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Abstract 
 

Nowadays, most modern high performance processors employ out-of-order (O3) execution. In these processors, 
instructions are executed as soon as possible increasing in this way the instruction level parallelism (ILP) and, in 
consequence, the processor performance. However, not all instructions could be executed in O3 way. Memory 
access instructions sharing the same memory address must be executed in order to keep the original program 
semantic. For this reason, O3 processors use memory dependence predictors. These are specialized units in charge 
of reducing, as much as possible, the number of loads and stores executed in-order. Good predictors aid to release all 
the ILP potential in O3 processors. 

This project studies current used (in commercial hardware) and proposed (in academic papers) methods for 
predicting memory dependencies in an O3 processor. New opportunities to exploit instructions locality and improve 
predictor’s accuracy are proposed and tested. In particular, the concept of extreme locality is introduced and applied 
in a new method, named MiniCAM. The results using this method are presented and discussed. 

 

Keywords: Memory dependence predictor, out-of-order processors, memory disambiguation, memory dependence 
speculation. 

Paraules clau: predictor de dependències de memòria, processadors fora d'ordre, desambiguació de memòria, 
l'especulació de dependència de memòria. 
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Chapter 1. Work Presentation 
1.1 Introduction 
Even now, when many new computers execute with out-of-order (O3) processors, the programs are generated to be 
executed in-order. In O3 processors, loads and stores instructions accessing to the same memory addresses must be 
executed in-order to keep intact the semantic of the program. Force all loads and stores to be executed in-order 
produces and important reduction in the instruction-level parallelism (ILP) and, in consequence, in the final 
performance. Memory dependence prediction is a technique that reduces the amount of in-order executions of loads 
and stores, predicting which loads depend on which stores. Only those instructions are executed in-order. When a 
prediction fails, a recovery mechanism is launched. 

This master project studies current methods for predicting memory dependencies in O3 processors and propose new 
ones. The study includes implementation and testing of some of these methods over an Alpha 21264 processor using 
M5, a software simulator widely used in computer architecture research. The study covers: 

 A summary of the work in memory dependence prediction field and other related techniques. 

 Proposing of new methods. 

 Testing of previous and proposed methods and results analysis. 

This chapter presents the memory dependence problem, the objectives of this project, the time scheduling and a 
summary of this document organization. 

1.2 Problem Description 
In an out-of-order (O3) processors, instructions are executed as soon as possible increasing in this way the 
instruction level parallelism (ILP) and, in consequence, the processor performance. But dependencies between 
instructions exist and must be kept to ensure original program semantic. In other words, if an instruction A depends 
on the data produced by other instruction B, then A must be executed after B. Because data is stored in memory, two 
dependencies occur: Register dependency and memory access dependency. 

Register dependency could be detected efficiently (without losing CPU cycles) with the simple analysis of 
instructions’ registers use. The following instruction sequence is an example: 

1: add $1, $2, $3 

2: add $4, $5, $1 

In this example, instruction 2 needs the result stored in register $1 by instruction 1. This dependency determines that 
instruction 1 must be executed before instruction 2. 

Memory access dependencies could not be detected statically as in the previous case, as could be seen in the 
following sequence: 

1: store ($1), ($2) 

2: load ($3), ($4) 

In this example, we need to know previously the stored values in registers 1 and 3 to decide if both instructions 
access to the same memory location and, in consequence, there is a dependency between them. Here the problem 
arises when register 3 is computed before register 1, because the O3 processor behavior. In this case the processor 
can (a) delay instruction 2 execution until register 1 is resolved or (b) make a prediction and launch instruction 2 as 
soon as possible. If later the processor detects there was a dependency, it have to roll back and re-execute instruction 
2 (and maybe other later instructions). Because missing a prediction uses to be expensive, this alternative only has 
advantages if the predictor hits most of the time. 
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The previous instruction sequence is a case of read-after-write dependency (RaW). A RaW dependency is a 
dependency between a load instruction and a previous store instruction (in program order) that access to the same 
memory location. Other memory access dependencies cases exist but are resolved efficiently by using other 
methods. This is the reason why RaW dependencies are also named real dependencies. 

Good memory dependency predictors aid to release all the potential ILP in O3 processors. Without prediction, many 
loads will be blocked until all possible dependencies were resolved, with an appreciable reduction of the ILP and 
final performance. 

This project studies current used (implemented in real commercial hardware) and proposed (in academic papers) 
methods for predicting memory dependencies between load and store instructions executed in an out-of-order 
processor, and tries to find new opportunities to exploit instructions locality to improve the prediction accuracy. 

1.3 Problem Objectives 
The main goals of the project are: 

• Build a summary of the state-of-the-art in memory dependence prediction. The studied methods will be 
compared to each other, remarking its advantages and inherent limitations. Following the current trend in 
computer architecture, scalability will be the main metric in the comparison (in terms of the number of 
concurrent instructions and the number of cores used for program execution). 

• Characterize a base-system with a standard store-sets implementation memory dependence prediction unit, 
emphasizing on potential opportunities to exploit instructions locality and improving prediction accuracy. 

• Propose and test modifications in the store-sets method. 

• Propose and test a new introduced method: MiniCAM. The results will be compared to the standard store-
sets implementation. Low resources consumption and low implementation complexity are important goals 
in this proposal. 

1.4 Time scheduling 
The following table summarizes the distribution of the time used to develop the different activities in this project. 

Table 1 Project time scheduling. 

# Activity Time (hours) 

1 Memory dependence prediction methods researching. 80 

2 Characterize the base-system about memory dependence behavior. 240 

3 Perfect predictor implementation and testing. 80 

4 Load-load dependency testing. 20 

5 Store-sets original algorithm improvement implementation and testing 160 

6 New proposed methods implementation and testing. 80 

7 Results gathering, comparison and final report. 90 

Total 750 
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1.5 Document organization 
This document is organized in the following way: 

 Chapter 2 makes and overview of the research in the memory dependence field in the last years. Methods 
used in current processors are also described. 

 Chapter 3 details the platform (software and hardware) used to perform the experiments. 

 Chapter 4 presents a set of evaluations over store-sets implementation that comes with M5 simulator. This 
evaluation was important in two aspects: (1) deeply understand the algorithm behavior and figure out 
opportunities to improve it, and (2) obtain a reference base to compare with the results in the next chapter. 

 Chapter 5 describes the experiments performed and their results. 

 Chapter 6 states some conclusions and proposes future work in the field. 
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Chapter 2. Background 
2.1 Introduction 
In O3 processors, memory dependence prediction is a kind of load prediction, a more general concept. All load 
prediction methods target the same objective: improve the system performance by reducing the number of loads and 
store instructions forced to be executed in-order. 

This chapter describes load prediction methods with special focus in memory dependence predictors because the 
final proposed method, MiniCAM, falls in this category. The sections are organized in the following way. Section 
2.2 describes the criteria used to compare the load prediction methods presented. Section 2.3 describes the methods 
classification used by different authors. Section 2.4 presents two methods used to recovery the system after a miss-
prediction. Section 2.5 describes memory dependence prediction methods. Section 2.6 describes other types of load 
prediction. Section 2.7 presents load prediction methods used in commercial architectures. Section 2.8 makes a 
comparison between the studied methods using the criteria described in 2.2. 

2.2 Comparison criteria 
To evaluate advantages and disadvantages of the presented methods, we evaluate them with two criteria: Scalability 
over large instruction windows, and scalability under parallel processing. 

Methods with good scalability over larger instruction window use to: (1) store few data per tracked instruction, (2) 
use low complex algorithms, (3) require data structures that can be stored using low power consumption hardware. 
When we found these characteristics in a method, we can expect good scalability. 

Methods with good scalability under parallel processing use to be not tightly coupled to the fetch and execution 
phases in the processor pipeline. These methods do not require global knowledge of in-flight stream of stores to 
synchronize them with load instructions. In consequence, less data must be communicated between cores, and we 
can expect good scalability. 

Most authors describe the scalability of these methods when the instruction window grows, but few of them give 
results under parallel processing. However, in some cases it is possible to infer them. For example, if a method does 
not use fetch phase information, like fetch stamps, it does not need a centralized fetch stream. This method can avoid 
tracking precise information about store instructions life cycle. In consequence, it is easy to implement this method 
in architectures with parallel processing with potential good scalability when the number of cores is increased. 

2.3 Load prediction methods classification 
In this section we describe the classifications found in the literature for load prediction methods. This is important 
because it give a general idea about the research field. This is also useful for putting in context the memory 
dependence prediction methods. 

For load prediction, two classifications were found. The first one was presented by Chrysos [02]. He uses the term 
load speculation instead of load prediction. His classification is: 

- Value speculation, where the value stored or read is speculated. 

- Dependence speculation, where load-store dependence is speculated. This category was divided in 
synchronized and unsynchronized methods. 

The second classification was presented by Calder [01]. He classifies load speculation techniques in: 

- Dependence predictors, where the existence of store-load dependences is predicted. Examples of this 
category are the methods load-wait table and store-sets. 

- Address predictors, where the accessed memory address is predicted. An example of this category is the 
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stride predictor. This kind of prediction can be used for reducing latency of load instructions via pre-
fetching. 

- Value predictor, where the value stored or read is speculated. 

- Memory renaming, a special case of value predictor. 

Other two authors present classifications with focus in memory dependence prediction. The first one was proposed 
by Onder et al. [11]. Their classification is: 

- Independence based: Prediction of load dependencies is performed without tracking store instructions. 
These methods are simpler to implement, but produce less precise results because they tend to be very 
conservative. They are suitable to be implemented for parallel processing because no communication 
between individual stores and loads are required. 

- Pairing based: Methods in this category try to find dependencies between individual pairs of load and 
store instructions. They are more complex and more precise than the independence approach, but they need 
more communication between individual stores and loads. Therefore, they are less suitable for being 
implemented in parallel processing architectures. 

- Set based: Methods in this category try to find dependencies between loads and set of stores. They have a 
complexity in the middle between independence based methods and pairing based methods. 

The second classification was presented by Moshovos [09]. His classification was based on the types of memory 
dependence locality: 

- Status locality based: When a load-store dependency is found, subsequent instances of the same load will 
likely experience a similar dependency. These methods do not make statements about which particular 
stores a load may or may not be dependent on. 

- Set locality based: When a load is dependent on a set of stores, future instances of that load will likely be 
dependent on the same set of stores. 

2.4 Miss-prediction recovery 
Because any speculation technique has effectiveness less than 100%, when a miss-prediction happens, the system 
must launch a recovery process. Two main variants of miss-prediction recovery are widely used [01]: 

- Squash: All instructions issued after the miss-predicted one must be re-issued. 

- Re-execution: Only the instructions issued after the miss-predicted one that depend on this are re-issued. 
This is a more precise and less costly technique. 

2.5 Memory dependence predictors 
During the literature research phase of this project, we found documentation about the following methods. For each 
method we will describe: the key concepts, the main implementation characteristics, and the scalability behavior. 
We include a comparison of these methods at the end of this section. 

2.5.1 Store-load pair dependence predictor (1997) 
Proposed by Andreas Moshovos in [10], this method uses two fully associative tables to predict dependencies in 
load-store pairs. The first table, a memory dependence prediction table (MDPT), identifies pairs that must be 
synchronized. When a violation occurs, a new entry in MDPT is allocated, storing the pair PCs and its dependence 
distance (the distance, in cycles, between the fetch-times of the instructions in the pair). When a MDPT matching 
entry is found for an instruction, this instruction must be synchronized; otherwise it can be executed immediately. In 
the former case, an entry in the second table, the memory dependence synchronization table (MDST), is allocated or 
found. MDST contains condition variables used for synchronization between pairs. When synchronization is 
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needed, store instructions signal their conditional variables on fetching and un-signal them on issuing. Load 
instructions check their conditional variables state on fetching. In this way, loads wait their predicted dependant 
store before execution. Entries in MDPT are never released and some special politics are used to release entries in 
MDST on data and control miss-predictions. Some ideas are suggested for an implementation in distribution 
architectures, but not tested. 

This proposal arguing that wider instruction windows reduce significantly the net performance due to erroneous 
speculations. However, the suggested implementation has poor scalability because the use of two full associative 
tables. 

2.5.2 Store barrier cache (1997) 
It was proposed by James Henry Hesson in [06]. In this method, each store, that caused an ordering violation, 
increments a saturation counter in the barrier cache. At fetch time of a store, the barrier cache is queried and if the 
counter is set all following loads are delayed until the store is executed. If the store does not produce an ordering 
violation, the counter is decremented. 

This method needs few resources and the implementation complexity is low. Therefore, good scalability is expected 
when instruction window grows. It is also expected good scalability under parallel processing, because few 
communication data is needed. 

2.5.3 Store-sets predictor (1998) 
It was proposed by George Z. Chrysos and Joel S. Emer in [02]. This is the most studied and referenced method 
until these days, and it is used for comparing other methods. A store set is a group of stores a load (or loads) has 
ever become dependent. A set is created when a violation occurs between a store and a load. The store becomes part 
of the new set and the load will be synchronized against it. 

The method uses two tables to keep the information about the active sets: a store set identification table (SSIT) used 
to identify the active sets, and the last fetched store table (LFST) used to store the ID of the last store introduced in 
the set. 

Because many loads could produce violations against the same store, and one load could have dependencies with 
many stores, a merge mechanism is defined between store-sets. In this way, any store could be in at most one store 
set and any load could be synchronized against at most one store set. When a store is fetched, it is introduced in its 
related store set, if one is found. When a store is issued, it is retired from its related store set. When a load is ready to 
be executed, if it has a related store set and at least one store is inside, the load is done dependent of the last 
introduced store in the store set. Additionally, all stores in the same set are forced to execute in-order for semantic 
correctness. 

The described merge mechanism allows a very simple and fast implementation using (apparently) only two direct-
mapped tables. With very few data per table entry and direct-mapped tables, one could expect good instruction 
window size scalability, but this is not the case. As described by Onder et als. [10], increasing the window size 
produce significant performance loss because, with more stores on fly at the same time, the average store set size 
tends to grow and more stores instructions are forced to execute in order. If stores execute in order, dependent loads 
also will execute in order producing more performance loss. Additionally, with bigger store-sets, more false 
dependencies will be produced between a load and stores in its related store set. Finally, implementation of store-
sets requires not only two direct-mapped tables, but also the addition of one associative table attached to the load-
store queues to track the dependencies and to allow loads wakeup by the dependent stores [16]. This reduces more 
the scalability of this method. 

2.5.4 Inclusive and exclusive collision predictor (1999) 
It was proposed by Adi Yoaz, Mattan Erez, Ronny Ronen, and Stephan Jourdan in [20]. The central idea is to 
predict that a load instruction will produce a collision (memory dependence violation) with any of the stores in the 
execution window. The exact load-store collision pair is not predicted. 
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The inclusive collision predictor is a binary predictor. If a load is predicted to conflict with a store in its instruction 
window, it is delayed until all current stores have been executed. If not, it is advanced. Because all stores must be 
waited, this method is named inclusive. 

The exclusive collision predictor enhances the inclusive collision predictor. It works annotating the minimal distance 
between fetched stamps of a load and the stores against it collide. In this way, the set of stores in the instruction 
window could be divided in two, one set further of the minimal distance, and one set within the minimal distance. 
Then, the load must wait only the stores in the second set. 

The proposed implementation works with a collision history table (CHT). Many alternative policies for control CHT 
are presented; some use full associative tables, some not. About parallel processing, the use of fetch stamps for 
instructions age calculation and the use of store completion tracking for launching delayed loads introduce serious 
difficulties for using these methods in such cases. 

2.5.5 Enhanced store-sets predictor (1999) 
It was proposed by Soner Onder and Rajiv Gupta in [12]. The method focus on increase out-of-order issuing of store 
instructions in the original store-sets method, avoiding the necessity of force in-order execution of all stores in the 
same set. For this purpose, it determines correctness of speculated instructions by matching actual data values, not 
actual accessed addresses. 

The method introduce the following modifications to the original store set algorithm [02]: (1) memory order 
violations are detected in the retire phase (not in the issue phase), and must be done considering the value recovered 
not the address acceded, (2) no order is imposed to store instructions that belongs to the same store set, (3) a 
mechanism for fixing the forwarded value to a load is described, because not imposing any order to stores could lead 
to forward incorrect values from a store to a load. 

These modifications do not produce reduce the memory dependence order violations, but increase the final IPC 
(instructions per cycle). 

This method has better window size scalability than the original. However, it has the same problems when applied to 
parallel processing. 

2.5.6 Color sets (2002) 
It was proposed by Soner Onder and Rajiv Gupta in [11]. The key in this approach is to use multiple speculation 
levels within the processor, termed as speculation colors, or simply colors. Each color in the spectrum represents 
increasing levels of aggressiveness in load speculation. These colors divide load instructions into distinct sets. 
Initially all loads belong to the base color, the set of loads which have never collided with unready store instructions 
in the past. The method also assigns a color to the processor state, based on the memory port utilization and the 
presence of store instructions in the instruction window. These store instructions must have collided with speculative 
load instructions in the past. A load is allowed to issue only if its color is less than or equal to the current processor 
color. If later a speculated load produces a collision with a store, the load’s color is increased. 

The method was proposed as having a performance close to store-sets but with a hardware cost close to store barrier 
cache. In consequence, its implementation only requires a direct mapped table with 2 bits per-entry. These bits are 
used to represent the four possible colors (four speculation levels). An instruction’s color is recovered or modified 
accessing to the direct mapped table using the instruction’s PC. Additionally, minor instruction window 
modifications are needed. This leads to good window size scalability. This method has also good potential for being 
implemented for parallel processing because no communication is needed between individual load and store 
instructions. 

2.5.7 Store distance (2006) 
It was proposed by Changpeng Fang, Steve Carr, Soner Onder, and Zhenlin Wang in [03]. It is a compiler/micro-
architecture cooperative scheme. The compiler receives feedback from previous executions generating code with 
annotations used at runtime for improving memory dependence prediction. The method defines and uses the store 
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distance concept. The store distance is the number of stores between a load and the nearest previous store that 
access to the same memory location. The method profile a program with one small input and analyze the instruction-
based store distance distribution generating a representative store distance for each static load instruction (a static 
instruction is one in a given PC). Then, a cost effective micro-architecture mechanism is developed for the processor 
to determine accurately on which specific store instruction a load depends according to its store distance annotation. 

This method’s implementation relies on the processor instruction decode mechanism, therefore no additional 
structures are needed, leading to a great implementation efficiency. However, it needs compiler modifications, 
programs recompilation, and micro-architecture changes, so great commitments are needed. 

This method does not need additional data structures other than those mentioned. In consequence, even with no 
empirical results, we can expect good scalability when the instruction window grows. It is expected low potential to 
use this method under parallel processing because it uses store distance to speculate exact load-store pairs’ 
dependency. 

2.5.8 Store vector (2006) 
It was proposed by Samantika Subramaniam in [16]. It was designed as a method that mimics store-sets behavior but 
replacing the use of full associative tables with direct-mapped ones, spending less space per table entry and using a 
faster operation algorithm. The objective is reducing the obstacles for industrial adoption of techniques like store-
sets. 

The key idea is replacing the use of full associative tables for keeping instruction’s dependencies, with the use of a 
dependency matrix called load scheduling matrix (LSM). For N instructions we only need a LSM of N by N bits. A 
dependency between instruction “i” and instruction “j” in a LSM is represented with just one bit set in row “i” and 
column “j”. An instruction with non-resolved dependencies have at least one bit set in its corresponding row in 
LSM, and that check could be implemented efficiently using AND operations. When instruction “j” issues, it just 
clears all bits in column “j”, which could be implemented very efficiently with a single bit latch-clear signal. This 
method use only one bit per dependency because it tracks the relative age between loads and stores, not the stores’ 
PC, like in store-sets. The relative age corresponds to the fetch order distance between memory access instructions, 
and it is represented in LSM as the horizontal distance between bits in a row. Then, the LSMs width will be equal to 
the capacity of the store queue. 

To keep track of the dependency history of a load instruction, a second table is used, the store vector table (SVT). 
When a load is decoded, its PC is used to recover the corresponding entry in SVT and it is copied to the LSM. While 
any of the bits in the LSMs row is set, the corresponding load instruction will not be considered ready to issue. 
When a load-store order violation occurs, the corresponding SVT entry for the load instruction is updated setting the 
bit corresponding to the relative age distance between the load and the store. Periodically, all bits in SVT are reset to 
clear out predicted dependencies that may no longer exist. 

This method presents a better prediction ratio than store-sets mainly because two important behavior differences: (i) 
The stores in a set can be issued in any order; (ii) a store can be a predicted input dependence for any number of 
stores, in other words, stores could belong to more than one set, where it is forbidden in store-sets implementation. 

It is expected this method has good window size scalability, but no evidence is given by the author. Because no 
exact load-store pair dependency is tracking, good potential for parallel processing is expected, but again, not tested 
by the author. 

2.5.9 Synchronizing store-sets (2006) 
It was proposed by Stone SS, Woley KM, Malik K, Agarwal M, Dhar V, Frank MI in [15]. This is a special 
implementation of store-sets algorithm adapted for architectures with speculative parallelization. The parallelism 
occurs when the processor extracts multiple threads from a single sequential thread and executes them in parallel. 
This method allows using store-sets for parallel processing. There are not enough implementation details in the 
method description to infer the potential window size scalability. 
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2.5.10 Counting dependence predictors (2008) 
It was proposed by Franziska Roesner, Doug Burger, and Stephen W. Keckler in [13]. This method was designed to 
be implemented in systems with parallel processing capabilities (multi-core or many-core), without a centralized 
fetch system and without global tracking of in-flight stores processing. The method predicts a learned number of 
arbitrary stores events before mark as ready to issue a load instruction predicted to be dependent on that learned 
number. No specific load-store dependency is predicted. Here, the definition of what store events consider depends 
on the chosen politic. For example, the store address calculation, store issue and store completion could be valid 
events. 

The implementation presented uses a PC-indexed table, with 2 bits per entry. These bits are used to represent the 
prediction state of a load instruction. A state machine is used for updating loads’ prediction state. These states go 
from aggressive behavior (where the load must not wait any store address calculation to be issued) to conservative 
behavior (where the load must wait all older stores to be completed before issue). All loads are initialized in 
aggressive state, and the state is updated according to subsequent load behavior. 

About window size scalability, good results are presented by the author as expected for a method with no associative 
table use and little information kept for each speculated load. 

2.6 Other load dependence methods 
Memory dependency prediction is used to speculate about the right moment to issue a load instruction without 
complete knowledge about previous not yet issued store instructions. But other methods have been proposed for load 
speculation: value and address speculation methods. The following sections describe some of them. 

2.6.1 Last value predictor (1996) 
Methods in this category (proposed by Mikko H. Lipasti, Christopher B. Wilkerson and John Paul Shen in [07]) 
preserve the last value of a particular load instruction and speculate that it will re-use the same value during the next 
execution. It is interesting to note that the same idea could be used to predict the accessed address.  

These methods use a direct mapped, tagged table with 4K entries. Each entry contains the tag and the predicted 
value. Because not all load instructions behaves in the same way, the author classifies them in three groups based on 
their dynamic behavior: (1) loads with unpredictable values, (2) loads always predictable, and (3) loads almost 
always predictable. For this purpose, a separate load classification table is used. Finally, for always predictable 
loads, a constant verification unit is used to keep the last used value and avoid accessing the conventional memory 
system completely. 

2.6.2 Memory renaming (1997) 
It was proposed by Gary S. Tyson and Todd M. Austin in [19]. The key idea is avoiding memory access by a load 
instruction. This method keeps track of store/load dependencies in order to directly communicate predicted values 
from stores to loads, bypassing memory. 

An important difference between this method and store-sets is that memory renaming keeps track of dependencies 
over a larger window of instructions. The store cache used in this method can include information of store 
instructions no longer in the current window instruction. 

It is interesting to note that this idea could be easily combined with other kinds of methods that predict dependences 
between loads and stores. 

2.6.3  Stride predictor (1997) 
It was proposed by José Gonzalez and Antonio Gonzalez in [05]. This predictor keeps, for each load instruction, the 
last address accessed and the difference between this address and the previous one. This difference is called stride. 
The predictor speculates that the new accessed address will be the sum of the previous address and the stride. 

This method uses a direct mapped table. Each table entry contains a tag, the predicted value and the predicted stride. 
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2.6.4 Context predictors (2000) 
It was proposed by Brad Calder in [01]. In general, a context predictor bases its prediction on the last several values 
seen. This could be seen as a generalization of last value and stride methods. Calder et al. propose a context 
predictor that looks at the last 4 values (addresses) seen by a load. 

The implementation uses two direct mapped tables: (1) a value history table that contains the last four values per 
load, and (2) a value pattern table that contains actual values to be predicted. 

2.7 Predictors used in manufactured architectures 
2.7.1 The Alpha load-wait table 
The Alpha 21264 uses a load wait table to predict memory dependence of loads instructions [08]. Each table entry 
only has one bit. When a violation occurs, the bit in the corresponding load entry (mapped using the load PC) is set. 
If the bit of a load is set, its execution must be delayed until all prior stores have issued. To avoid miss predictions 
due to forever set bits, every amount of ticks, all the bits in the load wait table are unset. 

Table 2 Load prediction methods. 

Has good scalability when grows? (YES, NO) Method name Kind of prediction 

Inst. window size Parallel processing 

Store-load pair dependence 
predictor 

Dependence NO NO 

Store-barrier cache Dependence YES YES 

Store-sets predictor Dependence NO NO 

Inclusive and exclusive 
collision predictors 

Dependence YES NO 

Enhanced store set predictor Dependence NO NO 

Color sets Dependence YES YES (*) 

Store distance Dependence YES NO (*) 

Store vector Dependence YES NO (*) 

Synchronized store-sets Dependence NO YES 

Counting dependence predictor Dependence YES YES 

Last value predictor Value YES (*) (-) 

Memory renaming Value YES (*) NO (*) 

Stride predictor Address YES (*) (-) 

Context predictors Value YES (*) (-) 

Load-wait table Dependence YES NO 

Distributed load-wait table Dependence YES YES 

P6 processor ordering model Dependence (-) (-) 

(*) Not enough empirical evidence, but could be inferred.  (-) Not focus by author and could not be inferred. 
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This method has great window size scalability because a direct-mapped table is used (not associative one) with only 
one bit per table entry. A distributed version is described later. 

2.7.2 The P6 processor pessimistic predictor 
The Intel P6 processors family uses a memory order model defined as processor ordering to maintain consistency in 
the order data is read and written in a program and the order the processor carries out the reads and the writes [21]. 
Reads can pass buffered writes, but the processor guaranties program correctness if one passed write targets to the 
same memory location. However, if the last case happens, all instructions that depend on the speculated read data 
are blocked until the prediction is confirmed. This is considered a pessimistic policy predictor. 

2.8 Summary 
Table 2 summarizes described methods. Each method is followed by its classification, and its scalability properties 
for large instruction windows and parallel processing enable architectures. 

As shown in the comparison above, scalability for parallel processing is clearly less supported than instruction 
window size scalability. The research reported in this document focuses only in the last one. 
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Chapter 3. Evaluation framework 
In this chapter we will describe the hardware and software used to perform the experiments. The main software tool 
is the simulator M5. The configuration used for this simulator is also detailed. 

3.1 The M5 simulator 
This simulator is widely used in computer architecture research. It is a modular platform, encompassing system-
level architecture as well as processor micro-architecture [22]. Its key features are: 

 Pervasive object orientation: Major simulated structures (like CPUs, buses, caches, etc.) are represented as 
C++ objects. The system could be deeply configured using python scripts. This means that many systems 
could by represented and tested without coding in C++. It also improves the reutilization of simulated 
structures. 

 Multiple interchangeable CPU models: simple, functional and a one-CPI out-of-order SMT-capable CPU. 

 Event-driven memory system: It makes easier understand, modify, and trace changes in memory at 
execution time. This system includes non-blocking caches and split-transaction busses. 

 Multiple ISA support: M5 decouples ISA semantics from its timing CPU models, enabling effective 
support of multiple ISAs. M5 currently supports the Alpha, SPARC, MIPS, and ARM ISAs, with x86 
support in progress. 

 Two simulation modes: System-call emulation and full-system. The first simulates the execution of a 
statically compiled binary by functionally emulating any system call it makes. It is useful for executing 
individual tests in isolation. The second simulates a full system, including a kernel, I/O devices, etc., and it 
allows executing a complete operating system. Some full system supported architectures are Alpha, ARM, 
and SPARC. 

 Multiprocessor, multi-system capability: Thanks to M5's object orientation, instantiation of multiple CPU 
objects within a system is trivial. Combined with the snooping bus-based coherence protocol supported by 
the caches, M5 can model symmetric multiprocessor systems. Because a complete system is just a 
collection of objects (CPUs, caches, memory, etc.), multiple systems can be instantiated within a single 
simulation process. In conjunction with full-system modeling, this feature allows simulation of entire 
client-server networks. 

The object orientation and the use of simulation modes were especially useful in this project. 

3.2 Framework configuration 
The tests have been performed using the M5 simulator running in a Dell server with an quad-core Intel Xeon 
Processor 5160, 4M cache, 3.00 GHz, 1333 MHz fsb, 16GB RAM, running Ubuntu in 64 bits. The CPU model 
configured with M5 corresponds to the Alpha 21264, a pipeline processor with 6 phases: (1) fetch, (2) decode and 
rename, (3) issue, (4) registers read, (5) execute, (6) and memory access (write-back) and instruction retire. The 
model details are described in Table 3. 

The tests were running against SPEC CPU2000 benchmarks. Integer and floating point benchs were used. Because 
simulator M5 is in continuous developing and some Alpha processor characteristics are not yet supported, not all 
benchs could be run. Therefore, a subset from SPEC CPU2000 was chosen: gzip, gcc, mesa, art, mcf, equake, crafty, 
ammp, parser, bzip2, and twolf. All benchs were compiled using alpha-unknown-linux-gnu cross compiler, version 
3.4.3, with optimization flag O2. 
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Table 3 CPU Model 

Instruction queue capacity (instruction window 
size) 

128 instructions 

Fetch capacity 8 instructions per cycle 

Dispatch capacity (renamed insts. pass to inst. queue) 8 instructions per cycle 

Issue capacity 8 instructions per cycle 

Instruction cache 64 KB 

Data cache 64 KB 

Cache block size 64 bytes 

Load queue entries 32 instructions 

Store queue entries 32 instructions 

Simultaneous threads 1 
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Chapter 4. Base CPU model characterization 
4.1 Introduction 
Before making any modification, we studied the base CPU model behavior related to memory dependence 
prediction. It is important to remark that it is expected to found some differences between the Alpha CPU model 
implemented in M5 and the real machine. These differences affect the performance measures, but as all tests are 
executed in the same simulated machine, the results and conclusions derived are valid. 

This section summarizes the tests performed to get this goal, and it is organized in the following way: section 4.2 
describes the parameters used to evaluate the base system; section 4.3 focuses on the M5 implementation of the 
store-sets algorithm; sections 4.4 states some conclusions. 

4.2 Evaluation parameters 
A set of parameters were considered to expose potential locality characteristics of the base CPU model: program 
counter distance (PC-distance), sequential number distance (SN-distance), try to execute distance (TE-distance), and 
registers reuse degree. All parameters are gathered in memory dependence violation events, when the tested system 
detects a real dependence violation (read-after-write, or RaW). 

In a RaW violation, the event occurs when the system tries to execute a store instruction and finds a younger1 
executing load which access to the same memory address. Therefore, this load is considered a violator instruction, 
its execution is stopped and its effects are discarded; the execution of the involved store instruction is not affected. 
Even though this is the usual implementation, a RaW violation, we will discuss later an alternative implementation 
that also considers load-load violations (Read after Read, or RaR) for the sake of produce artificial contention. 

The base CPU model was instrumented for gathering these parameters: 

- PC-distance: It corresponds to the difference between the program counter (PC) addresses of the load and 
store instructions pair that produces a RaW violation. A PC-distance value is positive if the violator load 
goes after the store in file-order2, and negative otherwise. This parameter has bytes as measure units. 

- SN-distance: It corresponds to the difference between the sequence number (SN) of the load and store 
instructions involved in a RaW violation. A sequential number is the sequential ordinal given to every 
instruction when fetched. This parameters is always positive, otherwise no violation could happen. A small 
sn-distance indicates a RaW violation between near instructions in program execution order. This 
parameter has cycles as measure units. 

- TE-distance: It corresponds to the difference between the system cycle-counter of the load and store 
instructions, involved in a RaW violation, when they are tried to be executed. We define the term try-
execution cycle as the cycle when the processor tries to execute and instruction, successfully or not. In this 
case, the difference is computed when the store instruction, involved in the violation, is issued. In this 
moment, the violation is detected and TE distance is computed as the difference between the current cycle 
and the cycle when the detected violator load was issued. The idea behind this parameter is try to find a 
system locality behavior not related to the program execution order, but to the real system execution order. 
This is a time-distance parameter, and depends on the system capacity to resolve all instructions memory 
dependencies, using exact detection or prediction. This parameter has cycles as measure units. 

- Registers reuse: The main idea is detecting the reuse percentage degree of the registers in the store and load 
instructions involved in memory dependence violations. To avoid registers utilization affected directly by 

                                                        
1 An instruction A is younger than other instruction B if B was fetched before A, following program-execution order. 
2 Considering a program file, file-order refers to the relative position between two instructions inside. 
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the compiler politics, the instrumentation used works with the physical registers, not the logical ones. 

To simplify value reading, for any XX distance, XX_distance =XX_load –XX_store, where the load instruction is the 
violator, and the store instruction was issued when the violation was detected. 

4.3 The M5 store-sets implementation: behavior study 
The project first phase was dedicated to study the actual store set algorithm behavior implemented in M5. This 
algorithm was chosen because it is the de facto referenced algorithm. All studied memory dependence prediction 
algorithms are compared against this one [02]. 

Store-sets algorithm not only avoids most of the memory dependence violations produced in an O3 program 
execution, but also produce false violation detections (a false positive) creating artificial sequential execution and 
reducing ILP. To get a perspective of the real performance improvement introduced by this algorithm, we test the 
CPU model replacing the store-sets predictor unit with a naïve predictor unit, a predictor that always assumes no 
memory dependences exist. 

Table 4 compares the store-sets algorithm performance, under different sizes for tables SSIT and LFST, with the 
naïve predictor. Values corresponds to violations per million of executed instructions. Around 99% of the naïve case 
violations are avoided using store-sets. 

Table 4 Store-sets performance with different tables' sizes. The values corresponds to memory 
dependence violations per million of executed instructions. 

Test Gzip vpr gcc Mcf crafty parser eon vortex bzip2 mesa art equake ammp 

Naïve 6851.3

1 

3376.6

3 

3737.3

5 

622.21 1788.6

1 

889.74 6694.3

7 

4107.2

3 

17427.

47 

9952.7

3 

12894.

47 

4312.3

8 

9343.8

7 

size=1 40.62 2.90 56.66 3.45 0.03 5.06 15.05 1.85 163.35 0.25 0.00 30.53 4.40 

size=8 40.62 3.05 56.75 3.45 0.03 5.04 14.88 1.85 162.68 0.23 0.00 30.52 4.41 

size=64 40.63 2.84 56.60 3.89 0.05 5.05 16.02 1.85 161.99 0.27 0.01 30.37 4.39 

size=128 40.55 3.47 56.57 110.76 0.07 5.03 16.94 1.86 150.25 0.31 0.02 21.03 4.19 

size=256 46.45 1.70 56.56 115.57 0.10 4.83 5.04 1.88 84.09 0.26 0.01 21.24 5.27 

size=512 1.04 2.09 55.67 90.19 0.17 13.49 5.29 1.17 89.69 0.20 0.01 11.82 2.29 

size=1024 1.26 4.73 54.24 87.28 0.33 13.91 4.73 1.19 50.10 0.07 0.01 11.85 2.32 

 

As expected, values tend to decrease when tables’ sizes tend to grow, but the tendency is not a soft curve. In most of 
cases there are not differences between sizes 1, 8, 64 and 128. This gives us a clue about how high locality is 
handled by store-sets algorithm. With just one entry, the store-sets tables can handle very well most of the memory 
dependencies. With an issue width of 8 instructions, it is clear that mostly no more than one ambiguous memory 
dependency coexist at the same time in the instruction window. Maybe store-sets is too expensive to handle most of 
the cases, and a simpler algorithm could be designed for the 90% of cases. 

Even with little difference about dependence detection, a significant difference in overall performance is observed. 
Figure 1 shows the IPC of the different benchs using store-sets with different tables’ sizes. This is because a positive 
detection is only part of the complete predictor result. Two more cases must be taken into account: wrong positive 
predictions and wrong negative predictions. 
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Figure 1 IPC using store-sets with different tables' sizes. 

 

Wrong positive predictions (when the predictor decides a load instruction is safe to be issued but produce a violation 
later and must be re-scheduled and re-executed) force rollbacks in the system pipeline. Wrong negative predictions 
(when the predictor assume a load has dependence and later it is confirmed that it has not) create artificial 
contention. Figure 2 shows how fast the number of wrong predictions decreases when the store-sets internal tables 
grows. The values are normalized against the miss-predictions of the store-sets with 1024 entries in its internal 
tables. 
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Figure 2 Normalized wrong predictions using store-sets with different tables' sizes. 
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In summary, avoiding wrong predictions is as important as predicting them correctly. This information was used to 
improve the original store-sets algorithm, as it will be described later in section 5.6. 

4.3.1 PC-distance study 
This parameter corresponds to a static perspective of the memory dependence violations, because it focuses on 
relative position, in program binary code, of instructions in a violation. The intuitive case, when the violator load 
instruction goes after the store instruction, corresponds to values at the right of 0 in the X axis in Figure 3 and Figure 
4. Values at the left correspond to violations between instructions inside a loop or between function calls. In all 
cases, a strong locality is observed. This result could be used, for example, to understand the impact of increasing or 
decreasing the instruction window size in the issue phase of the processor pipeline. Figure 3 corresponds to the 
executions with a naïve predictor, and Figure 4 to executions with the store-sets predictor with tables (SSIT and 
LFST) with 1K entries. 

 
Figure 3 PC-distance for violations under naive predictor. 

After eliminating most of the violations, in Figure 4 we observe that benchs have clear violation distribution 
patterns. For example, in bench bzip2, most of the violations are produced in a PC-distance of 92 bytes (23 
instructions). Others benchs, as parser, have a more wide spread distribution. It is interesting to note that most not-
cached violations still have very low PC-distance. We will return to this problem this problem later in this 
document. 
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Figure 4 PC-distance for violations under store-sets predictor (1K table size). 

4.3.2 SN-distance study 
This parameter corresponds to a dynamic perspective of the memory dependence violations, because it focuses on 
the order instructions are fetched (the named program order) and that order varies along program execution as a 
consequence of branches and function calls. All SN-distance values are positive, because the violator instructions 
must be fetched later than the involved store in order to violations could happen. 

Figure 5 shows the normalized SN-distance parameter computed for system with naïve predictor. A stronger locality 
than PC-distance case is observed here. More than 90% violations fall inside a 12 instructions window. This 
information will be used later in a proposed memory dependence detector. 
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Figure 5 SN-distance for violations under naïve predictor. 
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Figure 6 shows the SN-distance parameter computed for system with store-set predictor. The figure shows that 
store-sets works well when violations are produced between instructions fetched very close. However, it is 
interesting to see a significant amount of non-detected violations with SN-distance between 1 and 4 cycles. This 
problem relates with the way original store-sets algorithm updates its tables. We will analyze deeply this case later, 
in section 5.6.1. 

 
Figure 6 SN-distance for violations under store-sets predictor (1K table size). 
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4.3.3 TE-distance study 
This parameter is another dynamic distance measure, but it focuses in the order instructions are tried to be issued, 
independently of the fetch order. Differences between Figure 5 and Figure 7 show that violations are more related 
with this parameter than SN-distance, because higher agglutination of small distance violations is observed here. 

 
Figure 7 TE-distance for violations under naïve predictor. 
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Figure 7 correspond to the naïve case. In a similar way to Figure 6, Figure 8 shows the store-sets algorithm keep a 
significant amount of violations with small TE-distance. 

 

 
Figure 8 TE-distance for violations under store-sets predictor (1K tables’ sizes). 

 

4.3.4 Registers reuse study 
We studied also the way the logical registers are used by pairs of instructions that produce violations. Figure 9 
shows a comparison between pairs of instructions that produce memory dependence violations. The meaning of the 
series is: 

 Reg1, off, reg2: Registers and offset are identical. 

 Off + reg2: Only registers used to compute the accessed memory address and offsets are identical. 

 Reg2: Only registers used to compute the accessed memory address are identical. 

 Only off: Only offsets used to compute the accessed memory address are identical. 

We can observe that, on average, only 19.12% of instructions pairs use the same logical registers and the same offset 
value, but the value grows to 74.74% when we consider only the second register and the offset, both used to 
compute the target memory address to be accessed. Considering only the second register, the coincidence scales to 
80.56%, and only considering offset, the value is 86.63%. 

It is interesting to note that in one case, the bench art, the 100% of memory dependence violations occurs between 
instructions with the same offset and second register, and 99.3% corresponds to instructions pairs with the same 
three elements. It is also interesting the results in the bench ammp, because the difference between only off case and 
the other cases is large. Cases like vpr and crafty return with only off values close to 50%. We think there is not 
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enough regularity here to use this information as part of a memory dependence predictor. 
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Figure 9 Comparison of logical registers and offset values between load and store instructions that produce 

memory dependence violations. 

 

4.3.5 Violation frequency 
We have studied the frequency of memory dependence violations along a program execution path. We named load-
store violation pair (or just a violation pair) to any pair of instructions load and store that uses to produce violations 
when the store is issued. Because the execution path can execute many times the same fragment of binary code, an 
individual violation pair could be repeated many times. If the predictor was not able to catch them the first time, 
they produce a violation or just forget it because the time between two violation instances from the same pair is too 
large to keep it in the predictor historical data. 

We were interested in the way the violation frequency is distributed, in other words, home many violations pairs 
have low frequency and how many have high one. Figure 10 shows the maximum fraction of the total violations 
produced by the any violation pair. The test was executed using the normal store-sets implementation, with internal 
tables’ sizes of 1024 entries. When this fraction is small, like in mesa, we can say that violations are distributed 
homogeneously along the program. When this fraction is high, like in equake, there is a small set of violation pairs 
that produce most of the violations. 

As an example, Figure 11 shows the frequency of violations in bench gcc. We chose this bench because it shows an 
average violation distribution in Figure 10. The X axis corresponds to the number of times a same violation pair 
produce a violation. The Y axis is the percentage of the total number of violations produced. In the graph, only the 
last quarter of the values in axis X (with frequency 1100 and above) have the 77.44% of the participation in the total 
number of violations. The violation pairs with frequencies below 1100 have a very homogenous frequency 
distribution. 

On average, 44.24% of the total violations in a program are attributable to less than 2% of the violation pairs. This 
information was very useful to focus the research work, because we can give special attention to those high frequent 
violations pairs for any new modification to the original store-sets predictor, or any new prediction method 
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proposed. 
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Figure 10 Maximum weights of any load-store pair relative to the total number of violations. 
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Figure 11 Frequency distribution of violations per pair. 
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4.4 Summary (identified opportunities) 
The above study expose clearly that instructions involved in a memory dependence violation are more closely 
related with the time of issue (parameter TE-distance) than with fetch time (SN-distance), and this last one have 
more relevance than the binary code arrangement (PC-distance). Therefore, the best opportunities to use this locality 
are working with instructions already inside the instruction window (issue pipeline stage). We have use this 
information to propose a simpler, more efficient and less resource consume solution to deal with violations. We call 
this method MiniCAM. The implementation details and the experimental results are described in the next section. 
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Chapter 5. Experiments 
5.1 Introduction 
Now that we understand well the behavior and performance of the default store-sets implementation in our CPU 
model using the M5 simulator, we can modify this model and perform experiments. We have arranged the 
experiments in the following groups of predictors:  

- Naïve behavior: Two versions were implemented: A full-naïve and a half-naïve. The full-naïve version 
issues instructions as soon as they are ready, and half-naïve waits until effective address is computed in 
load and store instructions to issue them. 

- Perfect predictor: It is obtained recording the branch decisions and memory accesses performed along the 
critical execution path in a bench program. Using this information, the bench can be executed avoiding all 
the memory accesses violations. 

- Store-sets predictor under different internal tables’ sizes: This is a sanity check test, confirming previous 
results in the original store-sets paper publication [02]. 

- Store-sets predictor under artificial read after read (RaR) dependence contention: Load accesses to the 
same memory locations are forced to be executed in order. The objective is to study the store-sets algorithm 
behavior in this context. 

Two additional groups correspond to proposals: 

- Store-sets predictor with modifications: Some flaws in the original store set implementation are modified 
and fixed in order to improve it. 

- MiniCAM predictor: This corresponds to the proposed method for reducing, in a more efficient way, the 
memory dependence violations. 

Sections 5.2 to 5.7 describe in detail these experiments: their characteristics and results. It is important to keep in 
mind that our final objective is improving the program execution, achieving, when it is possible, other important 
goals as resource utilization and implementation complexity. Section 5.8 describes some additional aspects in the 
processor architecture that affects the performance of the memory dependence predictor unit. Finally, section 5.9 
makes a summary of the chapter. 

5.2 Naïve predictor 
Two versions are implemented. The first one is a full naïve predictor. This is an optimistic predictor, because it 
assumes all memory access instruction will not produce violations, therefore it issue them as soon as their used 
registers are ready. This test gives us a base for measuring the total improvement for the rest of modifications. 

The half naïve predictor makes a less optimistic assumption. It waits memory access instructions until the effective 
memory address is computed. When this occurs, the predictor checks the address with all the stores waiting in the 
instruction window, hoping to catch potential violations. If no conflict is detected, the predictor issues the 
instruction. This behavior reduces the violations, as we can see in Figure 12 where the IPC is compared against a 
perfect predictor. In this figure, the difference between the “naïve bar” and the “perfect” bar corresponds to the 
performance improvement that it is possible to reach using any memory dependence predictor in the corresponding 
bench. This difference depends on the ratio between the amount of violations and the amount of executed 
instructions. Figure 13 shows this ratio. 
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Figure 12 Normalized IPC comparing naïve predictors with perfect predictor. 

 

Comparing results in Figure 12 and Figure 13, it is clear that as higher the percentage of violations per executed 
instruction, as higher the opportunity to improve the performance using a predictor. For example, bzip2 shows a big 
improvement in Figure 12 because it produces a high number of violations, as we can corroborate in Figure 13. 
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Figure 13 Load-store violations normalized against total executed instructions. 

 

5.3 Perfect predictor 
A perfect predictor was implemented in three steps. The first one executes the bench program recording all branch 
valid decisions made by the branch predictor (branch history). The second step executes again the same bench using 
a modified branch predictor unit that uses the previous information to always follow the right critical path. Under 
this circumstance, all valid store memory accesses are recorded (effective address accesses history, or EA history). 
Here, a valid store instruction is one successfully executed. The last step executes one more time the same bench 
using the previous perfect branch predictor and a perfect memory dependence predictor unit. This unit uses the 
previous recorded histories to make always right predictions and only contain load instructions that will not produce 
violations. 
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This predictor gives us the upper limit for any memory dependence prediction algorithm. Combined with the naïve 
predictor information, we could measure all the rest of proposals. 
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Figure 14 Memory dependence violations (normalized against total executed instructions) comparison 

between perfect predictor and store-sets predictor (1024 entries tables) using branch history and EA history. 
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Figure 15 Normalized IPC (against perfect predictor) between perfect predictor and store-sets predictor 

(1024 entries tables) using branch history and EA history. 

Figure 12 shows the perfect predictor results for some benchs, but we were curious also to check the effect when 
using the EA history and only using the branch history. Figure 14 shows the amount of memory dependence 
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violations in the three cases. As we can observe, the branch predictor have a significant influence in the final effect 
of the predictor, at the point that, using a perfect branch predictor (br-history case) leads to a near perfect behavior 
for the store-sets algorithm. 

These results correspond with Figure 15 results. In some cases, the lost of performance is larger than 10%, as in gzip 
and twolf benchs. 

5.4 Store-sets original implementation 
We perform a sanity check, testing the built-in implementation algorithm that comes with M5 simulator, changing 
internal tables sizes to observe how the violation detection level changes. The idea behind is reproducing store-sets 
author results presented in [02], verifying the validity of the M5 implementation. The results are already described in 
section 5.2, as part of the comparison with a naïve predictor. Those results corresponds  

5.5 Store-sets with read after read contention 
Dependences between stores and loads (read after write, or RaW) are named real because the other two possibilities, 
between stores (named write after write, or WaW) and between loads (called read after read, or RaR) are resolved 
efficiently with other mechanisms, not predictors, without a false contention penalty. But RaR dependencies, treated 
as real ones, could positively change the behavior of a program execution. Let’s put an example: 

(1) load r1, 10(r2) 
... 
(2) store r3, 20(r4) 
... 
(3) load r5, 30(r6) 

In the previous sequence of instructions, if registers r1, r2, r5 and r6 are resolved before registers r3 and r4, then load 
instructions 1 and 3 could be executed before instruction 2. But if the three instructions access to the same memory 
location and we consider RaR dependencies as real ones, instruction 3 must be delayed until instruction 1 is issued. 
This gives the possibility to resolve r3 and r4 on time to catch the RaW dependency between instructions 2 and 3. 
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Figure 16 IPC for store-sets considering load-load dependences as real dependences. 
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Figure 17 Miss-predictions of RaR-no-notif, normalized with miss-predictions of original store-sets. 

Another situation, specific for store-sets, occurs when a RaW violation is detected. In this case or a new set is 
created, or one of the loads is put in the set of the other. In the first case, if the internals tables (SSIT and LFST) are 
small, creating new sets increase the probability of previous well executed stores and loads fall inside those new 
sets, creating artificial contention. In the second case, introducing new instructions in the already created sets could 
also create false dependences and more contention. 

Nevertheless, it is worth testing this configuration. We test two flavors for RaR artificial contention: 

 Consider RaR dependences as real violations and notifying them to the store-sets predictor unit. This 
corresponds to the RaW viols series in Figure 16. 

 Consider RaR dependences as real violations but not notifying them to the store-sets predictor unit. This 
corresponds to the RaW no-notif series in Figure 17. 

In Figure 16, the No RaW series correspond to the normal case, when load-load dependences are not considered as 
real violations. The results show no significant difference in performance between the three cases.  

It is interesting to note that processing load-load dependence violations but not notify them to store set unit produces 
a small reduction of the amount of miss predictions because less sets are created and more load instructions could be 
speculative executed. Figure 17 shows the miss-predictions found in this case. The values are normalized using the 
amounts of miss-predictions per bench of the original store-sets implementation. 

5.6 Improving store-sets 
The original store-sets algorithm has some weak points. In the following sections we describe the modifications 
introduced and its results. 
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5.6.1 Restoring LFST 
The first one is relative to the LFST table. When the branch predictor unit makes a miss prediction, information 
about squashed stores remains in the LFST table, leaving it dirty. The original implementation mark as invalid the 
entries in LFST affected. But this is not enough in many cases. Let’s put an example: 

(1) store r1, 10(r2) 
(2) bnz r1, XYZ 
(3) load r3, 20(r4) 
... 
XYZ: 
(4) store r5, 30(r6) 
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Figure 18 Number of memory dependence violations using store-sets with LFST restored after squash. 

Suppose that instruction 1, 3 and 4 access to the same memory location and branch instruction 2 miss predicts a 
jump to address XYZ. In this situation, stores 1 and 4 will end in the same set. Before the branch was speculatively 
executed, the corresponding entry in LFST will mark store 1 as the last store in its set. After branching, store 4 
replaces store 1 in the same LFST entry. When store 4 is squashed, the LFST entry is marked as invalid. Later, if the 
load 3 is issued O3 before store 1, the store-sets predictor unit will not realize that a real dependence exist between 
instructions 1 and 3 and a violation will be detected when finally store 1 is issued. This is a good example where an 
independent predictor affects others, later in the pipeline. 

One possible solution, implemented and tested in this work, is to restore the LFST affected entries with the last 
previous store in the same set. A more sophisticated version could restore the table entry with the last not-speculated 
store in the same set. Two possibilities were tested for the first case: Restore LFST on squash time, and restore it on 
commit time. 

Even when restoring LFST at squash time is the obvious solution, it is common to have time limitation when the 
processor deals with a squash. That is why we have also considered the alternative of delaying this restoring to the 
commit phase. 

Figure 18 shows that waiting to commit to restore the LFST table is too late. The reduction of violations is not 
significant because the effect of the dirty entry in the table is already produced in most of the cases. Restoring the 
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table during the squash event increases the precision of the algorithm in a significant way.  

5.6.2 Using feedback: Deactivating old sets 
The second improvement consists in avoiding sets remains active eternally. Because it is common that a program 
execution focus over different program parts at different times, sets created for one program part will not be useful 
in another. Leaving unnecessary sets always active increase false contention because load and store instructions, in 
the new program section, could fall into sets in the old program section. 
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Figure 19 Memory dependence violations using store-sets predictor and feedback for sets deactivation. 

One way to avoid this is including a mechanism that removes sets not used. We have used a 2-bits saturation counter 
associated with each active set for this purpose. The counter works in this way: The counter always starts with the 
maximum value. When a predicted dependant load is issue, the prediction is checked. If this prediction was correct, 
the counter associated to its set receives again the maximum value (aggressive politic). If this prediction was 
incorrect, the counter is decreased. When the counter reaches zero, the set is considered old and marked as inactive. 

Figure 19 shows worst precision using feedback compared to normal store-sets implementation. This is expected 
because fewer entries in SSIT table are active, on average, at any execution time. The real benefit must be looked in 
the number of miss-prediction produced. Figure 20 shows that, on average, miss-predictions are reduced. 
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Figure 20 Miss-predictions produced using store-sets predictor and feedback for sets deactivation. 

5.6.3 Mixing restoring LFST with old sets deactivation 
We have tested a mixed solution combining the two previous presented. As we can see in Figure 21, the 
improvement in performance is not significant. 
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Figure 21 IPC compared between normal store-sets and modified versions that include feedback and 

restoring LFST at squash. 
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5.7 Non speculative solutions 
Two non speculative solutions are presented in the following sections. A mixed version, combining a speculative 
solution and a non speculative one, is also presented. 

5.7.1 Ordering dependence checking 
In the original store-sets implementation, load instructions are checked against the active sets as soon as they are 
introduced in the instruction window. This corresponds to a full O3 execution, avoiding as long as possible any 
contention, but at the risk of creating violations. On the other side, waiting to resolve all registers used for each 
memory access instruction, before issuing it, introduces unnecessary contention. 

An alternative halfway solution is to delay dependence checking until register related with target memory address is 
available. This introduces less contention and could improve store-sets predictor results. The IPC comparison 
between the original store-sets algorithm and the new one (with ordering dependence checking) is showed in Figure 
22. 

We have observed some new violations in this solution. Reviewing the logs, we found that delay dependence 
checking with stores sets produce some checking errors. Let’s put an example. The following fragment corresponds 
to bench 164 (gzip). It is a loop where there is a dependency between instructions 120011f4c y 120011f5c: 

120011f40: 00 00 29 2c  ldq_u t0,0(s0) 
120011f44: c2 00 29 48  extbl t0,s0,t1 
120011f48: 01 00 29 21  lda s0,1(s0) 
... 
120011f4c: 00 00 23 2c  ldq_u t0,0(t2) 
120011f50: 41 00 23 48  mskbl t0,t2,t0 
120011f54: 62 01 43 48  insbl t1,t2,t1 
120011f58: 02 04 41 44  or t1,t0,t1 
... 
120011f5c: 00 00 43 3c  stq_u t1,0(t2) 
120011f60: 01 00 63 20  lda t2,1(t2) 
120011f64: 24 31 80 40  subl t3,0x1,t3 
120011f68: f5 ff 9f f8  bge t3,120011f40 

 

When the loop executes, it mostly happens that source registers of load 120011f4c are ready before registers of store 
120011f5c, therefore the system tries to issue load before. Suppose the execution is in the iteration N, the store 
120011f5c is inserted in the LFST table, updating the corresponding entry. Because source registers are not 
available and dependences are not checking yet, system does not issue it. Later, in the iteration N+1, load 120011f4c 
is processed by the dependence predictor unit. Again, source registers are not ready, then dependencies are not 
checked and instruction is not issue. Next in iteration N+1, a new store 120011f5c is inserted in LFST, in the same 
entry as before, updating it. A moment later, load 120011f4c passes to have it source registers available, and 
dependencies are checked against the same LFST entry, but it find a younger sequence number. In consequence, it is 
assumed that load instruction has no dependencies (clearly a mistake), and it is issued. When store 120011f5c in 
iteration N is issue, the system finds a violation against load 120011f4c in iteration N+1. In other words, because 
store-sets depends, for a correct operation, that dependences were verified in order, including a delay in the 
dependence checking process breaks this requirement. 

The previous problem could be solved keeping information about all the stores in every store set, not only the last 
store inserted. In this way, when a load instructions is checked against an active set, the list of stores inside are 
iterated looking for the youngest one, older than the load. If all stores in a set are younger than the checked load, 
then we confirm that there are no dependencies. But this modification adds complexity to the predictor 
implementation, and requires a longer execution time. We have not tested it because this will exceed the project time 
limitations. 
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Figure 22 IPC comparison between original store-sets and a modification using ordered memory dependence 

checking. 

5.7.2 Exploiting extreme locality: The MiniCAM solution 
The key idea is exploit the fact (as will be presented in test results below) that many memory dependencies could be 
resolved inside a very short space and time locality. Two cases are studied: 

- Mini CAM by cycles: Time locality is exploited. A very small CAM is used to find (not speculate) memory 
dependencies between the registers-ready load instruction and the instructions fetched in the previous N 
cycles. 

- Mini CAM by history: Space locality is exploited. A very small CAM is used to find (not speculate) 
memory dependencies between the registers-ready load instruction and the N previous fetched instructions. 

We also consider that it is possible to catch most of the memory dependencies with a simpler approach than store-
sets using the strong locality we have found in the previous results. We propose the use of a very small content 
addressable memory (or MiniCAM) for detecting only the dependencies under strong locality conditions. We have 
study the following variants: 

 MiniCAM with the instructions fetched in the last N cycles, with a limit in the CAM size. We name it 
MiniCAM-Cycles (mc-cycles). 

 MiniCAM with the last N instructions fetched. We name it MiniCAM-History (mc-history). 

In mc-cycles, we focus only in instructions extremely close at fetch time. When a new fetched store is inserted in the 
mc-cycles CAM, if there is no space, the oldest instruction in the CAM is removed and the free entry is filled with 
the new store instruction data. Additionally, instructions in the CAM that becomes old (pass the maximum N cycles 
configured) are removed to not be considered in next memory dependence checking. The case of mc-history is 
similar to mc-cycles but not considering the stores fetch time. 

To produce useful memory dependence checking, MiniCAM delays it until the registers involved in computing a 
memory address become available. It is important to note that only those registers are waited. This produces less 
contention than waiting all registers to be ready. It is also important to note that this method does not perform any 
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prediction. The memory dependence is always checked against instructions with its accessed memory address 
already computed. 

Figure 23 shows the IPC obtained when the mc-cycles predictor is used with CAM sizes 16 and cycle limits varying 
from 1 to 16. The performance difference with respect to original store-sets implementation (with internal tables’ 
sizes of 1024 entries) is very short, as we can see in Table 5. Results with cycle’s limit 16, 8, and 4 are near 
identical, and a small degradation is perceived with cycle’s limit 2 and 1. 

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1.200000

1.400000

1.600000

1.800000

2.000000

gzip gcc mesa art mcf equake ammp parser twolf

ss
mcc-16-16
mcc-16-8
mcc-16-4
mcc-16-2
mcc-16-1

 
Figure 23 IPC of the original store-sets algorithm compared to MiniCAM-Cycles proposal. 

 

Table 5 summarizes the performance difference, on average, between store-sets alternative and MiniCAM-Cycles 
algorithm. We corroborate that, with a threshold of 4 cycles proximity, the final performance is comparable with the 
original store-sets proposal. 

Table 5 Performance difference between store-sets and MiniCAM-Cycles. 

 mcc-16-16 mcc-16-8 mcc-16-4 mcc-16-2 mcc-16-1 

Performance difference with store-sets 1.0054 1.0044 1.0034 0.9876 0.9862 

 

Figure 24 shows the IPC obtained when the mc-history predictor is used with CAM sizes varying from 1 to 16. 
Because this alternative is less restrictive than mc-cycles, a small improve is observed. 
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Figure 24 IPC of the original store-sets algorithm compared to MiniCAM-History proposal. 

The following table summarizes the performance difference, on average, between store-sets alternative and 
MiniCAM-History algorithm. 

Table 6 Performance difference between store-sets and MiniCAM-History. 

 mch-16 mch-8 mch-4 mch-2 mch-1 

Performance difference with store-sets 1.0105 1.0104 1.0083 0.9989 0.9808 

 

These results is consistent with the results in the study of the SN-distance and TE-distance (sections 4.3.2 and 4.3.3 
respectively), where we observe an extremely strong locality with SN-distances less or equal than 13 (Figure 5), and 
TE-distances less or equal than 10 (Figure 7). 

5.8 Indirect issues affecting prediction behavior 
We have observed an issue related to the way a violation is identified by the system. This identification is done 
immediately after a memory access instruction is issued. In this event, the system recovers the index of the load at 
the tail of the load-queue when the store was introduced in the store-queue. Then, the index is used to travel the 
load-queue (in the direction to the tail of the load-queue, meaning younger loads) trying to find one executed load 
accessing the same memory address. If a load is found, a memory dependence violation is declared. 

There is a problem with this method. Let’s put an example code to clarify the problem. Suppose the following 
sequence of instructions in a program: 



 

Memory Dependence Prediction Methods Study and Improvement Proposals 

Final Master Project 

 

  Page 44 

 

# Instructions Order 

1 

2 

3 

ST @1 

ST @1 

LD @1 

3 

1 

2 

 

The first column is the instruction sequence number, the second is the instruction (with it accessed memory address) 
and the third column is the order the processor will try to issue them. It is clear that instruction 3 depends on 
instruction 2, not instruction 1. Nevertheless, when instruction 3 is issued, the processor will recognize a memory 
dependence violation against instruction 1. Even when this situation is very infrequent, this could affect negatively 
to any memory dependence predictor. 

A possible solution is checking the stores younger that the current issued and older than the potential violator load, 
against that load. Using Figure 25, suppose that when store 1 was inserted in store-queue, load 1 was on the tail of 
the load-queue. 

 
Figure 25 IPC of the original store-sets algorithm compared to MiniCAM-History proposal. 

 

Later, after store 1 was issued, the system checks the list of loads in the load-queue, starting from the next load after 
load 1, and in tail direction. Suppose that load 2 matches the same accessed memory address than store 1. When load 
2 was inserted in the load-queue, store 3 was in the tail of the store-queue. Then, the system must check all the stores 
between store 1 and store 3 trying to find one store that matches the same accessed memory address. For example, if 
store 2 matches, then no violation exist between store 1 and load 2. If no store matches, it exist a violation. 

The modification for this new behavior is simple to implement in the simulator, and it is also expected a simple 
hardware implementation, but also a penalty in the pipeline issue phase time, because a search is executed. 

This modification was tested against original store-sets implementation, but no important difference in the number 
of violations was observed. Figure 26 shows a comparison between this modification and the original. On average, 
the improvement is only 0.84%. 
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Figure 26 IPC of fixed check violations with original implementation. 

5.9 Summary 
In this chapter we have analyzed the behavior of the original store-sets algorithm. Some modifications have been 
tested, and a new non-speculative method was introduced, the MiniCAM. It was tested and compared, with 
performance very close to store-sets (see Table 6), but with less complexity and using fewer resources. 

Between the store-sets modifications, deactivating old store-sets entries (using feedback) increase the number of 
violations, but reduce the number of false dependences created by the predictor. Because the false dependences 
reduction is bigger than the increase in violations, the final result is a small increase in the system performance. On 
the other hand, restoring the LFST after a squash reduces the negative effect of the branch predictor mistakes. In 
some benchs, feedback produces better results than LFST restore, and the opposite in others.  

Finally, MiniCAM proved to be an interesting solution, with cheap implementation cost in complexity and expected 
very low penalty in the time increase in the issue pipeline. 
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Chapter 6. Conclusions 
 

6.1 M5 
The M5 simulator proves to be an excellent tool for researching. The internal organization is clear and it’s easy to 
execute and trace an executed program. Modifications, when the original structure is not modified, are relatively 
easy to design and implement. However, it has some important drawback: (1) The poor documentation about its 
internal implementation, and (2) some internal functional disorganization, for example, some responsibilities to 
clean up internal data structures are spread along many stages in the pipeline, with clear comments of the authors 
declaring not to be sure if that is correct or not. 

6.2 Experiment results 
In memory dependence prediction, a good solution must produce good detection of real dependences and avoid false 
dependences. In the extreme case, a non-speculative solution will serialize all memory access instructions. This 
avoids completely violations and false dependencies but creates unnecessary contention and reduces the final IPC. 
On the other side, a naïve solution will issue instructions as soon as possible. This will produce many violations and 
a corresponding reduction of IPC, but no false dependencies. All prediction methods are between those extremes. 

If a prediction algorithm takes too many risks, it tends to increase violations. If a prediction algorithm is too 
conservative, it tends to reduce violations, but it usually increasing false predictions at the same time (like store-sets 
without feedback). If the method tries to be more precise, it has to maintain more historic information and to use 
more complex algorithms, increasing the implementation cost. All presented methods try to find a good balance 
between these parameters. 

We have study deeply the store-sets algorithm. Even when the number of violations not caught by this algorithm is 
very low, a high number of miss predictions reduce the potential IPC. The experiments performed show that 
including feed-back for disabling useless store-sets reduce significantly the miss prediction rate but increase the 
number of violations. This happens because each store-set is created by violations in a specific program section. 
When the execution passes to other sections, this never-disabled store-set tends to produce invalid predictions. 

We found that table LFST use to become dirty after squashing a store instruction. Restoring the LFST improves 
store-sets to nearly predict all the memory dependencies, and also reduce some of the miss predictions. We test this 
technique in two different moments: when the processor notifies that a store will be squashed (squash-time), and 
when the squashed store is finally committed (commit-time). On average, restoring LFST on squash-time produces 
better results than restoring it on commit-time. This happens because, when a store activates a store-set, a younger 
store could disable it. A load that depends on the former store could be issued before the commit of the younger 
store. In consequence, if the younger store is squashed and we restore LFST at squash-time, the referred dependency 
could not be detected. In this case, a violation will arise. 

Between the modifications implemented to the original store-sets algorithm, restoring LFST give the best results 
(see Figure 21). The additional complexity is very low and the right moment for applying it is squash time. 
However, this solution implies a penalty to the time of the pipeline state where the LFST cleaning is executed. 
Combining feedback with LFST restoring does not produce significant benefits (see Figure 21). 

The proposed method, MiniCAM, exploits locality between very close instructions. The results obtained shows that 
this method gives a solution to memory dependence violations as good as the original store-sets algorithm, the most 
referenced method now a days. Focusing on very close instructions has the advantage to reduce the amount of 
resources needed to maintain historic data. MiniCAM has the additional advantage to have a very low 
implementation complexity and an expected very low execution time penalty because just one CAM, with a very 
small size, is enough. 
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Finally, the effect of bad branch predictions in the memory dependence prediction is too high to ignore it (see Figure 
14). We think that coordination between both predictors is necessary. 

6.3 Future work 
Many ways of coordinating branch and memory dependence predictors are possible. One way is marking 
instructions as predicted or not predicted, at fetch time, depending on branch prediction unit state. The memory 
dependence predictor unit could ignore branch-speculated instructions, or consider them in an independent way. For 
example, in the store-sets algorithm, speculated instructions could create speculated sets, and could be used only for 
checking dependence against other speculated instructions. Another possibility with store-sets is managing separate 
tables, SSIT and LFST, for speculated and non-speculated instructions. Once a speculated branch is confirmed, 
tables could be merged. Another possibility is completely ignoring branch-speculated instructions for creating sets 
and check dependence with store-sets. To avoid speculated violations, memory access branch-speculated 
instructions could be forced to execute in-order. 

On other side, testing benchmarks is a long time process, and in many cases, they are well known patterns of store-
load layout in a binary code fragment that are reproduced in all benchmarks, producing the same effect. In 
consequence, there is a possibility to create a synthesized bench that reproduce those patterns, using independent 
and configurable parameters that enable us to select with patterns reproduce, and in which intensity. A good 
example of this idea is Eigenbench, a synthesized bench with focus on transactional memory [23]. 
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