

MASTER THESIS

TITLE: Context Aware Self-Configuring WI-FI Network

MASTER DEGREE: Master in Science in Telecommunication Engineering
& Management

AUTHOR: Carlos Ariel Quiel Rodriguez

DIRECTOR: Roc Messeguer Pallarès

DATE: July 4th 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41803928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Title: Context Aware Self-Configuring WI-FI Network
Author: Carlos Ariel Quiel Rodriguez
Director: Roc Messeguer Pallarès
Date: July, 4th 2011

Overview

Wireless networks are increasingly popular among end users primarily to
provide Internet access services. For this reason it is becoming easier to find
highly congested zones with multiple wireless networks. Many of these
networks use default settings which causes, in some cases, that some of
communication channels in the 2.4GHz band are overused.

This document presents the work done to design a context aware self-
configuring system which is intended to improve the performance of
independent WI-FI networks by avoiding the interference generated by
neighboring wireless networks.

For the realization of this system were carried out many experiments which
show that wireless networks working on the same channels suffer interference
among them that reduces the capacity of each network. In addition to these
experiments multiple metrics were proposed in an attempt to predict the
capacity of a channel. The number of interfering radios and the number of
rogue data packets were the two proposed metric that better fit the needs for
capacity forecast.

From the obtained results a prototype that implements context aware self-
configuring system was developed. The proposed algorithm uses a quality
value which is calculated from the weighted sum of the two metrics explained
before.

This prototype was tested against two algorithms (random and static). The
results show that the proposed system improves the mean Throughput of the
wireless network under realistic conditions.

Título: Context Aware Self-Configuring WI-FI Network
Autor: Carlos Ariel Quiel Rodriguez
Director: Roc Messeguer Pallarès
Fecha: 4 de Julio de 2011

Resumen

Las redes inalámbricas son cada vez más populares entre los usuarios finales
principalmente para proveer de servicios de acceso a Internet. Por esta razón
cada vez es más fácil encontrarse con zonas altamente congestionadas por
múltiples redes inalámbricas. Muchas de estas redes utilizan configuraciones
por defecto lo que provoca que, en algunos casos, algunos de los canales de
comunicación de la banda de 2.4GHz estén sobre utilizados.

Este documento presenta el trabajo realizado para crear un sistema
automático de adaptación en base al contexto para mejorar el rendimiento de
las redes WI-FI independientes. El sistema tiene como objetivo principal
maximizar el Throughput de la red reduciendo las interferencias generadas por
las redes inalámbricas cercanas.

Para la realización de este sistema se llevaron a cabo múltiples experimentos
los cuales demuestran que realmente redes que trabajan en los mismos
canales sufren interferencias que reducen la capacidad de la red. Además de
estos experimentos se han propuesto múltiples métricas que intentan predecir
la capacidad de un canal. De estas métricas el número de radios interferentes
y el número de paquetes de datos ajenos a la red son las dos métricas que
mejor se ajustan para predecir la capacidad máxima de un canal.

Con los resultados de los experimentos se desarrolló un prototipo que
implementa el sistema automático de adaptación en base al contexto. El
algoritmo propuesto utiliza un valor de calidad que se calcula a partir de la
suma ponderada de las dos mejores métricas obtenidas durante los
experimentos.

Este prototipo se probó contra otros dos algoritmos (aleatorio y estático). De
los resultados de esta prueba se ha demostrado que el sistema propuesto
mejora el Throughput medio de la red inalámbrica en condiciones reales.

“I dedicate this thesis to my parents, siblings, friends, classmates and María
who always encouraged me to achieve my goals and that without their support I
could not have completed this work.”

Thank you all.

ÍNDEX

INTRODUCTION .. 1

CHAPTER 1. RELATED WORK ... 3

1.1 Research solutions ... 3

1.2 Proprietary solutions .. 4

CHAPTER 2. TECHNOLOGIES .. 7

2.1 Wireless Networks ... 7
2.1.1 Architecture of 802.11 networks ... 8
2.1.2 Wireless operational modes ... 11

2.2 Kismet software ... 12

2.3 Iperf tool ... 13

2.4 MadWifi tool ... 14

CHAPTER 3. EXPERIMENTS ... 15

3.1 Metrics .. 15

3.2 Equipment .. 16

3.3 Channel capacity ... 17
3.3.1 Channel capacity results .. 19

3.4 Variable transmit power .. 24
3.4.1 Variable transmit power results .. 24

3.5 Interfering radios ... 26
3.5.1 Interfering radios results ... 27

3.6 Correlation .. 31
3.6.1 Results .. 31

CHAPTER 4. PROTOTYPE IMPLEMENTATION ... 35

4.1 Context-Aware decision algorithm .. 37

4.2 Prototype testing ... 39
4.2.1 Experiment.. 39
4.2.2 Results .. 40

CHAPTER 5. CONCLUSIONS .. 43

CHAPTER 6. BIBLIOGRAPHY ... 45

CHAPTER 7. ANNEXES ... 47

7.1 MadWifi installation tutorial .. 47
7.1.1 Getting the driver .. 47
7.1.2 Installing the driver ... 48
7.1.3 Loading the MadWifi module .. 48
7.1.4 Creating VAP .. 48

7.2 Prototype source code .. 49

INDEX FIGURES

Fig. 1.1. Example of a localized interference graph from Hminmax mechanism 4
Fig. 2.1. IBSS ... 9
Fig. 2.2. BSS .. 10
Fig. 2.3. ESS .. 10
Fig. 2.4. Kismet main view.. 13

Fig. 3.1. Location of the experiments ... 17
Fig. 3.2. Channel capacity first scenario ... 18
Fig. 3.3. Channel capacity second scenario ... 18
Fig. 3.4. Delay free channel.. 19
Fig. 3.5. Throughput comparison with interfering radios 20

Fig. 3.6. Interfering radio throughput histogram .. 21
Fig. 3.7.Throughput comparison between working and rogue WLANs

TX@30mbps ... 21

Fig. 3.8. Aggregated throughput of working and rogue WLANs TX@30mbps . 22
Fig. 3.9. Delay comparison with interfering radios .. 22
Fig. 3.10. Variable transmit power scenario 1 .. 24
Fig. 3.11. Variable transmit power throughput comparison 25

Fig. 3.12. Interfering radios scenario 1 ... 26
Fig. 3.13. Interfering radios throughput comparison ... 27

Fig. 3.14. Interfering radios delay comparison.. 27
Fig. 3.15. Interfering WLANs VS achieved throughput 29
Fig. 3.16. Rogue packets, data packets and Kbytes detected comparison 30

Fig. 3.17. Maximum noise and best SNR comparison 30
Fig. 3.18. Dispersion graph interfering radios VS throughput and linear

regression ... 32
Fig. 3.19. Dispersion graph rogue data packets VS throughput and linear

regression ... 33
Fig. 3.20. Dispersion graph quality value VS throughput and linear regression 34

Fig. 4.1 Prototype block components interaction .. 35
Fig. 4.2. Portion of the Kismet XML file .. 36

Fig. 4.3. Flux diagram of the prototype logic... 38
Fig. 4.4. Prototype testing scenario .. 39
Fig. 4.5. Random algorithm throughput histogram ... 40

Fig. 4.6. Static algorithm throughput histogram .. 41
Fig. 4.7 Proposed algorithm throughput histogram ... 41

Fig. 7.1 Partial view of the command “lshw” ... 47

INDEX TABLES

Table 2.1. 802.11 protocols summary .. 11
Table 3.1. Equipment ... 16
Table 3.2. Additional wireless cards ... 17
Table 3.3. Working wireless network performance metrics comparison between

scenarios ... 23

Table 3.4. Metrics evaluations between scenarios ... 23
Table 3.5. Best SNR values comparison. ... 25
Table 3.6. Performance metrics results .. 28
Table 3.7. Channel metrics results ... 28
Table 3.8. Correlation analysis per metric .. 32

Table 4.1. Prototype testing result comparison .. 40
Table 4.2. Context-aware decision algorithm behavior 42

Introduction 1

INTRODUCTION

Since the emergence of the suite of wireless technologies defined under the
standard IEEE 802.11(a, b, g and n) wireless networks have been very
successful in providing solutions on many environments such as businesses,
households, airports, government entities, among others. The global
acceptance of these technologies can be ascribed to its ease of
implementation, inexpensiveness of the equipment and the support among
almost all the gadgets available on the market like laptops, cellphones, mp3
players, PDAs, tablets, etc.

The wireless networks based on the IEEE 802.11 standard are the most
commonly used wireless solution around the world. These types of networks
are commercially known as WI-FI that stands for wireless fidelity and is a
trademark of the WI-FI Alliance. The term WI-FI was originally created as a
simpler name for the "IEEE 802.11" standard.

The popularity of WI-FI networks has caused large deployments on many
countries to provide different services. WI-FI networks are often used to provide
Internet connection to a few numbers of clients within small coverage area or to
offer other services through wireless mesh networking within a location. Some
measurements done in [1] has shown that the number of interfering wireless
networks on urban cities can increase very quickly and get to levels of up to 85
interfering radios for a single access point. In such environments the overall
capacity of each wireless network is severely reduced.

The main problem is due to the fact that mainly all the WI-FI deployments are
done in an uncoordinated way among neighbors and using defaults
configurations. This generates that a lot of access points are working on the
same communication channel. The main consequence is that large amount of
wireless networks must share the scarce 2.4 GHz ISM band generating serious
problems of interference and coexistence between the networks nearby.

According to [1] wireless network deployments have two important properties,
they are: unplanned and unmanaged. Most of the access points are deployed
by users in a spontaneous way with the consequence of variable AP densities.
For most of the owners of an AP consider very complicated the management
tasks and just rely on defaults configurations of the equipment.

In many cases the interference problems are overlooked because although
there is degradation of the network users can use it for light and simple services
like navigation and query websites. However taking into account that urban
usage patterns of wireless networks are very high [2] and that nowadays real-
time voice and video services are very frequent, the wireless degradation due to
the interfering radios will be more appreciated by end users.

The chaotic deployment of WI-FI networks and the inexistence of a standard
process which coordinates the configuration among independent wireless
networks create an opportunity to develop framework through which a WI-FI
network can be aware of its variable context and depending of the measured

2 Context Aware Self-Configuring WI-FI Network

context change its configuration, in other words, that the access point can
detect high interference from nearby wireless networks and adapt itself
changing its configuration to minimize the effects of interferences for its clients.
This process can increase the satisfaction of nowadays clients which requires
high throughput rates and good wireless quality.

The main objective of this master thesis is to develop a prototype which can
provide of the previous capabilities of adaptation to the context and self-
configuration to an access point. For the development of this tool is necessary
to evaluate different monitoring methods to infer the quality of the wireless
network and which provide us with sufficient data for decision-making in the
network configuration. The decision is focus on the dynamic selection of
transmission channels for the wireless access point.

The rest of the document is organized as follows: CHAPTER 1 provide a brief
summary of actual state of research and solutions within this field, the
CHAPTER 2 give an explanation of the different technologies that were used to
develop the thesis, the CHAPTER 3 presents the experiments and results that
were carried out to measure the relevance of certain metrics, CHAPTER 4
explains in detail the prototype implementation and a comparison between our
model and others, and finally CHAPTER 5 presents global conclusions about
the overall work.

Related Work 3

CHAPTER 1. RELATED WORK

Nowadays a standard method to reduce the interference among congested
zones of WI-FI networks does not exist. Some manufacturers and research
groups have designed implementations that mitigate the problem of interference
between WI-FI networks.

Large implementations of context self-configurations are done in infrastructures
wireless networks under the same management company. These
implementations use centralized schemes obtaining information from the clients
and changing the wireless configuration depending on the feedback. Large
manufacturers have developed proprietary solutions to solve this problem.

This section will provide a global perspective of some related work done in the
area of context aware for 802.11 based wireless networks. This section divides
the related work in two areas: the research solutions and the proprietary
solutions.

1.1 Research solutions

Research solutions are adaptations schemes proposed by research groups.
Most of these works presents solutions based on algorithms that through some
measures determine the best operative channel to maximize the overall
performance of the network.

The work on [3] describe two distributed algorithm, one of those allow that
multiple interfering 802.11 access points (AP) to select their operative frequency
in order to minimize the interference among them. The second algorithm is used
on the clients and evaluates the best available access point to establish a
connection in order to get fair share of the whole network bandwidth. Both
algorithms are based on a simulated technique called Gibbs sampler.

In [4] the authors propose a decentralized mechanism to select an operative
channel. This mechanism was denominated Hminmax and is based on the
construction of an interference graph among wireless networks. This graph is
constructed with the information that the clients reports to the AP. The edges of
the graph represent the percentage of clients that receive certain level of
interference from rogue wireless network. An example of this kind of graph is
observed on Fig. 1.1. With this information the algorithm tries to minimize the
maximum numbers of clients that suffer interference from the same BSS. An
important fact in this approach is that the decision is made based on the
perspective of the clients attached to the network.

4 Context Aware Self-Configuring WI-FI Network

Fig. 1.1. Example of a localized interference graph from Hminmax mechanism

In [5] the authors propose a solution called MAXchop that improve the fairness
in channel allocation between independent basic services set (BSS). This
mechanism builds a localized interference graph in order to define channel
hopping sequence for the BSS that make the fairness allocation sharing of
available channels. The most relevant contribution of this work is the distribution
of BSS among the 2.4GHz band in a fair way.

In [6] da Silva et al. design a mechanism to select the best available cannel
based on two metric: the occupation level and the noise levels. The occupation
level is the percentage of the time that the channel is considered busy by the
carrier detection of the measuring node due to traffic from others BSS. Both
metrics are measured on the clients and are reported to the access point
through 802.11k messages. 802.11k is under standardization by a working
group of the IEEE. With the information gathered from all the wireless clients
the AP creates two vectors one with the mean occupation level of each channel
and the other one with the noise levels of each channel. With these two vectors
the AP selects n less occupied channels and among them selects the one with
lowest noise as the operative channel. This algorithm is performed each T time
if the occupation level on the working channel surpasses a tolerance threshold.
This threshold is an adjustable parameter that defines the aggressiveness of
the algorithm.

Others works were done on different mechanisms to select best operative
channels on wireless mesh deployment in order to reduce the interference
among AP of the same wireless mesh [7].

The main problem with almost all the previous explained schemes is that the
results are based on simulations and not in real environments.

1.2 Proprietary solutions

The proprietary solutions describe tools that companies have developed in
order to provide Self-Configuring capabilities to the networks based on its
technologies. This section presents the solutions of three companies: Meraki
[8], Meru Networks [9] and Aruba Networks [10]. The three companies provide
wireless hardware solutions with access points. They also have different

Related Work 5

software’s which are capable of monitoring and manage the wireless equipment
of the whole network.

Meraki develop an automatic system called Auto RF by which every access
point on the network continuously and automatically monitors its surroundings
for any source of interference that could affect Wi-Fi performance. The Meraki
access points are equipped with a spectrum analyzer that collects information
about metric used to evaluate the interference. The spectrum analyzer is
capable of measure interference from non-802.11 sources like Bluetooth
devices, microwave ovens, cordless phones, etc. Meraki access point monitors
802.11 channel utilization, on both, 2.4 and 5GHz, detecting interference from
neighboring APs or rogue APs.

On Meraki deployments the auto RF tool can be interconnected with a Cloud
Controller which is another Meraki tool used to manage the entire network from
a centralized place. The cloud controller obtains information from all the access
points in the network. The Cloud Controller continually assesses the health of
the entire network, dynamically tuning the wireless channel, transmit power, and
client connection settings to automatically adapt to changing interference
conditions

The utilization of these tools increase the reliability under challenging RF
conditions gives better coverage with fewer access points and allow higher
client throughput.

On Wireless mesh deployments Meraki has designed a proprietary routing
protocol to provide a scalable routing algorithm to mesh networks. The routing
protocol is integrated with a dynamic RF planning technology owned by Meraki.
This tool takes advantage of multiple wireless channels and radios whenever
possible. In networks with multi-radio devices, the routing protocol will attempt
to find full-duplex wireless links wherever possible to eliminate per-hop routing
penalties found in single-radio networks. Furthermore, each wireless repeater
will evaluate the available wireless channels to maximize overall system
capacity and client throughput.

Another company that has developed some tool to monitor the interference that
affect the working wireless network is Meru Networks. This company has an
appliance with the proprietary software RF Network Manager. This software
provides an intelligent and comprehensive management system for Meru
802.11 networks. The Network Manager provides centralized management
through RF visualization and wireless performance dashboards. In the same
way as Meraki does each Meru access point collects monitor its environment
and report this information to the Network Manager. This software does not
provides the capabilities of auto configuration but alerts the administrators of
high interference level which can compromise the overall capacity of the WLAN.

Other important company who has developed very interesting solution in the
context-aware area is Aruba Networks. This company has a proprietary
spectrum analyzer detects 802.11 and non-802.11 sources of RF interference.
Aruba networks AP scan the spectral composition of 2.4-GHz and 5-GHz radio
bands and identifies RF interference, classifies its sources and provides real-
time analysis. This tool can classify interference in up to 13 categories including

6 Context Aware Self-Configuring WI-FI Network

microwaves, Bluetooth devices, cordless phones, cordless base stations and
fixed-frequency video and audio devices.

The data collected by the Aruba spectrum analyzer is used to isolate packet
transmission problems, over-the-air quality of service (QoS) and traffic
congestion caused by RF contention with other devices operating in the same
band or channel. Appropriate remediation measures can be executed to
optimize network performance.

The Aruba spectrum analyzer can be used in conjunction with other Aruba
solution called Adaptive Radio Management (ARM). ARM employs
infrastructure-based controls to optimize Wi-Fi client behavior and automatically
ensures that APs stay clear of interference. The ARM uses the information
gathered by the Aruba spectrum Analyzer for channel optimization.

Technologies 7

CHAPTER 2. TECHNOLOGIES

This chapter describes the different technologies in which the project is based.
First of all it describes the wireless network technologies, then several tools
used during the project.

The objective of this chapter is to give a brief description of the context where
the project was developed.

The section 2.1 explains the main characteristics of the wireless communication
network which were used during the different experiments explained on
CHAPTER 3. Section 2.2 describes the sniffer software Kismet. This software is
used to motorize the environment and generates useful information used in the
proposed algorithm to select the best operative channel. Section 2.3 explain the
measurement tool Iperf which is used to generates traffic and measure
important quality values like throughput, delay and packet loss. The section 2.4
gives a global view of the MadWifi driver which is used in this project to simulate
an access point in an Ubuntu laptop in which is implemented the context aware
self-configurable system.

2.1 Wireless Networks

Wireless networks are data transmission system designed to provide
connectivity between equipment by using radio waves to transport the
information.

The wireless networks are very different from the wired networks at the physical
level. The main differences between both medium can be summarized in the
following way:

 Wireless networks use a medium that has no observable boundaries and
in which a station with a physical compliant transceiver would be able to
detect network frames.

 The network is unprotected from other signals that share the medium.

 The wireless medium is less reliable that common wired medium.

 Wireless network can have dynamic topologies because of the mobility
capabilities of stations.

 The medium have time varying and asymmetric propagation properties

 The wireless network may experience interference from other wireless
networks working on overlapping areas.

There exist several types of wireless networks but those based on IEEE 802.11
standards are nowadays the most popular technologies used to provide
broadband radio access to IP networks. This kind of network is normally called
WI-FI networks.

8 Context Aware Self-Configuring WI-FI Network

WI-FI networks are usually implemented as the final link between the existing
wired network and a group of client computers, giving these users wireless
access to the full resources and services of the corporate network across a
building or campus setting. Also this kind of network is very popular in home
deployments to provide wireless access to broadband internet connection.

WI-FI networks are based on the 802.11 specification [11] which is a standard
for wireless LANs and was ratified by the Institute of Electrical and Electronics
Engineers (IEEE) in the year 1997. The 802.11 standard provides different sub
protocols that describe specific functionalities and capabilities. The most
popular implementations of 802.11 are: 802.11 b, 802.11g, 802.11a and
recently 802.11n.

802.11b operates in the ISM band 2.4 GHz and provides modulation methods
that accomplish rates up to 11 Mbps. 802.11b use DSSS (Direct-sequence
spread spectrum) and CCK (Complementary Code Keying) as modulation
techniques.

802.11g also works at the 2.4 GHz band and provides data rates up to 54 Mbps
using OFDM (Orthogonal Frequency Division Multiplexing) as modulation
scheme for high rates.

802.11a uses the same data link layer protocol and frame format as the original
standard, but uses OFDM as modulation technique. It operates in the 5 GHz
band with a maximum data rate of 54 Mbps. The utilization of the 5 GHz band
gives 802.11a a significant advantage in terms of interference because this
band is less used than the 2.4 GHz band. However, the utilization of this
frequency also leads to certain disadvantages in coverage because 802.11a
signals are absorbed more easily by walls and by other solid objects than
signals from 802.11b/g.

802.11n is the most recent amendment to the 802.11 standard. It was approved
on September 2009 and provides several improvements to its predecessors in
order to provide theoretical data rates up to 600 Mbps. The mayor
improvements in 802.11n are MIMO (multiple inputs, multiple outputs)
technology, improved OFDM, 40 MHz of channel bandwidth and a MAC layer
overhead reduction.

For the elaboration of this project were used 802.11b/g compliant wireless
network adapters.

2.1.1 Architecture of 802.11 networks

The architecture of the 802.11 networks is very flexible and can be deployed on
three types of topologies. These topologies are: independent basic service set
(IBSS), basic service set (BSS) and extended service set (ESS) [12].

A service set is a group of equipment that starts to communicate between them.
An 802.11 node emits the information that wants to transmit in an RF (Radio
Frequency) carrier. Any node can be within the coverage of different
transmitters so this node is able to receive the transmitted information. In order

Technologies 9

to distinguish between the transitions of different service sets the information is
tagged with a service set identifier (SSID) that is used by the receiving nodes to
filter the signals that want to process. The SSID is the name of the wireless
network which is listed by any wireless card before selecting desired wireless
network.

An IBSS is a group of 802.11 nodes which have established effective
communication between each other and also stands alone with no other
infrastructure equipment attached to it. The Fig. 2.1 shows a diagram that
represents an IBSS.

RF

RF

Node C

RF

Node B

Node A

Fig. 2.1. IBSS

An IBSS is also referred to as an ad-hoc network because it is essentially a
simple peer to peer WLAN. An ad-hoc network is a decentralized type of
wireless network in which the nodes that are part of the network does not rely
on any infrastructure device like Access Points. These kinds of networks are
usually small and only last long enough for the communication of the
information that need to be shared among devices.

A BSS is a group of devices that are able to communicate among each other
with the utilization of a specialized station known as an Access Point (AP). The
AP is the central point of communication for the whole network. Nodes cannot
transmit frames directly to other nodes. In spite of this transmitter node must
communicate with the AP which will forward the frames to the destination
stations. A BSS can have an uplink connection with the wired infrastructure to
provide the network of certain services. The Fig. 2.2 shows a diagram of a
BSS.

10 Context Aware Self-Configuring WI-FI Network

RF
Node A

R
F

RF

Node B Node C

Fig. 2.2. BSS

When two or more BSS are interconnected by their uplink interfaces forms an
ESS. The interconnection between BSS is made via a distribution system (DS).
A DS increases network coverage because groups BSS within a common
administration. Each BSS becomes a component of an extended, larger
network. Entry to the DS is accomplished with the use of Access Points (AP).
The Fig. 2.3 shows a diagram of an ESS.

Distribution System

RF

R
F R
F

Node A

AP 1 AP 2

Node CNode B

BSS 1 BSS 2

Fig. 2.3. ESS

The most relevant characteristic of an ESS is that the entire network looks like
an independent basic service set to the Logical Link Control layer (LLC). This
means that stations within the ESS can communicate or even move between
BSS′s transparently to the LLC.

Normal deployments of wireless network are made in the shape of BSS and
ESS.

The Table 2.1present a summary of the 802.11 standard with the different
protocols defined on it and the main characteristics of each one.

Technologies 11

Table 2.1. 802.11 protocols summary

Protocol Release
Frequency

(GHz)

Channel
Bandwidth

(MHz)

Data rate
per

stream
(Mbit/s)

MIMO
streams

Modulation

802.11 a
Sep
1999

5 20
6, 9, 12,
18, 24,

36, 48, 54
1 OFDM

802.11 b
Sep
1999

2.4 20 5.5, 11 1 DSSS

802.11 g
Jun

2003
2.4 20

6, 9, 12,
18, 24,

36, 48, 54
1

OFDM,
DSSS

802.11 n
Oct

2009
2.4/5

20

7.2, 14.4,
21.7,
28.9,
43.3,

57.8, 65,
72.2[

4 OFDM

40

15, 30,
45, 60,

90, 120,
135, 150

2.1.2 Wireless operational modes

The wireless network interface cards compliant with 802.11 standards can work
in different modes. The mode in which a wireless network interface works
defines its utilization on the network architecture and the capabilities that can
provide.

The operational modes are:

 Managed: This is the normal or default operation mode for a wireless
network card. In this mode the network card behaves as a WLAN client,
in such a way that it needs to associate with an access point in order to
send and receive traffic. The Manage operation mode is also known as
station mode (sta) or infrastructure.

 Master: In this mode the wireless network card acts as an access point
providing connectivity services to many clients. As an access point the
device becomes the central node of the network and is in charge of
forwarding traffic between members attached to the SSID and also has
to provide an uplink connection with a wired infrastructure.

 Ad-hoc: In this mode the network card can join or create an ad-hoc
network. This mode allows a device to communicate directly with the
nodes that are part of the ad-hoc network.

 Monitor: In monitor mode the wireless interface is used to capture the
traffic travelling through the RF domain for different purposes. This mode

12 Context Aware Self-Configuring WI-FI Network

is used to implement sniffers, intrusion detection system or wireless
network detectors. In this mode all the packets that the wireless interface
is able to hear is passed to the application level to be analyzed. Much
software uses this mode to obtain traffic statistics of the networks or to
detect rogue connection to a wireless LAN. Normally this mode is
configured to obtain just headers of the packets in order to respect the
privacy of the clients that are using the wireless infrastructure.

 WDS: In WDS mode a device can be used to create large wireless
networks by linking several Access Points together. In WDS mode the
device is placed above the access point hierarchy and by this is able to
manage the whole wireless network as one.

2.2 Kismet software

Kismet is an 802.11 wireless network detector, sniffer, and intrusion detection
system [13]. Kismet works with any wireless card which supports monitoring
mode, and can sniff 802.11b, 802.11a, 802.11g, and 802.11n traffic.

Kismet identifies WLANs by passively collecting packets and detecting
networks, which allows it to detect hidden networks and the presence of non-
beaconing networks via data traffic. The software creates a list of the networks
detected and for each of its display several measures like: working channel,
packet received, signal strength, noise level and client activity.

This software can be deployed on a client/server architecture basis in which
some devices acts as clients (drones) capturing the traffic on the air and
sending this information to a centralized equipment. This centralized device
collects the information from several drones and presents a whole picture of the
wireless environment.

Kismet has a text-based graphical interface that helps the user to display
different windows that shows diverse type of information like channels,
networks, clients, etc.

This software returns 3 types of output files that contain the collected
information from the wireless environment. The outputs files are in XML format,
text format and PCAP format. This last output file type can be opened with the
software Whireshark1. The Fig. 2.4 shows the main screen of the Kismet text-
based graphical interface

1
 Wireshark is a network protocol analyzer for UNIX and Windows. http://www.wireshark.org/

Technologies 13

Fig. 2.4. Kismet main view

The Kismet software is used on this project as the source of the metrics used by
the algorithm to calculate the best available channel to work. The software is
implemented on the simulated AP that is intended to self-configure. From the
output files for project purposes the XML file is used.

2.3 Iperf tool

Iperf is a network tool by which can be possible the measure of the throughput
that a network is capable to transport [14]. Iperf is written on the programing
language C++.

Iperf can generate TCP or UDP traffic streams to measure the throughput in a
network. Also Iperf is capable to measure other network performance
parameters like: packet loss and delay. The tool allows the user to change
some parameters to test a network. Some of the modifiable parameters are:
datagram size, testing time, buffer size, transmit bandwidth, report interval, etc.

Iperf is a client/server application, this means that, in order to work one device
has to acts as the server and receive the data streams and other device is the
client that sends the data streams.

Iperf has a text-based graphical interface and works by commands but a java
GUI exist for uses Iperf in a more friendly way. This application is called Jperf
and need a previously successful Iperf installation.

In this project the Iperf is used to measure the throughput, delay and packet
loss in the metrics evaluation experiments. Also is used Jperf in order to have a
more friendly way to uses the Iperf software.

14 Context Aware Self-Configuring WI-FI Network

2.4 MadWifi tool

MadWifi stand for Multiband Atheros Driver for Wireless Fidelity and is a Linux
kernel device driver for Atheros-based Wireless LAN card [15]. MadWifi is one
of the most advanced drivers for WLAN devices on for Linux today. This driver
allows the user to configure in a very flexible way how the wireless card has to
behave.

The MadWifi driver is very often used on the scientific research field to make
wireless networks test or new implementation. This driver is open source and
supports almost all the available Atheros chipsets.

The two main functionalities that this driver can accomplish are:

 Operational modes: The MadWifi driver allows an administrator to
configure the wireless card in different modes. These modes make the
network car to works as different wireless elements. The modes
supported by the MadWifi driver are: sta, ap, adhoc, ahdemo, monitor
and wds.

 Multi-BSSID: The MadWifi driver also allows the configuration of virtual
interfaces that works above only one physical card. This feature is called
VAP that stand for virtual AP. VAP sit on top of a base device usually
called wifi0. The virtual interfaces are named usually “ath0” but the name
is configurable through a command. The VAP lets create on a single
device several interfaces with different operational modes. In order to
manipulate VAPs, MadWifi comes with a command tool called
“wlanconfig” that can be used to create and destroy VAPs.

Actually MadWifi driver is being replaced by new versions of it called ath5k and
ath9k. Even if these new drivers support almost all Atheros chipset some
features are still not working properly. But they are the future of the MadWifi
project.

Within this project the MadWifi driver is used in the Atheros based wireless card
used as the sniffer. The ath5k driver was first used but then was replaced by the
MadWifi because the ath5k present some problems on reporting noise level to
the Kismet software.

A MadWifi installation tutorial can be found in section 7.1.

Experiments 15

CHAPTER 3. EXPERIMENTS

This chapter describes the different experiments that were done in order to
evaluate different metrics that the Kismet software is able to capture from the air
and are intended to describe the wireless network performance.

The experiments were done in two stages. The first stage is composed by three
experiment to evaluate the metrics proposed that can describe the state of the
wireless link. The second stage is an experiment to evaluate the correlation
levels between the metrics and the expected capacity on each wireless
channel.

The objectives of these experiments are to obtain information about how much
the metrics affect the overall performance of a network. The results of the
experiment will allow us to design an algorithm that will avoid the degradation of
the network caused by the increase of a metric or a group of metrics.

Is important to mention that the measure in which these metrics benefits or
worsens the wireless network is evaluated in terms of throughput, delay and
loss packets. This data is provided by the Iperf software.

During the experiment are identified 2 types of wireless networks. The first one
is the “working wireless network” and is nothing more than the network that tries
to adapt to the context in which it is. The other one is the “rogue wireless
network” that is a network or a group of networks that are not under the
administration of the working network and therefore generate interference.

3.1 Metrics

Kismet software package allows us to monitor several different metrics that are
obtained from the sniffer card, but not all the metrics are important to model the
RF state. That is why only the most meaningful metrics were chosen to study
and these metrics are:

 Interfering radios: This metric model the number of wireless networks
that during the test were sharing the same communication channel of the
2.4GHz band. Some types of wireless networks do not report its working
channel. In order to assign one channel to these kinds of networks some
calculations are needed. Basically the Kismet software provides
information about in which center frequency the packets are received. By
using this information is calculated the center frequency in which the
majority of the packets of certain network were received and this center
frequency is used to assign the operational channel.

 Rogue Packets: this metric model the total amount of packets captured
from other networks. In this metric does is not important the type of
packets which can be, using the categories provided by Kismet, LLC
(Link Layer Control), data or crypt (cryptography).

16 Context Aware Self-Configuring WI-FI Network

 Rogue Data Packets: This metric model the amount of data packets
captured from rogue wireless networks.

 Rogue Bytes: This metric model the total amount of bytes transferred on
the medium by rogue wireless networks.

 Best SNR: This metric shows the best signal to noise relation of the
wireless network detected. It is obtained from the values of maximum
signal received and minimal noise detected that the Kismet software
provides.

 Maximum noise level: This metric model the maximum noise detected on
certain channel, and is obtained from the noise levels reported by the
wireless networks working on the channels. From the reported noise
level the worst reported is going to be used as the maximum noise level.

3.2 Equipment

The Table 3.1 shows the specifications of the two types of equipment used to
develop all the experiments. Nodes 1 and one of the nodes type 2 have two
wireless cards installed. Node 1 uses both wireless cards to establish separated
connections to two different BSS during the experiments. Node 2 instead uses
one of the wireless cards to provided ad-hoc connectivity and the other one is
used in monitor mode to act as a sniffer (PCMCIA card). This card is the one
using the MadWifi driver. The rest of type 2 nodes are equipped with one
wireless card that is configured as managed mode or ad-hoc depending of the
test.

Table 3.1. Equipment

Node
Type

Quantity Brand Model
Operating
System

Wireless card Specs

1 1 Dell
Inspiron

1545
Ubuntu
10.10

Eth1:Broadcom
BCM4312
driver: wl0

Ram: 4Gb
CPU: Intel
Core 2 Duo

T6400 2GHz

2 4 HP
Compaq
nx6110

Ubuntu
10.10

Eth1:
PRO/Wireless

2200GB
driver: IPW2200

RAM: 500Mb
CPU: Intel
Pentium M

1.6GHz

The Table 3.2 shows detail information about the additional wireless cards that
were needed to perform the several tests. Is important to note that although that
both cards are Atheros based, the MadWifi driver can be used only with the
PCMCIA, because the driver does not support USB interfaces

Experiments 17

Table 3.2. Additional wireless cards

Interface Manufacturer Model Chipset Driver

USB OvisLink
EVO-

W301USB
Atheros
AR9271

USB

PCMCIA Proxim
ORiNOCO

11a/b/g
Combo Card

Atheros
AR5001x+

MadWifi
(ath_pci)

3.3 Channel capacity

This experiment has two main objectives:

 Measure the wireless network performance without any interference
radio. These measures will be used as a central point of comparison with
other tests.

 Measure how the working wireless network is affected with just one
interfering radio that introduces different traffic levels.

In order to model a free channel the experiment was carried out around the
campus Baix Llobregat in a place where there is not sign of any wireless
network. The Fig. 3.1 shows the place where the experiment was done.

Fig. 3.1. Location of the experiments

The experiment is divided on two scenarios. The first one can be appreciated
on the Fig. 3.2.

18 Context Aware Self-Configuring WI-FI Network

Node 2

Eth1:192.168.1.1

Node 1

Eth1:192.168.1.2

UDP @ 54.0 Mbps

Ad-Hoc «wlan-test»

IEEE 802.11 g

Fig. 3.2. Channel capacity first scenario

As can be noticed, the first scenario just has the working wireless network
transmitting UDP packets at 54Mbps. The idea is to flood the channel with
packets and measure the total capacity of the wireless communication channel.

The packets generation and reception was done with the Iperf software running
the following commands:

 At node 1 the following command was executed “iperf -s -u -P 0 -i 1 -p
5001 -w 1470.0K -f m”. This command place the node 1 in server mode
listen UDP packets on port 5001. Also the buffer size is increased to
1470Kbytes.

 At node 2 the following command was executed “iperf -c 192.168.1.2 -u -
P 1 -i 1 -p 5001 -w 1470.0K -f m -b 54.0M -t 120 -T 1”. This command
place the node 2 as the Iperf client generating UDP traffic to the
destination IP address 192.168.1.2 and destination port 5001. Also this
command specifies that the UDP buffer size is 1470Kbytes and the data
rate to generate the packets is 54Mbps. With the parameters –i and –t
the command specifies the report interval (1s) and the time of the test
(120s).

A diagram of the second scenario is shown in the Fig. 3.3.

Node 2

Eth1: 192.168.1.1

Node 1

Eth1: 192.168.1.2

Wlan0: 192.168.10.2

UDP @ 54.0 Mbps

Node 3

Eth1: 192.168.10.1

Ad-Hoc «wlan-rogue»

IEEE 802.11g ch#1IEEE 802.11g ch#1

Ad-Hoc «wlan-test»

UDP @ (1,5,10,30)Mbps

Fig. 3.3. Channel capacity second scenario

In this scenario a second wireless network is introduced on the same
communication channel. This network is going to affect the performance of the
main WLAN. In order to evaluate how the second network affects the
performance of the working wireless network different levels of traffic are
introduced by the rogue WLAN. With this scenario 4 test were done in which the
rogue wireless network transmit data at 1,5,10 and 30Mbps.

The Node 1 has 2 wireless cards each one connected to different wireless LAN.
The card Eth1 is connected to the network “wlan-test” which is the SSID of the

Experiments 19

working WLAN. The card wlan0 is connected to the network “wlan-rogue” which
is the SSID of the rogue wireless network.

The traffic generation and reception was also done with the Iperf software
running the command explained before. The unique change is on the client side
is in the parameter –b, that refers to the data rate to transmit the packets, that
must be modified for each case.

On both scenarios the Kismet software was capturing information about the
wireless environment. This software is running always in the Node 2 with the
wireless card Ath1 on monitor mode.

3.3.1 Channel capacity results

The results of the experiment are going to be presented by scenario and a
comparison of the metrics explained in 3.1 that were collected by the Kismet
software during the experiments.

3.3.1.1 First Scenario (Free Channel)

The mean throughput achieved by the wireless network in this experiment is
about 22.87±0.03Mbps (90% of confidence interval) with a standard deviation of
0.17Mbps. The mean delay obtained is of 0.5±0.08ms with a standard deviation
of 0.5ms.

The values presented before are considered the best for the wireless
communication channel for comparison purposes in this type of scenario. The
wireless capacity may vary depending heavily in the wireless hardware and
operational mode.

The delay histogram of the test is exposed on the Fig. 3.4. The delay values
vary during the whole experiment but the mayor parts of the values are below
1ms of delay that can be considered as a good delay in the communication.

Fig. 3.4. Delay free channel

0

0.5

1

1.5

2

2.5

3

1 21 41 61 81 101

D
e

la
y

(m
s)

Time

20 Context Aware Self-Configuring WI-FI Network

3.3.1.2 Second scenario (Variable rate interfering radios)

During the various tests of the experiment it was noted that the introduction of a
new wireless network running on the same channel results in a decrease in the
working network performance. Mainly the reduction in network performance
occurs because the electromagnetic spectrum is a medium that must be shared
by all wireless networks in a fair manner. In fact, the CSMA-CA2 of the 802.11
networks is responsible for providing a mechanism by which different networks
can access the medium fairly and minimizing the probabilities of packet
collisions in the air.

The performance reduction in terms of throughout is shown on the Fig. 3.5. This
graph compares free channel results and tests with the interfering radio
transmitting at 1, 5, 10 and 30Mbps. As can be seen as interfering network
increases its data rate requires more resources from the channel by which the
working wireless network has to reduce its rate for both networks to coexist on
the same medium.

Fig. 3.5. Throughput comparison with interfering radios

The previous graph shows that the interfering radio affect the main wireless
network, but is also important to evaluate if the existence of a working wireless
network that try to obtain the maximum resources from the communication
channel affect the other networks. The Fig. 3.6 shows the throughput histogram
of the rogue wireless network on each test. An important fact that must be
highlighted is that up to 10mbps the rogue network was not affected by the
operation of our working wireless network. However when both wireless
networks try to transmit at maximum speed the channel capacity is more or less
divided by the half. From these results we can say that if the total traffic that a
wireless network need to introduce in a wireless communication channel will not
be affected as long as this traffic does not exceed the portion of the channel

2
 CSMA-CA stand for carrier sense multiple access with collision avoidance and is the medium

access mechanism for 802.11 based wireless networks.

0

5

10

15

20

25

1 11 21 31 41 51 61 71 81 91

Th
ro

u
gh

p
u

t
(M

b
it

s/
s)

Time (s)

Free Channel 1 Rogue TX @ 1mbps 1 Rogue TX @ 5mbps

1 Rogue TX @ 10mbps 1 Rogue TX @ 30mbps

Experiments 21

that correspond to the network. This capacity is the total capacity divided by the
number of operational nodes.

Fig. 3.6. Interfering radio throughput histogram

To illustrate the fair coexistence of the wireless networks within a
communication channel the Fig. 3.5 shows the working and rogue throughput
histograms. The figure shows that both networks are correlated in a way that if
one increases its throughput on one instance the other one decrease its
capacity and vice versa. This effect is also appreciable on delay values because
when the delay of one network increases the delay of the correlated network
decreases.

Fig. 3.7.Throughput comparison between working and rogue WLANs TX@30mbps

Up to now the experiments show that the total channel capacity is distributed
among the networks that are working at any given time. The Fig. 3.8 shows that
the aggregated throughput of the wireless networks is the same as the total
capacity of the channel.

0

2

4

6

8

10

12

14

16

1 11 21 31 41 51 61 71 81

Th
ro

u
gh

p
u

t
(M

b
it

s/
s)

Time (s)

1 Rogue TX @ 1mbps 1 Rogue TX @ 5mbps

1 Rogue TX @ 10mbps 1 Rogue TX @ 30mbps

0

5

10

15

20

25

1 11 21 31 41 51 61 71 81 91

Th
ro

u
gh

p
u

t
(M

b
it

s/
s)

Time (s)

Working Wireless Network Rogue Wireless Network

22 Context Aware Self-Configuring WI-FI Network

Fig. 3.8. Aggregated throughput of working and rogue WLANs TX@30mbps

The delay values experienced a behavior very similar to the throughput
explained before. Delay values increase its value for the working network as
interfering radio increase its data rate. This behavior can be noticed on the Fig.
3.9.

Fig. 3.9. Delay comparison with interfering radios

The results demonstrates that the rogue network affect the working network.
The mean values of the performances parameters of the working wireless
network are summarized on Table 3.3. The values on the table shows that the
delay increases as the rogue network introduce more traffic. The percent of loss
packets also increase by the same reason but are very low. Instead the mean
throughput is decreased from 22.8Mbps on free channel to 12.72Mbps with a
rogue network transmitting at 30Mbps.

0

5

10

15

20

25

30

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Th
ro

u
gh

p
u

t
(M

b
it

s/
s)

Time (s)

Working Wireless Network Rogue Wireless Network

0

1

2

3

4

5

6

7

1 6 11 16 21 26 31 36 41 46

D
e

la
y

(m
s)

Time (s)

Free Channel 1 Rogue TX @ 1mbps 1 Rogue TX @ 5mbps

1 Rogue TX @ 10mbps 1 Rogue TX @ 30mbps

Experiments 23

Table 3.3. Working wireless network performance metrics comparison between scenarios

Metric\

Scenario

Free

Channel

1 Rogue TX @
1mbps

1 Rogue TX @
5mbps

1 Rogue TX @
10mbps

1 Rogue TX @
30mbps

Throughput
(Mbps)

22.865

± 0.03

21.709

± 0.21

18.746

± 0.23

14.962

± 0.38

12.724

± 0.45

Delay (ms)
0.572

± 0.08
0.581 ±0.08

0.963

± 0.11

1.364

± 0.15

1.617

± 0.17

% Losses 0.00000% 0.00406% 0.00209% 0.00459% 0.00462%

3.3.1.3 Metrics comparison

So far only the behavior of performance values was shown. In this section is
presented the values of the Kismet metrics that will be used to model the
channel state. These values are summarized on the Table 3.4.

Table 3.4. Metrics evaluations between scenarios

Metric\Scenario
Free

Channel

1 Rogue
TX @
1mbps

1 Rogue
TX @
5mbps

1 Rogue
TX @

10mbps

1 Rogue
TX @

30mbps

Interfering
Radios

0 1 1 1 1

Rogue Packets 0 1134 3032 6299 7919

Rogue Data
Packets

0 927 2470 6044 7532

Rogue Bytes 0 1418310 3779100 9247320 11518080

Best SNR 36.481 39.521 39.521 37.349 38.218

Maximum
Noise Level

-85 -78 -77 -81 -76

The values of rogue packets, rogue data packets and rogue bytes increases on
each test which is obvious because the rogue network is increasing its data
rate. But the interesting fact is that even in the test with 1 rogue network
transmitting at 30mbps the best SNR values detected for the working wireless
network does not vary too much. The fact that the SNR values do not change
even if the capacity of our network has been halved tells us that although we
have a good signal reception and low noise value that does not mean that our
network will operate at full capacity.

Other important thing is that the noise level was increased by the introduction of
the rogue network. The variation is too small to say that the change was

24 Context Aware Self-Configuring WI-FI Network

because the rogue network. This will be discussed in more detail in the
experiment of radio interference in section 3.5.

3.4 Variable transmit power

The objective of this experiment is to evaluate how the variation on the transmit
power of an interfering radio affect the working wireless network.

This experiment was conducted in the same location as the previous
experiment in order to avoid possible interference from other wireless networks.
The location can be appreciated on the Fig. 3.1.

The Fig. 3.10 shows the diagram of how the experiment was carried out.

Node 2

Eth1: 192.168.1.1

Node 1

Eth1: 192.168.1.2

Wlan0: 192.168.10.2

UDP @ 30.0 Mbps

Node 3

Eth1: 192.168.10.1

Ad-Hoc «wlan-rogue»

IEEE 802.11g ch#1IEEE 802.11g ch#1

Ad-Hoc «wlan-test»

UDP @ 30.0Mbps

Tx power 20dbm Tx power 1,5,10,20dbm

Fig. 3.10. Variable transmit power scenario 1

For this experiment the Node 2 transmit UDP packets at a rate of 30Mbps to
flood the WLAN wlan-test. The Node 3 does the same but in the wlan-rogue
network. Node 1 receives both traffics on independent wireless cards. The
traffic generation and reception was done with the same commands explained
on 3.3.

The experiment has 4 test on which the transmit power of Node 3 varies. Node
3 acts as the access point of the rogue wireless network. On each test the
transmit power of Node 3 is changed on values 1, 2, 10 and 20dbm. To adjust
the transmit power is used the command “iwconfig eth1 txpower x” where x is
the transmit power in dbm. Each test has duration of 120 seconds.

In the same way that the previous experiment the Kismet software is capturing
information about the wireless environment and is running in the Node 2 with
the interface Ath1 in monitor mode.

3.4.1 Variable transmit power results

The results of this experiment are evaluated through 3 measures throughput,
delay and best SNR detected. On each measure is important to notice if the
variability of the transmit power cause a negative effect on the working wireless
network.

The throughput comparison can be appreciated on the Fig. 3.11 and shows that
the mean throughput values of the working network decrease in a small factor in
the same way as the rogue network increases its transmit power. The working
wireless network decreases its data rate from 12.8mbps on test 1 to 12.54mbps

Experiments 25

on test 4. This is a very small variation so the transmit power does not affect in
a significant way the performance of the working WLAN.

Fig. 3.11. Variable transmit power throughput comparison

The delay values observed on the experiment do not change in a significant
quantity. On the previous experiment when 2 networks were sharing the
channel the measure of delay was about 1.6ms which are the same mean delay
values reported by the wireless network in this experiment.

The Table 3.5 shows the comparison of best SNR values detected by the
sniffing software between the working and the rogue WLANs among the four
tests. The comparison shows that as the transmit power increases the signal to
noise ratio improves for the rogue network, but the best SNR values for the
working network are not affected.

Table 3.5. Best SNR values comparison.

Best SNR (db)

Working WLAN Rogue WLAN

Mean Sta. Dev. Mean Sta. Dev.

Test 1 Rogue WLAN tx@1dbm 36.11 0.61 24.52 1.00

Test 2 Rogue WLAN tx@5dbm 35.12 0.16 26.74 1.26

Test 3 Rogue WLAN tx@10dbm 35.12 0.74 29.48 1.53

Test 4 Rogue WLAN tx@20dbm 36.33 0.58 30.65 0.41

12.83

11.67

12.66

11.84

12.63

12.43

12.54
12.46

11.00

11.20

11.40

11.60

11.80

12.00

12.20

12.40

12.60

12.80

13.00
Th

ro
u

gh
p

u
t

(M
b

p
s)

Test 1 Working Test 1 Rogue Test 2 Working Test 2 Rogue

Test 3 Working Test 3 Rogue Test 4 Working Test 4 Rogue

26 Context Aware Self-Configuring WI-FI Network

The results of this experiment shows that the variation on the transmit power of
an interference radio does not have a major effect on the working network. The
only detectable effect is that a wireless network with less transmit power cannot
achieve the throughput that is able to reach on normal conditions. In the test 1
the rogue network reports a mean throughput of 11.67mbps and in normal
condition reach to 12.7mbps. Even if the working network can take advantage
of this reduction in traffic it does not represent a significant factor.

The problem of vary the transmit power is mainly the coverage that our network
is able to achieve. If the transmit power is reduced the coverage area is also
reduced so the wireless network won’t be able to deliver services to far nodes.

3.5 Interfering radios

The objective of this experiment is to measure how in normal conditions
interfering radios can affect the performance of the working wireless network.
To do so, this experiment was carried out at the laboratory 016 of the ETTAC
building. In this laboratory several networks are working on different channels
so it is perfect to simulate a real environment in which the RF medium is
crowded.

The Fig. 3.12 shows the scenario of this experiment.

Node 2

Eth1:192.168.1.1

Node 1

Eth1:192.168.1.2

UDP @ 30.0 Mbps

Ad-Hoc

IEEE 802.11g ch# 1,6,11

Fig. 3.12. Interfering radios scenario 1

This test is divided on 3 tests in which the communication channel of the wlan-
test network is changed. The channels used are the non-overlapping channels
of the 2.4GHz band channel 1, 6 and 11.

On each test the Node 2 flood the wireless channel with UDP traffic generated
at 30Mbps. The traffic generation and reception was done with the same
commands of the Iperf software that were explained on 3.3.

In this experiment the Kismet software is running on Node 2.

Experiments 27

3.5.1 Interfering radios results

The Fig. 3.13 shows the comparison between the throughputs achieved by the
working wireless network on the three channels in which the experiment was
carried out. As can be appreciated the throughput values are variable in time,
but the most stable behavior is observed on the channel 6. The channel 1
presents the worst values on the experiment with very low throughput.

Fig. 3.13. Interfering radios throughput comparison

The delays values are represented on the Fig. 3.14 and in the same way that
the worst throughput values are presented on channel 1 the delay observed on
this channel are the most significant. Channel 11 and 6 present a similar
behavior but the channel 11 have more delay than the channel 6.

Fig. 3.14. Interfering radios delay comparison

The mean values, the confidence interval and the standard deviation of the
performance metrics are presented on the Table 3.6. The best results are
observed on channel 6 with 17.93Mbps of throughput, delay values below 1ms
and negligible packet loss.

0

5

10

15

20

25

1 11 21 31 41 51 61 71

Th
ro

u
gh

p
u

t
(M

b
it

s/
s)

Time (s)

Channel 1 Channel 6 Channel 11

0

10

20

30

40

50

1 11 21 31 41 51 61 71 81 91

D
e

la
y

(m
s)

Time (s)

Channel 1 Channel 6 Channel 11

28 Context Aware Self-Configuring WI-FI Network

Table 3.6. Performance metrics results

Metric\Scenario Channel 1 Channel 6 Channel 11

Throughput (Mbps)
6.06

±0.77

17.93

±0.33

16.03

±0.60

Delay (ms)
7.79

±1.36

0.96

±0.10

1.10

±0.19

% Losses 0.0114 0.0006 0.0049

Up to now the previous results demonstrate that the performance of the working
wireless network on channel 6 is better that on the other wireless channels. The
Table 3.7 shows the values of the metrics that are intended to model the
channel state. In order to evaluate the measure in which these metrics model
the wireless channel health some graphs will be presented next.

Table 3.7. Channel metrics results

Metric\Scenario Channel 1 Channel 6 Channel 11

Interfering Radios 15 11 7

Rogue Packets 3868 236 202

Rogue Data Packets 3175 30 92

Rogue Bytes 199091 3202 15936

Best SNR 40.824 38.652 37.784

Maximum Noise
Level

-81 -86 -85

The first metric is interfering radios. The Fig. 3.15 represents the comparison
between the number of interfering radios detected on each channel and the
achieved mean throughput. As can be noticed channel 1 is the most crowded
with 15 wireless networks detected and also present the worst performance.
Channel 6 have 11 rogue WLANs and achieve the best throughput. Channel 7
shows the smaller amount of rogue networks but the performance on this
channel is below the achieved on channel 6.

Experiments 29

Fig. 3.15. Interfering WLANs VS achieved throughput

The number of interfering radios can be used to forecast that a channel will be
crowded if all the WLANs transmit data at the same time. Taking the results of
the first experiment we can expect that the 22.9Mbps of the channel capacity
will be split fairly among WLAN, so in the channel 1 with 15 interfering radios
the working WLAN will not get more than 1/16 of the channel that is 1.4Mbps.
The problem with the utilization the number of interfering radios to model the
channel is that not all the time the wireless network are occupying the RF
medium with traffic. This fact is appreciable on channel 6 that with 11 rogue
WLANs we can expect that in the worst case the working WLAN only will be
able to get 1/12 of the total channel capacity (1.9Mbps), but instead of this is
able to achieve up to 17.9Mbps.

The Fig. 3.16 shows the traffic metrics measured each channel during the
experiment. And important fact is the differentiation between rogue packets and
data rogue packets. This separation is done because the previous results
demonstrate that the performance of a wireless network in a specific channel is
more sensitive to traffic patterns than to the amount of WLANs working on that
channel. Rogue packets metric quantify the total amount of packets from other
networks including control frames (LLC). The data rogue packets values only
take into account data frames.

In the values of channel 6 can be noticed that the total number of rogue packets
detected is larger than in channel 11 but the number of data packets detected
on channel 6 is below the one detected on channel 11. This shows that the data
rogue packet metric model in a more accurate way the amount of traffic that is
introduced by the rogue WLANs. The total rogue Kbytes is also small on
channel 6 with just 3.2KB detected.

The result of the experiment demonstrate that a wireless network will obtain
better performance working on a channel with less data packets and as a result
of that less kilobytes detected.

15

11

7
6.06

17.93

16.03

0

2

4

6

8

10

12

14

16

18

20

Channel 1 Channel 6 Channel 11

Interfering Radios Throuhgput (Mbps)

30 Context Aware Self-Configuring WI-FI Network

Fig. 3.16. Rogue packets, data packets and Kbytes detected comparison

The last comparison is shown on the Fig. 3.17 in which the detected values of
SNR and noise are represented.

The best SNR value detected for the working wireless network on each channel
does not vary in a large factor. This value does not show any different among
the wireless communication channel.

The noise values show that the channel less noisy is the same channel that
reflects the best performance. The values of noise represent a real indicator of
the quality on the communication channel because a noisy channel can
generate huge degradation on the quality of the communication for any WLAN.

Fig. 3.17. Maximum noise and best SNR comparison

3868

236 202

3175

30 92 199.09
3.202 15.936

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Channel 1 Channel 6 Channel 11

Rogue Packets Rogue Data Packets Rogue Kbytes

-81
-86 -85

40.824 38.652 37.784

-90

-70

-50

-30

-10

10

30

50

Channel 1 Channel 6 Channel 11

Maximum Noise (dbm) Best SNR (db)

Experiments 31

3.6 Correlation

Previous experiment has shown that some of the proposed metrics have impact
on the performance of the network. The main objective of this experiment is to
evaluate which of the metrics (Rogue data packets, Rogue bytes, Interfering
radios and Maximum noise) has more relevancies in order to forecast the
maximum capacity that the network will receive on a specific state.

In order to determine this relevancy the experiment explained on section 3.5
was repeated several times in order to obtain enough samples to model the
relation between each metric and the maximum achieved throughput.

The correlation coefficient and the R-square values will be calculated from the
obtained data for each pair of variables. The correlation coefficient determine
whether two data sets are related, and if so, how strongly. The correlation
coefficient ranges from +1, indicating a perfect positive linear relationship, to -1,
indicating a perfectly negative linear relationship. The R-square is the square
value of the correlation coefficient and has a range from 0 to 1 which
determines the dependence between each pair of values.

Some changes were done to the parse software to obtain samples during the
experiment. The parse software analyzes the data each 30 seconds and the
values are compared with the mean throughput achieved within 30 seconds of
observation interval.

The experiment uses UDP traffic to flood the working channel. One node type 2
will be running the Kismet software capturing the environmental variables with
the Atheros based wireless card. The packet generation and reception is done
with the Iperf software.

3.6.1 Results

From the experiment was obtained 117 samples of measures. The samples
show results on working on different frequencies, different time of the day and
with variable load on each test.
The Table 3.8 shows the correlation coefficient and the R-square values
calculated between each of the proposed metrics and the obtained throughput
values. The correlation and the R-square values show that the most relevant
metrics are the rogue data packets and the interfering radios. Rogue data
packets have a correlation value of -0.57 and the interfering radios have a
correlation value of -0.83. The negative values of these values just detonates
that the variables are inversely proportional.

32 Context Aware Self-Configuring WI-FI Network

Table 3.8. Correlation analysis per metric

Metric Correlation Coefficient R-Square

Rogue Data Packets -0.57617 0.3319

Rogue Bytes -0.43666 0.1906

Interfering Radios -0.83866 0.7033

Maximum Noise -0.48716 0.2373

Quality Value -0.72148 0.5205

The Fig. 3.18 shows a dispersion graph that models the throughput depending
of the number of interfering radios detected. This metric is the one that best
describe the behavior of the maximum throughput achieved during the tests,
however on a high congested channel the number of interfering radio will not
give an indication of the quality of the network. This effect can be appreciated
on section 3.3.1.2 in which with just one rogue network the overall capacity of
the working network is decreased by half.

Fig. 3.18. Dispersion graph interfering radios VS throughput and linear regression

The dispersion graph of rogue data packets VS throughput can be appreciated
on Fig. 3.19. As can be noticed as the number of rogue data packets increase
the capacity is decreased on term of throughput. The correlation between rogue
data packets and maximum achieved throughput is not as good as with the
number of interfering radios, but on previous experiment was noticed that the
traffic patterns on the wireless medium is an important fact due to the fact that
all the available WI-FI networks must share the medium.

y = -0.6364x + 21.893
R² = 0.7034

0

5

10

15

20

25

2 4 6 8 10 12 14 16 18 20

Th
ro

u
gh

p
u

t
(M

b
p

s)

Number of Interfering Radios

Correlation Interfering Radios - Throughput

Lineal (Correlation Interfering Radios - Throughput)

Experiments 33

Fig. 3.19. Dispersion graph rogue data packets VS throughput and linear regression

The two metrics explained before are very important to evaluate the overall
capacity of a wireless network but each one of them have a problem on some
scenarios. The rogue data packets won’t be a good estimation of quality if there
is no traffic but a very crowded channel in which all the clients executes the
CSMA-CA algorithm to access the medium and sending control frames that are
not market as data traffic. The interfering radios will not model the best capacity
of the network on congestion situation. For these reasons a new metric was
created called Quality value. The correlation coefficient and the R-square
values are shown on Table 3.8.
This metric is a weighted sum by the correlation coefficients of the metrics
rogue data packets and interfering radios. The value is obtained from the
expression equation 3-1 in which the IR means the number of interfering radios
detected on the monitoring window, the IRCC is the correlation coefficient
between the interfering radios and the throughput, the RDP is the number of
rogue data packets detected within the monitoring windows and the RDPCC is
the correlation coefficient between the rogue data packets and the throughput.

)))

 (3-1)

This new metric will forecast in a better way the capacity of the network
because take into account the most two important metric. The interfering radios
have better relevance in the calculation of the quality value because its
correlation coefficient is greater than the one of the rogue data packets.
Although the correlation coefficient and the R-square values of the quality value
is worse than the interfering radios and better that the rogue data packets, is
expected that this new metric have a better approach of the maximum available
capacity on situations of crowded and congested channels.

The Fig. 3.20 show the dispersion graph of the quality value VS the throughput.
The figure also shows the linear regression line and the respective equation
which will be used to estimate the channel capacity in the purposed algorithm
which will be explained later in the document.

y = -0.1297x + 17.165
R² = 0.332

0

5

10

15

20

25

0 5 10 15 20 25

Th
ro

u
gh

p
u

t
(M

b
p

s)

Rogue Data Packets

Correlation Rogue Data Packets - Throughput

Lineal (Correlation Rogue Data Packets - Throughput)

34 Context Aware Self-Configuring WI-FI Network

Fig. 3.20. Dispersion graph quality value VS throughput and linear regression

y = -0.306616x + 18.968691
R² = 0.520536

0

5

10

15

20

25

0 5 10 15 20 25

Th
ro

u
gh

p
u

t
(M

b
p

s)

Weighted Sum

Correlation Quality Value - Throughput

Lineal (Correlation Quality Value - Throughput)

Prototype Implementation 35

CHAPTER 4. PROTOTYPE IMPLEMENTATION

This section explains in detail the development of the prototype that performs
the context aware self-configuring function in a standard WI-FI network. The
context adaptation is based on the dynamic channel selection among the 3 non-
overlapping channels available on the 2.4GHz ISM band.

The objective of the prototype is to prove that a system like this works on the
test bet and that it can be implemented, in the future, on the most popular open
source operative systems for wireless routers such as OpenWrt3 and DD-WRT4.

The implementation of the prototype was done on one of the nodes type 2(see
3.2). This node was provisioned with two wireless cards. The internal card is
used as the sniffing source interface for the Kismet software. For this reason
this interface works in monitor mode. The second wireless interface is the
Atheros PCMCIA card which is used as an access point. The Atheros card
supports the operative mode “master” that simulate the normal behavior of a
wireless access point.

In addition to the above described the node two must executes the prototype
logic application. This application contains the XML parse function and the
context aware decision algorithm. The application is text-based and was
developed on the Java language programming. The election of this
programming language was done due to simplicity and previous knowledge on
the language.

From the explained up to know it is possible to infer several important blocks
that interact between each other to perform the adaptive function of the
proposed prototype. The Fig. 4.1 is a block diagram that shows the interaction
between the main components of the implemented prototype.

Fig. 4.1 Prototype block components interaction

3
 https://openwrt.org/

4
 http://www.dd-wrt.com/site/index

Intel Wireless card

Atheros Wireless Card

Kismet Software ParserKismet log file

Snnifer Java Application

Context-Aware
decision

algorithm

Ubuntu Operating System

Linux Kernel

36 Context Aware Self-Configuring WI-FI Network

The sniffer block is in charge of obtains the environment data and save it in an
XML file. This block is composed by two entities the Intel wireless card which
works with the IPW2200 Linux driver and the Kismet software.

The Intel wireless card works on monitor mode and collect frames form the air.
These frames are passed to the Kismet server who processes them and
generates an XML file with all the detected wireless networks and information
about each one of them. An example of the XML structure is shown in the Fig.
4.2.

Fig. 4.2. Portion of the Kismet XML file

The Java application block is in charge of process the output file generated by
the Kismet application and with the obtained metrics executes the context-
aware decision algorithm to select the best available channel. This block is
composed basically by two elements the parser and the context-aware
algorithm.

The parser processes the XML file and assigns the information to the classes
defined in the java application. The java application contains two main classes
WLAN and Channel. The WLAN class is a data structure that contains relevant
information about the detected wireless networks. The most relevant fields are:
network id, network type, SSID, operative channel, BSSID, number of packets,
number of data packets and maximum noise. The Channel class is a data
structure with information about the channels. The fields of the structure are:
channel id, number of interfering WLAN, rogue packets, rogue data packets,
rogue bytes and maximum noise level.

The context-aware decision algorithm is in charge of the decision of which is the
current best channel to work by processing the data stored on the Channel
class. The algorithm is explained with detail in section 4.1.

The last block is the Ubuntu operating system. This block is in charge of the
change the operative when is needed. This block contains two elements the
Linux Kernel and the Atheros wireless card.

Prototype Implementation 37

The Linux Kernel uses the MadWifi driver to manage the wireless card as a
standard access point. When the algorithm decides to change the actual
wireless channel it sends a Linux terminal command to change the actual
configuration. This command through the Linux Kernel is applied to the actual
MadWifi configuration. In order to send commands to the Linux Kernel from the
Java application the Process class is used.

An important point in this scheme is the fact that when the channel is changed
the driver itself informs the connected clients of this events and automatically
the clients change the configuration in order to match with the access point
request.

4.1 Context-Aware decision algorithm

The decision algorithm is based on two main processes: the calculation of the
quality values and the comparison between the expected capacity on the best
channel and the current capacity.

First of all the application executes the parse function in order to fill a matrix
called WNETsij with the information of each wireless network detected within the
access point coverage area.

After filling completely the network matrix the program starts with the calculation
of the quality values associated to each channel. This quality value models the
expected maximum capacity on each channel. The range of possible values is
from 0 to infinite where lower values represent better quality.

The quality value is obtained from the weighted sum of the detected number of
interfering networks and the number of detected data packets scaled by the
correlations coefficient obtained in 3.6.1. The expression used to calculate the
quality value was presented on equation (3-1). The system creates a vector QVi
with the calculated result for each channel.

After the vector QVi is fully generated, the program selects the lower quality to
obtain the best available channel. The best channel number is stored on a
variable called best_channel.

In the next stage the algorithm verifies if the actual iteration is the first one. This
is done because after the first iteration the system must be working on the best
available channel. If the actual iteration is the first iteration the system evaluates
if the best channel is the actual operative channel, if it is not the best channel a
Linux command is called to change the operative channel to the actual best
channel.

If the iteration is not the first one the system calculates the capacity per
channel. This capacity is estimated from the linear regression equation obtained
from the correlation between the quality value and the throughput. The equation
(4-1) shows the way by which the capacity value is calculated for each channel.
The values calculated are stored on a vector called CVi.

38 Context Aware Self-Configuring WI-FI Network

) (4-1)

Once CVi is calculated the system verifies if the best channel capacity represent
an improvement of at least 10% regarding the actual operative channel
capacity. If this constraint is fulfilled then the system changes the operative
channel to the best channel. If the constraint is not satisfied the channel does
not change. The objective of this constraint is to avoid loops between channels
due to small variations on the measured metrics. Moreover this percentage is a
variable indicator that defines the aggressiveness of the system against the
changes on the wireless environment.

After all the previous processes the system remains in an idle state during the
measurement interval. In this case the idle time has been set to 30 seconds.

The Fig. 4.3 shows the flux diagram of the prototype logic.

Fig. 4.3. Flux diagram of the prototype logic

Start

Interation==1

Calculate QVi

Select Best Channel

Best channel !=
operative channel

Change to best
channel

Best channel capacity
increase 10% of actual

capacity

Change to best
channel

Yes No

Yes

No

Yes

No

Calculate CVi

Parse XML

Fill WNETij

Idle Time

Prototype Implementation 39

4.2 Prototype testing

This section explains the experiment carried out in order to demonstrate the
effectiveness of the proposed context-aware decision algorithm. The proposed
algorithm is compared with two approaches: a random algorithm and a static
algorithm.

4.2.1 Experiment

The experiment scenario can be appreciated on Fig. 4.4. In this scenario the
node 1 is a node type 2 with the prototype implementation. The node 2 and
node 3 are clients of the SSID “wlan-test”. This wireless networks was
configured with the security mechanism WEP and a pre-shared key of 128 bits.
In this scenario node 3 sends UDP packets to node 2 through the access point.
The traffic generation and reception is done in the same way like previous
experiments.

Node 2

Eth1: 192.168.1.5

Node 1

Eth1: 192.168.1.1

Node 3

Eth1: 192.168.1.2

Infrastructure «wlan-test»

IEEE 802.11g

UDP @ 30.0Mbps

Infrastructure «wlan-test»

IEEE 802.11g

UDP @ 30.0Mbps

Fig. 4.4. Prototype testing scenario

This experiment consists in three separated test. On each test the start channel
is the 11. The duration of each test is about 600 seconds. At the second 300 a
rogue wireless network is introduced on the operative channel. This rogue
network transmits UDP traffic at 30Mbps. The idea behind the introduction of
the rogue network is to evaluate how the proposed algorithm changes the
channel in order to maximize the throughput. At the second 450 the rogue
network stops transmitting packets.

The entire experiment was carried out in the lab 016 of the EETAC campus.
This laboratory has a very crowded wireless environment with several WI-FI
networks working on the non-overlapping channels, so this environments is a
good example of real uncoordinated AP deployment.

The first test executes the proposed context-aware decision algorithm. The
second test executes a random algorithm and the last test does not change its
configuration.

The random algorithm is a modified version of the java application developed
for the prototype. The application generates a random number between 1 and
3. If the elected number is 1 the best channel is 1; however if the elected
number is 2 the selected best channel 6, and is the random number is 3 the
best channel is channel 11. The application verifies on each time interval if the
actual working channel is the generated best channel and if not a Linux
command is called to change the actual channel to the new best channel.

40 Context Aware Self-Configuring WI-FI Network

4.2.2 Results

The Table 4.1 shows the averages results of the quality metrics for each test.
As can be observed the proposed algorithm gives the best average throughput
of 12.55Mbps compared with the random algorithm 9.57 Mbps and the static
algorithm with 10.99Mbps. The delays values are also better in our
implementation.

Table 4.1. Prototype testing result comparison

Metric
Proposed
Algorithm

Random
Algorithm

Static
Algorithm

Throughput (Mbps)
12.55

±0.40

9.57

±0.77

10.99

±0.34

Delay (ms)
1.78

±0.26

11.18

±1.23

2.4

±0.24

The overall result shows that the capacity of the wireless network is increased
by the adaptation of the proposed system. Know is important to analyze the
individual behavior of the working WLAN on each test.

The Fig. 4.5 shows the throughput histogram of the random algorithm. This
algorithm is very variable due to its random nature. Even with the fact that the
number of possible channels for change is reduced so there is a high probability
that the chosen channel were the real best available channel the algorithm
provides a very low quality.

Fig. 4.5. Random algorithm throughput histogram

The Fig. 4.6 shows the throughput histogram of the static algorithm. An
important point to highlight in the result of this test is the fact that within the time
were the rogue network transmits data (300s-450s) the capacity of our WI-FI is
seriously affected. This is caused because both networks have to share the
same medium. In the rest of the experiment the channel 11 works well because

-5

0

5

10

15

20

0 100 200 300 400 500 600

Th
ro

u
gh

p
u

t
(M

b
p

s)

Time (s)

Random Algorithm

Prototype Implementation 41

it has more or less the same quality value as the best channel. This fact will be
appreciated on the analysis of the proposed algorithm.

Fig. 4.6. Static algorithm throughput histogram

The Fig. 4.7 shows the throughput histogram of our proposed algorithm. As can
be seen the decision algorithm, select the best channel in order to increase the
maximum capacity of the network. The most relevant point on the graph is at
second 300 where the rogue network starts to transmit. After 1 time interval the
algorithm detects de congestion on the operative channel and changes its
configuration. This is reflected on the increase on throughput from the second
340 of the test.

Fig. 4.7 Proposed algorithm throughput histogram

The Table 4.2 shows the more important output data from the Java application.
On iteration 2 the algorithm selects the channel 11 as the best channel with a
quality value of 6.928 and an associated capacity of 16.845. The decision of the
algorithm is to stay on channel 11 because it was the operative channel at that
moment.

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600

Th
ro

u
gh

p
u

t
(M

b
p

s)

Time (s)

Static Algorithm

0

5

10

15

20

0 100 200 300 400 500 600

Th
ro

u
gh

p
u

t
(M

b
p

s)

Time (s)

Proposed Algorithm

42 Context Aware Self-Configuring WI-FI Network

In iteration 3 the system detects that the new best channel is the channel 1, but
compared with the actual expected capacity it does not provides more than the
10% of improvement so the algorithm decides to stay on the channel 11.

In the iteration 11 the prototype detects the presence of congestion from a
rogue WLAN. This can be appreciated on the quality values 22.181 of the
channel 11. The algorithm decides to set the operative channel to 1. Is
important to denote that in this case channel 1 provides an expected capacity if
16.706Mbps which if compared with the actual capacity on channel 11 of
12.168 represents an improvement of 27%.

The last iteration decides to stay on channel 1 because the channel 1 does not
satisfy the 10% of improvement.

Table 4.2. Context-aware decision algorithm behavior

Iteration
Time on

experiment(s)
Channel QVi CVi

Operative

Channel
Decision

2 70

1 7.186 16.765

11

Best channel 11

Stay on channel
11

6 15.036 14.358

11 6.928 16.845

3 100

1 6.149 17.083

11

Best channel 1

Stay on channel
11

6 7.706 16.606

11 7335 16.72

11 340

1 7.371 16.709

1

Best channel 1

Change to
channel 1

6 9.113 16.174

11 22.181 12.168

19 580

1 7.778 16.584

1

Best channel 11

Stay on channel
1

6 8.891 16.242

11 7.52 16.663

With this analysis is demonstrated that the proposed prototype works and take
the decision of set a net channel only of the best channel provides a significant
improvement. Is important to highlight the fact that the proposed algorithm
provides a stable behavior in normal conditions with just 1 real channel variation
during the test.

Conclusions 43

CHAPTER 5. CONCLUSIONS

The actual uncoordinated deployments of wireless networks based on the
802.11 standard creates a very competitive environment in which is necessary
to share the limited spectrum available within the congested 2.4GHz ISM band.

A context-aware system is very useful in order to reduce the interference of
neighbor’s wireless networks through the intelligent election of communication
channel to improve the throughput. A scheme like this permits a better
utilization of the non-overlapping channel distributing the neighbors WLAN
among them.

Through several tests was demonstrated that wireless networks working on the
same channel can harm the performance of the working WLAN in terms of
throughput and delay.

During the deployment of this thesis some metrics were proposed in order to
model the capacity on each wireless channel. From those metrics the number of
interfering radios and the numbers of data packets were the most relevant and
the ones that model in an accurate way the real capacity of a communication
channel. From these two metric a new variable was created as a weighted sum
scaled by the correlation coefficient of each metric. This new proposed variable
called quality value takes into account both metrics and is used to select the
best available channel on the proposed prototype.

Even that our metrics gives us an approximated value for the capacity of the
channel. More experiment can be done on different locations in order to obtain
more samples with the relation between the metrics and the measured
throughput. This can be done to improve the correlation coefficients of the
metrics.

The prototype experiment demonstrates the viability of an implementation of the
context-aware self-configuring system. On normal conditions the proposed
algorithm select the actual best channel and decides of it is necessary to set a
new channel only if this new channel improves the throughput in a significant
amount.

Futures context-aware systems can make others configurations changes in
order to increase even more the overall capacity of the wireless network
especially on deployments of wireless mesh in which the algorithm can allocate
the channels among the different link in order to reduce the interference
between them.

A future trend of this work can be the implementation of the algorithm inside a
real wireless access point. The wireless access point can use the OpenWrt or
the DD-WRT operating systems. Both systems have working distributions of the
kismet software, so the sniffing scheme presented on this document can fit
perfectly.

Bibliography 45

CHAPTER 6. BIBLIOGRAPHY

[1]. Akella, A., G. Judd, S. Seshan, and P. Steenkiste. 2007. Self-management
in chaotic wireless deployments. Wireless Networks 13 (6): 737-55.

[2]. Afanasyev, M., Tsuwei Chen, G. M. Voelker, and A. C. Snoeren. 2010.
Usage patterns in an urban WiFi network. Networking, IEEE/ACM
Transactions on 18 (5): 1359-72.

[3]. Kauffmann, B., F. Baccelli, A. Chaintreau, V. Mhatre, K. Papagiannaki, and
C. Diot. 2007. Measurement-based self-organization of interfering 802.11
wireless access networks. Paper presented at INFOCOM 2007. 26th IEEE
International Conference on Computer Communications. IEEE.

[4]. Mishra, A., S. Banerjee, and W. Arbaugh. 2005. Weighted coloring based
channel assignment for WLANs. ACM SIGMOBILE Mobile Computing and
Communications Review 9 (3): 19-31.

[5]. Mishra, A., V. Shrivastava, D. Agrawal, S. Banerjee, and S. Ganguly. 2006.
Distributed channel management in uncoordinated wireless environments.
Paper presented at Proceedings of the 12th annual international conference
on Mobile computing and networking.

[6]. da Silva, M. W. R., and J. F. de Rezende. 2009. TDCS: A new mechanism
for automatic channel assignment for independent IEEE 802.11 networks.
Paper presented at Ad Hoc Networking Workshop, 2009. Med-Hoc-Net
2009. 8th IFIP Annual Mediterranean.

[7]. Ramachandran, K. N., E. M. Belding, K. C. Almeroth, and M. M. Buddhikot.
2006. Interference-aware channel assignment in multi-radio wireless mesh
networks. Paper presented at INFOCOM 2006. 25th IEEE International
Conference on Computer Communications.

[8]. Meraki [Online]. Available: http://www.meraki.com

[9]. Meru Networks [Online]. Available: http://www.merunetworks.com

[10]. Aruba Networks [Online]. Available: http://www.arubanetworks.com

[11]. IEEE standard for information technology--telecommunications and
information exchange between systems--local and metropolitan area
networks--specific requirements part 11: Wireless LAN medium access
control (MAC) and physical layer (PHY) specifications amendment 8: IEEE
802.11 wireless network management2011. IEEE std 802.11v-2011
(amendment to IEEE std 802.11-2007 as amended by IEEE std 802.11k-
2008, IEEE std 802.11r-2008, IEEE std 802.11y-2008, IEEE std 802.11w-
2009, IEEE std 802.11n-2009, IEEE std 802.11p-2010, and IEEE std
802.11z-2010).

[12]. Pejman Roshan, Jonathan. 2003. 802.11 wireless LAN fundamentals.
United States of America: Cisco Press.

http://www.meraki.com/
http://www.merunetworks.com/
http://www.arubanetworks.com/

46 Context Aware Self-Configuring WI-FI Network

[13]. Kismet tool [Online]. Available: http://www.kismetwireless.net/

[14]. Iperf tool [Online]. Available: http://sourceforge.net/projects/iperf/

[15]. MadWifi driver [Online]. Available: http://madwifi-project.org/

[16]. Dujovne, D., T. Turletti, and F. Filali. 2010. A taxonomy of IEEE 802.11
wireless parameters and open source measurement tools. Communications
Surveys & Tutorials, IEEE 12 (2): 249-62.

[17]. Wu, D., P. Djukic, and P. Mohapatra. 2008. Determining 802.11 link
quality with passive measurements. Paper presented at Wireless
Communication Systems. 2008. ISWCS '08. IEEE International Symposium.

[18]. Gupta, D., P. Mohapatra, and Chen-Nee Chuah. 2008. Efficient
monitoring in wireless mesh networks: Overheads and accuracy trade-offs.
Paper presented at Mobile Ad Hoc and Sensor Systems, 2008. MASS
2008. 5th IEEE International Conference.

http://www.kismetwireless.net/
http://sourceforge.net/projects/iperf/
http://madwifi-project.org/

Annexes 47

CHAPTER 7. ANNEXES

7.1 MadWifi installation tutorial

The objective of this document is to give a brief description of the procedures
needed to get, install and use the MadWifi driver. The equipment that used for
the creation of this tutorial is a laptop Compaq nx6110 running Ubuntu 10.10.
The wireless card that will use MadWifi is a PCMCIA Atheros AR5001x. The
complete description of the wireless card is shown in the Fig. 7.1.

Fig. 7.1 Partial view of the command “lshw”

As can be noticed in the above figure the default driver that Ubuntu install for
this card is the “ath5k”. This driver is fully working but presents some problems
reporting noise level on its monitor mode. In order to know what driver is used
on a computer the command “lshw” can be used, also the command “lsmod”
shows the modules that are actually running on the system.

An important fact previous to the installation is to verify that your wireless card
is supported by the MadWifi driver. This can be confirmed at http://madwifi-
project.org/wiki/Compatibility.

7.1.1 Getting the driver

The latest MadWifi driver can be found at http://madwifi-project.org/. In this
case is used the driver version 0.9.2.1 and can be downloaded from
http://sourceforge.net/projects/madwifi/files/madwifi/0.9.2.1/madwifi-
0.9.2.1.tar.gz/download.

Once the driver is downloaded is necessary to extract its content with the
command:

tar -xvf madwifi-0.9.2.1.tar.gz

http://madwifi-project.org/wiki/Compatibility
http://madwifi-project.org/wiki/Compatibility
http://madwifi-project.org/
http://sourceforge.net/projects/madwifi/files/madwifi/0.9.2.1/madwifi-0.9.2.1.tar.gz/download
http://sourceforge.net/projects/madwifi/files/madwifi/0.9.2.1/madwifi-0.9.2.1.tar.gz/download

48 Context Aware Self-Configuring WI-FI Network

Then move to the MadWifi folder created with the previous step:

cd madwifi-0.9.2.1/

7.1.2 Installing the driver

Before the installation process is important to install some Linux features. First
update the Ubuntu system through the update manager of the system.

The Linux headers of the current kernel also are requirements for MadWifi. To
know the kernel version run the command “uname -r”. In this case the version is
2.6.35-22-generic. To install the headers run the command below:

sudo apt-get install linux-headers-2.6.35-22-generic

Also is necessary to install some features of perl with the following command:

sudo apt-get install build-essential perl

With the headers installed the installation process can start, first building the
MadWifi driver and then installing it. To achieve this run the commands below:

sudo make

sudo make install

7.1.3 Loading the MadWifi module

To load the module is used the command “modprobe”. The commands below
do two things remove the previous ath5k module and load the ath_pci module
that is the MadWifi.

sudo modprobe -r ath5k

sudo modprobe ath_pci

Until now two interfaces were created one wlan0 and the ath0. The wlan0 has
no functionality but represent the physical interface. The ath interface are the
ones that can be used for different purposes.

To make prevalent the current configuration some changes are necessaries in
the module file that is located at /etc/ in the Linux file system. At the end of this
file add “ath_pci” and delete the previous driver (ath5k in the case of the
tutorial). Also in the folder /etc/modprobe.d/ a black list can exist that will black
list the MadWifi driver. If in this folder exist a file with the name “blacklist-
ath_pci.conf” then it must be modified commenting the lines in it.

7.1.4 Creating VAP

The MadWifi driver works with VAP (Virtual AP). Using this feature can be
possible to create from a physical interface several interfaces for different
purposes. The tool to create these interfaces is “wlanconfig” and its utilization is
explained below:

 To create an access point interface run the command: “wlanconfig ath0
create wlandev wifi0 wlanmode ap”.

Annexes 49

 To create an estation interface use the command: “wlanconfig ath1
create wlandev wifi0 wlanmode sta nosbeacon”.

 To create a monitor VAP use the command: “wlanconfig ath2 create
wlandev wifi0 wlanmode monitor”.

 To destroy a VAP issue the command: “wlanconfig ath0 destroy”.

Notice that on each commands the ath’x’ is the logical name of the interface.
This interface can be shown with the command “iwconfig”. In order to use the
created interfaces the command “ifconfig ath1 up” is needed.

7.2 Prototype source code

package cascwn;
import java.io.*;
import org.w3c.dom.*;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.EntityResolver;
import org.xml.sax.InputSource;
/**
 * The following software was developed as part of the Master Thesis "Context
aware self-configuring WIFI network""
 * @author Carlos A. Quiel Rodriguez
 */
class channel {
 int num_networks, num_packets,
data_size,data_packets,data_packets_history,packets_history;
 double max_noise,quality_value,actual_capacity;
channel(){
 num_networks=0;
 num_packets=0;
 data_size=0;
 data_packets=0;
 max_noise=-200;
 quality_value=0;
 actual_capacity=0;
 data_packets_history=0;
 packets_history=0;
 }

}

class wlan {
 String type,essid, bssid;
 int channel,num_clients,num_packets,data_size,data;

50 Context Aware Self-Configuring WI-FI Network

 double
last_snr,best_snr,worst_snr,last_signal_dbm,last_noise_dbm,min_noise_dbm,
max_signal_dbm,min_signal_dbm,max_noise_dbm;

wlan() {
 type=null;
 essid=null;
 bssid=null;
 best_snr=0;
 last_snr=0;
 channel=0;
 last_signal_dbm=0;
 last_noise_dbm=0;
 worst_snr=0;
 min_noise_dbm=0;
 max_signal_dbm=0;
 min_signal_dbm=0;
 max_noise_dbm=0;
 num_clients=0;
 num_packets=0;
 data_size=0;
 data=0;

}
}

public class CASCWN {
 public static int last_channel;

 public static double max_capacity;

 public static void delay(int time) { //delay in seconds
 try {
 time = time*1000;
 Thread.sleep(time);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }

 }
 public static void change_channel (int channel) throws IOException{
 if (CASCWN.last_channel==channel) {
 System.out.printf("Is not necessary a channel change. Working on
channel: %d\n",channel);
 }
 else {
 CASCWN.last_channel=channel;
 System.out.printf("Changing the operative channel to: %d\n",channel);

Annexes 51

 Process process = new ProcessBuilder("ip","link","set","ath0",
"down").start();
 InputStream is = process.getInputStream();
 InputStreamReader isr = new InputStreamReader(is);
 BufferedReader br = new BufferedReader(isr);
 String line;
 while ((line = br.readLine()) != null) {
 System.out.println(line);
 }
 delay(1);
 String ch = String.valueOf(channel);
 Process process0 = new
ProcessBuilder("iwconfig","ath0","channel",ch).start();
 InputStream is0 = process0.getInputStream();
 InputStreamReader isr0 = new InputStreamReader(is0);
 BufferedReader br0 = new BufferedReader(isr0);
 String line0;
 while ((line0 = br0.readLine()) != null) {
 System.out.println(line0);
 }
 delay(1);
 Process process1 = new ProcessBuilder("ip","link","set","ath0", "up").start();
 InputStream is1 = process1.getInputStream();
 InputStreamReader isr1 = new InputStreamReader(is1);
 BufferedReader br1 = new BufferedReader(isr1);
 String line1;
 while ((line1 = br1.readLine()) != null) {
 System.out.println(line1);
 }

 }

 }

 public static void main(String[] args) throws IOException{

 int best_channel=0,loop_count=0,my_wlan_pos=-1;
 String my_wlan = "wlan-test";

 // Creation of the channel array
 channel[] Channels = new channel[14];
 for (int i=0; i<Channels.length; i++) {
 Channels[i] = new channel();
 }
 try {
 System.out.printf ("Sofware para el analisis del XML de salida del
Kismet\nAutor:Carlos Quiel\n\n");
 while (loop_count<30){

52 Context Aware Self-Configuring WI-FI Network

 System.out.println("\nIteracion " + (loop_count+1));

 DocumentBuilderFactory docBuilderFactory =
DocumentBuilderFactory.newInstance();
 DocumentBuilder docBuilder =
docBuilderFactory.newDocumentBuilder();
 docBuilder.setEntityResolver(new EntityResolver() {
 @Override
 public InputSource resolveEntity(String publicId, String systemId)
 throws SAXException, IOException {
 //System.out.println("Ignoring " + publicId + ", " + systemId);
 return new InputSource(new StringReader(""));
 }
 });

 Document doc = docBuilder.parse (new File("Kismet.netxml"));
 doc.getDocumentElement ().normalize ();
 NodeList listOfNetworks = doc.getElementsByTagName("wireless-
network");
 int totalNetworks = listOfNetworks.getLength();

 //Creation of the wlan array
 wlan[] Wlans = new wlan[totalNetworks];
 for (int i=0; i<Wlans.length; i++) {
 Wlans[i] = new wlan();
 }

 int mainch,mainpacket;
 //Begin the parse of the XML
 for(int s=0; s<listOfNetworks.getLength() ; s++){
 mainch=0;
 mainpacket=0;
 Node WlanNode = listOfNetworks.item(s);
 if(WlanNode.getNodeType() == Node.ELEMENT_NODE){
 Element FirstWlanElement = (Element)WlanNode;
 //Node type
 Wlans[s].type=FirstWlanElement.getAttribute("type");
 //Node SSID
 NodeList SsidList =
FirstWlanElement.getElementsByTagName("essid");
 Element SsidElement = (Element)SsidList.item(0);
 if(SsidElement!=null){//SSID not null validation
 NodeList text1EList = SsidElement.getChildNodes();
 Wlans[s].essid=text1EList.item(0).getNodeValue();
 if (Wlans[s].essid.equals(my_wlan)) {
 my_wlan_pos=s;}
 }
 //Node bssid
 NodeList BssidList =
FirstWlanElement.getElementsByTagName("BSSID");

Annexes 53

 Element BssidElement = (Element)BssidList.item(0);
 NodeList text2EList = BssidElement.getChildNodes();
 Wlans[s].bssid=text2EList.item(0).getNodeValue();

 //Node channel
 NodeList ChannelList =
FirstWlanElement.getElementsByTagName("channel");
 Element ChannelElement = (Element)ChannelList.item(0);
 NodeList text3EList = ChannelElement.getChildNodes();

Wlans[s].channel=Integer.parseInt(text3EList.item(0).getNodeValue());
 // Node packets
 //total
 NodeList PacketList =
FirstWlanElement.getElementsByTagName("total");
 Element PacketsElement = (Element)PacketList.item(0);
 NodeList text4EList = PacketsElement.getChildNodes();

Wlans[s].num_packets=Integer.parseInt(text4EList.item(0).getNodeValue());

 NodeList PacketdataList =
FirstWlanElement.getElementsByTagName("data");
 Element PacketsdataElement = (Element)PacketdataList.item(0);
 NodeList text13EList = PacketsdataElement.getChildNodes();

Wlans[s].data=Integer.parseInt(text13EList.item(0).getNodeValue());

 // nodo datasize
 NodeList DataList =
FirstWlanElement.getElementsByTagName("datasize");
 Element DataElement = (Element)DataList.item(0);
 NodeList text11EList = DataElement.getChildNodes();

Wlans[s].data_size=Integer.parseInt(text11EList.item(0).getNodeValue());

 //--
 // Nodo Frequencies
 NodeList listOfFrequencies =
FirstWlanElement.getElementsByTagName("freqmhz");
 int u=0;
 for(int t=0; t<Wlans[s].num_packets;){

 Element FreqElement = (Element)listOfFrequencies.item(u);
 NodeList text12EList = FreqElement.getChildNodes();

 //Separacion del String frequencia
 String[] Textfreq = text12EList.item(0).getNodeValue().split (" ");
 int freq, freq_packets;
 freq = Integer.parseInt(Textfreq[0]);
 freq_packets = Integer.parseInt(Textfreq[1]);

54 Context Aware Self-Configuring WI-FI Network

 t=t+freq_packets;
 if(freq_packets>mainpacket){
 mainch=freq;
 mainpacket=freq_packets;
 }

 //Packets per channel distribution
 if (my_wlan_pos!=s){
 switch (freq) {
 case 2412: Channels[0].num_packets += freq_packets;
break;
 case 2417: Channels[1].num_packets += freq_packets;
break;
 case 2422: Channels[2].num_packets += freq_packets;
break;
 case 2427: Channels[3].num_packets += freq_packets;
break;
 case 2432: Channels[4].num_packets += freq_packets;
break;
 case 2437: Channels[5].num_packets += freq_packets;
break;
 case 2442: Channels[6].num_packets += freq_packets;
break;
 case 2447: Channels[7].num_packets += freq_packets;
break;
 case 2452: Channels[8].num_packets += freq_packets;
break;
 case 2457: Channels[9].num_packets += freq_packets;
break;
 case 2462: Channels[10].num_packets += freq_packets;
break;
 case 2467: Channels[11].num_packets += freq_packets;
break;
 case 2472: Channels[12].num_packets += freq_packets;
break;
 default: Channels[13].num_packets += freq_packets; break;
 }
 }
 u++;
 }

 //--
 // Nodo Wireless-Client
 NodeList listOfClient =
FirstWlanElement.getElementsByTagName("wireless-client");
 Wlans[s].num_clients=listOfClient.getLength();
 //nodo last snr
 //Last Signal
 NodeList Last_signal_dbmList =
FirstWlanElement.getElementsByTagName("last_signal_dbm");

Annexes 55

 Element Last_signal_dbmElement =
(Element)Last_signal_dbmList.item(0);
 NodeList text5EList = Last_signal_dbmElement.getChildNodes();

Wlans[s].last_signal_dbm=Double.parseDouble(text5EList.item(0).getNodeValu
e());
 // Last Noise
 NodeList Last_noise_dbmList =
FirstWlanElement.getElementsByTagName("last_noise_dbm");
 Element Last_noise_dbmElement =
(Element)Last_noise_dbmList.item(0);
 NodeList text6EList = Last_noise_dbmElement.getChildNodes();

Wlans[s].last_noise_dbm=Double.parseDouble(text6EList.item(0).getNodeValu
e());
 //calculo last SNR

Wlans[s].last_snr=10*Math.log10((10*Math.exp(Wlans[s].last_signal_dbm/10))/(
10*Math.exp(Wlans[s].last_noise_dbm/10)));

 //nodo Best_snr
 //Max Signal
 NodeList Max_signal_dbmList =
FirstWlanElement.getElementsByTagName("max_signal_dbm");
 Element Max_signal_dbmElement =
(Element)Max_signal_dbmList.item(0);
 NodeList text7EList = Max_signal_dbmElement.getChildNodes();

Wlans[s].max_signal_dbm=Double.parseDouble(text7EList.item(0).getNodeVal
ue());
 // Min Noise
 NodeList Min_noise_dbmList =
FirstWlanElement.getElementsByTagName("min_noise_dbm");
 Element Min_noise_dbmElement =
(Element)Min_noise_dbmList.item(0);
 NodeList text8EList = Min_noise_dbmElement.getChildNodes();

Wlans[s].min_noise_dbm=Double.parseDouble(text8EList.item(0).getNodeValu
e());
 //calculo last SNR

Wlans[s].best_snr=10*Math.log10((10*Math.exp(Wlans[s].max_signal_dbm/10))
/(10*Math.exp(Wlans[s].min_noise_dbm/10)));

 //nodo Worst_snr
 //Min Signal
 NodeList Min_signal_dbmList =
FirstWlanElement.getElementsByTagName("min_signal_dbm");
 Element Min_signal_dbmElement =
(Element)Min_signal_dbmList.item(0);

56 Context Aware Self-Configuring WI-FI Network

 NodeList text9EList = Min_signal_dbmElement.getChildNodes();

Wlans[s].min_signal_dbm=Double.parseDouble(text9EList.item(0).getNodeValu
e());
 // Max Noise
 NodeList Max_noise_dbmList =
FirstWlanElement.getElementsByTagName("max_noise_dbm");
 Element Max_noise_dbmElement =
(Element)Max_noise_dbmList.item(0);
 NodeList text10EList = Max_noise_dbmElement.getChildNodes();

Wlans[s].max_noise_dbm=Double.parseDouble(text10EList.item(0).getNodeVal
ue());
 //calculo last SNR

Wlans[s].worst_snr=10*Math.log10((10*Math.exp(Wlans[s].min_signal_dbm/10)
)/(10*Math.exp(Wlans[s].max_noise_dbm/10)));

 // Networks per channel, Bytes per channel, data packets per
channel calculation
 if (Wlans[s].channel==0){
 switch (mainch) {
 case 2412:
Channels[0].num_networks+=1;Channels[0].data_size+=Wlans[s].data_size;Ch
annels[0].data_packets+=Wlans[s].data;Wlans[s].channel=1; break;
 case 2417:
Channels[1].num_networks+=1;Channels[1].data_size+=Wlans[s].data_size;Ch
annels[1].data_packets+=Wlans[s].data;Wlans[s].channel=2; break;
 case 2422:
Channels[2].num_networks+=1;Channels[2].data_size+=Wlans[s].data_size;Ch
annels[2].data_packets+=Wlans[s].data;Wlans[s].channel=3; break;
 case 2427:
Channels[3].num_networks+=1;Channels[3].data_size+=Wlans[s].data_size;Ch
annels[3].data_packets+=Wlans[s].data;Wlans[s].channel=4; break;
 case 2432:
Channels[4].num_networks+=1;Channels[4].data_size+=Wlans[s].data_size;Ch
annels[4].data_packets+=Wlans[s].data;Wlans[s].channel=5; break;
 case 2437:
Channels[5].num_networks+=1;Channels[5].data_size+=Wlans[s].data_size;Ch
annels[5].data_packets+=Wlans[s].data;Wlans[s].channel=6; break;
 case 2442:
Channels[6].num_networks+=1;Channels[6].data_size+=Wlans[s].data_size;Ch
annels[6].data_packets+=Wlans[s].data;Wlans[s].channel=7; break;
 case 2447:
Channels[7].num_networks+=1;Channels[7].data_size+=Wlans[s].data_size;Ch
annels[7].data_packets+=Wlans[s].data;Wlans[s].channel=8; break;
 case 2452:
Channels[8].num_networks+=1;Channels[8].data_size+=Wlans[s].data_size;Ch
annels[8].data_packets+=Wlans[s].data;Wlans[s].channel=9; break;

Annexes 57

 case 2457:
Channels[9].num_networks+=1;Channels[9].data_size+=Wlans[s].data_size;Ch
annels[9].data_packets+=Wlans[s].data;Wlans[s].channel=10; break;
 case 2462:
Channels[10].num_networks+=1;Channels[10].data_size+=Wlans[s].data_size;
Channels[10].data_packets+=Wlans[s].data;Wlans[s].channel=11; break;
 case 2467:
Channels[11].num_networks+=1;Channels[11].data_size+=Wlans[s].data_size;
Channels[11].data_packets+=Wlans[s].data;Wlans[s].channel=12; break;
 case 2472:
Channels[12].num_networks+=1;Channels[12].data_size+=Wlans[s].data_size;
Channels[12].data_packets+=Wlans[s].data;Wlans[s].channel=13; break;
 default:
Channels[13].num_networks+=1;Channels[13].data_size+=Wlans[s].data_size;
Channels[13].data_packets+=Wlans[s].data;Wlans[s].channel=14; break;
 }
 }else{
 Channels[(Wlans[s].channel-1)].num_networks+=1;
 Channels[(Wlans[s].channel-1)].data_size+=Wlans[s].data_size;
 Channels[Wlans[s].channel-1].data_packets+=Wlans[s].data;
 }

 //End of Networks, Bytes and data packets per Channel

 }//end of if
 }//end of XML parse

 //calulation of max noise per channel
 for (int t=0; t<Wlans.length; t++) {
 if (Channels[Wlans[t].channel-
1].max_noise<Wlans[t].max_noise_dbm){
 Channels[Wlans[t].channel-
1].max_noise=Wlans[t].max_noise_dbm;
 }
 }
 //Calculate non acumulate data packets
 for (int t=0; t<Channels.length; t++) {
 if ((t+1)==Wlans[my_wlan_pos].channel){
 Channels[t].data_packets-=Wlans[my_wlan_pos].data;

 Channels[t].data_size-=Wlans[my_wlan_pos].data_size;
 Channels[t].num_networks--;
 }}

 //----------ADAPTATIVE LOGIC--------------------------------------
 if (loop_count==0){
 for (int t=0; t<Channels.length; t++) {
 Channels[t].data_packets_history=Channels[t].data_packets;
 Channels[t].packets_history=Channels[t].num_packets;
 }

58 Context Aware Self-Configuring WI-FI Network

 }else {
 for (int t=0; t<Channels.length;) {
 int history_aux = Channels[t].data_packets_history;
 Channels[t].data_packets_history=Channels[t].data_packets;
 Channels[t].data_packets-=history_aux;

 int history_aux1 = Channels[t].packets_history;
 Channels[t].packets_history=Channels[t].num_packets;
 Channels[t].num_packets-=history_aux1;

 Channels[t].quality_value=((Channels[t].num_networks*-
0.83866)+(Channels[t].data_packets*-0.57617))/(-1.41483);
 Channels[t].actual_capacity=(-
0.306616*Channels[t].quality_value)+18.968691;
 t+=5;
 }
 best_channel=Wlans[my_wlan_pos].channel;
 for (int t=0; t<Channels.length;) {
 if (Channels[t].quality_value<Channels[best_channel-1].quality_value)
{
 best_channel=t+1;
 }
 t+=5;}
 if(loop_count==1)
 {
 if(best_channel!=Wlans[my_wlan_pos].channel)
 {

 change_channel(best_channel);
 }

 }
 else {
 if (((1-(Channels[Wlans[my_wlan_pos].channel-
1].actual_capacity/Channels[best_channel-1].actual_capacity))*100)>=10){

 change_channel(best_channel);

 }
 }
 System.out.printf("Working channel %d Capacity %.3f Best channel
%d Capacity %.3f\n",
Wlans[my_wlan_pos].channel,Channels[Wlans[my_wlan_pos].channel-
1].actual_capacity,best_channel,Channels[best_channel-1].actual_capacity);
 }

 //PRINT INFO PER CHANNEL

 System.out.println("Information Per Channel ");

Annexes 59

 System.out.printf("Channel; Interfering WLAN; Rogue Data Packets;
Quality Value; Capcity\n");
 for (int t=0; t<Channels.length;) {
 System.out.printf(" %d; %d; %d; %.3f;
%.3f\n",(t+1),Channels[t].num_networks,Channels[t].data_packets,Channels[t].q
uality_value, Channels[t].actual_capacity);
 t+=5; }
 //--

 loop_count++;

 for (int t=0;t<Channels.length; t++)
 {
 Channels[t].num_networks=0;
 Channels[t].num_packets=0;
 Channels[t].data_size=0;
 Channels[t].data_packets=0;
 Channels[t].max_noise=-200;
 Channels[t].quality_value=0;
 Channels[t].actual_capacity=0;
 my_wlan_pos=-1;
 }

 //---------------------DELAY--------------------------------------
 delay(60);
 //--
 }//fin while
 }// fin try
 catch (SAXParseException err) {
 System.out.println ("** Parsing error" + ", line "
 + err.getLineNumber () + ", uri " + err.getSystemId ());
 System.out.println(" " + err.getMessage ());

 }
 catch (SAXException e) {
 Exception x = e.getException ();
 ((x == null) ? e : x).printStackTrace ();

 }
 catch (Throwable t) {
 t.printStackTrace ();
 }
 }//end of main
}

