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Facultat d’Informàtica de Barcelona

Universitat Politècnica de Catalunya
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Abstract

Wireless sensor networks are an active field of research in computer sci-

ence. The Wisebed project, formed by many European universities, tries to

fill the gap between theory and practice, making a platform-independent

library of algorithms named Wiselib, and building a testbed in each univer-

sity accessible through internet. In this project, different topology and time

synchronization algorithms are analyzed and implemented into the Wiselib

library. These algorithms are later tested through simulation and in the UPC

testbed. Theoretical and real life properties of the algorithms are discussed

and compared.

Les xarxes de sensors inalàmbrics són un camp actiu de recerca en informà-

tica. El projecte Wisebed, format per diverses universitats europees, intenta

omplir el buit entre teoria i pràctica, creant una llibreria d’algorismes anom-

enada Wiselib i construint xarxes de sensors a cada universitat, accessibles

per internet per realitzar proves. En aquest projecte, alguns algorismes de

topologia i de sincronització són analitzats i implementats en la llibreria

Wiselib. Aquests algorismes es proven mitjançant simulacions i en la xarxa

de la UPC. Es discuteixen i comparen propietats teòriques i reals d’aquests

algorismes.
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Chapter 1

Introduction

1.1 The project

1.2 Wireless sensor networks

Wireless sensor networks (WSN), an active field of research and development, consist

of small devices which communicate by radio. It is inherent to this devices to have lim-

ited memory and computation resources. They can be applied to solve many different

problems and help in many situations, such as industry control, weather monitoring...

In the last years a lot of theoretical WSN research has been done, and many efficient

algorithms which take into account the limitations of sensors have appeared. In ad-

dition to this, different sensors are available in the market, with different capabilities,

operating systems... There is a big gap, however, between the theoretical algorithms

(usually tested through simulation), and the real sensors. There is not either any repos-

itory of WSN algorithms, or any collaborative platform to develop them.

The Wisebed project (8), started on 2008 and finishing in 2011, aims to develop a

free library (Wiselib) (4), which contains many different algorithms implemented in

order to work on many platforms. The most relevant algorithms in each category were

picked to be added into this library. Moreover, it aims to prepare sensor testbeds on

many European universities, to test all these algorithms and collect real world data.

This project fits in this framework.

Through this project, many algorithms were studied from their theoretical spec-

ification and implemented into the Wiselib, adding other requirements if necessary.
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After being implemented, the algorithms are tested through simulation and in real

testbeds, such as the one deployed in the Omega building at the Universitat Politècnica

de Catalunya (UPC).

1.3 Aims of the project

The goal of the project is to implement some Topology and Synchronization algorithms

in the Wiselib library and test them through simulation and on real sensors.

Topology algorithms build a subgraph in a network, in order to reduce its complex-

ity, thus reducing energy consumption and interference. The LMST (20) and FLSS (19)

were implemented by myself, and they will be described in detail and their implemen-

tation discussed in sections 4.2 and 4.3. The KNEIGH (5) and XTC (31) algorithms were

implemented by Juan Farré, and I will comment the most important features of each of

them on sections 4.4.2 and 4.4.3. It was Juan and I who implemented the first topology

algorithms in the Wiselib, decided its more important features and defined their inter-

face. Finally, the CBTC (18) algorithm, implemented by Josep Anguera, is also briefly

commented in 4.4.1. In this case I helped with some technical Wiselib implementation

matters, and also by implementing some direction interface in shawn simulator (24).

Synchronization algorithms synchronize the sensors’ clocks in a network to one or

more Base Stations. During the project I implemented and tested the LTS algorithm

(29), the TPSN (12) and HRTS (10). Their description and implementation can be found

in sections 3.4, 3.5 and 3.6, and the results on the tests in section 3.7.3. For the definition

of the interfaces in time synchronization algorithms, including time types, clock... I

worked together with Tobias Baumgartner during a coding week on summer 2010.

1.4 Wisebed project

My work in this project is developed as part of the Wisebed project (8). The Wisebed

project aims to build an infrastructure of interconnected large scale wireless sensor net-

works for research purposes. The Wisebed project partners work to cover the hardware,

software and algorithmic requirements of large scale tests. They are:

• University of Lübeck (Coordinator), Germany
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1.4 Wisebed project

• Freie Universität Berlin, Germany

• Braunschweig Institute of Technology, Germany

• Research Academic Computer Technology Institute, Greece

• Universitat Politècnica de Catalunya, Catalonia

• Universität Bern, Switzerland

• University of Geneva, Switzerland

• Delft University of Technology, Netherlands

• Lancaster University, United Kingdom

Figure 1.1: Wisebed logo

The partners in Wisebed have developed or improved applications such as the Tar-

wis system (13), a web interface to program, configure and manage tests, the WiseML

(Wireless Sensor Networks Markup Language), useful to specify test configuration and

results, the Wiselib library (4), including dozens of algorithms which run on many plat-

forms, integration with shawn simulator (24)...

Part of the work of UPC in this project has been to develop and integrate many

algorithms (topology and time synchronization algorithms) into the Wiselib, and to

deploy a testbed formed by iSense sensors and accessible through the Internet to run

experiments by any other partner of the project. More details on UPC testbed are given

in Section 2.4.
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1.5 FRONTS project

In parallel to the Wisebed project, there is another European project in the wireless

sensor networks field: the FRONTS project (2008-2011). FRONTS is a much more the-

oretical project, in which studies are made about future network systems emerging in

our society. These systems may be wireless, formed by thousands of nodes, changing

and self-configuring. The partners in this project are:

• Research Academic Computer Technology Institute (Coordinator), Germany

• Braunschweig University of Technology, Germany

• Universität Paderborn, Germany

• University of Athens, Greece

• Ben-Gurion University of the Negev, Israel

• Università di Roma ”La Sapienza”, Italy

• Università degli Studi di Salerno, Italy

• Wroclaw University of Technology, Polland

• Universitat Politècnica de Catalunya, Catalonia

• University of Geneva, Switzerland

• University of Lübeck, Germany

Figure 1.2: FRONTS logo

In the last part of the FRONTS project an unifying experiment has been designed,

which uses many different modules programmed by each partner. These modules can

be grouped in three layers, from bottom to top:
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1. Operating system: wireless radio, motion of the sensors...

2. Communication: nodes are grouped in clusters by clustering algorithms, a high-

way algorithm builds communication channels between neighbor clusters, and

an end-to-end communication algorithm routes messages from any cluster to any

other cluster.

3. Private tracking and data aggregation: over the communication layer, different

applications create safe communication with cryptography, collect data from the

whole network, track certain sensors, and plan the motion of mobile sensors in

order to improve the tracking.

This experiment was completely integrated into the Wiselib, and as many univer-

sities are partners both of Wisebed and FRONTS, there has been a lot of work put in

common between both projects.

1.6 My work in Wisebed and FRONTS

From June 2009 to June 2011 I have had a grant and worked part-time in the Wisebed

project, developing algorithms in the Wiselib. In addition to the pure programming

and testing work, I participated in some European meetings, in which general design

decisions were made, different parts of the library were put together, and lots of pro-

gramming was made.

Even though this project explains the work done in the Wisebed project, more specif-

ically in the Wiselib, I also participated in the FRONTS project by attending to some

meetings and helping Antoni Segura (colleague from UPC working in FRONTS) with

the initial implementations of his algorithm in the Wiselib.

The meetings attended are:

1. WISEBED Technical Meeting (Lübeck, Germany, 21-23/03/2011)

2. FRONTS 3rd Unifying Experiment Workshop (Patras, 24-28/01/2011)

3. FRONTS 2nd Unifying Experiment Workshop (Rome, 23-24/11/2010)

4. PerAda Workshop in Security, Trust and Privacy (Rome, 22-23/11/2010)
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5. FRONTS 1st Unifying Exp. Workshop (Braunschweig, 11-15/10/2010)

6. WISEBED Programming Week (Braunschweig, 1-7/08/2010)

7. FRONTS 2nd Winter School (Braunschweig, 12-16/10/2009)

In addition to these meetings, I also attended the Workshop on Software Engineer-

ing for Sensor Network Applications (Cape Town, 2-8/05/2010), where I presented

Topology control algorithms in WISELIB (2), which describes the development and re-

sults of topology algorithms implemented for Wisebed in UPC.
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Chapter 2

Technology

2.1 Wiselib

All the algorithms and programs implemented in this project are part of the Wiselib

algorithms library. Wiselib (4, 32) is a generic algorithm library for heterogeneous

wireless sensor nodes. This library is under current development within the Wisebed

project (8).

Wiselib already covers a large number of algorithmic topics, including routing,

clustering, time synchronization, localization, data dissemination, target tracking and

topology control. The library is still being enriched by the Wisebed partners. The goal

is to develop a library of algorithms for heterogeneous WSNs that is on par with some

well-known centralized algorithm libraries existing nowadays (such as LEDA, CGAL

or BOOST (6, 7, 14, 16, 27)). This aim has strong requirements:

• Wiselib must run on all sensor nodes by the Wisebed partners and should easily

be ported to additional devices.

• Its algorithms should utilize the capabilities of the device they are compiled for.

• Its memory overhead should be as low as possible compared to a native imple-

mentation for a specific device.

• Its algorithms should be highly efficient considering the capabilities of the de-

vices.

• Its algorithms implementations should not explicitly deal with platform specific

dependencies.
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Fig. 2.1 depicts how the Wiselib library is connected with other components of a

WSN system. The library can be used by any user application that needs any of the

algorithms implemented in it or, alternatively, that needs to implement a new algorithm

using the components that the library offers.

The algorithms included in Wiselib itself are organized in topics according to their

functionality. In order to abstract the algorithms from the particularities of the physical

platform of sensors and the operating system administrating that platform, a set of con-

nectors exists that defines and fixes an interface for interacting with them. A connector

is also defined to interact with wireless sensor networks’ simulators as, for example,

Shawn (24). Those connectors are defined in a way that the same algorithm can be run

on a physical platform or on the simulator. Details on how this is achieved are provided

in the following.

Figure 2.1: Wiselib architecture - Wiselib architecture and external interface (32)

2.1.1 C++ templates

The programming language chosen to implement and use Wiselib is C++ (1, 28, 30).

This decision allows the use of modern programming techniques via object-oriented

(OO) design, and provides mostly type-safe development. Moreover, the language of-

fers interesting features such as const-correctness and templates (1, 30). Wiselib mas-
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sively uses templates, especially to develop very efficient and flexible applications. The

basic functionality of templates is to allow the use of generic code that is resolved by

the compiler when specific types are given. Thereby, only the code that is really needed

is generated, and methods and parameters as template parameter can be directly ac-

cessed. No virtual inheritance is used at all, to avoid the vtables that are necessary

to implement virtual function calls. Instead, OO concepts are implemented using tem-

plate specializations. Using templates and member templates provides the Wiselib with

several advantages, such as early binding, inline optimizations, code pruning, extensi-

bility, and a layered structure.

2.1.2 Concepts and models

The Wiselib library is not an ordinary object-oriented design with some interfaces and

abstract classes. Instead, it uses an efficient generic programming approach that makes

extensive use of templates. Thus, an appropriate structure for the description of the

several algorithms and components is needed. We heavily employ two generic pro-

gramming principles (see Fig. 2.2):

Concepts. A concept is a detailed description of the requirements for the basic common

functionalities of a class of algorithms, that is, an informal prototype for it. For

example, later we present the Topology Control concept. Concept do not con-

tain any source code but, instead, are part of the Wiselib documentation. The

idea is to provide a complete documentation, in which the concepts and their

interrelationships are described, and from which one is able to produce a valid

implementation. Interestingly enough, concept inheritance is allowed in Wiselib.

Models. A model is a specific implementation of a concept. Any algorithm model im-

plements one or multiple concepts. For example, later we present in detail the

concept of a topology control algorithm. With this, one may implement LMST,

KNEIGH or any other topology control algorithm: all would be models of the TC

concept.

For a more detailed description and examples on the definition of concepts and

models, we address to reader to (4).
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Figure 2.2: Wiselib external architecture - Wiselib external architecture (4)

In programming terms, an algorithm model implementing a concept is basically a

template expecting various parameters. These parameters can be both Operation Sys-

tem (OS) facets and data structures. OS facets represent the connection to the under-

lying operating system or firmware (e.g., the sensor radio or the timers), thus being

an abstraction layer to the OS, and thus also to the hardware platform. The concepts

and models of this abstraction layer form the so-called external interface (see Fig. 2.2).

OS facets are passed to an algorithm as template arguments and the compiler later re-

solves such calls to the OS. An OS facet can be implemented by different models, that

may have different advantages or purposes. The user can pass any of those models to

an algorithm at compile time, and no extra overhead is payed for that. Additionally,

the so-named internal interface is formed by data structure models and concepts, which

make the algorithms independent from specific implementations for their required data

structures. As part of this internal interface, Wiselib provides the pMP and the pSTL.

The pMP is a C-based implementation of big-number operations. The pSTL is an im-

plementation of parts of the STL that does neither use dynamic memory nor exceptions

nor RTTI. The pSTL includes nowadays implementations for the data structures map,
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vector and list, and we recently also included graph and priority queue. As for the

models of the internal interface, the user can pass any of the models for data structures

to an algorithm at compile time.

In general, this separation of concepts and their implementation through a template-

based approach leads to a highly flexible and powerful design, because the necessities,

strength and weaknesses of different hardware platforms or different data structures

can easily be utilized just by changing the parameters, or even simply by changing

makefile targets.

Thus, an algorithm in Wiselib takes then several template parameters for parameter-

ization. One parameter is the model of the currently used connection component. This

way, an algorithm can be compiled for all supported hardware platforms by changing

only one parameter. Other parameters may be the kind of container used for storing the

neighborhood, or the representation of a general node that is put into the neighborhood

container.

Writing extensions for the Wiselib can be interpreted in two different ways. First, a

user may want to completely write a new algorithm, which requires to provide a imple-

mentation compatible with the corresponding concept. The algorithm can then easily

be used with all the other parts of the library. Second, extensibility also covers existing

implementations that should be optimized for particular components. E.g., the method

to regulate the emission power of a topology control algorithm can be implemented, if

a certain node type is used.

The restrictions inherent to wireless sensor networks influenced strongly the design

of the Wiselib library and made it a difficult task. As it is known, a WSN environ-

ment imposes strong constrains on the resources available for computation, being the

most important: (1) the very limited memory and computation power of the tiny micro-

controllers where the algorithms will run, (2) the necessity of physical dynamic mem-

ory to allow efficient data structures, and (3) the great heterogeneity of the hardware

platform. In such a restricted computing environment, efficiency plays an essential role.

The abstraction of the OS and hardware platform provided by the external inter-

face is used by Wiselib to provide single implementations of its algorithms that can

be run on heterogeneous test beds. In its current version, Wiselib supports nine dif-

ferent sensor types, namely, iSense nodes, SCW MSB, SCW ESB, Timote Sky, MicaZ,
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Hardware Firmware/OS CPU Language Dynamic Memory ROM Size RAM Size Bits
iSense iSense-FW Jennic C++ Physical 128kB 92kB 32
SCW MSB SCW-FW MSP430 C None 48kB 10kB 16
SCW ESB SCW-FW MSP430 C None 60kB 2kB 16
Tmote Sky Contiki MSP430 C Physical 48kB 10kB 16
MicaZ Contiki ATMega128L C Physical 128kB 4kB 8
TNOde TinyOS ATMega128L nesC Physical 128kB 4kB 8
iMote2 TinyOS Intel XScale nesC Physical 32MB 32MB 32
GumStix Emb. Linux Intel XScale C Virtual 16MB 64MB 32
Desktop PC Shawn various C++ Virtual unlimited unlimited 32/64
Desktop PC TOSSIM (ATMega128L) nesC (Physical) unlimited unlimited (8)

Table 2.1: Wiselib target platforms (4)

TNOde, iMote2, GumStix, and desktop PCs. Each of these sensor nodes have a differ-

ent micro-controller type, its own operating system, its more prominent programming

language, its kind of dynamic memory, its amount of ROM and RAM, and its bit width

(see Table 2.1). Observe that two simulator platforms are also considered (Shawn and

TOSSIM).

2.2 Shawn

Shawn (24) is Wireless Sensor Networks simulator which will be extensively used in

this project. The simulator is of great utility in the development of the algorithms,

because it offers a fast way of testing algorithms’ correctness. This simulator will also

be used to perform large scale experiments (with hundreds or thousands of sensors),

for which no real scenario is available.

The Shawn simulator is implemented in C++ and is extremely fast when running

the experiments. It offers many configuration options when running the tests, the most

commonly used are:

• Number of sensors

• Size of the scenario

• Range of the radio of the sensors

• Probability of package loss
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The experiments take place in an scenarios whose shape can be chosen: rectangular,

circular... The sensors can be located at random if desired, but can also be loaded from

an XML file. This second possibility is specially helpful when comparing the results of

different algorithms.

The simulator prints through the standard output the debug messages of sensors,

and we will use this output to draw the results of topology control algorithms. Using

a visualizer written in Python by Antoni Segura we will obtain nice-looking images of

the resulting topology after running the algorithms.

2.3 iSense

The simulator is useful, but our main goal is to run algorithms in real sensors, and the

ones used will be iSense. iSense sensors are commercialized by the company Colasenses

(9), and their main characteristics are listed in Table 2.1.

Figure 2.3: iSense core module - contains the processing unit, radio, timer and clock

iSense sensors consist of a core module (see Fig. 2.3), to which many other modules

can be attached. These other modules (see Fig. 2.4) are such as the gateway module

(USB connection to PC), used for flashing and debug logging, battery and solar power

system, GPS module, and many other measurement modules.

These sensors are programmed in C++ and compiled with ba-elf-c++ compiler for

the JENNIC processor. It has a closed source operating system, which will provide all

the necessary calls for sending and receiving messages, checking and changing time,

setting transmission power, determining location and time through the GPS module...

13



2. TECHNOLOGY

Figure 2.4: iSense extension modules - includes measurement, communication and energy
modules
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But we will not implement iSense applications. Instead, our applications are in-

tegrated in the Wiselib, which provides common interfaces for using all the previous

functionalities for all platforms. We will have to integrate any functionality required

into the Wiselib, instead of using the iSense calls directly, thus maintaining the plat-

form independence of the algorithms and applications.

Our Wiselib applications, using Wiselib algorithms can be compiled for iSense and

loaded to the sensors using iShell (see Fig. 2.5), a Java application used to flash sensors,

run the programs and collect the debug messages. This same application is used to

monitor the execution of the programs.

Figure 2.5: iShell - Java application for flashing sensors and collecting debug messages
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2.4 Testbed

The tests on real nodes take place in testbeds, which are sets of nodes deployed in

some building, and to which access is provided via a web interface. These testbeds

also include software to collect all debug messages sent, giving as a result a trace of all

logged messages sent during the experiment.

The Wisebed infrastructure consists of several federated test beds of various sizes

(dozens to hundreds of nodes), currently including nine test beds that amount to 600

nodes. This infrastructure is inherently heterogeneous, using hardware with different

computational resources and sensing capacities (see Table 2.1). The Wisebed federated

test beds are interconnected together using the TARWIS system (13), which provides

a web-based GUI for test bed management, experiment configuration, and experiment

monitoring.

Figure 2.6: UPC Testbed - Representation of the UPC test bed. The width of the links is
proportional to their measured capacity at full power. Failing links are not shown.

The UPC testbed consists of 17 iSense nodes from Coalesenses GmbH. The iSense

nodes use a Jennic JN5139, a solution that combines the controller and the wireless

communication transceiver in one chip. The controller has a 32-bit RISC architecture
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and runs at 16MHz. It offers 96kB of RAM and 128kB of Serial Flash. It has a transmit

power from -60dBm to +3dBm, which reaches ranges of up to 500m in the free.

The 17 nodes are located in our departmental building. In this test bed, sensor

nodes in the entire network are not reachable by each other. Because of the contrived

architecture of our building, their range is strongly shortened and some sensors must

communicate with others using multiple hops. Fig. 2.6 depicts the structure of our

building, the location of the nodes and their topology at full power. This representation

is not the current disposition of the sensors, but the one they had when the tests were

run.

Topology algorithms were tested on the UPC testbed at the beggining of 2010, at

which time the testbed had the form in Figure 2.6. The results, obtained through de-

bug messages sent to each sensors’ attached computer will be used to draw in the 3D

visualizer seen in Fig. 2.6, written in Python and developed by Jordi Petit.
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Chapter 3

Time synchronization

3.1 Time synchronization algorithms

Time synchronization algorithms (25, 34), aim to synchronize the clocks of the sensors

in a network via radio communication. Sensors’ clocks start when they are turned on,

and are not very accurate. These algorithms will synchronize the clocks to one or more

reference nodes. These nodes might be equipped with a GPS module, which provides

GMT time, if real time is needed.

Time synchronization is important if any application needs the sensors to execute a

certain task at some time, or if some external events need to be logged together with the

time when they happened. If synchronization is accurate enough, some applications

might even use the timestamp of some events such as a noise, to triangulate the position

of the source of the noise.

Time synchronization algorithms can be classified according to different properties,

such as:

• Global versus local algorithms: a global algorithm tries to keep all sensors in the

network synchronized, while a local algorithm only synchronizes sensors locally

(some logical part of the network, a broadcast domain...)

• Hardware- versus software-based algorithms: some algorithms require specific

hardware such as a GPS module, a dedicated radio channel, or high precision

clocks in order to perform as expected, while software-based algorithms only use

the standard radio and message exchange.
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• A priori versus a posteriori synchronization: in a priori algorithms, the network

is synchronized all the time. On the other hand, a posteriori synchronization runs

after some external event has taken place.

In order to compare different synchronization algorithms, it is important to know

what performance metrics have special relevance. These are the most important ones:

• Precision: the error of the synchronization, between the reference node and the

rest of the network.

• Energy costs: which can be stated by the number of messages sent by the algo-

rithm.

• Memory requirements: if a history of previous synchronizations is kept, future

synchronizations may be more precise, but more memory will be spent.

• Fault tolerance: how does the algorithm perform in cases such as node failure,

package loss, etc.

3.2 Sender-receiver and receiver-receiver algorithms

Time synchronization algorithms can be divided in two main types: sender-receiver

and receiver-receiver algorithms. Starting from a reference node, to which we want to

synchronize the rest of the network, this can be achieved by:

• Sender-receiver: the reference node (sender) communicates to each other sensor

(receiver), and after some message exchange the receiver is synchronized.

• Receiver-receiver: the reference node (sender) sends a message, and the synchro-

nization takes place between two receivers, who compare their timestamps of the

same message.

3.2.1 Sender-receiver schema

In the synchronization of sensors i and j using a sender-receiver schema, three messages

are exchanged, two of them contain timestamps, and the third one notifies the receiver

its offset:
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1. The sender (reference node) timestamps a message (adds the current time to a

message), which will be t0.

2. The message is sent, and received by the receiver. The receiver stores a timestamp

t1 at which it received the message. Note that theoretically t1 = t0 + τ1 + δ1 + η1 +

offset, where τ1 is the message processing before it is sent, δ is the propagation

time, and η is the message processing before the interruption is executed.

3. The receiver does whatever is required by the algorithm, then timestamps the

message again with t2, and sends it back to the sender.

4. The sender timestamps the message when received, namely t3, and then calcu-

lates the offset between sender and receiver’s clock. Using the same variables as

before, the equation is: t3 = t2 + τ2 + δ2 + η2 − offset. The assumption we will

do, and the source of error in this method, is that τ = τ1 = τ2, η = η1 = η2 and

δ1 = δ2 = 0. So we have that:

τ + η = t1 − t0 − offset = t3 − t2 + offset

offset =
t0 + t3 − t1 − t2

2

5. After the offset is calculated by the sender, a message is sent to the receiver, to

inform it of its offset, and so it adjusts its clock.

The error in this method comes from τ + η + δ, which is the time it takes the oper-

ating system to process a message, send it

3.2.2 Receiver-receiver schema

In this receiver-receiver algorithms, sensors don’t synchronize with the sender of a

timestamp message, instead they synchronize with other receivers of the same mes-

sage.

Let’s imagine an scenario with three sensors: n1, n2 and n3, and we want to syn-

chronize n1 and n2:

1. n3 sends a message, which is timestamped by n1 (t1) and n2(t2).

2. n1 sends n2 its timestamp t1.
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3. n2 calculates its new time as: T = t− t2 + t1.

In this case, the assumption made is that n1 and n2 timestamped the message at the

same time, and the uncertainty comes from η, the time between the message is received,

and the interruption is executed. The receiver-receiver method is thus more accurate

than the sender-receiver.

We will see an example of a receiver-receiver algorithm in section 3.6, in which the

HRTS algorithm is described.

3.3 Graph algorithms

3.3.1 Introduction

Our first synchronization algorithm is LTS (29), which depends on a graph algorithm

to spread the synchronization to the whole network. In this section we will introduce

two graph algorithms which will later be used by LTS.

Graph algorithms, when run on a Wireless Sensor Network, build a graph, taking

sensors as nodes. These algorithms are required by LTS algorithm to expand the syn-

chronization to all sensors in the network. In (29) the DDFS (3) is proposed to build

a tree starting from a reference node. We also chose to implement DBFS (35), which

minimizes the depth of the tree, meaning less synchronizations will take place between

the reference node and the leaves of the tree, thus reducing the error.

In this section we will see how the DDFS and DBFS algorithms work, and how they

were implemented into the Wiselib.

3.3.2 DDFS: Distributed Depth First Search

The Distributed Depth First Search algorithm (3), builds a tree, having as root one node,

and doing the search in a depth-first fashion. It builds a generic DFS tree, but it works

in a totally distributed way, meaning every sensors only needs information about its

broadcast domain for building the tree correctly.

3.3.2.1 Description of the algorithm

In DDFS, as in DFS, the search is centered in one node at each moment in time. When

one node is the center, all the neighbors which have not yet been visited, are visited, and
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when none is left, the search is returned to the parent. In DDFS, some data structures

will also be used by each node in order to know which nodes have already been visited.

Four different messages will be sent:

• Discover: messages arriving to a node when it is visited for the first time.

• Return: message returning the center to a node.

• Visited: sent by a node when it is visited for the first time.

• Ack: acknowledgement, sent as response to a visited message.

Variables kept at node i:

• Neighbors(i): set of neighbors of each node.

• Father(i): the father of node i in the DFS tree. Output of the algorithm.

• Unvisited(i): the subset of Neighbors(i) , which contains the neighbors from

which the Visited message has not been received.

• Flag(i, j): a binary flag, initially set to 0, which equals 1 in the interval after

Visited was sent and before Ack is received.

The algorithm starts the search by the root sending to itself a Return message. We

can describe the rest of the algorithm by analyzing how it works when receiving each

kind of message:

• Discover: send a Visited message to all the neighbors except to the father. Set

the Flag to 1 and send a Return to father if it has no neighbors.

• Return: if there are unvisited nodes, send a Discover to the first one and remove

it. If all the neighbors are visited, return the search to your father. In case you are

your father (root), stop the algorithm.

• Visited: send an Ack to the node which has been visited.

• Ack: set the Flag to 0. If all the Acks have been received, deliver a Return to

yourself and resume the search.

In figure 3.1 we can see an example of how the DDFS algorithm behaves having

three nodes. This figure shows the messages exchanged and the resulting graph.
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Figure 3.1: DDFS example - Example execution with three nodes. The last graph is the
result of the algorithm
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3.3.2.2 Implementation

In this section we will take a look at the most important aspects in the implementa-

tion of DDFS in the Wiselib. In its implementation, a preliminary phase needed to be

added: the neighborhood discovery. DDFS takes as input the neighbors of each node,

but this information is not known when the algorithm starts. We added then a first

phase during which broadcast messages are sent, and the neighbors are stored. Once

the neighborhood is known, DDFS can start. Let’s now see how it is implemented.

As in all algorithms in the Wiselib, the class will have template parameters:

template<typename OsModel_P,

typename Radio_P = typename OsModel_P::Radio,

typename Debug_P = typename OsModel_P::Debug,

uint16_t MAX_NODES = 32>

class DdfsGraph

{...

Listing 1: DDFS template parameters - Operating system, radio, debug channel and max-
imum number of nodes.

First we have the operating system model, which will vary if compiled for different

platforms. The next two parameters are the radio and the debug channel, which by

default are derived from the OsModel. Finally there is an integer with the maximum

number of nodes in the network, used for allocating the memory of the data structures

statically, in case the target platform doesn’t support dynamic memory allocation.

We also define the message ids, note that we have one for each of the messages

listed before:

enum DdfsGraphMsgIds {

DdfsMsgIdDiscover = 130, // DISCOVER messages

DdfsMsgIdReturn = 131, // RETURN messages

DdfsMsgIdVisited = 132, // VISITED messages

DdfsMsgIdAck = 133, // ACK messages

DdfsMsgIdNeighbourhood = 134, // NEIGHBORHOOD messages

};

Listing 2: DDFS message ids - Discover, Return, Visited, Ack and Neighborhood.
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And these are the private data structures needed by the algorithm:

bool set_ddfs_delegate_;

ddfs_delegate_t ddfs_delegate_;

bool root_;

millis_t startup_time_, neighbourhood_construction_time_;

vector_static<OsModel, node_id_t, MAX_NODES> neighbours_;

vector_static<OsModel, node_id_t, MAX_NODES> unvisited_;

vector_static<OsModel, bool, MAX_NODES> flag_;

Listing 3: DDFS data structures - a delegate (see A.1.2), root, which indicates if the sensor
is root of the tree, two timers to delay the start and limit the neighborhood discovery phase,
and three vectors which contain the variables needed, as explained in the description.

It is very important to note the variable ddfs delegate (the use of delegates is fur-

ther explained in A.1.2). This variable is used to store the pointer to a function which

will be called when the algorithm stops. We are planning on using this algorithm to

propagate through the network the synchronization of sensors, so it is very important

to have the capability of getting a notification when the algorithm has finished running.

This is the definition of ddfs delegate t and the function to register the callback:

typedef delegate0<void> ddfs_delegate_t;

template<class T, void (T::*TMethod)()>

inline void reg_finish_callback( T *obj_pnt )

{

ddfs_delegate_ = ddfs_delegate_t::from_method<T, TMethod>( obj_pnt );

set_ddfs_delegate_ = true;

};

Listing 4: DDFS register callback - registers callback functions, which are called when the
algorithm finishes.

The most important function in this algorithm, which controls all the behaviour

of the algorithm is the receive() function. As we could see in the description of the
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algorithm, the running of DDFS can be detailed by how it responds to each message.

The receive() function receives calls from the radio, modifies the needed variables,

and sends the corresponding messages. The implementation of receive() cannot be

found in the Program code 38 in page 102.

3.3.2.3 Simulations

The easiest way of checking the correctness of this algorithm is by simulating an appli-

cation which uses it, and drawing the tree built by the algorithm.

We can see the results in the simulation in Figures 3.2 and 3.3, generated by giving

the visualizer written by Antoni the output of a Shawn simulation. In these images we

see 30 and 100 nodes respectively (the root is bigger), purple lines representing possible

communication (nodes can hear each other), and in yellow the resulting DDFS graph.

It is clear that the yellow edges build a tree which has a DFS-like shape (very deep).

Figure 3.2: DDFS 30 nodes - DDFS simulation results with 30 nodes
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Figure 3.3: DDFS 100 nodes - DDFS simulation results with 100 nodes

3.3.3 DBFS: Distributed Breadth First Search

When seeking a way of propagating the synchronization in the network through a tree

with the reference node in the root, it is obvious that it is desirable to reduce the tree’s

height. At every level of the tree the error gets bigger, and so it is preferred to do as less

synchronizations as possible from the root to the leaves.

For this reason we will implement the Distributed Breadth First Search algorithm

(35), in addition to DDFS. Note that this algorithm doesn’t rely on any distance estima-

tion, but reduces the number of hops from the root to the leaves. Just as DDFS, it works

on a totally distributed manner, which we will detail in the next sections.

3.3.3.1 Description of the algorithm

This algorithm builds a BFS tree by exploring the network, starting from the root, one

level at a time. Each iteration starts with a labelling phase, in which Label messages

are sent to the BFS tree children. When the labelling phase reaches the leaves, it still

broadcasts one more message. The neighbors who listen to these messages, are the new
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leaves, and notify the root with the Echo phase, in which Echo messages are sent to the

root. The root decides when the search ends.

The two kinds of messages are:

• Label(lev): sent to notify the neighbors to label themselves with level lev+1.

• Echo(status): a response message sent up to the tree. The status parameter can

take the values:

– keepon: the sender still has neighbors which may not have labels.

– stop: sender doesn’t want to receive any more Label messages, because it

cannot become child.

– end: sender doesn’t have unexplored neighbors, so the search is ended in its

branch.

And the local variables for node i are:

• Neighbor: set of neighbor nodes.

• Labeled: boolean value, true if and only if node i is labeled.

• Parent: the parent of i in the BFS tree. Root is its own parent.

• Level: if Labeled, the level in the tree.

• SendTo: subset of Neighbor to which node i sends Label messages.

• Child: children of i in the BFS tree.

• Echoed(j): variable with value false if a Label message was sent to node j, but no

Echo message was received yet.

In Figure 3.4 we can find an example of how the algorithm works. The DBFS algo-

rithms runs steps, and at each step, one level of the BFS tree is added. Each step can

be divided in two phases: Label and Echo. In the Label phase, messages are sent to the

leaves until one more level is discovered.

In the Echo phase, the results are notified upwards. Echo messages specify if the

search is finished or can continue, and the root will decide to stop the algorithm once it

knows all the nodes were labeled. Note from the third subfigure, that the search is not

continued through the branches that have been fully labeled.
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(a) 1st Label phase (b) 1st Echo phase

(c) 2nd Label phase (d) 2nd Echo phase

(e) DBFS graph

Figure 3.4: Execution in parallel of DBFS. After a Label and an Echo phase, one level of the
tree is built.
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3.3.3.2 Implementation

The DBFS implementation is very similar to the one of DDFS. DBFS also starts with a

neighborhood discovery phase, both have the same template parameters, and the same

callback functionality.

The message ids used in this algorithms are:

enum DbfsGraphMsgIds {

DbfsMsgIdLabel = 130, // LABEL messages

DbfsMsgIdEcho = 131, // ECHO messages

DbfsMsgIdNeighborhood = 132, // MNEIGHBORHOOD messages

EchoKeepon = 0, // ECHO KEEPON messages

EchoStop = 1, // ECHO STOP messages

EchoEnd = 2, // ECHO END messages

};

Listing 5: DBFS message ids - Label, Echo, Neighborhood, Keepon, Stop and End messages.

As in DDFS, the most important function is receive(), which handles all the dif-

ferent states of the algorithm. Its implementation can be found in Program code 39 on

page 105.

3.3.3.3 Simulations

Such as in DDFS, the most effective way of testing this algorithm is by simulating it and

drawing the resulting BFS tree. A BFS tree is very easy to recognize, because it will be

clear which node is the root and the levels will grow in number of nodes very rapidly.

We can see the results of some simulations in Figures 3.5, 3.6,3.7 and 3.8.

3.4 LTS: Lightweight Time Synchronization

The Lightweight Time Synchronization (29) is a simple algorithm, based in the Sender-

receiver schema. The algorithm has two parts:

1. A tree is built, having as root the reference node.
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Figure 3.5: DBFS 30 nodes - DBFS results with 30 nodes

Figure 3.6: DBFS 100 nodes - DBFS results with 100 nodes
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Figure 3.7: DBFS 1000 nodes - DBFS results with 1000 nodes

Figure 3.8: DBFS 1000 nodes - DBFS results with 1000 nodes and less radio range
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2. Synchronization takes place from the root to the rest of nodes through the edges

of the tree.

3.4.1 Description of the algorithm

Having the algorithm running on every sensor, the first step is to start the tree construc-

tion from the reference node. In (29) the DDFS algorithm is used, but we chose to use

also the DBFS, as it reduces the tree depth and so decreases the error.

Once the tree is built, the synchronization starts in a sender-receiver fashion (see

section 3.2.1). In every edge of the tree, three messages are exchanged:

1. Reference→ Node: first sender-receiver message, with one timestamp.

2. Reference← Node: second sender-receiver message, with three timestamps.

3. Reference→ Node: offset notification to node.

We can also visualize the pair-wise synchronization in Figure 3.9.

Figure 3.9: LTS pair-wise synchronization - synchronization of a pair of nodes using the
sender-receiver schema

When the node receives its offset from the reference node, it synchronizes its clock.

Having its clock synchronized, it will proceed to synchronize its children in the tree,

unless it is a leaf node, in which case its work is finished.

3.4.2 Implementation

We will detail in this section the implementation of the LTS algorithm, looking into

how the tree is built by an algorithm passed as a template parameter, the definition as
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a subclass of SynchronizationBase class, the definition of a message class, and how

the clock is handled. The explanation of the implementation of other synchronization

algorithms will overlook this aspects, as work in the same way.

3.4.2.1 The SynchronizationBase class

The SynchronizationBase class, parent of all the synchronization algorithm classes, is

a class which implements the callback handling (further explanation in A.1.2). Many

algorithms and applications in the Wiselib depend on other algorithms: we can imagine

an application that collects data from them weather, which will start working once the

nodes are synchronized, not before. This can be managed by callbacks: the application

registers a function which will be called once the sensor is synchronized, and will start

the data collection.

This class implement the next functions, used by other algorithms or applications:

template<class T, void (T::*TMethod)()>

void reg_listener_callback( T *obj_pnt )

{

callback_ =

synchronization_delegate_t::from_method<T, TMethod>( obj_pnt );

}

Listing 6: SynchronizationBase register callback - define the callback to be called when
the synchronization has taken place.

void unreg_listener_callback( void )

{

callback_ = synchronization_delegate_t();

}

Listing 7: SynchronizationBase unregister callback - unregisters an already registered
callback.
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void notify_listeners()

{

if (callback_)

callback_();

}

Listing 8: SynchronizationBase notify listeners - calls the callback if registered.

Using these three functions, a very important functionality is added to synchroniza-

tion algorithms: they can notify other algorithms and applications when the synchro-

nization has taken place.

3.4.2.2 LTS message class

A class is defined to handle the synchronization messages used to send timestamps.

It’s header is:

template<typename OsModel_P,

typename Radio_P,

typename time_t_P>

class LtsSynchronizationMessage

Listing 9: LTS message class header - it uses the Radio to get the block data type, and the
time type to reserve the memory for the buffer.

Its template parameters are the operating system model, the radio and the time

type. It uses the block data type (found in the radio) and the time type to declare a

buffer used for messages containing timestamps:

block_data_t buffer[1 + TIME_SIZE*3];

Listing 10: LTS message buffer - The bigger messages contain an id and three timestamps.

This buffer can be filled with some auxiliary get and set functions as:

36



3.4 LTS: Lightweight Time Synchronization

inline void set_t1( time_t t1 )

{ memcpy( buffer + TIME_POS, &t1, TIME_SIZE ); }

inline time_t t1()

{

time_t t1;

memcpy( &t1, buffer + TIME_POS, TIME_SIZE );

return t1;

}

Listing 11: LTS message get and set functions - functions to set and get the first timestamp.

The LtsSynchronizationMessage class will help LtsSynchronization algorithm with

message handling, and is useful to ease the code in some of the algorithms’ functions.

3.4.2.3 Graph algorithm as a template parameter

An important decision on the implementation of LTS was to have a graph algorithm as

a template parameter:

template<... ,

typename NeighborhoodDiscovery_P =

typename wiselib::DdfsGraph<OsModel_P,

Radio_P,

Debug_P,

MAX_NODES>,

...>

class LtsSynchronization ...

Listing 12: LTS graph algorithm template parameter - the graph algorithm used in LTS is
provided as a template parameter.

(29) stated the DDFS to be used, but also the DBFS could be used, improving the

performance. This leaded to the decision of creating a graph algorithm concept, and

requiring it as a template parameter for this algorithm. This template parameter, which

has the DDFS algorithm as a default, will be used for the tree construction, as we can

see:
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neighborhood_discovery_.set_root( root );

neighborhood_discovery().template

reg_finish_callback<self_type,

&self_type::start_synchronization>( this );

neighborhood_discovery_.reinit();

Listing 13: LTS call to the graph algorithm - initialization of the graph algorithm: tells the
graph algorithm if it is the root of the tree, registers a callback function to be called when
the tree is built and restarts the graph construction.

These previous lines of code do the following:

1. Set the node to be or not the root of the tree.

2. Register as a callback the function start synchronization(), which will be called

once the tree is built.

3. Restart the tree construction.

3.4.2.4 Clock handling in the WISELIB

Some algorithms only need the time to timestamp events, but because synchronization

algorithms need to operate with time: add, divide... an extended time concept, which

implements all these operations was created. A piece of the extended time implemen-

tation for iSense is as follows:

iSenseExtendedTime operator+(const iSenseExtendedTime& exttime)

{

return isense::Time(*this) + isense::Time(exttime);

}

iSenseExtendedTime operator+=(const iSenseExtendedTime& exttime)

{

*this = *this + exttime;

return *this;

}

Listing 14: ExtendedTime operators - some of the operators in ExtendedTime class for
iSense.
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It is clear that the type which we will use to handle the time will be this Extended-

Time.

The clock we need isn’t either a normal clock. In synchronization algorithms we

don’t only need to know the time, but also be able to modify it’s time. Thus our algo-

rithm needs a clock which implements the SettableClock concept.

This concept will provide us the necessary functions: time(), seconds(), milliseconds(),

microseconds(), state() and set time(time t time). It is important to note that this

clock can use different time definitions (could be a simple one, or the one that imple-

ments arithmetic operations), so it has the time as a parameter. For example in iSense:

template<typename OsModel_P,

typename Time_P = isense::Time>

class iSenseClockModel

{

Listing 15: iSense clock header - template parameters of the iSense clock interface, has the
time type in which the queries will be returned.

3.4.2.5 Implementation of LTS

In our implementation of LTS, lets first have a look at the template parameters:

template<typename OsModel_P,

typename Radio_P = typename OsModel_P::Radio,

typename Clock_P = typename OsModel_P::Clock,

typename Debug_P = typename OsModel_P::Debug,

typename NeighborhoodDiscovery_P =

typename wiselib::DdfsGraph<OsModel_P,

Radio_P,

Debug_P,

MAX_NODES>,

uint16_t MAX_NODES = 32>

class LtsSynchronization : public synchronizationBase<OsModel_P>

{
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Listing 16: LTS template parameters - operating system, radio, clock, debug channel,
graph algorithm and maximum number of nodes are provided through template parame-
ters

The OsModel, required by every algorithm, will provide the basic platform depen-

dent code, the radio (used in the communication), the clock, from which the time is ac-

quired and to be set, the debug channel to send debug messages, the graph algorithm

which will build the tree, and a maximum number of nodes to set the data structure

size. Note that no timer is needed in this algorithm, because its running starts once the

tree is built.

As explained before, the graph algorithm is called at the init() function. Once it

has finished the tree construction, the start synchronization() function is called. This

function timestamps and sends a message to each of its neighbors:

start_synchronization( )

{

// Send the synchronization pulse to all children

synchronizationMessage.set_msg_id( LtsMsgIdSynchronizationPulse );

for ( int i = 0; i < (int)neighbors_.children_.size(); ++i ) {

synchronizationMessage.set_t1( clock().time() );

radio().send( neighbors_.children_[i], 1 + TIME_SIZE,

(uint8_t*)&synchronizationMessage );

}

}

Listing 17: LTS start synchronization - starts the synchronization, called when the tree is
built. Sends a timestamped message to each neighbor.

The rest of the algorithm is implemented in the receive function. Its implementa-

tion can be consulted in the Program code 40 on page 106.

3.4.3 Simulations

In this case, the simulations are not of much use (only useful to test the tree construc-

tion part), because the Shawn simulator’s nodes have all the same time, so it is not

possible to test if the synchronization has taken place, and more importantly what is its

performance.
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They were used, still, tot test the tree construction and the correct message exchange

in the synchronization phase, and performed correctly.

3.5 TPSN: Time-sync Protocol for Sensor Networks

The Time-sync Protocol for Sensor Networks algorithm (12) is also based in the sender-

receiver schema, and the main difference between TPSN and LTS is the propagation of

the synchronization. In (12), it is said to timestamp the messages in the MAC Layer,

thus reducing the error caused by message management before sending. This is not

possible right now in the WISELIB, because the supported platforms don’t implement

this functionality.

3.5.1 Description of the algorithm

The main difference between TPSN and LTS the way of propagating the synchroniza-

tion. This algorithm is thought to be more fault tolerant, and it takes care of many com-

mon situations with real nodes so problems such as message collision, message loss or

different start up time don’t affect the running of the algorithm, and every sensor is

synchronized.

The algorithm has two phases: tree construction and synchronization.

3.5.1.1 Tree construction

In this phase of the algorithm, a tree is built having as root the reference node. The tree

is built by sending level discovery(i) messages, which have one parameter i, that is

the level of the node sending the message.

The beginning of the tree construction phase takes place when the reference node

sends the message level discovery(0). Every neighbour that receives a level discovery(i)

message, sets its parent in the tree to the sender, and broadcasts a message level discovery(i+1).

Once a parent is taken, this node will stop to listen to level discovery messages.

In the case that a sensor wakes up when the tree is already built (which is detected

if no level discovery message was received after a timeout), the sensor will send a

level request message. Every neighbour will answer with a level discovery(i) mes-

sage, and after a timeout, the new coming node will choose as a parent the neighbor

with lower level.
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3.5.1.2 Synchronization

In this algorithm, even though the synchronization follows the sender-receiver schema

as in LTS, it has some differences. Note that the synchronization in LTS was started by

the parent, which later calculated the offset, and then notified it to the child. This meant

that each pair’s synchronization needed three messages.

In TPSN the synchronization is started by the child, and so the synchronization only

needs two messages, because the offset is calculated by the child and doesn’t need to

be notified.

The synchronization begins with the reference node broadcasting a time sync mes-

sage. After hearing this message, all the level 1 nodes will wait a random time, and then

send a synchronization pulse to the reference node, which will answer an acknowledgement.

The acknowledgement contains the four timestamps needed to calculate the offset and

adjust the clock.

The acknowledgement is sent by broadcast, so when a child of the receiver of this

message hears it, it knows that its parent will be synchronized shortly, and so starts its

synchronization after waiting a random time. By waiting random times, the probability

of message collision is reduced greatly.

If a sensor attempts to synchronize to its parent three times, without receiving an

acknowledgement, it considers that its parent is dead, and sends a level request mes-

sage in order to find a new parent.

This algorithm achieves synchronization of all the connected network using three

messages per node (one for the tree construction and two for the synchronization),

and considers possible scenarios (message loss, message collision, sensor appearing,

sensor disappearing) and provides a way of dealing with them. It is more complete

(and complex) than LTS.

3.5.2 Implementation

The TPSN algorithm, by having its own method of building the tree and spreading the

synchronization, doesn’t need the previous work of any other algorithm, not even a

neighborhood discovery phase is needed. From what was explained before, we can

deduce that the algorithm will make extensive use of the timer, because many actions

take place after a random timeout.
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Starting with the definition of the class, its template parameters are the ones we can

expect from a synchronization algorithm:

template<typename OsModel_P,

typename Radio_P = typename OsModel_P::Radio,

typename Debug_P = typename OsModel_P::Debug,

typename Clock_P = typename OsModel_P::Clock,

uint16_t MAX_NODES = 32>

class TpsnSynchronization

Listing 18: TPSN template parameters - operating system, radio, debug channel, clock
and maximum number of nodes are passed as template parameters.

It has the operating system model, the radio, debug channel, clock and maximum

number of nodes. If the default values are used, only the operating system model is

needed to get an instance of this algorithm.

The TPSN algorithm has a message class, such as LTS did, used to send and obtain

the data exchanged between the sensors. It contains a buffer:

block_data_t buffer[1 + TIME_SIZE*3 + NODE_ID_SIZE];

Listing 19: TPSN message buffer - buffer used to send TPSN messages, containing id,
timestamps and node ids.

The maximum size is this because we need one byte as the message id, three times-

tamps in the acknowledgement message, and also the receiver id must be sent (because

the messages are broadcasted, in order to notify other neighbors to start synchroniza-

tion, as explained in the previous section). The TpsnSynchronizationMessage class also

includes functions to set and get the data stored in the buffer. The message ids needed

by this algorithm are:

enum TpsnSynchronizationMsgIds {

TpsnMsgIdLevelDiscovery = 230, ///< LEVEL_DISCOVERY

TpsnMsgIdLevelRequest = 231, ///< LEVEL_REQUEST

TpsnMsgIdTimeSync = 232, ///< TIME_SYNC

TpsnMsgIdSynchronizationPulse = 233, ///< SYNCHRONIZATION_PULSE
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TpsnMsgIdAcknowledgement = 234, ///< ACKNOWLEDGEMENT

};

Listing 20: TPSN message ids - message ids for LevelDiscovery, LevelRequest, TimeSYnc,
SynchronizationPulse and Acknowledgement

No special data structure is needed, as the tree is stored by the children knowing

who is its parent. But it is important to note the extensive use of the timer in this

algorithm, which depends on many timeouts, and so the following variables are used:

millis_t root_startup_time_, tree_construction_time_,

random_interval_time_, timeout_;

Listing 21: TPSN variables - variables used by the algorithm.

• root startup time: milliseconds the root waits before starting the tree construc-

tion.

• tree construction time: milliseconds the root waits between starting the tree

construction and starting the synchronization.

• random interval time: the time for starting the synchronization will be a random

value between zero and this time.

• timeout: after waiting timeout milliseconds, a sensor waiting for an answer will

consider its previous message lost. After three consecutive timeouts, the receiver

will be considered dead.

At the beginning of the execution, the enable() function is called:

enable( void )

{

levelDiscoveryMessage[0] = TpsnMsgIdLevelDiscovery;

if ( level_ == 0 )

{

built_tree_ = false;

timer().template set_timer<self_type,

&self_type::timer_elapsed>(

root_startup_time_, this, 0 );
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}

else

{

synchronized_ = false;

retries_ = 0;

new_level_ = -1;

timer().template set_timer<self_type,

&self_type::timer_elapsed>(

timeout_, this, 0 );

}

}

Listing 22: TPSN enable - enable function, starts the algorithm. Starts the tree construction
if the node is root, and sets a timeout if not. After the timeout the node will request a parent
if it doesn’t have one

The enable() function distinguishes two cases: if the node is a reference node or

not. In each case it does:

1. root: waits root startup time, after which the tree construction will start.

2. normal node: waits timeout. After that, it will request a father if it still doesn’t

have one.

This algorithm has two main functions which control all its behaviour: receive()

and timer elapsed(). The receive() function identifies the messages received, and

calls the timer elapsed(), as every operation in this algorithm is executed after a cer-

tain timeout. The implementation of the timer elapsed(), can be consulted in Program

code 41 on page 41.

3.5.3 Simulations

This algorithm was also simulated using the Shawn simulator, with the aim of testing

that the tree is built correctly and the synchronization is spread as expected. Again, just

as in LTS, it is not possible to test in the simulator if the synchronization takes place,

but this will be tested in a real world scenario.
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The simulator also offers the possibility to test if the solutions for the special cases

work, by setting a probability of message loss, and also by turning on and off nodes

during the experiment.

3.6 HRTS: Hierarchy Reference Time Synchronization

The Hierarchy Reference Time Synchronization algorithm (10), being a receiver-receiver

algorithm, achieves the synchronization of nodes in a different way as the two algo-

rithms explained before. In a receiver-receiver algorithm, the timestamps compared

aren’t from the reference node and the receiver, but from two different receivers in-

stead.

3.6.1 Description of the algorithm

In an scenario with a Base Station (BS, reference node), and 5 other sensors, numbered

from n1 . . . n5. The algorithm would work as follows:

1. BS timestamps a message with t1, picks up a receiver (e.g. n2), and broadcasts a

message containing both data. All interested nodes record timestamp t1.

2. Node n2 replies the message, sending the timestamp t2 (at which it received the

message), and t3, at which it sent the reply.

3. BS records t4 at which it received the message from n2. Knowing all four times-

tamps, it calculates n2’s offset as d2 =
t1+t4−t2−t3

2 . The BS broadcasts then t2 and

d2.

4. All interested nodes will synchronize knowing this data. For example n3, which

received the first broadcast at time t′2, calculates its offset d′ as:

d′ = d2 + t2 − t′2

T = t + d′

5. Sensors which synchronized in the previous step, will now start as base stations

from step 1, thus spreading the synchronization.
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3.6 HRTS: Hierarchy Reference Time Synchronization

(a) begin sync broadcast (b) One node answers

(c) Offset communication

Figure 3.10: Execution in parallel of DBFS. After a Label and an Echo phase, one level of
the tree is built.

In Figure 3.10 we can see the three steps in the receiver-receiver synchronization:

first a message is broadcasted and timestamped by everyone. Then one node answers,

and the Base Stations calculates the offset. Finally, he Base Station broadcasts the offset,

and the other nodes adjust their clocks as explained in section 3.2.2.

Once a sensor is synchronized, it broadcasts a sync begin message and starts the

synchronization to all its neighbors that have not yet been synchronized.

3.6.2 Implementation

This algorithm’s implementation differs from the ones explained before in two main

functions: start propagation() and receive(). These two functions control all the

behaviour of the algorithm.

The first one, start propagation(), timestamps and sends the first synchronization

message:
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start_propagation( )

{

if (neighborhood_.neighbors_.empty())

propagated_ = true;

else {

message.set_msg_id(HrtsMsgIdBeginSync);

message.set_receiver(neighborhood_.neighbors_[0]);

t1 = clock().time();

message.set_t1( t1 );

radio().send( radio().BROADCAST_ADDRESS,

sizeof( SynchronizationMessage ),

(uint8_t*)&message );

}

}

Listing 23: HRTS start propagation - starts synchronization with itself as base station.

The receive() function, which can be found in the Program code 42 on page 109

implements the rest of the functionality.

3.6.3 Simulations

Through simulation with Shawn, it was possible to determine that the synchronization

propagates through the network. It is necessary now to test the synchronization error

on real nodes, which is explained in the following chapter.

3.7 Synchronization tests with WISELIB on iSense

3.7.1 Experiments discussion

In this section it is explained how the synchronization was tested using real iSense

sensors from UPC.

The first challenge we had to face is how to measure the dis-synchronization of

sensors. In a first thought, we can think of using the debug attached to a PC, but this

uses the serial port, which only gives us a precision of milliseconds, and we are trying

to achieve better results.
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Another possibility was to use radio messages sent at certain times, but this still

isn’t precise enough. If our method’s error is determined by some uncertainties in radio

message sending, it is obvious that this is not to be used to calculate the clock’s offset.

3.7.2 Description of the tests

Figure 3.11: Owon oscilloscope - Owon oscilloscope used for clock offset determination

Finally, we decided to use an oscilloscope which will give us as mush precision as

we deserve (down to nanoseconds). The oscilloscope used, which can be seen in Figure

3.11, lets us use two input channels. Each of them is attached to a LED (Light Emision

Diode), which will turn on for ten milliseconds at certain times.

The oscilloscope lets us see the input of both channels on the screen, and when the

sensors are turned on, we can see that they are not synchronized. For this we set a

trigger, which will freeze the image every time the first led is turned on. This way we

have a frozen image of how dis-synchronized both sensors are, and adjusting the time

scale in the oscilloscope we can calculate the amount of the offset.

At this moment, the algorithm is run, and after some messages are exchanged, the

clock will be adjusted. We will be able to see how both LEDs blink at the same time,

and with the oscilloscope we will be able to determine what is the offset.

For this experiment to work, both of the sensors need to be one next to the other,

because we need both of the to be connected to the oscilloscope. In order to test that
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3. TIME SYNCHRONIZATION

the synchronization takes places also on sensors at many hops, we used an applica-

tion which had the edges of the network hardcoded, making sensors which were close

physically, to be at many hops distance.

3.7.3 Results

As it is obvious from the source of the error in synchronization algorithm, the error is

added at each hop from the reference node to the leaves of the tree. It is for this reason

that the most interesting error to calculate is the error in a pairwise synchronization.

The test described earlier was done on two iSense nodes connected to an oscillo-

scope, and the results are on Figure 3.12. The results have the expected behaviour: they

should present a form of a a Gaussian distribution centered on zero, and our results

have more or less this form. Note that we added together the positive and negative

errors, and in our representation in Fig. 3.12 we only see half of the Gaussian distribu-

tion.

Figure 3.12: Pairwise synchronization error - histogram of the error in the synchronization
of two iSense sensors

About the magnitude of the error, we can see that we usually get an error of less than

one millisecond. This is very easily explained because of the precision of the iSense

clock, which gives the time with an accuracy of milliseconds. If better results were
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needed, it would be necessary to implement a more precise clock, which would make

possible to reduce the error to microseconds.

During the tests it was made obvious that the clocks are not very precise, and that

they tend to dis-synchronize all the time in a linear fashion. It would be provably very

useful to take this clock drift into account, not only for achieving better synchronization

but to maintain in through time.

3.8 Algorithms comparison

The three algorithms to compare are LTS, TPSN and HRTS. Let’s first have a look at

Table 3.1, an then comment its content.

LTS TPSN HRTS
Algorithm type sender-receiver sender-receiver receiver-receiver
Number of messages 3·nodes+tree construction 3·nodes 3·(broadcast domains)
Error τ + η τ + η τ

Fault tolerance No Yes No

Table 3.1: Synchronization algorithms comparison

From this table we can note the superiority of TPSN with respect to LTS. They both

are sender-receiver algorithms and thus have the same error of synchronization (see the

τ,η definitions in sections 3.2.1 and 3.2.2). TPSN can build the tree and synchronize the

whole network using three messages per node; LTS, on the other hand, requires three

messages for the synchronization, and needs the tree built beforehand. Even more,

TPSN includes fault tolerance: can fix special cases such as a node appearing or dis-

appearing, message loss... For all these reasons we can conclude that TPSN is a better

algorithm than LTS.

HRTS algorithm, for being a receiver-receiver algorithm, has less synchronization

error than TPSN. It also uses less messages (in the worst case, being a linear network

it would use the same). Messages in HRTS are broadcasted, so only three messages

are needed per broadcast domain, thus having much less messages in dense networks.
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3. TIME SYNCHRONIZATION

However, HRTS doesn’t contemplate common errors such as package loss, which can

imply poor results in real world applications.

In conclusion, if good synchronization is desired, the best choice is to use HRTS, and

if the algorithm will be run in a very changing network, with obstacles or interferences,

the best algorithm to use is TPSN.
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Chapter 4

Topology

4.1 Topology algorithms

Given a Wireless Sensor Network, working at full power, we can model it as a graph

G(V, E). The sensors are the nodes and the edges join sensors which can communi-

cate at full power. This graph is typically very connected, so it would be possible to

reduce the power of many sensors’ radio, and still preserve desirable properties such

as connectivity and link bi-directionality.

Topology algorithms build a logical subgraph in this maximum power graph, thus

allowing sensors to reduce radio power and range, as we can see inf Figure 4.1. These

algorithms can let other algorithms work on top of them more efficiently, by sending

messages to less sensors. If messages are sent to less sensors, specially if they are sent

to the nearest ones, three main goals are accomplished:

• Energy preservation: messages are sent to the closest neighbors, so they can be

sent using less power. Moreover, if messages are only sent to the closest neigh-

bors, less messages are sent and more energy is saved.

• Less collisions: less messages are sent, and using less power. This reduces the

probability of two messages for the same node arriving at the same time, then

producing a message collision.

• Less redundant communications: reducing the graph connectivity, we help other

algorithms working on top of the topology, by reducing the possible paths from

one node to another, which can lead to redundant communication.
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Figure 4.1: LMST 25 nodes - LMST topology (yellow links) over the maximum range graph
(purple links)

We will name topology algorithms those algorithms whose result is a subgraph of the

network, and topology control algorithms, those algorithms that reduce the radio power,

and thus physically create the subgraph. In general it was chosen to implement the

algorithms as topology algorithms, in order to let the user choose to apply or not the

radio range reduction.

In this chapter we will see some examples of topology algorithms. We will explain

the algorithms, their implementation into the Wiselib library, and the tests that were

run in order to test their correctness and to compare them. The algorithms commented,

with more or less detail, are LMST (20), FLSS (19), KNEIGH (5), XTC (31) and CBTC

(18). For further information on other topology control algorithms, refer to (26) or (25).

4.2 LMST: Local Minimum Spanning Tree

It is widely discussed the need of topology control algorithms that build topologies

where the main goal is to reduce energy consumption in sensors communication while

preserving connectivity, preferably bidirectional. This algorithm builds an approxima-
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tion of a minimum spanning tree, which is a good approach for getting minimal energy

consumption.

Local Minimum Spanning Tree (20) is a distributed algorithm, in which every sensor

in the network generates locally a minimum spanning tree of its visible neighborhood

and then chooses its closest nodes as its topology.

4.2.1 Description of the algorithm

The algorithm is executed periodically, and has three main phases:

1. Neighborhood discovery: every sensor broadcasts its position, and stores the

ones it receives.

2. Topology construction: knowing the position of its neighbors and itself, it builds

a minimum spanning tree using Prim’s algorithm (22). Its topology neighbors are

the ones that are at one hop distance in this minimum spanning tree.

3. Link bi-directionality: links might be unidirectional, as explained in (20), and we

convert them all to bidirectional ones (instead of deleting the unidirectional), the

reasons will be explained in the next section.

We can see the two first phases in Figure 4.2. First, position information is received

from the neighborhood. Next, Prim’s algorithm is run, and the minimum spanning tree

is found. The resulting topology is formed by one-hop nodes in this tree.

4.2.1.1 G+ choice

The original algorithm gives two options for the implementation, given the graph G

generated in step two, you can convert it to G+, making unidirectional edges bidirec-

tional, or removing them, thus getting G−. We decided to use G+ for the following

reasons:

1. A first consideration is the number of messages being exchanged to add or delete

an unidirectional link. To make it bidirectional, one message is needed: each

node sends to its neighbors You are my neighbor, and the receiver adds it as a

neighbor if it doesn’t have it.
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(a) Neighborhood position
discovery

(b) MST construction

(c) Topology: on-hop
neighbors in MST

Figure 4.2: Execution of LMST by node i.
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Figure 4.3: LMST unidirectional edges - Each point is the mean of 10 simulations in which
sensors were placed in a rectangular 100x100 grid with a radio range of 25.0.

If we wanted to delete unidirectional links, two messages would be needed: Am I

your neighbor?, which should be answered with Yes or No so the link is removed

or not.

The second approach would be chosen if unidirectional links were very common,

in which case sending two messages would be useful for getting a minimal graph,

but through simulation we discovered this case isn’t very usual, as shown in Fig-

ure 4.3. In our simulations, we placed randomly different number of sensors in a

rectangular grid, and the result is that the number of unidirectional links is small

in comparison to the number of sensors, and remains constant.

2. While both G+ and G− maintain connectivity in an obstacle-free scenario, only

G+ does in some situations with obstacles, for example in Figure 4.4. In this ex-

ample, when having a wall, sensor 3 deduces sensor 1 and 2 will be connected

(but aren’t), and sensor 1 knows it has to connect to 3. Therefore, the only way to

preserve connectivity is to convert unidirectional links to bidirectional.
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Figure 4.4: LMST scenario with walls - A: point of view of 3; B: point of view of 1; C: G+:
connected; D: G−: unconnected

4.2.2 Implementation

The implementation of LMST starts with its header:

template<typename OsModel_P,

typename Localization_P,

typename Float=double,

uint16_t MAX_NODES = 32,

typename Radio_P = typename OsModel_P::Radio,

typename Timer_P = typename OsModel_P::Timer>

class LmstTopology :

public TopologyBase<OsModel_P>

Listing 24: LMST header - Template parameters: operating system, localization method,
floating point number, maximum number of nodes, radio and timer.

We must note the parameter Localization P, which is the one that will provide the

position of the sensor, needed by LMST. This positioning method can be implemented

by any class with the specified functions, and this allows the application to use GPS,

hardcoded positions, a localization algorithm...
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4.2 LMST: Local Minimum Spanning Tree

The data structures used for the implementation of LMST are:

• Static vectors for storing the Visible Neighborhood (ids and positions), for the

topology itself, and for Prim’s algorithm implementation: distance from the root

to a sensor, each sensors’ father, and a vector of booleans which indicates if a node

is in the priority queue.

• A max heap priority queue used in Prim’s algorithm.

These vectors are declared as follows:

vector_static<OsModel, node_id_t, MAX_NODES> NV;

vector_static<OsModel, Position, MAX_NODES> Pos;

vector_static<OsModel, position_t, MAX_NODES> D;

vector_static<OsModel, node_id_t, MAX_NODES> p;

vector_static<OsModel, bool, MAX_NODES> is_in_PQ;

priority_queue< OsModel, PPI, MAX_NODES*10 > PQ;

Listing 25: LMST data structures - data structures used to represent the neighborhood, the
topology, and needed by Prim’s algorithm.

The most important function in this algorithm is the generate topology function,

which implements Prim’s algorithm and selects the 1-hop sensors which will form the

topology. The implementation of this function can be found in 43, on page 111.

4.2.3 Simulations

To test the correctness of the LMST algorithm, many tests were done using the Shawn

simulator (simulations are explained in detail in Appendix B. It is very useful to visu-

alize the resulting topology, in order to find anomalies which can imply bugs in the

implementation. In figure 4.5, 4.6 and 4.7 we can see the LMST topology in scenarios

with 100, 1000 sensors and 1000 sensors with more range.

Another test, which is more subtle than the visualization of the topology is to com-

pute the average degree of the nodes in the resulting topology. (20) stated the average

degree for simulations with some parameters. Our simulations resulted with:

And as 2.06 ' 2.05628, we can confirm that the results in (20) are correct and the

same as ours.
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Figure 4.5: LMST 100 nodes - simulation of 100 nodes and a range of 25 in a 100x100
scenario

Nodes Range Degree
(20) results 100 25.0 2.06
Simulations 100 25.0 2.05628

Table 4.1: LMST theoretical and simulation results - comparison of theoretical results in
(20) and simulations in Shawn.
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Figure 4.6: LMST 1000 nodes - simulation of 100 nodes and a range of 5 in a 100x100
scenario

4.2.4 Tests on UPC testbed

In Figure 4.8 we can see the resulting topology after running the LMST algorithm in the

UPC testbed, located in the 2n floor of building Omega.

4.3 FLSS: Fault-Tolerant Spanning Subgraph

The Fault-Tolerant Spanning Subgraph algorithm (19), while trying to reduce the en-

ergy consumed by the network, takes into account that wireless communications often

have problems (message collision, interference, obstacles, changing network), which

can lead to temporal or permanent message loss. Having this in mind, it doesn’t seem

desirable to have a minimal topology if we want to assure connectivity.

The FLSS algorithm will use the concept of k-vertex connectivity, i.e. k− 1 vertexes

and all their edges can be removed preserving the connectivity of the network. FLSS

wild build a k-vertex connected network, with values of k of 2 or 3, thus having fault

tolerance in case of node failure.
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Figure 4.7: LMST 1000 nodes, more range - simulation of 100 nodes and a range of 10 in a
100x100 scenario

Figure 4.8: LMST in UPC testbed - LMST results in UPC testbed
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4.3.1 Description of the algorithm

The FLSS algorithm is very similar to LMST, as its running phases are the same:

1. Neighborhood discovery: collect the position data of all neighbors.

2. Topology construction: select a subset of nodes which will form the topology.

3. Link bi-directionality: convert unidirectional links to bidirectional ones.

The difference between LMST and FLSS is that in phase 2 a different algorithm

is used. Prim’s algorithm used in LMST only assures 1-connectivity, and in FLSS we

need k-vertex connectivity. The algorithm used will be FGSSk: Fault-tolerant Global

Spanning Subgraph.

4.3.1.1 FGSSk algorithm

FGSSk algorithm is a generalization of Kruskal’s algorithm (15). FGSSk starts with an

empty set of vertexes and edges, and adds edges (and their nodes) in ascending order

of edge length, until all vertexes are in the same k-connected component. A pseudocode

for this function is in Figure 4.9.

To check if node u0 is k-connected to node v0, network flow techniques are used

(11), which consist of calculation the maximum flow between u0 and v0, given a binary

flow of 0/1 to each edge. If the maximum flow is greater or equals k, the vertexes are

k-connected.

4.3.1.2 FLSSk algorithm

FLSSk is a localized algorithm, in which each sensor calculates its FGSSk with one mod-

ification: the algorithm stops when the node running the algorithm is k-connected to

all its neighbors. Once the spanning subgraph is obtained, the topology derived is the

one consisting of 1-hop neighbors in this spanning subgraph.

4.3.2 Implementation

This algorithm has the same requirements as LMST: position knowledge, so its template

parameters are exactly the same.
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Procedure: FGSSk

Input: G(E,V), a k-connected simple graph;
Output: G(Ek,Vk), a k-connected spanning subgraph of G;
begin

Vk := V, Ek := ∅;
Sort all edges in E in ascending order of length;
for each edge (u0,v0) in the order

if u0 is not k-connected to v0

Ek := Ek ∪ (u0,v0);
else if

exit;
endif

end
end

Figure 4.9: FGSSk pseudocode - pseudocode for generalized Kruskal algorithm.

The implementation of the algorithm is done using the pseudocode in 4.9, and im-

plementing the Ford-Fulkerson maximum flow algorithm for the k-connectivity test.

The data structures needed by this algorithm are:

typedef pair<int, int> PII;

vector_static<OsModel, node_id_t, MAX_NODES> NV;

vector_static<OsModel, Position, MAX_NODES> Pos;

vector_static<OsModel, vector_static<OsModel, uint8_t, MAX_NODES>, MAX_NODES> capacity;

vector_static<OsModel, vector_static<OsModel, node_id_t, MAX_NODES>, MAX_NODES> G;

priority_queue< OsModel, pair<float_t, PII >, MAX_NODES*10 > E;

vector_static<OsModel, bool, MAX_NODES> seen;

vector_static<OsModel, node_id_t, MAX_NODES> from;

std::queue<node_id_t> Q;

Listing 26: FLSS data structures - data structures used to represent the neighborhood and
needed by the Ford-Fulkerson algorithm.

The only difference between LMST and FLSS in the implementation is the function

generate topology(), because the neighborhood discovery and link bi-directionality

phases are the same. The implementation of the new generate topology() function,
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including the max flow() routine can be found in Program code 44 on page 114.

4.4 Other topology algorithms

In this section, other topology algorithms will be explained more briefly. They were im-

plemented by some partners of the project in UPC and I helped in their implementation

occasionally. It will give us a broader look at topology algorithms. These algorithms

are: CBTC (implemented by Josep Anguera) and KNEIGH and XTC (implemented by

Juan Farré).

4.4.1 CBTC: Cone-Based Topology Control

4.4.1.1 Description of the algorithm

The CBTC (18), (21), divides the space in cones of width ρ, and picks up the closest

neighbor contained in each cone. Then sets the radio power to a minimum in order to

reach that sensor. This algorithm requires a directional antenna, which none of the other

algorithm described requires. This antenna will let the algorithm determine from which

direction the messages are received, and also to adjust the power for each direction.

4.4.2 KNEIGH: K-Neighbors algorithm

4.4.2.1 Description of the algorithm

The KNEIGH (5) algorithm chooses for every node the K closest neighbors, based on

distance estimates. This builds a directed graph, from which unidirectional edges will

be removed. The resulting subgraph is the final topology.

To estimate the distance, the Wiselib offers the possibility of having a method as a

template parameter. This way, exact distances can be given to static nodes via hard-

coded data, or distances can be calculated using a positioning module.

4.4.2.2 Tests on UPC testbed

In the figures 4.10, 4.11 and 4.12 we can see the results of running the KNEIGH al-

gorithm on the testbed deployed in Omega building in UPC. With K=3, we see the

topology doesn’t achieve connectivity. With K=4 the topology is connected, and with

topology K=6 we can see the network is very connected.
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Figure 4.10: KNEIGH with K=3 in UPC testbed - KNEIGH results in UPC testbed

Figure 4.11: KNEIGH with K=4 in UPC testbed - KNEIGH results in UPC testbed
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Figure 4.12: KNEIGH with K=6 in UPC testbed - KNEIGH results in UPC testbed

4.4.3 XTC: X topology control algorithm

4.4.3.1 Description of the algorithm

The XTC (31) protocol, very similar to KNEIGH algorithm differs in two ways:

• Instead of using estimated distances to measure proximity, the concept of link

quality is used. The link quality uses the concept of the ExtendedRadio in the

Wiselib, to get the message quality in addition to the message content in radio

communications.

• Unidirectional links are preserved, instead of being deleted.

4.4.3.2 Tests on UPC testbed

On figure 4.13 we can see the result of executing the XTC protocol in our testbed.

4.5 Algorithms comparison

In Table 4.2 we see the different algorithms requirements to collect information about

their neighborhood, and the method applied to generate the topology.
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Figure 4.13: XTC protocol in UPC testbed - XTC results in UPC testbed

Neighborhood information Topology construction
LMST position Prim’s algorithm
FLSS position generalized Kruskal’s algorithm
CBTC direction & distance closest neighbors
KNEIGH distance closest neighbors
XTC link quality closest neighbors

Table 4.2: Topology algorithms comparison

If looking for a minimal topology, the best choice is LMST, as it builds a good ap-

proximation of a minimum spanning tree, and if more connectivity is needed in ordert

to introduce fault tolerance, the best algorithm is FLSS, as it offer the minimum energy

topology. Both will be only used if the sensors have some way of learning about their

position.
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But in the case of very limited resorces, or without position information, it is better

to use KNEIGH or XTC, which don’t assure a minimum energy topology, but behave

very well on average. Their requirements are quite low and the algorithm used is very

simple and light on the processor.

Finally, the CTBC algorithm also generates a simple topology, using an easy algo-

rithm, but it needs a directional antenna, which is a requirement that we could’nt fulfill

on iSense sensors.
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Chapter 5

Economic analysis

This project, which only has research goals, doesn’t have a concrete economic impact.

The Wiselib library has been designed having wireless sensor networks’ research in

mind, but also its later use by companies. The Wiselib (and thus all the algorithms im-

plemented during this project) is public, and licensed under the Lesser General Public

License v3.0 (17). This license allows all the code in the library to be included in any

application, including closed source ones. This was decided having in mind the use of

the library by companies who commercialize sensor network solutions.

It is far beyond the aims of this project to analyze the possible impact on the econ-

omy of sensor networks, specially of the algorithms here described. It is interesting,

although, to enumerate the expenses that were made to make this project possible. The

three main expenses in this project were the hardware: sensors and modules (sensors

and modules: GPS, gateway, solar...), the salary earned by grant holders of the project,

and travelling and accommodation expenses for the different meetings held during the

three years of Wisebed project.

5.1 Wisebed finances

The European Union contribution for this three-year project was of 1,477,275.00 e. This

is not a detailed financial report on the Wisebed project, just a brief overview on how

the EU contribution has been distributed to the partners is presented in Table 5.1.
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EU prefinancing 1,477,275.00 e

ITM 251,871.90 e
FUB 150,016.50 e
TUBS 150,122.50 e
RACTI 150,122.50 e
UPC 150,832.17 e
UBERN 152,961.18 e
UNIGE 150,122.50 e
TUD 150,122.50 e
ULANC 161,870.48 e

Remaining 9.232,77 e

Table 5.1: Distribution of the first EU contribution

5.2 Expenses generated by my work

I will give more detail on the money invested in my work, which has two concepts:

salary and travel and accommodation expenses for the meetings. In Table 5.2 are listed

these expenses.
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Salary
2 years 24 · 745,50 e
Meetings
WISEBED Technical Meeting 736.03 e
FRONTS 3rd Unifying Experiment Workshop 563.00 e
FRONTS 2nd Unifying Experiment Workshop 329.48 e
FRONTS 1st Unifying Exp. Workshop 302.10 e
WISEBED Programming Week 371.70 e
FRONTS 2nd Winter School 350.00 e
Conferences
SESENA Workshop 826.76 e

Total 21,371.07 e

Table 5.2: Expenses in two years of work
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Chapter 6

Conclusions

In this final chapter I will comment my conclusions, starting with the time synchroniza-

tion and topology algorithms, then with the Wisebed project and the wireless sensor

networks as a whole, and finally about this project itself.

6.1 Time synchronization

A comparison of the algorithms implemented was done in section 3.8, in which the

technical details are compared and discussed. As of time synchronization algorithms

in general, they are with no doubt very important in wireless sensor networks, not only

because synchronization is useful in many situations, but because sensors’ clocks are

very inaccurate and their error grows very rapidly.

Three algorithms were implemented and tested (LTS, TPSN and HRTS), LTS is a

simple sender-receiver algorithms, TPSN is superior to LTS in number of messages sent

and fault tolerance, and HRTS has less error for being a receiver-receiver algorithm.

Between this three algorithms, the one that is better prepared to work on the real world

is TPSN, as it is the only one that offer fault tolerance.

The error of the clocks after synchronization has an order of hundreds of microsec-

onds at one hop distance, so in a whole network we can expect an error of milliseconds.

This is the best accuracy possible if using clocks such as the one on iSense, that gives

time with millisecond precision. If better synchronization is required, by applications

wanting to measure distances from sound, for example, more precise clocks would be

needed, but the algorithms used could be the same.
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6.2 Topology

Topology algorithms implemented in Wiselib were compared in section 4.5. There it

was commented that LMST and FLSS are the best choices if minimal energy topologies

are required (and position information available), KNEIGH and XTC are better if sim-

pler algorithms are desired, and CBTC only if a directional antenna can be used and

there is no positioning system.

We can note that XTC algorithm is the only one relying on the concept of link qual-

ity: it weights edges on the network by their link quality, and not by their distance.

In networks without obstacles, the results by LMST will have a less energy consuming

topology than XTC, but in a network deployed in a building or similar, the XTC algo-

rithm will build a much more realistic topology based on energy distance better than

euclidean distance.

It is important to note that none of these algorithms have fault tolerance inherent

to their algorithm, for example by defining the behaviour if no answer is received by

a neighbor during the running of the algorithm. Their solution is to run the algorithm

periodically, thus applying any change in the network distribution.

6.3 Wisebed project

The Wisebed project, three years long, has its final review the same day I am delivering

this memory. As part of it for the last two years, I have seen great progress in the

wireless sensor networks field and most of the goals accomplished.

The part of the project in which I have been more active is the Wiselib library im-

plementation. This library has grown in number of algorithms (dozens implemented

in many different fields), in the number of platforms and specially in their supported

interfaces.

Not only it has grown in size, but also in usability and coherence. A lot of effort

was put to be able to implement generic applications that work on any platform, and

lots of re-factoring had to be made on summer 2010 in order to build this applications,

support many algorithms working at the same time, and covering the requirements of

FRONTS project.
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The Wiselib development has not been either a pure implementation challenge, as

it required deep thought of each algorithm type, defining common interfaces, require-

ments and dependencies for each of them. A proof of this is that an algorithm not only

has its implementation in classes, but its relation to a concept and a model, which are

only part of the documentation, but help understanding the work of each algorithm.

A goal that was not accomplished was to move all the algorithms from the testing

to the stable branch of the library by the end of the project. This was later found impos-

sible, as it meant testing every algorithm on all the different platforms, consuming lots

of time and resources. In spite of this, most of the goals were covered, and in fact some

of them, as the number of algorithms implemented, is greater than the one expected.

A proof that the Wisebed is working in all of its aspects: software development and

testing, is that the FRONTS project has been implemented into the Wiselib and has used

some of the testbeds with great results. It is very important for the Wisebed project to

have this relation to other projects, as it helps it to improve and adapt to real necessities.

6.4 Wireless sensor networks

Working on the wireless sensor networks field, it has been made clear to me the real

gap between academic research and real implementation of sensors. While lots of al-

gorithms are published improving theoretical properties, sensors are manufactured by

companies that implement their own closed source algorithms in a platform dependent

way, without publishing any results on tests or implementation details.

WSN is indeed an active field of research, and the own existence of FRONTS and

Wisebed projects is a sample of it. Algorithms are developed every year, sensors are

acquired by universities and tests are performed, and collaborative development plat-

forms like Wiselib have been created. All this advances are already making WSN a

more accessible field of research, and practical results will be seen soon.

It is also very important the task in project as Wisebed of forming students, PhD.

students and professors in the use and development on WSN. The Wisebed project for

example has tens of PhD. students working on it that will in their future keep develop-

ing and improving algorithms for these networks. I had a very friendly environment

both in UPC and in the European meetings, which in my opinion helps a lot the proper

development of big projects.
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6.5 My project

My work on this field: the development and test of some algorithms, has been a very

challenging and rewarding work. As part of the development of a free software library,

it will be accessible and ready for change and improvement by any researcher. I dived

into this field without knowing about the existence of WSN, and by studying algo-

rithms, implementing them and being in touch with many partners of the project, have

learned a lot about the field, and also about collaborative research and development. It

has been a very formative work and I’m proud for having been part of the UPC in this

European project.
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Appendix A

Wiselib development

We have commented previously that the Wiselib is implemented in C++, making an

extensive use of templates. In this chapter we will take a closer look at the Wiselib

implementation. We will see an example of each of the Wiselib parts:

1. Internal interface: data structures and auxiliary classes.

2. External interface: platform-dependent code to provide a common interface.

3. Algorithms: algorithms implemented in a platform-independent manner.

4. Applications: generic applications that will work on any platform, and which

can use algorithms.

A.1 Previous matters

This section will introduce two important building blocks of the Wiselib.

A.1.1 Template-based design

The Wiselib uses an Object Oriented design based only on templates. It does not achieve

generality by deriving from common interfaces, for which vtables would be necessary,

meaning a runtime and memory footprint due to pointer indirection. Every class gets

the required interfaces implementation through template parameters. For example, a

topology algorithm is templated as:
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template< typename ...,

typename Radio,

... >

class LmstTopology

{ ... };

Listing 27: Templated class - template header of an algorithm class.

And when it is instantiated from an application, we use a code such as:

LmstTopology< ... ,

ExtendedRadio

...>

my_topology;

Listing 28: Templated class instantiation - instantiation of an algorithm class.

This way the ExtendedRadio can derive from other classes or simply implement the

defined interface, and the topology algorithm can benefit of compiler optimizations and

function inlining.

A.1.2 Callbacks and delegates

It is very important for a library such as the Wiselib to support callback functions.

Classes need to be able to register their methods in other classes. As mentioned before,

the Wiselib design refuses to use the common approach of virtual inheritance. Instead,

the classes need to be able to register any other method of another class as a callback,

provided the method signature is correct. For example, the DBFS algorithm provides

the following registration method, which will be called when the algorithm finishes its

execution:
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template< ... >

class DbfsGraph

{

...

template< typename T,

void (T::*TMethod)() >

inline void reg_finish_callback( T *obj_pnt )

{ ... };

...

};

Listing 29: Register callback - callback registration function in an algorithm.

To implement these functions, we use the extremely efficient delegate implementa-

tion by Sergey Ryazanov (23). A delegate behaves as a pointer to a specific of a specific

object or class.

A.1.3 Wiselib structure

The Wiselib library is organized with three main branches: stable, testing and incuba-

tion. Stable algorithms have been tested on all platforms and have proved its correct-

ness. Programs in testing have been tested on some platform, but need still to be tested

on the rest to be able to move to stable. Incubation algorithms, instead, are programmed

in a way that they will never work on all platforms.

In the Wiselib trunk, at the Subversion repository (33), four folders have our interest:

1. applications: generic Wiselib applications, platform-independent.

2. wiselib.stable: stable repository.

3. wiselib.testing: testing repository.

4. wiselib.incubation: incubation repository.

And inside the wiselib.stable, wiselib.testing and wiselib.incubation branches,

we find the same structure:
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1. internal interface: contains data structures and other concepts, such as position,

routing table, position...

2. external interface: platform-dependent code to provide common interfaces.

Organized with a folder for each platform: isense, lorien, osa, scw, shawn, tinyos...

3. algorithms: contains all the algorithm, organized by folders representing the cat-

egory of the algorithm: cluster, coloring, crypto, graph, localization, routing...

A.2 Internal interface

The internal interface, organized as we can see in the Figure A.1, provides a set of

data structures. The Wiselib algorithms need to work on many different platforms.

These includes platforms based on C, and others with uncommon C++ compilers which

do not support the Standard Template Library (STL). For this reason it is necessary to

implement our own data structures in a efficient way, and with restrictions such as

static memory allocation.

As an example, we can see the priority queue implementation in the Code 30. This

class was implemented by myself because it was needed for Prim’s algorithm in LMST

topology algorithm.
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Figure A.1: Internal interface diagram - Internal interface concepts diagram
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template<typename OsModel_P,

typename Value_P,

int QUEUE_SIZE>

class priority_queue

{

public:

typedef Value_P value_type;

typedef value_type* pointer;

typedef typename OsModel_P::size_t size_type;

priority_queue()

{

start_ = &vec_[0];

finish_ = start_;

end_of_storage_ = start_ + QUEUE_SIZE;

}

...

size_type size() { ... }

...

void push( const value_type& x ) { ... }

...

private:

value_type vec_[QUEUE_SIZE];

pointer start_, finish_, end_of_storage_;

};

Listing 30: Priority queue implementation - svn:/wiselib.testing/util/
pstl/priority queue.h.

A.3 External interface

The external interface, as mentioned before, provides interfaces for different platform-

dependent calls. Given the system calls for sending messages, getting the position,

setting a timer... the external interface programs give a common interface so algorithms

can be programmed in a platform independent fashion. In Figure A.2 we can find the
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concept hierarchy for the external interface.

Figure A.2: External interface diagram - External interface concepts diagram

As an example, we can see the clock interface for the shawn simulator, which was

also implemented by myself. It is important to note how it implements the func-

tions specified in diagram A.2 time(), microseconds(time), milliseconds(time) and

seconds(time), using specific shawn calls.
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template<typename OsModel_P>

class ShawnClockModel

{

public:

typedef OsModel_P OsModel;

...

typedef double time_t;

...

time_t time()

{

return os().proc->owner().world().current_time();

}

uint16_t microseconds( time_t time )

{ return 0; }

uint16_t milliseconds( time_t time )

{ return (uint16_t)(time - int(time)) * 1000; }

uint32_t seconds( time_t time )

{ return (uint32_t)time; }

private:

ShawnOs& os()

{ return os_; }

ShawnOs& os_;

};

Listing 31: Shawn clock implementation - svn:/wiselib.testing/external interface/

shawn/shawn clock.h.
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A.4 Algorithms

In the algorithm folder (one in wiselib.stable, one in wiselib.testing and one in

wiselib.incubation we can find the implementation of all the algorithms supported.

They are grouped in subfolders, as mentioned earlier. They are also organized logically

as in the Figure A.3.

Figure A.3: Algorithms diagram - Algorithm concepts diagram

Algorithms implementation will not be discussed here, as it is a matter widely ex-

plained in chapters 4 and 3.

A.5 Applications

The Wiselib also provides the possibility of easily developing applications which are

platform independent, and which can use any of the data structures, interfaces and

algorithms the library contains.

In the next example we can see a whole applications which starts the LTS synchro-

nization algorithm in every node.
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#include "external_interface/external_interface.h"

#include "external_interface/external_interface_testing.h"

#include "algorithms/synchronization/lts/lts_synchronization.h"

typedef wiselib::OSMODEL Os;

typedef wiselib::LtsSynchronization<Os> lts_synchronization_t;

class LtsSynchronizationApplication

{

public:

void init( Os::AppMainParameter& value )

{

Os::Radio::self_pointer_t radio =

&wiselib::FacetProvider<Os, Os::Radio>::get_facet( value );

Os::Timer::self_pointer_t timer =

&wiselib::FacetProvider<Os, Os::Timer>::get_facet( value );

Os::Clock::self_pointer_t clock =

&wiselib::FacetProvider<Os, Os::Clock>::get_facet( value );

Os::Debug::self_pointer_t debug =

&wiselib::FacetProvider<Os, Os::Debug>::get_facet( value );

synchronization.init( *radio, *timer, *debug, *clock );

synchronization.enable();

}

private:

lts_synchronization_t synchronization;

};

wiselib::WiselibApplication<Os, LtsSynchronizationApplication>

synchronization_app;

void application_main( Os::AppMainParameter& value )

{

synchronization_app.init( value );

}

Listing 32: Synchronization application - svn:/applications/sync test/sync test.cpp.
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This application can be compiled for any supported platform, as everything is done

depending on the OSMODEL parameter, and it has the common interface application main.

The Wiselib has Makefiles which when modified with the correct paths, have the nec-

essary rules to compile these applications for any kind of sensor and simulator.
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Appendix B

Simulation with Shawn

B.1 Introduction

It has been commented many times through the document that Shawn simulator (24) is

used for simulation the behaviour of the algorithms, and checking its correct execution.

We will see in this appendix how an application is compiled and simulated with

Shawn, what options we can configure in the simulator, how to interpret the output

and visualize the result.

The DBFS algorithm is chosen for this example simulation, as it is a simple algo-

rithm, and its result can be visualized easily.

B.2 Application

It is commented in Section A.5 how an example application is programmed. In the

first stages of the Wiselib it was necessary to dive into Shawn code and build a Shawn

application in order to test the algorithms. Later on, generic Wiselib applications were

made possible, and so it is much easier to test algorithms in Shawn. We see in Program

code 33 the application used in this case.

#include "external_interface/external_interface.h"

#include "algorithms/graph/dbfs/dbfs_graph.h"

typedef wiselib::OSMODEL Os;
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typedef wiselib::DbfsGraph<Os> graph_t;

class GraphApplication

{

public:

typedef Os::Position::position_t tipus_posicio;

void init( Os::AppMainParameter& value )

{

radio = &wiselib::FacetProvider<Os, Os::Radio>::get_facet(value);

timer = &wiselib::FacetProvider<Os, Os::Timer>::get_facet(value);

debug = &wiselib::FacetProvider<Os, Os::Debug>::get_facet(value);

graph.init( *radio, *timer, *debug );

if (radio->id() == 0)

graph.set_root();

graph.enable();

}

private:

graph_t graph;

Os::Radio *radio;

Os::Timer *timer;

Os::Debug *debug;

};

// -----------------------------------------------------

wiselib::WiselibApplication<Os, GraphApplication> graph_app;

void application_main( Os::AppMainParameter& value )

{

graph_app.init( value );

}

Listing 33: DBFS example application - graph test.cpp, application to be simulated in
Shawn
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Note that before enabling the algorithm, its operating system facets: radio, timer

and debug must be initialized. Most of the code in this application is part of any generic

application, and the important call is graph.enable();.

all: shawn

export APP_SRC=graph_test.cpp

export BIN_OUT=graph_test

include ../Makefile

Listing 34: Application Makefile - includes the general Wiselib Makefile that has the
Shawn compilation methods

We will compile this function by executing make shawn, which will call the Makefile

in 34, which will use the default Wiselib Makefile (include ../Makefile).

B.3 Simulation configuration

To execute the simulation, we will use the command

./graph_test -f shawn.conf

, where shawn.conf is a file containing the Shawn configuration. In Listing 35 we

can see the Shawn configuration used in our example. In the comments we can see the

explanation of each parameter.

# Set random seed, allows repeating simulations

random_seed action=set seed=1789

# prepare_world: prepare scenario

# edge_model=list comm_model=disk_graph: data structures used

# to represents nodes and communication

# range=50: radio range of 50 length units

prepare_world edge_model=list comm_model=disk_graph range=500

transm_model=stats_chain

chain_transm_model name=reliable
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# rect_world width=100 height=100: rectangular 100x100 world

# count=5: 5 sensors

# processors=wiselib_shawn_standalone: load sensors with

# wiselib application

rect_world width=1000 height=1000 count=5

processors=wiselib_shawn_standalone

# simulation max_iterations=20: simulation will last

# 20 seconds (iterations)

simulation max_iterations=20

Listing 35: Shawn configuration file - configuration file used in the DBFS example simu-
lation

B.4 Execution

We can now execute the simulation, using the command commented above:

./graph_test -f shawn.conf

Following is the output of this command:

------------------------------ BEGIN ITERATION 0

------------------------------- DONE ITERATION 0

[ 5 active, 0 sleeping, 0 inactive ]

------------------------------ BEGIN ITERATION 1

------------------------------- DONE ITERATION 1

[ 5 active, 0 sleeping, 0 inactive ]

------------------------------ BEGIN ITERATION 2

------------------------------- DONE ITERATION 2

[ 5 active, 0 sleeping, 0 inactive ]

------------------------------ BEGIN ITERATION 3

0: DbfsMsgIdNeighbourhood message from 3

0: DbfsMsgIdNeighbourhood message from 1
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2: DbfsMsgIdNeighbourhood message from 1

1: DbfsMsgIdNeighbourhood message from 2

1: DbfsMsgIdNeighbourhood message from 0

3: DbfsMsgIdNeighbourhood message from 0

------------------------------- DONE ITERATION 3

[ 5 active, 0 sleeping, 0 inactive ]

------------------------------ BEGIN ITERATION 4

------------------------------- DONE ITERATION 4

[ 5 active, 0 sleeping, 0 inactive ]

------------------------------ BEGIN ITERATION 5

0: Executing TimerElapsed ’DbfsGraph’

------------------------------- DONE ITERATION 5

[ 5 active, 0 sleeping, 0 inactive ]

------------------------------ BEGIN ITERATION 6

3: DbfsMsgIdLabel message from 0

1: DbfsMsgIdLabel message from 0

------------------------------- DONE ITERATION 6

[ 5 active, 0 sleeping, 0 inactive ]

------------------------------ BEGIN ITERATION 7

0: DbfsMsgIdEcho message from 3

0: DbfsMsgIdEcho message from 1

------------------------------- DONE ITERATION 7

[ 5 active, 0 sleeping, 0 inactive ]

------------------------------ BEGIN ITERATION 8

1: DbfsMsgIdLabel message from 0

------------------------------- DONE ITERATION 8

[ 5 active, 0 sleeping, 0 inactive ]

------------------------------ BEGIN ITERATION 9

2: DbfsMsgIdLabel message from 1

------------------------------- DONE ITERATION 9
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[ 5 active, 0 sleeping, 0 inactive ]

------------------------------ BEGIN ITERATION 10

1: DbfsMsgIdEcho message from 2

------------------------------- DONE ITERATION 10

[ 5 active, 0 sleeping, 0 inactive ]

------------------------------ BEGIN ITERATION 11

0: DbfsMsgIdEcho message from 1

0: Stop of the algorithm

------------------------------- DONE ITERATION 11

Listing 36: DBFS simulation debug - simulation output by Shawn simulator

To understand this output, it is necessary to remember the DBFS algorithm, ex-

plained in Section 3.3.3.1 on page 28.

The output in the simulation are debug messages sent by DBFS algorithm (in our

application we didn’t send any debug message). We can identify the next phases in this

simulation:

• Iteration 3: Neighborhood discovery messages are sent, so every node knows

who are its neighbors.

• Itearion 5: root (node 0), executes a timer, and will start the graph building.

• Itearion 6: root (node 0), labels nodes 3 and 1.

• Itearion 7: 3 and 1 return an Echo to 0.

• Itearion 8: 0 sends a label message to 1. 1 must have other neighbors to be ex-

plored.

• Itearion 9: 1 labels 2.

• Itearion 10: 2 returns an Echo to 1.

• Itearion 10: 1 return the Echo to 0. The algorithm stops.

From this trace we can deduce the graph has the form: 0→ 3, 0→ 1 and 1→ 2. We

have seen through this simulation that the messages are sent in the expected order, and

the algorithm behaves as it should. Still, it would be desirable to visualize the results.
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B.5 Visualization

We will use the visualizer written in Python by Antoni. This algorithm reads text input

files, and parses lines that describe nodes and edges. These lines have the following

format:

• @ POS X # POS Y # ID # IS ROOT , description of node ID.

• $ A -> B $ TYPE , edge from A to B. TYPE specifies if the link is in the graph (h),

or not (c).

We add the function in Program code 37 to the application, which will be run after

the graph is built. This function outputs for every node its position, its neighbors and

its parent.

void draw( void* )

{

tipus_posicio pos = position->position();

debug->debug("@%f#%f#%d#1#%d#0\n", pos.x(), pos.y(), radio->id(), 0 == radio->id());

for (int i = 0; i < graph.neighbors_.size(); ++i)

debug->debug("$%d->%d$c\n", radio->id(), graph.neighbors_[i]);

debug->debug("$%d->%d$h\n", radio->id(), graph.parent_);

}

Listing 37: Draw function - writes the input needed by the visualizer to draw the graph

Now we simply have to store the output of the simulation in a file, and call the

visualizer:

./graph_test -f shawn.conf &> draw.txt

./visor/visor.py -b -y draw.txt

Options -b and -y write the root of the tree bigger, and paints the graph edges

yellow. Finally, the image of the resulting graph is in Figure B.1, and we check the

graph is the one we deduced before (0→ 3, 0→ 1 and 1→ 2).
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Figure B.1: Visualization of DBFS simulation - result of the simulation of DBFS with 5
nodes
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Program Codes

In this appendix can be found the most important functions of the algorithms, cited

through the rest of the document.

C.1 DDFS

template<typename OsModel_P,

typename Radio_P,

typename Debug_P,

uint16_t MAX_NODES>

void

DdfsGraph<OsModel_P, Radio_P, Debug_P, MAX_NODES>::

receive( node_id_t from, size_t len, block_data_t *data )

{

uint8_t msg_id = *data;

if ( msg_id == DdfsMsgIdNeighbourhood and from != radio().id() )

{

neighbours_.push_back( from );

unvisited_.push_back( from );

flag_.push_back( false );

}

else if ( msg_id == DdfsMsgIdDiscover )

{ // I’m visited for the first time

parent_ = from;

for ( int i = 0; i < (int)neighbours_.size(); ++i )
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{

message_ = DdfsMsgIdVisited;

radio().send( neighbours_[i], 1, (uint8_t*)&message_ );

flag_[i] = true;

}

if ( neighbours_.size() == 1 and neighbours_[0] == from )

{ // from is my only neighbor

message_ = DdfsMsgIdReturn;

if ( parent_ == radio().id() )

receive( radio().id(), 1, (uint8_t*)&message_ );

else

radio().send( parent_, 1, (uint8_t*)&message_ );

}

}

else if ( msg_id == DdfsMsgIdReturn )

{ // the search is resumed from me,

//which I’ve already been visited

if ( from != radio().id() )

children_.push_back( from );

if ( not unvisited_.empty() )

{

message_ = DdfsMsgIdDiscover;

radio().send( unvisited_[unvisited_.size() - 1],

1, (uint8_t*)&message_ );

unvisited_.pop_back();

}

else // all neighbours are visited

{

if ( parent_ != radio().id() )

{

message_ = DdfsMsgIdReturn;

if ( parent_ == radio().id() )

receive( radio().id(), 1, (uint8_t*)&message_ );

else

radio().send( parent_, 1, (uint8_t*)&message_ );

}
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else

{

// STOP of the algorithm

if ( set_ddfs_delegate_ )

ddfs_delegate_();

}

}

}

else if ( msg_id == DdfsMsgIdVisited )

{

int erase_position = -1;

for ( int i = 0; i < (int)unvisited_.size(); ++i )

if ( unvisited_[i] == from )

erase_position = i;

if ( erase_position != -1 )

unvisited_.erase(unvisited_.begin() + erase_position);

message_ = DdfsMsgIdAck;

radio().send( from, 1, (uint8_t*)&message_ );

}

else if ( msg_id == DdfsMsgIdAck )

{

for ( int i = 0; i < (int)neighbours_.size(); ++i )

if ( neighbours_[i] == from )

flag_[i] = false;

bool all_false = true;

for ( int i = 0; all_false and i < neighbours_.size(); ++i )

if ( flag_[i] == true )

all_false = false;

if ( all_false )

{

message_ = DdfsMsgIdReturn;

receive( radio().id(), 1, (uint8_t*)&message_ );

}

}

}
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Listing 38: DDFS receive - handles received messages with the radio

C.2 DBFS

template<typename OsModel_P,

typename Radio_P,

typename Debug_P,

uint16_t MAX_NODES>

void

DbfsGraph<OsModel_P, Radio_P, Debug_P, MAX_NODES>::

receive( node_id_t from, size_t len, block_data_t *data )

{

uint8_t msg_id = *data;

if ( msg_id == DbfsMsgIdNeighbourhood and from != radio().id() )

{

neighbours_.push_back( from );

}

else if ( msg_id == DbfsMsgIdLabel )

{ // I’m visited for the first time

if (labeled_ == false) {

labeled_ = true;

parent_ = from;

++data;

level_ = *data + 1;

send_to_ = neighbours_;

echoed_.clear();

for (int i = 0; i < (int)send_to_.size(); ++i)

echoed_.push_back(false);

for (int i = 0; i < (int)send_to_.size(); ++i)

if (send_to_[i] == from) {

send_to_.erase(send_to_.begin() + i);

echoed_.erase(echoed_.begin() + i);

}

children_.clear();

message_[0] = DbfsMsgIdEcho;

if (send_to_.empty())
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message_[1] = EchoEnd;

else

message_[1] = EchoKeepon;

radio().send( parent_, 2, (uint8_t*)&message_ );

}

else {

if (parent_ == from) {

for (int i = 0; i < (int)send_to_.size(); ++i) {

message_[0] = DbfsMsgIdLabel;

message_[1] = level_;

radio().send( send_to_[i], 2, (uint8_t*)&message_ );

echoed_[i] = false;

}

}

else {

message_[0] = DbfsMsgIdEcho;

message_[1] = EchoStop;

radio().send( from, 2, (uint8_t*)&message_ );

}

}

}

else if ( msg_id == DbfsMsgIdEcho )

{ // the search is resumed from me

//, which I’ve already been visited

for (int i = 0; i < (int)send_to_.size(); ++i)

if (send_to_[i] == from)

echoed_[i] = true;

uint8_t status = *(++data);

if (status == EchoKeepon) {

bool is_children = false;

for (int i = 0; i < children_.size() and not is_children; ++i)

if (children_[i] == from)

is_children = true;

if (not is_children)

children_.push_back(from);

}
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else if (status == EchoStop) {

for (int i = 0; i < (int)send_to_.size(); ++i)

if (send_to_[i] == from) {

send_to_.erase(send_to_.begin() + i);

echoed_.erase(echoed_.begin() + i);

}

}

else if (status == EchoEnd) {

bool is_children = false;

for (int i = 0; i < children_.size() and not is_children; ++i)

if (children_[i] == from)

is_children = true;

if (not is_children)

children_.push_back(from);

for (int i = 0; i < (int)send_to_.size(); ++i)

if (send_to_[i] == from) {

send_to_.erase(send_to_.begin() + i);

echoed_.erase(echoed_.begin() + i);

}

}

if (send_to_.empty()) {

if (root_) {

if ( set_dbfs_delegate_ )

dbfs_delegate_();

}

else {

message_[0] = DbfsMsgIdEcho;

message_[1] = EchoEnd;

radio().send( parent_, 2, (uint8_t*)&message_ );

}

}

else {

bool all_echoed = true;

for (int i = 0; i < (int)echoed_.size() and all_echoed; ++i)

if (not echoed_[i])

all_echoed = false;
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if (all_echoed) {

if (root_)

for (int i = 0; i < (int)send_to_.size(); ++i) {

message_[0] = DbfsMsgIdLabel;

message_[1] = level_;

radio().send( send_to_[i], 2, (uint8_t*)&message_ );

echoed_[i] = false;

}

else {

message_[0] = DbfsMsgIdEcho;

message_[1] = EchoKeepon;

radio().send( parent_, 2, (uint8_t*)&message_ );

}

}

}

}

}

Listing 39: DBFS receive() - receive() function, most important in DBFS algorithm

C.3 LTS

receive( node_id_t from, size_t len, block_data_t *data )

{

uint8_t msg_id = *data;

if ( msg_id == LtsMsgIdSynchronizationPulse )

{

synchronizationMessage.set_t2( clock().time() );

SynchronizationMessage *msg = ( SynchronizationMessage * )data;

synchronizationMessage.set_msg_id( LtsMsgIdAcknowledgement );

synchronizationMessage.set_t1( msg->t1() );

synchronizationMessage.set_t3( clock().time() );

radio().send( from, 1 + 3*TIME_SIZE,

(uint8_t*)&synchronizationMessage );

}

else if ( msg_id == LtsMsgIdAcknowledgement )
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{

Time t4 = clock().time();

SynchronizationMessage *msg = (SynchronizationMessage *)data;

Time offset = ( msg->t2() + msg->t3() - msg->t1() - t4 )/2;

synchronizationMessage.set_msg_id( LtsMsgIdOffset );

synchronizationMessage.set_t1( offset );

radio().send( from, 1 + TIME_SIZE,

(uint8_t*)&synchronizationMessage );

}

else if ( msg_id == LtsMsgIdOffset ) {

SynchronizationMessage *msg = (SynchronizationMessage *)data;

clock().set_time( clock().time() + msg->t1() );

notify_listeners();

start_synchronization();

}

}

Listing 40: LTS receive - receive function

C.4 TPSN

timer_elapsed( void* userdata )

{

if ( level_ == 0 )

{

if ( not built_tree_ )

{

// I’m root and I’ll start the tree construction

built_tree_ = true;

levelDiscoveryMessage[1] = level_;

radio().send( radio().BROADCAST_ADDRESS, 2,

(uint8_t*)&levelDiscoveryMessage );

timer().template set_timer<self_type,

&self_type::timer_elapsed>(

tree_construction_time_, this, 0 );

}

106



C.4 TPSN

else

{

// I’m root and I’ll start the synchronization

radio().send( radio().BROADCAST_ADDRESS, 1,

(uint8_t*)&timeSyncMessage );

}

}

else

{

if ( level_ == -1 )

{

// I’m not root and I don’t have a father

if ( new_level_ == -1 )

{

// I neither have found a new father yet,

// I request one

requested_father_ = true;

radio().send( radio().BROADCAST_ADDRESS, 1,

(uint8_t*)&levelRequestMessage );

timer().template set_timer<self_type,

&self_type::timer_elapsed>(

timeout_, this, 0 );

}

else

{

// I have a new father and request synchronization

level_ = new_level_;

requested_father_ = false;

send_sync_pulse();

}

}

else if ( not synchronized_ )

{

// I’m not root and I have a father

// but I’m not synchronized
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if ( retries_ < MAX_RETRIES )

{

// I request synchronization

++retries_;

send_sync_pulse();

}

else

{

// I tried synchronizing 4 times,

// and now request a father

retries_ = 0;

level_ = -1;

new_level_ = -1;

requested_father_ = true;

radio().send( radio().BROADCAST_ADDRESS, 1,

(uint8_t*)&levelRequestMessage );

timer().template set_timer<self_type,

&self_type::timer_elapsed>( timeout_, this, 0 );

}

}

}

}

Listing 41: TPSN timer elapsed - function called after different timeouts

C.5 HRTS

receive( node_id_t from, size_t len, block_data_t *data )

{

time_t t = clock().time();

if ( from == radio().id() )

return;

uint8_t msg_id = *data;

message = *((Synchronization *) data);

if ( msg_id == HrtsMsgIdBeginSync )

{
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uint8_t level = *data;

if ( level_ != -1 and level_ > message.level )

return;

t1 = message.t1();

if (message.receiver == radio().id()) {

message.set_msg_id(HrtsMsgIdReply);

message.set_t1(t);

message.set_t2(clock().time());

radio().send( from, sizeof( SynchronizationMessage ),

(uint8_t*)&message );

}

}

else if ( msg_id == HrtsMsgIdReply )

{

time_t d2 = ((message.t1() - t1) - (t - message.t2()))/2;

message.set_msg_id(HrtsMsgIdDiffSync);

message.set_t1(message.t1());

message.set_t2(d2);

radio().send( radio().BROADCAST_ADDRESS,

sizeof( SynchronizationMessage ), (uint8_t*)&message );

}

else if ( msg_id == HrtsMsgIdDiffSync )

{

clock().set_time(clock_time()+message.t2()+message.t1()-t1);

}

}

Listing 42: HRTS receive - receive function for HRTS

C.6 LMST

generate_topology()

{

// Prim’s algorithm to find the MST of the

// visible neighborhood graph

node_id_t me = NV.size();
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NV.push_back( radio().id() );

Pos.push_back( loc_->position() );

D.clear();

for ( size_t i = 0; i < NV.size(); ++i )

D.push_back( std::numeric_limits<position_t>::infinity() );

p.clear();

for ( size_t i = 0; i < NV.size(); ++i )

p.push_back( -1 );

is_in_PQ.clear();

for ( size_t i = 0; i < NV.size(); ++i )

is_in_PQ.push_back( true );

PQ.clear();

PQ.push( PPI( 0.0, me ) );

D[me] = 0.0;

N.clear(); // we’ll keep the visible neighbors

// that have ’me’ as parent

while ( not PQ.empty() )

{

node_id_t u = PQ.top().second;

if ( p[u] == me )

N.push_back( NV[u] );

PQ.pop();

is_in_PQ[u] = false;

for ( size_t i = 0; i < NV.size(); ++i )

{

position_t w = dist(Pos[i], Pos[u]);

if ( is_in_PQ[i] && w < D[i] )

{

p[i] = u;

D[i] = w;

PQ.push( PPI(w, i) );

}

}

}

radius = 0.0;

for ( size_t i = 0; i < N.size(); ++i )
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if ( dist(Pos[i], Pos[me]) > radius )

radius = dist( Pos[i], Pos[me] );

NV.clear();

Pos.clear();

}

Listing 43: LMST generate topology - Implementation of Prim’s algorithm

C.7 FLSS

generate_topology()

{

// Generalized Kruskal algorithm to get the

// minimum spanning K-connected graph

// Ford-fulkerson algorithm used to check K-connection

E.clear();

NV.push_back( radio().id() );

n = NV.size();

// Generate graph and fill PQ with edges

for (int i = 0; i < n; ++i)

for (int j = i+1; j < n; ++j) {

capacity[2*i][2*i+1] = 1;

capacity[2*i+1][2*j] = 0;

capacity[2*j+1][2*i] = 0;

E.push(pair<float_t, PII >(dist(Pos[i], Pos[j]),

PII(2*i+1, 2*j)));

}

for (int i=0; i<n; ++i)

for (int j=0; j<n; ++j)

if (capacity[i][j] > 0)

G[i].push_back(j);

G_bak = G;

capacity_bak = capacity;

for (int i = 0; i < E.size(); ++i) {

if (max_flow(E.top().second.first, E.top().second.second) < K) {

G[E.top().second.first][E.top().second.second] = true;
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G[E.top().second.second+1][E.top().second.first-1] = true;

}

bool finish = true;

for (int i = 0; i < n-1; ++i)

if (max_flow(2*i+1, 2*n-1) < K)

finish = false;

if (finish)

break;

}

N.clear();

for (int i = 0; i < n-1; ++i)

if (G[2*i+1][2*n-2])

N.push_back(i);

NV.clear();

Pos.clear();

}

max_flow(node_id_t source, node_id_t sink)

{

G = G_bak;

capacity = capacity_bak;

int16_t sol = 0;

while (true) {

int16_t path_capacity = find_path_bfs(source, sink);

if (path_capacity == 0)

break;

else

sol += path_capacity;

}

return sol;

}

find_path_bfs(node_id_t source, node_id_t sink)

{

for (int i = 0; i < n; ++i)

seen[i] = false;
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for (int i = 0; i < n; ++i)

from[i] = -1;

Q = std::queue<node_id_t>();

Q.push(source);

seen[source] = true;

while (not Q.empty()) {

node_id_t where = Q.front();

Q.pop();

bool finish = false;

for (int i = 0; i < G[where].size(); ++i)

if ( not seen[G[where][i]] and

capacity[where][G[where][i]] > 0 ) {

Q.push(G[where][i]);

seen[G[where][i]] = true;

from[G[where][i]] = where;

if (G[where][i] == sink) {

finish = true;

break;

}

}

if (finish)

break;

}

node_id_t where = sink, path_cap = inf;

while (from[where] > -1) {

node_id_t prev = from[where];

path_cap = (path_cap < capacity[prev][where] ?

path_cap : capacity[prev][where]);

where = prev;

}

where = sink;

while (from[where] > -1) {

node_id_t prev = from[where];

capacity[prev][where] -= path_cap;

where = prev;

}
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if (path_cap == inf)

return 0;

else

return path_cap;

}

Listing 44: FLSS generate topology - Implementation of generalized Kruskal algorithm,
including Ford-Fulkerson maximum flow calculations i each iteration
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