

Master in Computing

Master of Science Thesis

MULTIDIMENSIONAL QUERY
RECOMMENDATION

Jovan Varga

Advisor: Dr. Patrick Marcel
Ponent: Dr. Alberto Abelló Gamazo

June, 23rd 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41803989?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

Acknowledgements

This thesis would not have been possible without my professors Patrick Marcel, Alberto

Abello and Oscar Romero. My deepest gratitude goes to them for the support and guidance. Their

patience and encouragement throughout the master thesis project have motivated me to

enthusiastically work and constantly improve. I am honored and thankful for the opportunity to

be their student.

It is a great pleasure to thank my family for being there for me always. Family values that

I have gained directed me to the path of constant personal, professional and academic progress.

My family has been supporting me in all mentioned aspects. I am very glad that I can share my

success with them which makes it even more valuable. Nevertheless, I am truly indebted and

grateful for their material support that enabled me to focus working on this thesis.

I thank also to my fellow students and friends with who I shared these precious student

days. The friendships that we made now are the ones that last.

iv

v

Index

1 Introduction ... 1

1.1 Motivation ... 2

1.2 Objectives ... 3

1.3 Scope of the project .. 3

1.4 Organization of the Thesis .. 3

2 State of the Art .. 5

2.1 Recommendations for relational databases ... 5

2.1.1 Recommendations after posting the query .. 6

2.1.1.1 QueRIE: Query Recommendation for Interactive Exploration 6

2.1.1.2 YMAL ... 9

2.1.2 Recommendations while writing the query .. 11

2.1.2.1 SnipSuggest... 11

2.1.2.2 Recommending Join Queries Via Query Log Analysis 13

2.2 Recommendations for data warehouses .. 14

2.2.1 Methods exploiting a profile ... 16

2.2.2 Methods based on expectations .. 16

2.2.3 Methods exploiting query logs.. 17

2.2.4 Hybrid methods ... 17

2.3 Discussion ... 17

3 Multidimensional Algebraic Structure of Analytical Queries 21

3.1 Terminology and Notation .. 22

3.1.1 The Multidimensional algebra .. 24

3.1.2 Terms and basic concepts of novel approach ... 26

3.2 Framework .. 27

3.2.1 Obtaining the MAC from a SQL query .. 27

3.2.2 Normalizing MAC .. 31

3.2.3 Bridging NMACs .. 35

3.3 Usage for query recommendations ... 38

4 Prototyping .. 41

4.1 Development method .. 41

4.1.1 Agile software development ... 42

4.2 Requirements .. 45

4.3 Design ... 47

4.3.1 Data structures .. 47

4.3.2 System design ... 52

4.3.3 Format of the input and expected output .. 58

4.4 Implementation ... 60

4.4.1 Technology ... 61

4.4.2 Tools ... 61

4.4.2.1 NetBeans IDE ... 62

4.4.2.2 JSQL Parser .. 62

4.4.2.3 Visual Paradigm for UML .. 66

4.4.2.4 JGraph ... 66

vi

4.4.3 Coding ... 66

4.4.4 Obstacles and solutions ... 74

4.5 Testing... 76

5 User manual and Demo ... 79

6 Project costs .. 83

6.1 Initial project plan with estimated costs.. 83

6.2 Final project plan with estimated costs ... 85

6.3 Discussion ... 86

7 Conclusions ... 87

7.1 General conclusions .. 88

7.2 Future work ... 89

8 Bibliography ... 91

9 Glossary .. 93

vii

Index of figures

Figure 1. QueRIE Architecture, figure taken from [3] ... 7

Figure 2. A taxonomy of YMAL computation techniques, taken from [4] 10

Figure 3. SnipSuggest System Architecture, taken from [6] .. 12

Figure 4. Example of SnipSuggest DAG .. 13

Figure 5. Data cube ... 23

Figure 6. Simple multidimensional schema .. 23

Figure 7. Conceptual exemplification of the MDA operators .. 24

Figure 8. Agile software development poster, taken from [20] .. 42

Figure 9. High level abstraction of the modeled process .. 48

Figure 10. Example of tree data structure for storing MAC, v1 50

Figure 11. Example of final tree data structure for storing MAC 51

Figure 12. General packages overview ... 53

Figure 13. Internal structure of mac inner packages (without mac.structure) 54

Figure 14. Classes of mac.structures package .. 56

Figure 15. GUI package .. 58

Figure 16. Visitor Pattern .. 63

Figure 17. Roll-up identification ... 67

Figure 18. Change Base identification .. 68

Figure 19. Selection identification .. 69

Figure 20. Projection and Drill Across identification ... 70

Figure 21. Method normalizeNode()... 72

Figure 22. Testing process illustration .. 78

Figure 23. Start up screen ... 80

Figure 24. Browse screen .. 80

Figure 25. MAC screen ... 81

Figure 26. NMAC screen .. 82

viii

ix

Index of tables

Table 1. QueRIE: Tuple-based, binary weighting schema, session‟s summary 8

Table 2. QueRIE: Fragment-based, binary weighting schema, session‟s summary 9

Table 3. Comparing OLTP versus OLAP, according to [10] ... 22

Table 4. Comparison table between the relational and MD algebras 27

Table 5. MDA equivalence rules for normalizing NP .. 31

Table 6. MDA equivalence rules for removing MD operators from NP 32

Table 7. MDA equivalence rules for binary operators ... 32

Table 8. Initial time plan ... 84

Table 9. Planed human resources costs ... 84

Table 10. Non-human resources costs .. 85

Table 11. Final time plan .. 85

Table 12. Final human resources costs ... 86

Table 13. Comparison of initial and final costs .. 86

x

1

1 Introduction

The main innovation in modern human society certainly is the presence and influence of

Information Technologies. Everybody is somehow directed to use computers and different

technological devices for either personal, academic, professional and other needs. Wide spread of

Internet has opened totally new horizons. People are able to work from home, to communicate

real time with others on the different sites in the world, to do their shopping online, to search for

needed information on the web and many others. Social networks are used by people of all age,

so boundaries in that aspect do not exist. These, extremely numerous, groups of Information

Technology‟s users generate very large amounts of data.

Additionally, data are not generated only by human users that we mentioned above but

also by various instruments and devices. For example, different types of sensors and sensor

networks can be easily found in our everyday‟s surroundings. They measure light, movement,

sound, pollution and many different facts that are needed for later processing and analysis.

Data are stored in database management systems (DBMSs). Data belong to various types

and accordingly, database users that analyze them are different. Scientists manage and analyze

large volume of experimental data. Economists and financial experts process financial data.

Managers deal with data about sales of their products and efficiency of their employees. There are

many more examples of diverse users that work over, not necessarily, distinct data. However, all

of them tend to achieve the same goal of obtaining valuable and useful information out of large

data volumes.

Powerful Business Intelligence tools enable us to work on this task. Data warehousing

stores data from multiple information sources and transforms them into a common,

multidimensional data model for efficient querying and analysis. Then, OLAP (On-line

Analytical Processing) systems help us analyzing that data warehouse. OLAP is characterized by

queries that are often very complex and involve aggregations. Due to the constantly and rapidly

growth of data volumes, manipulation and analysis complexity also increases. In this situation,

users, both expert and especially non-expert, would quite benefit from assistance with this task.

This assistance can be achieved by analysis of multidimensional queries and their interconnection

that comes from their belonging to same query session as it is explained it this thesis.

2

1.1 Motivation

Motivation for this master thesis subject comes from [1], an innovative paper on new

important topics that the community will address in the next years, which was published in CIDR

2009 conference. There we have a thorough discussion of why analyzing and extracting

information from DB query logs and query sessions is important. Traditional DBMSs provide

sophisticated assistance for users in organizing, storing, managing, and retrieving data in

databases, but at the same time capabilities for managing the already issued queries on data are

limited. It can be said that they are relatively primitive. Usage of once tested and repeatedly re-

used queries has become insufficient for more complex exploratory queries issued by advanced

users, coming from both research and industrial areas. Such users could greatly benefit from more

advanced query management tools.

Both, research and industrial, environments execute continuously changing queries.

Those queries are logically connected between each other. As the desired analysis changes over

time, so do the queries. Due to the increasing size of data sets, the cost of running a query has

escalated and the traditional trial-and-error method for query development has become too

expensive. In these settings, using knowledge obtained in previous queries by logging,

organizing, and mining of the same can produce wealth of information that can assist users when

querying the database. In this master thesis we focus on analyzing and extracting the information

form multidimensional queries and query sessions with the goal of obtaining this knowledge.

Authors of [1] present a Collaborative Query Management System (CQMS) theoretical

model targeted at large-scale, shared-data environments for browsing, searching and maintaining

query log, and also recommending queries based on that log. Certain requirements that were

raised with this model inspired research that led to this new approach, which is presented later.

Paradigms raised for search in query log are:

- query-by-parse-tree, search for query conditioned by structure of the query

- query-by-data, search for query conditioned by query output

- query-by-feature, search for query conditioned by some query feature

For browsing the query log, a method for presenting query sessions instead of individual

queries was suggested. These search and browse functionalities brought up research challenge of

query representation and modeling as main focus of this thesis. Later, requirements for assisted

interaction such as query completion, query correction and especially query recommendations

brought up directions for future work related to the subject of this thesis.

3

1.2 Objectives

In this master thesis we will first summarize the recent efforts to support analytical tasks

over relational sources. These efforts have pointed out the necessity to come up with flexible,

powerful means for analyzing the issued queries and exploit them in decision oriented processes

(such as query recommendation or similar). Issued queries should be decomposed, stored and

manipulated in a dedicated subsystem. With this aim, we present a novel approach for

representing SQL analytical queries in terms of a multidimensional algebra, which better

characterizes the analytical efforts of the user. This thesis discusses how a SQL query can be

formulated as a multidimensional algebraic characterization. Then, we discuss how to normalize

them in order to bridge (i.e. collapse) several SQL queries into a single characterization

(representing the analytical session), according to their logical connections. Afterwards, we talk

about how this characterization can be exploited in a wide range of decisional tasks such as query

recommendation and others. Finally, we present an implementation example of this approach

with limiting it with normalization phase because it surprisingly turned out that it is hard enough

to achieve with regards to time available. This implementation may later be upgraded to

demonstrate the full potential of this novel approach.

1.3 Scope of the project

This document represents the master thesis, on the Master in Computing program, at

Barcelona School of Informatics, Technical University of Catalonia. This master thesis is a

research oriented. As so, we analyze the current situation in the field of multidimensional query

recommendations and role of sessions of queries in it. Then we present one novel approach for

analyzing queries in context of sessions of queries over decisional databases. These two

contributions represent the theoretical part of the thesis. Afterward, this theory represents the

basis of the practical part that follows it. Due to complexity and wide usability of this new

approach as it is elaborated in this work, we cover only fundamental aspects of the new

theoretical approach and present new perspectives for future research.

1.4 Organization of the Thesis

The rest of the document is organized as follows. Chapter 2 presents current State of the

Art in the field of query recommendation with the discussion of important aspects that are lacking

4

and not dealt with. Chapter 3 introduces a novel approach which explains benefits of using

Multidimensional Algebraic Structure of Analytical Queries. Chapter 4 discusses prototyping of

this new approach, while Chapter 5 presents a demo example of the prototype. Chapter 6 shows

and discusses the difference between initial schedule and final schedule with cost expectations

and final costs. Finally, Chapter 7 states the conclusions and suggests guidelines for future work

and research.

5

2 State of the Art

This chapter presents current State of the Art of, to the best of my knowledge, related

approaches in field of query assistance and query recommendations. In all presented approaches

special attention is brought to the relevance of the user sessions. Classification of the approaches

is as follows. First classification is on Recommendations for relational databases and, on the other

side, more specific case of Recommendations for data warehouses (multidimensional databases).

Recommendations for relational databases will be further classified to the Recommendations after

posting the query and Recommendations while writing the query. Recommendations for data

warehouses will be sub classified to Methods exploiting a profile, Methods based on

expectations, Methods exploiting query logs and Hybrid methods. Finally, the discussion about

the importance of user sessions and ways of storing queries will be presented in this chapter since

it is of crucial importance for the novel method that will follow afterwards.

2.1 Recommendations for relational databases

According to [2], recommender system is typically modeled with two sets, set of items,

set of users from which we then generate item recommendations for the current user by using

some function that takes both sets as an input and set of recommendations as an output. In [3] we

find that these recommendations can be in general categorized into: (i) Content-based, that

recommend items to the user similar to previous items highly rated by the same user, (ii)

Collaborative, that recommend items highly rated by similar users and (iii) Hybrid, that combine

content-based and collaborative ones.

Now, after this brief introduction about the recommender systems in general, we focus on

recommendation systems in relational databases. In context of databases, items to recommend are

queries. It has been just recently, in year 2009, that this application of recommendation systems

has obtained the attention of research society. In this thesis, we categorize these approaches to

Recommendations after posting the query and Recommendations while writing the query as

earlier stated.

6

2.1.1 Recommendations after posting the query

As presented in [2] we can find only two attempts, [3] and [4], to formalize database

query recommendations for exploration. These two approaches we assign to this category.

2.1.1.1 QueRIE: Query Recommendation for Interactive Exploration

In [3], the authors present conceptual framework and its instantiation for personalized

query recommendations for interactive database exploration. When user explores the database

during one session, he/she is usually searching for some specific information. Due to that relation

the queries of one session are usually correlated. This observation represents a possible basis for

generating recommendation for the next queries. These query recommendations can be suggested

to all users that have similar querying interests. To generate these personalized query

recommendations for current user this framework relies on both queries of past users and queries

of current user so far. Proposed instantiation of framework is based on collaborative filtering.

When exploring the database user deals with the subsets of the database relevant to the

analysis he/she wants to perform. In this framework it is assumed that this subset is modeled as a

session summary. Level of details captured by session summary can be different. On one

extreme, session summary can contain only the names of the relations that appear in the queries

of the user, and the number of queries that reference it as a way of measuring its importance. On

the other, detailed session summary may contain the actual results inspected by the user, along

with an explicit rating of each result tuple.

For generating recommendations, this framework first constructs the summary for each

user, then generates a “predicted” summary for the users and finally based on “predicted”

summary generates recommendation queries for the user.

Proposed instantiation of the framework is a Witness-Based Collaborative Filtering

approach. In general, this instantiation models session summaries as a weight vector of witnesses.

Witness is a tuple of the database that contributes in at least one answer to at least one query of

the session. Weight of the vector element (witness) represents an importance of it for a session. It

can be computed in two ways, either by binary weighting schema – a witness participates in

query answer or not, either by result weighting schema – a witness‟s weight is reciprocal of

number of tuples in query answer (more answers, less weight and vice versa). For generating of

“predicted” summary instantiation uses similarity function between two sessions (realized with

any vector-based metric) and “mixing” factor between 0 and 1 that determines relation which

users‟ traces will be taken more into account, current user‟s or past users‟. For generating

recommended queries, query vectors (weight vector of tuples for a query) are compared with

7

“predicted” summary, and then past user queries which are expected to be easily human

understandable are ranked according to “predicted” summary.

The experimental evaluation of the proposed instantiation is also presented in the paper.

The authors provide QueRIE (Query Recommendations for Interactive data Exploration)

architecture for information flow in their approach, shown in Figure 1.

Figure 1. QueRIE Architecture, figure taken from [3]

The active user‟s queries are forwarded to both DBMS and the Recommendation Engine.

The DBMS processes each query and returns a set of results. At the same time, the query is stored

in the Query Log. The Recommendation Engine combines the current user‟s input with

information gathered from the database interactions of past users, as recorded in the Query Log,

and generates a set of query recommendations on above explained way and returns them to the

user.

Related to [3], in [5] authors present improved QueRIE system. We find new, alternative

“fragment-based” recommendation engine besides existing “tuple-based” recommendation engine

using the same recommendation methodology. This new recommendation engine is needed

because other “tuple-based” recommendation engine is not able to detect when two queries are

semantically similar but retrieve different results due to some filtering conditions. The “fragment-

based” recommendation engine deconstructs each query into fragments and discovers other

fragments that co-appear with them in sessions of different users (an indication of structural

similarity). Then these fragments are used to identify the most similar queries and generate the

final recommendation set.

8

As in [3], framework consists of three components: the construction of session summary

for each user, the computation of a “predicted” summary for active user, based on the active

user‟s and the past users‟ summaries, and the generation of queries based on “predicted”

summary. Now we focus on specificities of “fragment-based” recommendations.

The approach for “fragment-based” recommendations is based on the pair-wais similarity

of query fragments (attributes, tables, joins and predicates). For generating recommendations we

need to identify fragments that co-appear in several queries posed by different users. The session

summary vector for a user consists of all the query fragments of the past user‟s queries. Every

vector element (query fragment) is weighted, either binary, either by weighting schema, analog as

in “tuple-based” engine. For computing the “predicated” summary, fragment-fragment matrix that

contains all similarities is constructed using the session summaries of the past users and a vector

similarity metric. Then “predicated” summary represents the estimated importance of each query

fragment with regard to the active user‟s behavior. For generating recommendations, top-n

fragments are selected based on “predicted” summary. Then all past queries are ranked based on a

normalized metric measuring the number of common query fragments of each query to the top-n

list.

Let us now summarize representation of the queries and query sessions in this QueRIE

approach. In case of “tuple-based” recommendation engine we have user-user collaborative

recommendations where the queries suggested to the user are the ones that retrieve similar tuples

posed by other users. When using binary weighting schema, a query is represented as a binary

vector with the length of the number of tuple in the database instance, where one element has

value 1 if the query used the tuple and 0 otherwise. A session is also represented by a binary

vector with length of the number of tuples in the database instance, where one element has value

1 if at least one query of the session used the tuple and 0 otherwise. Example of this storing of

sessions is illustrated in Table 1.

Table 1. QueRIE: Tuple-based, binary weighting schema, session’s summary

 Tuple 1 Tuple 2 Tuple 3 … Tuple n

Session 1 1 0 0 0

Session 2 0 1 1 1

Session 3 0 0 0 1

…

Session m 1 1 0 0

9

In this setting, if we have a current session)0,...,1(cS , we compare all other sessions

miS i 1, with cS and recommend iS that is the closest to cS .

Similar, in case of “fragment-based” recommendation engine we have fragment-fragment

collaborative recommendations where the queries suggested to the user are the ones posed by

other users in which fragments of the current query co-appear. When using binary weighting

schema, a query is represented as a binary vector with the length of the number of fragments in

the log, where one element has value 1 if the fragment appears in the query and 0 otherwise. A

session is also represented by a binary vector with length of the number of fragments in the log,

where one element has value 1 if the fragment appears in at least one query of the session and 0

otherwise. Example of this storing of sessions is illustrated in Table 2.

Table 2. QueRIE: Fragment-based, binary weighting schema, session’s summary

 Movies Actor=value Genre … Price

Session 1 1 0 0 0

Session 2 0 1 1 1

Session 3 0 0 0 1

…

Session m 1 1 0 0

In this setting, if we have a current session)0,...,1(cS , we compare all other sessions

miS i 1, with cS and recommend iS that is the closest to cS .

Discussion about this, and other, representation of the queries and query sessions we have

at the end of this chapter.

2.1.1.2 YMAL

One more approach for generating query recommendations for the users we find in [4].

With results of each query, the user gets additional recommended results that are called “You

May Also Like” or YMAL results. These additional recommended results might be of user‟s

potential interests.

This framework works with traditional select-project-join (SPJ) queries, over a database

system for a set of users. Importance of a query for the user is measured by the number of times

the user posed that same query. Approaches to generate YMAL results consider are:

10

 Current-state approaches, which exploit the content and schema of the current query

result and database instance. Focus in the paper is on this approach and we discuss

about it more detailed later.

 History-based approaches, which exploit the history of previously submitted queries

to the database system, e.g. by using query logs. Here the utility of a query for the

user is equal to the number of times the user has posed that query. Recommendations

generated can be either query-based YMAL results (similar to content-based

recommendations), either user-based YMAL results (similar to collaborative

recommendations).

 External sources approaches, which exploit resources external to the database, such

as related published results and reports, relevant web pages, thesaurus or ontologies.

This categorization is illustrated in Figure 2.

Figure 2. A taxonomy of YMAL computation techniques, taken from [4]

With focus on current-state approach, authors present methods for computing YMAL

results. This approach is content-based. We have two kinds of analysis methods belonging to this

approach that are in detail presented, local and global ones.

Local analysis aims at discovering interesting patterns that are later recommended

YMAL results. The subject of analysis is either result of query i.e. tuples retrieved, either

expanded result of query i.e. extended tuples produced by joining previous tuples with other

tuples in the database.

When analyzing the result of a query, method discovers frequent values of certain

attribute and based on that value recommends other tuples that are not already selected but have

the same values of that attribute. For example, if we select the title and genre of all movies of

Chris Lee, we discover that the result contains mostly movies of “fantastic” genre, than we can

select other movies of that genre not already selected.

In case of analysis of expanded result of query, situation is similar. We first expand query

by joining with additional relations in the database. Then we discover some frequent values of

11

certain attribute and than by analysis of schema we notice other values that often go together with

first discovered value and based on that generate recommendations. Continuing the previous

example, if we select title and genre of the movies of Chris Lee, by analyzing schema we expand

this query to show also Production Company of movies. Then we discover that he often plays in

movies produced by Paramount Pictures and we can recommend some other movies of this

Production Company.

Global analysis aims at discovering correlations among attribute values or relations. For

this purpose certain statistics for database needs to be maintained. Based on this database

statistics pairs of attribute values or pairs of relations that most frequent go together are

discovered and recommended. Continuing the previous example, if we select title and genre of

the movies of Chris Lee, by analysis we discover that he often stars with Jet Lee (pairs of

attribute values). Then we can suggest movies in which Jet Lee plays. In case of pairs of relations,

if the relation that contains movie title is often connected with relation containing movie director

name, than we can join that two tables and present also the names of movie directors of all

movies presented along with the title and the genre of the movie.

These examples are simple illustrations, just to give us a general picture. We do not go

into all the details of the method described because for the analysis of query and query sessions

representations it is not needed.

As we have seen in this approach, queries are stored just as they are and they are

analyzed by the tuples that they retrieve. Query sessions are not mentioned because authors put

focus on methods for current-state approaches and do not mention any methods for history-based

approaches where we would expect to have query sessions.

2.1.2 Recommendations while writing the query

Recommendations while writing the query generally focus on query fragments and assist

user to finish writing query by suggesting next possible fragment. We find two attempts of this

kind, [6] and [7].

2.1.2.1 SnipSuggest

In [6], we find an approach of recommendation for autocompletion of query named

SnipSuggest: Context-Aware Autorcompletion for SQL. SnipSuggest system architecture is

shown in Figure 3. It consists of Query Logger and Query Eliminator that work over Query

Repository. Query Repository represents query log. Query Logger logs queries while also

12

extracting various features from them. Feature can be predicate in the WHERE clause, column

name in SELECT clause and similar. Query Eliminator periodically analyzes the most recent

queries and drops some of them. It processes query sessions with the goal to reduce workload

size, and the recommendation time, while maintaining recommendation quality. In this approach,

a query session is a sequence of queries written by the same user as part of a single task. The

Query Eliminator eliminates all queries, except those that appear at the end of a session.

Figure 3. SnipSuggest System Architecture, taken from [6]

SnipSuggest enables user when composing the query, to select clause and ask for

recommendations for that clause at any time. SnipSuggest‟s goal is to recommend k features that

are most likely to appear in that clause in the user‟s intended query. System views the space of

queries as a directed acyclic graph (DAG). It models each query as a set of features and every

possible set of features becomes a vertex in the DAG. When asked for recommendation,

SnipSuggest transforms the user‟s partially written query into a set of features, which maps onto a

node in the DAG. Each edge in the DAG represents the addition of a feature so the

recommendation problem translates to that of ranking the outgoing edges for the vertex that

corresponds to the user‟s partially written query. All queries in the Query Repository that are

descendants of the current vertex in the DAG are referred as the potential goals for the partially

written query. An example, if the query log contains two queries:

- SELECT title, genre FROM Movies WHERE actor = „C. Lee‟

- SELECT title FROM Movies WHERE director = „Allen‟

DAG would look like the one showed in Figure 4.

13

Figure 4. Example of SnipSuggest DAG

SnipSuggest uses two algorithms to recommend suggestions based on the current context:

SSAccuracy and SSCoverage. SSAccuracy, for a partial query q and a query workload W,

suggests the k features with the highest conditional probabilities given q. If q‟s features have

appeared together in past queries, SSAccuracy is able to efficiently identify the possible

additional features with the highest probabilities. SSCoverage as another option tends to suggest

the k features that maximize the probability that at least one suggestion is helpful. The goal is to

diversify the suggestions, to avoid making suggestions that all lead toward the same query. It

turns out that the problem is NP-hard so the authors (of [6]) propose an approximation algorithm.

To summarize, this is collaborative approach that does on the fly assistance to users

writing complex queries. Assistance is done, on request, by generating recommendations for

current query fragment based on the analysis of query log. Analysis implies the construction of a

graph where nodes are the sets of fragments appearing in queries. Edges indicate the precedence

and take value in interval [0, 1]. Partially written query is indentified as a node in the graph and

the recommendations are node‟s successors. So, in this approach query is modeled as a node in

the graph containing the set of query features. A query session is modeled by the ultimate query

posed because it is considered that it covers all the previous queries in the session.

2.1.2.2 Recommending Join Queries Via Query Log Analysis

One more approach for helping users with completing the complex queries is presented in

[7]. Its goal is automatically create join query recommendations based on input and output

specifications. This specification consists of:

- the input (or start) tables on which conditions of the form “Table.atribute = value”

are present in the SQL WHERE clause,

14

- the output (or end) tables whose attribute values are in the result of the query, i.e. in

the SQL SELECT clause.

The recommended join query includes:

- intermediate tables that are added to the SQL FROM clause,

- join conditions that are added to the SQL WHERE clause, and connect the input and

output tables via the intermediate tables.

This method analysis existing query log and extracts joins made in the previous queries.

Then those joins are used for generating recommendations to the current user. Obliviously,

method uses collaborative approach.

Example of this recommendation method, if the query log is:

- SELECT title, budget FROM Movies NATURAL JOIN Production WHERE

director=‘Allen’

- SELECT title, budget FROM Movies NATURAL JOIN Production WHERE

director=‘Allen’ and year > 2000

- SELECT title, budget, year FROM Movies NATURAL JOIN BoxOffice WHERE

director=‘Allen’

And if the current query begins with:

- SELECT title, budget FROM Movies

Then system should recommend: Movies NATURAL JOIN Production

All the queries from the log are used to create general schema graph where the nodes

represent tables, while edges are joins between tables. A singe query in this query corresponds to

a connected sub graph in the schema graph. From the nodes that represent tables appearing in the

WHERE clause, through joins with intermediate table(s) method reaches the tables appearing in

the SELECT clause. As we can see, only information extracted about the query are the joins. User

sessions are not mentioned neither modeled.

2.2 Recommendations for data warehouses

In this section, we overview the kinds of approaches related to query recommendations

for data warehouses (multidimensional databases). We take advantage of survey paper [2] where

we can find classification and analysis of this subject.

Basic peculiarities of typical data warehouse exploration found in [2] and important for

further analysis are:

15

- A data warehouse is a read-mostly database and data are added, never or very seldom

deleted. In this settings, it is quite common that a user issues the same sequence of

queries more than once, changed only in some parameter e.g. from one year to

another.

- A data warehouse is a database shared by multiple users. Users‟ interest may vary

over time so it would be important to issue recommendations computed from other

users‟ habits and at the same time respecting the user interests and privacy.

- A data warehouse has a particular schema that reflects a known topology

(multidimensional model), often called the lattice of cuboids, which is systematically

used for navigation.

- A typical analysis session over a data warehouse is a sequence of queries that has a

sense w.r.t. some expectations. Sessions (as sequences of queries) are of particular

importance in this context since by this sequence the user navigates to discover

valuable insight w.r.t. her expectations or assumptions.

Important concepts for further analysis of data warehouse query recommendation:

 A data warehouse query (or query for short) – any query expressible in a given

language for manipulating multidimensional data

 A session – sequence of queries

 A log – a set of sessions

 A data warehouse instance – a set of n+1 relation instances where n instances play

the role of dimensions and one instance is the fact table

 A user profile – any information allowing definition of an order over the tuples in the

fact table

 An expectation function – any function on a data warehouse instance that produces a

score (often a real number).

By using these terms we formalize query recommendations for data warehouse

exploration as a function Recommend(L,cs,I,P,f) that has the following parameters:

 L: A set of sessions (the query log),

 cs: A particular session (the current session),

 I: A datawarehouse instance,

 P: A user profile,

 f: An expectation function.

16

These parameters allow to cover Current-state (I and f), History-based (L and cs), and

External sources (P) approaches found in [4].

The function Recommend returns an ordered set of pairs as recommendations, each pair

composed of a query with its associated rating indicating the relevance of the query for the

current session.

With this formalization, an explicit user rating for queries is not assumed. It is only

considered that once a query is part of a session, it is relevant for the session. Note that the

queries that do not appear in the former sessions (the log) neither in the current session may be

constructed by Recommend.

 In the next sections, according to [2] we present the categories of approaches for data

warehouse query recommendations by parameters they use for calling Recommend function.

There are four approaches in this classification: Methods exploiting a profile, Methods based on

expectations, methods exploiting query logs and Hybrid methods.

2.2.1 Methods exploiting a profile

This category includes works that suppose that a profile is provided together with the

current session. A profile expresses user preferences over the tuples of the fact table. Methods in

this category do not consider any expectations neither log, but take the data warehouse instance

into account. The call to the Recommend function for this category is the following:

Recommend(-, cs, I, P, -), where cs is the current session, I is a data warehouse instance and P is a

profile.

For all these methods, the profile P and the instance I are used to modify the current

query (i.e. the last query of cs). The queries that are the result of this modification constitute the

recommendation.

The advantage of the methods in this approach is that recommendations are computed

w.r.t. both a profile and the user sessions. Thus different users will obtain different

recommendations.

2.2.2 Methods based on expectations

This category includes works that rely on discovery driven analysis, where a model on

unseen data is used together with the already seen data, i.e. the results of the launched queries.

The strongest deviations to the model are recommended.

17

Recommendation methods based on discovery driven analysis consist in recommending

queries that result in data that most deviate from a model (that we call expectation). The call to

the Recommend function for this category is the following: Recommend(-, cs, I, -, f) where cs is

the current session, I is the data warehouse instance and f is an expectation function. Among the

works in this category, the main difference is the model used, i.e., the nature of the function f.

2.2.3 Methods exploiting query logs

This category includes works that suppose that a query log is used to look for similarities

between the current session and former sessions, to extract one query as the recommendation. The

call to the Recommend function for this category is the following: Recommend(L, cs, I, -, -) where

L is a query log, cs is the current session and I is the data warehouse instance. Among the works

in this category mainly difference is the way they consider the similarity between sessions and/or

queries.

2.2.4 Hybrid methods

This category includes the works that combine some or all the previous methods.

According to [2], for now there is only one work using hybrid method. Because of the nature of

this category the call to the Recommend function varies and it can be represented with the

following: Recommend(?, cs, I, ?, ?) where cs is the current session, I is the data warehouse

instance, and the ? may be “-“ (empty) or L (query log), “-“ or P (user profile), “-“ or f

(expectation function) respectively.

2.3 Discussion

In previous sections we have reviewed the current approaches for query recommendation

for relational databases and their ways of storing and managing queries and query session. Also,

we reviewed the importance of query sessions for data warehouses followed by different kinds of

methods for query recommendations over data warehouses. As the data warehouse is a database

with special settings we can easily deduct that we can have the data warehouse on the top of a

relational database (as well as decisional, not multidimensional databases can be implemented

using the relational technology). This assumption is the starting point used in next chapters to

present a novel approach for analyzing queries over decisional databases. Main focus in this

18

master thesis is on identifying and normalizing Multidimensional Algebraic Structure (MAC) of

analytical queries which happened to be surprisingly hard enough and relevant since it is a

preliminary step for query recommendation and other uses. Detailed explanation of this process is

presented later. For now we just point out that query recommendation hugely relies on the

structured way we store queries and query sessions.

A query session in analytical environments is typically characterized by mutual

correlation between queries that constitute it. This comes from the fact that a user who navigates

over data usually tries to discover some useful information. In order to do so, normally the user

modifies the posted query until he/she reaches the goal. So, every query posed by that user in one

query session is usually a modification of a previous query, except for the first query of course.

This is also reflected on the query content and the structure of the query and that is what we want

to detect and exploit in multiple ways. Storage and management of queries must represent user

query sessions in such a way that it contains information about queries posed, order between

queries of the session and user‟s behavior in navigating data. Possibilities for exploiting

information about queries in the form of query recommendation and similar usages are directly

influenced by the way we store the query sessions and corresponding queries. One example of

this fact has been shown in Section 2.2 where we have reviewed categories of methods for

generating query recommendations. All represented methods use current session as an input and

therefore they are directly influenced and dependent from the way of storing that information.

Now, when stated why the query sessions are important we analyze existing ways for

handling queries in reviewed approaches for relational databases. The accent is on this kind of

approaches since this master thesis focuses on relational data sources. We characterize these

approaches consistently with the motivation presented in the Section 1.1. The deficiencies of the

approaches correspond to the paradigm they belong to. Categorization of the approaches:

 In the case of QueRIE, presented in Section 2.1.1.1, we noticed that a query is

represented as a vector marking touched tuples or contained query fragment, and thus

it belong to query-by-data or query-by-parse-tree paradigm respectively. Session

is similarly presented as a vector marking touched tuples in the session or query

fragments contained in at least one query of the session.

 In YMAL approach, presented in Section 2.1.1.2, query session is not even stored

while the query is stored as it is, and characterized by the tuples it retrieves.

Obviously this approach uses query-by-data paradigm.

 In the case of SnipSuggest, presented in Section 2.1.2.1, query is stored as a node in

the graph containing the set of query features. That means that queries are analyzed

19

simple, directly by analysis of does query contains some fragment or not. Hence used

paradigm is query-by-parse-tree. Session is kept as a last query in the session log so

the interconnection between all other queries that belong to the same session is lost.

 Last approach, presented in Section 2.1.2.2, even does not store all the information

about the query but only about the joins contained in queries. This way no other

information, except for recommending joins, can be obtained from query log. Query-

by-parse-tree seems to be covering paradigm for this approach. Sessions do not even

make sense in this context.

From previous categorization it is clear that current approaches belong either to query-

by-parse-tree either query-by-data paradigms. Although these paradigms have some useful

characteristics we highlight the deficiencies that caused the need for better and more powerful

approach.

Query-by-parse-tree that focuses on syntactical structure of the query and this way it

requires that everything recommended has to already appear in the log and be recorded at some

point in the past. This is not convenient for the explorations when the user is searching for

something unexpected and not discovered yet. Also, for all the recommendations we only know

that they syntactically suit but we do not know if they semantically make sense which is big

deficiency. This paradigm does not keep the semantic characterization and interconnection

between the queries and in such a way it loses important information about the queries and query

sessions that could be very valuable. Sometimes queries with same effect are differently

formulated and this would not be identified. Query-by-parse-tree cannot detect granularity

dependency between the queries (in one query session) on the semantic level and as such apply it

to some other not queried or not related searches. In short, it only detects syntactical concepts in

the query log and uses them to recommend queries composed of appropriate query parts with

highest ratings.

Query-by-data paradigm seems alternative option from the one previously discussed. It

focuses on query outputs and as such entails disadvantage of not recognizing two similar queries

that due to some filtering condition retrieve different data. This paradigm implies similarity based

on data match only without any additional semantics such as interconnection between the queries

and query sessions that manifest similar navigation over data. Just focusing on data instances has

many shortcomings in the context of data warehouses where we have enormous amounts of data

and it is questionable how efficient approaches using this paradigm could even be for the

interactive real time assistance.

20

It seems that neither solution by now is powerful and flexible enough for some advanced

exploitation. For the purpose of storing the information about multidimensional queries, the

semantics those queries contain and query sessions it is obvious that we cannot use any of the

previous discussed ways. We have to come up with better, more meaningful solution. In our

approach, this task is tackled with the novel approach that uses the query-by-feature paradigm

since it extracts semantics of multidimensional operations and in such a way it is not directly

related to either the syntactical characteristics of the query, or data retrieved by the query. This

extracted semantic can be represented in various syntactical ways and also when applied to the

different concepts it can retrieve various data instances. We focus on this novel approach in next

chapter where it is presented in detail.

21

3 Multidimensional Algebraic Structure of Analytical
Queries

This chapter presents the novel approach for representing SQL analytical queries in terms

of a multidimensional algebra, which better characterizes the analytical efforts of the user,

developed by my professors Patrick Marcel, Alberto Abello and Oscar Romero [17]. I am greatly

honored that I had an opportunity to participate and give my contribution in this research project.

The next chapter gives an overview of the practical part of my work while here I present

theoretical basis and the developed framework.

As we saw, recent efforts to support analytical tasks over relational sources have pointed

out the necessity to come up with flexible, powerful means for analyzing the issued queries and

exploit them in decision-oriented processes (such as query recommendation). Issued queries

should be decomposed, stored and manipulated in a dedicated subsystem.

This framework provides a new solution for analyzing the issued queries and storing

them in a structured way that facilitates their reuse and exploitation. Exploitation considers

understanding semantics of the query, comparing the queries, clustering the queries into groups

and other means that enable us future tasks such as query recommendation or physical and

conceptual design. For storing queries in a structured way, some kind of smart, normalized form

is required. In this sense, the relational algebra would be a candidate to characterize the input

queries. However, this novel approach moves a step further as it has already been discussed that

the whole relational algebra does not properly suit for analytical queries [8]. By analytical queries

we assume all the queries that can be represented from the multidimensional point of view.

Therefore it is proposed the use of a multidimensional algebra. The correspondence between both

algebras have already been studied in the literature and it has been shown that the

multidimensional algebra is a subset of the relational one [9]. Note that this is sound with the

discussion introduced in [8] where it is said that the extended relational algebra is, simply, too

expressive (in the sense it provides functionalities not needed) from an analytical point of view.

Thus, the multidimensional algebra is simpler, and we can use it to express the analytical efforts

of the user in a more concise, effective way.

22

3.1 Terminology and Notation

Before presenting the new approach we first need to explain and clarify basic concepts

and the terminology used. We start from the general technological environment and concepts

related to it and then focus on the multidimensional algebra and terms related to the new

framework.

As earlier stated this framework is based on OLAP. By OLAP (On-line Analytical

Processing), according to [10], we consider an approach to decision support, which aims to

extract knowledge from a data warehouse and its main idea is providing navigation through data

to non-expert users, so that they are able to interactively generate ad hoc queries without

intervention of IT professionals. Name OLAP was introduced in contrast to OLTP (on-line

transactional processing), so that it reflects the different requirements and characteristics between

these classes of uses. Characteristics of OLAP, along with differences in respect to OLTP are

presented in Table 3.

Table 3. Comparing OLTP versus OLAP, according to [10]

 OLTP OLAP

Usage Application specific Decision support

Workload Predefined Unforeseeable

Access Read/Write Read-only

Query structure Simple Complex

Records per operation Tens/Hundreds Thousands/Millions

Number of users Thousands/Millions Tens/Hundreds

The main characteristic of OLAP is multidimensionality. The data cube metaphor, or

just Cube in this document, is used to make user interaction easier and closer to decision makers‟

(usually managers, directors and similar) way of thinking, who would probably find SQL or any

other text-based query language hard to understand and error prone. Thus, it is much easier for

them to think in terms of the multidimensional model, where a Fact is a subject of analysis and its

Dimensions are the different points of view that analysts could use to study the Fact. In this way,

the instances of a Fact are shown in an n-dimensional space usually called Cube. Example of a

Cube we have in Figure 5, where the Dimensions are the axes of the cube, while Fact is each cell

of the Cube.

23

Figure 5. Data cube

Multidimensionality is based on the fact / dimension dichotomy. The fact or subject of

analysis is placed in the n-dimensional space produced by the analysis dimensions. We consider a

dimension to contain an aggregation hierarchy of levels representing different granularities (or

levels of detail) to study data, and a level to contain descriptors (i.e. level attributes). We

differentiate between identifier descriptors (univocally identifying each instance of a level) and

non-identifier. In turn, a fact contains analysis indicators known as measures. A level of detail

for each dimension produces a certain data granularity or data cube, in which place the measures.

Dimensions with its descriptors together with fact containing measures and slicers represent the

schema of the data cube. Finally, we denote by base of the space a minimal set of levels

identifying univocally a certain data granularity. Figure 6 illustrates one example of a

multidimensional schema. We have three dimensions – Date, Product and Location and one fact

table – Sales. Dimensions have intuitive hierarchy of levels, for example Date has a

day/month/year hierarchy. In dimension Product we find both identifier descriptors –

product/category and non-identifier descriptors – description. Fact table Sales contains two

measures – price and discount. Data cube for this schema can be represented by Figure 5, where

axes are Date, Product and Time, and cells represent one instance of Sales.

Figure 6. Simple multidimensional schema

24

3.1.1 The Multidimensional algebra

Multidimensional Algebra (MDA) presented in [10], was proven to be closed, complete

(regarding the cube-query in [8]) and minimal (see [11]), and consists of the operators shown in

Figure 7 (colored dots and triangles represent measures in a cell, for grasping their intuition) and

explained below. All the operators are unary (i.e. apply within a cube) except for drill-across and

set operators, which operate over two cubes.

Figure 7. Conceptual exemplification of the MDA operators

Descriptions of multidimensional operators:

 Selection (cubep): By means of a logic predicate p compound of clauses over

descriptors, this operation allows to choose the subset of points of interest out of the

whole n-dimensional space. In the case of multidimensional schema shown in Figure

6, example of selection would be if for dimension Location we have city =

“Barcelona”.

 Roll-up (cubeji

n

levellevel

measurefmeasuref)(),...,(1
): This operation groups data instances in the

cube based on an aggregation hierarchy. This operation modifies the granularity of

data by means of a many-to-one relationship which relates instances of two levels in

the same dimension, corresponding to a part-whole relationship. Drill-down (i.e. the

counterpart of roll-up), can only be applied if previously roll-up was performed and

the correspondences between instances was not lost. Again, in case of the

multidimensional schema shown in Figure 6, example would be if we move from

dimension Location level city to level country and aggregate the measures (price,

discount) of fact table Sales.

 Projection (cube
nmeasuremeasure ,...,1

): It selects a subset of measures. Continuing the

previous example, projection is selecting from fact table and showing only price

measure (and leaving out the others).

25

 ChangeBase (cubebasebase 21
): This operation reallocates exactly the same

instances of a cube into a new n-dimensional space with exactly the same number of

points, by means of a one-to-one relationship. Actually, it allows replacing the

current base by one of the alternatives, if more than one set of dimensions identifying

the data instances (i.e. alternative bases) exist. To illustrate effect of this operation,

we shall assume that each product is produced by only one producer and that

category of products maps to group of producers. Then we can exchange the basis of

a cube from Product, Date, Location to Producer, Date, Location.

 Drill-across (1cube 2cube): This operation fuses the measures in two cubes

related by means of a one-to-one relationship. The n-dimensional space remains

exactly the same, only the instances placed on it change. For example, continuing

example shown in Figure 6, if we would have one more cube with fact table Ratings

with measure rating, over the same dimensional space (Product, Date, Location) then

drill-across operation between these two cubes would produce a new cube with same

dimensions over fact table containing all measures – price, discount, rating.

 Set Operations (21 cubecube): These operations allow operating with two cubes if

both are defined over the same n-dimensional space. We consider union (),

difference (\) and intersection (). Nevertheless, from here on we focus on union,

since the same considerations can be applied to the others. Also, we assume a perfect

data cleaning and ETL phase (if the same cell appears in two different cubes,

measures coincide). On our running example (Figure 6), if we would have two cube

over same dimensional space, one with selection over Location dimension city =

“Barcelona” and other with selection over Location dimension city = “Madrid”,

union would produce one cube over same dimensional space containing both values

for the level city of dimension Location.

Each of these MD operators has its MD operator schema. Operator schema represents either

clause over a descriptor (slicer), either descriptors and/or measures that define the effect of the

operator. Furthermore, we denote by cube schema the output schema resulting of applying each

operator schema over the query raw data (see Section 3.1 for the formal definition of data cube

schema). The output data cube schema usually contains modified set of descriptors and measures

(except for example in the case of selection where this set is not changed).

26

3.1.2 Terms and basic concepts of novel approach

Now we introduce some basic terms and concepts specific for the novel approach. All of

them are later more detailed explained in case something is not clear enough in this section.

In this approach, it is proposed to characterize each issued SQL query (i.e. each query in

the query log) by means of the set of MDA operators mentioned and presented earlier. Details

and examples are presented later.

Each operation of this algebraic characterization is associated with corresponding

multidimensional schema. This means that after each multidimensional algebraic operation over

multidimensional schema we know which attributes (either factual or dimensional) are in the

output, the result. However, this characterization is not intended to be executed but to keep track

of the knowledge captured in analytical queries form a multidimensional point of view. Indeed, it

is a characterization giving multidimensional sense to the query and that is what we call

Multidimensional Algebraic Characterization (MAC from now on). MAC forms a tree (like in

the relational algebra, due to binary operators such as union or drill-across, as we in detail explain

later). Leafs of this tree are tuples directly retrieved from the database (i.e. the materialized data)

and thus, we refer to them as raw data. Other nodes in this tree represent multidimensional

operations (manipulations) over raw data.

Once the query has been characterized according to multidimensional algebra the next

step aims at normalizing the MAC. Objective of normalization is to facilitate future manipulation

and comparison. To do so, it is compulsory to store each MAC in a normalized form. In this new

approach, we benefit again from the algebraic structure proposed, and we use a set of equivalence

rules (based on those of the relational algebra) to pull the multidimensional operators up the

algebraic structure. The final product is Normalized MAC (NMAC from now on).

After we normalize query and generated NMAC we can use this standardized form for

gaining further information and semantics. By saying that, it is considered that now we can

compare different queries and discover how similar they are. Further on, by discovering

similarities, we can generate some recommendations to the user or exploit those information for

system optimization and similar. We call bridging to the process aimed at identifying how similar

two NMACs are. By adding some multidimensional operators to one NMAC we can obtain the

other one and thus bridge it one with another. Based on the length of the bridge found, we can

decide whether it makes sense or not to bridge the two queries. Other usages of normalization and

bridging will be discussed later in appropriate sections.

27

3.2 Framework

In this section it is presented in detail the framework of using the Multidimensional

Algebraic Structure of analytical queries. This approach is supposed to present efficient and

powerful way to store information about queries so that that information can later be exploited.

The phases of the framework are Obtaining the MAC from a SQL query, Normalizing MAC and

last one, Bridging which is presented as a concept for further analysis and usage in future.

3.2.1 Obtaining the MAC from a SQL query

Professors Oscar Romero and Alberto Abello have shown in [9] how multidimensional

operators can be expressed in terms of restricted operators of the relational algebra. We take

advantage of this work to identify the MDA operators, given an SQL query. First, it is briefly

refreshed the relationship between both algebras and later, we discuss how to formulate the MAC

of an SQL query. Without loss of generality, we denote by raw data (over which the MDA

operators are applied) to the universal relationship of the tables in the FROM clause of the query.

The universal relation contains all fields defined in all source tables.

Table 4. Comparison table between the relational and MD algebras

Reference Operator “Selection” “Projection” “Join” “Union” “Group by” “Aggregaton”

Selection Descsx

Projection Measuresx

Roll-up
idDescsx

Measuresx

Drill-across
idDescsx

idDescsx

changeBase

Add Dim
idDescsx

Remove

Dim.

idDescsx

Alter

Dim.

idDescsx
idDescsx

Union x

Table 4 summarizes the mapping between both sets of algebraic operators. Columns

represent relational algebra operators while row represent MDA operators. Note that we are

28

considering the extended operators of the relational algebra as in [12]. We use the following

notation in the table:

 Measuresx - if the MD operator is equivalent to the relational one but it can be only

applied over measures

 Descsx - if the MD operator must be applied over descriptors

idDescsx - if MD operator can be only applied over level identifiers

 x - MD operator is equivalent with relational operator without additional restrictions

If the translation of a MD operator combines more than one relational operator, both appear

ticked in the same row.

It is important to state also the constraints of the MD model that affect the usage of these

operations:

1. Fact/Dimension dichotomy must be preserved, which is reflected in that descriptors

and measures are disjoint.

2. Summarizability necessary conditions (as in [13]) must be preserved, which is

reflected in the multiplicities of relationships used in the operations as follows:

a. Roll-up: ji levellevel must be one-to-many (or many-to-one, if it

actually corresponds to a drill-down operation).

b. ChangeBase: 21 basebase must be one-to-one.

c. Drill-across: 1cube ⇋ 2cube must be one-to-one.

The first item can be easily validated, whereas testing the cardinalities in the second one

is reduced to discover functional dependencies among the set of attributes involved in the

relationship, by sampling the relational source. Note that we are able to formulate the MAC by

directly applying this result (we address the reader to [9] for a detailed justification of this table).

If an SQL query cannot be fully formulated in terms of MDA operators it means that, according

to MDA, it does not make MD sense and thus, it should be discarded.

Now, we present the example of extracting MDA operators for MD schema in Figure 6

and SQL query:

SELECT Date.year, Location.country, AVG (Sales.price)

FROM Sales, Date, Location

WHERE Sales.product = '1' AND Sales.day = Date.day AND Sales.store = Location.store

GROUP BY Date.year, Location.country;

29

We first have raw data consisting of tables Sales, Date and Location, as the universal relation.

Next we identify MDA operators and present how their appliance manifests to the output data

cube schema. Note that in output data cube schema set of dimensions we denote with [D], set of

measures with [M] and set of slicers with [S]. The identified MDA operators are:

 Selection over Product dimension – more formally, '1'. productSales , identified by

“Sales.product = „1‟” from the WHERE clause of the SQL query.

o Manifest to the output data cube schema: {Sales.product=‟1‟} [S]

 ChangeBase from the key of universal relation of Date, Product and Location

dimension tables to Location and Date dimension – more formally,

storeLocationdayDatestoreLocationproductoductdayDate .,..,.Pr,. , identified by presents of only

Date and Location dimensions in the SELECT clause of the SQL query and universal

schema of the data cube.

o Manifest to the output data cube schema: {Date.day, Location.store}[D],

{Sales.product=‟1‟}[S]

 Projection of Sales.price measure – more formally, priceSales. , identified by

“AVG(Sales.price)” from the SELECT clause of the SQL query.

o Manifest to the output data cube schema: {Data.day, Location.store}[D],

{Sales.price}[M], {Sales.product=‟1‟}[S]

 Roll-up from Date.day to Date.year – more formally,
yearDatedayDate

priceSalesavg

..

).(, identified

by “GROUP BY Date.year” part and “AVG(Sales.price)” from the SELECT part of

the SQL query.

o Manifest to the output data cube schema: {Data.year, Location.store}[D],

{AVG(Sales.store)}[M], {Sales.product = ‟1‟}[S]

 Roll-up from Location.store to Location.country – more formally,

countryLocationstoreLocation

priceSalesavg

..

).(, identified by “GROUP BY Location.country” part

and “AVG(Sales.price)” from the SELECT part of the SQL query.

o Manifest to the output data cube schema: {Data.year, Location.country}[D],

{AVG(Sales.store)}[M], {Sales.product = ‟1‟}[S]

The MAC of this SQL query would be:

30

 (((('1'..

..

).(

..

).(productSalespriceSales

yearDatedayDate

priceSalesavg

countryLocationstoreLocation

priceSalesavg

)))))_(.,..,.Pr,. datarawstoreLocationdayDatestoreLocationproductoductdayDate

An example, of binary MDA operator, in this case union, we can show for next query:

SELECT Date.year, Location.country, AVG (Sales.price)

FROM Sales, Date, Location

WHERE Sales.product = '1' AND Sales.day = Date.day AND Sales.store = Location.store

GROUP BY Date.year, Location.country

UNION

SELECT Date.year, Location.country, AVG (Sales.price)

FROM Sales, Date, Location

WHERE Sales.product = '2' AND Sales.day = Date.day AND Sales.store = Location.store

GROUP BY Date.year, Location.country;

The MAC of this SQL query would be:

 (((('1'..

..

).(

..

).(productSalespriceSales

yearDatedayDate

priceSalesavg

countryLocationstoreLocation

priceSalesavg

)))))_(.,..,.Pr,. datarawstoreLocationdayDatestoreLocationproductoductdayDate

(((('2'..

..

).(

..

).(productSalespriceSales

yearDatedayDate

priceSalesavg

countryLocationstoreLocation

priceSalesavg

)))))_(.,..,.Pr,. datarawstoreLocationdayDatestoreLocationproductoductdayDate

A MAC represents the MD counterpart of the analytical SQL statement analyzed.

Starting from the raw data, by applying MD operators over that raw data we modify data cube to

obtain final cube schema as a result of the query.

By definition, a MAC is a tree-shaped structure. Like in the relational algebra, this is

because of binary operators. The grammar capturing its semantics is as follows (, , , , ,

represent the MDA operators; see Section 3.1.1):

MAC rawData NP | (MAC MAC) NP | (MAC MAC) NP Q CB S R P

NP Q | Q NP CB 0 | CB S 0 | S R 0 | R P 0 | P

31

From now on, we will talk about the root-side and the leaf-side of the MAC. The tree

leafs are raw data (i.e. with no transformations). Furthermore, we call a navigation path (NP from

here on) to any partially ordered set of unary operations consecutive within the tree. These NPs

can be thought as data manipulation to produce the desired presentation or alignment (i.e. the data

cube MD space –changeBases-, slicers –selections-, data granularity produced –roll-ups- and

subset of measures shown –projections-), whereas nodes collapsing two branches (from here on,

we simply refer to the input NPs of binary operators as branches) are generating a new set of

tuples (if desired, we may keep manipulating the result with a new NP). Thus, note that a single

MAC can contain more than one NP.

Indeed, data might need to be aligned before being able to collapse them. For example,

we may need to roll-up to the same granularity level before uniting or drilling-across data from

two different cubes (i.e. align the input branches of binary operators to produce the one-to-one

relationship demanded by union and drill-across).

In previous example we had two NPs as input branches of union operator.

Finally, we talk about the pivotal node as the tree node dividing the MAC into two well-

differentiated layers: the structural layer and the presentation layer (i.e. the first binary ancestor

of the root). In other words, the pivotal node identifies the set of tuples (i.e. the structural part)

over which we only apply unary operations (i.e. a NP representing how data is presented to the

user). In previous example, the pivotal node is the union, because in this case it represents the

structural part. We do not have presentation layer in this case, since it is also the root.

3.2.2 Normalizing MAC

Once we have formulated the MAC for a given statement, we aim at normalizing it. In

our approach we benefit form the algebraic structure proposed, and we use a set of equivalence

rules to pull the MD operators up the algebraic structure. Thus, the MDA equivalence rules

(shown in Table 5, Table 6 and Table 7) are an immediate consequence of considering the MDA

operator semantics over the relational algebra equivalence rules (explained in [12]) and

considering the constraints introduced in Section 3.2.1.

Table 5. MDA equivalence rules for normalizing NP

Operator Projection Roll-up Selection ChangeBase

Projection

Roll-up ~

Selection

ChangeBase ~ ~

32

Table 6. MDA equivalence rules for removing MD operators from NP

Operator Projection Roll-up Selection ChangeBase

Projection

Roll-up ~ ~ ~

Selection ~

ChangeBase

Table 7. MDA equivalence rules for binary operators

Operator Projection Roll-up Selection ChangeBase

Drill-Across

Union

MDA equivalence rules are split into three tables for the purpose of clarity in case of

tables 5 and 6, and also because table 7 has different interpretation than tables 5 and 6 as it is

explained later.

Tables 5 and 6 reflect the rules that apply to linear structures (NPs) of the MAC and as

such they indicate if column operator can be pulled up (exchange place with) the operator in the

row so it would be closer to the MAC‟s root (MAC is “vertical structure” – a tree, so for that

reason we use term “pull up”). The meaning of each cell in tables 5 and 6 is the following:

 “” – the MDA operator in the column can be pulled up the operator in the row

 “” – there is a conflict, so the MDA operator in the column cannot be pulled up the

operator in the row

 “~” – there is a partial conflict such that column operator can be pulled up whenever

the row operator does not remove the attribute needed by the column operator. In

tables 5 and 6 we have next particular cases of pulling column operators up row

operators:

o Roll-up over Roll-up – if two Roll-up operators belong to the same tables we

cannot exchange their places because their order must be preserved

o Roll-up over ChangeBase – if ChangeBase operator changes the dimension

over which the Roll-up is done we cannot exchange their places

o Selection over Roll-up – in this case, we can have conflicts only if we allow

Selection operators to be done over non-identifier dimension descriptors. If

33

we allow that, conflict appears when Roll-up operator removes descriptor

that is used by Selection operator and we cannot exchange their places.

o Selection over ChangeBase – if the ChangeBase operator removes dimension

descriptor which is used by Selection operator we cannot exchange their

places.

o ChangeBase over Roll-up – if the dimension used by Roll-up operator is not

changed by ChangeBase operator (that means that it is present in both bases

of ChangeBase operator) then we can exchange their places, otherwise we

cannot.

o ChangeBase over Selection – if the Selection operator uses the dimension

descriptor that is not changed by ChangeBase operator (that means that it is

present in both bases of ChangeBase operator) then we can exchange their

places, otherwise we cannot.

Table 7 reflects the rules that apply to the binary node of the MAC (which is a tree

structure as we said). These rules indicate if column operator can be pulled up from branch to the

leaf-side of the parent NP of the binary operator. The meaning of each cell in table 7 is the

following:

 “” – the column MDA operator in the branch can be pulled up to the parental node,

over the binary operator in the row

 “” – the same column MDA operator must appear in both branches so it can be

pulled up from the branches to the parental binary node (over the binary operator).

Note that we assume well-formedness of MAC in the sense that no attribute is used in an

operation if it is not present in the output schema of the previous operation(s).

The final aim of normalization is to distinguish between operators producing the set of

tuples retrieved by the query (i.e. the structural layer) and operators manipulating these tuples

before being presented to the user (i.e. the presentation layer). However, as discussed in Section

3.2.1, MACs can contain more than one NP (some of them interleaved in the structural layer),

although only the root-most NP (i.e. the one amid the pivotal and root nodes) represents the

presentation layer. Thus, we normalize MACs by pulling operators in the NPs of the structural

part to the presentation layer (i.e. to the MAC root-side), and we do so by applying Table 5,

Table 6 and Table 7.

Interestingly, note that, unlike the relational algebra logical optimization that aims at

pushing operators as much as possible in the direction of leafs, we aim at pulling MDA unary

operators towards the root. Moreover, we find more ticks in Tables 5, 6 and 7 than we would find

34

if using the relational equivalence rules and, when something needs to be checked, it is much

easier, because in MDA we introduce additional constrains that simplify these rules. For example,

we know that the relational selection can be pulled up a projection if the attribute involved in the

selection is not projected out by the projection. Furthermore, we know that the MDA projection

can only be applied to measures, whereas selection only makes sense over descriptors.

Consequently, the MDA projection and selection can always be swapped in a MAC, as the set of

attributes involved in each operator will always be disjoint (see Section 3.2.1 for further details).

In the general case, special difficulties arise dealing with the relational group by (basis of roll-up,

OLAP key operator). Interestingly, we want to remark the gain when dealing with our restricted

group by (i.e., roll-up) instead of the generic one, whose difficulty is recognized in [12] (where it

is explicitly said that no law is stated) and especially in [14] (where the whole work is devoted to

analyze all possibilities only between join and group-by).

The normalization algorithm is just a postorder traversal of the MAC, considering that the

nodes to visit are NPs and binary operations. We then deal with these two kinds of nodes in a

different way:

a) For each NP we visit, for each unary operator it contains (from root-side to leaf-side),

we pull it up in the direction of the root as much as possible, following the rules in

the Table 5.

b) For each binary operation we visit, according to Table 7 if both left and right

branches are non-empty NPs and some operation coincides in their topmost Q which

can be pulled up through its successors in Q according to the Table 6., that unary

operation is removed from both branches and added at the leafs-side of the NP in the

binary parent node.

As a result of this algorithm, we say that a NMAC is a MAC with the following

properties:

i) Many NP can appear in a MAC. NPs stuck in the structural part are needed for

aligning the inputs of binary operators (and not for presentation purposes).

ii) Many Q may appear at each NP, but the minimum number would be generated, each

potentially containing , and in this order.

iii) can only appear in the topmost Q of every NP, and following the order imposed by

the containment of attributes.

For MAC from previous example:

35

 (((('1'..

..

).(

..

).(productSalespriceSales

yearDatedayDate

priceSalesavg

countryLocationstoreLocation

priceSalesavg

)))))_(.,..,.Pr,. datarawstoreLocationdayDatestoreLocationproductoductdayDate

(((('2'..

..

).(

..

).(productSalespriceSales

yearDatedayDate

priceSalesavg

countryLocationstoreLocation

priceSalesavg

)))))_(.,..,.Pr,. datarawstoreLocationdayDatestoreLocationproductoductdayDate

Normalization algorithm first normalizes corresponding MACs of the branches and we obtain:

 (((('1'.

..

).(

..

).(. productSales

yearDatedayDate

priceSalesavg

countryLocationstoreLocation

priceSalesavgpriceSales

)))))_(.,..,.Pr,. datarawstoreLocationdayDatestoreLocationproductoductdayDate

 (((('2'.

..

).(

..

).(. productSales

yearDatedayDate

priceSalesavg

countryLocationstoreLocation

priceSalesavgpriceSales

)))))_(.,..,.Pr,. datarawstoreLocationdayDatestoreLocationproductoductdayDate

And after normalization of branches, we normalize the parent and obtain NMAC:

i) (((('1'.

..

).(

..

).(. productSales

yearDatedayDate

priceSalesavg

countryLocationstoreLocation

priceSalesavgpriceSales

))_(.,..,.Pr,. datarawstoreLocationdayDatestoreLocationproductoductdayDate

('2'. productSales

)))))_(.,..,.Pr,. datarawstoreLocationdayDatestoreLocationproductoductdayDate

Finally, we should normalize the presentation layer, but it already is.

3.2.3 Bridging NMACs

Working with algebraic expressions under normal form makes it easier to detect if,

syntactically, two expressions are similar to each other. In our context, similar NMACs may be

considered logically related from an analytical point of view, and if two NMACs are close

enough to each other, they are considered to belong to the same analytical session. In that case,

they are coalesced into a session and both NMACs are logically related by annotating their

bridging operators. Formally, given two NMACs n1, n2, we say we can bridge them if by means

36

of some MDA operators (the bridging operators), we can transform the output of n1 into that of

n2.

In our current approach we only analyze those queries whose structural part coincides by

comparing their presentation layers (both concepts have been previously introduced in Section

3.2.1). Let P1 and P2 be the presentation layer of n1 and n2, respectively, and CS1 and CS2 their

data cube schemas. A cube schema (introduced in Section 3.1) is a MD interpretation of the

output produced by each query. According to the MDA semantics, we can characterize it as

follows (see Section 3.2.1): (i) the set of measures (i.e. data) shown to the user; (ii) the set of

dimensional attributes selected to produce the MD space at a certain granularity level and (iii) the

set of slicers applied. Now, we take advantage of the MDA minimality (operators cannot be

derived by composition) and closeness (their output is a cube) properties. Since MDA is close and

every operator has its inverse, by definition, we can transform CS1 into CS2 by means of a finite

set of MDA operators (in the worst case, it would entail to undo all the operators that lead to CS1

and redo those in CS2). Furthermore, given its minimal property, we know which operators can be

applied in order to align each cube schema feature. In other words, we can split the comparison of

P1 and P2 into smaller comparisons regarding the cube schema part affected by the MDA

operators:

i) Measures: Let nmm 1,...,11 and tmm 2,...,21 the list of measures in CS1 and CS2,

respectively.

- If nmm 1,...,11 and tmm 2,...,21 coincide nothing has to be done.

- im1 CS1, s.t. im1 CS2 the corresponding projection disregarding im1 is

annotated in the bridge between n1 and n2.

- im2 CS2, s.t. im2 CS1 the corresponding drill-across is annotated to add

im2 is to the output schema.

ii) MD space: First, we analyze the relationships between the MD spaces in CS1 and

CS2.

- If CS1 and CS2 are exactly the same, nothing has to be done.

- Else, for each one-to-many or many-to-one relationship identified between CS1

and CS2 we need to modify the output granularity accordingly. If a one-to-many

relationship is identified, a proper drill-down operator is annotated in the bridge.

Else, in case of a many-to-one relationship, the corresponding roll-up is added.

- In any other case, given that the structural part of n1 and n2 coincide, a 1-1

relationship, as a whole, should be identified between CS1 and CS2. Thus, we

37

need to navigate from the MD space in CS1 to the alternative space in CS2 and the

corresponding changeBase is added to the bridge.

iii) Slicers: Being p1 and p2 the conjunction of the predicates in the selections of n1 and

n2, respectively.

- If p1 ≡ p2 nothing has to be done.

- Else if p1 ⊏ p2, the proper union(s) is (are) added to the bridge.

- Else if p1 ⊐ p2, a selection(s) is (are) added.

- Else a union(s) (to undo p1) and a selection(s) (to carry out p2) are added.

Again, note that this algorithm is sound thanks to the MDA properties, which allow us to

undo and redo complementary operators (i.e. projection Vs. drill-across, union Vs. selection, roll-

up Vs. drill-down and changeBase Vs. changeBase) to produce CS1 from CS2. The produced

bridge is then evaluated to decide whether n1 and n2 are similar enough, if so we consider both

NMACs to belong to the same session. It is out of our current objectives to provide an empirical

function to identify when two NMACs are similar enough as to be coalesced in the same session,

as it is an application-dependent task. As result, both NMACs are stored in an ordered structure

(i.e. a list of NMACs) representing the session and we annotate their relationship with the

bridging operators NPb (to keep track of their logical connection). Finally, we use the last NMAC

to keep looking for other queries in the session, whereas the annotated bridging is kept in order to

exploit it in future tasks such as query recommendation.

Example of the bridging in case we have to NMACs for queries:

 Q1:

(((('1'.

..

).(

..

).(. productSales

yearDatedayDate

priceSalesavg

countryLocationstoreLocation

priceSalesavgpriceSales

)))))_(.,..,.Pr,. datarawstoreLocationdayDatestoreLocationproductoductdayDate

 Q2:

(((('1'.

..

).(

..

).(. productSales

monthDatedayDate

priceSalesavg

countryLocationstoreLocation

priceSalesavgpriceSales

)))))_(.,..,.Pr,. datarawstoreLocationdayDatestoreLocationproductoductdayDate

The query Q1 can be bridged with query Q2, and their cube schemas are exactly the same

except for their MD spaces, among which we can identify a many-to-one relationship (form year

to month). Thus, a drill-down is annotated as the bridge from Q1 to Q2. In this case, it is clear that

they are close enough and thus, both NMACs are stored in the same session s. Semantically, the

annotated bridge means that Q2‟s output can be obtained by bridging Q1‟s NMAC with the

38

annotated drill-down (this is represented in the MAC below, where the drill-down is represented

by the left-most operator):

))))))_(

(((

((

.,..,.Pr,.

'1'.

..

).(

..

).(

.

..

).(

datarawstoreLocationdayDatestoreLocationproductoductdayDate

productSales

yearDatedayDate

priceSalesavg

countryLocationstoreLocation

priceSalesavg

priceSales

monthLocationyearLocation

priceSalesavg

3.3 Usage for query recommendations

After we have seen all the steps of the framework, now we present the intuition how this

characterization can be exploited in discovering and characterizing analytical sessions (as we

shortly mentioned in the Section 3.2.3 when talking about bridging) and further use analytical

session for generating recommendation for the user.

Up to now, as we saw in the Chapter 2, current methods focus on isolated queries, which

are analyzed on their own without considering the logical connection analytical queries form the

same session do have. However, it is well-known that analytical sessions are formed of related

queries capturing the reasoning flow during the analytical session [15]. Accordingly, we propose

to represent those queries logically connected by means of a single structure capturing the whole

session. Below we discuss how we can use this for generating recommendations.

Consider the collaborative recommendation (explained in Chapter 2). Suggestions to the

current user can be based on navigations similar to hers. Suppose we can characterize the past

sessions over a data cube, as well as the current session, by their NMACs. Using bridging, we can

identify the former navigations that are similar to the current one, and the OLAP operations in

these navigation paths can be the basis to recommendations for the current navigation.

The idea introduced above can be achieved as follows. Consider the SQL log of the past

sessions and the current session. For each past session, all SQL queries are translated into their

MDA counterparts.

The current session is bridged with all of NMACs obtained from the log. For each past

NMACs, the bridge, being itself an MDA expression, indicates the proximity between the current

session and the past sessions, for instance in terms of the number of OLAP operations. For those

past NMACs that are the closest to the current session, consider the algebraic operations that

compose the bridge. These operations can be used directly to suggest, as a recommendation, these

39

operations applied to the current query. Alternatively, among these operations, only those that do

not change the current query substantially can be used.

If we go back to the example in Section 3.2.3, about bridging, and suppose that the last

query of the current session is Q1 and that a past session corresponds to Q2. Then the drill-down

operation corresponding to the bridge between Q1 and Q2 can be recommended to the current

user.

Techniques for recommending queries to database users or data warehouse users have

already been proposed, but to the best of our knowledge, none of them leverage the algebraic

structure of the queries to direct the user toward relevant part of the database based on the current

navigation. Using navigation path as a basis for enhancing analysis opens interesting

perspectives. For example, in addition to the approach outlined above, one interesting research

direction is to extract navigational patterns from a user‟s query log, to learn how the use prefers to

navigate (i.e. what are her favorite OLAP operations), and then to suggest queries based on these

preferences.

40

41

4 Prototyping

This chapter presents the development process of previously introduced framework.

Bridging phase of the framework is left on the theoretical basics and considerations regarding to

the scope of this thesis. Note that, as mentioned in Section 3.2.3, an empirical function to identify

when two NMACs are similar enough needed for the bridging phase is out of the objectives of

this framework by now, as it requires further research before implementation. Research and

development processes have surprisingly showed that the steps for obtaining MACs and

normalizing them are actually crucial for any further use (like query recommendation). When we

extract all the information about the queries and keep them in a structured and normalized way,

further exploitations of them seem, if I may say, as a straightforward process if the proper

structure have been used to store the queries. Precisely because of this, these phases (obtaining

MAC and further on NMAC) happened to be hard and tedious tasks. Many new details that

needed to be considered showed up while developing this prototype and they contributed in better

elaborating theoretical basics. Development process started with the goal of generating query

recommendations for the user but due to the difficulties that arisen, it turned out that these

preparation steps are sufficiently voluminous.

The rest of the chapter is organized as follows. First, we introduce the methodology used

for the development process. Next, both functional and non-functional requirements are listed.

Afterwards we explain the design with regards to requirements, architecture, input parameters and

expected output. Further on, we focus on implementation details and explain technology and tools

used, important aspects of coding, and finally obstacles encountered with corresponding solutions

that were found. Last section of the chapter represents testing phase of prototyping.

4.1 Development method

Development method used for the practical part of the thesis is agile software

development. This method was chosen because it seemed to be most appropriate for the settings

of this research project. Due to the characteristics of one master thesis student project when

requirements are often changing, when student is progressively developing the program with

regular consultations with his tutors and when the progress and final outcome can be

42

unpredictable due to the development of something new that no one has ever done, this

methodology fits perfectly because of the flexibility it provides.

4.1.1 Agile software development

Agile software development is a relatively new approach. We can find many sources that

talk about it. Since [20] gives a concise and comprehensive overview it is used as a reference in

this thesis. Some additional details and explanations regarding the agile modeling can be found in

[18]. In this section we present the agile software development method together with the

comments (where found appropriate and needed) of how it was or was not applied in this project

and why.

Agile software development is a software development method based on iterative and

incremental development, where requirements and solutions evolve through collaboration

between self-organizing, cross-functional teams. The Agile software development process and

values are illustrated in Figure 8 and are more elaborated later.

Figure 8. Agile software development poster, taken from [20]

43

The Agile Manifesto can be found in [19], and it defines the approach now known as

agile software development. This method values are:

 Individuals and interaction over processes and tools. This state out the value of self-

organization and motivation together with cooperation between individuals. Individuals

are important factor in this project since there was only one person (a student) directly

working on the development of the system. Nevertheless, interaction was equally

significant due to the participation of the professors when defining requirements and

design concept and especially when facing implementation doubts.

 Working software over comprehensive documentation. This state out the value of

software that works and has the least bugs over just well prepared documentation. By

focusing on seeing first implementation results and then corresponding documentation,

this value was also important for this project development.

 Customer collaboration over contract negotiation. This state out the importance of

stakeholder‟s involvement during whole process of development due to possible changes

in requirements and obscurities. Since the professors can be considered as a stakeholders

and customer counterpart and they were involved during the whole system development

we may say that this value was also applied.

 Responding to change over following a plan. This state out the importance of ability to

accept and conduct changes in development. This value was crucial for this project

considering its research character. Many times we dealt with innovations and revisions to

which we had to respond adequately.

Principles for following the Agile software development include:

 Early and continuous delivery of valuable software – This principle was followed in

the process.

 Always welcoming changes in requirements – Essential principle for all projects of

research type including this.

 As shorter possible and frequent, working software delivery intervals – By often

meetings where we checked the new functionalities added we may say that this was

also one of the principles of the development.

 Daily cooperation of coworkers – This was not applied since there was no

development team but only one person.

 Trust in motivated individuals – This was one more of the crucial principles for this

project since the whole development was entrusted to only one student.

44

 Face-to-face team conversation – There was no development team but face-to-face

communication was preferred for all consultations and discussions.

 Progress measured by working software – Due to a research character of the thesis,

which this development project is a part of, the focus was not only on the

implementation. Still when working on development, progress was measured by

working functionalities.

 Constant and sustainable development – Process of development started from the

beginning of the work on this thesis and lasted until the end in parallel with other

needed activities.

 Continuous attention to technical excellence and good design – The design of the

system was refined several times when some sufficient parts were discarded while

other needed were added.

 Essential simplicity – There was a tendency of modularizing the system in important

parts as much as possible so that its design can be easily understood and, if and when

needed, modified.

 Self-organizing teams – Again, there was no team, but there was flexibility in

organizing time as long as the tasks are done.

 Effective use of time – When needed, the deadlines were introduced so the time

would be used effectively.

Characteristics promoted by most of the agile development methods are agile

development, teamwork, collaboration, and process adaptability throughout the life-cycle of the

project. Teamwork, as previously stated, was not applicable in this project since there was no

team but other methods were guidelines for the development process.

Agile methods break tasks into smaller incremental tasks that require minimal planning

and are done in short time iterations. An iteration goes through a full software development cycle

consisting of planning, requirements analysis, design, coding, unit testing and acceptance testing

when a working product is demonstrated to stakeholders. This way development process

minimizes the risks and allows the project to adapt to changes quickly. Goal of an iteration is to

have available release with enough new functionality but it does not have to be the case always.

We developed system in iterations and if we consider professors as stakeholders we may say that

we completely followed this method. Benefit of this was having system releases as soon as

possible, since it is not always predictable how each iteration would evolve.

Teamwork is of high importance and is typically present in form of small size (less than

10 members) teams that are usually cross-functional (each member has responsibility for

45

achieving some functionality) and self-organized. Preferred and emphasized form of

communication is face-to-face. This was not applicable in the case of this project.

Development process also involves a customer representative. This person appointed by

stakeholder is in charge of answering any mid-iteration problem-domain questions raised up by

developers. At the end of each iteration, stakeholders and the customer representative review

progress and re-evaluate priorities with a view to optimizing the return on investment and

ensuring alignment with customer need and company goals. Again preferred communication is

face-to-face. In our case, professors can be considered as both stakeholders and customer

representatives.

This development method emphasizes working software as the primary measures of

progress as we can find in the above mentioned principles. This principle together with the

preference for face-to-face communication produces less written documentation than other

methods. Agile methods focus on adapting quickly to changing realities.

Almost all agile methods are suitable for method tailoring – adapting method fragments

determine a system development approach for a specific project situation. The practical

implication of this is that agile methods allow adaptation of working practices according to the

needs of individual projects. In the case of project for the practical part of this master thesis, some

of these agile software development process main manifests are:

 Changes in requirements were non rare due to the research character of the project so

handling them was of crucial importance.

 The project was developed bit by bit, in iterations.

 At meetings with my tutors we discussed results of previous iteration and made plans

for next iteration of what needs to be done and how to achieve it.

 These meeting were important for easy face-to-face communication, followed by

regular email communication.

 Meetings were frequent and important for constant progress.

4.2 Requirements

General requirement in this project was to develop a system that can efficiently extract

and normalize the MAC out of a SQL query. Since this system is not supposed to be user

interactive, but modeled as a batch process (as it is explained in next Section 4.3) use case

diagrams or visual prototypes are not convenient for gathering and representing requirements.

46

Use case diagrams, because there is not essential interaction with a user or any other system at

this version of our system. Graphic user interface created is just for the presentational purposes.

Neither visual prototypes are convenient since we focus on analyzing and storing SQL queries

which is a user independent task in a sense that we do not need user‟s input how to analyze and

store the queries. Further on, requirements for this system are not characterized by being

numerous but by being complex (not all of them of course). Since the requirement do not go into

implementation and how the thing are supposed to be done, but what functionalities and

characteristics system should provide we chose to represent them in a form of simple and

graspable list. This list of requirements comes from the discussion at the meetings we had and it

was revised, updated and adapted to the theoretical findings related to framework during the

development of this system. Requirements we further categorize into two well known categories

which are functional and non-functional requirements. Functional requirements define specific

behavior or functions of the system while non-functional requirements (also know as quality

requirements) impose constraints on the design or implementation (such as performance

requirements, security, or reliability) [24].

Functional requirements for this system are:

 The system needs to be able to parse SQL queries.

 The SQL queries have to be analytical SQL queries.

 The system needs appropriate data structures for storing information about each

individual multidimensional operator.

 The system needs to extract the information about each multidimensional operator

out of the parsed SQL query.

 The system needs to store extracted information about each multidimensional

operator in appropriate data structure.

 The system needs appropriate data structure for storing information about MAC

obtained from a parsed SQL query.

 The system needs to extract the information about MAC from a parsed SQL query by

identifying all the multidimensional operators belonging to that SQL query

 The system needs to store extracted information about MAC in appropriate data

structure.

 The system needs to provide functionality of normalizing extracted and stored MAC

and in such a way obtain the NMAC.

 For the purpose of presentation of system‟s functionalities, the system needs to

provide graphic user interface that will enable:

47

o choosing the file containing SQL query

o graphic presentation of MAC extracted from chosen SQL query

o graphic presentation of NMAC obtained by normalizing previously obtained

MAC

Non-functional requirements for this system are:

 The system needs to have good performance, primarily fast response time due to

future exploitation where it should provide real-time, interactive feedback.

 The system needs to be developed in such a way that enables future extension

 The system needs to be well documented for the purposes of future development,

upgrade and use.

4.3 Design

Accordingly to the previous stated requirements the design of the system and

corresponding data structures that should capture the knowledge obtained are modeled. This

system is modeled to be used in batch processing and because of that it does not provide many

possibilities for user interaction. According to [21], batch processing is execution of a program or

sets of programs on a computer without manual intervention. A program takes a data input

file/files, processes the data, and produces a set of output data which may be presented to the user

if needed. In our case, a user is supposed to submit a SQL query to some DBMS which returns

the result, while our system in parallel processes the query and extracts information about the

query that will enable future exploitations. Due to this characteristic of the system there is not

many use case diagrams. Instead, we focus on the data structures and corresponding system

algorithms that work over these data structures.

The data structures are first presented in less formal way, either by sketch, either by

textual description, with the purpose of just grasping the main ideas. Later, appropriate UML

diagrams are presented as a design of concrete system. Further on, presentations of significant

algorithms and discussions about some important issues are provided.

4.3.1 Data structures

The goal of this section is to present main sketches of the data structures needed in the

system. Since this system‟s primary task is to extract and handle information about a SQL query,

data structures in which this information is stored represent an important concepts for later system

48

design and implementation. During the iterative development of the system there were many

minor or major changes and variations of these concepts. Therefore we present final versions of

these data structures with some previous versions where appropriate to illustrate the research

evolvement. Data structures are presented in form of diagram or textual description.

Before moving on the data structures it is useful to first once again analyze the process in

which these data structures are needed. High level abstraction of the modeled process is shown in

Figure 9. On this level of details it represents the general idea of having data over which we apply

operators that manipulate that data. Therefore, first idea about the multidimensional operators was

that information about them could be stored in the data structures of the same type and different

internal content that stores data specific for each operator. This internal content corresponds to

the operator schema introduced in Section 3.1.1. The data manipulated corresponds to the schema

of the data cube introduced in Section 3.1. When over a data cube schema we apply operator

schema it produces an output data cube schema which would further on be an input data cube

schema over which we apply next operator schema and so on. However due to the existence of

the binary multidimensional operators (Union and Drill-Across) this was not possible. These

operators need two data cube schemas over which they apply their operator schema. Clearly this

high level abstraction of the process could not be directly mapped into similar linear data

structure that would capture the knowledge obtained about a query in the process. That is why we

had to think of a more appropriate solution.

Figure 9. High level abstraction of the modeled process

Obviously, before modeling this data structure that contains all the information about a

query, first we need to focus on peculiarities related to the operator and data structures that keep

information about them. In that purpose now we introduce the data structures for keeping

information about operator schema of the unary operators (check Section 3.1.1 for details) and

Raw Data (introduced in Section 3.1.2). From now on, these data structure we will refer to as

unary elements. Data structures for storing information about operator schemas of binary

operators we introduce later in this section (binary elements from here on). Unary elements with

the information about operator schema needed to be stored are:

49

 Selection element – Information that is stored about this element is:

o selection predicate such as attribute = ‘value’.

 Roll-up element – Information that is stored about this element are:

o the list of the measures (which will always be aggregation functions)

o identifier of the level from which are we rolling up and

o identifier of the level to which we are rolling up.

 Projection element – Information that is stored about this element is:

o the list of projected measures coming form same table which can be either

aggregation functions either table attributes.

 ChangeBase element – Information that is stored about this element are:

o the list of all table attributes belonging to the dimensions from which we are

switching and

o the list of table attributes belonging to the dimensions to which we are

switching.

 Raw Data element – Information that is stored about this element is:

o the list of table names that represent the universal relation of the SQL query.

Detail of how exactly we identified these unary elements in one SQL query are explained

later in the Section 4.4.3.

Organization of these unary elements, together with the binary elements in a structure

that would adequately represent MAC is next step in the process. Binary tree due to existence of

binary elements was a natural choice. Leafs of the tree are the Raw Data unary elements that

represent initial data cube schemas. Parental node of a leaf is either unary element either binary

element. In case of a unary element, it applies its operator schema over leaf‟s data cube schema

and as an output produces output data cube schema (as presented in example in Section 3.2.1).

Similarly, binary element needs two input leafs‟ data cube schemas over which it applies its

operator schema and as output provides result data cube schema. Further on these unary or binary

element can have parental nodes that are either unary or binary elements which take their output

data cube schema and apply the same procedure. Example of the first version of this data

structure for storing information about query‟s MAC is shown in the Figure 10. This version

seems to represent model of MAC in appropriate way.

However, due to differences between binary and unary elements and also to achieve some

benefits when normalizing the MAC to obtain NMAC, a modified version of this structure was

chosen. Example of this modified version that is also the final version is shown in the Figure 11.

50

Figure 10. Example of tree data structure for storing MAC, v1

In the final version of tree data structure for storing information about MAC we can find

four types of nodes: Raw Data Node, Unary Node, Drill-Across Node and Union Node. These

nodes are either container for unary elements, either both binary elements and the containers at

the same time, as we will see in short a while. Reasons for having these four types of nodes are

different meanings of each node and benefits gained for normalization process. Thus, more

precisely:

 Raw Data Node – introduced in the data structure because we always have a Raw

Data unary element in each leaf of the tree. Raw Data unary element is never moved

from the leaf so in this way we distinguish Raw Data Node from all others which we

51

consider in normalizing process. Raw Data Node can contain only Raw Data unary

element.

Figure 11. Example of final tree data structure for storing MAC

 Unary Node – introduced in the data structure to model a sequence of unary operators

that corresponds to NP concept of the framework. This sequence of operators

represents navigation and manipulation over only one data cube. Unary Node can

contain all unary elements except Raw Data unary element.

 Drill-Across Node – this node itself represents also Drill-Across binary element.

There is no need for additional data structure for storing operator schema of Drill-

Across binary operator since the only needed information are two input data cube

schemas that are already contained in Drill-Across Node data structure. This Drill-

52

Across Node may contain inner list of unary elements (without Raw Data unary

element) that corresponds to the NP of the framework. Output data cube schema of

Drill-Across binary element represented by Drill-Across Node is generated according

to operator‟s semantics presented in the Section 3.1.1 and it will be input data cube

schema for the first leaf-side unary element of the inner NP if exists, or for the

parental node if exists, or otherwise it is the final output data cube schema of the

MAC it belongs to.

 Union Node – this node itself represents also Union binary element. There is no need

for additional data structure for storing operator schema of Union binary operator

since the only needed information are two input data cube schemas that is already

contained in Union Node data structure. This Union Node may contain inner list of

unary elements (whitout Raw Data unary element) that corresponds to the NP of the

framework. Output data cube schema of Union binary element represented by Union

Node is generated according to operator‟s semantics presented in the Section 3.1.1

and it will be input data cube schema for the first leaf-side unary element of the inner

NP if exists, or for the parental node if exists, or otherwise it is the final output data

cube schema of the MAC it belongs to.

Benefit that this structure enables for normalization phase is that we can easily normalize

it. Normalization is done by normalizing node by node in postorder traversal of the tree.

Normalization of one node depends of its type. Before being normalized, MAC will contain only

binary nodes that are empty. Later on by normalization process some unary operators might be

moved up from children nodes into parental binary nodes. This concept of MAC tree data

structure was the one we used in the system design (but with the small difference that in

designing we create n-ary tree as it will be explained).

4.3.2 System design

After we have seen general concepts important for organization of system‟s architecture,

now we focus on UML diagrams formally representing that architecture. Level of details on

diagrams tends to be just as much needed for understanding of system and its organization while

higher details about most important functionalities (class methods) are presented in section about

the implementation. System design has changed through the iterations of system development.

Some concepts were added, some discarded and in this section we present final design version.

Of course, this current final version might be upgraded and changed in future when needed.

53

Unified Modeling Language (UML), as one of the most-used standards for visualization

of application structure and organization, is used in this document as a way to clearly display

concept even for readers that are not that much familiar with it. Also, important aspect of UML

diagrams is that they enable generalization of object-oriented software engineering ideas so that

they do not have to be strictly related to any specific implementation technology.

System design is presented from general overview of packages and then moving on to

more specific class diagrams explaining internal organization of important packages. Figure 12

displays general organization of packages. Note that external packages (plug-ins) used are not

presented since they are presented later in section about used tools.

Figure 12. General packages overview

Package query_parsing contains classes required for obtaining all the necessary

information about the SQL query. SQL query is parsed with the JSQL parser which uses the

Visitor Pattern and therefore classes in query_parsing package implement required Visitor

interfaces needed to extract information about required parts of that query. Since this package

depends mainly from the parser used we do not go into details of the classes here but later when

talking about the details of parser and Visitor Pattern.

Package mac with all contained sub-packages represents the core of the system. This

package contains all structure and logic needed for extracting MAC from a SQL query. These

54

data structures and logic are grouped by sub-packages and in next figures we explain the design

of important ones.

Figure 13. Internal structure of mac inner packages (without mac.structure)

Figure 13 presents the internal structure some of the inner mac packages. These packages

contain prerequisites needed for mac.structure package which contains structures for storing

multidimensional operators and MAC. Packages mac.structures.arguments and

mac.structures.arguments.clause_operators represent concepts that store information that we

want to extract from a SQL query and at the same time data structures for storing the

same.

Package mac.structures.arguments contains several classes that model some basic

information that we need to store about the SQL query:

55

- Abstract class SelectPartMember represents an abstraction for everything that can

be found in SELECT part of SQL query. Abstract operations of this class are clone()

that returns an identical copy, getTableName() that returns table name to which a

class is related to and equals() which checks if two instances are equal.

- Class AggregationFunction that extends SelectPartMember represents aggregation

functions found in SELECT part of SQL query. This class stores information about

type of aggregation function (AggregationFunctionType) and table attribute as an

argument of the function. It implements all abstract operations of the super class.

- Class TableAttribute that extends SelectPartMember represents table attributes.

This class stores information about table name and attribute name. It implements all

abstract operations of the super class.

- Class MACJoin represents class for modeling joins found in WHERE part of SQL

query. This class stores information about two joined table attributes.

- Class Clause represents class for modeling predicates (i.e. clauses) found in WHERE

part of SQL query. This class stores information about table attribute and operator

(which keeps information about the constant to which we are comparing table

attribute).

Package mac.structures.arguments.clause_operators contains classes that model

operators of our current interest (later, new operators can be added if needed):

- Abstract class Operator models operators that we can have in one Clause. This class

stores information about the constant to which we are comparing some table attribute.

Abstract operation getSymbol() returns character representation of the Operator,

clone() returns an identical copy and equals() checks if two Operators are equal.

- Class OperatorEqualTo extends Operator and models “equal to” operator. It

implements all abstract operations of the super class.

- Class OperatorNotEqualTo extends Operator and models “not equal to” operator.

It implements all abstract operations of the super class.

- Class OperatorLessThan extends Operator and models “less than” operator. It

implements all abstract operations of the super class.

- Class OperatorLessThanOrEqual extends Operator and models “less than or

equal” operator. It implements all abstract operations of the super class.

- Class OperatorGreaterThan extends Operator and models “greater than” operator.

It implements all abstract operations of the super class.

56

- Class OperatorGreaterThanOrEqual extends Operator and models “greater than

or equal” operator. It implements all abstract operations of the super class.

Package mac.types contains enumerations for various types needed in the system:

- Enumeration AggregationFunctionType lists possible types of aggregation function.

- Enumeration NavigationPathElementType lists possible types of navigation path

elements that we introduce later.

- Enumeration MACNodeType lists possible types of MAC nodes that we mentioned

already but we later introduce them more formally.

Figure 14. Classes of mac.structures package

Figure 14 shows the internal organization of mac.structures package. This is most

important package that contains classes for identifying and storing information about

multidimensional operators and further on MAC identified. Note that diagram contains only most

important concepts (and not all the details). Comments about these package and its elements are:

- Abstract class UnaryElement models all the elements that can be found inside the

node of the MAC. Attribute type defines the type of the element and is defined by the

sub-classes. Abstract operation clone() returns an identical copy of the element and

abstract operation getCube() when implemented by sub-classes it returns the current

57

data cube (list of dimensions and measures of the data cube). If element is

multidimensional operator than it returns data cube after its affect or if it is raw data

then it returns the list of tables that represent dimensions of the data cube.

- Class RawDataElement models the relation of tables that represent the data cube

over which later multidimensional operators (if there are such) are applied. Attribute

listOfTables is a list of table names mentioned previously.

- Abstract class NavigationPathElement is a sub class of UnaryElement and super

class for all multidimensional operators that can be part of a Navigation Path (for

details about Navigation Path check Section 3.2.1). Abstract operation isMoveable()

checks if a NavigationPathElement element can be moved over other

NavigationPathElement in Navigation Path according to Table 5. Abstract

operation equals() checks if two NavigationPathElements are equal.

- Class ChangeBaseElement is a sub-class of NavigationPathElement and is used

for storing required (operator schema) information about identified Change Base

multidimensional operator. These required information are kept in two lists that are

attributes of the class. Attribute listFromTableAttributes stores information about all

dimensions from which we are changing to new ones stored in other attribute

listToTableAttirubutes.

- Class ProjectionElement is a sub-class of NavigationPathElement and is used for

storing required (operator schema) information about identified Projection

multidimensional operator. Required information is list of Measures (that can be

either TableAttribute either AggregationFunction as we explain in later in the section

about implementation) and is stored in listOfMeasures attribute.

- Class RollUpElement is a sub-class of NavigationPathElement and is used for

storing required (operator schema) information about identified Roll-up

multidimensional operator. Required information are three lists – list of measures (as

in previous class explained) stored in listOfMeasures attribute, list of table attributes

that identify dimension from which we are rolling up stored in

listOfFromTableAttributes attribute and list of table attributes identify dimension to

which we are rolling up stored in listOfToTableAttributes attribute.

- Class SelectionElement is a sub-class of NavigationPathElement and is used for

storing required (operator schema) information about identified Selection

multidimensional operator. Class‟s attribute clause stores information about the

predicate that represents the selection over dimensions.

58

- Class MACNode models a tree node according to data structure architecture

presented in the Section 4.3.1. In stores next information: attribute listOfElements

models list of either NavigationPathElements representing NP, either a one element

list of RawDataElement; attribute type stores information about the type of the node

(types of the node we can see in Figure 13 as MACNodeType); attribute parent

points at the parent node while attribute children which is a list of all nodes that are

children nodes. A node can be normalized with operation normalizeNode().

- Class MAC is a main class of the whole system and it models a whole MAC tree

according to data structure architecture presented in the Section 4.3.1. Class MAC in

attribute root stores information about root node which further on points to the

children which point to their children etc. Attribute allowOnlyIdDescriptors is a flag

that enables or disables selections over id descriptors of the dimensions. Operation

extractQueryToMAC() builds up a tree out of a SQL query and operation

normalizeMAC() normalizes obtained MAC.

Package gui (Figure 15) is a package created for visual presentation of the MAC obtained

from the query. As it was stated earlier, the main goal of this system is not to interact with the

user but to analyze user SQL queries, extract MAC and NMAC prepare them for future

exploitations so this package has is relatively simple just to present processing that is done. It

contains two classes:

- Class StartScreen that is first screen created for choosing the file with an SQL query

and request extraction of the MAC.

- Class MACPresentation that is the visualization for MAC tree created. (jgraph tool

was used for this tack)

Figure 15. GUI package

4.3.3 Format of the input and expected output

SQL is a declarative computer language and therefore many semantically same queries

can be expressed in various syntactical ways. It has a rich syntax that enables different

possibilities for manipulating data from the database. However, not all manipulations have sense

for multidimensional databases that are of our interest. For a SQL query to have a

59

multidimensional sense (to retrieve data that can be analyzed from a multidimensional

perspective), it has to derive multidimensional schema from the relational sources and possibly

apply some multidimensional operators working over that data cube. This brings up the need to

define the format of the SQL query that we expect as an input to our system. Note that system

does not check if the query makes multidimensional sense since there are already tools that do

that but the focus of this system is to identify multidimensional operators and construct MAC as

expected output.

The template query (also known as cube-query) for the relational database management

system that makes multidimensional sense according to [16] is:

SELECT l1.ID, …, ln.ID, [F (] c.Measure1 [)], …

FROM Cell c, Level1 l1, …, Leveln ln

WHERE c.key1=l1.ID AND … AND c.keyn=ln.ID [AND li.attr Op. K]

[GROUP BY l1.ID, …, ln.ID]

[ORDER BY l1.ID, …, ln.ID]

“Cell” in this SQL query represents set of measures (from the fact table) related to one

level for each of its associated dimensions of analysis. The FROM part of template query contains

the “Cell table” and the “level tables”. These tables are properly linked in the WHERE part of

template query. Additionally, the WHERE part of template query can also contain logic clauses

restricting a specific level attribute (i.e. a descriptor) to a constant K by means of a comparison

operator (i.e. equality, inequality, major, minor, etc.). The GROUP BY part of template query

shows the identifiers of the levels used to aggregate data. Those columns in the grouping must

also be selected in the SELECT part of the template query in order to identify the result (i.e. we

must select the multidimensional base to give rise to the multidimensional space). Finally, the

ORDER BY clause sorts the output of the query by these identifiers.

In [16] authors introduce this query template as a model for retrieving a Cell (explained

at the beginning of previous passage). However, we can take advantage of this query template so

that it can be exploited additionally to identify multidimensional operators in the query (check

Section 3.1.1 for further details about multidimensional operators). Note that according to [16]

this query template covers all possible multidimensional queries.

As an expected output for an input that meets this query template is a MAC and further

on NMAC. Our system identifies one by one UnaryElement, creates needed MACNodes and

builds up MAC (from those nodes) which can then be normalized. Normalized MAC represents

60

systematically organized and ordered structure that has a much deeper semantic than just a pure

syntactical information about the parts of the query. It keeps information about user‟s behavior

when analyzing query and extracts pure meaning of an SQL query (as already mentioned several

SQL queries can have same result, this way we can identify that they are the same). By user‟s

behavior we consider user way of analyzing data cube by changing granularity of data (for

example of Figure 6, going from month to year), selecting only certain subsets of data (for

example of Figure 6, checking only January values), projecting only some measures (for example

of Figure 6, showing only the certain product, only graphic cards in case of an IT store) etc. As

we can see, as an output of the system we expect normalized MAC with all the accompanied

benefits.

4.4 Implementation

Important complement of any new approach which complements its theoretical part

certainly is its practical realization. It supports theoretical concepts, demonstrates the results and

validates its functionalities. Implementation can improve and supplement the theory and finally

represent the overall result. However, bad implementation can also cast shadow on a good

theoretical basis. That is why practical realization of one approach has to be considered as an

important part of one potential innovation in the field of work, but it needs to be carefully

assessed with all its limitations and properties that can have both positive and negative aspects to

the whole project.

Taking into account everything previously said we need to outline some of the basic

characteristics of the settings related to this implementation. While features such as technology

and tools used we present later in their dedicated sections, here we first note some less technical

properties. Once again, an important characteristic of this project is that it is research oriented.

Regarding to the implementation it means that system that we are developing is not some

ordinary routine where the steps are totally defined but it is just opposite. While implementing the

parts of the system we face many new challenges and unpredictability that need to be dealt with.

This implies many trial iterations (that are time consuming) needed for reaching final solution

presented. Further on, this system is developed by one student with the assistance of his

professors. Time period of one semester was just enough to realize the functionalities we did

(bear in mind also the time overhead needed for understanding and working on theoretical part of

this thesis) but there are still many possibilities for further development and upgrade.

61

This chapter further on presents used tools and technology, explanations of some

important coding elements and finally also very important part of obstacles encountered during

implementation together with the corresponding solutions.

4.4.1 Technology

Technology that was used for implementation of the system is Java. Information about

Java we can find at many sites and our brief introduction is written according to [22]. Java is a

programming language originally developed by James Gosling at Sun Microsystems. It was

released in 1995 as a core component of Sun Microsystems‟ Java platform. Much syntax of the

language derives from C and C++ but Java has a simpler object model and fewer low-level

facilities. Java applications are typically compiled to bytecode (class file) that can run on any Java

Virtual Machine (JVM) regardless of computer architecture. Java is general-purpose, concurrent,

class-based, object-oriented language that is specifically designed to have as few implementation

dependencies as possible. It is intended to let application developers “write once, run anywhere”.

Java is currently one of the most popular programming languages in use, and is widely used from

application software to web applications.

There are five primary goals in the creation of the Java language:

 It should be “simple, object-oriented and familiar”.

 It should be “robust and secure”.

 It should be “architecture-neutral and portable”.

 It should be execute with “high performance”.

 It should be “interpreted, threaded and dynamic”.

With all these principles java is suppose to provide flexible and powerful solutions for

various needs including our system.

4.4.2 Tools

Tools are important factor of every implementation. Efficiency of project development

depends quite a lot from their possibilities and their user friendliness. As it is well known many of

the software solutions are not free. Because of that for an academic project like this we have to

search for available tools that we are allowed to use without any charges. Further on we present

the tools that we have used for the implementation.

62

4.4.2.1 NetBeans IDE

NetBeans IDE is the original Java integrated development environment (IDE). It supports

development of all Java application types out of the box. It is a designed as a modular developer

tool for a wide range of development tasks. Modules also allow NetBeans to be extended. The

base IDE includes an advanced multi-language editor, debugger and profiler integration, file

versioning control, and unique developer collaboration features. It has a nice GUI builder which

makes easier developing interface for the user. Overall it is stabile and well-supported IDE and as

such it was used for building our system.

4.4.2.2 JSQL Parser

JSQL parser is a tool used for parsing SQL statements which are then translated into a

hierarchy of Java classes. Then, we copy information needed from JSQL parser‟s hierarchy of

Java classes into our classes presented in the Section 4.3.2. This is a very important part of the

system since it is necessary prerequisite. It can influence system‟s performances. Creating an

SQL parser would take a lot of time so it was absolutely necessary to find such a tool. Other SQL

parsers that we found were either commercial either not usable and more about that issue we

discuss in Section 4.4.4.

This JSQL parser has proven to be efficient enough but it is not very well documented.

There is some java documentation of classes and packages but it is poorly explained if explained

at all. The most helpful were the examples provided but they also lack of comments. Since there

is a plan for future work on this system it would be very useful to explain and make some

instructions how this parser works. Nevertheless, I spent many days trying to discover and figure

out how this parser works and how can it be used for this systems implementation so in that way

it is also the part of the development process.

JSQL parser uses Visitor Pattern for navigation over the generated hierarchy. Therefore

we shall first talk about this pattern and then later explain how to use it for obtaining required

information.

4.4.2.2.1 Visitor Pattern

In object-oriented programming and software engineering, the visitor design pattern is a

way of separating an algorithm from an object structure it operates on. A practical result of this

separation is the ability to add new operations to existing object structures without modifying

those structures. It is one way to easily follow the open/closed principle.

63

In essence, the visitor allows one to add new virtual functions to a family of classes

without modifying the classes themselves; instead, one creates a visitor class that implements all

of the appropriate specializations of the virtual function. The visitor takes the instance reference

as input, and implements the goal through double dispatch.

While powerful, the visitor pattern is more limited than conventional virtual functions. It

is not possible to create visitors for objects without adding a small callback method inside each

class. In naive implementations, the callback method in each of the classes is not inheritable.

Figure 16. Visitor Pattern

Schema of visitor pattern we can see in Figure 16. A user object receives a pointer to

another object which implements an algorithm. The first is designated 'element class' and the

latter 'the visitor class'. The idea is to use a structure of element classes, each of which has an

accept() method taking a visitor object for an argument. visitor is a protocol (interface in Java)

having a visit() method for each element class. The accept() method of an element class calls

back the visit() method for its class. Separate concrete visitor classes can then be written to

perform some particular operations, by implementing these operations in their respective visit()

methods.

One of these visit() methods of a concrete visitor can be thought of as a method not of a

single class, but rather a method of a pair of classes: the concrete visitor and the particular

element class. Thus the visitor pattern simulates double dispatch in a conventional single-dispatch

object-oriented language such as Java.

The visitor pattern also specifies how iteration occurs over the object structure. In the

simplest version, where each algorithm needs to iterate in the same way, the accept() method of a

container element, in addition to calling back the visit() method of the visitor, also passes the

visitor object to the accept() method of all its constituent child elements.

64

Because the visitor object has one principal function (manifested in a plurality of

specialized methods) and that function is called visit(), the visitor can be readily identified as a

potential function object. Likewise, the accept() function can be identified as a function

applicator, a mapper, which knows how to traverse a particular type of object and apply a

function to its elements.

4.4.2.2.2 Usage of JSQL parser in the system

To obtain required information from the SQL query parsed by JSQL parser, it is needed

to implement appropriate visitors (according to visitor pattern‟s organization) that visit classes in

the hierarchy which contain the information we need. Moreover, since we have specified the

format of the expected input file, we do not need to implement all methods of the visitor classes

but just the one‟s that obtain the subset of information defined by input file format. Basically, our

main goal here is to transform the information from JSQL format of storing data (according to its

Java class hierarchy) to our format according to our system design.

First of all, we need to create an instance of CCJSqlParserManager class and then to

invoke its method parse(). If parse() method returns instance of PlainSelect class or Union class

then we go further on extracting the information from this class. PlainSelect class is a class that

keeps information about one SQL query without union, while Union class stores information

about several PlainSelect classes that are related by union. Further on we extract information

(that is needed according to Section 4.4.3) from these classes by visitors that we explain in next

passages.

From the SELECT part of an SQL query we extract two lists, a list of all table attributes

and a list of aggregation functions that appear. For this task we create SelectPartVisitor class

that implements two Visitor interfaces, SelectItemVisitor and ExpressionVisitor. From the

SelectIemVisitor we implement the method visit(SelectExpressionItem selectExpressionItem) for

visiting one SelectExtpressionItem because the instances of table attributes and aggregation

function that we need are contained in this class. This method reaches for the Expression class

instance that is class attribute of the SelectExtpressionItem and forwards it reference to the

same SelectPartVisitor instance (reference “this” in java) by calling its accept() method. Then

finally methods visit(Function aggregationFunction) or visit(Column column) that are part of the

ExpressionVisior interface are called to obtain needed information about aggregation function or

table attribute respectively and information. Our implementation adds this information to the

corresponding list.

From the FROM part of an SQL query we extract the list of tables that appear. For this

task we create FromPartVisitor class that implements FromItemVisitor interface. We

65

implement two methods of this interface, visit(Table table) and visit(SubJoin sj). First method

extracts name of the table and puts it into a list. Second method, visit(SubJoin sj), is for the case

when we have more than one table. The JSQL parser the case when we have “table1, table2”

stores as a Join class marked as simple. Then we extract the left and right part of that class and

forward them again the same FromPartVisitor reference until we reach the tables that we then

visit with visit(Table table) method that we have previously explained.

From the WHERE part of an SQL query we extract two list, list of joins between the

tables and a list of predicates (Clause class instances). For this task we create WherePartVisitor

that implements ExpressionVisitor interface because everything that is found in WHERE part of

the SQL query is considered as one large complex expression. Then by implementing appropriate

methods we divide this complex expression bit by bit until we reach the expressions that can be

either joins between tables or clauses over some table attribute. Methods visit(AndExpression

expression) is recursively called and in each call it divides complex expression to the left and

right part of a and-expression until we reach the expressions that are either joins between the

tables, either predicates. When it reaches join or predicate, then it invokes appropriate visit that

can be: visit(EqualsTo expression), visit(GreaterThan expression), visit(GreaterThanEquals

expression), visit(MinorThan expression), visit(MinorThanEquals expression), visit(NotEqualsTo

expression). Method visit(EqualsTo expression) extracts information either about joins if both

arguments of equal expression are table attributes, either predicate equal to. All other methods

visit corresponding predicates. Additionally, we implement two important methods used in

previous ones, one for checking if a expression is a join and other that checks if a method is a

simple predicate (clause).

From the GROUP BY part of an SQL query we extract a list of table attributes. For this

task we create GroupByVisitor class which does not implement any visitor but since it does

similar task as previous ones we named it that way. This class has a method visitGroupBy(List

list) which goes through the list of table attributes obtained from JSQL parser and stores it in

structure needed by the system.

Last class that is mentioned in this section is InformationManager. It represents a

centralized point which uses all previous classes for extracting information from a SQL query (by

using JSQ parser) and stores their output. In its constructor InformationManager gets the

PlainSelect class instance that it processes by calling class‟s methods for extracting information

about each part of the SQL query that we are interested in. These methods using above presented

visitor classes for achieving their task. Than afterward we get all the information for further

processing and analysis from InformationManager. Note that InformationManager is used

66

only for PlainSelect and if we have a Union than we need to have one InformationManager for

each PlainSelect of the Union.

4.4.2.3 Visual Paradigm for UML

Since the UML was used for the modeling of this system some UML tool was obviously

needed. Visual Paradigm for UML (VP-UML) is a UML CASE Tool supporting UML 2, SysML

and Business Process Modeling Notation (BPMN) from the Object Management Group (OMG).

In addition to modeling support, it provides report generation and code engineering capabilities

including code generation. It can reverse engineer diagrams from code, and provide round-trip

engineering for various programming languages. Its Community Edition is free made for non-

commercial use and as so it was used for most of the UML diagrams in the document.

4.4.2.4 JGraph

JGraph is a Java graph visualization library. It is an open source Swing component that

we used for visualizing data structures in our project. Nice layouts for automatically positioning

of the diagrams are provided. One of them is a layout for tree structure which is considered as a

special kind of graph (graph that has certain restrictions). Because of this, JGraph very much

corresponded to the needs of MAC tree visualization in our system.

4.4.3 Coding

Design of the system we have already seen in the Section 4.3.2 and here we focus on

some important implementation parts specific for the framework. The goal of this section is to

give an idea of how system works in a little more detailed way. We outline the methods that

contain main system‟s logic.

Before going to the explanations of the methods we need to note one structural detail. In

this implementation the tree representing MAC is implemented as n-ary tree. This solution is

more flexible and better fits the way how JSQL parser is working. It should be easy in the future

to restrict the number of nodes to only two if needed.

After we have earlier seen design of the system with special emphasis on the data

structures for storing information about MAC and also how we use JSQL parser for extracting

information from an SQL query now we show how to connect these two points. We explain how

to exploit the information about parsed queries to identify multidimensional operators plus raw

67

data and then build MAC. Identifying of the multidimensional operators is done in several

methods of MAC class:

 rawDataIdentificaton() – this method identifies RawDataElement by a list of tables

from the FROM part of a SQL query obtained from InformationManager instance.

 rollUpIdentification() – this method takes next input parameters: current Node of the

MAC, list of Group By table attributes, list of functions from the SELECT part of a

SQL query and a list of table names of FROM part of a SQL query. With these input

parameters it identifies RollUpElements as shown in Figure 17. If the GROUP BY

part of a SQL query exists it means that all dimension level identifiers will be

included there and that there are certainly related aggregation functions in the

SELECT part. Otherwise, without GROUP BY part of a SQL query, we can still have

Roll up operator identified if there aggregation functions exist in the SELECT part.

Figure 17. Roll-up identification

68

 changeBaseIdentification() – this method takes next input parameters: current Node

of the MAC, list of Group By table attributes and a list of table attributes from the

SELECT part of a SQL query. With these input parameters it identifies

ChangeBaseElements as shown in Figure 18. Important characteristic to notice is

that if we have RollUpElements identified before ChangeBaseElement we know

that table attributes to which we are rolling up (of the RollUpElements) need to be

present in the table attributes of the from base of ChangeBaseElement.

Figure 18. Change Base identification

 selectionIdentification() – this method takes next input parameters: current Node of

the MAC, list of clauses from WHERE part of a SQL query and a list of table

69

attributes from the SELECT part of a SQL query. With these input parameters it

identifies SelectionElements as shown in Figure 19.

Figure 19. Selection identification

 projectionAndDrillAcrossIdentification() – this method takes next input parameters:

current Node of the MAC, list of functions from the SELECT part of a SQL query

and a list of table attributes from the SELECT part of a SQL query. With these input

parameters it identifies ProjectionElements and DrillAcrossElement as shown in

Figure 20. These to types of elements are identified together because

DrillAcrossElement is identified if we have more than one ProjectionElements,

while one ProjectionElement is contains measures belonging to the same table.

70

Figure 20. Projection and Drill Across identification

By using all these method we extract MAC in MAC class‟s method

extractQueryToMAC(). This method first creates InformationManager (for details turn to

Section 4.4.2.2.2) and then uses information that it provides to parameterize and invoke above

mentioned methods. As we saw all methods except the last one add UnaryElements to the

current node. The method projectionAndDrillAcrossIdentification() creates new node because of

n-ary DrillAcross node. Further on, in method extractQueryToMAC() in case of a union it creates

new n-ary Union node with corresponding children nodes that are actually queries parsed by the

same method in a recursive call. This way, the tree MAC structure is built.

71

When MAC of a SQL query is extracted the next step is to normalize it. Since it is an

important process in this system we make a general overview of it with more detail illustrations in

the form of action diagrams or pseudo code when needed. The steps of the normalization process

are:

 First, normalizeMAC() method of MAC class is invoked. This is a simple method

that invokes the root node‟s method normalizeAllNodes().

 Method normalizeAllNodes() make a postorder traversal of all its child nodes and

invokes their normalizeNode() method:

normalizeAllNodes()

Begin

if node has children nodes

for each child node

normalizeAllNodes()

end_for

 end_if

 normalizeNode()

End

 Method normalizeNode() invoked from normalizeAllNodes() is shown in Figure 21.

 Method normalizeNode() invokes several methods to do the need checkups before

moving elements. Methods that need to be pointed out are normalizeNP() (we have

the invoke of this method in Figure 21) and method switchElements() that is invoked

from the method normalizeNP().

 While the logic of normalizing n-ary nodes is mainly concentrated in the method

normalizeNode() itself, normalizing of the unary nodes is placed in the method

normalizeNP() that is invoked from normalizeNode() method. Method normalizeNP()

goes through the list of node‟s elements from the root-side to leaf-side and switch

elements places if possible according to the Table 5. This switching of elements

places is done by invoke of switchElements() method. However one specific case

important to mention is when this method tries to switch places of two

ProjectionElements. In addition to not exchanging their places (check Table 5) it

will remove leaf-side ProjectionElement since it does not make sense to have two

ProjectionElements in one NP of a NMAC.

 Beside just the routine switching of elements places, method switchElements() does

one more important action. When it switch place of a RollUpElement and

ChangeBaseElement it changes the schema of the ChangeBaseElement to make it

possible for these two elements to switch their places. For this change both elements

72

need to deal with same dimensions. In case of moving RollUpElement over

ChangeBaseElement it changes all the attributes of same dimension in the

ChangeBaseElement with the input attribute(s) of same dimension belonging to the

RollUpElmenet. In case of moving ChangeBaseElement over RollUpElement it

changes all the attributes of same dimension in the ChangeBaseElement with the

output attribute(s) of same dimension belonging to the RollUpElmenet.

Figure 21. Method normalizeNode()

73

One more feature of this system that is important for future upgrades is possibility to get

data cube after each multidimensional operator effect. All UnaryElements that represent

multidimensional unary operators together with raw data element implement method getCube()

that returns the current data cube after the effect of the multidimensional operator or output of the

raw data element. Multidimensional unary operators as an input take previous data cube, while

raw data element does not need any input. The effect of the method according to the element it

belongs to is:

 RawDataElement – it return the list of primary keys of all tables contained.

 ProjectionElement – it removes all the projected measures from the input data cube

and adds its measures.

 RollUpElement – it removes all table attributes that represent identifier of the level

from which it rolls up and adds all table attributes that represent identifier of the level

to which it rolls up.

 SelectionElement – it does not changes data cube

 ChangeBaseElement – it removes identifiers of previous dimensions and adds new

dimension identifiers.

To obtain previous data cube each element, except RawDataElement, invokes its parent‟s

node getPreviousCubeOfNode() method. This method depending from the type of the node and

position of the element returns data cube of previous element. Obviously this method always

recursively goes to the raw data elements and then step by step applies the effects of the elements

in between. However there are specificities that need to be pointed out:

 If there is an element in the node previous to the current element which invokes

getPreviousCubeOfNode() node returns the data cube returned by the previous

element.

 If there is not a previous element in the node then obtaining of previous data cube

depends from the node type. If the current node type is UNARY then from the first

non empty offspring node it returns the root-most element‟s data cube. If the current

node type is UNION then from the first non empty offspring node it returns the root-

most element‟s data cube but with the check if all the children nodes return the same

data cube. If the current node type is DRILL_ACROSS then it returns the data cube

made by merging data cubes of all the children in data cube which has the

dimensions of one data cube (note that these dimensions have to be the same for all

the children‟s data cubes) and the measures coming from all children‟s data cubes.

Before doing this, check if all the children‟s data cubes are compatible is done.

74

4.4.4 Obstacles and solutions

While working on a research project we usually encounter some problems and obstacles.

These issues that are technical or topic related affect our research process in timing, feasibility,

quality, cost and many other aspects. As such, they are integral part of a project and should be

mentioned and discussed. While cost aspect we analyze in a chapter dedicated especially for it,

here we present the rest of the issues together with the corresponding solutions.

First obstacle encountered was finding a good SQL parser. There were three SQL parsers

that we considered: DTP parser, General SQL parser and JSQL parser. Out of all these options

DTP parser seemed as a most serious and powerful solution. Project leader for the platform to

whom DTP parser belongs to is a person working for IBM so that fact seemed really promising.

The documentation was really poor but still we decided to try to use it. This parser is a plug-in for

Eclipse platform and this required additional time needed for first getting acquainted with this

platform. After becoming familiar with the platform the setting of the plug-in with this parser was

easy. However, including of the parser into a project happened to be very much undefined

procedure. There was no option of including plug-in into project and no help or some other

documentation or example of how to use it. This was solved by including all the files from the

plug-in folder but then new problem arise. Still some .jar file was reported missing and after

many hours of web search instructions how to solve this were found on some forum. Finally

everything seemed as ready for use, even some UML documentation of the structures used by

parser was found, but it turned out that a parser cannot be used for our project. It did not enable

access to the data structures where it keeps information about the parsed queries. This switched

our attention to the other two remaining parsers. The General SQL parser worked really nice but

since it is a commercial product it had some limitations for non-commercial use so we could not

use it either. The last option was JSQL parser which had some note that it is slow at first parsing

and we needed I fast parser so this was not promising solution. However, it turned out to be fine

and efficient parser and it is in detail presented in Section 4.4.2.2. It is possible to use it with

NetBeans IDE with which was very convenient for us so the problem was finally solved although

a time overhead was again needed for acquitting with this last chosen parser. That is the main

reason for an exhaustive explanation of the parser and its usage in Section 4.4.2.2.

After this technical obstacle that is not directly related to the thesis but more to the

prerequisites for working on the thesis, now we present important obstacles emerged while

working on the system.

Main obstacle while developing this system was absence of the information about the

database schema. We only had the SQL query text and information it contains. This brought out

75

the problem of distinguishing dimensions from measures, and also of distinguishing id descriptors

from non-id descriptors. However, there are certain rules for a SQL query that helped us deal with

this issue. First, if the SQL query has a GROUP BY part it enables us to identify all the id

descriptors of the dimensions because they have to be included in it. Also, in that case measures

will be aggregated in the SELECT part of the SQL query. When the query does not contain the

GROUP BY part then we introduced the assumption that all the measures will have the “M_”

prefix before the name of the attribute. These rules enabled us to overcome these problems.

Nevertheless there were still some open issues coming from this absence of database schema.

Next issue was the lack of information about the universal relation which consists of all

the tables of the database schema and also the lack of information about the primary keys of the

tables. This situation made problems for identifying the multidimensional operators. The solution

for this issue was introduction of so-called “phantom” values. This “phantom” value was used to

represent primary key of the table like for example “table_name.phantom” where it marks the

primary key of the table with “table_name”. Also, when we needed to use a universal relation of

all tables, since we did not know all included tables due to a lack of database schema, we

introduced “phantom.phantom” value for simulating it. These solutions enabled further work on

the system. In future, with the introduction of the database schema, these phantom values will be

changed with appropriate values.

The last solution found for solving the problem of the absence of the database schema

information was that it is required to have table name alias in front of the table attribute name

(which is sometimes the case even when the schema information is considered). Again, this

requirement comes from the process of identifying the multidimensional operators in SQL

queries. This enables us to detect the table of the table attribute even without the information

about the database schema.

New obstacle that arose while working on the normalization of the MAC was a situation

when Change Base operator and Roll up operator could not exchange places because of structural

conflict even though they should be able according to their meanings. Solution for this situation

was change of the operator schema of the Change Base operator so it would not get in conflict

with Roll up operator and at the same time would not change the final outcome of the application

of both operators. Details about this procedure can be found in Section 4.4.3.

Many more difficulties arose when dealing with identification of multidimensional

operators but it would not make sense to list them all here. The solutions to these problems we

have had the chance to see in previous sections as the final system realization. Normalization also

76

brought equally numerous issues and the solutions are also already provided as the final system

realization.

All these obstacles illustrate the overall complexity of the process of MAC identification

and normalization. They helped in even better understanding and improvement of the framework.

It seems that from this point on process of query recommendations would be something clear and

defined. By obtaining NMAC from the queries we managed to extract essential information about

multidimensional operators in queries and query sessions and store that information in a

structured and organized way so it may be further exploited for various use.

4.5 Testing

Important phase in every software project certainly is testing. For the testing of the

system various testing techniques can be used. According to [23], these test techniques include,

but are not limited to, the process of executing a program application with the intent of finding

errors or other defects.

Software testing can also be stated as the process of validating and verifying that a

software program:

 meets the business and technical requirements that guided its design and

development,

 works as expected and

 can be implemented with the same characteristics.

Software testing can be implemented at any time in the development process. However,

most of the test effort occurs after the requirements have been defined and coding process has

been completed. As such, the methodology of the test is governed by the software development

methodology adopted.

A primary purpose of testing is to detect software failures so that defects may be

discovered and corrected. This is a non-trivial pursuit. Testing cannot establish that a product

functions properly under all conditions but can only establish that it does not function properly

under specific conditions. The scope of software testing often includes examination of code as

well as execution of that code in various environments and conditions as well as examining the

aspects of code: does it do what it is supposed to do and do what it needs to do. In current culture

of software development, a testing organization may be separate from the development team.

77

There are various roles for testing team members. Information derived from software testing may

be used to correct the process by which software is developed.

Considering that for the testing of this system we use both white box techniques since the

testing is done by the developer who already knows the systems algorithms and data structures,

but the test are conducted by the principles of black box techniques – for a given input check the

output, we can say that we used grey box testing. Grey box testing involves having knowledge of

internal data structures and algorithms for purposes of designing the test cases, but testing at the

user, or black-box level.

Regarding to the testing levels present levels are unit testing, integration testing and final

system testing depending from the stage of development.

Unit testing, also called component testing refers to tests that verify the functionality of a

specific section of code, usually at the function level. In an object-oriented environment, this is

usually at the class level, and the minimal unit tests include the constructors and destructors. In

the case of this system unit testing is conducted to check the classes (visitor classes) needed for

the work with JSQL parser. For the input .sql files, it is checked whether those classes extract

needed information. These classes are basically independent of each other so this is appropriate

testing.

As further developing the system, besides unit testing (if possible) of new classes

integration testing is necessary since the classes now depend one from another. Integration testing

works to expose defects in the interfaces and interaction between integrated components.

Progressively larger groups of tested software components corresponding to elements of the

architectural design are integrated and tested until the software works as a system.

Finally, system testing is conducted as testing of completely integrated system to verify

that it meets its requirements. For this system requirements can be found in Section 4.2.

Test cases used for the testing of the systems are designed in gradual order. Input .sql

files must comply with expected input format presented in Section 4.4.3. and respect the syntax

rules of SQL language (for example, if we have a GROUP BY clause, we must have at least on

aggregation function in SELECT part of a SQL query and all other arguments in that SELECT

PART except aggregation function(s) must be included in GROUP BY clause and similar rules).

By gradual order of the test cases we consider gradual including of multidimensional operators in

the tests, first unary and then binary multidimensional operators (for example, Union

multidimensional operator we include the last in the test cases). After gradual inclusion of all

multidimensional operators, next important step in creating is mixture of different

multidimensional operators and their order. This is especially important for the testing of the

78

normalization algorithm. This arranged set of test cases used in previously explained way

represents chosen technique for testing of the system. General organization of testing process is

illustrated in Figure 22.

Figure 22. Testing process illustration

79

5 User manual and Demo

This chapter presents the guide for usage of the application‟s GUI. At the same time, this

chapter represents the system‟s demo since it is based on a typical SQL query and all the

functionalities of the system are presented.

For the running example in this chapter, the input file “Union.sql” contains next sql

query:

SELECT date_dim.d_month_seq, customer_dim.state, SUM(catalog_sales.cs_quantity)

FROM catalog_sales, date_dim, customer_dim

WHERE catalog_sales.cs_sold_date_sk = date_dim.d_date_ski AND

 catalog_sales.cs_customer_id = customer_dim.c_customer_id AND

 date_dim.d_month_seq = 'january' AND

 customer_dim.state = 'Spain'

GROUP BY date_dim.d_month_seq, customer_dim.state

UNION

SELECT date_dim.d_month_seq, customer_dim.state, SUM(catalog_sales.cs_quantity)

FROM catalog_sales, date_dim, customer_dim

WHERE catalog_sales.cs_sold_date_sk = date_dim.d_date_ski AND

 catalog_sales.cs_customer_id = customer_dim.c_customer_id AND

 date_dim.d_month_seq = 'january' AND

 customer_dim.state = 'Sweden'

GROUP BY date_dim.d_month_seq, customer_dim.state;

This query retrieves total quantity of items sold by catalog sale, for month January and

countries Spain and Sweden.

In Figure 22, we see a start up screen that appears when starting the application.

80

Figure 23. Start up screen

In start up screen user should choose the .sql file that contains SQL query for which she

wants to extract MAC. This can be done either by textual entering the file‟s absolute path, either

by clicking on a “Browse” button. When clicking on a “Browse” button screen in Figure 23

opens.

Figure 24. Browse screen

 Now, user can chose the file and click on button “Open”. Next, after choosing file in one

of the two possible ways user should press button “Extract MAC” shown in Figure 22. This press

of a button opens a new screen shown in the Figure 24. User can resize the screen to fits the size

of the tree, or use the scroll bars for seeing different parts of it. Regarding to the demonstration

part, here we can see the extracted MAC for a running example query.

81

Figure 25. MAC screen

After seeing the visualization of the extracted MAC, user is able to also see visualization

of the same MAC after normalization. For this, user needs to click on the button “Normalize”

shown in Figure 24. Visualization of normalized MAC or NMAC is shown in Figure 25.

Regarding to the demonstration part, here we can see MAC after normalization for a running

example query.

82

Figure 26. NMAC screen

As we earlier sad, this system is designed as a batch process so this GUI is just for the

presentation purposes to illustrate the results.

83

6 Project costs

This chapter presents the project cost. To provide through discussion about the cost of the

project we shall first analyze the initial plan of the project. Then right after we present final

project organization. From these two perspectives we assess the outcome of the project through

the prism of project costs. Since this is a research project, phases are specific and divided between

research (mostly theoretical) part and implementation (mostly practical) part. One more

particularity of research process is that some phases are more complex than expected and due to

that fax initial and final plan of the project differ a lot as it was the case in this project.

6.1 Initial project plan with estimated costs

As already said, first we present the initial project plan. This plan consists of next several

phases that were planed according to the theoretical basis of this project:

 State of the Art – this phase consists of research process focused on the most

important approaches currently existing related to the domain of our work.

 New approach – this phase consists of research process focused on the new approach

presented in this thesis.

 Technical prerequisites – this phase consists of search for and familiarization with the

new tools required for the development.

 Prototyping – this phase considered the implementation of a system that had three

functionalities: identifying of MAC, normalizing of MAC, bridging of MACs. As

usually this phase consisted of sub phases:

o Requirements analysis

o Design

o Implementation

o Testing

 Documentation – this phase consists of documenting of whole process and all the

results and phases.

Corresponding to this organization of project phases expected time scheduling is presented in

Table 8. Project duration was five months.

84

Table 8. Initial time plan

Phase type Phase Time distribution

Theoretical
State of the Art 160 hours

New approach 160 hours

Practical

Technical prerequisites 70 hours

Requirements analysis 35 hours

Design 35 hours

Implementation 175 hours

Testing 35 hours

Documentation 70 hours

Total 740 hours

When assessing the costs of the project according to this plan we consider costs of human

resources i.e. job roles in this process and non-human resources. Estimated costs are presented in

Table 9 and Table 10 respectively.

Table 9. Planed human resources costs

Phase Job position Working hours Cost

State of the Art Researcher 160 160 * 30 = 4800

New approach Researcher 160 160 * 30 = 4800

Technical prerequisites Developer 70 70 * 20 = 1400

Requirements analysis Project manager 35 35 * 40 = 1400

Design System analyst 30 35 * 30 = 1050

Implementation Developer 175 175 * 20 = 3500

Testing Tester 35 35 * 15 = 525

Documentation Researcher 70 70 * 30 = 2100

Total 19575 €

85

Table 10. Non-human resources costs

Resource Cost

Notebook: Toshiba Satellite L655-1JK Intel-

Core i5-480M 2.66GHz 4096MB 640GB

Blu-Ray 15.6'' WXGA Win7P

850

Microsoft Office 2010 150

NetBeans IDE 6.9.1 0

JSQL parser 0

Visual Paradigm for UML 8.2 Modeler Edition 100

Total 1100 €

6.2 Final project plan with estimated costs

Final project plan and costs are presented in this section. Regarding to the phases of the

project they remained the same except the prototyping phase which does not include bridging sub

phase. This change is caused by changes in the time planning as shown in Table 11.

Table 11. Final time plan

Phase type Phase Time distribution

Theoretical
State of the Art 160 hours

New approach 180 hours

Practical

Technical prerequisites 140 hours

Requirements analysis 25 hours

Design 25 hours

Implementation 200 hours

Testing 35 hours

Documentation 70 hours

Total 835 hours

While the cost of non-human resources have not changed and have been as planed, the

human resources costs changed according to the changes in time planning (changed values are

bolded in Table 11). This changed final human resources costs are shown in Table 12.

86

Table 12. Final human resources costs

Phase Job position Working hours Cost

State of the Art Researcher 160 160 * 30 = 4800

New approach Researcher 160 180 * 30 = 5400

Technical prerequisites Developer 70 140 * 20 = 2800

Requirements analysis Project manager 35 25 * 40 = 1000

Design System analyst 30 25 * 30 = 750

Implementation Developer 175 200 * 20 = 4000

Testing Tester 35 35 * 15 = 525

Documentation Researcher 70 70 * 30 = 2100

Total 21375 €

6.3 Discussion

As it is obvious, the initial plans and final plans differ. Main reasons for this are

difficulties with finding suitable technical prerequisites (concretely SQL parser) and higher

complexity of the planed system functionalities. Realized functionalities required more time as it

can be noticed from the tables. Main obstacles that caused these deviations were already

mentioned in Section 4.4.4. Less time was needed for the requirements and design but more for

the implementation. Summarized cost comparison we can find in Table 13.

Table 13. Comparison of initial and final costs

 Human resources Non-human resources Total

Initial costs 19575 € 1100 € 20675 €

Final costs 21375 € 1100 € 22475 €

Difference 1800 € 0 1800 €

As obvious, final plan required more time (and costs) then it was planed. This can be

justified by unpredictability of research process in general. Final project cost more for 8,7% from

the initial planed price.

87

7 Conclusions

In this master thesis we have presented new approach for representing SQL queries and

query sessions in systematic, structured and normalized way. The starting aim of this thesis was

to reach the point of using this approach for generating query recommendations, however it

turned out that the task of representing query session itself is complex enough. Theoretical

framework standing as a basis of this approach is a sound foundation for practical work.

Nevertheless dealing with the analysis of the SQL queries for extracting the multidimensional

operators happened to be tedious task that required high efforts. Therefore realization of this work

is a great achievement since it opens many new possibilities for further development and

exploitation including query recommendation.

In Chapter 2, we have shown that current approaches in this field do not consider the

semantics of interconnection between the queries of the same session and that is so if they

consider interconnection at all. In those, rare cases this analysis is based on consideration of

database tuples retrieved by the query. This analysis lacks first on performance feasibility since it

deals with enormous data sets and more important, it lack in semantics considerations since two

very similar queries with different filtering condition may retrieve two disjoint sets of data. This

deficiency was tried to be compensated by analyzing query fragments and in such a way detect

similarity between queries even if they retrieve different data but again it lacks of semantics

because it is based on mainly syntactical analysis. It is well known that by using SQL two same

queries can be written in two different ways. Due to this current situation in this field, new

approach that is presented brings innovations for tackling this issue.

Chapter 3 presents this new framework. In today‟s world that is getting more and more

digitalized large decisional databases that capture large part of that digitalization process

represent new resources of modern society. Exploration of this wealth of data can bring great

benefits and useful information. However, navigating and exploring these huge decisional data

repositories is not routine neither easy task. Obliviously there is a need for capturing this

knowledge of significant and interesting spots in this “colorful picture” of data. The most

intuitive way for achieving this is capturing the information about the previous searches of users.

This brings us to the importance of capturing the user sessions that is analyzed in thesis. Its

theoretical part as a novel framework represents backbone of later developed system. Possibility

of extracting multidimensional operators out of analytical queries represents a powerful way for

88

gaining precious information about user behavior and also interesting parts of the decisional

database. Furthermore when these multidimensional operators are organized in a structured way

such as MAC and even more NMAC possibilities for exploitation widely extend. This is

something really worth of working on without emphasizing.

Chapter 4 gives one possible implementation of framework presented and by itself it

supports the theory with practical evidences. However, often it is not easy and straight forward to

translate theory into practice, neither was it this time. This was a challenging task but worth of

every effort. There were many obstacles due to the complexity of all included settings. Solving

these issues gives even more value to the developed system and testifies of framework feasibility.

Developing of such system is usually entrusted to a big development teams in large companies so

being able to contribute in these small but valuable way represents a great honor.

Chapter 5 represents a demonstration of developed system and illustration of the process

“under the hub”. At the same time it gives sufficient instructions on how to use system interface

and become familiar with it in just a short notice.

Chapter 6 presents us a potentially costs of this project and illustrates difficulties

occurred in a way of differences between initial and final plan. This overview gives a bit wider

perspective on this systems development and work on this master thesis in general.

7.1 General conclusions

This master thesis presents a promising novel approach for storing information about

SQL queries and query session. Throughout the thesis we tended to justify this statement. Query

recommendations are one possible way of exploiting information obtained by MACs and

NMACs. Storing NMACs of all queries posed in the system gives us concise set of information

about the usage of the system and enables us efficient handling of that information. In the context

of query recommendations, when a user poses a query the system should be able to detect the

similarity between current and previous queries based on the MACs and recommend similar

queries. Furthermore, depending from the recommendation algorithm system can even suggest

queries never posted based on the analysis of existing queries which can be important when

searching the decisional database for some unexpected information. For example, this can be

achieved by recommending new operators to be considered instead of queries. Recommender

systems are already very well developed in other branches of computer systems (such as web

applications) that use algorithms that could also be applied for decisional database system‟s

89

settings. Definitely, one thing is firm, that this approach brings freshness and novelties into the

emerging area of analysis of decisional databases.

7.2 Future work

The approach presented in this master thesis brings many promising and challenging

possibilities for future work. Beside already mentioned query recommendation this way of storing

queries can be exploited for query personalization by enabling the identification of user‟s interest,

query optimization, generating of user-oriented multidimensional databases and others.

Currently more important future work certainly relates to the presented system:

 Introducing the underlying system schema information is one of the first next

upgrades with all improvements and changes it brings.

 More detailed elaboration of bridging phase is needed followed by the realization of

the same.

 Analysis of input data over which the navigation is done in order to give different

context to same navigation over different data.

90

91

8 Bibliography

[1] Khoussainova, N., Balazinska, M., Gatterbauer, W., Kwon, Y., Suciu, D.: A case for a

collaborative query management system. In CIDR 2009: Proceedings of the 4th biennal

Conference on Innovative Data Systems (2009)

[2] Marcel, P., Negre, E.: A survey of query recommendation techniques for data warehouse

exploration. 7èmes journées francophones sur les entrepôts de données et l'analyse en

ligne (EDA 2011), Clermont-Ferrand, Juin 2011

[3] Chatzopoulou, G., Eirinaki, M., Polyzotis, N.: Query recommendations for interactive

database exploration. In SSDBM, pp. 3–18. (2009)

[4] Stefanidis, K., Drosou, M., Pitoura E.: "You May Also Like" Results in Relational

Databases. In PersDB. (2009)

[5] Akbarnejad, J., Chatzopoulou, G., Eirinaki, M., Koshy, S., Mittal, S., On, D., Polyzotis,

N., Swarubini Vindhiya Varman, J.: “SQL QueRIE Recommendations”, PVLDB. (2010)

[6] Khoussainova, N., Kwon, Y., Balazinska, M., Suciu, D.: Snipsuggest: Context-aware

autocompletion for sql. PVLDB 4(1), 22–33. (2010)

[7] Yang, X., Procopiuc, C. M., Srivastava, D.: “Recommending Join Queries via Query Log

Analysis”, ICDE (2009)

[8] Kimball, R., Reeves, L., Thornthwaite, W., Ross, M.: The Data Warehouse Lifecycle

Toolkit: Expert Methods for Designing, Developing and Deploying Data Warehouses.

John Wiley & Sons, Inc. (1998)

[9] Romero, O., Abello, A.: On the Need of a Reference Algebra for OLAP. In: DaWaK. pp.

99{110 (2007)

[10] Abello, A., Romero, O.: On-Line Analytical Processing. In: Liu, L., • Ozsu, M.T. (eds.)

Encyclopedia of Database Systems, pp. 1949{1954. Springer (2009)

[11] Abello, A., Samos, J., Saltor, F.: Y AM2 (Yet Another Multidimensional Model): An

extension of UML. Information Systems 31(6), 541{567 (2006)

[12] Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems. Prentice-Hall (2008)

[13] Lenz, H.J., Shoshani, A.: Summarizability in OLAP and Statistical Data Bases. In: Ninth

Int. Conf. on Scienti_c and Statistical Database Management (SSDBM). pp. 132{143.

IEEE Computer Society (1997)

[14] Weipeng P. Yan and Per-_Ake Larson: Performing Group-By before Join. In: ICDE. pp.

89{100. IEEE Computer Society (1994)

92

[15] Golfarelli, M., Rizzi, S.: Data Warehouse Design: Modern Principles and Methodologies.

McGraw-Hill (2009)

[16] Kimball, R., Reeves, L., Thornthwaite, W., Ross, M.: The Data Warehouse Lifecycle

Toolkit: Expert Methods for Designing, Developing and Deploying Data Warehouses.

John Wiley & Sons, Inc., (1998)

[17] Romero, O., Marcel, P., Abello, A., Peralta, V., Bellatreche, L.: Describing Analytitcal

Sessions Using a Multidimensional Algebra. 13th International Conference on Data

Warehousing and Knowledge Discovery. (2011) – to appear

[18] http://www.agilemodeling.com/

[19] http://agilemanifesto.org/

[20] http://en.wikipedia.org/wiki/Agile_software_development

[21] http://en.wikipedia.org/wiki/Batch_processing

[22] http://en.wikipedia.org/wiki/Java_(programming_language)

[23] http://en.wikipedia.org/wiki/Software_testing

[24] http://en.wikipedia.org/wiki/Requirements_analysis

http://www.agilemodeling.com/
http://agilemanifesto.org/
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Batch_processing
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Requirements_analysis

93

9 Glossary

 Agile software development – A group of software development methods based on iterative

and incremental development.

 Analytical query –All the queries that can be represented from the MD point of view.

 Business Intelligence (BI) – A broad category of applications and technologies for gathering,

storing, analyzing, and providing access to data to help enterprise users make better business

decisions.

 Data cube schema – It is a MD interpretation of the output produced by analytical query.

 Data structure – A particular way of storing and organizing data in a computer memory so

that it can be used efficiently.

 Data warehouse – A data warehouse is a centralized repository that stores data from multiple

information sources and transforms them into a common, multidimensional data model for

efficient querying and analysis.

 DB – Database

 DBMS – (DataBase Management System) Software that controls the organization, storage,

retrieval, security and integrity of data in a database. It accepts requests from the application

and instructs the operating system to transfer the appropriate data.

 Descriptor – A level attribute of one Dimension.

 Dimension – A points of view for analysis in analytical query. Dimensions contain an

aggregation hierarchy of levels representing different granularities (or levels of detail) to

study data.

 Fact – A subject of analysis in analytical queries.

 GUI – Graphic User Interface

 MAC – Multidimensional Algebraic Structure

 MD – Multidimensional

 MDA – Multidimensional algebra

 Multidimensional data model – Data model that is composed of logical cubes, measures,

dimensions, hierarchies, levels, and attributes.

 Measure – An attribute of one Fact.

 NMAC – Normalized Multidimensional Algebraic Structure

 NP – Navigation path

 OLAP – On-Line Analytical Processing (OLAP) is a category of software technology that

enables analysts, managers and executives to gain insight into data through fast, consistent,

interactive access to a wide variety of possible views of information that has been

transformed from raw data to reflect the real dimensionality of the enterprise as understood

by the user.

 Operator schema – Information that defines the effect of the MD operator over data cube

schema(s).

 Query session – Several queries posed by the same users, expected to be mutually correlated.

 Tuple – An ordered set of values

 UML – Unified Modeling Language

