

Master in Computing

Master of Science Thesis

Integration of

Multidimensional and ETL design

Petar Jovanovic

Advisor/s: Dr. Alberto Abelló Gamazo
 Dr. Oscar Romero Moral

June, 23rd 2011.

iii

Acknowledgements

These lines I want to dedicate for giving my thanks to all people without who this thesis would have not
beeen possible.

I want to thank my thesis advisors, professors Alberto Abello and Oscar Romero, first for believing in me
and for giving me the opportunity to work with them on this novel approach, and then for being a great
help during my work, with their constant patience, useful advices and suggestions. I am especially
grateful to them for encouraging me to think wider about the problems and to delve deeper to find the
right and quality solutions.

I also thank professor Oscar Romero and Daniel Gonzalez for cooperation and great help during the
integration process of the GEM system.

My thanks also go to my friends who, during the rough moments, cheered me up and gave me the
strength to go on.

However, my deepest gratitude I owe to my parents who gave me the chance to even be at this place
and who supported me the most through all my life and education. I hope I will give them the reason to
be proud of me. My special thanks go to my sister for always being there to encourage me and to make
me believe in myself and my work.

iv

v

Index

1. Introduction .. 1

1.1. Starting point .. 3

1.2. Motivation and Objectives .. 5

1.3. Scope of the project .. 5

1.4. Structure of the document ... 6

2. The State of the Art ... 7

2.1. Introduction .. 8

2.2. Objectives .. 9

2.3. Content and structure ... 9

2.4. Early attempts ... 9

2.5. Ontology-based approaches ... 13

2.6. Conclusion ... 16

3. New approach - Requirement-driven Generation of ETL and Multidimensional Conceptual
Designs .. 17

3.1. GEM Framework ... 17

3.1.1. GEM Inputs .. 17

3.1.1.1. Source data stores .. 17

3.1.1.2. Source Mappings ... 22

3.1.1.3. Business requirements .. 27

3.1.2. Stages inside the GEM framework .. 32

3.1.2.1. Requirement Validation .. 32

3.1.2.2. Requirement Completion.. 35

3.1.2.3. Multidimensional Validation ... 39

3.1.2.4. Operation Identification.. 40

3.2. My contributions to the GEM framework .. 41

4. GEM development .. 43

4.1. Development Method ... 43

4.1.1. Agile Software Development Methods ... 43

4.1.2. Agile suitability to GEM development .. 44

4.1.3. Reasons for choosing Agile and Scrum ... 45

4.1.4. Scrum adaptation to the GEM development methods .. 46

4.2. Generally used technologies ... 48

4.2.1. Visual Paradigm for UML .. 48

4.2.2. Java .. 48

4.2.3. Net Beans 6.9.1 as development environment – IDE ... 48

4.2.4. XML as input format.. 48

4.2.5. OWL Web Ontology Language .. 49

4.3. Incremental development of GEM features ... 49

4.3.1. 1st iteration - Reading and extracting of the inputs .. 51

4.3.2. 2nd iteration – Requirement Validation .. 60

4.3.3. 3rd iteration – Requirement Completion... 67

4.3.4. 4th iteration – Integration of the MDBE system .. 73

4.3.5. 5th iteration – Integration of the Operation Identification stage 77

4.3.6. 6th iteration – Graphical User Interface .. 84

4.4. Testing ... 86

vi

4.4.1. TPC-H ... 87

4.4.2. Adapting TPC-H schema for testing inputs ... 87

4.4.3. Unit (Modular) testing .. 89

4.4.4. Integration testing .. 93

4.4.5. System testing ... 95

5. Cost of the project .. 97

5.1. Project Length ... 97

5.2. Research resources ... 100

5.3. Hardware resources .. 100

5.4. Software resources ... 101

5.5. Human resources .. 102

5.6. Office resources .. 102

6. Conclusion ... 105

6.1. Future work ... 106

7. References... 107

Appendix A Framework demo and user manual .. 109

A.1. Input data .. 109

A.2. Resulting execution ... 120

Appendix B Document Type Definitions for input XML files .. 127

Appendix C Glossary ... 129

vii

Index of figures

Figure 1: GEM framework architecture .. 3

Figure 2: Metamodel from [3] .. 11

Figure 3: Metamodel from [4] .. 11

Figure 4: Template activities originally provided in [4] .. 12

Figure 5: The architecture of Arktos, from [3] .. 12

Figure 6: Process of generation of conceptual ETL design ... 14

Figure 7: Architecture of the model, from [1] .. 15

Figure 10: Scrum process, taken from [18] ... 45

Figure 11: Use case diagram of Input Reading module .. 52

Figure 12: Class diagram for the parsing of XML with business requirements 53

Figure 13: Sequence diagram for Reading XML with business requirements 54

Figure 14: Part of class diagram representing structures for source mappings 55

Figure 15: Package for reading the input OWL ontology .. 55

Figure 16: Use case diagram of the Requirement Validation module .. 60

Figure 17: Class diagram for Requirement Validation module ... 61

Figure 18: Sequence diagram for Requirement validation stage ... 62

Figure 19: Activity diagram for mapConcept operation ... 63

Figure 20: Use case diagram of Requirement Completion part ... 68

Figure 21: Class diagram of Requirement Completion module .. 69

Figure 22: Part of the mgraph package from MDBE system (Oscar Romero) 75

Figure 23: Algorithm for inserting the path into MGraph (insertPathIntoMGraph) 76

Figure 24: Class diagram of the ETLGraph package (Daniel Gonzalez) ... 79

Figure 25: Changes to the previous design ... 80

Figure 26: Algorithm for building the ETL subgraph for a source mapping 81

Figure 27: Graphical representation of the time deviations .. 100

Figure 28: Ontology based on the TPC-H schema ... 109

Figure 29: Complete XML structure for the source mappings used in the demo 119

Figure 30: Input XML file with the business requirements ... 120

Figure 31: Main screen of the GEM framework ... 121

Figure 32: Beginning with GEM ... 121

Figure 33: Loading of OWL and mappings .. 121

Figure 34: OWL ontology and XML with mappings are loaded .. 122

Figure 35: Start of the Requirement Validation stage .. 122

Figure 36: Interaction with the user (derived mapping file is expected) 122

Figure 37: Feedback XML file with the derived mapping ... 123

Figure 38: Control screen during the Requirement Completion stage 123

Figure 39: Control screen during the Multidimensional Validation stage 123

Figure 40: Control screen during the Operation Identification stage .. 124

Figure 41: Control screen at the end of Operation Identification stage 124

Figure 42: Generated MD design .. 125

Figure 43: Generated ETL design .. 125

Figure 44: DTD for the XML file with the business requirements .. 127

Figure 45: DTD for the XML file with the source mappings .. 127

viii

ix

Index of tables

Table 1: Estimated time for the development phase ... 98

Table 2: Estimated time for the testing phase .. 98

Table 3: Difference between estimated and real time spent during the project 99

Table 4: Costs of the research process ... 100

Table 5: Cost of the hardware resources .. 101

Table 6: Cost of the software resources ... 101

Table 7: Cost of the human resources .. 102

Table 8: Cost of the office resources .. 103

Table 9: Estimated cost of the project .. 103

Table 10: Mapped ontology classes and their datatype properties ... 110

x

1

1. Introduction

Modern civilization is characterized by a constant need to follow, collect and store data about various

events. Information systems have very easily become present in all the areas of the human lives,

while databases that support them have enlarged to the scale of even petabytes. Billions of records

in those databases do not necessarily need to be just a note that something specific happened in the

past. They can be modeled and shaped in the way to represent meaningful pieces, that can be used,

based on many recorded data, to infer some new knowledge, to follow the pattern of some changes

and finally to help people in business to make some important decisions.

The time when business people were struggling with huge amount of data which did not have any

useful meaning is almost passed, thanks to Business Intelligence which has recently become one of

the most promising areas of IT world. Today and even more in the future, the companies would not

be able to compete in the world market if they do not provide an intelligent way of analyzing their

data and extracting information that is crucial for their revenue growth.

Decision-making support systems represent the subclass of BI information systems. According to

transactional sources used in everyday business, and additional usage of business specific logic, these

systems should be able to identify incurred problems and to propose corresponding solutions.

These systems, depending on the business needs, tend to become very complex. The beginning, but

the crucial task of every project is appropriate design of the corresponding data warehousing system.

Data warehousing systems are aimed at exploiting the organization data, previously integrated in a

huge repository of data (the data warehouse), to extract relevant knowledge of the organization. As

formally defined in [19], Data Warehousing represents a collection of methods, techniques and tools

used to support knowledge workers, i.e., senior managers, directors, managers and analysts, to

conduct data analyses that help with performing decision-making processes and improving

information resources.

The first introduction to Data Warehouse concept dates back to 1992 and its first definition is given

by B. Inmon. “Data Warehouse is a subject-oriented, integrated, time-variant and non-volatile

collection of data in support of management’s decision making process”. This actually means that the

Data Warehouse represents a single storage for all domain-relevant data, from various available

sources (integrated), collected during the particular period of time (time-variant). Additionally, this

also states that this storage is stable in terms that data can only be inserted but never updated or

deleted form data warehouse (non-volatile). Even though the area of decision making systems

evolved a lot, this definition is still mostly accurate.

2

As it is stated, the data warehouse is a huge repository of data, but it does not tell much by itself.

Therefore, the tools for extracting the information that can be useful in a decision-making process

should be introduced. These tools are known as the exploitation tools. The ones that are the most

relevant to my work in this thesis are the OLAP tools (On-Line Analytical Processing). The OLAP’s

main objective is to analyze business data from its dimensional perspective. These tools are generally

conceived to exploit the data warehouse for analysis tasks based on multidimensionality.

Multidimensionality represents a paradigm based on the fact/dimension dichotomy and it is intended

for representing data as if placed in an n-dimensional space, which allows easy understanding and

analysis of data in terms of facts (the subjects of analysis) and dimensions showing the different

points of view from where a subject can be analyzed.

The fact that OLAP tools are used for analysis based on multidimensionality, arose the necessity for

the appropriate multidimensional design (MD) of the underlying data warehouse.

At this point, for the sake of better understandability, the specific multidimensional modeling

terminology from the above mentioned fact/dimension dichotomy point of view, and that is used

through this thesis, is introduced.

- Dimensional concepts represent the desired perspective, i.e., part of multidimensional

space, from which we observe the fact (e.g. Time, Place). This perspective can be defined by:

o dimensions that can contain a hierarchy of levels representing different granularities

of data(e.g. Time: Year ; Place: City), and

o descriptors (slicers), which are the means for describing the characteristics and

context of a particular level (e.g. Year = “2006”, City = “Tokyo”).

- Factual data containing measures represents the data of interest for the analysis process

(e.g. number of sold products). Value of this data is obtained according to chosen

dimensional concepts (perspective).

Besides the appropriate multidimensional design (MD) of the underlying data warehouse and

exploiting (OLAP) tool, data warehousing systems requires the means for managing the dataflow

from the available sources to the target MD schema. This supporting process is called the ETL process

and it has the main role in Extracting data from the chosen data sources, appropriately Transforming

and homogenizing those data and Loading them into the underlying storage (data warehouse).

Since in all IT projects business requirements are often a precursor to designing and building a new

business application/system, the design of the data warehousing systems also highly depends on the

business needs expressed as requirements. Therefore, a very important task is to fully understand

requirements coming from the business specialist and to correctly transform those requirements into

the appropriate MD and ETL designs.

3

1.1. Starting point

Due to high complexity of MD and ETL structures, correlated with the lack of understanding

business needs, not that rarely decision-making support projects fail.

Professors Alberto Abelló and Oscar Romero from ESSI department (Departament d’Enginyeria

de Serveis i Sistemes d’Informació) at Technical University of Catalonia (UPC), together with Alkis

Simitsis have recently presented, in [11], the GEM framework. GEM represents the system that

semi-automatically produces both the data warehouse multidimensional (MD) design and the

ETL process designs of the resulting data warehousing system, concerning both the set of

business requirements and source data stores as the inputs. This system tends to support

designers during the early stages of the DW design projects, by offering them help in overcoming

obstacles that have previously threaten to hold down the whole project.

During past several years, the architecture of the GEM system, presented recently in [11], has

been fully developed. (Figure 1)

Figure 1: GEM framework architecture

The GEM framework, during the process of producing the ETL and MD conceptual designs, passes

five different stages. In the sequel, only brief introduction to these stages will be provided.

Nowadays, it is well known that any data warehousing system must treat as first-class citizen

both the business (analytical) requirements and the source data that will populate the target

data warehouse. Therefore, the GEM system, developed in this approach, takes as an input three

different pieces of information:

- Source data stores whose semantics, characteristics and constrains are represented in a

tailored ontology.

4

- Mappings that are expressed as an XML structure and that represent the information if

an ontology concept is mapped to the real source data and how it is actually mapped.

- Business requirements are also expressed in a structured form of an XML file, which

represents the analytical query needed for the organizational decision making process.

It can be noticed that the first two pieces of information represent the information about the

data sources, while the third one represents the requirements coming from the business

specialists.

Starting from the concepts stated inside the input business requirements, the first stage,

Requirements Validation, searches for the corresponding concepts in the sources, i.e., in the

ontology. After the required concepts are identified in the ontology, they are then tagged

according to the multidimensional role they may play (Level, Measure or Descriptor). Afterwards,

the system searches for mapping of each tagged concept to the source data stores. The set of

ontology concepts identified from the business requirements, tagged and mapped in the

Requirements Validation stage, is then complemented with the additional information from the

sources, during the following stage of Requirements Completion. This stage identifies

intermediate concepts that are not explicitly required in the input requirements, but are needed

in order to retrieve data that will fully answer the input requirements. These concepts are later

also tagged with their appropriate multidimensional role. Afterwards, the stage of

Multidimensional Validation, validates the correctness of these taggings, as a whole, according

to multidimensional design principles. The following stage of GEM, Operation Identification,

identifies the ETL operations needed to support the dataflow from the source data stores to the

newly created MD target data stores. ETL operations are here, using the meta-knowledge

generated in the previous stages, identified in three separated phases. The final stage of the

GEM is Conciliation stage. All the above stages should be run once for each input business

requirement. The designs produced for each business requirement are then conciliated, during

this stage, into a single multidimensional design and single supporting ETL process design.

Besides the architecture, different stages of the framework have already been studied in depth

and developed. The stage of Multidimensional Validation has been fully developed by Professor

Oscar Romero in [12], within his PhD thesis, while the Operation Identification stage has been

implemented by Daniel Gil Gonzalez, as part of his final university project at Technical University

of Catatonia (UPC).

The basis of my master thesis represents the initial phase of the GEM framework. This phase, in

fact, includes integration of the elicited business requirements, with the whole process of

automation of the MD and ETL conceptual designs. It consists of building a process that would

interpret the input business requirements according to the available sources, and translate them

into structures that the final stages of GEM require as their inputs. This actually intends to

automate the manipulation of business requirements and integrates them in the whole

5

framework. This process is actually covered with the first two stages of the GEM framework.

During the stage of Requirement Validation, this process, as already explained, first validates

input requirements, tags them with their multidimensional roles, and maps them to the sources.

At the same time, during this stage, based on these mappings, the process builds the initial ETL

structure. This structure represents the part of the input of the Operation Identification stage

and actually includes the set of the ETL operations needed to extract the required concepts form

the source data stores. Afterwards, during the Requirement Completion stage, the process

searches the ontology and tries to relate required concepts inside the data sources, and as a

result it produces a graph structure. This structure contains identified paths between tagged

concepts including also the intermediate concepts and associations found on those paths. Finally,

this graph structure represents the input for the Multidimensional Validation stage while it is also

essential for the identification of the operations of the output ETL process design.

1.2. Motivation and Objectives

Business requirements are usually collected in various, sometimes even unstructured ways.

Questionnaires, checklists, surveys, recorded oral conversations etc. Even when we deal with the

structured forms of the requirements, process of translating these requirements into the desired

design requires high effort and is usually error-prone.

As nowadays the markets are highly competitive and have strong global tendency, corporations

has to make rapid and smart decisions in order to survive on it. Therefore, companies’ revenue

growth highly depends on the existence and quality of the decision-making systems.

This project is mainly motivated by the desire to eliminate mentioned obstacles in the early stage

of the multidimensional and ETL design, and to possibly lower the current projects failure rate. It

can be stated here, that the main goal of my work is to provide the GEM framework with the pre-

process that will higher the level of automation of the whole system and generalize the system’s

input data formats.

1.3. Scope of the project

This project represents master thesis and the final project, on the Master in Computing program,

at Technical University of Catalonia.

Led by the motivations and goals previously expressed, this project consists of the following:

- Theoretical part. This part represents the research in the field of automating and

customization of multidimensional and ETL designs. It also includes exploration of the

previous attempts in building a system which would lead system designers during the

process of the ETL design, and

6

- Technological part. This part includes the realization of the initial stages of the GEM

framework. Besides implementation of these stages, technological part of the thesis also

includes complete integration of the initial stages with the other, already implemented

stages of GEM, i.e., Multidimesional Validation (MDBE) and Operation Identification (ETL

generation), into the whole framework. These stages have been developed by professor

Oscar Romero and Daniel Gil Gonzalez respectively.

1.4. Structure of the document

As this document is the final university project, it is structured in the way to completely

represent my work during the project, beginning with the research and theoretical part, followed

by the complete documentation of the development and testing processes.

Chapter 2 represents the State of the Art in the field of automation of ETL process design

including some early customization attempts and some newly approaches based on ontologies.

In the sequel, chapter 3 exhaustively talks about new approach, Requirement-driven generation

of ETL and Multidimensional Conceptual Designs, which is the basis of this project. Chapter 4

includes complete technological work of this project. First there is the discussion about the

development method that is applied in this project. Afterwards, the processes of design,

implementation and integration of the GEM framework are explained in detail. At the end of

chapter 4 the testing process, of both my part of the framework and the whole integrated

framework, is discussed. In chapter 5, there is a short discussion related to the time that is

planned and actually spent on this project and accordingly the project costs are estimated. At the

end, in chapter 6, some conclusions and the possibilities for the future work are provided.

Additionally, the short demo of the developed application and the user manual are represented

in Appendix A.

7

2. The State of the Art

This chapter represents the beginning of theoretical part of the thesis and includes overview of the

work of most prominent researchers in the field of automation and customization of the

multidimensional and ETL design.

As already mentioned, GEM framework facilitates both production of multidimensional and ETL

designs. It can be stated here, that, to our best knowledge, GEM represents the first approach, which

synchronously produces conceptual design of both target conceptual schema and supporting ETL

process. Indeed, GEM represents two systems integrated in one framework.

Concerning multidimensional design, a lot of work, within this research group, has been done.

Starting from the research of professor Oscar Romero, during his PhD [12], which also includes

implementation of the Multidimensional Validation stage of the GEM framework (MDBE). An

exhaustive survey has also been conducted, by professors Oscar Romero and Alberto Abelló in [13].

Here, they comment the relevance that data warehousing systems have gained, for supporting

decision making, in the last years. The main objects of their survey are the methods, developed

during the last decade to support data warehousing. After discussing common terminology and

notation, the authors in [13], chronologically present current multidimensional design methods in

terms of the stated terminology. They start from the earliest attempts in 1998, until the most recent

works in 2010. Afterwards, they also introduce comparison of the presented methods based on the

criteria that they iteratively introduced during their research.

Since the exhaustive research in the field of multidimensional design has been done within this

research group, this state of the art only considers the topic of ETL design, with the focus on the

approaches that tries to automate or generalize and customize ETL design.

Until now, various technologies concerning the design of the ETL process have been released.

However, even with these existing technologies, the human-conducted design of ETL is very

demanding and error prone. In order to lower the effort and risks involved, various researchers have

analyzed the possibility to partly automate the process of ETL design. In the survey that Panos

Vassiliadis conducted in [14], both conceptual and logical modeling of ETL process, are covered. At

the same time, the survey concerns each stage of the process (Extraction, Transformation and Load)

and discusses problems related to the ETL process. The author begins with the first approach

towards conceptual UML–based modeling of data warehouse, with special focus on the back stage of

data warehouse, the ETL process. This approach, Stohr, Muller and Rahm (1999), from the end of the

previous century, represents nearly the first attempt for customization of ETL process. It is stated

that the framework that authors provided allows customization of ETL activities and easy plugging of

new ones, through some kind of specialization. In the sequel, author presents his own work

8

(Vassiliadis et al, DOLAP 2002) based on ad-hoc model and motivated by the fact that the designers

during the early stage of the data warehouse modeling are mostly concerned with the analysis and

content of the existing data sources and their mapping to the new target model. The author then

presents the approach that revisits the UML idea for conceptual modeling of ETL workflows, Trujillo

& Luján-Mora (2003). The authors of this approach express doubts about the previous (Vassiliadis et

al) approach, mostly because it was based on an ad-hoc structure. Therefore, Trujillo & Luján-Mora

(2003) in their work employed standard methods (UML) for conceptual modeling of the ETL.

Interestingly the authors employed class diagrams for modeling the ETL workflow, with the main

reason that the focus of the modeling is on the interconnection of activities and not on the actual

sequence of activity steps. As a result, Trujillo & Luján-Mora (2003), provide generic structure for the

design process for ETL workflow and the six-stage process for building this generic structure. The

author of the survey also covers the semantic-aware design methods for ETL. In this section various

approaches are briefly presented. First, the approaches towards the semi-automatic transition from

the conceptual to the logical model for ETL process (Simitis(2005) and Simitis&Vassiliadis(DSS 2008))

are presented. In the sequel, the author shortly mentions the ontology based approaches [2,5].

Following the work of this survey, concerning some additional ETL customization approaches and

fully covering some ontology based that are only briefly introduced in the survey, this state of the art

specially focuses on four approaches [1,2,3,4]. These approaches are found as the most relevant,

regarding the topic of this work, based both on the number of their citations and the relevance of

their authors. Some of these works focus on the generalization and customization of ETL design while

others mostly focus on ontology based methods towards the automation of ETL design.

2.1. Introduction

The crucial parts of decision-making system projects are, without doubt, constructing the data

warehouse and supporting the ETL process. Conceptually, data warehouses are used for the

timely translation of enterprise data into information useful for analytical purposes [1]. This

information is collected from various (mostly relational) sources, transformed to satisfy analytical

needs and DW constraints and loaded into DW, by the ETL process.

It has been stated that the main reasons for earlier mentioned failures of decision-making

projects are the inherent amount of complexity of these environments and the technical details

into which the designer must delve, in order to deliver the final design. Such complexity is mainly

caused by the fact that the designer has to choose from the existing sources, those pieces of data

that will be used and loaded in the target DW and additionally and even more difficult to identify,

the transformations that should be applied to selected data before loading them to the DW. As

these projects are financially and timely very expensive, a common understanding between all

involved parts is also very important. As stated in [1], approximately 30–50% of the data

warehouse design process is spent on analysis, to ensure that source systems are understood

9

and that there is alignment between the involved parties: business and administrators. For

reaching this common understanding it is of great importance to provide both a formal (explicit)

and more natural (human readable) way to represent all the parameters and properties guiding

early stage of DW design.

2.2. Objectives

This overview represents the starting point in the theoretical part of my work and has main goal

to identify and examine the previous approaches and solutions that use generalization and

partial automation of ETL design to lower efforts, costs and risks involved in projects of

implementing decision-making support system.

2.3. Content and structure

First approaches tried to deal with providing general and customizable ETL scenarios that can be

adopted in various cases and environments [3, 4]. Several approaches have been proposed for

using Semantic Web technology to the design and construction of the conceptual part of the ETL

process. [1,2] Some researchers deal with one of the major challenges of the ETL design: the

structural and semantic heterogeneity. The core idea of their work is the use of ontologies to

formally and explicitly specify the semantics of the data source and the data warehouse.

In the following sections all the above approaches will be examined in more details and

additionally some conclusions will be presented. In section 2.4, the proposal of an ETL tool, from

the beginning of the century that deals with the above mentioned issues of generality and

customization, will be presented. In the later section, new ontology-based approaches will be

covered. At the end, the conclusion about current state of art in the domain of ETL and DW

design will be provided.

2.4. Early attempts

First approaches [3,4] were mostly focused on providing general and customizable solution,

additionally with the sets of frequently used ETL scenarios that can easy the job of the designer

and lower the risks of the whole project.

Even though, these works [3,4] are not so fresh, they should be considered in this overview,

because of their historical relevance as one of the first attempts to deal with the problem of

complexity and reusability of DW and ETL.

10

In [3], it is stated that the majority of problems related to the Data Warehouse and ETL

implementation comes from the complexity of these concepts and they mentioned two main

reasons of such complexity:

1. Technological reasons – due to the fact that DW is a heterogeneous environment where

data must be integrated both at the schema level (e.g., naming conflict) and at the

instance level

2. Qualitative reasons – data warehouse, as a part of the decision support system, must

provide high-level quality of data and services. Accordingly, it is noticed in [3], that data

quality problems seem to introduce even more complexity and computational burden to

the loading of the data warehouse

During their research, in [3], the authors found out, that even though there are various

commercial ETL tools already presented in the market, the companies rarely decide to use them.

This is, beside performance issues, mostly because of their ubiquitous complexity and because of

the time and resources that they need to invest for learning them. As a result, they noticed that

the companies usually spent one third of their data warehouse budget to the ETL tool that is, in

most of the cases, built in-house.

For dealing with generality, customization and reusability the authors in [3, 4] developed a tool

(Arktos and in [4] Arktos II). The basis of their tool is metamodel primary developed in [3] and

later improved in [4].

This metamodel contains three layers:

- Metamodel layer

- Specialization (in [4] Template) layer

- Metadata (in [4] Schema) layer

The first layer of the metamodel (Metamodel layer) is composed of generic entities and

accordingly is supposed to provide generality, with the derivation of the simple model that is

powerful to capture luckily any ETL scenario.

To deal with the second issue of reusability and customization, the authors included the second

layer (Specialization and in [4] Template layer). This layer should be used to add the most

frequently used ETL activities. The Template layer is actually represented as a specialization of

the entities from the Metamodel layer. With providing templates, this part of tool is supposed to

be used to ease the future starting faze of the ETL process development. In [4], the authors

completely and formally explained the procedure of adding new templates which can be very

helpful for future projects –”Customization mechanism”.

11

Figure 2: Metamodel from [3]

Figure 3: Metamodel from [4]

This mechanism should indeed be used by designers at the end of one project, to examine which

ETL activities they frequently used during the project and to give them the possibility to enrich

the set of template activities for the future projects. In the sequel, one can see the table of

frequently used template activities that authors of [4] originally provided.

12

Figure 4: Template activities originally provided in [4]

The tool provided in [3] (Arktos) and later improved in [4] (Arktos II) covers three different ways

for describing scenarios. Beside graphical interface they offered two declarative languages XADL,

which is an XML variant that provide more verbose way and SADL, which is SQL-like language

and thus with more compact syntax. The authors also provided comprehensive explanation of

these languages.

Figure 5: The architecture of Arktos, from [3]

The authors in [4] supported their work, mentioning the reasons why the designers would be

encouraged to use their tool. They stated that Arktos II overcome the issues of complexity and

amount of effort needed for learning. Their tool provides assistance to the designers by offering

following functionalities:

- Friendly GUI with all the features available through the forms and point-and-click

operations, and

- Set of reusability templates

Their solution also covers the issues of:

- generality by the fact that any activity can be additionally tailored by the user (provided

by metamodel) and

- customization by the fact that the tool on one side offers already created activities and

on the other side the opportunity to users to customize the environment according to

their needs

13

As previously stated, the quality issue, that is usually obliged in the decision support projects,

brings a certain level of complexity. The authors in [4], additionally provided a feature, inside of

Arktos II, that deals with this issue. This feature provides computation of scenario’s design quality

by employing the set of metrics, and it can be applied both to the whole scenario and to

individual activities.

2.5. Ontology-based approaches

As it has already been stated, the main problem with decision support projects is inevitable

complexity. The authors in [2], point out the main reasons for the abovementioned complexity.

First one is that the ETL design is mostly driven by the semantics of the data sources on the one

side, and constraints and requirements of the DW on the other side. Here the problem is that

this information is usually available in natural language in the form of specification,

documentation, comments, oral communications etc.

Second, but not less serious and also the main challenge in the back stage of DW is heterogeneity

among the existing sources. According to [2] two main heterogeneities are present:

- structural heterogeneity that refers to the fact that in different data stores the same

information is stored in different structures, and

- semantic heterogeneity with three conflicts that cause this kind of heterogeneity

1. confounding conflicts, which occur when information items seem to have the

same meaning, but differ in reality; e.g., owing to different temporal contexts;

2. scaling conflicts, which occur when different reference systems are used to

measure a value; e.g., different currencies or different date formats, and

3. naming conflicts, which occur when naming schemes of information differ

significantly (a frequent phenomenon is the presence of homonyms and

synonyms.)

The authors in [2], deal with these kinds of heterogeneity, and propose an approach that

facilitates the construction of the ETL workflow at the conceptual level.

For their solution, they chose ontology-based approach and they commented some of the

reasons for that:

Ontology:

- Allows formal (machine readable) way of definitions,

- Supports explicit specification of data sources and DW, and

- Provide well-defined semantics that would be convenient for desired automation of ETL

process

14

For representing these ontologies they used Web Ontology Language (OWL), because OWL

provides a formal representation and the ability to leverage on existing reasoners for automating

several tasks of the process, such as checking subsumption and transitivity relationships between

ontology elements. Another reason is also the fact that OWL is the proposed W3C standard for

representing ontologies on the Web. OWL is known as very complex, but authors stated that only

a subset of OWL is used in their approach.

Their solution consists of four different steps, and these are depicted in figure 6.

This approach, [2] is relevant and thus, included in this overview mostly because it is focusing on

automation of identification of the ETL transformations required for ETL process by using

ontologies for formal and explicit specification of the semantics of the data stores’ schemas.

It is shown in [2] on the simple example, that having this formal and explicit description of the

domain, it is possible to automate in a large degree the process of the ETL workflow creation and

to overcome problems of complexity caused by heterogeneity.

Figure 6: Process of generation of conceptual ETL design

In the previous work it is shown that ontologies are suitable for capturing the information

needed for the generation of conceptual design of ETL processes. This approach, in the large

amount, eases the task of identifying the appropriate mappings and the necessary

transformations, by the fact that each data store is semantically annotated in the domain

ontology. Having the ontology annotating the data stores, the usage of reasoner simplifies and

automates the task of identification of correspondences between the sources and the data

warehouse.

As much as this solution offers explicit and concise output, it is expressed in formal language,

which creates new challenge and additionally complicates the communication among the

different parties and also makes the validation of the result harder for the designer.

Construction of
Application vocabulary

Annotation of data stores

Generation of
application ontology

Generation of
conceptual ETL design

- Using application vocabulary to notate
 each data sources

- Algorithm for creating application
ontology

- Method to automatically
derive mapping and
involved transformation

- Common vocabulary is used to deal with
different naming schemas

15

The same authors from [2], supported by Malu Castellanos, considered this problem and in [1]

proposed the solution that also uses semantic web for automating ETL design, but with the

additional focus on human readable output.

In [2], the authors tackle this problem by exploiting the fact that the ontology contains all the

appropriate metadata describing the ETL process. Based on that fact, they tried to develop a

method to translate the result of the reasoner into a narrative form, which represents the most

natural means of communication. Narrative description of the generated conceptual ETL

operations makes it easier for the involved parties to validate the design and to generate reports

and documentation regarding the involved activities.

In figure 7, the architecture of the proposal from [1] is represented. First two phases of this

approach are mostly those from the previous solution [2], so it will not be further discussed.

Figure 7: Architecture of the model, from [1]

The main focus will be on the Reporting Phase with its main goal of generating reports regarding

the ETL process and the involved data stores, in a natural language format.

A list of data store annotations and ETL transformations, produced in the first two phases are the

input of the Reporting Phase. The process of lexicalization (of entities) is introduced in [1] as the

first step in this phase. This term refers to the process of deciding which words or phrases to be

used for transforming an underlying message into a readable text i.e., which word or phrase to

associate to an entity that is defined as a class or property in ontology.

Besides lexicalization, a template mechanism is stated to be the second step of this phase. Its

main role is to generate the reports, using predefined templates in order to represent the design

constructs in a textual description.

The output of this phase is textual description in natural language and thus readable by the

various parties involved in the project.

In both previous cases the semantic web approach (ontology-based) is used, to explicitly and

formally define the data stores for future use by the resoner and additionally to formally define

16

ETL transformations. The last approach additionally deals with the problem of translating this

formal definition of ETL conceptual model into the human readable form.

2.6. Conclusion

As it is stated in this overview, there are several problems that occur during the development of

Decision support systems. These projects are known as very complex and error-prone and thus,

time-consuming. In order to overcome obstacles that occur during the project the idea of

automation of the ETL design arose.

This overview covers several approaches from the beginning of the century, until now. First

approaches [3,4] were initially concentrated on the design of ETL process and they proposed a

tool (Arktos and Arktos II). Their solution on the one hand provides certain amount of generality

and thus tries to cover all possible ETL scenarios, and on the other hand offers some of the most

commonly used ETL activities for users to have it as a kind of templates for future projects. Later

works [1,2] based their solutions on the usage of semantic-web (ontology-based) technologies to

annotate the data stores and ETL transformation, which will be suitable for use by the reasoner

for establishing the connections between source and target stores and supported ETL activities.

The possible problem with subjectivity, that one may find in this overview, as Alkis Simitsis

appears as one of the authors in most of the covered papers, can be explained by the fact that he

is one of the most important researchers in this field and additionally by the fact that through

the years he worked with various prominent researchers that certainly must be included when

we talk about ETL conceptual design.

From the presented overview it can be concluded that the attempts for the automation of ETL

design evolved in a large amount. A lot of efforts have been invested in generalization and

customization of the ETL process. All these efforts had the same aim - to help designers and

remove obstacles from the early stages of the decision-support projects. However, none of these

works specifically considers business requirements and the amount in which these requirements

drive the ETL design. On the contrary, GEM framework, along with the available sources, takes

input business requirements, as the basis of the both ETL and MD designs. At the same time,

unlike existing approaches, GEM additionally considers the synchronous generation of target MD

data stores.

17

3. New approach - Requirement-driven Generation of ETL and
Multidimensional Conceptual Designs

After the overview of the existing approaches in the previous chapter, the GEM framework, the

system that is briefly introduced in section 1.1., and that is the basis of this thesis, is covered in more

details by this chapter.

As already mentioned, one of the main objectives during the initial phase of every IT project, is a

complete understanding of the business requirements that have to be fulfilled by the end. The same

principle holds in the decision-making projects including its crucial part of designing the data

warehousing system. During these projects, business requirements should be gathered and fully

understood, before they are translated to the appropriate designs. That is why this process often

includes several rounds of reconciliation and redesigning, before it is certain that all the

requirements are fully satisfied.

There are usually two distinct parties involved in the process of requirements gathering: the business

analysts and financial experts on the one side, and technical designers, IT experts, on the other side,

whose aim is to translate the needs of the business people into the appropriate designs.

Unlike the previous approaches, which considered that target multidimensional schema already

exists, the GEM framework aims to provide the means for semi-automatic generation of both

Multidimensional and ETL conceptual designs. The method used in this approach combines

information about the data sources with the gathered business requirements. Then it validates and

completes these requirements and produces multidimensional design and supporting ETL operations

simultaneously.

3.1. GEM Framework

The GEM Framework is briefly introduced in section 1.1. The inputs that GEM framework expects

along with the framework stages, which are necessary for handling these inputs and that are

actually the part of my thesis are explained in more details in the following sections. Final stages

of the GEM framework that are already implemented (Multidimensional Validation and

Operation Identification) are briefly introduced here for fully understanding of the GEM’s big

picture and for understanding how the initial stages bridges the gap from general input formats.

3.1.1. GEM Inputs

3.1.1.1. Source data stores

18

This part of the input represents the structure of the sources from which the data will be

extracted, transform and finally loaded into the target schema. Semantics and

constraints of the available data sources, in the GEM system, are captured in terms of an

ontology. As ontology language, the OWL is used. More details about OWL and reasons

for using it are presented in section 4.2.5., prior the implementation part. It is explained

in [5], that both structured and unstructured data stores can be represented in the form

of graphs and thus consequently in the appropriate ontology. It is also stated that the

process of construction of the ontology, based on the source data stores, is mostly led by

the integration of a business domain vocabulary with data sources’ vocabulary. More

details about the ontology construction process, based on data stores, are provided in

[5], while in this work it will be considered that the constructed ontology is already

available at the input.

Even though the OWL ontology is capable to represent various types of data stores, for

this thesis, the examples of representing relational data sources are provided (e.g.,

tables, attributes, cardinalities etc.). These examples are based on the TPC-H benchmark,

which is used for the testing process and explained in section 4.4. The complete ontology

for the TPC-H data sources is depicted in Figure 28 in Appendix A, where it is used for

representing the demo of the developed system.

The part of the TPC-H schema covered with these examples contains the following

information:

- Table Region with the attributes:

o r_regionkey INTEGER (primary key)

o r_name VARCHAR

o r_comment VARCHAR

- Table Nation with the attributes:

o n_nationkey INTEGER (primary key)

o n_name VARCHAR

o n_comment VARCHAR

o n_regionkey INTEGER (foreign key)

The reference n_regionkey represents the relationship between the Nation and Region

tables including the cardinalities 1..1 for the table Region and 1..MANY for the table

Nation.

In the sequel it will be shown how this knowledge is represented inside the OWL

ontology.

19

Source tables:

The data source tables are represented as ontology classes (owl:Class).

<!--definition of the ontology class that represents source table Region-->

<owl:Class rdf:ID="Region">

…

 </owl:Class>

<!--definition of the ontology class that represents source table Nation-->

<owl:Class rdf:ID="Nation">

 …

</owl:Class>

Attributes of the source tables:

The attributes of the source tables are represented as different datatype properties

inside the ontology. In the definition of the datatype property the domain class is the

ontology class that represents the source table of the given attribute, while the range

represents the datatype of the attribute.

On the examples below it can be noticed that the names of the ontology datatype

properties differ from the actual source attribute names. This is the vocabulary of the

domain that is agreed to be used for constructing the ontology and later for providing

the business requirements. Actually, the datatype property names in the ontology are

built from the source attribute names by adding the name of the table as a prefix and the

keyword ATRIBUT as a suffix.

<!--Definition of the attribute r_regionkey, i.e., primary key, of the table Region -->

<owl:DatatypeProperty rdf:about="#Region_r_regionkeyATRIBUT">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 <rdfs:domain rdf:resource="#Region"/>

</owl:DatatypeProperty>

<!--Definition of the attribute r_name of the table Region -->

<owl:DatatypeProperty rdf:about="#Region_r_nameATRIBUT">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#Region"/>

</owl:DatatypeProperty>

<!--Definition of the attribute r_comment of the table Region -->

<owl:DatatypeProperty rdf:about="#Region_r_commentATRIBUT">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#Region"/>

</owl:DatatypeProperty>

20

<!--Definition of the attribute n_nationkey, i.e., primary key, of the table Nation -->

<owl:DatatypeProperty rdf:about="#Nation_n_nationkeyATRIBUT">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 <rdfs:domain rdf:resource="#Nation"/>

</owl:DatatypeProperty>

<!--Definition of the attribute n_name of the table Nation -->

<owl:DatatypeProperty rdf:about="#Nation_n_nameATRIBUT">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#Nation"/>

</owl:DatatypeProperty>

<!--Definition of the attribute n_comment of the table Nation -->

<owl:DatatypeProperty rdf:about="#Nation_n_commentATRIBUT">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

 <rdfs:domain rdf:resource="#Nation"/>

</owl:DatatypeProperty>

<!--Definition of the attribute n_regionkey of the table Nation that is actually the foreign key

referencing to the table Region -->

<owl:DatatypeProperty rdf:about="#Nation_n_regionkeyATRIBUT">

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>

 <rdfs:domain rdf:resource="#Nation"/>

</owl:DatatypeProperty>

Source associations:

Since the source table Nation includes the reference to the source table Region (foreign

key), this relationship should be explicitly represented inside the ontology. For explicit

representation of the relationships between the source tables, the Object Property is

introduced in the ontology. Inside the definition of this Object Property the domain class

is the one that represents the referencing source table and the range class is the one that

represents the referenced source table.

The name of the property is arbitrary but due to common understandability it is advised

to be meaningful and comprehensive.

<!-- Definition of the IsFrom relationship between the tables Nation and Region -->

<owl:ObjectProperty rdf:about="#IsFrom">

 <rdfs:domain rdf:resource="#Nation"/>

 <rdfs:range rdf:resource="#Region"/>

</owl:ObjectProperty>

21

Cardinalities of the source tables:

For the relationship between tables Region and Nation, the cardinalities are defined to

be 1..1 and 1..* respectively. The cardinalities of the source tables inside the defined

relationships are represented as subclasses, more precisely restrictions, inside the class

that represents those source tables. Therefore, the definitions of the ontology classes

that represent source tables are extended with the corresponding restrictions.

Since the definition of the cardinality restriction in the OWL ontology requires the exact

integer value, for the purpose of representing the maximum cardinality of MANY the

integer value ‘-1’ is used.

<!-- complete definition of the concept that represent source table Region -->

<owl:Class rdf:ID="Region"> …

<!--definition of the maximum cardinality restriction on the property IsFrom -->

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="IsFrom"/>

 </owl:onProperty>

 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:maxCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

…

<!--definition of the minimum cardinality restriction on the property IsFrom -->

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#IsFrom"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

…

 </owl:Class>

<!-- complete definition of the concept that represent source table Nation -->

<owl:Class rdf:ID="Nation"> …

<!--definition of the maximum cardinality restriction on the property IsFrom -->

<rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="IsFrom"/>

22

 </owl:onProperty>

 <owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >-1</owl:maxCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

<!--definition of the minimum cardinality restriction on the property IsFrom -->

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:minCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

 >1</owl:minCardinality>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#IsFrom"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

…

 </owl:Class>

3.1.1.2. Source Mappings

This part of the input represents the structured way of defining mappings which relate

ontology representation of data sources, to the available, real data stores. Source

mappings are defined inside another XML structure. The graphical representation of the

DTD of this XML is provided in figure 8, while the original DTD is provided in Appendix B.

Each concept from the ontology may have its mapping inside of this structure. In order to

distinguish kinds of the attributes in the sources, different kinds of mappings exist.

All the examples presented below are from the TPC-H relational schema and the

ontology produced to represent this schema, with the requirements used in the demo,

presented in Appendix A

- The mapping of an ontology class to the data source table is structured in the

following way.

 <OntologyMapping sourceKind="relational">

 <Ontology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Nation

 </Ontology>

 <RefOntology type="property">

 http://www.owl-

ontologies.com/unnamed.owl#Nation_n_nationkeyATRIBUT

 </RefOntology>

 <Mapping>

 <Tablename>nation</Tablename>

 <Projections>

23

 <Attribute>n_nationkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

While the ontology class that is mapped to the source table is identified by the

content of the Ontology tag, the ontology concept (datatype property)

representing this primary key is identified by the content of the RefOntology tag.

It should be also noticed here that this mapping includes projection of the

attribute that represents the primary key of the source table (n_nationkey).

- The mapping of an ontology datatype property to the attribute of a source

table, is structured in the following way:

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Region_r_nameATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>region</Tablename>

 <Projections>

 <Attribute>r_regionkey </Attribute>

 <Attribute>r_name </Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

This structure contains the ontology datatype property that this mapping is

prepared for, i.e., Ontology tag. Afterwards, it includes the mapping to the data

source table. This Mapping includes name of the data source table, i.e.,

Tablename, and the attribute in the data source table that stores information

represented by the ontology datatype property (r_name), i.e., Projections and

Attribute tags. This mapping, since it represents property, also contains attribute

that represents primary key of the table that this attribute belongs too.

- The mapping of an ontology object property to the corresponding datasource

relationship, is structured in the following way

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#IsFrom

 </Ontology>

 <Mapping>

24

 <Tablename>nation</Tablename>

 <Projections>

 <Attribute>n_nationkey</Attribute>

 <Attribute>n_regionkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

It can be noticed that in the mappings of the association there is the part that

defines ontology object property that represents the association, i.e., Ontology

tag. Afterwards, depending on the relationship, the table that uniquely defines

the association instances is defined with its name, i.e., Tablename and then also

the attributes of that table needed in order to query this association. It is

possible to express all association mappings in this way, because the associations

many-to-many are not considered here, since they violate the constraints of

multidimensional design. Within the Projection tags, the attributes that that

represent the primary key of the referencing source table (n_nationkey) and the

foreign key to the referenced table (n_regionkey) are included.

- The mapping of an ontology datatype property that represents foreign key, i.e.,

reference to another concept, to the, attribute of the source table, is structured

in the following way:

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Nation_n_regionkeyATRIBUT

 </Ontology>

 <RefOntology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Region

 </RefOntology>

 <Mapping>

 <Tablename>nation</Tablename>

 <Projections>

 <Attribute>n_regionkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

It can be noticed that this kind of mapping contains the RefOntology tag that, in

fact, represents the ontology concept, which represents the source table

referenced by the defined foreign key attribute.

25

All previous mapping structures can contain, selection information, i.e., the

discriminant function, which can include attribute, operator and the value

according to which the more specific characteristics of a given attribute is

defined.

 <Selections>

 <Selection>

 <Column>l_shipdate</Column>

 <Operator>></Operator>

 <Constant>'1998-12-01'</Constant>

 </Selection>

 </Selections>

Considering the case, discussed in more details in section 3.3., when the concept

from the ontology cannot be mapped directly to the data sources, the operators

for deriving the new mappings from the existing ones should be introduced. These

operators are actually those that are, during the stage of Operation Identification,

considered for generation of the conceptual model of the ETL process.

 <OntologyMapping sourceKind="relational">

 <Ontology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Customer

 </Ontology>

 <RefOntology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Customer_c_custkeyATRIBUT

 </RefOntology>

 <Mapping>

 <Mapping>

 <Tablename>legal_entity</Tablename>

 <Projections>

 <Attribute>le_custkey</Attribute>

 </Projections>

 </Mapping>

 <SQLOperator>UNION</SQLOperator>

 <Mapping>

 <Tablename>individual</Tablename>

 <Projections>

 <Attribute>i_custkey</Attribute>

 </Projections>

 </Mapping>

 </Mapping>

 </OntologyMapping>

26

Fi
gu

re
 8

: T
re

e
re

p
re

se
n

ta
ti

o
n

 o
f

th
e

X
M

L
gr

am
m

ar
 f

o
r

th
e

 s
o

u
rc

e
 m

ap
p

in
gs

27

This example, additionally created concerning the TPC-H schema, represents derived

mapping for the ontology concept Customer. For this case, in the ontology, class

Customer is declared to have two subclasses LegalEntity and Individual. If the mapping of

the concept Customer is not available at the input, new mapping should be derived. If

the mappings for the concepts, which are declared as subclasses of the Customer

concept, are available, then the new mapping should be derived from these mappings

and the additional operator between them, in this case UNION. More details about the

rest of the operators are provided in the section 3.3.

3.1.1.3. Business requirements

Design of decision-making systems most frequently starts from a set of specific business

needs expressed as requirements. In the case of decision-making systems and underlying

data warehouses, the requirements that actually drive their design are the information

requirements, i.e., the information that the system under consideration should be able to

provide. These requirements come in various forms, service level agreements (SLAs),

business queries and as already mentioned can be expressed in either structured or

unstructured forms. There are many researches handling the problem of capturing the

requirements. At this point, it should be noted that the capturing of this kind of

requirements (information requirements) is easier than traditional functional

requirements gathering, since the people involved in this process are usually business

analysis experts who precisely know what kind of information the company really needs.

However, the requirement gathering is not the topic of my work and it will be considered

that this process has been previously done.

After the business requirements are collected, it is noticed that the identification of

multidimensional concepts inside of these requirements is very easy.

For example:

If we have the following business requirement, gathered from a retail company:

- Information about the revenue for the company’s shops in Barcelona is

required.

The identification of the multidimensional concepts is quite straightforward.

- Revenue can be identified as a measure i.e., the data that is analyzed,

- Shops can be identified as the level, i.e., the perspective from which the data is

analyzed, and

- Barcelona can be identified as the descriptor of the level city

Considering the above, the generation of the input XML structures that represent

business requirements, according to the previously gathered requirements, is quite

effortless.

28

On figure 9, the graphical representation of DTD, for the XML with business

requirements, is provided. The original DTD for the XML with the business requirements

is provided in Appendix B.

Since the business specialists involved in the decision-making process, use business

terms in their everyday communication, the input business requirements are also

expected to be expressed using these terms. On the other side, the sources, created by

the DB specialist may not follow the same naming patterns. This gap between the

business and the IT world must be bridged, in order for the system to be able to identify

real business needs inside the available data sources (ontology). This should be

accomplished by introducing the domain vocabulary. This vocabulary should be agreed

between these two sides (IT and business) and later used for defining the elements of

the corresponding ontology.

Additionally, the structure of these XML files is explained below in more details.

Examples below are captured from the input requirements, used in the demo that is

based on the TPC-H schema and presented in the Appendix A.

The XML structure contains four different parts, separated into distinct XML tags.

1. Levels - which represent the perspectives used to analyze the data. These are

indeed used to view data at a specific level of detail.

 <dimensions>

 <concept id="Nation_n_name" />

 </dimensions>

2. Measures - which represent summary data that is analyzed. This concept in the

requirement structure includes the function based on which the value of the

measure is calculated (<function>).

 <measures>

 <concept id="revenue">

 <function>

 Lineitem_l_extendedpriceATRIBUT*Lineitem_l_discountATRIBUT

 </function>

 </concept>

 </measures>

29

Fi
gu

re
 9

: T
re

e
 r

e
p

re
se

n
ta

ti
o

n
 o

f
th

e
X

M
L

gr
am

m
ar

 f
o

r
th

e
b

u
si

n
es

s
re

q
u

ir
em

e
n

ts

30

3. Levels - which represent the perspectives used to analyze the data. These are

indeed used to view data at a specific level of detail.

 <dimensions>

 <concept id="Nation_n_name" />

 </dimensions>

4. Measures - which represent summary data that is analyzed. This concept in the

requirement structure includes the function based on which the value of the

measure is calculated (<function>).

 <measures>

 <concept id="revenue">

 <function>

 Lineitem_l_extendedpriceATRIBUT*Lineitem_l_discountATRIBUT

 </function>

 </concept>

 </measures>

5. Descriptors or Slicers - which carry out selections over level data. These concepts

limit the resulting set based on the comparison operator. Additional information

inside the slicers is the function that can be applied over the concept

(extracty_year). It should be noted that this function is different from the

function stated in the part related to measures. Main difference is that previous

function is used to calculate the value of the concept and thus is placed between

the concepts tags, while latter one is actually applied over the concept in order

to extract particular information from it. Comparison operators (>, <, ,) are

due to XML limitations expressed with escape characters (>, <, >= and

<=).

 <slicers>

 <comparison>

 <concept id=" Orders_o_orderdateATRIBUT " />

 <function>extracty_year</function>

 <operator><=</operator>

 <value>1998</value>

 </comparison>

 </slicers>

6. Aggregations which contain aggregation functions that should be additionally

applied over the measures grouped by all the dimensions. Among the

aggregation functions the partial order is also defined. This order is needed for

31

the case when we perform different aggregations. (e.g. for system to be able to

distinguish between “average of sums” and “sum of averages”). For each

measure and dimension there is one aggregation.

 <aggregations>

 <aggregation order="1">

 <dimension ref=" Nation_n_name "/>

 <measure ref="revenue " />

 <function>SUM</function>

 </aggregation>

 </aggregations>

As it can be seen on figure 9, the element concept may contain optional attribute alias

and along with it the optional internal element role. This optional information is

additionally introduced because it is noticed that the user may ask for the same type of

information related to different concepts.

 <dimensions>

 <concept id="Nation_n_nameATRIBUT" alias="n1">

 <role>Customer</role>

 </concept>

 <concept id="Nation_n_nameATRIBUT" alias="n2">

 <role>Supplier</role>

 </concept>

 </dimensions>

In this example, it can be seen that there may exist two requirements for the name of

the nation. However, it can be also noticed that the first requirement considers the

nations of the company’s customers (Customer) and the second one considers the

nations of the company’s suppliers (Customer).

Each concept, besides information requirements, which are captured by identifying the

measures and dimensions of interest, can also include non-functional requirements.

Non-functional requirements are expressed as separated tags inside the concept tag it

refers to.

 <measures>

 <concept id="revenue">

 <function>

 Lineitem_l_extendedpriceATRIBUT*Lineitem_l_discountATRIBUT

 </function>

<nfr kind="freshness" format="HH24:MM:SS"><00:10:00</nfr>

 </concept>

 </measures>

32

This example shows that a measure concept can include non-functional requirement, in

this case “freshness”. Definition of the non-functional requirements includes attributes

kind and format in which the value is expressed, and the value of the requirement is

between the tags.

Depending on the kind of requirement, non-functional requirements can affect different

levels of design. From the last example, the freshness requirement that indicates how

often an ETL process should run in order to keep the data warehouse updated, actually

affects the execution level and hence it should be considered at the physical level of

design. This indeed means that this information should be forwarded to the physical

level, i.e., the level on which it should be considered. Another advantage of this principle

is that the designers of the further levels (logical or physical) do not need to spend

additional time on interpreting the original set of business requirements.

3.1.2. Stages inside the GEM framework

Since the previous sections cover the structures that can be expected as an input of the GEM

framework, the following sections cover the stages through which the system has to pass in

order to translate requirements from the inputs into the appropriate MD and ETL designs.

In order to accomplish generality of the framework input formats, input concepts, extracted

from business requirements, have to be primarily identified in the given sources represented

by ontology, tagged with their potential multidimensional roles and appropriately mapped to

the data sources. This is done in the Requirement Validation stage. Afterwards, in the

Requirement Completion stage, the system identifies how these concepts are related in the

sources. These two stages represent the main contribution of my work, towards the

generalization of the input formats, since the outputs of these stages are the structures that

are the inputs for the stages responsible for final generation of both MD and ETL designs

(Multidimensional Validation and Operation Identification).

3.1.2.1. Requirement Validation

Requirement Validation represents the initial stage of the GEM framework. Considering

the inputs discussed in section 3.1.1., during this stage, the system validates the input

business requirements with regard to the available data sources. The system reads the

input XML file with business requirements (section 3.1.1.3) and extracts the individual

concepts from the business requirements. The ontology used for representing the data

stores (section 3.1.1.1) is then searched for these concepts. The identified ontology

concepts are then tagged with three kinds of labels: Levels, Measures, or Descriptors.

This tagging actually depends on the part of the input XML structure that the concepts

33

belong to, and it represents the multidimensional role that those concepts have.

Therefore, at this place only the concepts that are required at the inputs are tagged with

their multidimensional role.

In the sequel, the system reads the XML structure with the source mappings (section

3.1.1.2.) and tries to identify the mapping for each ontology concept found within the

business requirements.

Considering the mentioned possibility of the mismatch between the vocabulary used for

making the business requirements and the vocabulary for representing data stores,

another effort inside the GEM system has been done in overcoming this issue. This effort

is actually done through the source mapping process, where the system searches

particular relations of the concept (subsumption, synonyms) in order to find the most

suitable mappings for this concept.

Therefore, the mapping of the identified concepts to the sources can be either:

- Direct, i.e., available in the input source mapping structure, or

- Derived by means of ETL operators.

If the mapping for some concept is not directly available inside the input XML structure,

then the system should search for alternative solutions.

These alternative solutions, i.e., derived mappings, can be deduced from:

- the mapped subclasses,

- the mapped superclasses, or

- the possible synonyms of the given concepts.

Original solution that was proposed, considered that the system was supposed to solely

find mapped subclass/supperclass concepts and derive new mappings automatically.

However, during my study, I noticed that these automatically derived mappings may not

actually fulfill the needs of the designer and initial business requirements.

Therefore, new alternative solution has been proposed and it considers that the system

is first supposed to find mapped subclass/supperclass concepts, but then it only needs to

propose these concepts to the user along with the possible operations needed for

derivation of the new mapping (UNION, INTERSECTION, MINUS, SELECTION, RENAMING).

The advantage of this approach is that the ambiguity in the mapping derivation process is

overcome with the manually derived mapping that the user is supposed to provide

following the system’s suggestions. This ambiguity is especially present when the

mapping is derived from the superclasses of the given concept, because in that case, as

34

we will see later, the three different possible solutions (operations) are available.

However, the apparent downside of it is that the automation of the complete GEM

process is decreased with this task that is manually executed.

For each individual concept extracted from the business requirements and tagged with

the appropriate label the process of the mapping to the sources is triggered.

The complete algorithm is presented in the sequel:

1. if the tagged concept is mapped to the sources then no further action is needed

2. else if the tagged concept is involved in a concept taxonomy then

 (a) if any of its subclass(es) has (have) a mapping then the system proposes derivation of the

 new mapping considering the mapped subclasses and operation ‘union’

 (b) else if any superclass has a mapping then

 i. if the tagged concept has one superclasses and if discriminant function has not

 been specified in the input XML file then user feedback is required

 ii. if the tagged concept has several superclasses then the system proposes

 derivation of the new mapping considering the mapped superclasses and

 operations ‘minus’ or ‘intersection’.

3. else if exists a (transitive) one-to-one association to a mapped concept then suggest it as a

potential synonym

 (a) if the suggestion is accepted then the functional requirement is updated with the

 synonym concept

4. else the concept is not available in the data sources

During steps 2(a) and 2(b), user feedback is required in order to provide mapping for the

concepts that are not directly mapped. The system first identifies, in 2(a), which of the

concept’s subclasses are directly mapped. Then it asks the user to provide new mapping

but according to its suggestions. These suggestions contain mapped ontology subclass

concepts and operations that the user needs in order to derive new mapping. The same

holds for 2(b), with the difference that the system here tries to identify superclasses of a

given concept that are directly mapped. After the user loads new mappings, the system

continues with the validation process. If there are not any sub/super class that is

mapped then the system tries to infer the possible synonyms of the given concept.

Possible synonyms of a concept are those concepts that are related to a given concept

by means of one-to-one association. The process of identifying synonyms uses the

transitivity rule of the ontology to search for the possible synonyms. After the list of

35

possible synonyms is prepared, system suggests to the user to choose one of them.

After the choice has been made, the system continues the process of validation.

As discussed, both through the state of the art and in section 4.2.5 dedicated to the

OWL, one of the main reasons for choosing OWL as the ontology language is because of

existing support. This support is reflected by the fact that the most of the reasoners that

exists support the inference process inside the OWL ontologies. At this point, it can be

noticed how we benefit from this support. Relations between the concepts in the

ontology (subsumtion and transitivity relationships) that are supposed to be identified in

the process of source mapping are actually inferred with the usage of the supporting

reasoner.

After all the input concepts are validated and all the mappings are identified, the system

produces the structure that represents the subset of ETL operations that are extracted

from the mapping information. This structure is part of the input for the latter Operation

Identification stage. For concepts that are directly mapped, only an EXTRACTION

operation is identified. For those concepts whose mappings are derived from its

sub/super classes, the more complex structures are required. One EXTRACTION

operation is required for each concept that represents mapped sub/super class in the

derived mapping. Then for each additional operator (UNION, INTERSECTION, MINUS),

among the mapped concepts, the new corresponding operation is required.

Additionally, a SELECTION operation is required if the mapping contains a discriminant

function. This structure, at the end, represents the set of the ETL operations that are

needed to extract the required concepts from the data sources and it will be included in

the output ETL process design.

3.1.2.2. Requirement Completion

After the concepts from the business requirements are identified in the ontology and

tagged with the corresponding labels, system starts the second stage, i.e., the

Requirement Completion stage. Main task of this stage is to relate already tagged

concepts, regarding the sources. Therefore, during this stage, using the ontology, the

system completes the set of initial requirements regarding the available sources.

Intermediate concepts, which are not initially identified as business requirements, are

now identified, since they are needed to retrieve actually required information. The

system, in the process that follows the requirement completion process, i.e., Annotating

the ontology AOS, tries to tag all intermediate concepts with their possible labels.

However, the tagging of all concepts is finalized during the Multidimensional Validation

stage. The main output of the Requirement Completion stage is the graph structure that

contains the paths identified between the tagged concepts.

36

Pruning process

Completion stage starts with the pruning process, disregarding the concepts or

associations that do not fulfill certain rules.

(a) System disregards concepts or relationships that are neither mapped nor tagged.

However, if concept taxonomy is affected, the concept is replaced with the first

superclass that is mapped or tagged.

(b) System prunes all the mapped many-to-many associations (i.e., *-*). Such

associations violate the three summarization necessary conditions, and

therefore, they cannot be considered for the resulting multidimensional design.

These conditions are later discussed in the section 3.1.2.3., dedicated to

Multidimensional Validation stage.

Output of the pruning process, is a subset of the input ontology, called AOS (Annotated

Ontology Subset).

Looking for paths between tagged concepts

Since it is possible to represent an arbitrary ontology as a graph, then the ontology

concepts are considered as nodes and ontology associations are considered as edges.

According to this formulation, inside the AOS, the system will try to identify paths

between the nodes associated to the tagged concepts.

For identifying how tagged concepts are related in the sources, the system uses the

following algorithm that computes paths between those concepts.

1. foreach edge e in O do

 (a) if right_left_concepts(e) are tagged then paths_between_tagged_concepts =e;

 (b) else if right_concept(e) is tagged then max_length_paths =e; //Seed edges

2. while size(max_length_paths) != Ø do

 (a) paths := Ø;

 (b) foreach path p in max_length_paths do

 i. extended_paths := explore_new_edges(p, O); //only considering edges not in p

 ii. foreach path p1 in extended_paths do

 A.if left_concept(p1) is tagged then

 paths_between_tagged_concepts =p1;

 B.else paths = p1;

 (c) max_length_paths := paths;

3. return paths_between_tagged_concepts;

37

System, in the step 1(a), starts by identifying edges that relate tagged concepts directly

and, in the step 1(b), edges reaching tagged concepts (seed edges). Although, the edges

in the AOS are not directed, it will be considered that the node, representing the tagged

concept, is in the right-end of the seed edge, and that its counterpart is in the left-end.

Afterwards, this algorithm applies the transitivity rule starting form the tagged concepts.

At the first iteration, the system, in the step 2(b)i, explores new edges such that their

right-end matches the left-end of a seed edge, and similarly for the forthcoming

iterations. Incrementally, system explores paths, starting from the tagged concept,

adding a new edge per iteration. There are two main restrictions during this path

exploration process that need to be considered:

1. in a given path, already explored edges cannot be explored again

2. if system reaches another node, representing a tagged concept, in the step

2(b)iiA, it finishes exploring that path (i.e., the path between those tagged

concepts is completely identified)

It can be noticed, from the steps 1(b) and 2(c), that in the given iteration i, the system

only explores the longest paths computed in the previous iteration. Eventually, all paths

are explored and the algorithm finishes.

It should be stated that this algorithm is sound since it computes direct relationships and

propagates them according to the transitivity rule, and complete, because it converges.

Additionally, it can be noticed that each path is explored only once. This algorithm has

theoretical exponential upper bound regarding the size of the longest path between

tagged concepts. However, this theoretical upper bound is hardly achievable in real-

world ontologies, since they have neither all classes with maximum connectivity nor all

paths are of the maximum length, especially without all the many-to-many relationships,

previously pruned.

Producing the Output Subset

Taking the set of the paths between tagged concepts, created in the previous phase, the

following algorithm forms a subset of ontology concepts that are actually needed to

answer functional requirements. This subset consists of those concepts that are initially

tagged and of those concepts (intermediate concepts) that exist in the paths between

the tagged ones. This algorithm might require user feedback, for making precise

decision, about the ontology subset that is going to represent the final output. If

between two tagged concepts there are more than one path then we ask the user for

disambiguation (i.e., which is the path fulfilling the semantics needed to answer real

business needs).

38

The final AOS produced in this phase is compound by the paths selected by the user.

Annotating the ontology AOS

After the system provides the complete AOS, including new concepts, needed to answer

the functional requirement, it must be checked that the whole graph makes MD sense.

First, the system checks the semantics of each edge according to the tags of the related

concepts, if those tags are defined, and the edge multiplicity. According to this, the

system tags each edge with multidimensional relationship it may represent. Afterwards,

the system considers the nodes in the graph, i.e., factual nodes – nodes representing

concepts tagged as measures and dimensional nodes – nodes representing concepts

tagged either as levels or descriptors. Relations between these nodes need to be

checked in order for system, to guarantee that the MD design principles have been

obeyed. For example, factual data cannot be related to dimensional data by means of a

one-to-many association, as by definition, each instance of factual data is identified by

point in each of its analysis dimensions. If the dimensional data appear on the *-end of

the relation, the other end of the relation has to be also tagged as dimensional data.

Furthermore, associations accepting zeros cannot appear in the dimensional end either,

as they do not preserve completeness.

The system, therefore, analyzes the graph and if it finds edges that violate any of the

mentioned conditions, it tries to fix that incorrectness. For example, if the node is in the

many-end of a many-to-one association and is tagged as dimensional, then its

counterpart should also be dimensional. If by doing so, system is able to infer an

unequivocal label, this knowledge is propagated to the rest of the AOS. However, if it is

not possible to identify correct combination of tags among the related concepts, the

algorithm stops and system suppose to offer alternative scenarios. Appropriate

techniques for this task are described in [7].

At this point, after the previous two stages are finished the system provides the

structures that are actually needed for the next two stages of the GEM framework that

are aimed at finalizing the designs of the multidimensional schema and supporting ETL

process.

First, as a result of the Requirement Validation stage the structure containing the set of

the ETL operations, needed for extracting data from the available sources, is created.

This structure is passed to the stage of Operation Identification. Another structure

produced in the Requirement Completion stage is the graph structure containing the

paths between the tagged concepts. This structure, after all the concepts have been

appropriately tagged, indeed represents potential MD design. This design, after validated

39

in the stage of Multidimensional Validation, represents the actual resulting MD design

needed for answering the input business requirements. On the other side, along with the

ETL structure, this MD design represents the input of the Operation Identification stage.

Operation Identification stage after considering operations for extracting the data from

the sources and generating new ones according to the relations between those data

(found in the MD design), as the output generates the design of the ETL process needed

for populating the produced MD schema design.

3.1.2.3. Multidimensional Validation

The main task of this stage is the validation of the potential MD design produced in the

previous stage. During validation, system checks whether its concepts and associations

collectively produce a valid data cube, according to multidimensional design principles.

Two main issues are checked:

i) Whether the factual data is arranged in a MD space (i.e., if each instance of factual

data is identified by a point in each of its analysis dimensions), and

ii) Whether the summarization is correct by examining following conditions proposed

in [6]:

(1) disjointness – the sets of objects to be arranged must be disjoint

(2) completeness - the union of the subsets must constitute the entire set

(3) compatibility of the dimension with the type of the measure being

arranged and the aggregation function

If the initial validation fails, i.e., if the previous constraints are not satisfied, the system

should be able to propose alternative solutions. Otherwise, the resulting schema is

directly derived from the AOS.

During the final part of the requirement completion stage, system might have

propagated some tags, while tagging the AOS associations. However, this does not

guarantee that all concepts have a MD label at this point. Therefore, this stage starts

with the pre-process aimed to derive new MD knowledge from non-tagged concepts,

and each non-tagged concept is considered to play a dimensional or factual role and

thus, it can be tagged as dimensional/factual node. Next, the system validates if any of

these tags, eventually, are sound in a MD sense. In this step, system determines every

potential MD tagging that would make sense for the input functional requirements and

also determines how this alternatives would affect output schema. Positive aspect of this

is that system might derive some interesting and maybe useful analytical options that

may have been overlooked by the designer.

40

For each possible combination of tagging, provided by the previous step, which does not

contradict the edge semantics already existing in the AOS, an alternative annotation is

created. The system then starts validation of each AOS, and considers only those that

make MD sense. Consequently, with the single functional requirement at the input, the

system may produce several valid MD conceptual designs at the output. Afterwards,

each resulting MD design causes the new invocation of the Operation Identification

process and the generation the different ETL process design.

3.1.2.4. Operation Identification

This stage represents semi-automatic process of ETL operation identification. It

comprises three phases. As an input, this stage takes one validated graph, produced in

the previous stage and the initial set of the operations produced at the end of the

Requirements Validation stage and launches the same identification process.

Phase I
This phase identifies operations that are needed for mapping the concepts to target

data stores. For fulfilling this task the system starts from the operations identified in

the Requirement Validation stage and it uses the target schema produced in the

previous stage.

During this phase, the system mainly identifies schema modification operations as

follows.

- Selection is generated from the concepts having attached a selection

condition, or when a required concept does not have any mapped source

(neither it nor its subclasses), while some of its superclasses do have such

mapping (step 2(b) of Requirement Validation algorithm, section 3.4.).

- Union appears when a required concept is not directly mapped to the

sources, but through its mapped subclasses (step 2(a) of Requirement

Validation algorithm, section 3.4.).

- Intersection and Minus, similarly as Union, are generated when the concept is

not mapped directly, but through its mapped supperclasses (step 2(b)ii. of

Requirement Validation algorithm, section 3.4.).

- Join is generated for every association in the ontology. Additionally it can be

marked as outer if one or both association ends allows zeros.

- Aggregation is generated when a many-to-one association is found so that

there is a measure at its many-end.

- Renaming is generated for each attribute in the data sources and gives to it

the name of the corresponding ontological concept.

- Projection is generated for each concept and association in the ontology

41

- Function expresses operations stated in the requirements.

Phase II
During this phase, designer has a chance to refine the previously produced design,

concerning additional information from data sources that can be useful.

For example, the domain ontology might relate state with zip code and street

address. If there is a source containing information about “location” and contains

both the street address and zip code in the same field, then such information is

definitely useful, but the domain ontology cannot help. We can correct this by

enriching the result with producing the appropriate extraction function(s). Nf-reqs

can be exploited in a similar way.

Phase III
The last phase of operation identification stage complements the design with

operations needed to satisfy standard business and design needs. This phase

automatically identifies typical DW operations that can be added to the design in the

later stages. The list of these typical operations can go long and it is claimed that the

provided method is extensible to adapt this list.

3.2. My contributions to the GEM framework

As my thesis covers the initial stages of the framework, my major contribution to the GEM is the

development of Requirement Validation and Requirement Completion stages. Realization of

these tasks indeed generalizes the input formats of the GEM framework and is supposed to

additionally higher the amount of the overall automation. This is achieved through these two

stages in a way that from the inputs, that in a general way represent available data sources (OWL

ontology and XML source mappings) and specific business requirements (XML), the system

generates the structures that are necessary for producing the output MD and ETL designs. The

additional automation is achieved from the fact that the system receives the structured

requirements, and using the inference possibilities (reasoner) of the available ontology,

automatically deduces the relations between the concepts extracted from the requirements

inside the available sources. Furthermore, according to these relations and the information how

these concepts can be extracted from the sources (source mappings) the system produces the

appropriate MD and ETL designs.

My additional contribution to the GEM framework is complete integration of the parts that are

newly implemented by myself, with the parts that have already been implemented by professor

Oscar Romero and Daniel Gil Gonzalez from the Technical University of Catalonia.

42

43

4. GEM development

Since the previous chapter represents detailed description of new GEM approach and supporting

framework, with the main focus on the stages of the framework that I developed, this chapter

corresponds to detailed and formal description of the process during which these stages of the

framework were developed. Development process represents the second (technological) part of my

master thesis.

4.1. Development Method

As a software development process, the process of implementation of the GEM features should

follow and respect some basic principles of the Software Engineering. Therefore, prior the

beginning of the development process, the possible development method that would

appropriately suit the needs of this kind of project, was discussed. Traditional plan-driven

software development methods usually require the set of requirements to be fully available prior

the begging of the design and implementation phases and for each phase of the development to

be strictly respected. Considering the academic and research environment, ad-hoc team

organization and low overall criticality of this project, it was concluded that the method that

would best suit this project, is Agile Software Development method. In the following sections,

the brief introduction to Agile Development, its suitability to this project and more detailed

reasons for choosing it, will be provided. Furthermore, since there are various Agile Software

Development methods available, the one that best suits this project will be discussed along with

its necessary adaptation to the academic and research environment.

4.1.1. Agile Software Development Methods

Agile Software Development considers the set of software development methods that are

primarily based on incremental software development. This considers that the requirements

and outputs of the implementation phases evolve during the development process. These

methods belong to the group of so-called lightweight development methods and they are

formally defined in 2001 through the Manifesto for Agile Software Development [15].

Manifesto emphasizes the four main principles that Agile Software Development Method

underlies on:

1. Individuals and Interactions – which means that inside the projects that follows Agile

Software Development method, individualism and self-organization, are important

as much as the easy and effortless communication inside the team.

2. Working software – which means that during these projects at the end of each

iteration, the proper working piece of software should be available in order to justify

44

the work during that iteration and in order to minimize the risk of non-understanding

the starting requirements.

3. Customer collaboration – which means that instead of gathering the whole set of the

requirements at the beginning, the collaboration with the customer representative

should be constant during the whole project and the requirements should be

constantly gathered prior the beginning of each iteration.

4. Responding to change – which means that the project team should be feasible to

quickly respond to sudden changes during the project

Some characteristics of agile software processes, from the fast delivery point of view are

given in [18].

- Agile software process supports modular development.

- Short cycles enable fast verification and prompt corrections.

- Agile software processes are open for necessary adaptations.

- Incremental process minimizes the risks and allows creating of the fully functional

application through small lighter steps.

- Agile development supports introduction, modification and possible removal of the

requirements in successive iterations.

Prior the choice of using one of the Agile Software Development Method in this project, the

results of the surveys that was conducted in the few independent studies, and that examines

the results of using the Agile methods, were overviewed. One of them, conducted in 2003 by

Shine Technologies [16], considering experience of using Agile methods in various

environments, showed results that widely support the using of Agile methods. Another

survey represented in [17] also examined overall experience and satisfaction with the agile

methods used in business development projects and had very similar results, with the

concluding comment that “Agile works in practice…. “.

4.1.2. Agile suitability to GEM development

Besides the previously commented Agile-using experience surveys, additionally, the

suitability of Agile methods for this project has been also taken into consideration, before

choosing one of them for the development process.

In [18], the detailed survey about the available Agile Software development methods is

conducted. Considering the development of GEM features, these methods are examined.

The method that is found to be the most appropriate for this project is Scrum. Scrum

actually dates back to 1986, but it was revisited and updated by Schwaber in 1995 and later

by Schwaber and Beedle in 2002. The main idea of Scrum, explained in [18], is that system

development should involve several environmental and technical variables (technology,

45

requirements, time frame etc.). These variables make development process unpredictable,

which requires flexibility of the process in order to be able to respond to the changes. The

scrum process is depicted in Figure 10 [18].

It can be noticed that the scrum process includes three phases: pre-game, development and

post-game.

Figure 10: Scrum process, taken from [18]

During the pre-game phase, the initial planning and high level designs are provided. This

includes complete definition of the system being developed, along with the currently known

requirements and concerning that the system architecture is produced. The initial

requirements are stored inside the Product Backlog list. This set of the requirements and the

initial architecture is open to future changes, during the iterations of the development

phase. Development or game-phase actually includes implementation of the system

features through the multiple iterations (sprints). During these iterations mentioned

variables are watched and according to their changes the iterations should be appropriately

adapted. The final phase, i.e., post-game phase, is one where the complete system

functionality is available and it also includes the testing of the developed system.

4.1.3. Reasons for choosing Agile and Scrum

From the general Agile Development principles and Scrum process explained above, it is

noticed that the development of GEM features can easily follow this process with the minor

adaptation points.

46

First, the requirement issue was considered. As it is stated, Scrum as the Agile Development

Method is suitable for the environments where the set of the requirements is not finite at

the beginning (requirements variable). Since GEM project is the part of the research and thus

subject to constant changes and improvements, than this perfectly suites its needs. As the

part of the master thesis, this project also requires high level of individualism, but also on the

other side efficient communication inside the research group. This is another reason for

choosing one of the Agile methods, since the first principle of Agile states that the

development process should respect both self-organization and cooperation inside the

project team. Agile methods also suits the GEM development project, in the terms of the

number of team members, since it is commented that Agile methods give better results in

the smaller environments. Specifically in [18] it is commented that Scrum is Agile method

most suitable for smaller teams.

The only doubt about using the Agile methods is coming from the fact that the members of

the teams, as proposed by the Agile Manifest, should be mostly senior developers. Since the

project includes students working on their final projects then it can be stated that not all the

members of the team are senior high-experienced developers. This issue is compensated by

the fact that my work was constantly supervised by the thesis advisors and that the meetings

were organized very often in order to keep track of all the obstacles that had arisen. That

actually represents another reason for choosing the incremental development process (Agile)

since it makes easier for the project supervisors to constantly follow the progress of the

development. Furthermore, inside of the development phase of the Scrum process (Figure

10), each iteration (sprint) can include traditional phases of software development:

requirements, design, implementation etc. and most importantly this set of phases can be

arbitrary adapted to the real project needs.

From the above mentioned, it can be seen that Agile Software development method, more

specifically - Scrum, is quite suitable for the development of GEM features.

4.1.4. Scrum adaptation to the GEM development methods

Since this project represents the master thesis project there should be made certain

adjustments of the Scrum process to the real needs of this project.

The first adaptation of the Scrum concerns the roles inside the process. The original Scrum

includes six different roles inside the process.

- Scrum Master is responsible for ensuring that the project is carried through

according to the Scrum practices and that it progresses as planned

- Product Owner participates in estimating the development efforts and in turning

the issues from the Backlog list (requirements) into features to be developed.

47

- Scrum Team is the project team that has the authority to decide on the

necessary actions and to organize itself in order to achieve the goals of each

iteration (sprint)

- Customer participates in the task related to product Backlog list for the system

being developed.

- Management is in charge of final decision making along with the charters,

standards and conventions to be followed. It also participates in setting the goals

and requirements.

These roles are accordingly arranged and adapted to the members involved in this project.

The team of my master supervisors, i.e. professor Alberto Abello and Oscar Romero has been

responsible for caring out the project and following its progress, and also participating in the

setting of the requirement list. Therefore, the roles that they had in the project correspond

to Scrum Master, Management and Customer. On the other side, my duty inside the

development process was first to transform the requirements and theoretical issues into the

appropriate features that need to be developed and later to develop those features.

Therefore, I was given the role of Product Owner and Scrum Team.

First, the pre-game phase actually represents the theoretical part of my thesis, since there (in

chapter 3) the complete and detailed description of the GEM framework is provided. Along

with the description, the low-level design (architecture) of the whole system is provided in

Figure 1.

During the development of the GEM framework features that my thesis covers, the several

iterations have been identified:

- 1st – Reading and extracting of the inputs

- 2nd – Requirement Validation

- 3rd – Requirement Completion

- 4th – Integration of the MDBE system

- 5th – Integration of the Operation Identification stage

- 6th – Graphical User Interface

All these iterations have been driven by the requirements that are collected both

superficially at the beginning of project and incrementally, i.e., more precisely prior each

iteration. At the end of each iteration, collective meetings have been organized by the tutors

to review the finalized iteration and to discuss arose issues and their possible solutions.

The following sections exhaustively, respecting the development phase of the Scrum process,

cover the process of implementation of GEM features that are included in my thesis.

48

4.2. Generally used technologies

In this section, the general technologies, programming languages and development tools that are

used during the development process, will be briefly presented along with the reasons for their

selection. Afterwards, during the project iterations the specific technologies will be incrementally

introduced.

4.2.1. Visual Paradigm for UML

For designing the modules implemented during the project, the Visual Paradigm for UML is

used. This tool is chosen for the design process because it represents a powerful, cross-

platform, feature-rich, and most importantly free UML tool (community edition). It supports

the latest UML standards. Visual Paradigm for UML Community Edition (VP-UML CE) is

chosen and it provides the most easy-to-use and intuitive visual modeling environment. It

also provides rich set of export capabilities such as XMI, XML, PDF, JPG and more.

4.2.2. Java

For the implementation of the GEM features, the Java programming language has been

chosen. The main reason behind this choice is the fact that other features of the GEM

framework has been already implemented in Java, and the fact that Java represents the most

common used programming language, which can be justified mostly by its platform-

independent and portable nature.

4.2.3. Net Beans 6.9.1 as development environment – IDE

The complete development of the project is realized inside Net Beans 6.9.1. The choice of

this development tool can be mainly justified by the fact that I was primarily experienced

working with Net Beans IDE, and the fact that none of the IDEs were actually considered as

mandatory. Another factor that led to this decision is that Net Beans has better support for

drag and drop GUI development.

4.2.4. XML as input format

Being one of the most used forms for exchanging a wide variety of data between systems

and on the Web, it is unnecessary explaining XML here. However, at this place it is important

to emphasize the advantages that XML offers and that GEM, using it at its input, potentially

benefits from. The main goal of XML is to provide the form for communication among

different systems, supporting various platforms and as the most important supporting

usability over the internet.

49

As already mentioned, my work inside the GEM project aims at providing GEM with the

general input set. This means that the input sources and business requirements must be

expressed in a way that can support various forms and technologies. Besides some well

known technologies, GEM system is supposed to support various, even unstructured, forms

of providing the business requirements (Free-text formats, Web content, email,

questionnaires etc.). From this, it can be noticed that XML is the best choice for representing

business requirements at the GEM input. On the other side, since no specific technology for

the data sources is implied, the mappings of the ontology concepts are also conveniently

represented in XML.

4.2.5. OWL Web Ontology Language

OWL is intended to be used when the information contained in documents needs to be

processed by applications, as opposed to situations where the content only needs to be

presented. It can be used to explicitly represent the meaning of terms in vocabularies and

the relationships between those terms. Inside the GEM project, ontologies are chosen for

representing the source data stores. Since the system has to be able to read and infer

relations inside the source data stores, the OWL has been chosen, because OWL provides

system with the means not only for representing information but also for automatic

processing of that information. Another factor for choosing OWL inside GEM, was the fact

that was discovered in the state of the art. It is said that the OWL, as the most commonly

used language, has the highest support in terms of reasoners. Reasoner, i.e., inference

engine, is a piece of software that can be used for automatic inference of the additional

knowledge concerning the rules specified by the ontology. Therefore, inside GEM, reasoners

will be used for automatic deduction of the knowledge about the given data sources. Also

another reason that is mentioned in the state of the art is the fact that OWL is the proposed

W3C standard for representing ontologies on the Web.

Since OWL tends to be very complex language, it should be stated that only the subset of the

OWL elements is actually used for building the ontology that represents data sources in GEM.

The elements used inside the ontology are presented in section 3.1.1.1..

4.3. Incremental development of GEM features

As already explained, the first phase of the Scrum process (pre-game phase) is completed inside

the theoretical part of the thesis. Therefore, here, the second (development) phase is presented.

As, the development process of the GEM features is based on the Scrum, i.e., Agile Software

Development Method, its development phase is then divided into incremental sprints or

iterations, each one driven by the requirements observed at the beginning of that iteration.

The general structure of one iteration is adapted to GEM needs and it contains the following:

50

- Requirements that drive the specific iteration

- Specific technologies introduced in the iteration

- Design of the feature(s) covered by the iteration

- Implementation

- Obstacles that arose during the iteration

- Agreed solutions for the arose obstacles

- Results of the iteration

This structure is general and thus, through the iterations it can be modified according to the

specifics of that iteration.

Design part of the iteration contains UML diagrams that are used to model the features of the

system that are specified by the requirements. Depending on the need and understandability

issue some of the following diagrams are provided:

- Use case diagram - for representing requirements

- UML class diagram – for representing structural model of the part developed in the

iteration

- UML sequence diagram – for representing the functionality of the part developed in the

iteration

- UML activity diagram – for representing the algorithm included in the particular

operation

It should be additionally stated that inside the design parts of the following iterations, the

external concepts (e.g. from Java libraries and already implemented modules) are depicted with

different color (dark gray).

Requirements of each stage were originally discussed on the oral meetings and thus are first

given in the non-formal way, but are later translated to the appropriate use case models.

Implementation part covers the work during the implementation process. It also includes

translation of the design concepts to the resulting code. Specifics of the Java libraries, needed for

the implementation of particular functionalities, are also presented inside the implementation

part of the iteration.

Even though the testing of each iteration has been conducted at its end, complete testing is

based on the TPC-H benchmark and therefore, the testing is fully covered in the section that

follows the development phase of the GEM. Prior the testing section, the brief introduction to

TPC-H benchmark, which is used for the testing purposes, is also presented.

51

Before the beginning of the development, the full picture of the GEM should be again just briefly

considered. Probably the best and the easiest way for making the full picture of GEM system is

by reviewing the Figure 1, where the separated stages of the system and communication

between those stages can be seen without the need to delve into any formal representation.

From this model, the basic set of requirements is extracted, but prior each iteration this set is

supplemented with more precise requirements concerning particular iteration.

4.3.1. 1st iteration - Reading and extracting of the inputs

Requirements

At the beginning of this project, the inputs of the GEM

system were considered. Therefore, the following

requirements, concerning these inputs, arose in the first

iteration of the development process:

- The system should be able to receive two formats of the inputs, i.e., XML and OWL

structures.

- The system should be able to read and parse these formats in order to extract useful

information.

- The system should be able to extract three different kinds of information. Two

structured in XML, i.e., business requirements and source mappings and one in OWL,

i.e., ontology representing source data stores.

- Content of the input files should be stored into the previously prepared structures

and available for later using.

The set of these requirements is expressed with the use case diagram depicted in the Figure

11.

Technologies

Concerning XML input structures, Java API for parsing the XML files is needed. Starting in Java

1.4, Sun bundled the Crimson XML parser and both SAX and DOM APIs into the standard Java

class library - JAXP. The main difference between SAX and DOM is that in the SAX, only those

parts of the document that are actually needed are stored in memory and hence the SAX is

quite fast and extremely memory-efficient. SAX is actually based on the events that occur

during the reading of the XML file. DOM, on the other side, must keep the entire document

in memory at once. Furthermore, the DOM data structures also tend to be less efficient than

one of the SAX API. From the above it can be seen that JAXP represents the solid choice for

parsing the XML inputs, with its strongest argument of being standard Java class library.

Additionally, the choice between DOM and SAX is also quite straightforward concerning

efficiency that SAX offers, and thus, the SAX API has been chosen.

52

On the other side, the means for reading and parsing the ontology represented in OWL was

also required. For this purpose JENA (Semantic Web Framework for Java) has been chosen.

JENA is open source technology and its development has originally established by the

Semantic Web Research group at HP Labs. JENA represents a Java framework for building

Semantic Web applications. It provides Java programmatic environment for both creation

and parsing of various Semantic Web Standards (RDF, RDFS, OWL etc.). Besides its

functionality for simple reading and writing of the semantic web documents, JENA also

contains features for processing of these documents, i.e., rule-based inference engines

(reasoners). JENA framework includes OWL API for handling the ontologies written using

OWL Semantic Web Standard. Considering the needs of GEM system, JENA seems to be very

suitable for handling input source data stores represented as OWL ontology.

Design

Considering the requirements, the design of the initial part of the GEM system, for reading

and parsing input structures, is provided.

Figure 11: Use case diagram of Input Reading module

Due to the specifics that JAXP and JENA library contains, design of GEM module, for reading

the inputs, is slightly driven by these specific needs. Since the information extracted from

the input files are supposed to be stored, the structures for storing all these information,

should also be designed.

Designing process of the first iteration starts from the requirement that concerns reading

and parsing of the XML files that contain business requirements. Package that contains

complete model of this part (gem_xml) is presented in Figure 12. The class modeled for

storing all information gathered from the business requirement file, XMLStruct, should

contain all data of the input XML structure that is discussed in section 3.1.1.3.. Probably the

most important is the design of the structures for storing different concepts that can be

extracted from the business requirements. Therefore, class Concept is introduced in the

model, along with its subclasses. Each of these subclasses is intended to represent different

multidimensional role that these concepts have, i.e., Level, Descriptor (Slicers) or Measure.

53

This taxonomy among the concepts is important because these three types of the concepts

can contain different kinds of information, specific for that concept. Descriptor, for example

can contain additional function (functionOverConcept) that is supposed to be applied over

the concept before comparing it with the given value (e.g. extract_year(Date)>2001).

Measure is also specific because for this kind of concept it should be possible to additionally

store the concepts that appear in the function (functionConcepts). This function (function) is

used for calculation of the measure value and thus, it should be differed from

functionOverConcept which is supposed to be applied over the concept.

Figure 12: Class diagram for the parsing of XML with business requirements

Classes concerning concepts of the input requirements are included in the package concepts

that is included in the surrounding gem_xml package. Afterwards, the structures for storing

non-functional requirements related to the specific concept are provided in the package nfr.

Aggregation functions for the measure concepts are also modeled with the package

aggregations, which is along with nfr also included in the gem_xml package.

After modeling the structures for storing extracted information, the part that actually

supports XML parsing should be modeled. Guided by the specification of JAXP, the system

should contain the class that extends DefaultHandler class form the JAXP library. This class is

XMLHandler. Handler is needed because SAX API, that is previously chosen, is based on the

events that occur during the parsing. Therefore, this handler is used to appropriately react on

these events. More details about these events and XMLHandler class are provided in the

implementation part of this iteration. The interface to the rest of the system is the class

54

XMLReader that receives the name of the file containing the XML structure and the process is

started with the invocation of its operation readXML().

Figure 13: Sequence diagram for Reading XML with business requirements

Complete process of reading input XML with business requirements is depicted in Figure 13

with the corresponding sequence diagram. In the diagram, it can be noticed that the process

of reading and extracting of business requirements starts with the creation of XMLReader

object (step 1), as it represents the interface of this part to the rest of the system. This object

receives the name of the XML file with the business requirements (filename), prepares the

structures needed for XML parsing, i.e., the structure for storing the data (XMLStruct) and

XMLHandler for handling the dataflow from XML file to XMLStruct object (step 3.1 and step

3.3). XMLReader then, using the instance of XMLParser class (from JAXP library), starts the

parsing process (step 3.5). As it can be seen in the Figure 13, handler object receives the

instance of the XMLStruct, and thus establishes the communication with that structure. This

is required because handler object, during the process of XML parsing, needs to forward data

gathered from XML to the corresponding elements of the prepared structure (step 5). At the

end of the parsing process, XMLReader provides the instance of the XMLStruct filled with the

data extracted from the XML.

The design of the part, responsible for reading and parsing of the XML structure that contains

source mappings, is mostly analogous to the previous one. Difference exists only in terms of

the structure designed for storing the extracted data. Since this XML contains information

55

about source mappings, the design of the corresponding structure is provided and depicted

in Figure 14.

Figure 14: Part of class diagram representing structures for source mappings

This design is driven by the XML specification of the source mappings, discussed in 3.2.1.3.

The central class is SourceMappingStruct that contains all information extracted from the

XML structure. It can be noticed that SourceMapping class contains information gathered

from the first part of one source mapping, i.e., information about ontology types and

identifiers. Class Mapping contains specific information about how this concept from the

ontology is mapped to the real sources. It can be noticed that class Mapping can include the

additional set of mappings. This comes from the fact that one ontology concept can be

mapped to the sources through more than one mapping (derived mapping) including

operators that should be applied among those mappings (Operators). Class Selection

contains information from the selection part of the input XML and that is intended to limit

the resulting set of corresponding mapping.

At the end of the design process, the design of the part responsible for handling the input

ontology is considered. Even though OWL represents the most complex structure, design of

this part happens to be very simple, since JENA library already contains all the structures for

storing of the ontology elements. These internal structures can be later accessed through the

corresponding interface that JENA offers. In the Figure 15 the simple design of this part is

depicted. However, JENA library sometimes requires quite complex code for obtaining

knowledge from the ontology. More details about these issues will be covered in the

implementation parts of the following iterations.

Figure 15: Package for reading the input OWL ontology

56

Implementation

Implementation part of this iteration starts with the development of the structures that will

be used for storing the data extracted from the inputs. Following the previous design models

and the structure of the input files discussed in section 3.1.1., programming of the structural

part, is mostly straightforward.

Prior the implementation of the part responsible for reading the input XML structures, the

definitions of these structures should be provided. For this purpose, the DTD files are

defined. These files are used to define legal building blocks of the XML documents, i.e.,

document structure with a list of legal elements and attributes. Therefore, DTD files are

provided for both business requirements and source mappings. The graphical

representations of these DTDs are provided in figure 8 and figure 9 and the original DTDs are

provided in Appendix B.

Concerning the business requirements input, for each section of the input XML structure,

separated with the tags, the Java class is created.

The following classes, that represent the translations of the previous design and that are

actually used for storing the content of the XML file, are created:

- Concept.java, with its subclasses:

o Level.java

o Descriptor.java

o Measure.java

These classes are created for storing the data about different concepts. These

are mostly simple classes containing only corresponding the attributes and

get/set methods. The only class that has some additional functionality is the class

Measure.java. Since the measure concept contains the function for calculating

the measure value, corresponding class (Measure.java) contains the method for

extracting ontology concepts (functionConcepts) from this function. This is

needed because the concepts included in the function are indeed ontology

concepts that should be mapped and than included in the generation of the

output designs.

- NFR.java with AdditionalNFRInformation.java, is used for storing the non-functional

requirements that are related to a surrounding concept in the XML structure. The

AdditionalNFRInformation.java class is used for storing the attributes and its values

defined inside the nfr tag (e.g. format="HH24:MM:SS" in the <nfr kind="freshness"

format="HH24:MM:SS" ><00:10:00</nfr>), since these attributes are specific for

the particular non-functional requirement.

57

- Aggregation.java, is used for storing the data extracted from the aggregation part of

the input XML structure. (<aggregations>)

After these structures are created, the part responsible for parsing of the input XML,

extracting concepts from the business requirements and storing those concepts into

prepared structures, is implemented.

Prior the beginning of this part of implementation, the specifics of the JAXP library are

considered. The SAX API from JAXP has been chosen. This API, as already stated, parse the

input XML via handling the events that occur during the reading process. These events are:

beginning of the XML document, end of the XML document, beginning of the XML element

(start XML tag), end of the XML element (end XML tag), characters that appear between tags

and whitespace that is actually ignored. SAX API defines class DefaultHandler that represents

basic, dummy handler of the input XML structure. However, this class does not offer useful

means for XML parsing and therefore the programmer is required to extend DefaultHandler

and override methods that represent the handlers for each specific event stated above. For

that purpose, class XMLHandler.java, that extends DefaultHandler, is created, and

corresponding methods are overridden, i.e., startDocument, endDocument, startElement,

endElement and characters. Additionally the methods for handling the errors that are

identified in the input XML file are also overridden. These methods are used for representing

of the errors detected during the process of XML parsing, either because of the invalid XML

format or because of the illegal structure that does not respect defined DTD.

XMLHandler class contains reference to the object of the XMLStruct class, because handler

class is responsible for storing data that is read through the overridden methods. As already

mentioned in the section covering design, XMLReader represents the class which main

purpose is to prepare the structures needed for the parsing process. Therefore, this class,

i.e., its method readXML, besides XMLStruct also prepares the object of the SAXParser, the

class from the JAXP library, which actually performs the process of parsing. SAXParser object

is obtained from the instance of SAXParserFactory. Afterwards, the instance of the

XMLHandler is also created and the process of XML parsing is started by the invocation of the

parse() method of SAXParser with the file that contains XML (File) and the instance of

XMLHandler as arguments. The method read() from the XMLReader class receives the path of

the file that contains XML and than prepares all the structures and the handler, parses the

document and as the output it produces the instance of the XMLStruct filled with the

information gathered in the parsing process.

Reading of the source mapping is quite similar to the one of the business requirements. The

only difference is the structure for storing the content of the source mappings. Classes

SourceMapping.java, Mapping.java and Selection.java are mostly simple Java classes with

58

corresponding attributes and get/set methods. This structure is already explained and

depicted in the Figure 14, and therefore no further details will be considered.

In the Figure 15, it can be seen that part of system for reading the input ontology is not that

complex. Reason for this is that JENA library, which is used for this purpose, already contains

internal structures for storing data read from the input file.

Class OntologyReader.java is created with the main purpose to read input OWL file. This class

requires the path to the OWL file and at the end it provides interface for accessing the

structures read from the input. This interface, which actually JENA provides through the

object of the OntModel class, is later used for accessing the elements inside the ontology.

After the instance of the OntologyReader class is created with the name of the OWL file, the

method read() is then invoked. This method creates new instance of the ontology model

through the JENA’s ModelFactory class. As an argument for the creation, the

OntModelSpec.OWL_MEM parameter is provided. This parameter is used to define the kind

of the ontology that JENA should expect at the input. After the instance of the appropriate

model is created, it is later used for reading the input file, with the invocation of its read().

Ontology model created in this way does not contain any ontology reasoner, attach to it.

Therefore, additionally the appropriate reasoning engine is added to the model.

Another class of this package is Cardinality.java that is used to represent cardinalities of the

associations from the ontology. This is the point, already discussed, when JENA requires

more complex way for obtaining, in this case, information about the association cardinalities.

Cardinalities in OWL can be defined in several ways.

1. Through defining property (association) to be functional (FunctionalProperty), that

actually means that the property's minimum cardinality is zero and its maximum

cardinality is one

2. Through the restrictions inside the class definition (minCardinality, maxCardinality

and cardinality). These restrictions are defined as subclasses of the class that they are

applying on.

Because of this, unique method getCadinality is defined in the OntologyReader. This method

takes two arguments, ontology class and ontology property (concept and association) and

using the above possible definitions tries to calculate the minimum and the maximum

cardinality of the given concept in the given association. Method returns the instance of the

class Cardinality that is mentioned above, filled with the calculated values.

Obstacles and solutions

As already mentioned, at the beginning of the implementation part of this iteration, the

definitions of the XML documents should be provided. However, since this is the research

59

work, during this iteration the structures of the input XML files have changed and also their

DTDs, in order to support some new ideas that arose in the way. Along with these changes it

was necessary to change the structures prepared as the storage for the XML content and the

methods prepared for handling different XML elements. Fortunately, the original code was

prepared in a way to be feasible to efficiently support quick adaption to the later structural

changes. If new attribute or child tag is introduced in the XML structure, it will only be

necessary to add a new attribute into the corresponding structure and, in case of a new tag,

a new flag inside the Flags class. Additionally, the changes of the appropriate methods of the

XMLHandler class are also minor and includes introduction of a new conditional block that

handles new element.

Another issue that I faced during this iteration was the function of the measure concept. This

function included the concepts and different arithmetic operators (+, -, /, *) that are used to

calculate the value of a measure. It was discussed that for the sake of the conceptual MD and

ETL designs only the concepts included in the function are actually important. Therefore,

afterwards, we agreed that the concepts from the function need to be extracted and

included in the process of producing the output designs. However, since the possible

extensions of this work may include moving from the conceptual design level to the logical

and physical levels, where the information about this function is actually important, it was

agreed to somehow forward this function as a whole in order for another design levels to be

able to access it. The result of this was the introduction of the method

extractFunctionConcept. This method deals with the problem of extraction of the necessary

concepts but it does not consider the actual semantics of the function. After the concepts are

extracted they are stored in the structure inside the Measure object, and the function as a

whole is also stored and available to be forwarded to another level of MD and ETL design.

Similarly to this issue, non-functional requirements, extracted from the input business

requirements were not processed at this level, but are stored inside the nfr package and

available to be forwarded in the future to another design level.

Results of the iteration

Following the starting requirements during this iteration the subsystem for reading, parsing

and storing of the input XML and OWL structures is fully designed. As the main result of this

iteration, the functional module that fulfills the requirements has been produced. This

module as an input receives three different files, two XML files (business requirements and

source mappings) and one OWL ontology file (ontology that represents source data stores).

For storing the content of the input files, the corresponding structures are provided. These

structures at the end of the parsing process can be obtained for their later exploitation.

60

4.3.2. 2nd iteration – Requirement Validation

Requirements

After the functionalities for handling the inputs

are implemented, the requirements for the

realization of the first stage of the GEM system

are considered. The first stage of the GEM

framework is Requirement Validation stage.

Requirements for this iteration are mostly

gathered from the specification of the GEM framework in chapter 3. However, they are listed

here as well, since they drive this iteration:

- Considering the inputs, the system should be able to identify each concept from the

business requirements inside of the available source data stores (ontology).

- Afterwards, the system should tag every identified concept of the ontology with the

corresponding label (Level, Measure or Descriptor), depending on the business

requirement file.

- Then, for every tagged concept the system should identify the mapping of that

concept to the sources. This part is explained in more details in section 3.3., where

the whole stage of Requirement Validation is explained.

- During the mapping process, if the concept cannot be mapped directly, user might

be asked to provide two kinds of feedbacks:

o New derived source mapping according to proposed suggestions, and

o The chosen synonym from the proposed list.

- As the result, requirement validation stage should provide the system with the

subset of the ontology concepts annotated according to the input business

requirements

This set of these requirements is expressed by the use case diagram depicted in the Figure

16.

Figure 16: Use case diagram of the Requirement Validation module

61

Design

To respond to the stated requirements, appropriate design of the resulting Requirement

Validation module, is provided. The basis of this design is certainly corresponding class

diagram and appropriate sequence diagram that depict the process of requirement

validation. In the given class diagram (Figure 17.) the central class is

GEMRequirementValidation. This class represents the interface of the requirement validation

part for the rest of the system. It contains three attributes.

These attributes are actually the structures that contain input data discussed in the previous

iteration. The operation that should model the main functionality of the validation process is

requirementValidation(). The first two use cases in the use case diagram, i.e., identification

and tagging of the concepts, are modeled with the package gem_concept_tagging. This

package contains three classes, more specifically two classes (TaggedConcepts and Tag) and

one enumeration (TagOption). Tag represents the relation between the concept extracted

from the business requirements (concept:Concept) and the corresponding ontology concept

(ontResources).

Figure 17: Class diagram for Requirement Validation module

62

OntResource is JENA’s class that is used to generally represent an element in the ontology.

More details about this are provided in the section concerning the implementation. It can be

noticed that one concept from the business requirements can be related to more than one

corresponding ontology concept. Reason for this is already mentioned case of the measure

concept, where one concept is actually consisted of the set of concepts that are extracted

from the measure function. Primarily through the methods tagLevels, tagDescriptors and

tagMeasures the concepts from the business requirements are identified inside the ontology

and tagged with the corresponding label, i.e., TagOption (GBDATA for Levels, DIMDATA for

Descriptors and MEASURE for Measures). This is represented with the steps 1.1, 1.3, 1.5 of

the sequence diagram (Figure 18). Afterwards, respecting the requirements expressed in the

use case diagram, for each of these concepts the corresponding mapping to the source is

searched.

This is modeled with the class OntologySourceMapping and its operations mapAllTagged and

mapConcept. In the sequence diagram we can see that this is the step 1.7 (invocation of

mapAllTagged operation).

Figure 18: Sequence diagram for Requirement validation stage

Inside the mapAllTagged operation, for each tagged concept corresponding mapping should

be found with mapConcept operation (step 1.7.1). During the mapping process, the set of the

ontology annotations is created. For each tagged concept that is mapped to the sources the

corresponding Annotation object is created (step 1.7.2) and added to this set.

63

Probably the most important and the most complex functionality inside the requirement

validation part is the one that is responsible for mapping of the tagged concepts to the real

source data stores (mapConcept – step 1.7.1 in the sequence diagram). The general algorithm

for finding these mappings is presented in section 3.1.2.3. However, due to better

understanding of this process it is depicted in the activity diagram in Figure 19. The input for

this operation is the Tag that contains the concept previously identified in the ontology and

tagged with the corresponding label. Afterwards, in the structure containing the source

mappings, which is discussed in the previous iteration, the mapping for this tagged concept is

searched. If the direct mapping is not found then the mapped subclasses are searched. If any

mapped subclasses is found, the system suggest user to derive new mapping for original

concept according to subclass concepts that are mapped and additional operations.

Suggestion is proposed to user and the user feedback is then expected. If none of the

subclasses is mapped than the system makes the same search but this time for the

superclasses. If none of the superclasses is mapped that the system searches for possible

synonyms of the concept. The system then offers the list of the potential synonyms to the

user and expects the user response with the chosen synonym. If none of the synonyms is

mapped then the system resets the process of requirement validation and proposes to user

to update source mapping input structure.

Figure 19: Activity diagram for mapConcept operation

Implementation

Implementation of the previously discussed design, first requires detailed comprehension of

the JENA interface for accessing the ontology that is previously read. Detailed Java

documentation and overview of JENA are available in [20] and [21], respectively. As already

64

mentioned, OntResource is JENA’s interface made to represent and access general element

in the ontology. OntResource is actually the superinterface of different interfaces that

represent various OWL concepts that can be declared in the ontology. Some of its most

important subinterfaces and those that are used during the implementation are:

- OntClass for representing ontology node (Class),

- OntProperty representing ontology association (Property),

- DatatypeProperty representing ontology association whose range values are

datatype values (DatatypeProperty),

- ObjectProperty representing ontology associations between instances of two classes

(ObjectProperty),

- Restriction, representing constraints that can be used inside Class declaration in the

ontology (Restriction). It actually extends OntClass because all restrictions of one

Class in the ontology are actually declared as subclasses of that Class (section

3.1.1.1.). Some important subinterfaces of the Restriction interface, for defining

association cardinalities, are: MaxCardinalityRestriction, MinCardinalityRestriction

and CardinalityRestriction.

All the above interfaces contain methods for the access to different features of these

ontology elements. Those methods are mentioned during the iteration phases where they

are actually used.

Concerning the package gem_concept_tagging in Figure 17, the class TaggedConcepts.java is

created. This class is used for realization of the first and the second requirement (concept

identification and concept tagging). Required functionalities are implemented inside the

methods tagLevels, tagDescriptors and tagMeasures. Inside all three methods concepts from

the business requirements are first search in the input ontology. This search is implemented

through the JENA’s interface to the entire ontology (OntModel) with the method

getOntResource that receives the String argument which is indeed ontology URI of that

concept. URIs in the ontology represent unique identifier of the concept and besides the

local name of the concept it contains base URI that is defined for the whole ontology. For

creating of this URI it is necessary first to obtain base URI from the model and then to add

the concept name that is gathered from the input requirements.

For example:

Base URI for the entire TPC-H ontology is defined as:

xml:base=”http://www.owl-ontologies.com/unnamed.owl#”

If the name of the concept from the business requirements is:

Region_r_nameATRIBUT

65

Then the URI of this concept in the ontology is:

http://www.owl-ontologies.com/unnamed.owl#Region_r_nameATRIBUT

Moreover, the concept of the business requirement can be identified as either Class or

DatatypeProperty in the ontology. However, both of them can be saved in the OntResource

variable since it is their superslass. For later usage of this object, JENA prepared methods to

check the real type of the ontology resource, i.e., isClass(), isDatatypeProperty(), isProperty()

or the general one canAs(OntResourceSubType.class) that can be use for any type of the

ontology resource. Additionally, JENA also prepared methods for conversion from the

OntResource to these subtypes, i.e., asClass(), asDatatypeProperty() or the general one

as (OntResourceSubType.class) that can be used for any subtype of ontology resource.

If the concept is identified in the ontology, then the instance of the Tag class is created. This

instance contains the reference to the concept of business requirements (Concept),

reference to the concept in the ontology (OntResource) and the label (TagOption) that

depends on the business requirements.

Concerning the specificity of the Measure concept, the method tagMeasures differs from

other two tagging methods. The difference is that, in this case the concepts extracted from

the measure function are identified in the ontology and the resulting Tag instance will

contain the set of references to ontology concepts, one for each extracted concept, but only

one reference to the concept of the business requirements (one that is created for that

Measure concept) and one label (MEASURE). As the result, after these tagging methods, the

set of the tagged concepts is available (taggedConcepts).

After the concepts from business requirements are identified and tagged inside the ontology,

the process of their mapping to the source data stores follows. This process is implemented

in the method mapAllTagged() that takes the set of the concepts previously tagged and for

each one invoke the method mapConcept().

This method is roughly designed with the activity diagram in the Figure 19. Following this

design and respecting JENA specificities the implementation of this method can be described

as follows.

The precondition for this method is that the source mapping structure, read from the input

XML file, is available (SourceMappingStruct). First the direct mapping for the concept is

searched inside of this structure. Direct, means that inside the structure there is the element

with the ontology_ID attribute (Figure 14) equals to the ontology URI of this concept. If the

concept cannot be directly mapped to the sources then we follow the algorithm represented

in Figure 19. In the sequel, the implementation of this algorithm is explained.

66

For searching the subclasses and superclasses JENA prepared methods in the OntClass

interface listSubClasses() and listSuperClasses(), respectively. Both of these methods can

receive boolean argument that states if only the direct subclasses/superclasses (true) or all

possible subclasses/superclasses (false) are searched. If the argument is not specified then

the default value is false and this case is actually used here. When the mapped subclasses/

superclasses are found then the suggestion for the user is prepared. This suggestion contains

found mapped classes and operators that are needed for derivation of the new mappings.

For subclasses the only operator is UNION and for the superclasses if ther is more than one

INTERSECTION or MINUS and if there is only one mapped superclass SELECTION. User then

should derive new mapping according to the suggestion and load it to the system. System

then reads new file and tries to extract correct mapping. If it does not succeed than user is

warned again with the same suggestion.

As already stated in the original algorithm, if none of the subclasses/superclasses are

mapped this method should search for potential synonyms of this class. Synonyms of the

given ontology class are those ontology classes related to the first one by the association that

has cardinality 1-1. Here the transitivity rule should be also applied. This means that the path

with 1-1 cardinality associations should be followed to find all potential synonyms. Searching

for the potential synonyms is implemented in the method findPotentialSynonyms(). This

method as an argument receives the OntClass object which synonyms should be searched.

This method uses the already discussed method getCardinality in the OntologyReader class

to obtain the cardinalities of the properties of the given concept. First the mapping for all the

classes that are related to the given class with the 1-1 association is searched, then the same

search is recursively repeated for each found synonym, until all the possible synonyms are

identified. At the end the set of the potential synonyms is returned. Then the system

prepares this list and presents it to the user. The system then waits for the user to make

his/her choice after which it continues. No matter what kind of mapping is found (direct,

through subclasses/superclasses or through the chosen synonym) the instance of the

Annotation class is created. This object contains the instance of the Tag class previously

made for this concept and the instance of the SourceMapping class that represents source

mapping found for this concept. This annotation is then added to the list of the ontology

annotations (AnnotatedOntology). Instance of the AnnotatedOntology actually represents

the final output of this module.

Obstacles and Solutions

The main issue of this iteration was the derivation of the concept’s mapping in the case that

the concept is not directly mapped. The ambiguity that may arise and the appropriate

solutions for this problem are already explained in section 3.1.2.1., and thus are followed in

this iteration.

67

Concerning this mapping process another issue has arisen, now due to implementation

limits. Since the tagged concept can be either Class or DatatypeProperty, the issue of

applying the given algorithm to the DatatypeProperty arose. In fact, in JENA it is not

straightforward to search class taxonomy for a DatatypeProperty. This problem is solved in

the way that if the concept (Class or DatatypeProperty) is not directly mapped then if it is

DatatypePropery the rest of the algorithm is actually not applied directly to that

DatatypeProperty but to its domain class.

For example: If the direct mapping for the concept Customer_c_nameATRIBUT is not

available, then the suggestion for the derived mapping is made according to the subclasses of

the concept’s domain class – Customer. Therefore, classes LegalEntity and Individual are

considered for creating the derived mapping.

Another issue that arose in this iteration is the communication with the outside user. This

communication is needed for giving suggestions to the user and receiving feedbacks from the

user. Since this iteration mainly focuses on the implementation of the functionalities inside

the requirement validation stage, this issue is temporarily solved through the standard

input/output. However, one of the following iterations that is driven with the requirements

for the Graphical User Interface properly solves this problem.

Results of the iteration

After this iteration the GEM framework is upgraded with the functionality for validating the

business requirements that are previously read from the input. This validation process

includes the process of tagging the identified ontology concepts and mapping of each tagged

concept to the sources. Validation considers business requirements, on the one side and the

data sources represented by the ontology and source mapping structure, on the other side.

4.3.3. 3rd iteration – Requirement Completion

Requirements

After the system, in the previous two iterations, is provided with

the functionalities for reading of the inputs and validation of the

input business requirements, in this iteration the system should

be provided with the functionalities for completion of the

validated business requirements. This functionality represents the

second stage of the GEM framework and its complete description is provided in section

3.1.2.2. Nevertheless, in the sequel the list of the requirements that drive this iteration is

provided:

68

- In order to complete the business requirements, the system should be able to,

according to the validated requirements (annotated ontology form the previous

iteration), find the paths between the tagged concepts, in the ontology.

- In order to find these paths the system should identify intermediate concepts that

are not originally required but are necessary to obtain the ones originally required.

- Path between tagged concepts should contain only mapped ontology elements

(Classes and Properties)

- Associations (Properties) on these paths should respect summarization conditions

(not many-to-many associations) discussed in [6]

- If between two tagged concepts there is more than one different path then the user

should choose one that best fits the business needs.

- As the result, the system should, according to the paths, produce the graph

containing nodes for both tagged and intermediate concepts and the edges, relating

these nodes, which represents the ontology associations.

This set of these requirements is expressed by the use case diagram depicted in the Figure

20.

Technologies

Through this iteration, new technologies have not been introduced. However, JENA

functionalities for accessing the ontology structure are also used in this iteration.

Design

In order to answer the requirements depicted in the use case diagram, the design of this part

of the GEM system should be provided. For this purpose the class diagram in figure 21 is

provided.

Figure 20: Use case diagram of Requirement Completion part

The package that models the requirement completion process is

gem_requirement_completion. The central class of this diagram is

69

GEMRequirementCompletion and its operations requirementCompletion and

producingOutputPath. This class actually represents the interface of this part to the rest of

the system. Besides this, class Path models a path between tagged concepts. At this point,

class MGraph will be also introduced for the first time.

As already mentioned, Multidimensional Validation stage of GEM framework has been

already implemented. The MDBE system, that is the result of professor Oscar Romero, and

his PhD work, covers the stage of Multidimensional Validation but also the previous process

of Multidimensional Tagging. The central concept of the MDBE system is the MGraph class.

This class is actually the graph consisted of the ontology concepts (tagged and intermediate)

and relations between those concepts. After the stage of Multidimensional Validation this

graph represents the MD design needed to retrieve the required information.

The requirement that has arose in this iteration is that the main output of the Requirement

Completion stage should actually be the object of the MGraph filled with the identified paths

between tagged concepts. Therefore, the MGraph is included as an external concept in this

design.

The requirementCompletion operation actually covers the first two use cases

- Pruning of the concepts and relationships that do not fulfill conditions, and

- Searching for the paths between the tagged concepts.

The requirementCompletion operation actually represents the algorithm described in section

3.1.2.2., with the additional pruning process that is here included in the algorithm. That

means that during the exploration of the new paths, along the way, the non-mapped/non-

tagged concepts are ignored together with the many-to-many relationships. In the first part

only direct paths are searched.

Figure 21: Class diagram of Requirement Completion module

70

This means that only the tagged concepts that are directly related in the ontology are added

to the final set of paths. Additionally in the first part, for the concepts that are tagged but

that does not have tagged neighbor, the path containing only one node (that concept) is

created. Later in the second part of the algorithm, these paths with only one node are

extended with new mapped associations and concepts. This process of path extension goes

until the first tagged concept is reached. For each path between tagged concepts that are

through the algorithm found in the ontology, the new object of Path class is created. After

all the paths have been identified the operation producingOutputSubset should be invoked.

This operation, as already stated, is used to build output graph out of the identified paths.

Inside of this operation, if there is more than one path that has the same seed and end node,

the user is asked to choose between those path one that best suits business needs. For

designing of this operation specific needs of the already implemented MGraph should be

considered. Since this represents the part of the integration process, more details about the

MGraph is provided in the iterations related to the iteration of the MDBE system.

Implementation

The complete functionality of this part of the system is implemented inside the

gem_requirement_completion package, more specifically with two classes

GEMRequirementCompletion.java and Path.java.

Implementation part of this iteration starts with the implementation of the class Path.java,

which is used for storing the paths between the tagged concepts that are identified in the

ontology. After this structure is provided the algorithm that searches for the paths between

tagged concepts is implemented. The method that implements mentioned algorithm is

requirementCompletion. The input of the algorithm is, as already discussed, the annotated

ontology containing the tagged concepts. For each tagged concept found in the annotated

ontology in the first part the directly related concept that is tagged is searched.

At this place, the two new methods implemented for searching of the properties

(associations) for a given concept should be introduced. Those methods are

findNewPropertiesDomain and findNewPropertiesRange. Two methods are needed because

one concept in the ontology can be related to another in two ways: As the domain of a

property, or as the range of a property. In both methods, the properties, in which the given

concept is included, are searched. JENA library offers the interface for accomplishing such

thing. The method listStatements of the OntModel interface represents general way for

obtaining various elements from the ontology that matches certain pattern. This pattern is

defined through the input arguments of this method. For this purpose we need the following

patterns (arguments): listStatements(null, RDFS.domain, oc) and listStatements(null,

RDFS.range, oc). This means that these methods will return the list of the ontology properties

71

where the oc (OntClass) is defined as the domain/range class of that property. Additionally

for each property from this list it is checked that the property is mapped to the sources. For

this purpose the already mentioned method of the OntologySourceMapping class,

mapConcept, is used. As the method mapConcept previously supported only OntClass and

DatatypeProperty types, now it has to be modified in a way to support the search for the

mapping of the ontology property (OntProperty). Mapping of the properties between the

concepts should be also found in the input XML structure with the source mappings.

Furthermore, the mappings for the properties can only be search directly, i.e., there has to

be a SourceMapping instance in the set of source mappings with the ontology_ID equals to

the ontology URI of the given property. If the property is mapped than the additionally check

is done. As already stated, associations with many-to-many cardinality should be ignored.

Therefore, the system examines the cardinalities of the given property, using the method

getCardinality from the class OntologyReader.java, discussed in the first iteration, and

ignores those with many-to-many cardinality. After these methods return the list of

corresponding mapped and not many-to-many properties, it needs to be checked that this

property and the node on its other side has not been already explored. This is the way to

guarantee that the path does not contain cycles.

These two methods (findNewPropertiesDomain and findNewPropertiesRange) are actually

used in both first and second part of the algorithm. In the first part, after the mapped

property from the given concept is found, the concept on the other side of the property is

searched. Afterwards, the system checks if the found property is tagged. If it is, the new

instance of the class Path is created and added to the pathsBetweenTaggedConcepts list. This

list is actually the output of the whole paths-search algorithm. If the concept is not tagged,

the system checks if it is mapped. If it is mapped than the instance of the Path class is

created, but this time without end node, and is added to the maxLengthPath list. This lists

represents the set of the path for which the exploration process is not finished, i.e., tagged

concept on the end side of the path is not yet found. This list represents the input of the

second part of the paths-search algorithm.

The second part of the algorithm, as already discussed, extends the previously found paths

(maxLengthPaths). This extending process is actually the incremental search, following the

same principles as one in the first part, where the new properties (that fulfill the above

discussed conditions) are added to the path in each iteration, until on the other side of the

property the tagged concepts is identified. Then the complete path, where both seed and

end nodes are tagged is added to the list pathBetweenTaggedConcepts. After the method

requirementCompletion is run and paths between tagged concepts are identified, the

method produceOutputSubset is called to generate the final set of the paths and, according

to this set, to create the MGraph structure. First for each path, the paths with the same seed

and end nodes are searched. For this purpose, the method hasTheSameEnds() in the class

72

Path.java is implemented. If more than one path is found than the list of these paths are

given to the user and the user is asked to choose one of them. For the sake of more friendly

interaction with the user, the default choice is also provide as an option. The default choice is

the first-shortest path that is found. The system waits for the user response and according to

user’s choice inserts the chosen path into the MGraph structure.

The method created for inserting the path into the MGraph (insertPathIntoMGraph) should

be then called for each path. This method goes through the given path and the nodes from

the paths are added one by one to the resulting MGraph. Since this is the point of integration

of the already developed part of GEM (Multidimensional Validation), more details about this

method will be provided in the iteration dedicated to the integration of Multidimensional

Validation stage.

Obstacles and Solutions

One of the issues arose in this iteration is the pruning process. This process is in the original

algorithm described as separated process that goes before the path search process.

However, since JENA stores all the ontology elements (including properties) inside the

internal structures, making the new subset of ontology elements with the pruning process

did not make much sense, especially considering the memory issues. Therefore, the pruning

process has been included in the path search algorithm in a way that, before the system

decides to add a concept or the property to the path it checks that the concept/property is

mapped and that the association satisfy mentioned conditions (not many-to-many).

In this iteration the issue of the interaction with the user also arose. However, as already

mentioned in the previous iteration, the main requirements of these iterations preferably

considered the inside functionality of the implemented stages. The interaction with the user

is here also temporally solved through the standard input/output. The later iteration that is

primarily driven with the requirements for the Graphical User Interface solves user

interaction issue, more properly.

Results of the iteration

The main product of this iteration is the module of the GEM framework fully responsible for

the Requirement Completion stage. This module as the input takes the annotated ontology

with the tagged concepts, completes it and as the output it produces the MGraph structure

that contains both tagged and intermediate concepts (as nodes) on the chosen paths and all

the properties that relates these concepts (as edges). As this is the final stage of the GEM

framework that is covered with my thesis, it also represents one of the points where the

modules that I implemented should be integrated with the ones that are already

implemented by professor Oscar Romero and Daniel Gil Gonzales.

73

4.3.4. 4th iteration – Integration of the MDBE system

After the stages of the GEM framework that my master thesis covers are implemented, the

requirements for integration of these stages with the already implemented stages, arose.

First, the integration with MDBE system was considered, since the result of MDBE represents

one of the input structures for the next stage of Operation Identification. As already

mentioned, MDBE is the system implemented by professor Oscar Romero, during his PhD

work. This system includes the processes of multidimensional tagging and multidimensional

validation. Therefore, this system inside the GEM framework first realizes the final step of

the Requirements Completion stage (Annotating the Ontology AOS) and the complete

Multidimensional Validation stage (section 3.1.2.3).

Pre-conditions

The originally implemented MDBE system, expected at its input the SQL query and the

relational SQL schema. Since my work tends to overcome the problem of specifying the exact

technology (relational), the certain adjustments of the MDBE system were necessary.

These adjustments were aimed at enabling the MDBE to now receive the MGraph at its

input. Originally, MDBE, starting from the SQL query, first built the initial MGraph and then

did the rest of the multidimensional taggings and validations. Therefore, this adjustment was

quite effortless in the sense that only the first step of building the initial MGraph from the

SQL query was supposed to be skipped, since the initial MGraph is already produced inside

the Requirement Completion stage.

Requirements

When the process of integration with the MDBE system was considered, the team meeting

was held. At this meeting the requirements for the process of integration were stated:

- MDBE, after the pre-conditional adjustments, requires the MGraph structure to be

provided at its input. MGraph represents the graph structure and it should contain

the following elements:

o Tagged nodes that represent the tagged concepts, i.e., those concepts that

are extracted from the input business requirements

o Intermediate nodes that represent the concepts that are not tagged, but that

exist on the path from one tagged concept to another, i.e., that are

necessary for relating the tagged concepts in the ontology and thus are

needed for retrieving the business required information.

- The naming of the nodes in the MGraph needs to correspond to the naming used

when the ETLGraph is produces (in the Requirement Validation stage). This is,

important because the stage of Operation Identification uses both ETLGraph and

MGraph to generate the resulting ETL design.

74

Design

On the meeting held prior the integration process the design of the package that is relevant

for the process of integration was presented by professor Oscar Romero. The design

presented in Figure 22 represents only the subset of the package mgraph that is part of the

MDBE system.

The central class in package mgraph is the MGraph class, which contains the resulting graph

structure. This graph structure is represented with the set of NodeInfo objects that

represents the nodes of the graph. NodeInfo object contains the set of edges (edgeList) that

relate that node with the other nodes in the graph. Furthermore, the Edge class contains

association towards the destination NodeInfo and multiplicities (Multiplicity) of that

association.

Each NodeInfo object contains the Node object. This object provides more information about

the particular graph node.

Information that are important for the process of integration, i.e., that needs to be filled

after the Requirement Completion stage, are:

- tablename – name of the ontology concept

- alias - the alias of the ontology concept (to be discussed in the implementation

part)

- Three instances of the Attribute class as follows:

o measures – For the ontology concepts that are tagged as measures

o groupByData – For the ontology concepts that are tagged as dimensions

o otherDimData – For the ontology concepts that are tagged as descriptors

- LabelOption that represents the multidimensional role of the concept represented by

that node.

After commenting the design of the MDBE system, now the changes of the design of the

Requirements Completion part, for supporting the process of integration of MDBE, will be

presented.

As stated, the part of the Requirements Completion design that supports the integration with

MDBE is the operations produceOutputGraph and insertPathIntoMGraph of

GEMRequirementCompletion class. Since the operation produceOutputGraph is discussed

inside section 4.3.3., at this place the design of the operation insertPathIntoMGraph will be

presented.

75

Figure 22: Part of the mgraph package from MDBE system (Oscar Romero)

In figure 23 the algorithm of inserting the path into MGraph is depicted. Input of the

insertPathIntoMGraph operation is the object of the Path class created between two tagged

concepts. This instance contains the list of the concepts through the path, and the list of the

associations (properties) between those concepts. Therefore, the algorithm in figure 23 goes

through this list and for each concept in the list, first searches if this node for this concept is

already in the graph. If such node does not exist in the graph then the algorithm created new

node and adds it to the graph. Then in both cases the algorithm adds the attribute that

corresponds to the multidimensional role that a concept have. Afterwards, the algorithm

relates the new added node to the node from the path that has been previously added. The

outgoing edge of new added node is added to the graph, i.e., to the node’s edgeList. For the

end of the algorithm the multiplicities of the added edge are set.

Implementation

Implementation part of this iteration considers the implementation of the above discussed

operation insertPathIntoMGrap. Implementation of this operation follows the algorithm

depicted in figure 23.

The first part, where the system needs to check if the node for a given concept is already in

the graph, is implemented through the invocation of the method getNodeInfo of the

MGraph.

76

Figure 23: Algorithm for inserting the path into MGraph (insertPathIntoMGraph)

This method receives at the input the tablename and the alias of the node and searches the

graph. If the node is found in the graph this method returns it, and if it is not the method

return null. Then the insertPathIntoMGrap operation creates a new node. This new node

should be created with the parameters tablename and alias. As explained, the names of the

concepts in the MGraph need to correspond to the ones of the ETL graph, and therefore for

the tablename the system uses the ontology URI of the concept. And for alias it uses the

concepts alias if it is available and if not, again the ontology URI.

As it is explained, the concept can be identified as an OntClass or as a DatatypeProperty in

the ontology. If the concept is identified as an OntClass the new NodeInfo is created with the

ontology URI of that concept as tablename. However, if the concept is identified as a

DatatypeProperty, then the system searches for the domain OntClass of that property, and

created new NodeInfo with the URI of that domain class. Furthermore, the system uses this

DatatypeProperty concept to fill the Attribute lists. The kind of list that will be filled

(measures, dimData, groupByData) depends on a tag of the given concept and is explained in

the design part.

After the outgoing edge is added, the system is supposed to obtain the multiplicities of the

given edge. Therefore, the method explained in the 1st iteration, getCardinality, is used. This

method is first called for the origin node, in order to retrieve its cardinality inside the edge.

As arguments the system passes the OntProperty that represents the edge and the OntClass

77

that represents the node. At the same time, the system should obtain the destination node

of the edge, which is easy since it goes through the list of all nodes on the path. For the

OntClass that represents destination node and the same OntProperty the system again

invokes the method getCardinality. When the cardinalities of both edge ends are obtained

the system creates the instance of the Multiplicity class and sets its values according to the

obtained ones.

After the appropriate structures are provided for the integration of the MDBE system the

method validate_requirement of the Mdbe class should be invoked with the created MGraph

as an argument. It should be noted that the method validate_requirement is the result of the

MDBE modifications in order to support new input (MGraph). This method in fact,

implements the process of multidimensional tagging and later multidimensional validation.

Since for one input MGraph there can be more thank one combination of the intermediate

nodes’ taggings the result of the validate_requirement method (MDBEResult) can contain the

set of MGraph structures, each one represents different combination of the tags. All of these

structures can represent the output MD designs, and thus for each one of them the separate

Operation Identification process should be started.

Results of the iteration

The main result of this iteration is that the MDBE system that was already implemented is

now integrated with the fist two stages of the GEM framework. This indeed means that the

MDBE system that was previously used SQL as its input format, now was enabled to receive

the inputs provided in the general format (XML and OWL) and independent of any specific

technology. This bridging between the MDBE and the initial GEM stages was succeeded by

providing the necessary MGraph structure inside the Requirement Completion stage. This

structure is built upon the concepts identified inside input business requirement and the

paths between those concepts found in the sources.

4.3.5. 5th iteration – Integration of the Operation Identification stage

Requirements

After the first input for the Operation Identification stage is provided through the integration

with MDBE (MGraph), the complete integration with the Operation Identification stage was

considered.

Operation Identification stage is fully developed by Daniel Gil Gonzalez. After the team

meeting the following requirements, concerning this integration, are stated:

- Integration with Operation Identification stage requires two structures to be

provided as its input

78

o EtlGraph – containing initial operation graph considering concepts’ mappings

o MGraph – representing final multidimensional design (result of the MDBE

system)

- Therefore, besides the annotated ontology (tagged concepts) the Requirement

Validation stage, at the output, should also produce the appropriate EtlGraph.

- EtlGraph at this point should contain the initial set necessary operations for the

extraction of the tagged concepts from the sources.

- For each mapped concept from the input business requirements the subgraph in the

EtlGraph should be provided.

- This subgraph should keep information about the mapping of the given concept to

the source data stores

- The root of each subgraph should contain:

o the name of the ontology concept that represents the source table to which

the concept is mapped, and

o the name of the ontology concept that represents the attribute of the

source table that corresponds to the tagged concept, represented by the

subgraph.

- These roots actually represent the points from which the complete EtlGraph is built

inside the Operation Identification stage.

- Since this EtlGraph structure is later, inside the Operation Identification stage,

complement according to the relations from the MGraph structure, the names of the

source table concepts and source table attribute concepts should correspond to ones

that appear in the MGraph. This is important and should be followed in the process

of producing MGraph.

- The initial set of the operations, that should be provided in the Requirement

Validation stage, depends on the mapping of the required concepts and it can

contain:

o Extraction – for the directly obtaining from the sources

o Selection – for obtaining the concept from the sources using the discriminant

function

o Union, Intersection, Minus – for obtaining the concept from the sources

through its mapped subclasses (Union) or supperclasses (Intersection or

Minus).

Design

Design part of this iteration begins with the overview of the design of the ETLGraph package

that was provided by Daniel Gil Gonzalez on the team meeting.

79

Since this design is not the part of my work, it is only briefly depicted with the main concepts

that are important for the understanding of the integration process and that are actually

needed to be provided before beginning of the Operation Identification stage.

Figure 24: Class diagram of the ETLGraph package (Daniel Gonzalez)

Central class is EtlGraph and it represents the structure that should be initialized at the end

of the Requirement Validation stage. As it can be seen, this class contains several structures.

- mGraph – this is the instance of the previously explained MGraph class. Since the

instance of the MGraph is fully available after the Multidimensional Validation

process then it is added to the previously prepared etlGraph structure

- slicers – that actually represent the list of the Slicer objects. Slicer represents the

class for storing the information about the Descriptors (slicers) found inside the input

business requirements file. This class corresponds to the Descriptor class from the

gem_xml.concepts package (Figure 12).

- orderAggr – this structure stores the data about the aggregations found in the input

business requirements file. This structure is the instance of the Aggregation class

and it corresponds to the Aggregation class from the gem_xml.aggregations package

(Figure 12).

- etlGraph – the last but the most important structure. This structure actually

represents the ETL graph, i.e. output ETL design that should be generated as one the

results of the GEM framework. It represents the set of the nodes that correspond to

the operations (OperationNode). Besides other attributes, here are presented only

those that are important for the integration process, i.e., whose values are provided

in the previous stages of the framework.

o The attribute availableConcepts represents the ontology concepts included

by this operation and

80

o The attribute availableTables represents the source data stores from which

these concepts are extracted.

o The info (OperationInfo) represents the structure that gives additional

information about the operation represented with the particular node

(OperationNode). This additional information is about the type of the

operation that this node represents. Since the individual development of the

Operation Identification stage did not consider mapping issue, the original

set of the subclasses of the OperationInfo class (possible operations) was

previously limited with the operation of Extraction, Selection, Projection,

GroupBy and Join. After the team meeting and prior the integration, this set

is complemented with the subclasses that represent the operations that are

needed for mapping of the ontology concepts to the sources (Union,

Intersection, Minus) and thus in Figure 24, they are depicted with the dashed

line.

Another class important for the process of building the ETL graph is ETLEdge. This class

represents the way of relating two nodes (OperationNode) inside the ETL graph. Therefore,

this class is related with the OperationNode class with two different associations. First one

depicts the relation of the node with its output edge, while the second one represents the

relation of the edge with is destination node.

Since the design of the ETLGraph package is briefly overviewed, in the sequel, the upgrades

to the original Requirement Validation design, made as a support for the integration process,

are represented.

The only change to the previous design (Figure

17) is the introduction of two new operations in

the class GEMRequirementValidation and the

updated class is represented in Figure 25.

Figure 25: Changes to the previous design

The operation fillETLGraph should create new object of the EtlGraph and for every tagged

concept it should invoke addMapping operation. The addMapping operation, takes one

mapping that corresponds to one tagged concept, and according to that mapping it builds

the subgraph inside the EtlGraph. The algorithm for building the subgraph is due to its

recursive complexity depicted in Figure 26 with the corresponding pseudocode.

81

The algorithm in Figure 26 consists of two parts.

- The first part is responsible for creating the EXTRACTION node in case that the

mapping of the concept is direct (line 6). Additionally if there is the discriminant

function in the mapping (Selection tag) then the algorithm creates new operation

node (SELECTION node) (line 14) and relates it to the corresponding EXTRACTION

node with should represent its child node (line 16).

- The second part of the algorithm is responsible for the case where the mapping is

not direct (derived mapping). Then for each direct mapping inside the derived one

(mappings of the subclasses/superclasses) (line 25) the algorithm makes the

recursive call with that direct mapping as an argument (line 27).

1 operation addMapping(mapping:Mapping): OperationNode

2 begin

3 OperationNode extraction, selection, temp, root;

4 if (mapping.isDirect())

5 begin

6 extraction : = createExtractionNode(mapping.getTablename(),

 mapping.getProjAttrs,

 “EXTRACTION");

7 etlGraph.add(extraction);

8 root := extraction;

9 if (mapping.containsSelection())

10 begin

11 temp := extraction;

12 foreach (selection : mapping.getSelections())

13 begin

14 selection :=

createSelectionNode(mapping.getSelectionAttr(),

mapping.getSelectionOperation(),

 mapping.getSelectionValue(),

 "SELECTION");

15 etlGraph.add(selection);

16 selection.addChildNode(temp);

17 temp := selection;

18 end

19 root := selection;

20 end

21 end

22 else

23 begin

24 OperationNode[] leaves;

25 foreach (subMapping : mapping.getMappings())

26 begin

27 leaves.add(addMapping(subMapping));

28 end

29 temp := leaves(1);

30 i := 1;

31 foreach (operation : mapping.getOperations())

32 begin

33 temp := createOperationNode(leaves(i), leaves(i+1), operation);

34 i := i+1;

35 etlGraph.add(temp);

36 temp.addChildNode(leaves(i));

37 temp.addChildNode(leaves(i+1));

38 leaves.set(i+1, temp);

39 end

40 root := temp;

41 end

42 return root;

43 end

Figure 26: Algorithm for building the ETL subgraph for a source mapping

This loop (lines 25 - 28) aims at providing the structure of the leaf nodes of the resulting

graph. The terminology of the tree (leaf) is used because the resulting ETLGraph actually

represents the binary tree because each node is supposed to have maximum two child

nodes. This limitation is made in the implementation part of the ETLGraph and thus here

inside the design of this algorithm needs to be considered. Afterwards, the algorithm

goes through the loop (lines 31 - 39) and inside this loop, for each operation detected in

the derived mapping it creates a node for that operation and relates it to its two child

82

nodes taken from the leaves list. As it is stated each node can have maximum two child

nodes and therefore in (line 38) the algorithm adds the subgraph made out of one

operation and two child nodes into the leaves list. This is important for respecting the

implementation limits of the ETLGraph (maximum two child nodes), if the mapping is

derived from the multiple direct mappings and operations.

Implementation

Implementation part of this iteration begins with the import of the corresponding package

(EtlGraph). Afterwards, the implementation of the two operations presented in the design

follows.

First, the algorithm for building the subgraph according to the mapping was implemented

with adding the addMapping method inside the GEMRequirementValidation.java class.

Implementation of this method mostly follows the algorithm depicted in Figure 26. However,

the specificities of the ETLGraph, in order to build the correct graph, are respected. This

considers the issue of naming the availableTables and availableConcepts attributes. As it is

already mentioned, the availableTables should contains the names of the ontology concepts

representing the source tables, and the availableConcepts should contain the ontology

concepts representing the source table attributes that this concept is mapped to. As

explained before, the concept in the ontology is uniquely identified with its URI, and

therefore for filling of availableTables and availableConcepts attributes, the system uses the

ontology URI of the particular concept. Regarding the naming issue, at the meeting it was

agreed that since the implementation of Operation Identification stage considers only the

roots of the subgraphs in the ETLGraph that are generated in Requirement Validation stage.

The naming of the other nodes in the subgraph does not have to follow the same pattern.

However, it is important to name the nodes in right manner for the later usage of the

conceptual ETL design. Therefore, the availableTables attribute will be filled with the table

names of the concepts’ mappings included in this operation while the availableConcepts

attribute will be filled with all the attributes’ names from these mappings.

After the method addMapping is implemented the implementation of the method

fillETLGraph is straightforward and it is consisted of the three parts.

- Providing the content of the slicers structure, from the content of the Descriptor

objects of the XMLStruct (implementation part in section 4.3.1.).

- Providing the content of the aggregations structure, from the content of the

Aggregations object of the XMLStruct (implementation part in section 4.3.1.).

- The invocation of the addMapping method, for each tagged concepts’ mapping, with

this mapping as an argument.

83

Furthermore, the appropriate methods of the ETLGraph, for building the resulting ETL design

need to be invoked.

Obstacles and Solutions

The individually developed stage of Operation Identification, considered as an input only the

structure resulting from the MDBE system. The problem was that the MDBE system was in

fact, originally intended to work with the SQL queries and thus this limited the technology of

input formats to relational. The great effort from both Daniel Gonzalez and my side was

needed to overcome this issue during the integration of Operation Identification part into the

GEM framework.

Some knowledge about relations between concepts that was previously extracted from the

SQL queries is now supposed to be deduced from the underlying ontology. As an example,

joins between data source tables are previously uniquely extracted from the WHERE clause

of an SQL query and now they are supposed to be identified through the associations in the

ontology. This can lead to the fact that some relations that are not necessary for the business

needs are identified and thus included in the output design. It is noticed that this new

relations may reveal some interesting analytical perspectives that the designer primarily had

overlooked and thus they all should be considered. Therefore, the output design contains the

superset of all the relations identified in the ontology, and it has to be adapted to the real

business needs. After the discussion, this issue is solved by introducing new optional element

of the input XML structure with the business requirements. This new element is role. The

content of the role tags should be the concept to which surrounding concept should be

somehow related. Therefore, the additional adaptations for resolving this issue included the

modification of the path search process inside the requirement completion stage. After the

path relating tagged concept to another tagged concept is identified, and if the tagged

concept has the defined role, then the identified path is searched for the role concept. If the

role concept is found in the path the path is accepted. Otherwise, the path is rejected since it

does not relate the concept to its role concept. It is also noticed that the introduced solution

tends to slightly automate the process of the path identification. This comes from the fact

that if there is more than one path found between two nodes, the role may be the

information that can filter some unnecessary solutions. Some additional explanations about

the role concept and the examples are given in section 3.1.1.3.

Results of the iteration

The main result of this iteration represent the means of bridging the inputs of the GEM

framework represent in a general way, i.e., not using any specific technology (e.g.,

relational), with the stage of Operation Identification. This bridging is possible since through

the stages of the Requirement Validation, Requirement Completion and Multidimensional

Validation the inputs are translated into the appropriate structures (ETLGraph and MGraph)

84

that Operation Identification stage requires and thus this stage starting from the initial set of

the ETL operation detected according to concepts’ mappings, and using the MD design

provided with the MGraph, generates the final design of the appropriate ETL process.

4.3.6. 6th iteration – Graphical User Interface

Requirements

As the previous iterations of the development process were concentrated on providing the

main functionality of the system, this iteration as the final part aims at providing the means

for the user to access the GEM system more easily and intuitively. Concerning the inputs and

the points of the system where the interaction with the user is needed the following

requirements arose:

- The graphical interface for the process of loading the input files is needed. Three

different files at the input are required

o OWL ontology representing data sources

o XML file containing the mappings of the ontology concepts to the sources

o XML file containing business requirements

- Since the first two files, i.e., OWL ontology and XML with mappings, represent

sources it should be possible first to load these two files. Afterwards, considering

already loaded source files, for each business requirement it should be possible to

load new XML file. However, it should be also possible to reload the files

representing sources.

- Inside the process of the concept mapping, if the concept is not mapped the user is

asked to derive mapping according to the given suggestions. For this purpose

appropriate graphical interface is required, where the suggestions will be first

showed to the used and then the user should be able through the interface to load

new XML file with the derived mapping

- Also inside the process of the source mapping, if none of the superclasses and

subclasses are mapped then the system searches for the potential synonyms. When

the list of the synonyms is provided the user should be asked to choose one concept

that will be considered as the synonym. For this purpose the graphical interface,

where the used can choose the synonym that best suits business needs, is required.

- Inside the Requirement Completion after all the paths between the tagged concepts

are detected, if there are two or more different paths between the same concepts

the user is asked to choose the one that he/she considers the most suitable. For this

purpose, the graphical interface, where the user will be provided with the list of the

paths and the possibility to choose one, is required

- After the stages of the Multidimesional Validation and Operation Identification the

graphical representations of the produced multidimensional and ETL designs are

required.

85

Technology

For the implementation of the graphical interface of the GEM system, Java Swing library was

used. Swing represents the primary Java GUI widget toolkit. Swing is platform independent

both in terms of expression (Java) and implementation (Look-and-Feel). From Java 1.2

edition Swing is included as a standard Java library, which made it even more accessible.

From the IDE point of view, as already mentioned, choice of using Net Beans as a

development tool was partly led by the fact that Net Beans contains very intuitive GUI

builder.

Implementation

After the internal functionality of the GEM system is implemented, another layer of GEM is

supposed to be implemented, i.e. presentational layer. Implementation of the graphical

interface, using Java Swing library, required creating the set of graphical elements that would

realize the desired interface.

To group these graphical elements the package gem_gui is created. The main class of this of

this package is GEM.java. This class extends the JFrame class from the swing library which

means that it represents the window form that will be shown to the user.

After this, the class GEMStart.java is created (also extends JFrame) and it represents the

starting point of the GEM process. From this frame the options for loading the different input

files are provided.

To fulfill the first two requirements, i.e., loading of the input files, the frames containing the

appropriate elements has to be created.

- For loading the business requirement the frame GEMStart.java is used. As for each

loaded file, containing business requirements, the user should be able to start the

GEM process, along with the loading element (JFileChooser) this frame also contains

the option for starting the process.

- Afterwards, the frame containing the elements for loading OWL ontology and XML

with mappings is created. GEMLoadOWLAndMaps.java is the class implementing this

frame, while the elements responsible for loading the files are of type JFileChooser

from the Java Swing package.

Furthermore, after all the files are loaded and GEM process is started the frame that follows

the process is created. This frame (UserFeedbackFrame.java) contains the progress bar

(JProgressBar) that shows the progress of the GEM process. This frame is also responsible for

interaction with the user. Therefore, inside this frame the panel (JPanel) for containing the

interaction elements is created. Since the interaction with the user depends on the execution

process and the input files, this panel is supposed to be filled dynamically with the

86

appropriate elements. Therefore, three different methods for filling this panel are created

inside the GEMProcessFrame.java class, one for each user interaction case. After the process

is finished the panel for the interaction should contain the options to show the resulting

designs. This is implemented with the additional method that according to the number of the

resulting designs fill the panel with the buttons (JButton) for showing those designs to the

user.

All these frames and different appearances of the user interaction panels are represented in

figures of the Appendix A, where the demo of the GEM process is represented.

For achieving the last requirement, i.e., graphical presentation of the resulting designs, the

credits go to Daniel Gil Gonzalez. Inside his project he used JGraph library to represents the

results of his work. His work is slightly modified and adjusted to the GUI that I implemented

for the GEM framework. Therefore, for each resulting design (MD or ETL) at the end of the

process, the button for showing the design will start dynamical creation of a new frame and

this frame will be filled with the JGraph panel. This JGraph panel contains graphical

representation of the graphs (MGraph and ETLGraph) representing the output designs. The

examples of these graphical representations of the resulting designs are also shown in

figures 42 and 43 of Appendix A.

Results of the iteration

The main result of this iteration is the presentation layer of the GEM framework. This layer

includes the graphical interface for:

- providing the framework with the necessary inputs,

- interaction with the user (designer) during the process of MD and ETL design

generation,

- for representing the resulting designs to the user in the graph form.

4.4. Testing

The main goal of the software testing process is to ensure the quality of the developed system.

Software testing is also the process for validation and verifying that the output software actually

meets the business and technical requirements that guided its design and development and that

it works as it is expected. During the process of testing the potential errors (software bugs) and

other defects should be identified and accordingly resolved.

Testing of software may be, depending on a technique, introduced at various points during the

development.

- Unit (Modular) testing that is supposed to be introduced for smaller units of the system

(methods, classes, modules).

87

- Integration testing is introduced to verify the interfaces between different components

integrated in a system.

- System testing tests a completely integrated system to verify that it meets its starting

requirements.

Testing of the GEM framework developed as a technological part of this thesis relies on the TPC-

H benchmark. As the development of GEM included integration of the already developed stages,

besides unit and system testing, the integration testing is also included to ensure the

communication among different modules is correct.

In the following sections, first more details about TPC-H benchmark are provided. Later the parts

of this benchmark used for testing of GEM are introduced. Afterwards, three different kinds of

tests that are used, is exhaustively explained.

4.4.1. TPC-H

The TPC-H Benchmark is a decision support benchmark. It consists of a suite of business

oriented ad-hoc queries and concurrent data modifications. The queries and the data

populating the database have been chosen to have broad industry-wide relevance. As stated

in [22], TPC-H benchmark is used as an illustration for the decision support systems that

examines large volumes of data, executes queries with a high degree of complexity and gives

answers to a critical business needs.

TPC-H is introduced for the testing of the GEM framework. However, since GEM for now

considers schemas at the conceptual level, only some parts of TPC-H are used, and those are:

- The set of data source tables (source schema) depicted in Figure 28, and

- The set of business queries designed to test system functionalities with the real

complex business analysis.

More information about TPC-H and its possibilities is provided in [22].

4.4.2. Adapting TPC-H schema for testing inputs

As explained, the GEM framework expects three different files at its input. For the purpose of

testing of the GEM framework, these files need to be prepared. Since the TPC-H is introduced

for the testing process the certain adjustments of its schema and queries are needed for

providing valid inputs for the GEM system. Three different types of files and the

corresponding TPC-H adjustments for providing these files are presented in the sequel.

88

1. OWL ontology representing data source

Since TPC-H provides the set of relational data source tables, this set has to be

appropriately transformed into the corresponding OWL ontology. However, as the

original TPC-H source schema does not contain taxonomies and one-to-one

relationships (synonyms), I extended this schema with the following concepts:

- LegalEntity and Individual as subclasses of the concept Customer, modeling

the fact that one customer can be either legal entity of an individual.

- Area as a synonym of the concept Region.

- After introducing concept Area it is also necessary to introduce the one-to-

one association to Region

These new concepts are intentionally introduced to be able to represent all the

possibilities that GEM offers while searching for the concept mappings inside the

requirements validation stage.

2. XML file with the mappings of the ontology concepts to the sources

This file is created following the syntax explained in section 3.1.1.2. and considering

the source schema. As the result we provide the following SourceMapping elements

inside the mapping XML file:

- First, one SourceMapping element is created for mapping of each ontology

class, i.e. for mapping of its primary key.

- Then, the mappings are provided for various datatype ontology properties

that represent the concepts that can be found in the input business

requirements

- For ontology datatype properties that represents the references of one data

source table to another (foreign keys) the appropriate mapping is provided.

- At the end, the mappings for the ontology properties (associations) are

created. Here intentionally we provide only some of the mappings to

represent how GEM constructs different paths between concepts.

Since TPC-H considers that the provided schema is relational, these SourceMapping

elements are provided also with the sourceKind attribute having the value

“relational”.

3. XML files representing different business requirements (queries)

After the structures that completely represent the source data stores (ontology and

mappings) are provided, now we create several documents that represent the

business queries according to which the final designs will be produced.

89

TPC-H provides us with the list of more then twenty general queries. Only the subset

of those queries is used to test all the functionalities of the GEM framework. Previous

the use, these queries needs to be translated to the XML form that is explained in

section 3.1.1.3. The process of translation from the relational queries (SQL) to the

XML format is given below:

- First, all names of the source table attributes needs to be adapted to the

domain vocabulary, i.e., translated to the local names of the corresponding

ontology concepts (without ontology URI).

- From the SELECT clause the attributes that are represented as measures are

translated to measure concepts (<measures>), along with the functions for

their calculation. In this process, since in relational queries the names may

not be given to the measure attribute, the reasonable artificial name is

generated for the measure concept.

- Then, the other attributes that appear in the SELECT clause, are supposed to

be represented as dimensional concepts (<dimensions>).

- Considering the WHERE clause, if the expression from the WHERE clause

represents the selection (slicer) than the descriptor (slicer) concept is created

(<descriptors>).

- For each measure attribute and each attribute from the GROUPBY clause, we

create one new <aggregation> element inside the <aggregations> section.

After the input test files are provided the process of the testing begun.

4.4.3. Unit (Modular) testing

Considering this part of testing different kinds of tests were prepared.

First, the JUnit tests are used to examine the correctness of the particular methods inside the

developed classes. These tests are based on comparing the real values returned form the

method with the prepared expected output values. For some methods it was difficult to

provide appropriate JUnit test since their output and side effects were very complex.

Therefore these methods are tested with the other kinds of tests, e.g., modular tests.

After each iteration, the set of modular tests were prepared. These tests are created for the

verification of each developed module, following the explained guidelines. For the developed

modules the tests prepared for each one of them are explained in the sequel.

90

1st iteration – testing of input reading and parsing

The main functionality of this part of the GEM system is the reading of the files from the

inputs and their parsing into appropriate structures. Therefore, the tests prepared for this

iteration aim at examining the correctness of these functionalities. Additionally the tests,

that examine how the system reacts in cases that the provided input files are incorrect, are

also provided.

All the tests considering the valid and correct input structures are produced from the TPC-H

benchmark and following the previous guidelines. The content of the appropriate structures

is compared with the expected values.

At this place while testing the larger XML files with the source mappings, one inconsistence is

occurred. In fact, the content of some elements of the resulting structure (Source) was

incomplete (e.g., instead “http://www.owl-ontologies.com/unnamed.owl#Nation” as a

complete concept URI, only one part is stored “wl#Nation”). During the debugging process it

is noticed that the problem occurs inside the method that handles the characters between

tag elements (characters()). This method receives the buffer with characters and starting

position in the buffer from where the characters should be read and the number of

characters to be read. However, it is noticed that this buffer is limited to 256 characters. That

means if the sequence of the characters is not finished by the end of the buffer, the buffer is

restarted and the rest of the sequence is processed in the next invocation of the handler

method. This resulted with the fact that only the end of the sequence, i.e. the part processed

in the second invocation is stored. This is appropriately solved with the mechanism to

concatenate the result form the one invocation and the next invocation of the same

sequence.

As a result all prepared tests passed.

Considering the tests with incorrect inputs, several tests were prepared.

- Since XML files, as explained in [24], can be tested for correctness according to either

well-formedness of XML elements and validity (based on the referenced DTD), two

different kinds of test cases are prepared, to test the system reaction on these two

irregularities.

o Malformed XML files – the elements inside the XML are not formed

correctly, e.g., tag elements are not nested appropriately, non-matching

begin and end tags, overlapping of the tags, usage of the forbidden

characters for tag names (!"#$%&)

o Invalid XML files – the XML file disobey the definitions from the referenced

DTD, e.g., missing the attributes that are defained to be required

(#REQUIRED), missing the tag elements that are not defined as optional (?*).

91

- Considering the OWL ontology files, the incorrect files produced for testing contains

the following incorrectness:

o The concept referenced in the file is not defined in the same or any imported

files

o The definition of two concepts with the same ID (rdf:ID) exist.

The test cases that consider incorrect input files showed that the system appropriately reacts

on such incorrectness. For XML files this is achieved through the error handler methods

overridden in the XMLHandler and SourceMappingXMLHandler classes. On the other side,

JENA already provides handlers for handling the errors inside the OWL files. These handlers

and additional implementation provide system to react correctly on the errors in the input

files. Therefore, if the incorrect input is provided the system do not continue with the

process and the user is informed that the error is occurred with some additional details

about the occurred error.

2nd iteration – testing of Requirement Validation stage

The module implementing the Requirement Validation stage at its input expects the

structures prepared by the previous part after reading and parsing the input files. The main

output of this module is the structure representing the ontology with annotations for the

concepts identified in the input business requirements.

First the appropriate methods for tagging the concepts from the input business requirements

are tested with the appropriate JUnit tests. These tests included input concepts (instances of

Concept class), the OWL ontology where the concepts are searched, and for each input

concept the expected output Tag object, containing the input concept and its corresponding

ontology element (OntResource). As already mentioned, the output obtained after the

method is invoked is compared with the expected output. These tests passed without

problems.

Afterwards, the tests for testing the central method of this stage (mapConcept) should be

prepared. Since this method is far more complex then the previous ones the JUnit tests are

not used for testing its correctness.

For creating these tests the input file with the source mappings is considered. The tests for

this method are made to examine all the possible cases of the concepts’ mappings.

- Direct, found in the input file. For this kind of tests the concepts tagged in the input

business requirements should have the corresponding direct source mapping in this

file.

92

- Derived through the mapped subclasses and UNION operations. Here one concept is

chosen to be tagged in the business requirements, but its direct mapping is not

provided. However, the mapping of its subclasses is provided inside the mapping

XML file. Additionally, the new file with the derived mapping is also provided, since

the user will be asked to provide one according to the suggestions. The ontology

classes chosen for this test case are Customer with its subclasses LegalEntity and

Individual.

- Derived through the mapped superclasses and INTERSECTION, MINUS or SELECTION

operation. The procedure for preparing these test cases is similar to the previous

one, with the difference that in this case for the non mapped concept we provided

mapping for its superclass(es) and the additional file with the derived mapping. The

ontology classes for this test case are LegalEntity and its superclass Customer.

Additionally, in the derived mapping the discriminant function is introduced

(c_custkey > 2000000) which means that the keys for the customer that is LegalEntity

must be greater than 2000000. Therefore the derived mapping is created form the

mapping of the Customer concept and SELECT operation with the given discriminant

function.

- Through the mapped synonym of that concept. For these kinds of test cases, for the

given tagged concept the mapping is not provided, as well as for its

subclasses/superclasses. The mapping is provided for the concept that is through the

rule of transitivity related with the given concept with 1-1 association. The concepts

that are used for this testing are the Region concept which is tagged and the Area

concept which is mapped.

- Concept cannot be mapped. In this case we provide tagged concept and for one of

the tagged we do not provide any of the above ways for mapping. The concept that

is used for this testing is Customer but it is not mapped and neither are its

subclasses. The results of this testing should show how the system reacts is some of

the tagged concepts cannot be mapped to the sources. It is noticed that the system

in this case stops the stage of requirement validation and warns user that it was not

able to map all the concepts form the input business requirements. Additionally, the

option of restarting the whole process is provided.

The above test cases that succeeded to map the tagged concepts produced at the output, the

list of annotations (Annotation) that besides the Tag object for the given concept contains

the SourceMapping structure. These structures are needed to be compared with the ones

that were previously prepared as the expected.

93

The testing of the Requirement Validation module hasn’t shown any grater errors and thus

we continued with the development of the next iteration. However, at this place it should be

stated that since the Requirement Validation stage has another structure at its output

(ETLGraph) the correctness of this structure’s content is tested inside the Integration test

part.

3rd iteration – testing of Requirement Completion stage

This stage at its input expects the set of ontology annotations (Annotation) that the stage of

Requirement Validation produces. The main output of this stage is the MGrpah structure

that is used for integration with the MDBE system. Correctness of this structure will be

discussed in the Integration testing part.

However, the structures that are tested after the 3rd iteration are from the set of the paths

between tagged concepts (pathsBetweenTaggedConcepts), produced after the invocation of

the requirementCompletion method in the GEMRequirementCompletion class and which are

actually used for creating the MGrpah structure. This method is tested using the prepared

JUnit tests. These tests first create the expected list of the paths, than the set of annotations

produced in the previous stage is also provided. Then the method requirementCompletion()

is invoked with this set of annotations and appropriate ontology. After the method ended,

the content of the list that this method populated is compared with the expected list of the

paths. This comparison is supported with the method equals() inside the Path class that

examines the equality of two paths. The test cases for both direct and indirect paths

between tagged concepts are created. Also the test case for the tagged concepts that cannot

be related by any path is created.

All these tests passed with no major errors.

4.4.4. Integration testing

The first two modules that I developed are tested individually. In the phase after the

iteration of Requirement Completion, the process of integration with the already developed

modules starts (4th and 5th iterations). After the end of each integration iteration the

appropriate integration testing is conducted.

This integration testing examines that the communication between the integrated parts is

correct and that the communication interfaces are respected.

In this case the Bottom-Top testing is conducted, since I started from the testing of the

individual modules and then after adding new one I conducted the integration testing for

that integration.

94

I tested integration with the MDBE system first, because for testing the integration with the

Operation Identification stage, the MGraph, fully tagged and validated, needs to be provided,

and that is the main task of the MDBE system. Due to the complexity of MGraph structure

and the lack of comparing method (equals()) the JUnit test are avoided for the method

produceOutputGraph().

The testing of this integration process included preparation of the input files and performing

first three parts, i.e., input reading and parsing, requirements validation and requirement

completion, which are already tested. This will produce MGraph structure that is needed as

an input for MDBE. Then the MDBE is started with the method validate_requirement() with

the prepared MGraph as an input.

For the testing of this integration, the set of input files with the business requirements

considered various multidimensional roles of the included concepts. This is because the main

task of the MDBE system is to finalize the tagging of the MGraph (future MD design) and

then to validate this tagging (according to the multidimensional principles). Therefore, two

different kinds of test cases are provided.

- First one, with the concept tagged following these principles, and

- Another one disobeying some of these principles. (e.g., for disobeying the

multidimensional principles, the input file with business requirements including only

level concepts is provided).

After these tests are launched the behavior of the system is analyzed. Since some

irregularities are noticed the method for producing the MGraph is examined. After the

meeting and examining the elements of the MGraph that needs to be populated the

problems are identified. Actually, the elements that are needed to be populated stayed

empty. Then the produceOutputGraph method is revised. After the revision and re-launching

of the tests, system represented the expected behavior and then it was concluded that the

integration with the MDBE system was successful.

Afterwards, the integration with the Operation Identification stage is conducted. Equally, in

this case the problem of complexity of ETLGraph structure and missing the comparing

methods prevented the JUnit testing for the methods that creates these structures.

Therefore, the similar testing technique is introduced here. Only difference is that the one of

the inputs for the Operation Identification stage is tagged and validated MGraph which is the

product of the integrated MDBE system.

95

After the tests are launched the behavior of the Operation Identification part was analyzed.

At the beginning some exceptions are noticed. After the examining the ETLGraph structure it

is identified that some of the names inside the graph do not correspond to the once required

from the Operation Identification stage. The main reason for these irregularities comes from

the fact that Operation Identification stage was still under the development process and thus

some of the requirements changed through the time, but are not updated inside the method

for building the initial ETLGraph structure in Requirement Validation stage. After all the

differences are resolved retesting showed that the integration with the Operation

Identification stage was finally successful.

4.4.5. System testing

After the whole system is built and all individual modules, that I developed, are tested as well

as the integration with the MDBE and Operation Identification modules, the testing of the

system as a whole is required to ensure the correctness of the system and its overall stability.

For this purpose the set of input test cases are prepared. This set contains the tests which

represent all functionalities that GEM offers. Both correct and incorrect inputs should be

provided.

Some specific test cases are:

- Concept of the business requirements cannot be identified in the ontology

- Different concepts’ mappings that are already explained in section 3.1.2.1.,

- Input XML with the source mappings of the associations produced in order for

system to identify multiple paths between the same tagged concepts.

- Tagged concept without the path to any other tagged concept.

After the prepared test cases are launched, the system is analyzed through different stages

and it has been noticed that the system works properly, gives the appropriate output designs

and appropriately reacts if the inputs with the errors are provided.

96

97

5. Cost of the project

For conducting this project inside the real business world the economic study of the necessary

resources has been done. Since this project included the theoretical part, i.e., research part, then this

part is also included in the evaluation of the project costs.

Therefore, the five different kinds of resources identified as necessary for this project are:

- Research resources

- Hardware resources

- Software resources

- Human resources and

- Office resources

In the next section the time needed for the realization of the project is estimated and then compared

to the time actually spent on this project. Afterwards, according to this time, each of the above

resources is first explained with its specificities for this project and then its cost is evaluated.

For the estimation of the costs it is considered that the researchers/developers works Monday-

Friday, 8 hours per day. At the end, the final amount is calculated and presented.

5.1. Project Length

At this point the time estimated prior the beginning of the project is discussed. Afterwards this

time is compared to the time that was actually needed for finalization of this project. When

estimating time two different stages of the work is considered:

- Time necessary for the theoretical part of the project

- Time necessary for the technological part of the project

First, the time needed for the solid research process and for making a wide picture of the current

state of the art should be considered. Since the researcher inside this project is not already

experienced working in this specific field of research the time for making the clear vision about

the field has to be included. Therefore, considering all the obstacles that can arise during the

research the estimated period for this part of the project is 240 working hours (~1.5 month).

Research time can be divided into two parts:

- making the appropriate state of the art (120 working hours), and

- research work on the GEM system (120 working hours)

After the necessary research is conducted the time needed for the development of the project

should be estimated. Since this project includes Scrum process for the development method,

three different phases of the project should be considered (Figure 10).

98

- Pre-game phase. This phase includes the description of the whole system and

production of the appropriate system architecture. Part of this system is already included

in the research part where the system is actually studied in details and afterwards

described with the appropriate architecture. Therefore, the time needed for this phase is

lower. The only part of this phase that is not included the research part is the production

of the initial set of functional and non-functional requirements that need to be fulfilled

during the development process. The time needed for this part of the project is

estimated to 40 working hours (~1 week).

- Development phase. This phase includes the entire development process of the system.

As already stated six different iterations are identified in the process of the development.

However, prior the beginning of the development and since the project includes some

specific technologies (OWL/JENA), appropriate time should be taken for the developers

to study these specific technologies and it can be estimated to 40 working hours (~1

week). After the technologies are studied in details the rest of the development process

can begin. The estimated time needed for each iteration is given in table 1.

-

 Length (in working hours) weeks (approx.)

1st sprint 40 1

2nd sprint 80 2

3rd sprint 100 2.5

4th sprint 60 1.5

5th sprint 65 1.5

6th sprint 30 0.5

Total 375 ~9

Table 1: Estimated time for the development phase

- Post-game phase. This phase included the testing of the system and the time necessary

is estimated to 40 working hours (~1 week). The time estimated for each phase of the

testing process (section 4.4) is presented in table 2.

 Length (in working hrs.) days (approx.)

Modular (Unit) testing 20 2.5

Integration testing 15 2

System testing 5 1

Total 40 ~5.5

Table 2: Estimated time for the testing phase

When the system is finally developed the process of writing the documentation follows. Since

the first theoretical part of the project is already documented during the research process this

99

documentation part includes only the detailed documentation of the technological part of the

system. Therefore, time needed for this part is estimated to 120 working hours (~3 weeks).

After the project is finalized, the total time that actually was needed for its realization is

calculated. The time that was really necessary for finalization of the project was higher than the

estimated one. These differences are represented in Table 3 and graphically in figure 27.

Phases Estimated (hrs.) Real (hrs.) Difference (hrs.)

Research

phase

State of the art 120 100 -20

GEM 120 200 80

Development

phase

(Scrum)

Pre-game 40 40 0

New technologies 40 60 20

Development 375 450 75

Post-game (testing) 40 30 -10

Documentation 120 150 30

Total (hrs.) 855 1030 175

Table 3: Difference between estimated and real time spent during the project

It can be noticed that more time was spent during the research phase studying the new GEM

approach, during the development phase and during the introduction to the new technologies.

- Additional time during the research phase can be justified with the fact that GEM

represents new approach which is still under the research and which was therefore the

subject to the various changes.

- The time additionally spent during the development phase can be justified by the fact

that the development process included dealing with the OWL ontologies that I was not

previously familiar with. Additionally, more time was spent during the integrations inside

the development phase because:

o the MDBE system was originally developed for SQL inputs and additional effort

and time was spent for adapting MDBE to the new inputs, and because

o the Operation Identification stage was developed inside the separate project.

This project was going in parallel, and thus many things were not precisely

defined at the beginning, so the constant communication with Daniel Gonzalez

and adaptations to its changes were necessary.

- Finally more time was required for the detail introduction to the JENA library (new

technology) since this library is not well documented, but the appropriate forum has to

be searched for the useful information.

100

On the other side, it can be noticed that some phases required less time than estimated.

- The time needed for the State of the art was less than expected, since the wide

research of the multidimensional design was already conducted inside the research

group.

- Less time was also needed for the testing process since the TPC-H benchmark was

used and the test cases were easily translated from the already existing relational

schema and queries.

Figure 27: Graphical representation of the time deviations

5.2. Research resources

This estimation considers the research group (1 member) and 1.5 month of the research part.

The resources needed for the realization of the research part of the project are listed in table 4

with their estimated costs.

Table 4: Costs of the research process

5.3. Hardware resources

This section covers the hardware resources (Computer with the supporting hardware,

telecommunication infrastructure etc.) needed during the whole project.

Resources Explanation Total estimated cost

Access to the online

collections with the

research material

Access to the most prominent collections

IEEE, Google scholar, DBLP etc.

(~300€/month * 1.5 month)

450€

Total 450€

101

The hardware resources with specificities related to this project and their estimated costs are

presented in table 5.

Table 5: Cost of the hardware resources

5.4. Software resources

This section covers the software resources (operating systems, IDE tools, modeling tools etc.)

needed during the whole project.

The software resources with specificities related to this project and their estimated costs are

presented in table 6.

Table 6: Cost of the software resources

Resources Explanation Total estimated cost

Desktop computers Desktop computer with high

performances that would support

necessary software needed.

Intel® Core™ i5-2400 3.1GHz

MSI ATI RADEON R6850 1GB

4GB DDR3-1333 KINGSTON

WD 1TB SATAII (~500€ per computer)

500€

Monitor 20” Quality LCD monitors

(~120€ per monitor)

120€

Networking infrastructure Routers and cable material (~100 €) 100€

Other equipment Keyboards, mice, etc (~50 €) 50€

Permanent internet access ADSL internet access

(~25€/month * 6 months)

140€

Total 910€

Resources Explanation Total estimated cost

Operating System Windows 7 Professional-

(~400€ per computer)

400€

IDE tool NetBeans 7.0

(0€)

0€

UML Design tool Visual Paradign for UML

Modeler Edition (~70 € per computer)..

70€

Smart text editor Editors for XML and OWL files.

Nodepad++ , (0 €)

0€

Total 470€

102

5.5. Human resources

This section covers the human resources needed during the whole project, i.e., computer science

and IT specialists.

The human resources with specificities related to this project and their estimated costs are

presented in table 7.

Table 7: Cost of the human resources

5.6. Office resources

This section covers the office resources needed during the whole project. The office resources

with specificities related to this project and their estimated costs are presented in table 8.

Finally the total estimated cost of the project like this one is given in table 9, regarding the

different kinds of the resources discussed at the beginning. However, since the measured time

for the project considered academic environment and not high-experienced developer the time

needed for realization of the project like this one in the business environment can be less than

one measure here.

Specialist Explanation Total estimated cost

Computer scientist The computer scientist included in the

research process.

 (~20€/hour per person * 240 hrs.)

4800€

Software Designer The specialist responsible for the

processes of the software design

 (~25€/hour per person * 80 hrs.).

The starting part of every development

iteration included the software design

process.

(~15 hrs. * 6 iterations= 80hrs.)

2000€

Coder The Java programming specialist for the

process of implementation

(~20€/hour per person * 180 hrs.)

The second part of every development

iteration included the software coding

process.

(~30 hrs. * 6 iterations = 180 hrs.)

3600€

Tester The testing specialist for the post-game

phase (testing process). (~15€ * 40 hrs.)

600€

Total 11000€

103

Table 8: Cost of the office resources

Table 9: Estimated cost of the project

Resources Explanation Total estimated cost

Properly furnished offices

where the

research/development

group would work

This requires renting the medium-size

office (~600€/month * 6 months) and

furnishing it with the basic equipment

(computer desk,

ergonomic chair,

 plain chairs *4 ,

 desk lamp = ~400€)

4000€

Total 4000€

Resources Total estimated cost

Research resources 450€

Hardware resources 910€

Software resources 470€

Human resources 11000€

Office resources 4000€

Total 16830€

104

105

6. Conclusion

This master thesis considered first theoretical part, which included making the overview in the field

of the ETL design and later the detailed research of the new GEM approach for automation of both

multidimensional and ETL designs considering the business requirements. Afterwards, the thesis also

considered the technological part whose main task was to provide the GEM system with the initial

two stages, i.e., Requirement Validation and Requirement Completion. Additionally the technological

part of my thesis also included the integration of the already implemented stages of the GEM

framework with the initial stages.

Therefore, results of my work in this thesis are:

- The state of the art in the field of automating and customization of the ETL design

generation, and

- The two implemented modules for the initial stages of the GEM framework.

The main result of this project is actually the integrated GEM system. This system now receives at its

input the data source schema in the form of the OWL ontology and the mappings of the

corresponding schema concepts to the real source data stores in XML format. Additionally, GEM at

its input also receives the set of business requirements in XML format. As the result GEM generates

the multidimensional and ETL conceptual designs. The ability of GEM to receive the inputs that do

not consider any specific technology (but OWL ontology and XML) is provided after the development

of the Requirement Validation and Requirement Completion stages. Additionally, the appropriate

graphical interface is developed, for providing inputs, interacting with the user and presenting the

output designs.

Prior the beginning of my work in this project it was necessary for me to learn more about the

various principles and technologies that are basis of this project. Therefore, even though I was

already familiar with the field of data warehousing, OLAP and multidimensionality, the more detailed

study of these areas was mandatory. Also an introduction to the ontology, the OWL and the way of

transforming the data stores into the OWL ontology was necessary, along with the delving into

details of the OWL language and Java Library for parsing OWL ontologies (JENA), at the beginning of

the development phase.

During this project, I have expanded my knowledge in the fields of data warehousing and decision

support and I also gained many useful skills. First, the more systematic research work, which is

mainly the result of the theoretical part of my thesis. Another one is the familiarity with the

techniques used for the conduction of the systematic literature reviews. Furthermore, since this

thesis covers the process of integration with the previously implemented modules, the constant

need for the communication with other developers made me more matured in the sense to be able

106

to patiently listen to the other members and to made some valuable conclusions according to given

explanations. Considering the technological part, I have become familiar with the Agile software

development methods, especially Scrum, which I adapted to the needs of the development phase of

this project.

6.1. Future work

The complete GEM framework is fully open for the future upgrades.

There are possibilities for the improvement of the part responsible for the interaction with the

users, especially by automating the parts where the system generates suggestions and offers

them to the user. These suggestions along with the requests for the user feedback are, as already

stated, present at the various points in the framework and thus lower the overall automation of

the framework.

Another part that can be considered for the future work is the final stage of the GEM framework,

i.e., Conciliation stage, which is briefly explained in section 1.1., but not yet implemented. This

stage considers that the GEM has run previous stages for several business requirements, and

then it takes the results (designs) obtained for each business requirement and conciliates those

results into the single MD and ETL design.

Since it is expected that the GEM could be potentially used for helping the designers during the

production of the real and quality decision making systems, another opportunity for the future

enhancements arose. This includes associating the GEM framework with some available ETL

design tool. One of the most dominant ETL design tool that is also open source, is the Pentaho

Kettle tool. Besides being open source, Kettle also offers the Java API for dynamically producing

the design of the ETL process inside the Java applications. The main idea is to upgrade GEM with

the possibility to translate the ETL process design that is semi-automatically generated as its

output into the format that Kettle needs at its input.

107

7. References

[1] Simitsis, A., Skoutas, D., & Castellanos, M. (2010). Representation of conceptual ETL designs

in natural language using Semantic Web technology. Data Knowledge Engineering, 69(1), 96-

115.

[2] Skoutas, D. & Simitsis, A. (2006). Designing ETL processes using semantic web technologies.

In Proceedings of the 9th ACM International Workshop on Data Warehousing and OLAP

(DOLAP), 67-74.

[3] Panos Vassiliadis, Zografoula Vagena, Spiros Skiadopoulos, Nikos Karayannidis, Timos Sellis

(2001), Arktos: towards the modeling, design, control and execution of ETL processes,

Information Systems 26 (2001) 537–561

[4] Panos Vassiliadis, Alkis Simitsis, Panos Georgantas, and Manolis Terrovitis, A Framework for

the Design of ETL Scenarios, J. Eder and M. Missikoff (Eds.): Information Systems (2005)

[5] Skoutas, D., Simitsis, A.: Ontology-Based Conceptual Design of ETL Processes for Both

Structured and Semi-Structured Data. IJSWIS pp. 1-24 (2007)

[6] Lenz, H., Shoshani, A.: Summarizability in OLAP and Statistical Data Bases. In: SSDBM. pp.

132-143 (1997)

[7] Romero, O., Abelló, A.: Automatic Validation of Requirements to Support Multidimensional

Design. Data Knowl. Eng. 69(9), 917-942 (2010)

[8] Husemann, B., Lechtenb•orger, J., Vossen, G.: Conceptual Data Warehouse Modeling. In:

DMDW. pp. 1-11 (2000)

[9] Lechtenborger, J., Vossen, G.: Multidimensional Normal Forms for DataWarehouse Design.

Information Systems pp. 415-434 (2003)

[10] Mazon, J., Lechtenborger, J., Trujillo, J.: A Survey on Summarizability Issues in

 Multidimensional Modeling. DKE pp. 1452-1469 (2009)

[11] GEM DaWaK'11: Oscar Romero, Alkis Simitsis, Alberto Abelló. GEM: Requirement- driven

Generation of ETL and Multidimensional Conceptual Designs. Int. Conf. on Data Warehousing

and Knowledge Discovery (DaWaK'11). To appear

[12] Oscar Romero. Automating the Design of Data Warehouses. PhD Thesis, Universitat

Politècnica de Catalunya, Barcelona, Spain. http://www.tdx.cat/handle/10803/6670

[13] Oscar Romero, Alberto Abelló. Multidimensional Design Methods for Data Warehousing. In

Integrations of Data Warehousing, Data Mining and Database Technologies: Innovative

Approaches. David Taniar and Li Chen Eds. IGI Global: 2011, pp 78-105

[14] Panos Vassiliadis. A Survey of Extract-Transform-Load Technology. In Integrations of Data

Warehousing, Data Mining and Database Technologies: Innovative Approaches. David Taniar

and Li Chen Eds. IGI Global: 2011, pp 171-199

[15] Beck, Kent; et al. (2001). "Manifesto for Agile Software Development". Agile Alliance.

Retrieved 2010-06-14.

http://www.tdx.cat/handle/10803/6670

108

[16] Shine Technologies, “Agile Methodologies Survey Results”

http://www.shinetech.com/download/attachments/98/ ShineTechAgileSurvey2003-01-

17.pdf, December 2007.

[17] "Survey Says: Agile Works in Practice", Dr. Dobb's Journal, Vol. 31, No. 9. (2006), 62-64

[18] Pekka Abrahamsson, Outi Salo, Jussi Rankainen & Juhani Warsta: Agile

software development methods - Review and analysis, VTT Electronics, 2002.

[19] M. Golfarelli and S. Rizzi. Data Warehouse Design. Modern Principles and Methodologies.

McGraw-Hill, 2009.Cd

[20] Jena javadoc - http://jena.sourceforge.net/javadoc/index.html

[21] Jena – A Semantic Web Framework for Java - http://jena.sourceforge.net/

[22] The current version of TPC-H 2.14.0 - http://www.tpc.org/tpch/spec/tpch2.14.0.pdf

[23] OWL – Web Ontology Language Overview - http://www.w3.org/TR/owl-features/

[24] XML (Extensible Markup Language) - http://en.wikipedia.org/wiki/XML

http://jena.sourceforge.net/javadoc/index.html
http://jena.sourceforge.net/ontology/
http://www.tpc.org/tpch/spec/tpch2.14.0.pdf
http://www.w3.org/TR/owl-features/
http://en.wikipedia.org/wiki/XML

109

Appendix A Framework demo and user manual

This appendix includes the demo presentation of the GEM framework. Through this demo the main

functionalities of GEM is presented. The screenshots representing the graphical interface and

interaction of the GEM with the user are also included in this demo.

A.1. Input data
For starting the GEM system a set of the input files needs to be provided. As mentioned through

this document the GEM framework expects three different files at its input.

- OWL ontology representing data sources

- XML file containing mappings of the ontology concepts

- XML file containing business requirements

For generating these input files, like in the testing process, the TPC-H benchmark is used.

OWL ontology

According to TPC-H schema, the underling OWL ontology is created. This ontology represents the

source data stores and for better comprehension about the knowledge covered in this ontology

its diagrammatic representation is provided in Figure 28.

Figure 28: Ontology based on the TPC-H schema

110

Source mappings

After the OWL ontology is generated, the XML file with the mappings of the ontology concepts is

provided.

Considering the format discussed in section 3.1.1.2., the mappings for the ontology classes and

their datatype properties are provided.

In table 10 the concepts, for which the mappings are provided, are listed, while in the sequel the

complete XML structure with these mappings is provided (Figure 29).

Ontology class Ontology datatype property

(PK – primary key attribute, FK – foreign key attribute)

Nation Nation_n_nationkeyATRIBUT (PK)

Nation_n_regionkeyATRIBUT (FK)

Nation_n_nameATRIBUT

Nation_n_commentATRIBUT

Region Region_r_regionkeyATRIBUT (PK)

Region_r_nameATRIBUT

Region_r_commentATRIBUT

Orders Orders_o_orderkeyATRIBUT (PK)

Orders_o_orderdateATRIBUT

Orders_o_custkeyATRIBUT (FK)

Lineitem Lineitem_l_orderkeyATRIBUT (FK) (PK)

Lineitem_l_linenumberATRIBUT (FK)

Lineitem_l_extendedpriceATRIBUT

Lineitem_l_discountATRIBUT

Supplier Supplier_s_suppkeyATRIBUT (PK)

Supplier_s_nationkeyATRIBUT (FK)

Supplier_s_nameATRIBUT

Supplier_s_phoneATRIBUT

Supplier_s_addressATRIBUT

Partsupp Partsupp_ps_partkeyATRIBUT (FK) (PK)

Partsupp_ps_suppkeyATRIBUT (FK)

Partsupp_ps_supplycostATRIBUT

Part Part_p_partkeyATRIBUT (PK)

Part_p_retailpriceATRIBUT

Part_p_typeATRIBUT

Part_p_nameATRIBUT

Individual Individual_i_idnumATRIBUT (PK)

LegalEntity LegalEntity_le_regnumATRIBUT (PK)

Table 10: Mapped ontology classes and their datatype properties

111

<OntologyMappings>

 <!--THIS IS THE MAPPINGS OF THE CLASS Nation AND ITS DATATYPES -->

 <OntologyMapping sourceKind="relational">

 <Ontology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Nation

 </Ontology>

 <RefOntology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Nation_n_nationkeyATRIBUT

 </RefOntology>

 <Mapping>

 <Tablename>nation</Tablename>

 <Projections>

 <Attribute>n_nationkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Nation_n_nationkeyATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>nation</Tablename>

 <Projections>

 <Attribute>n_nationkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Nation_n_regionkeyATRIBUT

 </Ontology>

 <RefOntology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Region

 </RefOntology>

 <Mapping>

 <Tablename>nation</Tablename>

 <Projections>

 <Attribute>n_regionkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Nation_n_commentATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>nation</Tablename>

 <Projections>

 <Attribute>n_comment</Attribute>

 <Attribute>n_nationkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Nation_n_nameATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>nation</Tablename>

 <Projections>

 <Attribute>n_name</Attribute>

 <Attribute>n_nationkey</Attribute>

 </Projections>

 </Mapping>

112

 </OntologyMapping>

 <!--THIS IS THE MAPPINGS OF THE CLASS Region AND ITS DATATYPES -->

 <OntologyMapping sourceKind="relational">

 <Ontology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Region

 </Ontology>

 <RefOntology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Region_r_regionkeyATRIBUT

 </RefOntology>

 <Mapping>

 <Tablename>region</Tablename>

 <Projections>

 <Attribute>r_regionkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Region_r_regionkeyATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>region</Tablename>

 <Projections>

 <Attribute>r_regionkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Region_r_nameATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>region</Tablename>

 <Projections>

 <Attribute>r_name</Attribute>

 <Attribute>r_regionkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Region_r_commentATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>region</Tablename>

 <Projections>

 <Attribute>r_comment</Attribute>

 <Attribute>r_regionkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <!--THIS IS THE MAPPINGS OF THE CLASS Orders AND ITS DATATYPES -->

 <OntologyMapping sourceKind="relational">

 <Ontology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Orders

 </Ontology>

 <RefOntology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Orders_o_orderkeyATRIBUT

 </RefOntology>

 <Mapping>

 <Tablename>orders</Tablename>

 <Projections>

 <Attribute>o_orderkey</Attribute>

113

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Orders_o_custkeyATRIBUT

 </Ontology>

 <RefOntology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Customer

 </RefOntology>

 <Mapping>

 <Tablename>orders</Tablename>

 <Projections>

 <Attribute>o_custkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Orders_o_orderdateATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>orders</Tablename>

 <Projections>

 <Attribute>o_orderdate</Attribute>

 <Attribute>o_orderkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <!--THIS IS THE MAPPINGS OF THE CLASS Lineitem AND ITS DATATYPES -->

 <OntologyMapping sourceKind="relational">

 <Ontology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Lineitem

 </Ontology>

 <RefOntology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Lineitem_l_orderkeyATRIBUT

 </RefOntology>

 <Mapping>

 <Tablename>lineitem</Tablename>

 <Projections>

 <Attribute>l_orderkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Lineitem

 </Ontology>

 <RefOntology type="property">

 http://www.owl-

ontologies.com/unnamed.owl#Lineitem_l_linenumberATRIBUT

 </RefOntology>

 <Mapping>

 <Tablename>lineitem</Tablename>

 <Projections>

 <Attribute>l_linenumber</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Lineitem_l_orderkeyATRIBUT

114

 </Ontology>

 <RefOntology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Orders

 </RefOntology>

 <Mapping>

 <Tablename>lineitem</Tablename>

 <Projections>

 <Attribute>l_orderkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Lineitem_l_partkeyATRIBUT

 </Ontology>

 <RefOntology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Partsupp

 </RefOntology>

 <Mapping>

 <Tablename>lineitem</Tablename>

 <Projections>

 <Attribute>l_partkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Lineitem_l_suppkeyATRIBUT

 </Ontology>

 <RefOntology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Partsupp

 </RefOntology>

 <Mapping>

 <Tablename>lineitem</Tablename>

 <Projections>

 <Attribute>l_suppkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Lineitem_l_extendedpriceATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>lineitem</Tablename>

 <Projections>

 <Attribute>l_orderkey</Attribute>

 <Attribute>l_linenumber</Attribute>

 <Attribute>l_extendedprice</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Lineitem_l_discountATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>lineitem</Tablename>

 <Projections>

 <Attribute>l_orderkey</Attribute>

 <Attribute>l_linenumber</Attribute>

 <Attribute>l_discount</Attribute>

 </Projections>

 </Mapping>

115

 </OntologyMapping>

 <!--THIS IS THE MAPPINGS OF THE CLASS Supplier AND ITS DATATYPES -->

 <OntologyMapping sourceKind="relational">

 <Ontology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Supplier

 </Ontology>

 <RefOntology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Supplier_s_suppkeyATRIBUT

 </RefOntology>

 <Mapping>

 <Tablename>supplier</Tablename>

 <Projections>

 <Attribute>s_suppkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Supplier_s_nationkeyATRIBUT

 </Ontology>

 <RefOntology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Nation

 </RefOntology>

 <Mapping>

 <Tablename>supplier</Tablename>

 <Projections>

 <Attribute>s_nationkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Supplier_s_suppkeyATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>supplier</Tablename>

 <Projections>

 <Attribute>s_suppkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Supplier_s_nameATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>supplier</Tablename>

 <Projections>

 <Attribute>s_name</Attribute>

 <Attribute>s_suppkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Supplier_s_phoneATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>supplier</Tablename>

 <Projections>

 <Attribute>s_phone</Attribute>

 <Attribute>s_suppkey</Attribute>

 </Projections>

116

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Supplier_s_addressATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>supplier</Tablename>

 <Projections>

 <Attribute>s_address</Attribute>

 <Attribute>s_suppkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <!--THIS IS THE MAPPINGS OF THE CLASS Partsupp AND ITS DATATYPES -->

 <OntologyMapping sourceKind="relational">

 <Ontology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Partsupp

 </Ontology>

 <RefOntology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Partsupp_ps_partkeyATRIBUT

 </RefOntology>

 <Mapping>

 <Tablename>partsupp</Tablename>

 <Projections>

 <Attribute>ps_partkey</Attribute>

 <Attribute>ps_suppkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Partsupp

 </Ontology>

 <RefOntology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Partsupp_ps_suppkeyATRIBUT

 </RefOntology>

 <Mapping>

 <Tablename>partsupp</Tablename>

 <Projections>

 <Attribute>ps_suppkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Partsupp_ps_partkeyATRIBUT

 </Ontology>

 <RefOntology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Part

 </RefOntology>

 <Mapping>

 <Tablename>partsupp</Tablename>

 <Projections>

 <Attribute>ps_partkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Partsupp_ps_suppkeyATRIBUT

 </Ontology>

 <RefOntology type="concept">

117

 http://www.owl-ontologies.com/unnamed.owl#Supplier

 </RefOntology>

 <Mapping>

 <Tablename>partsupp</Tablename>

 <Projections>

 <Attribute>ps_suppkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Partsupp_ps_supplycostATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>partsupp</Tablename>

 <Projections>

 <Attribute>ps_supplycost</Attribute>

 <Attribute>ps_suppkey</Attribute>

 <Attribute>ps_partkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <!--THIS IS THE MAPPINGS OF THE CLASS Part AND ITS DATATYPES -->

 <OntologyMapping sourceKind="relational">

 <Ontology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Part

 </Ontology>

 <RefOntology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Part_p_partkeyATRIBUT

 </RefOntology>

 <Mapping>

 <Tablename>part</Tablename>

 <Projections>

 <Attribute>p_partkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Part_p_sizeATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>part</Tablename>

 <Projections>

 <Attribute>p_size</Attribute>

 <Attribute>p_partkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Part_p_typeATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>part</Tablename>

 <Projections>

 <Attribute>p_type</Attribute>

 <Attribute>p_partkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Part_p_partkeyATRIBUT

118

 </Ontology>

 <Mapping>

 <Tablename>part</Tablename>

 <Projections>

 <Attribute>p_partkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Part_p_retailpriceATRIBUT

 </Ontology>

 <Mapping>

 <Tablename>part</Tablename>

 <Projections>

 <Attribute>p_retailprice</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <!--THIS IS THE MAPPINGS OF THE CLASS LegalEntity AND ITS DATATYPES -->

 <OntologyMapping sourceKind="relational">

 <Ontology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#LegalEntity

 </Ontology>

 <RefOntology type="property">

 http://www.owl-

ontologies.com/unnamed.owl#LegalEntity_le_regnumATRIBUT

 </RefOntology>

 <Mapping>

 <Tablename>legal_entity</Tablename>

 <Projections>

 <Attribute>le_regnum</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <!--THIS IS THE MAPPINGS OF THE CLASS Individual AND ITS DATATYPES -->

 <OntologyMapping sourceKind="relational">

 <Ontology type="concept">

 http://www.owl-ontologies.com/unnamed.owl#Individual

 </Ontology>

 <RefOntology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Individual_i_idnumATRIBUT

 </RefOntology>

 <Mapping>

 <Tablename>individual</Tablename>

 <Projections>

 <Attribute>i_idnum</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <!--THE MAPPINGS OF THE ASSOCIATIONS -->

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#IsFrom

 </Ontology>

 <Mapping>

 <Tablename>nation</Tablename>

 <Projections>

 <Attribute>n_nationkey</Attribute>

 <Attribute>n_regionkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

119

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Lives

 </Ontology>

 <Mapping>

 <Tablename>customer</Tablename>

 <Projections>

 <Attribute>c_nationkey</Attribute>

 <Attribute>c_custkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Does

 </Ontology>

 <Mapping>

 <Tablename>orders</Tablename>

 <Projections>

 <Attribute>o_custkey</Attribute>

 <Attribute>o_orderkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

 <OntologyMapping sourceKind="relational">

 <Ontology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Contained

 </Ontology>

 <Mapping>

 <Tablename>lineitem</Tablename>

 <Projections>

 <Attribute>l_orderkey</Attribute>

 <Attribute>l_linenumber</Attribute>

 <Attribute>l_orderkey</Attribute>

 </Projections>

 </Mapping>

 </OntologyMapping>

</OntologyMappings>

Figure 29: Complete XML structure for the source mappings used in the demo

It should be noticed that the mapping for the concept Customer is not provided since this demo

should represent how the system reacts in the case that the new derived mapping should be

provided.

As it can be seen in figure 29, the mappings of some of following associations (ontology

properties) are also provided:

- IsFrom

- Lives

- Does

- Contained

The set of the mappings is intentionally made to be able to represent some GEM functionalities.

(e.g., derived mapping of the concept Customer from its mapped subclasses – LegalEntity and

Individual)

120

After the file with the mapping of these concepts is generated, the file containing business

requirements is provided. The content of this file is presented in Figure 30.

This XML structure is derived from the QUERY 5 of the TPC-H benchmark and it aims at listing

the sums of potential revenues, expressed with function Lineitem_l_extendedpriceATRIBUT*

(1-Lineitem_l_discountATRIBUT), for each nation (Nation_n_nameATRIBUT) and according

to orders done before the date 18/04/2011, the customer with the name CUSTOMER and the

region with the name REGION.

Note that the names in the XML in figure 30 are extended to correspond to the names from the

ontology. According to these inputs the system demo execution is depicted in the figures

following figure 30.

<?xml version="1.0"?>

<!DOCTYPE cube SYSTEM "cube.dtd">

<cube>

 <dimensions>

 <concept id="Nation_n_nameATRIBUT" />

 </dimensions>

 <measures>

 <concept id="revenue">

 <function>

 Lineitem_l_extendedpriceATRIBUT*(1-Lineitem_l_discountATRIBUT)

 </function>

 </concept>

 </measures>

 <slicers>

 <comparison>

 <concept id="Orders_o_orderdateATRIBUT" />

 <operator><</operator>

 <value>18/04/2011</value>

 </comparison>

 <comparison>

 <concept id="Region_r_nameATRIBUT" />

 <operator>=</operator>

 <value>REGION</value>

 </comparison>

 <comparison>

 <concept id="Customer_c_nameATRIBUT" />

 <operator>=</operator>

 <value>CUSTOMER</value>

 </comparison>

 </slicers>

 <aggregations>

 <aggregation order="1">

 <dimension refID="Nation_n_nameATRIBUT" />

 <measure refID="revenue" />

 <function>SUM</function>

 </aggregation>

 </aggregations>

</cube>

Figure 30: Input XML file with the business requirements

A.2. Resulting execution

After the GEM is started the main screen appears. (Figure 31)

121

Figure 31: Main screen of the GEM framework

The main screen contains several options:

- START… – to start working with the GEM system

- CREDITS – listing the people credited for the research and the development of the

 GEM system

- ABOUT GEM – gives a brief introduction to GEM and its possibilities.

- QUIT – to exit from the GEM

Since other options are straightforward the option START… is chosen. After this option is

chosen, the following screen appears. (Figure 32)

Figure 32: Beginning with GEM

This screen is the starting point for working with the GEM system. Two separated parts can

be noticed in this window. Upper one contains a button “Load source files…”. This part of the

window is used for loading the OWL ontology and XML file with mapping. After the button is

clicked the window for loading the corresponding files appears (Figure 33).

Figure 33: Loading of OWL and mappings

Choosing the “Browse…” options the standard window for file choosing appears and after

both files are chosen the “Load“ button is clicked to start loading of the chosen files to the

122

corresponding structures. Therefore, the system goes back to the previous screen where

now the paths of the loaded files are showed. (Figure 34).

Figure 34: OWL ontology and XML with mappings are loaded

After the first two input files are loaded into the internal structures, now the XML file with

the business requirements is expected. After the button “Browse…” is clicked the standard

file chooser window appears. When the XML file is chosen, the option “Start” is clicked to

start the GEM process. After the button is clicked in the background the chosen XML file is

loaded into the corresponding structure and then the control screen of the GEM process

appears. (Figure 35).

Figure 35: Start of the Requirement Validation stage

During this stage, more specifically during the source mapping process, the system will ask

for the user’s feedback. This happens since the input business requirement file contains the

concept Customer_c_nameATRIBUT. This concept is identified as a datatype property which

domain class is Customer. However inside the XML file with the source mappings the concept

Customer is not mapped, but its subclasses are (Individual and LegalItem). Therefore, the

system produces the corresponding suggestion for the derived mapping and presente it to

the user (Figure 36).

Figure 36: Interaction with the user (derived mapping file is expected)

123

At this point the user is supposed to create new XML file that will contained the derived

mapping according to the suggestions. The corresponding XML file and the derived mapping

is presented in Figure 37.

<OntologyMappings>

 <OntologyMapping sourceKind="relational">

 <Ontologyntype = concept ">

 http://www.owl-ontologies.com/unnamed.owl#Customer

 </Ontology>

 <RefOntology type="property">

 http://www.owl-ontologies.com/unnamed.owl#Customer_c_custkeyATRIBUT

 </RefOntology>

 <Mapping>

 <Mapping>

 <Tablename>legal_entity</Tablename>

 <Projections>

 <Attribute>le_regnum</Attribute>

 </Projections>

 </Mapping>

 <SQLOperator>UNION</SQLOperator>

 <Mapping>

 <Tablename>individual</Tablename>

 <Projections>

 <Attribute>i_idnum</Attribute>

 </Projections>

 </Mapping>

 </Mapping>

 </OntologyMapping>

</OntologyMappings>

Figure 37: Feedback XML file with the derived mapping

After the new file is loaded (“Browse…”) the option “Continue” is chosen to continue with

the mapping process. In the background the new feedback file is loaded and added to the

previous structure. The options for loading the feedback file then disappear and the system

continues. After the stage of Requirement Validation is finished, the progress bar advances,

the stage of the requirement completion starts and the control screen changes (Figure 38).

Figure 38: Control screen during the Requirement Completion stage

Afterwards, when the stage of Requirement Completion is finished the following stage of

Multidimensional Validation (MDBE) starts (Figure 39).

Figure 39: Control screen during the Multidimensional Validation stage

124

After the stage of Multidimensional Validation, the system starts with the stage of Operation

Identification (Figure 40).

Figure 40: Control screen during the Operation Identification stage

By the end of the Operation Identification stage, the MD and ETL designs are created and

thus the options for their showing are given to the user (Figure 41).

Figure 41: Control screen at the end of Operation Identification stage

Since in this example only one MD design is possible therefore the user is provided with one

MD and one corresponding ETL design. These designs can be shown choosing the options

“Show…” next to the corresponding design. After choosing the option “Show…” next to the

MD design, the window with the graph representing the produced design appears (Figure

42).

Similarly, after choosing the option “Show...” next to the ETL design the window containing

the appropriate design appears (Figure 43).

Since ETL design tends to become very complex, the user is provided with two options for

searching the details of one operation, represented by the node of the output graph.

The first one is the zoom options (+/-) whit which the user can zoom to the part of the graph

he/she is interested in. Another, and maybe more detailed option it to click on the node.

After the user clicked on the node the details about this node and corresponding operation is

shown (Figure 43).

125

Figure 42: Generated MD design

Figure 43: Generated ETL design

In figure 42 the circled subgraph represents the necessary operation for the extraction of the

concept Customer. This kind of the structure is the result of the derived mapping provided

for the concept Customer during the Requirement Validation stage.

126

Figure 43: More details about the operation nodes

In figure 43, in the left, the details about the EXTRACTION operation, needed to extract the

mapped subclass (Individual) of the concept Customer, is presented. In the right, of the same

figure, the details about the UNION operation over the results of the EXTRACTIONs of the

mapped subclass concepts (Individual and LegalEntity), is presented.

After the designs are examined the option “Reset” gives chance to go back to the beginning

of the GEM system (Figure 34). There the OWL ontology and XML mapping files are already

loaded, and the new business requirement file is expected. Otherwise option “Back” returns

user to the main screen where he/she can either start GEM again or quit the system.

127

Appendix B Document Type Definitions for input XML files

<!ELEMENT cube (dimensions,measures,slicers?,aggregations?)>

<!ELEMENT dimensions (concept+)>

<!ELEMENT concept (function?,role?,nfr*)*>

<!ELEMENT function (#PCDATA)>

<!ELEMENT role (#PCDATA)>

<!ELEMENT nfr (#PCDATA)>

<!ELEMENT measures (concept*)>

<!ELEMENT slicers (comparison+)>

<!ELEMENT comparison (concept,function?,operator,value)>

<!ELEMENT operator (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT aggregations (aggregation*)>

<!ELEMENT aggregation (dimension,measure,function?)>

<!ELEMENT dimension EMPTY>

<!ELEMENT measure EMPTY>

<!ATTLIST concept id CDATA #REQUIRED>

<!ATTLIST concept alias CDATA #IMPLIED>

<!ATTLIST nfr kind (freshness|precision) #REQUIRED>

<!ATTLIST nfr format CDATA #IMPLIED>

<!ATTLIST nfr value CDATA #IMPLIED>

<!ATTLIST aggregation order CDATA #IMPLIED>

<!ATTLIST dimension refID CDATA #REQUIRED>

<!ATTLIST dimension refAlias CDATA #IMPLIED>

<!ATTLIST measure refID CDATA #REQUIRED>

<!ATTLIST measure refAlias CDATA #IMPLIED>

Figure 44: DTD for the XML file with the business requirements

<!ELEMENT OntologyMappings (OntologyMapping+)>

<!ELEMENT OntologyMapping (Ontology,RefOntology?,Mapping)>

<!ELEMENT SQLOperator (#PCDATA)>

<!ELEMENT Ontology (#PCDATA)>

<!ELEMENT RefOntology (#PCDATA)>

<!ELEMENT Mapping

(((Mapping,SQLOperator)*,Mapping)|(Tablename,Projections,Selections?))>

<!ELEMENT Tablename (#PCDATA)>

<!ELEMENT Projections (Attribute+)>

<!ELEMENT Attribute (#PCDATA)>

<!ELEMENT Selections (Selection+)>

<!ELEMENT Selection (Column,Operator,Constant)>

<!ELEMENT Column (#PCDATA)>

<!ELEMENT Operator (#PCDATA)>

<!ELEMENT Constant (#PCDATA)>

<!ATTLIST OntologyMapping sourceKind CDATA #REQUIRED>

<!ATTLIST Ontology type (concept|property) #REQUIRED>

<!ATTLIST RefOntology type (concept|property) #REQUIRED>

Figure 45: DTD for the XML file with the source mappings

128

129

Appendix C Glossary

Agile Software Development Group of software development methods based
on iterative and incremental development

Business Intelligence (BI) Refers to computer-based techniques used in
identifying, extracting, and analyzing business
data, to support better business decision-making.

Data Warehousing (DW) Aims at combining data from multiple and usually
varied sources into one comprehensive and easily
manipulated database with the main goal to help
business in decision making process

Descriptors In multidimensionality, represent the means for
designing the specific subset of values of a certain
level

Dimensions Multidimensional concepts that represent the
perspective from which the data are analyzed

Document Type Definitions (DTD) Formal syntax that declares precisely which
elements and references may appear where in the
markup document (XML), and what the elements’
contents and attributes are.

Extract-Transform-Load (ETL) A process in data warehousing systems that
involves Extracting data from outside sources,
Transforming it to fit operational needs and
Loading it into the target data warehouse.

Extensible Markup Language (XML) A markup language for documents that are
supposed to contain structured information and
that are supposed to be exchanged among
different systems and platforms.

GEM framework The framework for semi-automatic Generation of
ETL and Multidimensional designs according to the
available data sources and previously gathered
business requirements.

Integrated development environment
(IDE)

A software application that provides environment
with the different features that aims to suit almost
all programmers needs during the software
development process

MDBE system The system developed by professor Oscar Romero
aims at producing multidimensional design based
on the underlying data sources and guided with
the previously gathered user requirements.

Measures Multidimensional concepts that represent the data
of interest for the analysis process.

Multidimensionality (MD) Represents the paradigm for analyzing the desired
data from the multidimensional point of view.

130

(Online Analytical Processing) OLAP On-Line Analytical Processing (OLAP) is a category
of software technology that enables analysts,
managers and executives to gain insight into the
companies data based on multidimensionality

Ontology A formal representation of certain knowledge as a
set of concepts within a domain, and the
relationships between those concepts.

Ontology reasoner A piece of software able to infer logical
consequences from a formally defined set of rules
among the domain concepts (ontology).

OWL Web Ontology Language The language created for defining ontology
documents aims to support machine
interpretability of Web content.

Plan-driven software development Formal specific approach for developing a
software product strictly following the defined
phases and respecting defined roles.

Semantic Web Approach aims at enabling machines to
understand the semantics, or meaning, of
information on the World Wide Web.

Uniform Resource Identifier (URI) A string of characters used to identify a name or a
resource on the Internet. Ontology URI – unified
identifier of the ontology elements (classes and
properties)

World Wide Web Consortium (W3C) The intentional organization with the main
purpose of developing standards for the World
Wide Web.

