

TREBALL DE FI DE CARRERA

TÍTOL DEL TFC: Mission Management for Unmanned Aircraft Systems

TITULACIÓ: Enginyeria Tècnica Aeronàutica, especialitat Aeronavegació

AUTOR: Marta Valenzuela Arroyo

DIRECTOR: Pablo Royo Chic

DATA: 4 de Juliol de 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41803908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Títol: Mission Management for Unmanned Aircraft Systems

Autor: Marta Valenzuela Arroyo

Director: Pablo Royo Chic

Data: 4 de Juliol de 2011

Resum

Un Mission Manager aporta flexibilitat, optimització i autonomia a tota missió
amb vehicles aeris no tripulats (UAV). És l’encarregat d’interactuar amb les
Categories de Vol i Càrrega de Pagament per a coordinar la missió. Per
aconseguir-ho, executa un autòmat amb accions adjuntes.

El Mission Manager treballa conjuntament amb un Mission Monitor, una unió
anomenada Categoria de Missió, per reduir la interacció entre l’home i la
màquina durant el vol. A més a més, els beneficis que aporta aquesta
Categoria van més enllà del dia de la missió, ja que amb la Categoria de
Missió s’aconsegueix reduir el temps de disseny d’una missió.

Aquest treball fi de carrera té l’objectiu exprés de dissenyar, desenvolupar i
implementar aquestes dues parts principals de la Categoria de Missió per un
projecte de la UPC-ICARUS anomenat Sky-Eye.

El grup ICARUS està localitzat al Parc Mediterrani de la Tecnologia de
Castelldefels i està bàsicament format per investigadors de la UPC i alguns
dels seus estudiants.

Sky-Eye és un projecte subvencionat per la Generalitat de Catalunya per
desenvolupar missions de inspecció de post-incendis amb UAV.

Per aconseguir els objectius, aquest treball fi de carrera ha investigat l’estat de
l’art del projecte Sky-Eye, ha fet una proposta de disseny de la Categoria de
Missió, la ha desenvolupada i finalment s’ha testejat la seva actuació amb
simulacions fetes amb Categories que s’estan utilitzant actualment al projecte.

Els resultats que s’han obtingut podrien ser considerats excel·lents perquè les
parts principals de la Categoria de Missió han estat introduïdes al projecte Sky-
Eye i assoleixen tots els objectius principals que els pertoquen. Com a resultat,
després d’aquest treball fi de carrera, la Categoria de Càrrega de Pagament és
optimitzada i operada tenint en compte en tot moment les necessitats de
l’usuari. Per la seva part, la Categoria de Vol és ara actualitzada
automàticament segons les circumstàncies variants de la missió. A més, s’hi
ha afegit algunes funcionalitats extres que donen un valor afegit a aquest
treball, com la possibilitat de planejar una missió abans de l’actuació.

Title: Mission Management for Unmanned Aircraft Systems

Author: Marta Valenzuela Arroyo

Director: Pablo Royo Chic

Date: July, 4th 2011

Overview

A Mission Manager brings flexibility, optimization and autonomy to a mission
with unmanned aircraft vehicles (UAV). It is in charge of interacting with the
Flight and Payload Categories to coordinate the mission. For achieving it, it
executes an automaton with attached actions.

It works conjunctly with a Mission Monitor, a union called Mission Category, to
reduce the human-machine interaction during the flight. Furthermore, its
benefits go beyond the day of the mission, as the Mission Category reuses
efforts to reduce the mission designing time.

This project has the express objective of designing and implementing these
two main parts of the Mission Category of a UPC-ICARUS project called Sky-
Eye.

The ICARUS group is located in the Mediterranean Technology Park in
Castelldefels and is basically formed by researchers of the UPC and some of
their students.

Sky-Eye is a project subsidized for the Government of Catalonia for designing
a post-fire inspection UAS mission.

In order to achieve its objectives, this final degree project has researched the
State of Art of the Sky-Eye project, it has made a proposal of design of the
Mission part, it has developed it and finally it has tested its performances with
simulations with the Categories that are currently being used on the project.

The results obtained might be considered excellent because the main parts of
the Mission Category have been introduced in the Sky-Eye’s project and they
fulfil all the main objectives of the Category. As a result, after this Final Degree
Project, the Payload Category is optimized and operated taking into account
the user needs. For its part, the Flight Category is now automatically updated
according to the changing mission circumstances. Moreover, it has been added
some extra functionalities that provides extra value to this project, like the
possibility of planning a mission before the actuation.

CONTENTS

INTRODUCTION .. 11

MOTIVATION ... 14

CHAPTER 1. SKY EYE’S PROJECT STATE OF ART 15

1.1. Hardware architecture ... 15

1.2. USAL Service Architecture ... 16

CHAPTER 2. MISSION CATEGORY DESIGN .. 19

2.1. Mission Manager Design .. 20
2.1.1. Mission Manager under USAL.. 20
2.1.2. Mission Manager States ... 22
2.1.3. Automaton State of Art ... 24
2.1.4. Sky-Eye’s state machine .. 26

2.2. Mission Monitor Design .. 35
2.2.1. Mission Monitor under USAL .. 35
2.2.2. Architecture... 35

CHAPTER 3. MISSION CATEGORY DEVELOPMENT 37

3.1. Software .. 37

3.2. Mission Manager Development .. 38
3.2.1. States Characteristics ... 40
3.2.2. Interaction with Payload Services .. 40
3.2.3. Interaction with Flight Services ... 41
3.2.4. Tasks Characteristics ... 43

3.3. Mission Monitor Development ... 44
3.3.1. Mission Monitor Setup Development .. 44
3.3.2. Mission Monitor Director Development .. 46

3.4. Mission Interface ... 49

CHAPTER 4. USE CASES .. 50

4.1. Use case 1 .. 50
4.1.1. Goal .. 50
4.1.2. Scenario .. 50
4.1.3. Performance ... 51

4.2. Use case 2 .. 54
4.2.1. Goal .. 54
4.2.2. Scenario .. 54
4.2.3. Performance ... 54

CHAPTER 5. CONCLUSIONS AND FUTURE LINES 57

REFERENCES ... 58

ANNEXOS.. 61

ANNEX A: MISSION MANAGER PROCEDURES ... 63
A.1. Procedure to determine when the UAV is near the AoI ... 63
A.2. Procedure to determine the frequency of taking photos .. 64
A.3. Procedure to reject hot-spots ... 67

ANNEX B: INTERACTION WITH THE FLIGHT CATEGORY ... 69
B.1. Scan Pattern Update .. 69
B.2. Hold Pattern Update ... 72
B.3. Eight Pattern Update .. 75
B.4. SetCondition ... 78
B.5. Skip .. 79
B.6. GoToLeg .. 80

ANNEX C: MISSION XML .. 81

ANNEX D: MISSION INTERFACE DESCRIPTION ... 83

ANNEX E: MISSION CATEGORY DOCUMENTATION .. 85
E.1. Mission Manager Documentation... 85
E.2. Mission Monitor Documentation ... 92

LIST OF FIGURES

Figure Intro.1 Scenario without the Mission Category 12
Figure Intro.2 Scenario with the Mission Category ... 12
Figure 1.3 Sky-Eye's helicopter .. 15
Figure 1.4 Sky-Eye’s present USAL architecture ... 17
Figure 2.5 Mission Category components .. 19
Figure 2.6 Remote sensing UAS mission ... 23
Figure 2.7 Example of automaton .. 24
Figure 2.8 Mission state diagram ... 27
Figure 2.9 EnRoute(objetive) tasks in time ... 29
Figure 3.10 MWF state machine activities .. 37
Figure 3.11 State activity example ... 38
Figure 3.12 State machine implemented in the MMa 39
Figure 3.13 Payload interactions messages ... 41
Figure 3.14 Iterative flight plan scheme .. 42
Figure 3.15 Scan and eight pattern example .. 43
Figure 3.16 Configuration Wizard for the Detailed state 45
Figure 3.17 Configuration Wizard for the EnRoute(objective) state 45
Figure 3.18 Mission Director Form ... 46
Figure 3.19 MD indicating which state is the UAV currently on 46
Figure 3.20 Messages from the MMa to the MD .. 47
Figure 3.21 Menu options ... 47
Figure 3.22 Detailed next state reconfigurations .. 48
Figure 3.23 Number introduction in the MMo ... 48
Figure 3.24 Hot-spot introduction form ... 49
Figure 3.25 Messages from the MD to the MMa .. 49
Figure 4.26 Use cases FP .. 50
Figure 4.28 Use Case 1. Reconnaissance state .. 53
Figure 4.27 Use Case 1. EnRoute(objective) state .. 53
Figure 4.29 Use Case 1. EnRoute(land) state .. 53
Figure 4.30 Use Case 2. EnRoute(objective) state .. 56
Figure 4.31 Use Case 2. Detailed state .. 56
Figure 4.32 Use Case 2. EnRoute(land) state .. 56
Figure Annex A.1.33 AoI expanded .. 63
Figure Annex A.2.34 Example of a photo’s shape .. 64
Figure Annex A.2.35 Procedure to determine the x dimension of the photos ... 65
Figure Annex A.2.36 Procedure to determine the y dimension of the photos ... 66
Figure Annex B.1.37 Scan pattern parameters .. 70
Figure Annex B.2.38 Hold pattern parameters ... 73
Figure Annex B.3.39 Eight pattern parameters .. 76
Figure Annex E.1.40 MMa classes documentation .. 86
Figure Annex E.1.41 MMa functions documentation .. 87
Figure Annex E.1.42 MMa variables documentation .. 87
Figure Annex E.1.43 MMa properties documentation 88
Figure Annex E.1.44 MMa events documentation .. 89
Figure Annex E.1.45 Publisher class documentation 91
Figure Annex E.2.46 MMo classes documentation .. 92
Figure Annex E.2.47 MMo functions documentation .. 93
Figure Annex E.2.48 MMo variables documentation .. 94

Figure Annex E.2.49 MMo properties documentation 94
Figure Annex E.2.50 MD class documentation ... 97

LIST OF TABLES

Table 2.1 Sky-Eye's camera information .. 21
Table 2.2 Sky-Eye's RTDP information .. 22
Table 2.3 State of Art of state machines .. 26
Table 2.4 Initialize state characteristics .. 28
Table 2.5 Take-off state characteristics .. 28
Table 2.6 EnRoute(objective) state characteristics .. 29
Table 2.7 Reconnaissance state characteristics .. 31
Table 2.8 Detailed state characteristics .. 32
Table 2.9 En Route(land) state characteristics ... 33
Table 2.10 Landing state characteristics .. 33
Table 2.11 Save state characteristics ... 34
Table 2.12 End state characteristics .. 34
Table 2.13 MS parameters ... 36
Table 4.14 Use Case 1 performance .. 52
Table 4.15 Use Case 2 performance .. 54
Table Annex A.2.16 Photo calculations .. 64
Table Annex B.1.17 Scan pattern parameters .. 71
Table Annex B.2.18 Hold pattern parameters .. 74
Table Annex B.3.19 Eight pattern parameters .. 77
Table Annex D.20 Objects and variables of the Mission Interface 83

LIST OF ACRONIMS

ACK Acknowledgement
AoI Area of Inspection
AP Autopilot
CC Camera Controller
CMa Camera Manager
COTS Commercial Off-The-Shelf
CPU Central Processing Units
CS Camera Service
DEM Digital Elevation Model
FMo Flight Monitor
FP Flight Plan
FPMa Flight Plan Manager
FPMo Flight Plan Monitor
GPS Global Positioning System
ICARUS Intelligent Communications and Avionics for Robust

Unmanned Aerial Systems
LAN Local Area Network
MAREA Middleware Architecture for Remote Embedded Applications
MD Mission Director
MMa Mission Manager
MMo Mission Monitor
MS Mission Setup
MWF Microsoft Workflow Foundation
PiC Pilot In Command
RDC Reusable Dialog Components
RTDP Real Time Data Processing
SAR Save and Rescue
SM Storage Module
TBD To Be Determined
TCP Transmission Control Protocol
TO Take-Off
UAS Unmanned Aircraft System
UAV Unmanned Aerial Vehicle
UDP User Datagram Protocol
UPC Universitat Politècnica de Catalunya
USAL UAS Service Abstraction Layer
VAS Virtual Autopilot System
XML Extensible Mark-up Language

Introduction 11

INTRODUCTION

The acronym UAS (Unmanned Aircraft System) identifies an aircraft that can fly
without a pilot. That is, an airframe and a computer system, formed with
sensors, a Global Positioning System (GPS), servos and a Central Processing
Units (CPUs), which controls the plane with no direct human intervention.

Currently, UAS are mostly being used for military applications. However, the
evolution of avionics technologies have opened up new challenges and
introduced a new vision in several fields. One of them is the remote sensing
applications, where the benefits of using UAS compared to those of other
aircraft vehicles are remarkable. There are many ways to understand it. First of
all, we could think in the quality of images that UAS bring for flying at lower
altitudes compared to satellites. Another thing to take into account would be the
possibilities they offer when, in Dull, Dirty and Dangerous (D3) situations a low-
cost, practical, flexible and safe operation is available. Moreover, we cannot
forget about the cost. UAS, on the contrary of satellites, have no subscription
fee.

Nevertheless, they still are not the perfect solution. On the market, there are not
UAS prepared to serve different missions and the needs are solved with specific
developments.

This problematic is being studied by the UPC research group ICARUS. The
ICARUS group is subsidized for the Government of Catalonia. It is located in
the Mediterranean Technology Park in Castelldefels and basically, it is formed
by researchers of the UPC and some of their students.

The group is working with a project called Sky-Eye for designing a post-fire
inspection UAS mission. Sky-Eye is the name for the unmanned aerial vehicle
(UAV) employed, a helicopter built around existing COTS technology that can
be immediately deployed at a reasonable cost. The helicopter is capable of
operating from non-prepared terrains and performing surveillance flights.
However, its architecture is under development.

At present, ICARUS has implemented two categories, the named Flight and
Payload Category. The Flight Category refers to all the systems responsible of
guiding and keeping the UAV on air while the Payload Category includes those
systems that try to accomplish the UAV goals. Figure Intro.1 illustrates the
operation of those categories. It can be observed an operator that it is charge of
interacting with both Categories. Using ground workstations, this operator is
capable of receiving information from the different Categories and of unlinking
them the appropriate orders and configurations.

12 Mission Management for Unmanned Aircraft Systems

Figure Intro.1 Scenario without the Mission Category

Nonetheless, the aim of a UAS is to reduce the human-machine interaction.
Therefore, it was found the necessity of adding another Category to the
ICARUS architecture to achieve it, the called Mission Category.

The Mission Category is indispensable for bringing flexibility, optimization and
autonomy to the system. It coordinates the overall operation supervising the
Flight and Payload Categories, as can be seen in figure Intro.2. It could be said
that this category acts as an orchestrate director of the others. The Mission
Category executes a user-defined automaton with attached actions to achieve
the reduction of the user interaction

Figure Intro.2 Scenario with the Mission Category

Furthermore, the Mission Category has some additional benefits. When
designing a new mission, the Mission Category reuse efforts to reduce the
designing time, providing valuable flexibility as well.

Introduction 13

The aim of this project is to design and implement the main parts of this new
category into the Sky-Eye’s project. In order to do so, this project has been
divided into four chapters. On the first one, it will be researched the State of the
Art of the Sky-Eye’s Project. Then, on the second one, it will be explained the
design of the Mission Category. After that, on the third, it will be described the
development, to conclude, finally, with some use cases to test the Mission
Category developed, on the fourth.

The results obtained might be considered excellent because the main parts of
the Mission Category have been introduced in the Sky-Eye’s project and they
fulfil all the main objectives of the Category. As a result the Sky-Eye’s project
has gained in efficiency, flexibility and above all, autonomy. Before the
implementations done by this final degree project, it was not possible to
optimize the Payload Category taking into account the characteristics of the
mission, to operate it regarding to the user needs in all moment or to adapt
automatically the Flight Services to the changing mission circumstances. Now,
after this Final Degree Project, the Mission Category developed converts all this
into a reality and adds some extra functionalities, like planning a mission before
the actuation.

14 Mission Management for Unmanned Aircraft Systems

MOTIVATION

The biggest motivation for doing this project was the fact that it had to be
developed inside the research group ICARUS.

The group offered the possibility of researching about UAS and that was a door
to make an interesting project.

On one hand, it was going to be developed inside a research department where
there would be a work environment and everyone would have to cooperate with
the others. In addition, it was going to be developed for a real project. Instead
of researching in a field with no finalities, the Sky Eye’s project has fixed
objectives and its implementation is going to have practical uses.

On the other hand, it would let me deepen into the aeronautical studies. This is
why UAS are faintly seen during the Aeronautical Engineering and they are an
amazing field that could have huge market demands on the future.

Moreover during the Engineering we had programming subjects but they were
mainly introductions. So, I found another benefit for choosing this project when I
was told that I had to program. That would let me improve my programming
skills, which they really interest me and are almost indispensable for any job
these days.

Another important fact for having chosen this project also appeared in the
introduction when talking about the market offers for UAS.

Indeed, nowadays there are not flexible solutions for different UAS missions
and this is also a motivation and a challenge for doing this project: to point
somewhere else when everyone is pointing in the same direction.

Finally, it is worth mentioning that the research is not related to commercial
ends. On the contrary, it is focused on sensing applications that could help civil
operations (e.g. forests inspection, sea rescues, etc.) to develop more efficiently
their tasks.

Chapter 1. Sky Eye’s project State of Art 15

CHAPTER 1. SKY EYE’S PROJECT STATE OF ART

Before start designing the main parts of the Mission Category we have to look
to the State of Art of the UAS developed in ICARUS, as it is going to be our
basis.

In order to do so, this section has been divided into two subsections: the system
hardware [1] and the USAL services architecture [2].

1.1. Hardware architecture

The Sky-Eye’s project needed a platform capable of overflying a forest area for
certain periods of time with the capability of operating from non-prepared
terrains under the following circumstances:

1. Surveillance flights during to gather information for the fire-fighters.
2. Early morning or late afternoon flight to monitor the evolution of post-fire-

hot-spots during the days following the extinction.

The system proposed to accomplish the goals was called Sky-Eye, a UAV
helicopter (figure 1.3) built around existing COTS technology that could be
immediately deployed at a reasonable cost.

Figure 1.3 Sky-Eye's helicopter

16 Mission Management for Unmanned Aircraft Systems

Its architecture can be divided into three main parts:

1. A helicopter and its computer system and on-board sensors
Set of sensors related to the mission. The information they provide is
collected and partially processed by the on-board computer system.

2. A mobile ground command and control station
A ground station managed by an operator in charge of supervising the
data-gathering process and deciding actions.

3. Communication infrastructure
Mixture of communication connections that must guarantee the
continuous contact of the helicopter with the ground command and the
control station.

1.2. USAL Service Architecture

The Mission Category is integrated among the Sky-Eye’s services or USAL.

A service is a module that provisions a discrete function inside a system
environment, in our case, the USAL.

USAL comes from UAS Service Abstraction Layer and it is formed by the set of
services of the Sky-Eye project. The USAL links and translates the functional
analysis of the UAV and the system architecture. It can be compared the USAL
to an operating system. Computers have hardware devices used for
input/output operations. Every device has its own particularities and the
operative system offers an abstraction layer to access such devices in a uniform
way. Hence, USAL is the abstraction layer for the Sky Eye’s services.

Figure 1.4 shows the USAL Service Architecture of the Sky-Eye’s forest
inspection mission:

Chapter 1. Sky Eye’s project State of Art 17

If we start from the left of the figure, it can be noticed the Flight Plan Manager
(FPMa), the service responsible for processing and executing the proposed
Flight Plan (FP). The FPMa has been designed to implement much richer FP
capabilities on top of the available capabilities offered by the current autopilot
(AP). The FPMA offers an almost unlimited number of waypoints, waypoint
grouping, structured FP phases with built-in emergency alternatives, mission
oriented legs with a high semantic level like repetitions, parameterized scans,
etc. In addition, the FP can be introduced through Area Navigation XML
formalism. Also, it is worth mentioning that all available highly semantic legs can
be modified by other services by changing a number of configuration
parameters without having to redesign the actual FP.

Right to the FPMa, it can be observed the VAS (Virtual Autopilot System). It
receives the waypoints generated from the FPMa and interacts with the current
AP to fly them. It gives flight information like angles, acceleration, rate of turn,
ground speed, air speed, wind and altitude. It is especially suited to work in
conjunction with the Flight Monitor (FMo) to provide information to the Pilot in
Command (PiC).

Next to the VAS, there is the Camera Controller (CC). It is in charge of
transmitting the order of taking photos from the Camera Manager (CMa) to the

Figure 1.4 Sky-Eye’s present USAL architecture

18 Mission Management for Unmanned Aircraft Systems

Camera Service (CS) and to synchronize them taking into account some flight
parameters. Later on the ground segment, the CMa displays the photos.

Once the photos have been taken, they are automatically stored on the on-
board hard disk through the Storage Module (SM).

When enough samples have been stored, the hot-spot photo analysis starts by
means of the Real-Time Data Processing (RTDP) service. This service acquires
the images and carries out the hot-spots image searching with the help of the
Digital Elevation Model (DEM) service, which includes the altitude parameter.

Finally, all the hot-spots coordinates detected are retrieved to the ground control
station by the RTDP for individual review.

In order to link all the services and the different segments it is used what is
called MAREA.

MAREA is a middleware layer that allows by means of a LAN, the
communication between the running processes. These services understand
each other applying an interface. MAREA allows sending messages containing
variables inside containers. A container, as its name suggests, is a kind of a box
where we send data. Each container is sent with an identifier. What is important
to notice is that each information interchange must have the same form: first the
identifier and then the data. Also it is remarkable that MAREA allows sending
data by means of two protocols, the UDP and TPC protocol. Finally, just
mention that all the parameters that a service wants to send or receive must be
described in the services interface. Other way, there will be no connection
between the service and the rest of the USAL.

Chapter 2. Mission Category Design 19

CHAPTER 2. MISSION CATEGORY DESIGN

After many years of development, UAS are reaching the critical point in which
they could be applied in a civil/commercial scenario. The Flight and Payload
Categories may suffice for simple applications but not for more complex
scenarios [3].

This lack of effective mission and payload management is studied by the
Mission Category considering the following critical aspects:

• Too much human control from a ground station is still required. Flight

control computers do not provide additional support beyond basic flight
plan definition and operation. Additionally, payload should be also
remotely operated with very little automation support.

• Economic efficiency requires the same UAS to be able to operate in
different application domains. This necessity translates into more
demanding requirements of the mission/payload management
subsystems, with increased levels of flexibility and automation.

The two main services that compose the Mission Category are the Mission
Manager and the Mission Monitor Service. The Mission Monitor (MMo) is a HMI
that enables the interaction with the operator for configuring the mission and
supervising it. The Mission Manager (MMa) is the core of the system. It is the
one that takes action of the configured orders by interacting with other USAL
services, and performing by itself mission actions. Figure 2.5 illustrates the
explanation:

Among the other services that form the Mission Category, it can be found the
Mission Parameter Validator, the Mission Task Manager and the History Task
Log. However as they are complimentary services and they are not fundamental
to the Mission Category, for a matter of time they are not studied in this final
degree project.

For explaining the design of the Mission Category, the chapter has been divided
into two subsections. On the first one, it is explained the design of the MMa and
in the second one, the design of the MMo.

Figure 2.5 Mission Category components

20 Mission Management for Unmanned Aircraft Systems

2.1. Mission Manager Design

The concept of MMa is indispensable for achieving a flexible and optimum
mission. The MMa is the responsible for supervising the Flight and the Payload
services, as well as the coordination of the overall operation. It can be said that
the MMa is the orchestrate director of the different services. The MMa executes
a user-defined automaton with attached actions at each defined flight state or
transition [4].

Hence, the main goals that MMa must fulfil are:

• Coordinate the USAL services.
• Interact between the Flight and Payload Category.
• Give mission autonomy, flexibility and optimization to the system.
• Reduce the mission planning time.

Next it is going to be explained the MMa inside the USAL architecture.

2.1.1. Mission Manager under USAL

The MMa is integrated in the Air Segment of the USAL architecture seen in
figure 1.4 (see section 1.2.). With this new configuration it will be achieved the
automation and efficiency required.

From the point of view of the Payload services, the main observable difference
it is that now the MMa is who gives the order of taking photos to the CC, instead
of the CMa. The MMa does not need to interact with any other Payload related
service because the SM and the RTDP operate automatically to store the
photos, analyze them and send them to ground. From the point of view of the
Flight services, the MMa interacts with the FPMa to update the FP to operate
accordingly to the circumstances of the mission. Again, it is the only Flight
related service that the MMa interacts. This is why it is the FPMa who gives
orders to the VAS and the DEM is autonomous. All the functionalities of the
MMa can be found in section 2.1.4.

In order to establish the more efficient and appropriate functionalities and avoid
consuming more than the exactly necessary we need to know the
characteristics of the USAL systems, which are detailed in the next section.

2.1.1.1. USAL Systems characteristics

In this section it will be pointed out the main characteristics of some of the Sky-
Eye’s Air Segment services which could contain relevant information or limiting
factors for the design of the MMa.

• CC

Chapter 2. Mission Category Design 21

Electricity is one of the most critical parameters in a UAV and it cannot be
wasted. For example, it would not be logic to establish that the cameras should
be turn on when we are at 2 minutes time from the fire area if the cameras need
5 minutes to be ready.

So, the cameras should be turned on at the optimum time.

In order to do so, the following information is needed for each camera of the
Sky-Eye:

Characteristic FLIR
(Thermal Camera)

Lumenera
(Visual Camera)

Time to get the system
ready to operate with all its

characteristics once fed

30 seconds to operate
and another 30 seconds

to connect

Between 45 seconds
and 1 minute

Optimum altitude to get the
best resolution TBD TBD

Time between photos 0.5 seconds At present, a little bit
more than 0.5 seconds

Table 2.1 Sky-Eye's camera information

Taking into the account the information provided in this table, it would be a wise
idea to turn on the cameras two minutes before arriving to the Area of
Inspection (AoI). That would assure us that the cameras are connected and
ready to start taking photos.

It could be also considered the maximum velocity or vibration to not get the
photos moved. Fortunately, the Sky-Eye already has a solution to avoid that
problem.

• Real-Time Data Processing

It should be known the processing time of the samples to determine the best
scan pattern to perform and the optimum velocity of the UAS. This is why, for
example, if our process time is high, we should not use a scan pattern where
we look for some hot-spots and then, immediately, perform an eight pattern
because in the meanwhile that the analysis is being processed, maybe the UAV
has gone far away from the hot-spot.

Therefore, the needed information would be:

Characteristics RTDP
Time to get the system

ready to operate with all its
Almost immediate, the time that gets the code to be

executed

22 Mission Management for Unmanned Aircraft Systems

characteristics once fed

Time to process the
analysis

The sum of all the processes carried out in the
RTDP (among them loading images,

segmentations, geolocations, fusions, hot-spots
marking, saving processes...) needs a processing

time of approximately 2.15s

Table 2.2 Sky-Eye's RTDP information

• Flight Plan Manager, Virtual Autopilot System, Storage Module and
Digital Elevation Model

These services have been grouped because they all have the same important
characteristic: they have to be always on.

Starting with the FPMA, it is the responsible for processing and executing the
proposed FP and sending waypoints to the VAS, hence it is fundamental that it
is on.

Regarding to the VAS, it has to be always on because apart from receiving the
waypoints from the FPMa, it interacts with the current AP and delivers flight
information. It could be considered a limiting factor some flight information like
maximum operative altitude, maximum and minimum velocity, etc.
Nevertheless, as the MMa does not interact directly with the VAS, if it happens
that the MMa orders a type of scan with some parameters that cannot be
performed, the FPMa would correct it.

In the case of the SM, it stores flight information and, consequently, it has to be
always turned on. The maximum quantity of images that can be stored could be
a limiting factor. However, images are variable in size and it is not controlled.
Therefore, there will be no restrictions coming from the SM.

Finally, the DEM has to be always on because it indicates the UAV height and it
could help the PiC to avoid collisions.

2.1.2. Mission Manager States

Along the document it has been mentioned several times that the MMa is in
charge of coordinating the overall mission. We have to understand the concept
of mission in detail to be able to design the MMa correctly.

It has been used two remote sensing missions for helping extracting
conclusions, a forest inspection and a SAR mission [5]. What is important to
realise after having studied the cases, is that a mission is formed by states.
Moreover, the states that form the two missions are almost the same and they
only differ in the tasks to develop, provided that they are focused on different
matters. However, although the tasks are not the same, the global meaning of

Chapter 2. Mission Category Design 23

the states is. Another important characteristic found is that some of the states
are not fixed because their order can be changed and still the mission would be
equally effective.

The conclusion that can be extracted is that even thought there are infinite state
possibilities, the different remote sensing missions frequently use the same
states and usually, the difference between missions resides in one simple state.

Therefore, figure 2.6 shows the states that it has been found that the remote
sensing UAS missions follow. It can be observed three initial and final states
and two Objectives states. The initial states are used to lead the UAV to the AoI
and start performing the firsts Payload related tasks. The Objectives states are
formed for a “Reconnaissance” and a “Detailed” state. These states manage
Payload and Flight tasks to gather ground information. After the Objectives
states, it is found the final states, which return the UAV back home and perform
the last Payload related tasks.

The fact that the remote sensing missions follow the same state patterns is
what demonstrates that the MMa can reduce the mission design time: Why
starting new projects from the beginning every time if we could just adapt the
different states and requirements according to a new configuration? Therefore,
the MMa proposed in this project would take into account that fact and it is
going to be programmed for a future reuse of the states.

Continuing on the mission concept, now seen that it is formed by states, it is
time to focus on them as it is going to be what is going to be implemented in the
MMa. For the USAL architecture, a Mission State is a set of actions and
variables that are exchanged between services for achieving one goal. The
following example will explain the concept:

Figure 2.6 Remote sensing UAS mission

24 Mission Management for Unmanned Aircraft Systems

When a UAV has already done the take-off, and it has reached a safe
altitude, the next step will possibly consist in reaching the AoI. From a flight
oriented point of view, this procedure will be minimized to get to an area.
However, when we think from a mission point of view, there are a set of
actions to be performed in this time. In addition of getting to the zone (which
is an important task), the UAV must also calibrate the systems that will be
used once the area is reached and prepare itself for the first action.

Therefore, the general view of a state is:

• It is defined by a series of tasks, some implemented by the MMa, other
delivered to other services.

• It has an entry condition (e.g. the take-off has to be over) and an exit
condition (e.g. the UAS has to have reached the AoI).

• Its next state is defined (e.g. a state that begins the exploration).

The next section will explain how we can implement states in our MMa.

2.1.3. Automaton State of Art

As mentioned before the MMa implements an automaton to implement the
states that will define a mission.

An automaton consists of a series of states (represented by circles or boxes),
and transitions (represented by arrows). As the automaton sees a symbol of
input, it makes a transition (or jump) to another state, according to its transition
function (which takes the current state and the recent symbol as its inputs).
Therefore, with an automaton, it is given to the MMa the necessary intelligence
to be able to react to external events and adapt the UAV to the changing flight
circumstances. Figure 2.7 shows an example of an automaton:

Figure 2.7 Example of automaton

 http://www.lnds.net/blog/wp-content/uploads/2010/10/math-finite-state-machine-DHD.gif

Chapter 2. Mission Category Design 25

The automaton proposed in this project is a state machine. Table 3
summarizes a little research carried out to find out what state machine fit better
for the purposes of this project [6]:

Charac-
teristics

Microsoft Workflow
Foundation

(MWF)
Petri Nets SCXML

Design

• Flow diagrams with
a high level of
abstraction and
visual
representation,
making it easy to
understand.

• Both sequential and
state machines are
possible.

• The big difference
between Petri Nets and
MWF is that the last
one is always in exactly
one state. On the
contrary, in Petri nets,
there can be more than
one token state. The
overall "state" of the
Petri net is the
distribution of tokens.

• It is a generic state
machine execution
environment based
on Harel State
Tables.

• It basically lets the
user construct
state graphs and
execute them.

Uses

• Any long running
process which have
different stages or
states in their
process.

• Simulation and
verification of network
protocols.

• Encapsulated
speech modules.

• Database access.
• Business logic

modules.

Pros

• It is easy to change
the rules associated
with states.

• Core set activities
can be reused.

• Intuitive.
• State machine can

be persisted to a
database when it
becomes idle and
reactivated when an
external stimulus
occurs.

• Provides a robust,
scalable
environment for the
execution.

• Parallel routing.
• It is easy to verify its

properties.
• It is easy to simulate

several executions.
• Formal semantics.
• Graphical notation.
• Support for complex
 process constructions.

• Generalizes state
diagrams notations
which are already
used in other XML
contexts.

Cons

• More like a
requirement, it is
needed good level
of programming
skills to work with it.

• Conflict can occur
between different
states.

• Workflow allocation.

• It is the less
spread.

• Some problems of
robustness.

• Neediness of
automatic tests.

26 Mission Management for Unmanned Aircraft Systems

Support
• Numerous tutorials.
• Examples of code.

• Community.
• Forum.
• Research.

• Forum.
• Libraries.
• Examples.

Status
• Stable. With

Constant updates.
• Stable. With Constant

updates. • In development.

Debug-
ger • Yes. • Yes. • Yes.

Table 2.3 State of Art of state machines

Programming state machines is a relatively new programming tool in computers
and given that the purpose of this short-time project is to develop a MMa which
works with them, it is a wise idea to use the code which is more spread and
easy to use to shorten the learning process time.

Before opting to the MWF option, which theoretically was the most appropriate,
it was developed in this tool a little program that could develop some of the
tasks that were required for this project. These tasks included the creation of a
state machine that could change between different states when an external
event occurred and the communication of the state machine and the USAL
services using MAREA. The result of the test was excellent because in one
week the program was finished and it developed all the tasks.

Therefore, given that MFW fit perfectly in the time schedule of this final degree
project, it was intuitive and there were enough information to resolve problems,
finally it was chosen to work with it.

2.1.4. Sky-Eye’s state machine

Once all the pieces of a MMa have been seen, we can proceed with the
architecture.

Following the remote sensing missions state pattern, figure 2.8 shows the
proposed states for the MMa in the Sky-Eye’s project:

Chapter 2. Mission Category Design 27

Next, it will be described the different states individually to know the main
characteristics of each of them.

2.1.4.1. Initialize

This state, as its name suggests, initializes the whole mission.

Basically, it is in charge of asking the user which mission wants to develop,
charging the mission parameters to the MMa, turning on the services that the
user wants to use and checking if everything that is fundamental to fly is OK.

Some services will be turned on by default to assure the safety of the flight. This
is the case of the DEM, the VAS, the FPMa, the SM and the MMa as explained
in section 2.1.1.1.

Table 2.4 shows the characteristics of this state:

Pre-
requirements

List with the services to turn on.
List with the parameters to feed the MMa.

Goals
Check if everything is OK to develop the mission, ask the user
which mission wants to perform, load the mission parameters,
turn on USAL services and initialize the MMa.

Tasks Turn on services and execute the defined code to load
parameters to the MMa.

USAL Services TBD by the user. Minimum MMa, VAS, DEM, FPMa and SM.

Figure 2.8 Mission state diagram

28 Mission Management for Unmanned Aircraft Systems

Deliverables ACK showing if everything is OK.

Table 2.4 Initialize state characteristics

2.1.4.2. Take-off

Take-off is a departure state in which the MMa continues checking if everything
is OK while reaching a safe flight altitude. Once a transition altitude has been
reached it loads the parameters for the next state, the EnRoute(objective).

To enter this state one pre-requirement has to be met. It is that the Initialize
state has passed an ACK representing that everything is OK. That would mean
that the fundamental services are on and the flight is safe.

There is another pre-requirement but it has not to be satisfied before entering to
the state necessarily. This requirement is the transition altitude, which
determines the changing point from Take-off to EnRoute(objective).

So, the main characteristics of the Take-off state are:

Table 2.5 Take-off state characteristics

2.1.4.3. En Route(objective)

Once the Take-off has finished (transition altitude reached) the UAS will enter to
the EnRoute(objective) state.

This state is basically in charge of turning on the services that are needed for
the next chosen state while arriving to the AoI. It is worth mentioning that this
fact is one of the biggest contributions of the MMa to optimize the mission.

The services that will be turned on will depend on the next state. The RTDP and
the thermal camera, as they will be used for either next state, will be turned on.
Regarding to the visual camera, its connection will depend. If the next state is

Pre-
requirements OK from the Initialize state and parameters loaded.

Requirements During the state, the transition altitude.

Goals Wait to reach a safe altitude to develop the mission
and check whether the aircraft is ready for it or not.

Tasks Continue checking if the flight is safe.
Minimum USAL

Services FPMa, VAS, DEM, SM and MMa.

Deliverables None.

Chapter 2. Mission Category Design 29

the Detailed or Reconnaissance with visual camera, it will be turned on. On the
contrary, if the next state is the Reconnaissance without visual camera, it will
not be.

Therefore, the main characteristics of EnRoute(objective) are:

Pre-
requirements Transition altitude reached and parameters loaded.

Requirements Next state and AoI.

Goals
Turn on the USAL services needed for the next state of the
mission and wait until the UAV reaches the AoI to change the
state.

Tasks Turn on services while arriving to the AoI.
Minimum USAL

Services
FPMa, MMa, VAS, DEM, SM, RTDP and depending on the next
state both cameras or only the thermal.

Deliverables None.

Table 2.6 EnRoute(objective) state characteristics

For flexibility, the next state, as well as the AoI, can be defined any time.
Nonetheless, some precaution has to be taken given that the tasks will not be
performed until they have been defined. This is why, obviously, we cannot
perform our operation of turning on USAL services on if we do not know what
services will be needed or when they will be needed.

If our next state is the Reconnaissance (see 2.1.4.4.) without the visual camera,
the tasks that will be developed during the EnRoute (objective) expressed in
time would be:

In other case that our next state is the Reconnaissance with the visual camera
or the Detailed, the tasks would be the same than in figure 2.9 with the addition
of turning on the visual camera.

The time of turning on the services two minutes before the AoI comes from the
characteristics of the USAL Systems (see section 2.1.1.1.).

Figure 2.9 EnRoute(objetive) tasks in time

30 Mission Management for Unmanned Aircraft Systems

The end of EnRoute(objective) arrives when the AoI is reached. In that moment,
we will enter to the state we have chosen (Reconnaissance or Detailed).

2.1.4.4. Reconnaissance

Reconnaissance, on a general basis, is the phase of the mission where we
“recognize” the terrain. It has as a main objective detecting hot-spots and listing
them to enter later in the Detailed state.

For electing the type of Reconnaissance that we want to perform, we must take
into account what type of exploration we want to perform and the characteristics
of our devices. For example, if we want to make some recognition on the terrain
and we have a low RTPD time, we will find more effective using a
Reconnaissance with the visual camera. However, if our SM has not a high
capacity, we can use a Reconnaissance state without the visual camera to
avoid overflowing the system.

It also has some pre-requirements to enter to this state. The first one is to have
reached the AoI. The second one, to have turned on the appropriate services
and the third is to have loaded its parameters.

However, what is more special in this state, conjunctly with the Detailed, is the
optimization, flexibility and autonomy that is brought to the mission. This is
thanks to the photo overlapping, the hot-spot false alarm detector and the type
of scan.

Starting with the overlapping, before the implementation of the MMa, its value
did not change the way of operating the UAS. The UAS speed and the photo
frequency were related to compute which overlapping was being obtained. Now,
on the contrary, the user will enter a value of overlapping wanted and the MMa
will give the order of taking photos to keep constant that value taking into
account the UAS speed, the height and the camera tilt.

Regarding to the hot-spot false alarm detector, it is achieved optimization to the
mission given that if a new hot-spot comes from a known one, it will not be
reported. Nevertheless, it is a reconfigurable option in case the user wants to
report all hot-spots detected.

Finally, the type of scan that the UAV performs in the AoI is used to bring
autonomy to the MMa. Now, the user will be able to plan what type of scan
pattern will be automatically performed in the AoI. In this state, it will be
available a typical scan or a scan with an eight every time a hot-spot is
detected.

The main characteristics of the Reconnaissance state are summarized up as
follows:

Pre-
requirements

AoI reached, thermal camera on, visual camera on (if chosen),
RTDP on, and parameters loaded.

Chapter 2. Mission Category Design 31

Table 2.7 Reconnaissance state characteristics

The task of taking photos is performed continuously while this state is running.
Contrarily, the tasks of listing the hot-spots and rejecting false alarms are only
performed when a hot-spot has been detected.

So, the process once a hot-spot has been detected would be:

• Reject hot-spot false alarms (if enabled).
• Perform an eight (if selected).

And if the hot-spot is accepted or the false alarm detector is disabled:

• Store the hot-spot into a list to report it later to the Detailed state.

When this state is finished, it will be performed the Detailed (if there are one or
more hot-spots) or EnRoute(land) state as determined by the user.

2.1.4.5. Detailed

This state tries to get the maximum ground information possible by flying at a
low altitude near areas where it has been detected a hot-spot.

This state machine proposed allows entering directly from the
EnRoute(objective) to the Detailed state if it is already known the position of the
hot-spots.

There have to be met some pre-requirements to enter to this state. The most
important one is that it needs a list of coordinates to analyze. If not, this state
will be not performed. This is why, if we do not have any coordinates to analyze,
there is no reason to be of this state. The other pre-requirements are similar to
the Reconnaissance state ones: the needed services have to be turned on and
the Detailed parameters have to be loaded.

As said before, this state, conjunctly with the Reconnaissance, is where the
MMa brings the maximum optimization, flexibility and autonomy to the mission.

Goals Take ground information.
List the coordinates where there is a hot-spot.

Tasks
Camera management (visual photos on demand), list hot-spots
positions and update flight plan if necessary.
Also, depending on the following state, turn on the visual camera
or turn off both cameras and RTDP.

Minimum
USAL Services FPMa, VAS, CC, CS, DEM, MMa, SM and RTDP.

Deliverables List of coordinates with hot-spots.
Optional Reject hot-spot false alarms.

32 Mission Management for Unmanned Aircraft Systems

In this case, besides the photo overlapping, the false alarm detector and the
type of scan, another function is added: the photo fusion.

The photo fusion is a function on demand used to ask the user if he wants the
thermal and visual photos fusion. If the user enables it, when it is detected a
hot-spot and the images are send to ground, the images will be fusion. That
would be especially useful to help the tasks of analyzing the images on the
ground.

Also, it is worth mentioning that the type of scan performed in this state is
different than the ones in the Reconnaissance. In the Detailed state the user will
have the option of choosing between an eight or a hold pattern in the
coordinates where there has been detected a hot-spot.

The following table summarizes the characteristics of the Detailed state:

Pre-
requirements

AoI reached, thermal camera on, visual camera on, RTDP on and
parameters loaded.

Goals Inspect the hot-spots .

Tasks
Camera management and flight plan updates.
Also, depending on the following state, turn off the cameras and
RTDP or only turn off the visual camera.

Minimum USAL
Services FP, VAS, CC, CS, DEM, MMa, SM and RTDP.

Deliverables If positive, send alarm and photos to ground.
Optional Reject false alarms, order to fusion photos.

Table 2.8 Detailed state characteristics

The tasks developed chronologically are the same than the ones exposed in the
Reconnaissance state, with the addition of the photo fusion that is performed
continuously as well as the order of taking visual photos.

When this state is finished, it will be performed the Reconnaissance or
EnRoute(land) as determined by the user.

2.1.4.6. En Route (land)

When we have finished the mission goals and the UAV has left the AoI, we will
enter in the En Route (land) state.

The main objectives of this state are starting the way back to the origin and
turning off the cameras and RTDP, as they will not be needed anymore.

The main characteristics of this state are summed up in the next table:

Chapter 2. Mission Category Design 33

Pre-
requirement AoI left.

Goals Return to the origin position and turn off the cameras and RTDP.

Tasks Update the FP to return to the origin and turn off the cameras and
RTDP.

Minimum USAL
Services FPMa, VAS, DEM, SM and MMa.

Deliverables None.

Table 2.9 En Route(land) state characteristics

This state ends when the UAS has returned to the take-off position or it receives
a Runway event from the FPMa. Once that position is achieved, the UAS will
enter to the Landing state.

2.1.4.7. Landing

This state looks for the safe ending of the mission. It is a state thought for the
future. At present there is no implementation to land with extra sensors to help
the UAV landing safely. Thus, when those sensors or extra functionalities will be
operative, they will be managed in this state.

For the moment, it only has one entry pre-requirement: to have the next state
parameter loaded into its configuration.

Its characteristics can be found in the next table:

The election of the next state will depend on the user needs. This architecture
proposes two cases, a Save state and an End state. If we want a state which
gives us some time to download data from the air services, the Save state is our
state. On the contrary, if the mission is ended because we already have all the
data we need, we will go directly to the End state.

Pre-
requirement Next state.

Goals Manage landing aids.
Tasks For the moment, transfer the execution to the next selected state.

Minimum
USAL Service FPMa, VAS, DEM, SM and MMa.

Deliverables None.

Table 2.10 Landing state characteristics

34 Mission Management for Unmanned Aircraft Systems

2.1.4.8. Save

As said before, the Save state gives us some time to call a function to download
data (or any wanted operation) and waits until this function is over to end the
mission. In other words, it is a state where the state machine is paused to let
the user have some time to perform any wanted operation before the services
are closed.

Its characteristics are summarized in table 2.11:

Pre-
requirement None.

Goals Give some time to the user to download data from the services.
Tasks Call the appropriate function to download data.

Minimum USAL
Service FPMa, VAS, DEM, SM and MMa.

Deliverables ACK function.

Table 2.11 Save state characteristics

When it receives an ACK showing that the downloading operation has ended, it
will give way to the End state.

2.1.4.9. End

This final state waits until the user notifies that the mission is over and then
closes all the air services to end the mission.

The following table shows its characteristics:

Pre-
requirement None

Goals Turn off remaining services and end mission
Tasks Turn off all remaining services

USAL Service FPMa, VAS, DEM, SM and MMa
Deliverables ACK function

Table 2.12 End state characteristics

Chapter 2. Mission Category Design 35

2.2. Mission Monitor Design

The mission operator will interact with a MMo for designing the mission, keeping
control of it and interacting with the MMa by sending new orders or just updates.

This chapter will explain its design including its functionalities and architecture
proposed [7].

2.2.1. Mission Monitor under USAL

As there is a FPMo and a FMo to deal with the peculiarities of their managers,
the MMo will be the human machine interface between the MMa and the
operator. The interaction with other USAL services will be done by the MMa.
Therefore, the MMo will be integrated in the Ground Segment of the USAL
architecture seen in figure 1.4 (see section 1.2.) to communicate with it.

2.2.2. Architecture

The MMo will have two differentiated parts: the Mission Setup and the Mission
Director. The Mission Setup (MS) is where the user will define and configure
the mission. Once the mission is defined, this part will be closed by the operator
and will be no longer used. The Mission Director (MD) will be used to interact
while the mission is being performed. The MD will allow changing values
previously defined.

2.2.2.1. Mission Setup

As said before, the main goal of the MS is to define a mission and all the
parameters that can be configured. Each screen that will appear in the MS will
correspond to one mission state and will let the user configure its parameters.

The configurable parameters may be as general as which USAL services to use
at a certain mission, or very particular such as the safe altitude of a UAV. The
following table summarizes the parameters that will be configurable in each
state:

State Parameters

Initialize
Name of the mission, USAL services needed, camera characteristics

(tilt and aperture angles) and operation characteristics (photo filter
(see 3.2.2.)).

Take-Off Transition altitude.
EnRoute

(objective)
Time to turn on services, next state (Detailed only if there are hot-

spots) and the AoI.

Reconnais-
sance

Scan pattern, visual camera on/off, false alarm detector on/off, next
state, reject distance for the false alarm detector and photo

overlapping wanted.

36 Mission Management for Unmanned Aircraft Systems

Detailed
Scan pattern, photo fusion on/off, false alarm detector on/off, next

state, reject distance for the false alarm detector, photo overlapping
wanted and hot-spots positions if already known.

EnRoute
(land) No Parameters.

Landing The next state.
Save No Parameters.
End No Parameters.

Table 2.13 MS parameters

Another characteristic of the MS is that it has to let the user choose where to
save the Mission and with what file name. This will be especially useful later on
when we have to choose a mission to develop.

2.2.2.2. Mission Director

The Mission Monitor Director (MD) will let keeping track of which state is the
UAS currently flying and also making reconfigurations in the mission previously
defined.

The reconfigurations will be possible in the state that the UAS is flying as well
as in some other future states. This would be practical when, for example, it had
been previously determined that the visual camera was not wanted in the
Reconnaissance state and later, on flight, it is noticed that it would be better for
the mission that the visual camera was on.

Furthermore, in the Objective states, Reconnaissance and Detailed, the MD will
display what scan pattern the UAS is performing and some extra notifications.
These last ones will inform the user that the false alarm detector, the fusion
and/or the cameras are connected and how many hot-spots have been
detected so far. The camera notifications will also appear when the UAV is in
the EnRoute(objective) state.

Chapter 3. Mission Category Development 37

CHAPTER 3. MISSION CATEGORY DEVELOPMENT

Once seen the design, this chapter will explain everything related to the
development of the Mission Category designed.

In order to do so, the chapter has been divided into three subsections. The first
one will correspond to a brief explanation of the software used while other two
will correspond to the MMa and MMo development, respectively.

3.1. Software

Next, it is going to be shortly explained the MWF program to understand the tool
in which the state machine was developed.

First, mention that it has been used the platform .NET 3.0 because it was more
intuitive to use and the preparations to get used to the MWF were made under
.NET 3.0. Therefore, changing to another platform would have meant a delay to
the development.

Also mention that there was no discussion on the programming language.
Inside the Sky-Eye’s project it was being used c# to programming the other
services, thus the Mission Category just used the same language.

The next figure shows the used MFW activities to interact with the state
machine:

Figure 3.10 MWF state machine activities

The description of each one of these activities is [8]:

• State: This activity represents a state within a state machine.

• SetState: This activity is used to specify a transition to a new state within
a state machine.

38 Mission Management for Unmanned Aircraft Systems

• StateInitialization: This activity is part of a state activity, and is made up
of other activities that are executed when the state activity is first
entered.

• Code: This activity allows writing code lines that will be executed when

the workflow passes through it.

• EventDriven: Wraps an activity whose execution is initialized by an
event.

• HandleExternalEvent: This activity stops the flow and waits for an
external event. When the event is received, the flow proceeds to the
execution of the next activity.

With these activities the state machine needed for the MMa could be
developed. What has been done is using a state activity to define any of the
states seen in the design part. Then, with a code activity inside a
StateInitialization, it has been performed some of the tasks that the states have
to complete like turning on USAL Services. Also, inside the state as well, it has
been defined an EventDriven with a HandleExternalEvent that calls a SetState
activity (figure 3.11). This is used for reacting to an external event and moving
the state machine forward to the next defined state.

Figure 3.11 State activity example

3.2. Mission Manager Development

Figure 3.12 shows the state machine for the MMa implemented in the Sky-Eye’s
project. In it, it can be appreciated the 9 designed states with two state
activities. On the upper side of the states there is the StateInitialization activity
(remarked with squares in the figure) to develop each state task. In the lower
side of the states (remarked with ellipses in the figure), there is the event driven
activity used to listen to external events to change the state. This last activity
has inside the code, HandleExternalEvent and SetState activities seen before.

Chapter 3. Mission Category Development 39

Figure 3.12 State machine implemented in the MMa

Each of the states that figure 3.12 shows has a code that performs its tasks and
creates the deliverables. The states, as mentioned before, change when an
external event occurs. This means that, if for example, we are inside the Take-
Off state and we have arrived to the transition altitude, the Take-Off code will
raise the event of changing to the EnRoute(objective) state. The state
configuration is executed when we are inside the state. This is why there are
general parameters for all the states (e.g. next state) instead of having a big
amount of particular parameters for each one of them. Another important fact is
that the parameters that the MMa uses are centralized. Rather than sending
individually the parameters that arrive to the MMa to all the classes that needs
them, they are stored in a central class. Then, when a class needs one of them,
it goes to look for it. Some other important characteristic of the code developed
is that the parameters are reconfigurable. The MMa has been developed taking
into account that we could send parameters to the state configuration and
change the predefined value. If it happens that we want to change a parameter
in the actual state that the UAS is, it is not a problem because in that case, the
actual parameter will be changed, not the configuration. Also it is worth
mentioning that in order to improve the flexibility, in any moment a state can be
changed to a logical forward one. In addition, if the entry requirements of the
next state are not met, it is performed the required actions to met them.

The whole documentation of the code produced in the MMa can be found in the
CD attached. Additionally, annex E.1. contains a summary of it.

Regarding to the operation of the MMa, it goes as follows. First the user plans
the mission on the MS, which stores the parameters in an XML file specified by
the user (see 3.3.1.). Then, the day of the mission, the MMa asks the user
which mission wants to perform. When the appropriate XML file is selected, the

40 Mission Management for Unmanned Aircraft Systems

parameters defining the mission are read and loaded by the MMa into each
state configuration. Then, the MMa goes executing the different states
performing the tasks designed for each one of them.

The next sections explain the development in detail for some states, the
interactions between the Flight and Payload Services and some remarkable
function developments.

3.2.1. States Characteristics

• Initialize and End State

In the Initialize state, the MMa turns on the services that are specified in the
XML mission file. Then, the End state closes the remaining turned on services.
These functions of turning on/off services can be performed thanks to MAREA.

• EnRoute(objective)

In this state it is created an imaginary area that is found in the time that the user
has decided (two minutes by default) from the AoI (this procedure can be found
in Annex A.1).

We could think about what happens if we enter to the area where we are two
minutes time and we turn on the required USAL Services but afterwards the
UAV leaves the area. If that happens, the services will turn off because the
MMa continues monitoring all time the UAV position. That means that, for
example, if we enter into the area where we are a two minutes time from the
AoI, we leave and then we re-enter, the cameras and the RTDP would have
been connected, disconnected and finally connected.

• EnRoute(land)

The MMa uses two ways for knowing if the UAS has returned to the take-off
position. The first should be a Runway event sent from the FPMa. However, as
this message is not implemented for the moment, the Runway event is manually
sent to the MMa. The second one is from the MMa itself. The MMa gets the
take-off position and if it detects in this state that the actual position is the same
than the previously stored, with a certain margin, it ends the EnRoute(land)
state.

3.2.2. Interaction with Payload Services

During the Reconnaissance and Detailed states, one of the tasks that have to
be developed is taking photos. This means that the MMa has to communicate to
the CC to address the appropriate orders. The different messages used are:

Chapter 3. Mission Category Development 41

Figure 3.13 Payload interactions messages

The actions these messages produce are:

• Add Camera: Registers a camera to the system.

• Connect: Turns a camera on.

• NewNPhoto: Asks the CC to take one/several new pictures. The
parameters of this message are the number of photos and the frequency
wanted.

• Disconnect: Turns a camera off.

It is worth mentioning that all the procedures of taking photos, analyzing
images, rejecting hot-spots, etc. are only performed if the UAV is inside the AoI.
This means that, automatically, when the UAV is inside the Reconnaissance or
Detailed state but outside the AoI, the MMa stops performing the tasks and it
waits until the UAV re-enters into the area.

3.2.3. Interaction with Flight Services

A highly important task that is held in the Reconnaissance and Detailed states
is dealing with the FPMa to adapt the FP to the circumstances of the mission.

Assuming that a FP is created, the messages exchanged between the MMa
and the FPMa are just in case a modification is needed. However, in order to
produce modifications, the MMa must know what the UAS is doing, and what
flying patterns are charged in the FP.

42 Mission Management for Unmanned Aircraft Systems

Figure 3.14 shows what the FPMa is able to do. The three flight patterns
needed for the proper development of the remote sensing mission (scan, hold,
and eight) have been charged to the FP inside an iterative sequence. This
means that until a number of loops have not been met, the UAS will be
performing one of these flight patterns, whichever is selected.

Figure 3.14 Iterative flight plan scheme

In order to produce modifications in the iterative sequence, the FPMa provides
several messages that the MMa sends thanks to MAREA:

• SetCondition: Controls the selector of the FP. In the picture is
represented as a non-lineal arrow at the left of the patterns.

• Skip: When performing a pattern, if the Skip is called, it will interrupt the
current action, and make a loop for a new iteration.

• Update: An Update is called when the properties of the pattern charged
at the FP must be changed.

• GoToLeg: Stops performing the iterative sequence. This is especially
useful when it is wanted to return home. So, this message is used every
time that it is reached the EnRoute(land) state.

These messages must have a specific form in order to be understood by the
FPMa. The form and the variables can be found in Annex B.

With the iterative sequence and the messages provided for the FPMa, the MMa
is able to fulfil its goal of adapting the FP to the circumstances of the mission.
For example, the following example shows what messages the MMa will have
to send to the FPMa in case that it is wanted to reproduce a scan with an eight
when a hot-spot is detected:

Eight

Hold

Scan

Chapter 3. Mission Category Development 43

Figure 3.15 Scan and eight pattern example

Unfortunately, for the moment the FPMa does not send any message of End
Scan. Consequently, the MMa is manually noticed that the UAV has finished
performing a scan pattern.

Finally, it is worth mentioning that every time that we send an event to the
FPMa, it sends us an ACK informing whether it is correct or not. In case that it is
not correct, the MMa resends the event.

3.2.4. Tasks Characteristics

One of the tasks of the MMa consists in keeping constant the photo
overlapping. Therefore in this case, it is fundamental to determine the frequency
of taking them (to see the procedure to compute the overlapping see annex
A.2). In order to prevent constant changes in the frequency, a filter has been
developed inside the MMa. This filter avoids altering the frequency when there
is a change equal or less than 0.2 seconds. These 0.2 seconds correspond to
the mean time to have a change in the overlapping of 10%. In other words,
unless there is a change in the velocity, height or any other parameter high
enough to change the overlapping a 10% or more, the frequency of taking
photos will not be altered. This parameter is reconfigurable in case the user
wants a change higher or lower than 10%.

Another important task is rejecting hot-spots with the false alarm detector. This
function would let the MMa identify, for example, that a new hot-spot alarm is
coming from a previous hot-spot detected and reject it. This function could be

44 Mission Management for Unmanned Aircraft Systems

disabled by the user to inform of all hot-spots detected (to see the procedure or
rejecting photos see annex A.3).

Also, during the design part, it was told that the user could choice to fusion on
demand the photos during the Detailed state. Unfortunately, this function is not
implemented for any Payload Services and consequently it cannot be
performed. Nevertheless, both the MMa and the MMo are prepared for
performing this function and they will act as if this function operates. Hence, the
day that the function will be operative it will just be seconds to implement it in
the MMa and the MMo.

3.3. Mission Monitor Development

In this section it will be described the development of the MMo from two
different points of view, the MS and the MD.

As well as in the MMa case, the whole documentation of the code produced in
the MMo can be found in the CD attached. Also, annex E.2. contains a
summary of it.

3.3.1. Mission Monitor Setup Development

The MD is formed by a sequence of Windows Forms each one corresponding to
a state defined in the MMa. In those forms appear the parameters defined in the
design part to allow the user to create a mission.

The following images show two examples of Forms used in the MS. Figure 3.16
corresponds to the Detailed state Form in which we define the characteristics of
this state. In this case the user can check the different boxes to select the scan
pattern to perform, to enable the false alarm detector and the fusion and to
select the next state. There are also two labels to introduce the reject distance
for the false alarm detector and to establish a value for the overlapping. Also it
can be appreciated a button to introduce hot-spots and a continue button to
move forward to the next configuration Form.

Chapter 3. Mission Category Development 45

Figure 3.16 Configuration Wizard for the Detailed state

Figure 3.17, for its part, is the Form to select the AoI. It is worth mentioning that
it allows the user to select the AoI by introducing the coordinates or by clicking
on the map:

Figure 3.17 Configuration Wizard for the EnRoute(objective) state

What is important in the MS, is that when we arrive at the end of the Forms and
we click on a save button, the mission is automatically saved into a XML format
to be read later on the MMa. An example of a mission created and saved in a
XML format can be found in Annex C.

46 Mission Management for Unmanned Aircraft Systems

3.3.2. Mission Monitor Director Development

The MD is also formed by Windows Forms. Although forming part of the MMo,
the Forms have no relation with the MS, in exception of the Forms used to
indicate the AoI and to introduce hot-spots.

Figure 3.18 shows the main Form of the MD:

Figure 3.18 Mission Director Form

It can be observed, how the MD informs the user that the cameras, the false
alarm detector and the fusion are connected and the type of scan pattern that is
being performed during the Reconnaissance and Detailed states. To indicate
which state the UAV is currently on, the MD highlights the label of the state with
a green colour, like figure 3.19 shows:

Figure 3.19 MD indicating which state is the UAV currently on

The MD knows these parameters because it is informed by the MMa. The
messages used are:

Chapter 3. Mission Category Development 47

Figure 3.20 Messages from the MMa to the MD

On the upper left corner of the MD form it can be observed a drop-down menu.
When we click on the Menu label and then Go to..., it opens the following
options that are showed in figure 3.21:

Figure 3.21 Menu options

The functionality of each one is very simple. If we are in the Reconnaissance
state and we want to change to the Detalied state without waiting until the end
of the scan or any other exit requirement, we will have to click on the Go to
Detailed state.

Right to the Menu label there is another drop-down menu for the
Reconfigurations. As said before, it allows reconfigurations of the parameters
previously charged in the MMa. Figure 3.22 shows the reconfigurations for the
next state after Detailed:

48 Mission Management for Unmanned Aircraft Systems

Figure 3.22 Detailed next state reconfigurations

When we click on a parameter that is defined numerically, like for example the
Transition Altitude in the Take-Off state, it shows another form that lets the user
introduce a number, like figure 3.23 shows:

Figure 3.23 Number introduction in the MMo

Another special form is the one used to introduce hot-spots which can be
observed in figure 3.24. It is worth mentioning that the Form allow submitting
hot-spots, visualizing them and removing them in case that the user committed
an error.

Chapter 3. Mission Category Development 49

Figure 3.24 Hot-spot introduction form

Finally, figure 3.25 shows some of the messages that are exchanged from the
MMo to the MMa in order to make reconfigurations are:

Figure 3.25 Messages from the MD to the MMa

3.4. Mission Interface

Given the big amount of parameters interchanged between the Mission
Category it was found the necessity of adding a Mission Interface.

The Mission Interface is formed by empty objects containing variables that are
commonly exchanged or that are appropriately grouped. The objects with its
description can be found in annex D.

50 Mission Management for Unmanned Aircraft Systems

CHAPTER 4. USE CASES

In this chapter it is going to be tested the implementation and potential of the
parts of the Mission Category developed by means of two use cases.

The first test will consist of a simple mission in which the MMa will have to
perform its basic functions. The second one will be more complex and it will
develop some extra functionalities of the Mission Category parts developed.

4.1. Use case 1

4.1.1. Goal

Test the basic functionalities of the parts of the Mission Category developed.

The MMa, minimum, will have to be able to turn on USAL Services, turn on the
thermal camera before arriving to the AoI, send orders to take photos, update
the FP to perform a scan pattern in the AoI, update again the FP to return home
and turn off USAL Services.

The MMo will have to let us planning the mission in the MS and later on the
simulation, the MD will have to inform us which state that the UAS is in, when
the thermal camera is on and which type of scan pattern is being performed in
the Reconnaissance state. Also, it will have to allow reconfiguring the mission
planned to not perform the Save state.

4.1.2. Scenario

The next figure illustrates the FP that is proposed in this mission, where the
square is the AoI:

W4
W5

eight

Figure 4.26 Use cases FP

W2

W1

Chapter 4. Use Cases 51

The UAV will take-off from Barcelona’s Airport Runway 02 (W1). Then, it will go
to the waypoint W2. After that, it will go the eight scan where if everything has
gone fine it will start performing the scan pattern updated from the MMa. Then,
when it is over, it will go to the W4 point. After that, W5, to end finally again in
Barcelona’s Airport L1.

4.1.3. Performance

It is going to be explained the mission performed from the point of view of the
MS, the MD and the MMa.

Starting with the MS, this is the XML that have been created after following the
MS explorer:

 </Mission>
- <Mission Name="Case">
- <State Name="Initialize">
- <Services>
 <Service>MMaService</Service>
 <Service>VirtualAutopilotLiteService</Service>
 <Service>FlightMonitorLiteService</Service>
 <Service>DEM</Service>
 <Service>FlightPlanMonitorService</Service>
 <Service>FlightPlanManagerService</Service>
 <Service>Storage</Service>
 <Service>RTDP</Service>
 </Services>
 <Tilt>15</Tilt>
 <X_Cam_angle>25</X_Cam_angle>
 <Y_Cam_angle>18.8</Y_Cam_angle>
 <Photo_filter>0.2</Photo_filter>
 </State>
- <State Name="Take-off">
 <TransitionAltitude>30</TransitionAltitude>
 </State>
- <State Name="EnRouteOb">
- <Area>
 <x1 latitude="41.6741664129136" longitude="2.22755280639818" />
 <x2 latitude="41.6785035145053" longitude="2.40657381935969" />
 <y2 latitude="41.526839" longitude="2.373159" />
 <y1 latitude="41.506571" longitude="2.198375" />
 </Area>
 <TimeServices>120</TimeServices>
 <NextStat>reconnaissance</NextStat>
 </State>
- <State Name="Reconnaissance">
 <ScanPattern>scan</ScanPattern>
 <VisualCam>false</VisualCam>
 <FalseAlarmDetector>false</FalseAlarmDetector>
 <Overlapping>60</Overlapping>
 <NextStat>detailed</NextStat>
 </State>

L1

L2

L1 L1

L1

L2

52 Mission Management for Unmanned Aircraft Systems

- <State Name="Detailed">
 <HotSpotList Value="False" />
 <ScanPattern>eight</ScanPattern>
 <Fusion>true</Fusion>
 <FalseAlarmDetector>true</FalseAlarmDetector>
 <RejectDistance>3</RejectDistance>
 <Overlapping>60</Overlapping>
 <NextStat>enrouteland</NextStat>
 </State>
 <State Name="EnRouteLand" />
- <State Name="Landing">
 <NextStat>Save</NextStat>
 </State>
 <State Name="Save" />
 <State Name="End" />
 </Mission>

The next table summarizes the performance of the Mission Category from the
point of view of the MMa and the MD:

Table 4.14 Use Case 1 performance

State Performance

Initialize

• When we enter to this state we are asked which mission we want to
develop.

• When we select the Mission Case, the MMa charges all the mission
parameters planned and turns on the USAL Services specified.

Take-off • The MMa changes the state when the transition altitude is reached

EnRoute
(objective)

• When the UAV is two minutes before the AoI, the MMa turns on the
thermal camera and the MMo informs us (figure 4.27).

• Then, when it reaches the specified AoI, it changes the state to
Reconnaissance.

Reconnais-
sance

• When the UAV reaches the Eight Point, the MMa updates the FP to
start performing the scan pattern.

• The MMo informs us that the thermal camera is on and that the UAV
is performing the mentioned scan (figure 4.28 left).

• Also, in order to see how the MMa interacts with the CC, it has been
used MAREA to show the messages of ordering to take photos
(figure 4.28 right).

• When the scan is over, as no hot-spots have been detected, the
MMa updates again the FP to go to the L4 waypoint and changes
the state to the EnRoute(land).

Detailed
• As designed, this state has not been performed as there has not

been detected any hot-spot.

EnRoute
(land)

• The MMa turns off the thermal camera because it will not be needed
any more (figure 4.29).

• As we have not detected any hot-spot, we apply one reconfiguration

Chapter 4. Use Cases 53

to say to the MMa that we do not want to go to the Save state.
• When it receives an event of Runway, the MMa changes to the End

state.

Save
• Provided that we have reconfigured EnRoute(land) to avoid entering

to this state, the Save state has not been performed.

End
• This state is maintained until there is not an End Mission event.
• When we say to the MMa that we have ended the mission it turns off

all the USAL Services.

Figure 4.28 Use Case 1. EnRoute(objective) state

Figure 4.27 Use Case 1. Reconnaissance state

Figure 4.29 Use Case 1.
EnRoute(land) state

54 Mission Management for Unmanned Aircraft Systems

4.2. Use case 2

4.2.1. Goal

Test more complex functionalities of the Mission Category developed.

In this occasion, it is going to be performed the same scenario than the use
case 1 but the tasks to perform will be upgraded. In this second test, the MMa
will have to be able to report to the Detailed state the list of waypoints after the
scan has been performed in the Reconnaissance state. Then, in the Detailed
state it will have to update again the FP to make the UAV perform a hold in the
first hot-spot detected and an eight pattern in the second. Thus, both types of
scans will be tested. Another extra functionality will be performed in the Detailed
state too, because the MMa will have to be able to reject hot-spots with the
false alarm detector. Also, we will alter the photo overlapping to test the
correctness of the photo frequency.

Regarding to the MMo, the MS will perform the same action. However, the MD
will have to allow again reconfigurations and will have to update the information
that it shows. For example, in this second mission, it will be reconfigured the
visual camera status to turn it on and it will be deactivated the fusion. Especial
attention will have to be paid on the Detailed state as it will have to inform that
the false alarm detector is on, as well as the eight pattern that have to be
performed.

4.2.2. Scenario

The same scenario than in use case 1 (see section 4.1.2.) is performed.

4.2.3. Performance

As mentioned before, the mission is not altered so the MS returns the same
mission than the one seen before.

The role of the MMa and the MD is not the same and table 4.15 summarizes the
performance of the Mission Category in this second mission:

Table 4.15 Use Case 2 performance

State Performance

Initialize

• Again, when we enter into this state, we are asked which mission
we want to develop.

• When we select the Mission Case, the MMa charges all the
mission parameters planned and it turns on the USAL Services
specified.

Chapter 4. Use Cases 55

Take-off • The MMa changes the state when the transition altitude is reached.

EnRoute
(objective)

• We change the parameter of visual camera and we select that we
want the visual camera on.

• Then, when the UAV arrives approximately to the L2 waypoint, the
MMa turns on both cameras (figure 4.30).

• After that, when it reaches the specified AoI, it changes the state to
Reconnaissance.

Reconnais-
sance

• As seen in the Use Case 1, in this state the UAS starts performing
the scan because the FP has been updated.

• When it is over, it goes to the Detailed state because this time two
hot-spots have been detected.

Detailed

• The UAV enters in the Detailed state and it updates the FP to
perform an eight pattern. Figure 4.31 shows how the MD informs
us that two hot-spots have been detected and that the cameras
and the false alarm detector are on. The fusion has been
reconfigured therefore, as planned, it is off.

• To test the photo frequency, first, we annotate the photo frequency
when the overlapping is of 60%. The MMa tells us that it sends one
order to take photos every 4,87s. Then, we reconfigure the
overlapping and we establish it at 80%. Now, the MMa says that
the photo frequency is one photo every 2.44s. It seems logical
because if we want more overlapping the periodicity must be
higher. Indeed, after manually computing the photo overlapping
with the telemetry of the VAS (it informs us that the altitude is
1037.725 m and the speed 30.28 m/s), it can be affirmed that the
value is correct.

• To test the false alarm detector performance, we send to the MMa
another two hot-spots that are inside the reject distance. The
behaviour of the false alarm detector is correct because neither of
the two new hot-spots have been accepted and reported to the
MD.

• When the UAV has finished performing a hold in the first hot-spot
(dark arrow in figure 4.31) and en eight pattern in the second (light
arrow in figure 4.31), it goes to the L4 waypoint and the state is
changed for the EnRoute(land) one.

EnRoute
(land)

• In this state, the MMa turns off both cameras and the false alarm
detector (figure 4.32).

• This state is maintained until it receives a Runway event or it
detects that it has returned to the TO position. This time we wait for
the UAV to return to the TO position.

• When we have reached that position the state changes to the Save
state.

Save
• In this state we wait until the data has been downloaded. This

function is not implemented for any service thus what we do is
saying to the MMa that everything is OK to end the mission.

End • When the MMa reaches this state, the same procedure seen in

56 Mission Management for Unmanned Aircraft Systems

Use Case 1 is followed.
• Therefore, all the services are turned off and the mission is

concluded.

Figure 4.30 Use Case 2. EnRoute(objective) state

Figure 4.32 Use Case 2. EnRoute(land) state

Figure 4.31 Use Case 2. Detailed state

Chapter 5. Conclusions and future lines 57

CHAPTER 5. CONCLUSIONS AND FUTURE LINES

After having tested the performance of the Mission Category developed it can
be said that the results are excellent.

On one hand, it has been designed, developed and implemented a Mission
Manager that works with the Flight and Payload Sky-Eye’s USAL Services. As a
result, the project has improved its flexibility, optimization but above all it has
gained valuable autonomy. Before this final degree project it not possible to turn
the cameras on before arriving to the AoI, to control the photo overlapping or
even to modify automatically the FP to adapt it to the mission circumstances
among others. Now, these functions are operative and it could be said that all
the objectives fixed for this project have been fulfilled.

On the other hand, it has been also produced a Mission Monitor, which was not
planned on the initial objectives and represents an extra value to the work done.
The Mission Monitor completes the human interface between the Mission
Manager and the user and adds the benefit of reconfigurations, visualizations
and reduction of the designing time. Before this final degree project it was not
possible either to plan a mission before the actuation.

Nevertheless, this project has been the first attempt to create a Mission
Category inside the Sky-Eye’s project. For this reason, there are several things
that could be improved in later versions. The following points summarize the
future lines that the Mission Category could follow after this project:

• It could be a wise idea using different states machines to open up new
visions in the mission design. For example Petri Nets would let us
perform more than one state at the same time.

• The state machine could be generalized to wider its applications beyond
remote sensing missions. Also, it could be interesting upgrading it to get
back to previous executed states.

• It could be improved the code of the MMa to catch exceptions and inform
the user of some of the fails that may appear.

• It would be a wise idea to take profit of the Save state and use it for
downloading data or other operations.

• The photo fusion should be operative in the less time possible as well as
the End Scan and Runway event from the FPMa.

• The MMo could be improved to display all the state parameters and the
services that are connected.

• The human machine interaction between the user and the MMo should
be simpler to avoid, for example, having to introduce first the state
number and then the new value when making reconfigurations.

• When planning a mission in the MS, it could be interesting having a Form
that allows the user to decide which states he wants and in what order.

58 Mission Management for Unmanned Aircraft Systems

REFERENCES

[1] P. ROYO, “Chapter VII- USAL Remote Sensing Missions Use Case”, An
Open Architecture for the Integration of UAV Civil Applications PhD
Dissertation, UPC, May 2010

[2] P. ROYO, “Chapter VII- USAL Remote Sensing Missions Use Case”, An
Open Architecture for the Integration of UAV Civil Applications PhD
Dissertation, UPC, May 2010

E. SANTAMARIA, Reconfigurable Mission Management System for UAS Civil
Applications, Preprint submitted to Aerospace Science and Technology, 2010

[3] P. ROYO, “Chapter III - UAS Service Abstraction Layer”, An Open
Architecture for the Integration of UAV Civil Applications PhD Dissertation,
UPC, May 2010

[4] E. PASTOR, C. BARRADO, P.ROYO, J.LOPEZ AND E.SANTAMARIA,
“Chapter 24- An Open Architecture for the Integration of UAV Civil
Applications”, Aerial Vehicles, T.M.LAM, intechweb.org, January 2009

[5] C.E. NEHME, M.L. CUMMINGS, J.W. CRANDALL, A UAV Mission
Hierarchy, Massachusetts Institute of Technology, December 2006, [online:
accessed February 2011]
http://web.mit.edu/aeroastro/labs/halab/papers/HAL2006_09.pdf

J.R. MARTINEZ-DE-DIOS, L.MERINO AND A.OLLERO, Multi-UAV
Experiments: Applications to Forest Fires, A. Ollero and I. Maza (Eds.). 2007

J.R. MARTINEZ-DE-DIOS, L.MERINO AND A.OLLERO, Unmanned Aerial
Vehicles as tools for forest-fire fighting, V International Conference on Forest
Fire Research, D. X. Viegas (Ed.), 2006, [online: accessed February 2011]
http://grvc.us.es/publica/congresosint/documentos/2006VICFFR_AOLLERO.pdf

Unmanned Aerial Vehicle (UAV) For Search and Rescue, [online: accessed
February 2011]
http://www.u2learn.net/software_engineering/UAV_Project/proposal.html

[6] K. MCNEISH, Windows Workflow Foundation Essentials, 2007, [online:
accessed February 2011]
 http://www.code-magazine.com/Article.aspx?QuickID=0711071

Commons SCXML, [online: accessed February 2011]
http://commons.apache.org/scxml/

State Chart XML (SCXML): State Machine Notation for Control Abstraction
W3C Working Draft, April 2011, [online: accessed February 2011]
http://www.w3.org/TR/scxml/

http://web.mit.edu/aeroastro/labs/halab/papers/HAL2006_09.pdf�
http://grvc.us.es/publica/congresosint/documentos/2006VICFFR_AOLLERO.pdf�
http://www.u2learn.net/software_engineering/UAV_Project/proposal.html�
http://www.code-magazine.com/Article.aspx?QuickID=0711071�
http://commons.apache.org/scxml/�
http://www.w3.org/TR/scxml/�

References 59

Project Open: Petri Nets in the Workflow Package, [online: accessed February
2011]
http://www.project-open.org/documentation/workflow_petri_nets

Petri Nets World, Frequently Asked Questions, [online: accessed February
2011]
http://www.informatik.uni-hamburg.de/TGI/PetriNets/

[7] J. LEMA, Mission Category, ICARUS, April 2011

[8] B.R. MYERS, Foundations of WF and Introduction to Windows Workflow
Foundation, Apress, 2007

[9] J. LEMA, Mission Category, ICARUS, April 2011

E.SANTAMARIA, C.BARRADO, E.PASTOR, A Reconfigurable Mission
Management System for UAS Civil Applications, UPC, September 2010

[10] Doxygen Documentation System, [online: accessed June 2011]
 http://www.stack.nl/~dimitri/doxygen/

http://www.project-open.org/documentation/workflow_petri_nets�
http://www.informatik.uni-hamburg.de/TGI/PetriNets/�
http://www.stack.nl/~dimitri/doxygen/�

ANNEXOS

TÍTOL DEL TFC: Mission Management for Unmanned Aircraft Systems

TITULACIÓ: Enginyeria Tècnica Aeronàutica, especialitat Aeronavegació

AUTOR: Marta Valenzuela Arroyo

DIRECTOR: Juan Manuel Lema Rosas

DATA: 4 de Juliol de 2011

Annex A 63

ANNEX A: MISSION MANAGER PROCEDURES

A.1. Procedure to determine when the UAV is near the AoI

1. From the value of the speed given by the VAS, it is computed the
distance that the UAS covers 120 seconds (reconfigurable).

2. Next, it is created a square expanding the AoI with the distance
computed in 1.

Figure Annex A.1.33 AoI expanded

3. Then, with a function that tells if the UAV is inside the bigger square, it is
kept monitoring the actual position of the UAV. When the UAV enters into
the square, as that means that the UAV is at 120 seconds from the AoI,
the MMa gives the order of turning on the USAL Services needed.

64 Mission Management for Unmanned Aircraft Systems

A.2. Procedure to determine the frequency of taking photos

For computing the frequency of taking photos it is needed to know the
characteristics of the photos that are obtained.

The first remarkable thing is that the photos are trapeziums. This is due to the x
dimension of the photo that becomes bigger as the distance from the camera to
the ground increases.

Nevertheless, after some calculations of the photos obtained (see table Annex
A.2.16), we could state that the photos are almost rectangles.

Tilt (deg) 0 15
Z(m) Width Height Short

Base
Large
Base

Height

15 6,7 5,0 6,7 7,3 5,3
20 8,9 6,6 8,9 9,7 7,1
25 11,1 8,3 11,1 12,2 8,9
30 13,3 9,9 13,4 14,6 10,7
35 15,5 11,6 15,6 17,0 12,4
40 17,7 13,2 17,8 19,5 14,2
45 20,0 14,9 20,0 21,9 16,0
50 22,2 16,6 22,3 24,3 17,8
100 44,3 33,1 44,6 48,7 35,6
200 88,7 66,2 89,1 97,4 71,1
300 133,0 99,3 133,7 146,1 106,7
400 177,4 132,4 178,2 194,8 142,2

Table Annex A.2.16 Photo calculations

This fact has been taken profit by the MMa. A trapezoidal overlapping would not
have been very practical because some parts of the photo will be overlapped
while some others would not. Therefore, supposing that the photos are
rectangles, the calculations become simpler and reliable. In addition, this

Figure Annex A.2.34 Example of a photo’s shape

Large base

Short base

Height

Annex A 65

supposition would only represent an error on the overlapping of 4% in the
nominal UAV height (100m).

To calculate the photo frequency, the MMa computes the overlapping vertically.
Nonetheless, it needs to know both the short base of the photo (x dimension)
and the length (y dimension). The x dimension is useful to know the separation
distance between the different legs when performing the scan. For its part, the y
dimension of the photo will be what determines the periodicity of taking photos.

The procedure used to determine the x photo length is based on trigonometric
as follows:

Figure Annex A.2.35 Procedure to determine the x dimension of the photos

Using trigonometric too, the procedure to determine the y photo length is:

66 Mission Management for Unmanned Aircraft Systems

With the y dimension, and taking into account the UAS velocity and the
overlapping wanted, the frequency of taking photos is:

Figure Annex A.2.36 Procedure to determine the y dimension of the photos

Annex A 67

A.3. Procedure to reject hot-spots

The procedure for rejecting hot-spots goes as follows:

1. First of all it is asked the number of hot-spots detected (if the number is
0, it is accepted automatically the hot-spot as new).

2. For the first hot-spot on the list, the MMa creates a 3m (reconfigurable)
side square around it and computes if the new hot-spot position is
inside that area or not.

3. If the hot-spot is inside the area, it is rejected as a new. On the contrary,
if the hot-spot is outside, the procedure of creating a square is repeated
for the next hot-spot of the list.

4. The process ends when the MMa has a match (hot-spot rejected) or it
has analysed all hot-spots and none of them were 3m near the new hot-
spot (hot-spot is accepted as a new one).

Annex B 69

ANNEX B: INTERACTION WITH THE FLIGHT CATEGORY

B.1. Scan Pattern Update

• Example of form:

<?xml version="1.0" encoding="utf-8" ?>
<fpu:FlightPlanUpdate
xmlns:fpu='http://icarus.upc.es/schema/FlightPlanUpdate/1.1'
xmlns:fp='http://icarus.upc.es/schema/FlightPlan/1.1'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:schemaLocation='http://icarus.upc.es/schema/FlightPlanUpdate/1.1
file:C:\FlightPlanUpdate-1.1.xsd'>
 <Change>
 <MainFP targetId='FPBasico'>
 <stages>
 <stage targetId='traffic'>
 <legs>
 <leg targetId="basicscan" xsi:type="fp:BasicScanLeg">
 <dest>
 <coordinates>
 72.20 3.75
 </coordinates>
 <altitude>2000</altitude>
 <speed>30</speed>
 </dest>
 <angle>0.18</angle>
 <dim1>500</dim1>
 <dim2>200</dim2>
 <separation>20</separation>
 </leg>
 </legs>
 </stage>
 </stages>
 </MainFP>
 </Change>
</fpu:FlightPlanUpdate>

70 Mission Management for Unmanned Aircraft Systems

Figure Annex B.1.37 Scan pattern parameters

• Parameters:

Annex B 71

Parameter Definition Example Value given for the MMa

MainFP Name of the
flight plan

MainFP
targetId='FPBasico'

This parameter is defined
by the FPMa in the

moment of the creation of
the flight plan

Stage Name of the
flight stage

stage
targetId='traffic'

This parameter is defined
by the FPMa in the

moment of the creation of
the flight plan

Leg Name and type
of leg

leg
targetId="basicscan

"
xsi:type="fp:BasicS

canLeg"

This parameter is defined
by the FPMa in the

moment of the creation of
the flight plan

Coordinates Last coordinate
of the scan

72.20
43.75

The MMa sends the
appropriate coordinate of

the AoI

Altitude
Altitude to

perform the scan
in meters

2000

It is used the altitude that
the UAV has in the moment

of the update

Speed
Speed to

perform the scan
in

meters/second

30

It is used the speed that
the UAV has in the moment

of the update

Angle

Angle of
inclination of the
scan pattern to

respect the north
in degrees

0.18
The MMa computes with
trigonometric its value to

send it in the update

dim1

Distance
between the
coordinate of

entrance to the
scan and the
second one in

meters

500
The MMa computes with
trigonometric its value to

send it in the update

dim2

Distance
between the
coordinate of

entrance to the
scan and the
third one in

meters

200
The MMa computes with
trigonometric its value to

send it in the update

Separation

Separation
between the
different legs

when doing the
scan in meters

20
The MMa computes its

value (see Annex A.3) to
send it in the update

Table Annex B.1.17 Scan pattern parameters

72 Mission Management for Unmanned Aircraft Systems

B.2. Hold Pattern Update

• Example of form:

<?xml version="1.0" encoding="utf-8" ?>
<fpu:FlightPlanUpdate
xmlns:fpu='http://icarus.upc.es/schema/FlightPlanUpdate/1.1'
xmlns:fp='http://icarus.upc.es/schema/FlightPlan/1.1'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:schemaLocation='http://icarus.upc.es/schema/FlightPlanUpdate/1.1
file:C:\FlightPlanUpdate-1.1.xsd'>
 <Change>
 <MainFP targetId='FPBasico'>
 <stages>
 <stage targetId='traffic'>
 <legs>
 <leg targetId="hold" xsi:type="fp:HFLeg">
 <dest>
 <coordinates>
 4.2 2.88
 </coordinates>
 <altitude>2000</altitude>
 <speed>30</speed>
 </dest>
 <course>220</course>
 <direction>Right</direction>
 <d1>200</d1>
 <d2>250</d2>
 </leg>
 </legs>
 </stage>
 </stages>
 </MainFP>
 </Change>
</fpu:FlightPlanUpdate>

Annex B 73

• Parameters:

Figure Annex B.2.38 Hold pattern parameters

74 Mission Management for Unmanned Aircraft Systems

Parameter Definition Example Value given for the
MMa

MainFP Name of the flight
plan

MainFP
targetId='FPBasico'

This parameter is
defined by the FPMa in

the moment of the
creation of the flight

plan

Stage Name of the flight
stage

stage
targetId='depart'

This parameter is
defined by the FPMa in

the moment of the
creation of the flight

plan

Leg Name and type of
leg

leg targetId="hold"
xsi:type="fp:HFLeg""

This parameter is
defined by the FPMa in

the moment of the
creation of the flight

plan.

Coordinates Last coordinate
of the hold

4.2
2.88

The MMa sends a
coordinate of a hot-spot

found or reported
modified to convert it in
the final hold coordinate

Altitude
Altitude to

perform the scan
in meters

2000 It is used a low altitude

Speed
Speed to perform

the scan in
meters/second

30
It is used the speed that

the UAV has in the
moment of the update

Course

Angle of
inclination of the
holding pattern to
respect the north

in degrees

200 The MMa uses some
predefined value (0º)

Direction Direction of the
hold pattern Right The MMa uses some

predefined value (Right)

d1

Distance
between the
coordinate of

entrance to the
scan and the
second one in

meters

200
The MMa uses some
predefined value to

perform the scan (200)

d2

Distance
between the
coordinate of

entrance to the
hold and the third

one in meters

250
The MMa uses some
predefined value to

perform the scan (250)

Table Annex B.2.18 Hold pattern parameters

Annex B 75

B.3. Eight Pattern Update

• Example of form:

<?xml version="1.0" encoding="utf-8" ?>
<fpu:FlightPlanUpdate
xmlns:fpu='http://icarus.upc.es/schema/FlightPlanUpdate/1.1'
xmlns:fp='http://icarus.upc.es/schema/FlightPlan/1.1'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:schemaLocation='http://icarus.upc.es/schema/FlightPlanUpdate/1.1
file:C:\FlightPlanUpdate-1.1.xsd'>
 <Change>
 <MainFP targetId="FPBasico">
 <stages>
 <stage targetId="traffic">
 <legs>
 <leg targetId="scanPoint" xsi:type="fp:ScanPointLeg">
 <dest>
 <coordinates>
 41.455 2.175

 </coordinates>
 <altitude>200</altitude>
 <speed>100</speed>
 </dest>
 <course>220</course>
 <d1>200</d1>
 <d2>250</d2>
 </leg>
 </legs>
 </stage>
 </stages>
 </MainFP>
 </Change>
</fpu:FlightPlanUpdate>

76 Mission Management for Unmanned Aircraft Systems

• Parameters:

Figure Annex B.3.39 Eight pattern parameters

Annex B 77

Parameter Definition Example Value given for the
MMa

MainFP Name of the flight
plan

MainFP
targetId='FPBasico'

This parameter is
defined by the FPMa
in the moment of the
creation of the flight

plan

Stage Name of the flight
stage

stage
targetId='traffic'

This parameter is
defined by the FPMa
in the moment of the
creation of the flight

plan

Leg Name and type of
leg

leg
targetId="scanpoint"
xsi:type="fp:ScanPo

intLeg""

This parameter is
defined by the FPMa
in the moment of the
creation of the flight

plan

Coordinates Last coordinate of
the hold 41.455 2.175

The MMa sends a
coordinate of a hot-

spot found or
reported modified to
convert it in the final

hold coordinate

Altitude Altitude to perform
the scan in meters 200 It is used a low

altitude

Speed
Speed to perform

the scan in
meters/second

100

It is used the speed
that the UAV has in
the moment of the

update

Course
Angle of inclination
of the eight pattern

to respect the
vertical in degrees

220
The MMa uses

some predefined
value (0º)

d1

Distance between
the coordinate of
entrance to the
scan and the
second one in

meters

200

The MMa uses
some predefined

value to perform the
scan (200)

d2

Distance between
the coordinate of
entrance to the

hold and the third
one in meters

250

The MMa uses
some predefined

value to perform the
scan (250)

Table Annex B.3.19 Eight pattern parameters

78 Mission Management for Unmanned Aircraft Systems

B.4. SetCondition

In order to indicate to the FPMa the next branch of an iterative loop we have to
send it a SetCondition.

In it, we have to introduce the name of the iterative leg (in the example condition
1) and the number of the pattern (3 in the example).

Setcondition.condId = "condition1"
Setcondition.condRes = 3

The number is defined in the FPMa. When a FP is created, the user specifies a
sequence of scan patterns that can be performed in the iterative loop, for
example hold scan eight. Then, in order to establish that an eight pattern is
wanted, we have to indicate the number of introduction of the eight pattern in
the FP. For example, in the list of hold scan eight that has just been seen, we
have to indicate in the SetCondition that the number is 3.

Annex B 79

B.5. Skip

Skip is used to end the actual branch of an iterative leg. The message to send
to the FPMa is quite simple as we just have to send a skip message without any
parameter.

80 Mission Management for Unmanned Aircraft Systems

B.6. GoToLeg

When we want to end an iterative loop we use a GoToLeg message. It is going
to be used an example:

leg.legId = "L4"
leg.stageId = "traffic"

As it can be observed we have to indicate the name of the leg that goes after
the iterative leg and the stage that is contained that leg. Both identifications are
determined when the FP is created.

Annex C 81

ANNEX C: MISSION XML

The next example shows a mission created with the Mission Monitor Setup:

<Mission>
- <Mission Name="Example of Mission">
 - <State Name="Initialize">
 - <Services>
 <Service>MMaService</Service>
 <Service>VirtualAutopilotLiteService</Service>
 <Service>FlightMonitorLiteService</Service>
 <Service>DEM</Service>
 <Service>FlightPlanMonitorService</Service>
 <Service>FlightPlanManagerService</Service>
 <Service>Storage</Service>
 <Service>RTDP</Service>
 </Services>
 <Tilt>15</Tilt>
 <X_Cam_angle>25</X_Cam_angle>
 <Y_Cam_angle>18.8</Y_Cam_angle>
 <Photo_filter>0.2</Photo_filter>
 </State>
 - <State Name="Take-off">
 <TransitionAltitude>30</TransitionAltitude>
 </State>
 - <State Name="EnRouteOb">
 - <Area>
 <x1 latitude="41.37" longitude="2.07" />
 <x2 latitude="41.37" longitude="2.15" />
 <y2 latitude="41.34" longitude="2.15" />
 <y1 latitude="41.34" longitude="2.07" />
 </Area>
 <TimeServices>120</TimeServices>
 <NextStat>reconnaissance</NextStat>
 </State>
 - <State Name="Reconnaissance">
 <ScanPattern>scan</ScanPattern>
 <VisualCam>false</VisualCam>
 <FalseAlarmDetector>false</FalseAlarmDetector>
 <Overlapping>60</Overlapping>
 <NextStat>detailed</NextStat>
 </State>
 - <State Name="Detailed">
 - <HotSpotList Value="True">
 <HotSpot latitude="41.360000610351562" longitude="2.0799999237060547" />
 </HotSpotList>
 <ScanPattern>hold</ScanPattern>
 <Fusion>true</Fusion>
 <FalseAlarmDetector>true</FalseAlarmDetector>
 <RejectDistance>3</RejectDistance>
 <Overlapping>60</Overlapping>
 <NextStat>enrouteland</NextStat>
 </State>

82 Mission Management for Unmanned Aircraft Systems

 <State Name="EnRouteLand" />
 - <State Name="Landing">
 <NextStat>Save</NextStat>
 </State>
 <State Name="Save" />
 <State Name="End" />
</Mission>

Annex D 83

ANNEX D: MISSION INTERFACE DESCRIPTION

Objects Variables Description

Area Four positions
• Instead of sending 4 points individually, it

is created an object Area to send the AoI
to the MMa

Hot-spot One position and one
number

• The object Hot-spot is used for adding,
modifying and removing a hot-spot

• The position is used to indicate the
position of the hot-spot

• The number indicates the position of the
hot-spot inside the list of hot-spots

State
Objects

(Detector,
NextState,

Overlapping,
Pattern,
Reject

Distance and
Visual

Camera)

There are three
variables. In all of

them appear a string
and a number. The

third depends on the
object.

• The State Objects are used to reconfigure
state parameters (e.g. the next state)

• The common string is used to indicate the
state in which we want to apply the
change

• The common number, for its part, is used
to indicate the state number, in case that
we have chosen a state that is repeated
(e.g. 2 Reconnaissance states)

• The variable that depends on the object is
the new value that we want to apply the
reconfiguration.

• In the case of the Detector there is a
Boolean to indicate if we want the false
alarm detector enabled

• In the case of the NextState, a string to
indicate the name of the next state

• In the Overlapping there is a number to
indicate the new value of the overlapping

• In the Reject Distance there is also a
number to indicate the reconfiguration on
the reject distance

• The Visual Camera contains a Boolean to
state that we want the cameras on/off

Table Annex D.20 Objects and variables of the Mission Interface

Annex E 85

ANNEX E: MISSION CATEGORY DOCUMENTATION

The code of the Mission Category has been documented in XML and Doxygen
[10]. Doxygen is a free program that converts XML comments to an accurate,
informative documentation with a common look and feel.

The complete documentation of the Mission Category is in a HTML format for its
simplicity and visual representation. Printing the whole documentation in this
project would have not been practical and therefore it has been included in the
CD attached instead. Nevertheless, the next two subsections shows abstracts
of the documentation of the MMa and the MMo. It has been included the list of
the classes, the functions, the variables, the properties, the events and one
representative class of each service that will let making a good idea of the
whole code documentation.

E.1. Mission Manager Documentation

The following figure shows the list of classes of the MMa:

86 Mission Management for Unmanned Aircraft Systems

Figure Annex E.1.40 MMa classes documentation

The following figure shows the functions used in the MMa:

Annex E 87

Figure Annex E.1.41 MMa functions documentation

The following figure shows the variables of the MMa:

Figure Annex E.1.42 MMa variables documentation

The following figure shows the properties of the MMa:

88 Mission Management for Unmanned Aircraft Systems

Figure Annex E.1.43 MMa properties documentation

The next figure shows the MMa events:

Annex E 89

Figure Annex E.1.44 MMa events documentation

Next, it will be showed one class that will exemplify the documentation
produced for the classes of the MMa. The class elected is the Publisher. This
class sends most of the events that the MMa produces:

90 Mission Management for Unmanned Aircraft Systems

Annex E 91

Figure Annex E.1.45 Publisher class documentation

92 Mission Management for Unmanned Aircraft Systems

E.2. Mission Monitor Documentation

The following figure shows the list of classes of the MMo:

Figure Annex E.2.46 MMo classes documentation

The following figure shows the functions used in the MMo:

Annex E 93

Figure Annex E.2.47 MMo functions documentation

The following figure shows the variables of the MMo:

94 Mission Management for Unmanned Aircraft Systems

Figure Annex E.2.48 MMo variables documentation

The following figure shows the properties of the MMo:

Figure Annex E.2.49 MMo properties documentation

This time as a class documentation representative for the classes of the MMo, it
has been chosen the main form of the MD. Next figure shows its
documentation:

Annex E 95

96 Mission Management for Unmanned Aircraft Systems

Annex E 97

Figure Annex E.2.50 MD class documentation

	INTRODUCTION
	MOTIVATION
	CHAPTER 1. SKY EYE’S PROJECT STATE OF ART
	1.1. Hardware architecture
	1.2. USAL Service Architecture

	CHAPTER 2. MISSION CATEGORY DESIGN
	2.1.1. Mission Manager under USAL
	2.1.1.1. USAL Systems characteristics
	2.1.2. Mission Manager States
	2.1.3. Automaton State of Art
	2.1.4. Sky-Eye’s state machine
	2.1.4.1. Initialize
	Take-off
	2.1.4.3. En Route(objective)
	2.1.4.4. Reconnaissance
	2.1.4.5. Detailed
	2.1.4.6. En Route (land)
	2.1.4.7. Landing
	2.1.4.8. Save
	2.1.4.9. End

	2.2. Mission Monitor Design
	2.2.1. Mission Monitor under USAL
	2.2.2. Architecture
	2.2.2.1. Mission Setup
	2.2.2.2. Mission Director

	CHAPTER 3. MISSION CATEGORY DEVELOPMENT
	3.1. Software
	3.2. Mission Manager Development
	3.2.1. States Characteristics
	3.2.2. Interaction with Payload Services
	3.2.3. Interaction with Flight Services
	3.2.4. Tasks Characteristics
	Another important task is rejecting hot-spots with the false alarm detector. This function would let the MMa identify, for example, that a new hot-spot alarm is coming from a previous hot-spot detected and reject it. This function could be disabled by the user to inform of all hot-spots detected (to see the procedure or rejecting photos see annex A.3).

	3.3. Mission Monitor Development
	3.3.1. Mission Monitor Setup Development
	3.3.2. Mission Monitor Director Development

	3.4. Mission Interface

	CHAPTER 4. USE CASES
	4.1.1. Goal
	4.1.2. Scenario
	Performance
	4.2.1. Goal
	4.2.2. Scenario
	4.2.3. Performance

	CHAPTER 5. CONCLUSIONS AND FUTURE LINES
	REFERENCES
	ANNEXOS
	ANNEX A: MISSION MANAGER PROCEDURES
	A.1. Procedure to determine when the UAV is near the AoI
	A.2. Procedure to determine the frequency of taking photos
	A.3. Procedure to reject hot-spots

	ANNEX B: INTERACTION WITH THE FLIGHT CATEGORY
	B.1. Scan Pattern Update
	B.2. Hold Pattern Update
	B.3. Eight Pattern Update
	B.4. SetCondition
	B.5. Skip
	B.6. GoToLeg

	ANNEX C: MISSION XML
	ANNEX D: MISSION INTERFACE DESCRIPTION
	ANNEX E: MISSION CATEGORY DOCUMENTATION
	E.1. Mission Manager Documentation
	E.2. Mission Monitor Documentation

