1 ∧m1 ≤ 0 ∧m1′ = β5) ∨

(2 ∗ β6 + 1 = m1 ∧m1 ≥ 0 ∧m1′ = β6) ∨ (2 ∗ β6 − 1 = m1 ∧m1 ≤ 0 ∧m1′ = β6)〉
τ7 = 〈l6, l2,m2′ = 2 ∗m2〉
τ8 = 〈l2, l7, (m1 ≤ 1)〉

3.Input program abstraction

10

Example 6. After applying step 3 and 4 we obtain the following Presburger tran-
sition system:

L = {l0, l1, l2, l3, l4, l5, l6, l7}, V = {m1,m2, p, β1, β2, β3, β4, β5, β6}

τ0 = 〈l0, l1, p′ = 0〉
τ1 = 〈l1, l2, (m1 ≥ 1) ∧ (m2 ≥ 1)〉
τ2 = 〈l2, l3, (m1 > 0)〉
τ3 = 〈l3, l4, (2 ∗ β1 = m1 ∧m1 ≥ 0 ∧ 0 = 1) ∨ (2 ∗ β1 = m1 ∧m1 ≤ 0 ∧ 0 = 1) ∨

(2 ∗ β2 + 1 = m1 ∧m1 ≥ 0 ∧ 1 = 1) ∨ (2 ∗ β2 − 1 = m1 ∧m1 ≤ 0 ∧ −1 = 1)〉
τ4 = 〈l4, l5, p′ = p+m2〉
τ5 = 〈l3, l5, (2 ∗ β3 = m1 ∧m1 ≥ 0 ∧ 0 ≤ 0) ∨ (2 ∗ β3 = m1 ∧m1 ≥ 0 ∧ 0 ≥ 2) ∨

(2 ∗ β3 = m1 ∧m1 ≤ 0 ∧ 0 ≤ 0) ∨ (2 ∗ β3 = m1 ∧m1 ≤ 0 ∧ 0 ≥ 2) ∨
(2 ∗ β4 + 1 = m1 ∧m1 ≥ 0 ∧ 1 ≤ 0) ∨ (2 ∗ β4 + 1 = m1 ∧m1 ≥ 0 ∧ 1 ≤ 0) ∨
(2 ∗ β4 − 1 = m1 ∧m1 ≤ 0 ∧ −1 ≤ 0) ∨ (2 ∗ β4 − 1 = m1 ∧m1 ≤ 0 ∧ 3 ≤ 0)〉

τ6 = 〈l5, l6, (2 ∗ β5 = m1 ∧m1 ≥ 0 ∧m1′ = β5) ∨ (2 ∗ β5 = m1 ∧m1 ≤ 0 ∧m1′ = β5) ∨
(2 ∗ β6 + 1 = m1 ∧m1 ≥ 0 ∧m1′ = β6) ∨ (2 ∗ β6 − 1 = m1 ∧m1 ≤ 0 ∧m1′ = β6)〉

τ7 = 〈l6, l2,m2′ = 2 ∗m2〉
τ8 = 〈l2, l7, (m1 ≤ 1)〉

3.3.Transition System normalization

11

Example 7. Finally, once the transformation is completed after applying step 5,
we have the next Presburger transition system:

L = {l0, l1, l2, l3, l4, l5, l6, l7}, V = {m1,m2, p, β1, β2, β3, β4, β5, β6}

τ0 = 〈l0, l1, p′ = 0〉
τ1 = 〈l1, l2, (m1 ≥ 1) ∧ (m2 ≥ 1)〉
τ2 = 〈l2, l3, (m1 > 0)〉
τ3 = 〈l3, l4, (2 ∗ β1 = m1 ∧m1 ≥ 0 ∧ 0 = 1)〉
τ4 = 〈l3, l4, (2 ∗ β1 = m1 ∧m1 ≤ 0 ∧ 0 = 1)〉
τ5 = 〈l3, l4, (2 ∗ β2 + 1 = m1 ∧m1 ≥ 0 ∧ 1 = 1)〉
τ6 = 〈l3, l4, (2 ∗ β2 − 1 = m1 ∧m1 ≤ 0 ∧ −1 = 1)〉
τ7 = 〈l4, l5, p′ = p+m2〉
τ8 = 〈l3, l5, (2 ∗ β3 = m1 ∧m1 ≥ 0 ∧ 0 ≤ 0)〉
τ9 = 〈l3, l5, (2 ∗ β3 = m1 ∧m1 ≥ 0 ∧ 0 ≥ 2)〉
τ10 = 〈l3, l5, (2 ∗ β3 = m1 ∧m1 ≤ 0 ∧ 0 ≤ 0)〉
τ11 = 〈l3, l5, (2 ∗ β3 = m1 ∧m1 ≤ 0 ∧ 0 ≥ 2)〉
τ12 = 〈l3, l5, (2 ∗ β4 + 1 = m1 ∧m1 ≥ 0 ∧ 1 ≤ 0)〉
τ13 = 〈l3, l5, (2 ∗ β4 + 1 = m1 ∧m1 ≥ 0 ∧ 1 ≤ 0)〉
τ14 = 〈l3, l5, (2 ∗ β4 − 1 = m1 ∧m1 ≤ 0 ∧ −1 ≤ 0)〉
τ15 = 〈l3, l5, (2 ∗ β4 − 1 = m1 ∧m1 ≤ 0 ∧ 3 ≤ 0)〉
τ16 = 〈l5, l6, (2 ∗ β5 = m1 ∧m1 ≥ 0 ∧m1′ = β5)〉
τ17 = 〈l5, l6, (2 ∗ β5 = m1 ∧m1 ≤ 0 ∧m1′ = β5)〉
τ18 = 〈l5, l6, (2 ∗ β6 + 1 = m1 ∧m1 ≥ 0 ∧m1′ = β6)〉
τ19 = 〈l5, l6, (2 ∗ β6 − 1 = m1 ∧m1 ≤ 0 ∧m1′ = β6)〉
τ20 = 〈l6, l2,m2′ = 2 ∗m2〉
τ21 = 〈l2, l7, (m1 ≤ 1)〉

12

13

4 Generation of loop invariants

In this chapter, we describe an iterative method to generate loop linear invariants
based on the technique presented in [1]. The strength of our approach lies in the
use of problem encoding to avoid discovering linear combinations of already found
invariants in each iteration. Besides, we detail other techniques to consider when
generating invariants that improve the efficient or make possible to find some more
types of invariants.

4.1. Inductive assertions and Farkas’ Lemma
The main idea behind the technique explained in [1] is to represent a linear invariant

c1x1 + · · ·+ cnxn + d ≤ 0

in terms of unknown coefficients c1, . . . , cn, d and generate constraints on the coeffi-
cients such that any solution corresponds to an inductive assertion.

An assertion is said to be inductive at a program location if it holds the first
time the location is reached and is preserved under every cycle back to the location.
It has been established that all inductive assertions are invariant. Furthermore,
the standard method for proving a given assertion invariant is to find an inductive
assertion that strengthens it.

The key to this approach is Farkas’ lemma which provides a sound and complete
method for reasoning about systems of linear inequalities.

Theorem 1 (Farkas’ Lemma). Consider the following system of linear inequal-
ities over real-valued variables x1, · · · , xn

S :

 a11 x1 + · · ·+ a1n xn+ b1≤ 0
...

...
...

am1x1+ · · ·+ amnxn+bm≤ 0

When S is satisfiable, it entails a given linear inequality

ψ : c1x1 + · · ·+ cnxn + d ≤ 0

if and only if there exist non-negative real numbers λ0, λ1, . . . , λm, such that

c1 =
m∑
i=1

λiai1, . . . , cn =
m∑
i=1

λiain, d = (
m∑
i=1

λibi)− λ0

Furthermore, S is unsatisfiable if and only if the inequality 1 ≤ 0 can be derived as
shown above.

We represent applications of the lemma using a tabular notation:

4.Generation of loop invariants

14

λ0 −1≤ 0
λ1 a11x1 + · · ·+ a1nxn+ b1≤ 0

S...
...

...
...

λm am1x1 + · · ·+amnxn+ bm≤ 0

c1x1 + · · ·+ cnxn+ d≤ 0 ← ψ

1≤ 0 ← false

The antecedents are placed above the line and the consequences below. For
each column, the sum of the column entries above the line, with the appropriate
multipliers, must be equal to the entry below the line. If a row corresponds to
an inequality, the corresponding multiplier is required to be non-negative. This
requirement is dropped for rows corresponding to equalities.

4.2. Inductive assertion maps and Problem encoding

Definition 5 (Inductive Assertion Map) Given a program P with a cutset C
and an assertion ηc(l), for each cutpoint l, we say that ηc is an inductive assertion
map for C if it satisfies the following conditions for all cutpoints l, l′:
Initiation For each basic path π from l0 to l, ρπ |= ηc(l)′.
Consecution For each basic path π from l to l′, ηc(l) ∧ ρπ |= ηc(l′)′.

Given a transition system and a cutset, we generate a (partial) inductive asser-
tion map η over the cutpoints by encoding initiation and consecution. Let η(l) be
represented by the assertion cl1x1 + · · · + clnxn + dl ≤ 0, where each cli and each
dl is an unknown. The two conditions for the map to be inductive are encoded as
follows:

Initiation. For each cutpoint lj and each basic path π from l0 to lj , the path
may be an enabled path, in which case ρπ is satisfiable, or the path may be disabled,
in which case, ρπ is unsatisfiable. Initiation can thus be represented by the following
table,

λ0 −1≤ 0
λ1 a11x1 + · · ·+ a1nxn+ a′11x

′
1 + · · ·+ a′1nx

′
n+ b1≤ 0

ρπ
...

...
...

...
...

...
λm am1x1 + · · ·+amnxn+a′m1x

′
1 + · · ·+a′mnx

′
n+ bm≤ 0

clj1x
′
1 + · · ·+ cljnx

′
n+ dlj ≤ 0 ← η(lj)′

1≤ 0 ← disabled

4.3.Set of invariants for a cutpoint

15

where λ0, . . . , λm ≥ 0.
Consecution. For each basic path π from a cutpoint li to a cutpoint lj , we

encode the consecution condition, η(li) ∧ ρπ |= η(lj)′, using Farkas’ Lemma. The
path may be an enabled path, in which case η(li)∧ρπ is satisfiable, or the path may
be disabled, in which case, η(li) ∧ ρπ is unsatisfiable.

The constraints are represented by the table shown below:

µ cli1x1 + · · ·+ clinxn + dli≤ 0 ← η(li)
λ0 −1≤ 0
λ1 a11x1 + · · ·+ a1nxn+ a′11x

′
1 + · · ·+ a′1nx

′
n+ b1≤ 0

ρπ
...

...
...

...
...

...
λm am1x1 + · · ·+amnxn+a′m1x

′
1 + · · ·+a′mnx

′
n+ bm≤ 0

clj1x
′
1 + · · ·+ cljnx

′
n+ dlj ≤ 0 ← η(lj)′

1≤ 0 ← disabled

where µ, λ0, . . . , λm ≥ 0.
The constraints corresponding to initiation are linear, as are the constraints

corresponding to the disabled case of consecution. However, the constraints for the
enabled case of consecution are non-linear due to the presence of the multiplier µ in
a row containing unknown coefficients.

4.3. Set of invariants for a cutpoint
Given a transition system and a cutset C = {p1, . . . , pr}, let Π = {π1, . . . , πm} be
the set of basic paths from li ∈ {l0} ∪ C to lj ∈ C and let E(πk) and D(πk) be
the constraints for πk corresponding to the enabled and disabled cases respectively
described in the previous section. Then, the problem of finding an inductive assertion
map is encoded on the constraint:

(∃cp1 , dp1 , . . . , cpr , dpr)(C(π1) ∧ . . . ∧ C(πm))

where cpj , dpj are the coefficients for cutpoint pj and C(πk) = E(πk) ∨ D(πk). The
solution to that problem, if any, give us one invariant for each cutpoint. Suppose
we have obtained the invariant ϕp0 : Cp1x1 + · · ·+Cpnxn +Dp ≤ 0 for the cutpoint
p. We can find a different invariant for p setting out the problem:

(∃cp1 , dp1 , . . . , cpr , dpr)(¬(cp0 = Cp0 ∧ . . . ∧ cpn = Cpn) ∧ C(π1) ∧ . . . ∧ C(πm))

Nevertheless, the new obtained invariant may be a consequence of the first one,
and hence useless. A better approach is to avoid the new invariant to be a logical

4.Generation of loop invariants

16

consequence of the previous one, i.e., asserting ¬(ϕp0 → ϕp) ≡ ¬(¬ϕp0 ∨ ϕp) ≡
(ϕp0∧¬ϕp) where ϕp is the target invariant cp1x1 + · · ·+ cpnxn+dp ≤ 0 (see lemma
1). Besides, we can avoid invariants which do not contain any variable forcing
(cp 6= 0), that is, (cp1 6= 0 ∨ . . . ∨ cpn 6= 0).

In general, when we had discovered k invariants ϕp0, . . . , ϕpk for a cutpoint p we
have to set out the problem:

(∃cp1 , dp1 , . . . , cpr , dpr)((cp 6= 0) ∧ (ϕp0 ∧ . . . ∧ ϕpk ∧ ¬ϕp) ∧ C(π1) ∧ . . . ∧ C(πm))

Remark that ϕp is a non-linear expression, which is the second source of non-linearity
in the formula generated (recall the other one is owing to multiplier µ).

Notice also that after finishing the discovery process for a cutpoint, some of the
last found invariants can entail a subset of the first ones because it is stronger. In
order to minimize the set of invariants {ϕp0, . . . , ϕpq} for a cutpoint p, we must
check for every k ∈ {0, . . . , q} whether an invariant ϕpk is a logical consequence of
the rest and it can be removed, i.e, if the next (only linear arithmetic) constraint
problem is unsatisfiable:

(∃x)(ϕp0 ∧ . . . ∧ ϕpr ∧ ¬ϕpk)

4.4. Cutset choice

There are many ways of choosing a valid cutset. In CppInv the valid cutset is built
by establishing as cutpoints every location associated to a label which is destination
of a goto jump that appears at a later location than the label point and every
entry location of a while or do-while loop. This method is simple and effective
but it might select an excessive number of cutpoints. With the aim of reducing the
cardinality of the cutset, it is possible to remove every cutpoint which has no basic
back path to itself. However, even with this simplification the obtained cutset can
not be ensured to be any optimal cutset, i.e., one which contains a minimal number of
cutpoints necessary for covering every cycle. On the other hand, note that sometimes
instead of a optimal cutset we might be interested in an optimal cutset containing
some selected subset of program locations. The study and implementation of theses
alternatives and other ones is left out of this thesis scope.

Example 8. By way of illustration, a cutset, which has been selected following the
procedure that is executed by the tool, can be seen in Example 12. Notice that, in
that case, since every back path to cutpoint l3 passes through cutpoints l4 and l6,
simplification can be applied removing l3.

4.5.Elimination of unfeasible paths

17

4.5. Elimination of unfeasible paths

If we know that the relation associated with a path is unsatisfiable, we can remove it.
This simplification has two advantages. On the one hand, we decrease the number
of constraints of the SMT problem which is, in general, better for the SMT-solver.
And on the other hand, if every path which reaches a cutpoint is discarded, then
we can mark the cutpoint as unreachable and remove all paths with that cutpoint
as starting point. Notice that invariants for an unreachable cutpoint have no sense
and, therefore, we can avoid generating them.

Example 9. Consider the final Presburger transition system of Example 7. All
cycles of the program are cut by l2 which is the entry of a while loop in the orig-
inal source code. The only feasible paths are the initiation path π1 from l0 to
l2 using (τ0, τ1), and the consecution paths π2 and π3 cycle back to l2 through
(τ2, τ5, τ7, τ18, τ20) and (τ2, τ8, τ16, τ20) repectively. The relations associated with
these paths are:

ρπ1 : p′ = 0 ∧ (m1 ≥ 1) ∧ (m2 ≥ 1) ∧m1′ = m1 ∧m2′ = m2
ρπ2 : (m1 > 0) ∧ (2 ∗ β2 + 1 = m1 ∧m1 ≥ 0 ∧ 1 = 1) ∧ p′ = p+m2 ∧

(2 ∗ β6 + 1 = m1 ∧m1 ≥ 0 ∧m1′ = β6) ∧m2′ = 2 ∗m2
ρπ3 : (m1 > 0) ∧ (2 ∗ β3 = m1 ∧m1 ≥ 0 ∧ 0 ≤ 0) ∧ p′ = p+m2 ∧

(2 ∗ β5 = m1 ∧m1 ≥ 0 ∧m1′ = β5) ∧m2′ = 2 ∗m2

4.6. Extensions of linear invariants

The presented generation method can discover linear inductive assertions over pro-
gram variables. However, sometimes it is necessary to find an invariant which state
a relationship between program variables and its unknown initial values. We can ob-
tain this kind of invariants adding auxiliary variables whose values are not changed
throughout the program and are assigned to the corresponding variables when those
are declared.

Another interesting extension is the generation of non-linear inductive assertions.
As done for instance in [5], a simple way of obtaining them consists of adding a new
auxiliary variable for each monomial that is not a single variable and conditions
about its value. Being precise, for every path encoded as a constraint, the value
of the new variable must be asserted according to the values of the variables that
forms the monomial in that path.

Notice that in order to define the value of a monomial, it might be necessary
to introduce new auxiliary variables that represent other monomials which are not

4.Generation of loop invariants

18

considered previously. We can ensure the procedure finishes after a finite number of
steps because accepted programs can only contain linear expressions and, therefore,
a finite number of monomials with degree equal to or less than the current monomial
degree can be generated.

CppInv is able to add auxiliary variables that represent the initial value of
uninitialized variables and introduce quadratic monomials for a given list of pairs of
variable names in a automic way.

Example 10. Next figure shows how Example 3 would have looked if we had
written the code including auxiliary variables m and M to represent respectively
the monomial m1m2 and its initial value:

int main() {
// Pre: m1=M1 /\ m2=M2
int m1, m2, p=0;
// m: m1*m2, M: M1*M2
int m=M;
assert(m1>=1 && m2>=1);
while (m1>0) {

if (m1%2==1) {
p=p+m2;
m=m-m2;

}
m1=m1/2;
m2=2*m2;

}
// Post: p = M1*M2;

}

Notice how variable m is updated in function of m1′ and m2′ realizing that:

m′ = m1′∗m2′ =

m1
2 ∗ 2m2 = m1 ∗m2 = m, if (m1 mod 2 = 0)

m1− 1
2 ∗ 2m2 = m1 ∗m2−m2 = m−m2, if (m1 mod 2 = 1)

The modified version of the running example has also C = {l2} as cutset. Moreover,
the paths π1, π2 and π3 shown in Example 9 are applicable except for its relations,
which now assert also aboutM ′ andm′. Specifically, we show bellow changes bolded:

4.6.Extensions of linear invariants

19

ρπ1 : p′ = 0 ∧ (m1 ≥ 1) ∧ (m2 ≥ 1) ∧m1′ = m1 ∧m2′ = m2 ∧M′ = M ∧m′ = M
ρπ2 : (m1 > 0) ∧ (2 ∗ β2 + 1 = m1 ∧m1 ≥ 0 ∧ 1 = 1) ∧ p′ = p+m2 ∧

(2 ∗ β6 + 1 = m1 ∧m1 ≥ 0 ∧m1′ = β6) ∧m2′ = 2 ∗m2 ∧M′ = M ∧m′ = m−m2
ρπ3 : (m1 > 0) ∧ (2 ∗ β3 = m1 ∧m1 ≥ 0 ∧ 0 ≤ 0) ∧ p′ = p+m2 ∧

(2 ∗ β5 = m1 ∧m1 ≥ 0 ∧m1′ = β5) ∧m2′ = 2 ∗m2 ∧M′ = M ∧m′ = m

Let ϕ : c1m1 + c2m2 + c3p + c4M + c5m + d ≤ 0 be the target invariant at l2.
Then the path π1 generates the constraints given by the following table:

λ0 −1≤ 0
λ1 −m1 +1≤ 0
λ2 −m2 +1≤ 0
λ3 m1 − m1′ = 0
λ4 m2 − m2′ = 0
λ5 p′ = 0
λ6 M − M ′ = 0
λ7 M − m′ = 0

c1m1′ + c2m2′ + c3p
′ + c4M

′ + c5m
′ +d≤ 0

1≤ 0

resulting in the next constraints for the enabled case:

E(π1) = (∃λ)

λ0 ≥ 0 ∧
λ1 ≥ 0 ∧
λ2 ≥ 0 ∧

 ∧
 0 = −λ1 + λ3 ∧ 0 = −λ2 + λ4 ∧ 0 = λ6 + λ7 ∧
c1 = −λ3 ∧ c2 = −λ4 ∧ c3 = −λ5 ∧ c4 = −λ6 ∧
c5 = −λ7 ∧ d = −λ0 + λ1 + λ2

and the next constraints for the disabled case:

D(π1) = (∃λ)

λ0 ≥ 0 ∧
λ1 ≥ 0 ∧
λ2 ≥ 0 ∧

 ∧
 0 = −λ1 + λ3 ∧ 0 = −λ2 + λ4 ∧ 0 = λ6 + λ7 ∧

0 = −λ3 ∧ 0 = −λ4 ∧ 0 = −λ5 ∧ 0 = −λ6 ∧
0 = −λ7 ∧ 0 = −λ0 + λ1 + λ2

4.Generation of loop invariants

20

The path π2 generates the constraints given by the following table:

µ c1m1 + c2m2 + c3p+ c4M + c5m +d≤ 0
λ0 −1≤ 0
λ1 − m1 +1≤ 0
λ2 − m1 + 2β2 +1 = 0
λ3 − m1 ≤ 0
λ5 − m1 + 2β6 +1 = 0
λ6 − m1 ≤ 0
λ7 β6− m1′ = 0
λ8 2m2 − m2′ = 0
λ9 m2 + p − p′ = 0
λ10 M − M ′ = 0
λ11 − m2 + m − m′ = 0

c1m1′ + c2m2′ + c3p
′ + c4M

′ + c5m
′ +d≤ 0

1≤ 0

resulting in the next constraints for the enabled case:

E(π2) = (∃µ, λ)

µ ≥ 0 ∧
λ0 ≥ 0 ∧
λ1 ≥ 0 ∧
λ3 ≥ 0 ∧
λ6 ≥ 0

 ∧

0 = µ ∗ c1 − λ1 − λ2 − λ3 − λ5 − λ6 ∧
0 = µ ∗ c2 + 2λ8 + λ9 − λ11 ∧
0 = µ ∗ c3 + λ9 ∧ 0 = µ ∗ c4 + λ10 ∧
0 = µ ∗ c5 + λ11 ∧ 0 = 2λ2 ∧
0 = 2λ5 + λ7 ∧ c1 = −λ7 ∧ c2 = −λ8 ∧
c3 = −λ9 ∧ c4 = −λ10 ∧ c5 = −λ11 ∧
d = µ ∗ d− λ0 + λ1 + λ2 + λ5

and the next constraints for the disabled case:

D(π2) = (∃µ, λ)

µ ≥ 0 ∧
λ0 ≥ 0 ∧
λ1 ≥ 0 ∧
λ3 ≥ 0 ∧
λ6 ≥ 0

 ∧

0 = µ ∗ c1 − λ1 − λ2 − λ3 − λ5 − λ6 ∧
0 = µ ∗ c2 + 2λ8 + λ9 − λ11 ∧
0 = µ ∗ c3 + λ9 ∧ 0 = µ ∗ c4 + λ10 ∧
0 = µ ∗ c5 + λ11 ∧ 0 = 2λ2 ∧
0 = 2λ5 + λ7 ∧ 0 = −λ7 ∧ 0 = −λ8 ∧
0 = −λ9 ∧ 0 = −λ10 ∧ c0 = −λ11 ∧
1 = µ ∗ d− λ0 + λ1 + λ2 + λ5

4.6.Extensions of linear invariants

21

And finally, the path π3 generates the constraints given by the following table:

µ c1m1 + c2m2 + c3p+ c4M + c5m +d≤ 0
λ0 −1≤ 0
λ1 − m1 +1≤ 0
λ2 − m1 + 2β3 = 0
λ3 − m1 ≤ 0
λ5 − m1 + 2β5 = 0
λ6 − m1 ≤ 0
λ7 β5− m1′ = 0
λ8 2m2 − m2′ = 0
λ9 p − p′ = 0
λ10 M − M ′ = 0
λ11 m − m′ = 0

c1m1′ + c2m2′ + c3p
′ + c4M

′ + c5m
′ +d≤ 0

1≤ 0

resulting in the next constraints for the enabled case:

E(π3) = (∃µ, λ)

µ ≥ 0 ∧
λ0 ≥ 0 ∧
λ1 ≥ 0 ∧
λ3 ≥ 0 ∧
λ6 ≥ 0

 ∧

0 = µ ∗ c1 − λ1 − λ2 − λ3 − λ5 − λ6 ∧
0 = µ ∗ c2 + 2λ8 ∧
0 = µ ∗ c3 + λ9 ∧ 0 = µ ∗ c4 + λ10 ∧
0 = µ ∗ c5 + λ11 ∧ 0 = 2λ2 ∧
0 = 2λ5 + λ7 ∧ c1 = −λ7 ∧ c2 = −λ8 ∧
c3 = −λ9 ∧ c4 = −λ10 ∧ c5 = −λ11 ∧
d = µ ∗ d− λ0 + λ1

and the next constraints for the disabled case:

D(π3) = (∃µ, λ)

µ ≥ 0 ∧
λ0 ≥ 0 ∧
λ1 ≥ 0 ∧
λ3 ≥ 0 ∧
λ6 ≥ 0

 ∧

0 = µ ∗ c1 − λ1 − λ2 − λ3 − λ5 − λ6 ∧
0 = µ ∗ c2 + 2λ8 ∧
0 = µ ∗ c3 + λ9 ∧ 0 = µ ∗ c4 + λ10 ∧
0 = µ ∗ c5 + λ11 ∧ 0 = 2λ2 ∧
0 = 2λ5 + λ7 ∧ 0 = −λ7 ∧ 0 = −λ8 ∧
0 = −λ9 ∧ 0 = −λ10 ∧ 0 = −λ11 ∧
1 = µ ∗ d− λ0 + λ1

Given the previous constraints we can set out the problem:

(∃c, d)((c 6= 0) ∧ C(π1) ∧ C(π2) ∧ C(π3))

After solving, we obtain the solution c1 = c2 = d = 0, c3 = c5 = −1 and c4 = 1 that
corresponds to the invariant ϕ0 : −p+M −m ≤ 0.

Applying the technique explained in section 4.3, we obtain the following addi-
tional invariants ϕ1 : −m2 + 1 ≤ 0, ϕ2 : p − M + m ≤ 0 and ϕ3 : −2m1 ≤ 0.
No invariant is discarded because no invariant is logical consequence of the others.

4.Generation of loop invariants

22

Notice that ϕ0 ∧ ϕ2 ⇒ p = M −m, which can be used to prove partial correctness
of the algorithm.

4.7. Adding invariants to path relations

The method for generating invariants is inductive. That means, we can use the dis-
covered invariance information as feedback to the assertions associated with paths.

Once a set of invariants is generated for a cutpoint, we supply them to every
basic path which has the cutpoint as source. This might cause some of the paths
become disabled and, in that case, they are discarded. Futhermore, if there are no
more paths that reach the destination of some eliminated path, the destination must
be marked as unreachable and all paths which has that location as source removed.

After finishing the elimination process, new solutions can be generated from the
resulting paths repeating the procedure explained in section 4.3.

Example 11. We can now continue with Example 10 checking what happens after
adding discovered invariants ϕ0, ϕ1, ϕ2 and ϕ3 to the relations of the consecution
paths π2 and π3. Let π′2 and π′3 be the paths π2 and π3, repectively, with the new
invariance information, i.e., for i ∈ {2, 3}:

ρπ′
i

= ρπi ∧ ϕ0 ∧ ϕ1 ∧ ϕ2 ∧ ϕ3

Since ρπ′
2
and ρπ′

3
remain satisfiable, new constraints are obtained for those paths.

By way of illustration, we shows how the common part of the tables representing
the constraints for π′2 and π′3 looks:

µ c1m1 + c2m2 + c3p+ c4M + c5m +d≤ 0
λ0 −1≤ 0
...

...
...

... 0
λ12 − p+ M − m ≤ 0
λ13 − m2 +1≤ 0
λ14 p− M + m ≤ 0
λ15 − 2m1 ≤ 0

c1m1′ + c2m2′ + c3p
′ + c4M

′ + c5m
′ +d≤ 0

1≤ 0

In addition to the new generated constraints E(π′2), D(π′2), E(π′3) and D(π′3), the
new SMT problem must also encode that the target invariant can not be logical
consequence of the already found invariants. In particular, we start setting out the
problem:

4.8.Cutpoints dependencies

23

(∃c, d)((c 6= 0) ∧ C(π1) ∧ C(π′2) ∧ C(π′3) ∧ ϕ0 ∧ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ¬ϕ)

whose solution is ϕ′0 : −m2 + p ≤ 0. Following again the procedure explained in
section 4.3, we also obtain ϕ′1 : −m2 + p + 1 ≤ 0, ϕ′2 : −5p + M − m ≤ 0 and
ϕ′3 : −2m1−m2 + 5p− 5M + 5m+ 2 ≤ 0.

In order to check whether ϕ0 is a logical consenquence of ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ′0 ∧
ϕ′1 ∧ ϕ′2 ∧ ϕ′3, we set out the problem:

¬ϕ0 ∧ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ′0 ∧ ϕ′1 ∧ ϕ′2 ∧ ϕ′3

Since the problem is satisfiable, ϕ0 is not entailed by the other invariants. The
same happens with the rest of invariants except for ϕ1 and ϕ′0 which are discarded
because they are detected as logical consequences.

Repeating the process after adding the new set of invariants, we obtain ϕ′′0 :
−4m1 − m2 − 3p + 3 ≤ 0, ϕ′′1 : −6m1 − m2 − 6p − M + m + 4 ≤ 0 and ϕ′′2 :
−2m1− 6p− 6M + 6m+ 1 ≤ 0. In this case, ϕ′3, ϕ′′0 and ϕ′′2 are identified as logical
consequences of the total set of invariants and are dropped.

Next iteration does not find new inductive assertions. Therefore, the final set of
invariants for l2 is {ϕ0, ϕ2, ϕ3, ϕ′1, ϕ

′
2, ϕ
′′
1}.

4.8. Cutpoints dependencies

Invariant generation for a cutpoint usually depends on the existence of other cut-
points’ invariants. These dependencies might be sequential or cyclical. We say a
sequential dependency ocurrs when a cutpoint depends on some invariant of other
cutpoint but invariants of the latter are not affected, directly or undirectly through
other cutpoints, by any invariant of the former. On the other hand, a cyclical
dependency ocurrs when somehow both cutpoints depend on each other.

Example 12. Consider the next labeled program together with its control flow
graph induced by the initial location l0 and the cutset C = {l1, l3, l4, l6}:

Notice that a simplification of the cutset C is possible (see Example 8). However,
for the sake of clarity, the whole initial cutset is used for the next explanations. Now
consider an inductive assertion map ηc(l) for C. As it was said in section 4.2, the
following conditions have to be satisfied:

ρπ0 |= ηc(l1)′, ηc(l1) ∧ ρπ1 |= ηc(l1)′, ηc(l1) ∧ ρπ2 |= ηc(l3)′

ηc(l3) ∧ ρπ3 |= ηc(l4)′, ηc(l4) ∧ ρπ4 |= ηc(l4)′, ηc(l4) ∧ ρπ5 |= ηc(l3)′

ηc(l3) ∧ ρπ6 |= ηc(l6)′, ηc(l6) ∧ ρπ7 |= ηc(l6)′, ηc(l6) ∧ ρπ8 |= ηc(l8)′

4.Generation of loop invariants

24

int main()
{
L0: int i=1, j;
L1: while (i<=j) {
L2: i=5*i+1;

}
do {

L3: if (i<j) {
L4: while (i<j) {
L5: i=i*2+1;

}
} else {

L6: while (j<=i) {
L7: j=j*3+1;

}
}

} while (true);
}

L0

L1

π0

π1

L3

π2

L4
π3

π5

π4

L6
π6

π8

π7

Since ηc(l3) depends on ηc(l1) but not on the other way around, there exists a sequen-
tial dependency of l3 invariants which are subjected to l1 invariants. In addition,
there is a cyclical dependency that affects l3, l4 and l6 using the paths π3, π4, π5,
π6, π7 and π8.

The advantage of sequential dependencies is that these ones give us an order
to generate independently the set of invariants of each cutpoint, thus, reducing the
number of constraints of the SMT problems to solve. Furthermore, since all invari-
ants needed to generate a subsequent invariant have been calculated in advance,
the non-linear constraints, owing to consecution encoding, are converted into linear
constraints due to they are now concrete invariants instead of template invariants.

Example 13. Continuing with Example 12, notice that we can generate the set of
invariants of l1 independently of l3 and once we have it, suppose it is {ϕ10, . . . , ϕ1m},
the condition that must be satisfied now is ϕ10 ∧ . . . ∧ ϕ1m ∧ ρπ2 |= ηc(l3)′ which
generates only linear constraints because the ηc(l1) template invariant does not
appear any more.

In order to identify cutpoints’ dependencies, we descompose the control flow
graph of a program in its strongly connected components. Recall that if each strongly
connected component is contracted to a single vertex, the resulting graph is a di-
rected acyclic graph, which is called the condensation of the graph. Due to the
condesantion is acyclic, there exists at least one topological ordering of its vertices.

4.8.Cutpoints dependencies

25

Therefore, finding some sorting on the strongly connected components is equiva-
lent to discovering a sequential dependency order on the set of subsets of cyclical
dependent cutpoints.

Since we want to find a descomposition of the control flow graph and a topological
ordering, we use the Tarjan algorithm which has the next useful property. The order
in which the strongly connected components are identified constitutes a reverse
topological sort of the condensation of the graph.

Example 14. The squared zones of the control flow graph shown in Example 12
corresponds to the strongly connected components of the graph (including some
cutpoint), that is, SCC1 = {l1} and SCC2 = {l3, l4, l6}. A topological sorting is
the sequence (SCC1, SCC2).

Figure 4.1 shows in pseudo-code the main algorithm to find invariants taking
into account dependencies. For each strongly connected component, it tries to dis-
cover new sets of invariants for pending cutpoints. If the invariants generated for
a cutpoint affects other cutpoints in the same strongly connected component, they
are mark as pending. This procedure is repeated until no more invariants are found
for pending cutpoints.

Recall that new invariants may disable some paths. And if a disabled path was
the last path connecting the destination cutpoint, this cutpoint becomes unreach-
able.

4.Generation of loop invariants

26

type Result = Set<Cutpoint,Pair<IsReachable,Invariants>>;

procedure findAllProgramInvariants(Graph G) return Result
{

Result result;
Stack<List<Cutpoint>> SCC = tarjan(G, result);
while (!SCC.empty())
{

comp = SCC.pop(); // retrieved in topological order
Stack<Cutpoint> pending_cps(comp); // initialize with SCC cutpoints
while (!pending_cps.empty())
{

cp = pending_cps.pop();
if (is_reachable(cp, result))
{

new_invs = findCutpointInvariants(cp);
simplify(new_invs, result);
addInvariants(new_invs, cp, result, G);
markPendingAffectedCutpoints(pending_cps, cp, result, G);

}
}

}
return result;

}

Figure 4.1 The main algorithm to find invariants

27

5 Tool implementation

Next sections contain some comments related to the particular implementation of
our tool.

5.1. Environment and dependencies

CppInv has been run and tested on a Linux platform. In order to solve the con-
straint problems obtained by the techniques explained in Chapter 4, the tool uses
the SMT solver Barcelogic [3]. Recall that the reason for chosing Barcelogic was
motivated by its ability to prove efficiently satisfiability of boolean formulas over
non-linear integer arithmetic. Nevertheless, CppInv can be easily adapted to any
other solver which handles the same logic and accepts the SMT-LIB standard lan-
guage [15] as input.

5.2. Tool function and usage

The behaviour of CppInv is as follows. The tool reads a program, written in
the input language specified in Section 3.1, from the standard input or a file (if
some one is given as the last command line argument) and outputs the transition
system that represents the program, the feasible execution paths for the initiation
and consecution cases, and a set of invariants for each selected cutpoint of the
program. Besides, CppInv can take several parameters which allows users to adjust
SMT solving configuration options, and enhance or modify the program modeling
information used for invariant generation. Next figure shows the help message of
the tool where the accepted parameters are listed:

USAGE: ./cppinv [options] [FILENAME]
OPTIONS:

--help Display this information

-save-files Save intermediate SMT input
-tlimit <sec> Set <sec> seconds of timeout for solving
-maxc <val> Set the maximum value for which it finds coefficients

-init-vars Add variables that represent initial values
-QM <var1> <var2> Add a variable that represents quadratic

monomial var1*var2
-no-min-cutset Do not execute minimization of cutset

5.Tool implementation

28

The -save-files option stores on the same directory where is the executable
the SMT problems that are sent to Barcelogic. It has only informative purpose.

The -init-vars and -QM options corresponds to the extensions explained in
Section 4.6. The -QM option can be used as many times as necessary as it can be
observed in Examples A.1 and A.3. And the -no-min-cutset option avoid the
simplification described in Section 4.4.

Finally, the -tlimit and -maxc options are used as criteria paremeters for the
termination of the SMT solver. Recall that Barcelogic can prove efficiently satis-
fiability of non-linear arithmetic constraints due to incompleteness can not handle
many unsatisfiable problems. Therefore, it is necessary to enforce some limit. In the
case of the solver used the possible limits are: setting a timeout or fixing a maximum
range value for which it must find coefficients.

On the one hand, we have the second criterion that is more ‘deterministic’ and
works very well when it is known that every coefficient must be less than some value,
for instance, a factor of the largest program constant, or there are no cyclical depen-
dent cutpoints that forces to check simultaneously satisfiability of the constraints
associated with multiple paths. On the other hand, there is the first criterion that
establishes a limit which comes on when the second one fails.

5.3. Tool distribution

CppInv is available for download together with all examples shown in this document
in the following URL (last online checking on 2011/06/23):

http://www.lsi.upc.edu/~albert/cppinv.tar.gz

http://www.lsi.upc.edu/~albert/cppinv.tar.gz
http://www.lsi.upc.edu/~albert/cppinv.tar.gz
http://www.lsi.upc.edu/~albert/cppinv.tar.gz
http://www.lsi.upc.edu/~albert/cppinv.tar.gz
http://www.lsi.upc.edu/~albert/cppinv.tar.gz
http://www.lsi.upc.edu/~albert/cppinv.tar.gz
http://www.lsi.upc.edu/~albert/cppinv.tar.gz
http://www.lsi.upc.edu/~albert/cppinv.tar.gz
http://www.lsi.upc.edu/~albert/cppinv.tar.gz
http://www.lsi.upc.edu/~albert/cppinv.tar.gz
http://www.lsi.upc.edu/~albert/cppinv.tar.gz
http://www.lsi.upc.edu/~albert/cppinv.tar.gz

29

6 Conclusions and futher work

To conclude, we summarize the contributions of this thesis and examine possible
further work.

6.1. Results of the thesis
We have presented a tool which generates linear loop invariants for programs written
in a subset of C++. The tool is fully automatic and only generates invariants that
are not linear combination of previous ones which is done using an original non-linear
arithmetic encoding.

CppInv makes extensive use of SMT-solvers. In particular, the tool uses the
Barcelogic solver for non-linear arithmetic. Our tool has been succesfully applied to
a set of programs coming from the literature including consecutive and nested loops
and up to 50 lines of code. To illustrate the kind of programs we can handle, some
representative ones are listed in the appendix A. This examples are taken from the
literature, for instance, from [1], [5], [6], [7], [10] and [11].

Finally, let us mention that as a by-product of our tool we can detect unreachable
locations in the program.

6.2. Further work
There exist various research lines, some ones related to invariant generation and
other ones to its application.

On the one hand, it is expected to design and implement methods for asserting
about integer arrays and to extend support for non-linear expressions and invariants.

On the other hand, from the invariance information obtained with the presented
approach, new techniques will be developed to prove automatically termination of
imperative programs. Our ideas, start from a similar frame than the explained for
invariant generation. In particular, it is considered an alike approach to the one pre-
sented in [7] but improving the techniques for automatic generation of lexicographic
ranking functions. For that, we use ideas to extract lexicographic measures from the
analysis of the strongly connected components of the control flow graph built for
a iterative system such as the ones described in [8]. Notice that, surprisingly, the
achieved progress for termination of imperative programs and termination of rewrit-
ing systems, despite the existence of numerous connecting links, it was developed
independently without using the knowledge of both areas.

Finally, there is a lot of work to be done on the improvement of the non-linear
arithmetic solver. In particular, we would like to study the combination of our cur-
rent approach based on proving satisfiability with other methods based on proving
unsatisfiability, and extend the solver to combine real and integer variables.

30

31

7 References

[1] M.A. Colón, S. Sankaranarayanan and H.B. Sipma. “Linear invariant genera-
tion using non-linear constraint solving”. In Proceedings of 15th International
Conference on Computer Aided Verification, CAV’03. Lecture Notes in Com-
puter Science, vol. 2725, pp. 420–432. Springer, 2003.

[2] P. Cousot and R. Cousot. “Abstract Interpretation: A unfied lattic model for
static analysis of programs by construction or approximation of fixpoints.” In
ACM Principles of Programming Languages, pp. 238–252, 1977.

[3] C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell and A. Ru-
bio. “SAT Modulo Linear Arithmetic for Solving Polynomial Constraints”.
Journal of Automated Reasoning, to appear 2011. Springer-Verlag. DOI:
10.1007/s10817-010-9196-8

[4] A. Tarski. “A decision method for elementary algebra and geometry”. Univ. of
California Press, Berkeley, 5, 1951.

[5] A.R. Bradley, Z. Manna and H.B. Sipma. “Termination analysis of integer
linear loops”. Journal of Concurrency Theory, pp. 488–502. Springer, 2005.

[6] S. Sankaranarayanan, H.B. Sipma and Z. Manna. “Non-linear Loop Invariant
Generation using Gröbner Bases”. In Proceedings of the 31st ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, POPL’04, pp.
318–329. ACM Press, New York (2004).

[7] A.R. Bradley, Z. Manna and H.B. Sipma. “Linear Ranking with Reachability”.
In Proceedings of 17th International Conference on Computer Aided Verifica-
tion, CAV’05. Lecture Notes in Computer Science, vol. 3576, pp. 491–504.
Springer, 2005.

[8] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. “Mechanizing and
Improving Dependency Pairs”. Journal of Automated Reasoning, 37(3): 155–
203. Springer-Verlag, 2006.

[9] W. Hodges. “Model theory”. Enclyclopedia of mathematics and its applica-
tions, vol. 42. Cambridge University Press, Cambridge, MA.

[10] D. Kapur. “Automatically generating loop invariants using quantifier elimina-
tion”. In IMACS Intl. Conf. on Applications of Computer Algebra, 2004.

[11] M.A. Colón and H.B. Sipma. “Practical methods for proving program termi-
nation”. Journal of Computer Aided Verification, pp. 227–240. Springer, 2002.

7.References

32

[12] P. Cousot and H. Halbwachs. “Automatic discovery of linear restraints among
the variables of a program”. In ACM Principles of Programming Languages,
pp. 84–97, January 1978.

[13] F. Besson, T. Jensen and J.-P. Talpin. “Polyhedral analysis of synchronous
languages”. In Static Analysis Symposium, SAS’99, Lecture Notes in Computer
Science 1694, pp. 51–69, 1999.

[14] A. Gupta and A. Rybalchenko. “InvGen: An efficient invariant generator”.
Journal of Computer Aided Verification, pp. 634–640. Springer, 2009.

[15] S. Ranise and C. Tinelli. “The SMT-LIB standard: Version 1.2”. Journal of
Department of Computer Science, The University of Iowa, Tech. Rep., 2006.

33

A Applications

This appendix collects some program examples and discusses the invariants gener-
ated automically by CppInv.

A.1. Newton-Raphson’s algorithm

Consider the next program, taken from [10], for computing the floor of the square
root of a natural number N using the Newton-Raphson’s method.

int main()
{

int a=0, s=1, t=1, N;
L: while (s <= N)

{
a=a+1;
s=s+t+2;
t=t+2;

}
}

Figure A.1 Newton-Raphson’s method

Given as input to CppInv, it produces the following linear invariants for the cutpoint
labeled with L:

ϕ0 : a− t+ 1 ≤ 0, ϕ1 : 2a− t+ 1 ≤ 0, ϕ2 : −2a+ t− 1 ≤ 0
ϕ3 : a− s+ t ≤ 0, ϕ4 : 55a− 10s+ 3t− 36 ≤ 0

From ϕ1 and ϕ2 we can obtain 2a−t+1 = 0 which according to [10] is the strongest
linear invariant equality of L.

Futhermore, if we ask CppInv for discovering invariants that also may contain
monomials a2, at and t2, we obtain the following invariants:

ϕ0 : a− a2 + at− s+ 1 ≤ 0, ϕ1 : − 6a+ 2a2 − 2at+ 6s− t2 − 5 ≤ 0

ϕ2 : − a− a2 + at− s+ t ≤ 0, ϕ3 : 4a+ 6a2 − 6at+ 2s− 3t+ t2 ≤ 0

ϕ4 : − a− a2 − at− s+ t2 ≤ 0, ϕ5 : 6a+ 2a2 − 2at+ t− 5 ≤ 0

ϕ6 : − a+ a2 − s+ t ≤ 0, ϕ7 : a+ a2 + at+ s− t2 ≤ 0

ϕ8 : at+ s+ t− t2 − 1 ≤ 0

A.Applications

34

A.2. LCM-GCD Algorithm

FigureA.2 shows a program, taken from [6], that calculates simultaneously the LCM
and GCD of integers x1 and x2. The selected cutset is {L1, L2}, although we can
force CppInv to include L0 if we ask it for avoiding cutset simplification. In order
to obtain interesting invariants, monomials y1y3, y2y4 and x1x2 must be contained.
In this case, it is only necessary to pass as an argument the monomial y1y3 because
y2y4 and x1x2 are added automatically as a requirement for calculating the next
value of y1y3 through the different paths. As a result, CppInv obtains the invariants
ϕ0 : x1x2− y1y3− y2y4 ≤ 0, ϕ1 : −x2 + y2 ≤ 0 and ϕ2 : −x1x2 + y1y3 + y2y4 ≤ 0
at L0, the same invariants at L1, and ϕ0, ϕ2 and ϕ3 : −x2 + y1 ≤ 0 at L2.

Taking into account that invariant ϕ4 : y1y3 + y2y4 = x1x2 is a logical conse-
quence of ϕ0 and ϕ2, and applying the exit condition y1 = y2 yields, y1(y3 + y4) =
x1x2. Assuming that y1 = GCD(x1, x2) and y3+y4 = LCM(x1, x2), the invariant
states that

LCM(x1, x2) ·GCD(x1, x2) = x1x2

Note that correctness cannot be inferred directly since LCM and GCD functions
cannot be expressed algebraically.

int main()
{

int x1,x2;
int y1=x1, y2=x2, y3=x2, y4=0;

L0: while(y1 != y2)
{

L1: while (y1>y2) {
y1=y1-y2;
y4=y4+y3;

}
L2: while (y2>y1) {

y2=y2-y1;
y3=y3+y4;

}
}
// y1=GCD(x1,x2) /\ y3+y4=LCM(x1,x2)

}

Figure A.2 Simultaneous LCM-GCD algorithm

A.3.Generalized Readers-Writers

35

A.3. Generalized Readers-Writers

Consider the program shown in Figure A.3 modeling a generalization of the readers-
writers problem taken from [6] The number of readers and writers are represented
by r and w respectively. Initially we assume k = k0 tokens to be present. The call
to get_operation returns a number code between 0 and 3 encoding four possible
actions. If the action is to obtain reading access (taking c1 tokens) or to read data,
get_operation checks no writers are present so that we can ensure w = 0 holds
within the corresponding block of code modeling the action. Similarly, if the action
is to obtain writing access (taking c2 tokens) or to write data, get_operation checks
no readers are present so that we can ensure r = 0 holds within the corresponding
block of code modeling the action. Indicating to CppInv that we are interested
about invariants that contains the quadratic monomials rc1, wc2 and rw apart
from single variables, we obtain the invariants ϕ0 : rw ≤ 0, ϕ1 : −rw ≤ 0, ϕ2 :
k − k0 + rc1 + wc2 ≤ 0 and ϕ3 : −k + k0− rc1− wc2 ≤ 0.

Notice that ϕ0 and ϕ1 implies ϕ4 : rw = 0, which establishes mutual exclusion
between the readers and the writers, while ϕ2 and ϕ3 implies ϕ5 : rc1+wc2+k = k0,
which accounts for the tokens during the run of the program.

A.4. Heapsort

Figure A.4 shows program HeapSort taken from [1]. All cycles are cut by the
location labeled with L.

If we give as input the program to CppInv, the tool iterates three times before
it outputs the final set of invariants for L. In each iteration, CppInv uses the new
found invariants as feedback by following the procedure explained in Section 4.7.

In the first iteration, CppInv generates the invariants ϕ0 : −n + r ≤ 0, ϕ1 :
−l + 1 ≤ 0, ϕ2 : 2i− j ≤ 0 ϕ3 : −2i + j ≤ 0 and ϕ4 : 2l − r ≤ 0. Notice that from
ϕ2 and ϕ3 we can obtain 2i = j, that ϕ1 and ϕ4 implies r ≥ 2, and from this last
invariant and ϕ0 we can obtain n ≥ 2. All these invariants match with the obtained
ones in [1].

In the second iteration, CppInv finds two new invariants which are not implied
from the previous ones: ϕ4 : i ≤ r and ϕ5 : 2l ≤ j + 1. From these invariants we
can entail the rest of invariants obtained in [1].

The final set of invariants after the last iteration contains ϕ2, ϕ3, ϕ4 and also
the new invariants ϕ5 : j + l − n − r + 1 ≤ 0 ϕ6 : i + j − l − n ≤ 0, ϕ7 :
−i + j − l + n − r ≤ 0, ϕ8 : −j − l + r ≤ 0 and ϕ9 : −j − n + 2r − 1 ≤ 0.
Notice that ϕ0, ϕ1 and ϕ4 has been removed because they are implied by the rest
of invariants. Furthermore, since we have obtained new invariants and the method

A.Applications

36

ensures they are not logical consequences of previous ones, then the conjunction of
the final invariants are stronger than the given ones in [1].

A.5. MergeSort

Consider the program MergeSort shown in Figure A.5 taken from [11]. The
selected cutpoints are the locations labeled with L0, L1, L2 and L3. This example
can also be handled by CppInv. However, it takes a long execution time. The
main reason is the existence of 3 cyclical dependent cutpoints (L0, L1 and L2) and
multiples paths that join them. This produces an SMT problem that involves a
great amount of variables.

The tool finds 12 invariants for L0, L1 and L3, and 11 invariants for L2. For
instance, a found invariant for location L0 is j + 1 = i + m + q + r. Futhermore,
before obtaining the final set of invariants for each cutpoint, CppInv generates more
than 450 intermediate invariants.

A.5.MergeSort

37

int main()
{

int r=0, w=0, k0, k=k0, c1, c2;
while (true)
{

int OP=get_operation(r,w); // check no readers or no writers are present
// according to the requested operation

assert(0 <= OP and OP <= 3);
// OP=0 --> Obtain reading access; OP=1 --> Read data
// OP=2 --> Obtain writing access; OP=3 --> Write data
if (OP==0)
{

assert(w==0);
r=r+1;
k=k-c1;

}
else if (OP==1)
{

assert(w==0);
r=r-1;
k=k+c1;

}
else if (OP==2)
{

assert(r==0);
w=w+1;
k=k-c2;

}
else if (OP==3)
{

assert(r==0);
w=w-1;
k=k+c2;

}
}

}

Figure A.3 Generalized readers-writers

A.Applications

38

int main()
{

int n, i, j, k;
int T[n+1];
assert(n>=2);
int r=n, l=n/2+1;
if (l>=2) {

k=T[l];
--l;

}
else {

k=T[r];
T[r]=T[1];
--r;

}
while (r>=2) {

i=l;
j=2*l;

L: while (j<=r) {
if (j<=r-1 && T[j]<T[j+1]) ++j;
if (k>=T[j]) break;
T[i]=T[j];
i=j;
j*=2;

}
T[i]=k;
if (l>=2) {

k=T[l];
--l;

}
else {

k=T[r];
T[r]=T[1];
--r;

}
T[1]=k;

}
}

Figure A.4 HeapSort

A.5.MergeSort

39

int main() {
int n;
assert(n>0);
int a[2*n];
int i,j,k,l,t,h,m,p,q,r;
bool up=true;
p=1;
do {

h=1; m=n;
if (up) {

i=1; j=n; k=n+1; l=2*n;
}
else {

k=1; l=n; i=n+1; j=2*n;
}
do {

if (m >= p) q=p; else q=m;
m-=q;
if (m >= p) r=p; else r=m;
m-=r;

L0: while (q>0 and r>0) {
if(a[i]<a[j]){

a[k]=a[i];
k+=h; ++i; --q;

}
else {

a[k]=a[j]; k+=h; --j; --r;
}

}
L1: while (r>0) {

a[k]=a[j]; k+=h; --j; --r;
}

L2: while (q>0) {
a[k]=a[i];
k+=h; ++i; --q;

}
h=-h; t=k; k=l; l=t;

} while (m<=0);
up=!up; p*=2;

} while (p>=n);

if (!up) {
i=1;

L3: while (i<=n) {
a[i]=a[i+n]; ++i;

}
}

}

Figure A.5 MergeSort

A.Applications

40

41

