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Abstract

A pinning area is a band of finite width where rotating waves with precession frequences near zero turn
into steady non-axisymmetric solutions. Dynamical systems theory suggests that any imperfection breaking
the SO(2) invariance of a problem must result in the formation of such a region. Numerical simulations of
rotating convection in a finite cylinder have been made breaking the symmetry by imposing a linear profile of
temperature at the top lid in order to find the aforementioned steady solutions region.
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1 Introduction

Since the beginning of the 1980’s decade dynami-
cal systems theory has been used to understand the
behavior of systems as parameters are varied which
has allowed us to detect many bifurcations previously
observed in experiments.

One of the most relevant elements in dynamical
systems theory are symmetries. They reduce the
complexity of the problem and determine the nature
and type of bifurcations that a system can undergo.
That is why many studies about bifurcations with
symmetry have been carried out providing a deep
comprehension of their dynamics. However, these
analysis represent a group of idealized problems and
don’t take into account elements such as imperfections
or noise that appear in real cases. Theoretical, ex-
perimental and numerical works have been performed
recently in order to understand the dynamic caused
by imperfect symmetries shedding new ligth on the
problem.

An interesting particular case of symmetry is the
invariance under rotation around an axis(SO(2)
equivariant dynamical systems). In these systems
Hopf bifurcations result in rotating waves with a pre-
cession frequency which depends on parameters. As
we moved these parameters the precession frequency
can pass through zero changing the sense of rotation
in the wave. This situation is very sensitive to
imperfections that break the SO(2) symmetry, giving
rise to a band of finite width about the zero frequency
line of the perfect system where the rotating waves
become trapped turning into steady solutions. This is
the so-called pinning phenomenon.

Pinning areas have been observed in physical expe-

riments(Abshagen et al., 2008) where imperfections
appear in a natural way , however, numerical
simulations of the symmetric systems were un-
able of detecting this kind of bifurcation. Later,
Pacheco(Pacheco et al., 2011) considered to break the
symmetry of a Taylor Couette flow by tilting one of
the endwall by a small angle. Numerical simulations
of Navier Stokes equations for this modified system
showed a band of steady solutions confined between
two infinite period bifurcation curves. These results
achieved a good agreement with the experimental
ones, becoming evident that the pinning phenomenon
is inherent to imperfections. With regards to theorical
works, a detailed analysis of a system close to a Hopf
bifurcation whose frequency changes sign has been
performed by Marques(Marques et al., 2011). It
presents several ways of breaking the symmetry by
introducing new terms up to second order into the
normal form of the bifurcation. In all cases a pinning
band delimited by infinite period bifurcation curves
of homoclinic type appears around the zero frequency
line.

On the other hand, the dynamic of a rotating cylinder
subjected to a thermal gradient has been widely
studied by the group of fluids at the UPC(Marques
et al., 2007);(Marques & Lopez, 2009). The linear
stability analysis determined the existence of a
rotating wave whose precession frequency undergoes
a change of sign. This point suggests the presence of
a pinning region in case that imperfections are present.

Taking advantage of the previous jobs, we con-
sidered to break the symmetry of the aforementioned
cylinder by imposing a linear profile of tempeture at



the top lid in order to simulate the imperfections.
After numerous numerical simulations of the flow
inside the cylinder, we found the pinning area and
established the infinite period bifurcation curves
that surround it. These curves as well as the steady
solutions arising as a consequence of the bifurcation
will be shown in the section corresponding to results.
An analysis to try to identify the type of global
bifurcation which is happening is also exposed.

2 Governing equations and nu-
merical scheme

Consider a cylinder of radius 7o and height h
rotating around a vertical axis with a constant angular
velocity w rad s~! and filled with an incompressible
fluid of kinematic viscosity v. The top lid is manteined
at a constant temperature To — 0.5AT and the bottom
lid at a constant temperature Ty + 0.5AT , being Ty
the mean temperature in the cylinder and AT the
difference of temperature between the lids.

This problem depends on five non-dimensional inde-
pendent parameters:

Rayleigh number

B agh3AT

Coriolis number

Froude number

Prandtl number

Aspect ratio

T (5)

where « is the coefficient of volume expansion, g is
the gravitational acceleration and k is the thermal
diffusivity.

A whole analysis of the problem including these five
parameters would be impossible so we have fixed some
parameters. We have chosen v = 1 because large
azimuthal wavenumber modes are avoided, ¢ = 7.0
which corresponds to water near room temperature
and 2 = 100.0. Notice that since {2 and F depend

on w, they vary at the same time, however, we will
consider a fixed Coriolis number in order to reduce
the complexity of the problem. In that way, we are
considering to study the competition arising between
gravitational buoyancy(characterized by R) and
centrifugal buoyancy(characterized by F').

The governing equations of the problem have been
non-dimensionalized using h as a length scale, %2 as
the time scale and AT as the temperature scale. In a
rotating frame of reference, they are:

V-u=0, (6)

F
(O+u-V)u = —Vp+aV2u+ch@2+2aQu><2—ﬂ®r,

Y

(7)

(O +u-V)O =w+ VO (8)

where u = (u,v,w) is the velocity field in cylin-

drical components (r,6,z), p is the kinematic

pressure(including  centrifugal and gravitational

contributions), Z is the unit vector in the vertical
direction z and r is the radial vector in cylindrical
components. In the equation 8 a non-dimensional
temperature has been substituted by the unknown
O that represents the deviation of the temperature
respect to the conductive state. This practice is
usual in thermal convection studies. The Boussinesq
aproximation has been taken into account in such
formulation so that all fluid properties are constant
except for the density which depends on the tempera-
ture in the gravitational and centrifugal terms.

The boundary conditions for u and © are:

r=y:0,=u=v=w=0, (9)

z2=41/2:0=u=v=w=0, (10)

This set of equations with its boundary conditions is
invariant under rotations around the axis of the cylin-
der. It doesn’t take into account the imperfections
which lead the systems to bifurcate in a pinning re-
gion. In order to introduce these imperfections in the
system, a linear profile of temperature has been placed
at the top lid. The new boundary condition break the
invariance mentioned before simulating the effect of
imperfections in real experiments.It can be expressed
as:

z=41/2:0 = ercosb, (11)

where € is an arbitrary constant.
The code used to solve the problem have been imple-
mented by the convective and rotational instabilities



group at the UPC(Mercader et al., 2010). It consists in
a second-order time-splitting method for the time dis-
cretization combined with a pseudo-spectral method
using Galerkin-Fourier in the azimuthal component 6
and Chebyshev collocation in x = r/v and y = 2z
for the spacial discretization. Each unknown of the
problem can be written as follows:

L

F(r,0,z) :Z

=0

M
> mTi(@)Ta(y)e™  (12)
0m=0

The radial dependence is approximated by a Cheby-
shev expansion between —vy and ~ and enforcing their
proper parities at the origin. An odd number of
Gauss-Lobatto points have been chosen in r to avoid
including the origin in the collocation mesh, therefore
the equations are solved only in the interval (0,7].
Linear diffusion terms in momentum equations have
been decoupled by using the combinations u, = u+iv
and u_— = u — iv. For each Fourier mode, a set of
Helmholtz equations arises for T,w,u; and u_. They
are solved by mean of a diagonalization technique in
r and z. Finally, steady solutions are computed by
Newton’s method and steady solutions branches are
followed by an arclength continuation method.

A slight modification have been introduced in
the code to consider the new boundary condition at
the top lid. In order to do that, the physical condition
had to be turned into a spectral condition. Parti-
cularly, introducing a linear profile of temperature
means to modify the azimuthal mode m = 1.

We have used L = N = 36 spectral modes, M = 20
in # and 6t = 107° in all simulations. The proper
spectral convergence of the code with this number of
modes have been checked in previous works.

3 Results

Before explaining the results achieved in this work,
it is necessary to introduce background information
relative to the linear stability analysis of the problem.
The bifurcations of the stable state CO (called cen-
trifugal branch) are shown in figure 1. This solution
becomes unstable at a Hopf bifurcation(H2,,) to a ro-
tating wave with azimuthal wavenumber m = 3(C3).
At low R numbers this Hopf bifurcation is supercrit-
ical but when they become larger, a Bautin point(B)
appears turning the supercritical Hopf bifurcation into
a subcritical one. Unstable solutions(C3) appear due
to the subcritical nature of the bifurcation, becoming
them stable at a saddle node(F;) born as well at the
Bautin point.

Figure 2 shows how the Hopf frequency corre-
sponding to Hgo varies as we move R. This Hopf
frequency(w) comes given by the imaginary part of
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Figure 1: Bifurcations of the centrifugal branch CO0.

30

20 |

0 10600 20600 30600 40000
R
Figure 2: Hopf frequency against Rayleigh number.

the critical eigenvalue and it is closely related to
the precession frequency w, of the rotating wave.
Namely, it can be expressed as w, = w/3. If we
look at the figure, there exist a value of R where w
passes through zero what implies a change in the
rotation sense of the rotating wave. This is the point
(R,w) = (18234,0) represented in figure 2 as a white
circle. The existence of this point means the starting
point of this work. It suggests that in presence of
imperfections, rotating waves with very low w, may
be stopped by them, giving rise to steady solutions.
Moreover, the dynamical system theory says that
period infinite bifurcations delimit the area where this
happens.

The first step in order to find this region is to
look for several points with w, = 0 in the perfect
problem(without breaking the symmetry). We could
think of finding them in the neighborhood of the
previous point(R ~ 18234) but if we look at the figure
1, that interval of R belongs to the subcritical part of
the bifurcation so rotating waves close to this point
will be unstable. Our code is only able of computing
stable solutions so we had to explore the phase space
up to find stable rotating waves with zero precession
frequency.

To calculate w,, we have used a small code that
considers two close solutions , evaluates the phase
difference between them and finally divides by &t
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Figure 3: Line of rotating waves with w,=0.

and the azimuthal wavenumber corresponding to the
rotating wave(In this case 3).

Figure 3 shows the results obtained in the exploration.
The dashed line represents solutions with zero pre-
cession frequency. Rotating waves change their sense
of rotation when they are passing through it. As we
said before, we only have calculated stable solutions
which are represented to the right of the graph by a
long dashed line. The points obtained in the simu-
lations are also shown. Unstable solutions are also
represented in the figure by the short dashed line but
they have been drawn by hand in order to clarify what
is happening in the system.

Once we know the region of the phase space where
wp is close to zero, it is time to introduce the new
boundary condition to break the SO(2) invariance of
the problem. A new exploration close to the previous
line was carried out. The results are shown in figure
4. The small band between the two IPB curves is the
pinning area. In this region rotating waves become a
non-axisymmetric steady state.

What kind of bifurcation is happening?

Dynamical system theory predicts an infinite pe-
riod bifurcation(IPB).In order to prove it, we have
calculated several points with constant F' = 0.32 and
varying R very close to the IPB curve. Figure 5
presents the periods corresponding to those points
against R. As we moved R closer to the pinning area
the periods tend to infinite, that is why this kind of
bifurcations are called infinite period bifurcation. A
detailed theoretical study of this bifurcation can be
found in (Marques et al., 2011). It shows that two
solutions arise when a limit cycle enters the pinning
region and they are born at saddle-node bifurcations.
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Figure 4: Pinning area.

One is a saddle and the other is stable. The stable
solution is the only one that can be observed numeri-
cally when using time evolution, in fact, we will show
it later in this report. The unstable one corresponds
to a saddle-node which is connected to the stable
periodic solutions located on both sides of the pinning
region via saddle node on an invariant cycle(SNIC)
bifurcations.

An example of the path followed by the basic state
C0 as we moved F' and R is large enough is shown
in figure 6. From A to A’, CO(region I) undergoes
first a Hopf bifurcation to a rotating wave C3 with
counterclockwise sense of rotation(region I, ), next ,
it goes to a pinning area where we have the pinned
steady solutions(region IIT) and finally, it bifurcates
to a rotating wave C3 again but with opposite sense
of rotation to the previous one(region I_). The gray
disks placed between the SNIC' and Hopf curves are
areas of extremely complex dynamic. Many other
bifurcations appear in this narrow region of the param-
eter space making very difficult to try to investigate it.

This is the most likely scenario that can be found
in real systems, however, when the SNIC bifurcation
curve is close to the Hopf bifurcation(gray disks in
figure 6), saddle node bifurcations are no longer
happen on the limit cycle. A homoclinic collision
between the limit cycle and the saddle node occurs
in such situation but saddle node bifurcations are
still very close to it. Since they are very close to
each other is very difficult to distinguish between
them. One way to do that is checking the scaling laws
of the periods when approaching a homoclinic or a
SNIC bifurcation. They come given by the following
expressions(Strogatz, 1994):
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Figure 5: Period T vs R close to the pinning area.
F =10.32.

Figure 6: Imperfect Hopf bifurcation under general
perturbations.

Trom = a1 — azln (a3 — x) (13)

az

Tsnic = a1+ \/ﬁ (14)
where z means the control parameter(in our case R).
The parameter ay of the homoclinic scaling law has a
physical meaning. It represents the inverse of the po-
sitive eigenvalue of the saddle-node.

By following these guidelines, we have tried to iden-
tify the situation happening in our case. A non-linear
fitting of the periods corresponding to points near the
IPB curve have been performed obtaining the result
shown in figure 7. As we can see the square root profile
fits slightly in a better way than the logarithmic one.
This cannot be interpreted as a reliable proof to en-
sure that a SINIC bifurcation is happening because we
would need periods corresponding to points located in
a very narrow region of parameter space whose width is
of the order of the distance between both curves(saddle
node and homoclinic). These points are difficult to
compute accurately and because of their large peri-
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Figure 7: Non-linear fitting of periods corresponding
to points near the pinning area. In color version, red
line represents the SNIC scaling law(points repre-
sented as circles) and blue line is the logarithmic ad-
just(points marked by diamond). Black line represents
the original points numerically calculated.

ods, it takes a long time to do it. Anyway, it is highly
probable that a SNIC bifurcation exists in our case.
Time series of the temperature were also measured
at a point close to the wall and over the half plane
of the cylinder. Two first pictures in figure 9 shows
time series corresponding to points inside the pinning
region. We can appreciate how the temperature is
going to a steady solution in both cases after an initial
relaxation time. It is noticiable that this relaxation
time becomes larger as F' is increased. Last two
pictures compare the period in a point very close
to the pinning area( third picture, R = 22205 and
F = 0.32) and another one a little further (fourth
picture, R = 22180 and F = 0.32).

Finally, we present some characteristics of the steady
solution obtained. Figure 8 shows isotherms T plotted
in meridian planes, with R = 22875 and Froude
number F' = 0.31, for different angles. The rotating
wave resulting from the Hopf bifurcation is composed
of three hot rising and three cold descending plumes
near the sidewall and preccesing retrograde with
respect to the system rotation. Its effects can be
straightforward appreciated in the figure, as we
moved 6 we see how the temperature near the wall is
changing. Picture (a) and picture (c) show clearly the
effects of the hot and cold plumes respectively. Notice
that cool fluid at the top of the cylinder is centrifuged
radially outward while warm fluid near the bottom is
centrifuged radially inward. The hot and cold plumes
arising make the effects of centrifugal forces smoother
on the sidewall. This solution is rotating for most

22220



Figure 8: Isotherms of the state C'3 at R = 22875
and F' = 0.31, in a meridional plane where the left
and right vertical boundaries shown are the cylinder
sidewall at » = v and 6 is changing: (a) 6 € [0, 180],
(b) 0 € [30,210], (c) 6 € [60,240] (d) 6 € [90,270].
There are ten contour levels linearly spaced, five pos-
itives(black or red in colour version) and five nega-
tives(gray or yellow in colour version) in the range T
€ [-0.5,0.5]

part of the parameter space where it exists, but as
we saw before it becomes steady in the small band
presented in 4.

4 Conclusions and future works

Numerical simulations of a fluid enclosed in a
rotating cylinder in the presence of a thermal gradient
have been carried out. Imperfections breaking the
SO(2) invariance of the problem have been considered
by introducing a linear profile of temperature at the
top lid of the cylinder as a new boundary condition.
The most important feature achieved is that the
curve of zero frequency relative to the periodic stable
solution(C3) splits into two curves with a region of
zero-frequency solutions appearing in between(the
so-called pinning area). These outcomes confirm
the theoretical results obtained previously which
ensure the presence of a steady solutions band when
imperfections are considered in a problem where the
precession frequency of a rotating wave is changing
sign.

A couple of interesting works to do in the future
related to this job are:

e Try to calculate the unstable solutions mentioned
in section three.

e Break the SO(2) invariance in other way to see if
the band becomes wider.
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(21874,0.325), (R,F) = (22868,0.31), (R,F) =
(22205,0.32) and (R, F) = (22180,0.32) .



References

ABSHAGEN, J., HEISE, M., HOFFMANN, C. & PFiIs-
TER, G. 2008 Direction reversal of a rotating wave

in taylor-couette flow. Journal of Fluid Mechanics
607, 199- 208.

MARQUES, F. & Lopez, J. M. 2009 Centrifugal ef-
fects in rotating convection: nonlinear dynamics.
Journal of Fluid Mechanics 628, 269-297.

MARQUES, F., MERCADER, I., BATISTE, O. &
Lopez, J. M. 2007 Centrifugal effects in rotat-
ing convection: axisymmetric states and three-
dimensional instabilities. Journal of Fluid Mechan-
ics 580, 303-318.

MARQUES, F., MESEGUER, A., Lopez, J. M. &
Pacueco, J. R. 2011 Hopf bifurcation with zero
frequency and imperfect so(2) symmetry. Submitted
to Elsevier .

MERCADER, I., BATISTE, O. & ALONSO, A. 2010
An efficient spectral code for incompressible flows

in cylindrical geometries. Computers & Fluids 39,
215-224.

Pacueco, J. R., Lopez, J. M., & MARQUES, F.
2011 Pinning of rotating waves to defects in fi-

nite taylor-couette flow. Journal of Fluid Mechanics
666, 254-272.

STROGATZ 1994 Nonlinear Dynamics and Chaos.
Perseus Books.



