
Development of modules for the GNU PDF project

Albert Meroño Peñuela

June 22, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41803887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To my immortal beloved

Acknowledgements

It is a pleasure to thank those who made this Final Degree Project possible. In first place, I
owe my deepest gratitude to my project director, Antoni Soto, who advised me with invaluable
suggestions and always had time for another meeting or one last revision. Thank you very,
very much. I am also indebted to many GNU PDF members I have met during this time, but I
would like to specially thank José E. Marchesi for that great meeting in Barcelona, illustrative
discussions and guidance in the paths of software freedom, and Aleksander Morgado for his
great hacks and deep source reviews. Free Software is a reality thanks to people like you. I
would also like to show my gratitude to many other FIB professors who helped me in this
process, specially José Miguel Rivero. All my gratitude for all my colleagues in the IDT, who
kindly allowed me to develop part of this project during work hours. You are too many to
mention, so I would like to sincerely thank you all.

I would like to specially thank the most important persons in my life, for the patience,
dedication and support that they have given to me all these years. So thank you mum, Júlia,
thank you dad, Dı́dac, and thank you sis, Mariona, for everything. I want to thank all my
friends, who know I owe them many hours. Thank you Nayef, thank you Alex, thank you
Pere, and thank you Jose. And thanks to you, Ingrid, for so many, many things I just can
not explain. Thank you for loving me.

Barcelona, June 2011

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Project overview . 10
1.3 Goals . 12

1.3.1 General goals . 12
1.3.2 Specific goals . 12

1.4 Report organisation . 12

2 Entering GNU PDF 13
2.1 Introduction . 13
2.2 Brief history of GNU PDF . 14
2.3 Joining GNU PDF . 16

2.3.1 GNU PDF Information for Newcomers 16
2.3.2 #pdf channel at freenode.net . 17
2.3.3 Entering the mailing list . 17

2.4 Licensing . 17
2.4.1 Copyright assignment . 18
2.4.2 University disclaimer . 18

2.5 Project methodology and organisation . 18
2.5.1 Library architecture . 18
2.5.2 Sources retrieval and GNU PDF installation 21
2.5.3 The development branch . 22
2.5.4 Iterations, patch proposals and review process 23
2.5.5 Tasks management . 24
2.5.6 Library quality . 25
2.5.7 Tools . 27

2.6 The first task choice . 28

3 The UUID module 29
3.1 Universally unique identifiers . 29

3.1.1 Internal structure . 30
3.2 Iterative development . 31
3.3 First iteration . 31

3.3.1 Requirements analysis . 31
Requirements sources . 31
Functional requirements . 32

1

CONTENTS 2

Non-funtional requirements . 33
3.3.2 Specification and Design . 36

Existing, suitable UUID implementations 36
Design decisions . 39

3.3.3 Implementation . 41
Introducing dependency with libuuid 42
UUID Module coding . 45

3.3.4 Testing . 46
3.3.5 First patch . 47
3.3.6 Review . 48

3.4 Second iteration . 48
3.4.1 Implementation . 49

UUID Module coding . 49
3.4.2 Testing . 51
3.4.3 Second patch . 51
3.4.4 Review . 51

3.5 Third iteration . 52
3.5.1 Implementation . 53

UUID Module coding . 53
3.5.2 Testing . 55
3.5.3 Third patch . 55
3.5.4 Review . 55

3.6 Fourth iteration . 55
3.6.1 GNU PDF Library Testing Infrastructure 56
3.6.2 Testing . 57

pdf-types-uuid-generate.c . 57
pdf-types-uuid-string.c . 57
pdf-types-uuid-equal-p.c . 59

3.6.3 Testing environment execution . 59
3.6.4 Fourth patch . 60
3.6.5 Review . 60

4 PDF standards requirements 61
4.1 Introduction . 61
4.2 Concept glossary . 62
4.3 PDF standards . 63

4.3.1 Standardized subsets of PDF . 64
PDF/X . 64
PDF/A . 65
PDF/E . 65
PDF/VT . 65

4.3.2 Non-standardized subsets of PDF . 66
PDF/UA . 66
PDF/H . 66

4.4 PDF/A vs PDF 1.4 requirements . 66
4.4.1 File structure . 67
4.4.2 Graphics . 67

CONTENTS 3

4.4.3 Fonts . 68
4.4.4 Transparency . 68
4.4.5 Annotations . 69
4.4.6 Actions . 69
4.4.7 Metadata . 69
4.4.8 Logical structure . 69
4.4.9 Interactive Forms . 70

4.5 A Conformance Module proposal . 70
4.5.1 Conformance Module API . 71

Requirements Management . 71
Conformance Context Management . 73
Conformance-Requirements Mapping Management 74

5 A PDF object parser proposal 78
5.1 Introduction . 78
5.2 PDF objects . 81

5.2.1 Boolean objects . 81
5.2.2 Numeric objects . 81
5.2.3 String objects . 82
5.2.4 Name objects . 82
5.2.5 Array objects . 83
5.2.6 Dictionary objects . 83
5.2.7 Stream objects . 83
5.2.8 Null object . 84
5.2.9 Indirect objects . 84

5.3 A grammar for PDF objects . 85
5.3.1 First proposal, G1 . 86
5.3.2 Second proposal, G2 . 89
5.3.3 G1 and G2 pros and cons . 91

5.4 Parser development . 92
5.4.1 Lookahead . 92
5.4.2 Parsing strategy . 93

Generic parsing algorithm . 94
Bottom-up strategies . 94
Top-down strategies . 95

5.4.3 Requirements . 95
Goal . 95
Functional requirements . 95
Non-functional requirements . 96

5.4.4 Specification . 96
Usage . 96

5.4.5 Design . 97
Parsing window . 97
Flags . 97
Parsing schema . 97

5.4.6 Implementation . 98
rec-pred-parse.h . 98

CONTENTS 4

rec-pred-parse.c . 100
5.4.7 Testing . 102

6 Documentation 104
6.1 Source code documentation . 104
6.2 gnupdf.texi . 104
6.3 A GNU PDF developer’s blog . 105
6.4 Social Networks . 105
6.5 GNU PDF Knowledge Database . 105
6.6 Wikipedia contributions . 106
6.7 IRC community . 107

7 Budget and execution 108
7.1 Budget . 108

7.1.1 Software costs . 108
7.1.2 Hardware costs . 108
7.1.3 Staff costs . 108
7.1.4 Final cost . 108

7.2 Execution . 109
7.2.1 UUID module . 109
7.2.2 Conformance tasks . 110
7.2.3 Parser development . 110
7.2.4 Report and documentation . 111
7.2.5 Overall . 111

8 Conclusions 113
8.1 Goals achieving . 113
8.2 Further work . 115
8.3 Closing remarks . 116

A FSF licensing 124

B Licensing notes of UUID libraries 130
B.1 libbuid in e2fsprogs . 130
B.2 OSSP uuid . 131

C PDF/A vs PDF 1.4 requirements 132
C.1 File structure . 133
C.2 Graphics . 134
C.3 Fonts . 137
C.4 Transparency . 139
C.5 Annotations . 139
C.6 Actions . 140
C.7 Metadata . 141
C.8 Logical structure . 143
C.9 Interactive Forms . 146

CONTENTS 5

D ANTLR prototypes 147
D.1 EBNF grammars . 147

D.1.1 G1 . 147
D.1.2 G2 . 148

List of Figures

2.1 Layered architecture of the GNU PDF Library 19
2.2 Architecture of the Base Layer . 20
2.3 Source tree directory of the GNU PDF Library 23
2.4 Tasks workflow . 24
2.5 Flyspray task management system, overview 25
2.6 Cyclomatic Complexity Report . 26
2.7 API Consistency Report . 26
2.8 Unit Testing Report . 27

3.1 Base layer architecture . 30
3.2 Flyspray task management system, task details 32
3.3 Details of task #122, UUID Module . 33
3.4 Required data types for the UUID Module . 33
3.5 First required function for the UUID Module 34
3.5 Second required function for the UUID Module 34
3.5 Third required function for the UUID Module 35
3.6 Retrieval of source code for candidate UUID libraries 36
3.7 Requirements e-mail to Theodore Ts’o . 37
3.8 Reply e-mail from Theodore Ts’o . 38
3.9 Jose E. Marchesi’s points on libuuid requirements 39
3.10 The libuuid API . 40
3.11 First approach to an UUID module API . 41
3.12 Flow diagram of configure, autoconf and automake 43
3.13 Changes in configure.ac . 44
3.14 Changes in src/Makefile.am . 44
3.15 Question about name-based UUIDs convenience 46
3.16 Reply about name-based UUIDs convenience 47
3.17 First version of the UUID data type . 48
3.18 Comments on first UUID module patch (1/2) 48
3.19 Comments on first UUID module patch (2/2) 49
3.20 Second version of the UUID data type . 50
3.21 Comments on second UUID module patch . 52
3.22 Detail of extra parameters for pdf uuid string 53
3.23 Detail of UUID ASCII size constant . 53
3.24 Third patch acceptance notification . 55
3.25 Library testing strategy . 56

6

LIST OF FIGURES 7

3.26 Unit testing architecture . 57
3.27 Unit testing sources . 58

5.1 Phases of a compiler . 79
5.2 Indirect object rule for G1 . 87
5.3 Array object rule for G1 . 87
5.4 Array / dictionary value rule for G1 . 88
5.5 Dictionary object rule for G1 . 88
5.6 Key-value pair rule for G1 . 89
5.7 Stream object rule for G1 . 89
5.8 Indirect object rule for G2 . 89
5.9 Contained object rule for G2 . 89
5.10 Atomic object rule for G2 . 90
5.11 Array object rule for G2 . 90
5.12 Array or dictionary value rule for G2 . 90
5.13 Dictionary object rule for G2 . 91
5.14 Key-value pair rule for G2 . 91
5.15 Stream object rule for G2 . 91

6.1 Portable Document Features visits . 105
6.2 Portable Document Features countries visits 106
6.3 PDF Standards article visitors . 106

7.1 Gantt chart of the project . 109
7.2 Gantt chart of the UUID module . 110
7.3 Gantt chart of the conformance tasks . 110
7.4 Gantt chart of the parser development . 111
7.5 Gantt chart of report and documentation writing 111
7.6 Chart of working hours used during the FDP 112

8.1 The GNU PDF contributing methodology . 117

A.1 Envelope of the FSF copyright assignment letter 124
A.2 Contents of the FSF copyright assignment letter 125
A.3 FSF copyright assignment (1/2) . 126
A.4 FSF copyright assignment (2/2) . 127
A.5 FSF university disclaimer (1/2) . 128
A.6 FSF university disclaimer (2/2) . 129

List of Tables

3.1 The fields of a UUID . 30
3.2 Mapping between libuuid ’s API and UUID module API 41

4.1 The ISO 15930 (PDF/X) series and conformance levels 64
4.2 The ISO 19005 (PDF/A) series and conformance levels 65

5.1 Correspondence between tokens and input string chunks 86
5.2 Lookaheads and parsing window example . 94

7.1 Budget for hardware costs . 108
7.2 Budget for staff costs . 109
7.3 Budget for the project . 109
7.4 Time spent by task . 112

8

Chapter 1

Introduction

This Final Degree Project (FDP) is a collaboration with a Free Software project: GNU
PDF. This report describes the work performed during this collaboration.

The goal of the GNU PDF project is to develop and provide a free, high-quality, complete
and portable set of libraries and programs to manage the PDF file format, and associated
technologies [31].

Currently, the main activity in the GNU PDF project is the development of the GNU
PDF Library. This library provides functions to read and write PDF documents conforming
to standardized specifications.

The main goal of this FDP is the development of modules for the GNU PDF Library. As
described down below, the current status of the development aims at tasks involved in lexical,
syntactic and semantic analysis of PDF files. These processes begin in the object layer of
the library. Additionally, some other tasks on implementing basic features are still pending.
These features belong to the base layer. This collaboration FDP makes contributions to both
layers.

In this introductory chapter an overview of this FDP motivation, goals and organisation
is presented.

1.1 Motivation

This project was born on September 2010. It has its roots in the High Priority Free Software
Projects webpage [34]. There, a number of Free Software projects in need of support from
the Free Software community is listed. The same webpage states that:

Our list helps guide volunteers and supporters to projects where their skills
can be utilized, whether they be in coding, graphic design, writing, or activism.

At that time, the project listed in the top position was GNU PDF. This was part of
the motivation: having the chance to support and collaborate with a project that the Free
Software Foundation tagged as high priority was very motivating by itself. However, the rest
came from the current situation regarding the PDF format and current tools, free or not, to
manage it, which is a complex situation. The same webpage [34] tries to summarize it to
catch volunteers’ attention:

9

CHAPTER 1. INTRODUCTION 10

The PDF format is an international standard (ISO 32000) and current free
software support for PDF contains few of the supported features. We believe that
we urgently need a collection of free software PDF libraries and programs that can
fully implement this standard and provide users with many of the features they
are currently missing in their PDF applications, such as support for interactive
forms and JavaScript validation, annotation support, and embedded movies and
3D artwork—just to name a few.

This is absolutely true: current free software tools for managing PDF documents do not
support ISO 32000 features. This has a direct consequence: final users do not have a free
replacement for PDF privative software (provided by Adobe Systems, Inc., who created the
PDF format in 1991), which really supports all the standard features. This fact prompts two
major problems:

1. Final users that do not want to use privative software to perform their daily PDF
tasks are missing important PDF capabilities. This situation is currently unsolved: free
software users have to move to privative software to be able to use these functionalities
(Adobe Acrobat X Pro has an approximate price of US $449.00); or, even worse, they
have to work giving up them.

2. Apart from particular users, the whole digital document industry is suffering because
the lack of a free PDF replacement for libraries and tools. Moreover, businesses are
enforced to pay for the Adobe SDK in order to develop standard conformant PDF
applications. This conformance is brought by the Adobe SDK, because today is the
only PDF library that is certified on the most commonly used PDF formats (PDF 1.4,
PDF 1.5, PDF 1.6, PDF 1.7 and the subsets PDF/A, PDF/X and PDF/E). Without
a free software certified library, Adobe SDK will continue to be the only choice for the
PDF digitial document industry, as well as the public sector and the rest of industries
and final users.

Currently there exist a number of free PDF tools and libraries, implementing basic PDF
reading and writing. However, these tools were developed essentially before the release of the
ISO 32000-1:2008 standard. This has two critical consequences in both features (because stan-
dardized capabilities like annotation support or JavaScript form validation were previously
unpublished) and conformance (because these tools are not written with the conformance
problem in mind at all). As this is a design problem, improving these tools to make them
conformance-aware may imply higher developing efforts than taking a from-scratch approach.
This is the reason for the GNU PDF project to centralize a PDF conformant library.

1.2 Project overview

When the project started, it was quite difficult to establish a well defined set of goals. It
was found that, before establishing these goals, it was necessary to enter the GNU PDF
community, interact with its members, collect uncompleted or programmed tasks still to do,
and study the overall development status of the GNU PDF Library.

The results of this first work can be found in chapter 2. In brief, the library was in an
early stage of development. The documentation showed that it was organised in a four-tier

CHAPTER 1. INTRODUCTION 11

architecture, consisting of a base layer, an object layer, a document layer, and a page contents
layer. This stack suggested a bottom-up approach, beginning with the base layer and following
with the object layer and the rest of layers. Specification, design, implementation and test
stages were very advanced in the base layer. This layer supports basic modules for very low
level functionalities that the library has to provide, like basic types, memory management,
file system access, filtered streams, encryption and tokenisation, to name a few. However,
the rest of layers were in a very early stage of development (like the object layer) or were not
even started (like document and page contents layers). At this point, it was clear that the
collaboration of this FDP would develop very low-level contributions, as the volunteers’ effort
was concentrated on finishing modules of the base layer and beginning with the first tasks in
the object layer.

The first step for getting involved was to send a presentation message to the pdf-devel

mailing list, in order to notice the GNU PDF community that a new contributor was joining
in the context of this FDP. The community replied with a kind welcome, and suggested to
take any NEXT task of the task pool (see chapter 2 for details). The choice of this task, as
well as the reasons that lead to choose it, are detailed below, in chapter 2. In summary, it
can be stated for now that this task was required not to be very intensive in quantitative
terms of lines of code. Instead of that, it was required to help to acquire knowledge about
how the library was structured, how the GNU PDF development dynamics run, and how
the software development methodology works. Hence, submitting a high amount of source
code, or developing a significant number of functionalities, was considered non relevant for
this first approach. The pool was well examined, and the task that better fit these and other
requirements was found to be one named Development of the UUID module. All the work
developed around it is described in chapter 3.

At the same time, some private messages with the main developer and maintainer of
the GNU PDF project, José E. Marchesi, followed. Apart from these messages, a meeting
was arranged in Barcelona. As a result of those interactions, some key issues regarding
standard and specification conformance, as well as important compiler needs that the library
was lacking, were discussed. It was agreed to establish a framework for this FDP that did
not follow the standard developing procedure (which is strongly focused on the task cycle
detailed in chapter 2). This framework would allow the FDP to develop proposals on both
conformance and compiler tasks without following the usual methodology.

At this point, it was clear that the collaboration project would cover the following items:

1. The development of the UUID module, under the strict development methodology of
the GNU free software projects, and particularly the development methodology of the
GNU PDF project. This consists of adding improvements comming from contributors
to the current development branch with a patch system.

2. The development of studies, comparisons, conclusions and proposals regarding the li-
brary conformance with respect to official standards and PDF language specifications.
This task would not follow the standard patch submitting procedure.

3. Setting up a proposal for a syntax checking algorithm for PDF files (that is, a parser for
PDF files). Again, this task would not follow the standard patch submitting procedure.

The specific goals of the project are detailed in section 1.3.

CHAPTER 1. INTRODUCTION 12

1.3 Goals

This section describes the goals of this FDP. To do so, first a list of general goals is presented,
and then an enumeration of more specific goals is detailed.

1.3.1 General goals

The general goals of this project are the following:

1. To learn how to collaborate and work with and for the community of a Free Software
project.

2. To contribute the GNU PDF Library with source code, improving its functionalities
and adding more of them.

3. To help the GNU PDF community with knowledge, reports, articles and useful infor-
mation about PDF technologies.

4. To spread the GNU PDF initiative across the world.

1.3.2 Specific goals

The specific goals of this project are the following:

1. To begin a long term contribution with the Free Software community through this FDP
collaboration in the GNU PDF project.

2. To develop the UUID module, a still non-implemented module in the base layer.

3. To study the PDF standard and specification domain.

4. To provide a roadmap on formal comparison of PDF requirements found in PDF stan-
dards and specifications.

5. To provide a specification proposal of a conformance module, probably being located in
the base layer.

6. To develop a PDF object parser, choosing the most appropriate parsing algorithm based
on a suitable PDF object grammar.

7. To contribute the GNU PDF project documentation.

1.4 Report organisation

This report is organised as follows. First, chapter 2 describes the process of joining, meeting
and getting invloved with the GNU PDF project. Second, chapter 3 reports the development
process of the UUID module, which was needed in the base layer. Third, chapter 4 explains
the importance of standards for the GNU PDF project, and gathers all tasks performed
regarding analysis of requirements in PDF standards and specifications. Fourth, chapter
5 describes the tasks involving the development of a PDF object parser. Fifth, chapter 6
shows all documentation tasks, including diffusion efforts. Sixth, chapter 7 describes the
FDP budget and execution. Finally, chapter 8 points some important conclusions and further
work.

Chapter 2

Entering GNU PDF

This chapter describes the process of joining a Free Software project community, focusing
on the particular case of GNU PDF, and explains the most important characteristics of its
development group, its internal dynamics and available tools for helping volunteers to get
organised. A brief description of the process of joining as a volunteer is also offered.

2.1 Introduction

Engaging in a Free Software project always come with social interaction with the rest of
the development community. This does not happen in the Free Software planet only: human
interaction is the first non-strictly programming challenge a programmer must face when he or
she is working in a team. All medium-large projects require, to a greater or lesser extent, the
coordination of a human team to responsibly assign resources, plan tasks, establish workflows
and deal with conflicts.

The first interaction of this class occurs often at University, usualy in the second year of
computing studies [9]. Students are challenged to develop a project in working teams of two
or three programmers, facing the issues invloved in team software developing. Later, once
studies have been finished, these skills are put to the test, using large scale software projects
involving not only additional programmers, but a full set of different stakeholders that have
critical consequences on the activity of developing software.

The team work in Free Software development has some of these facets, as well as the
lack of some others and the exclusive of some particular ones. For instance, usually Free
Software is not influenced by a strict budget or completion times, and lacks the presence of
the customer role. This is because Free Software is not a product to be supplied to a client
in order to satisfy some customer need; the motivations, driving forces and business engine
for Free Software is something more related with ethics, social responsibility, and recognition
from peers [45]. However, Free Software projects usually try to satisfy some computing need
that a significant part of society demands.

The chapter is organised as follows. First, a brief history of the GNU PDF project is
provided. Second, the process of joining the GNU PDF project is described. Third, some
licensing issues concerning this FDP, as well as licensing issues concerning any developer
who wants to contribute, are depicted. Fourth, the project methodology and organisation is
shown. Fifth, basic tools for managing oneself while contributing are detailed. Finally, the
process of choosing the first task to contribute is analysed.

13

CHAPTER 2. ENTERING GNU PDF 14

2.2 Brief history of GNU PDF

The history of the GNU PDF project begins with the José E. Marchesi, who was maintaining
GNU gv and GNU ghostscript and was interested in the ghostscript’s PDF interpreter. He
realised then that PDF support in Free Software was not covering users needs. Some of those
needs are documented in the GNU PDF Knowledge Database [22]. For instance, on one hand
interactive forms were (and are still) unsupported in PDF free software libraries. On the
other hand, public institutions use commonly these forms in PDF documents that citizens
usually have to fill. This was leading to a implicit enforcing to citizens to rely on privative
software while filling these forms: no free alternative existed to Adobe’s tools.

Free Software community would be able to complain about this, but in 2008 the ISO
published the first full specification standard of PDF: ISO 32000-1:2008 [2]. This event
cancelled the protest: nobody was then preventing the Free Software community to implement
its own fully functional and compliant PDF library.

At that time existed, of course, several free software packages covering PDF format sup-
port. However, the option of improving these packages to make them also conformant with
recently published ISO 32000-1:2008 (moreover, to make them conformant with all standard-
ized subsets of PDF) was refused. The following public communication between José E.
Marchesi and Raph Giles describes very well the foundings of GNU PDF:

The ”Goals and motivations” page has lots of information about why you’d
want a PDF implementation, but nothing about why you’re writing a new one,
or what your goals are. There’s already Ghostscript (GPLv2) and libpoppler/xpdf
(GPLv2+) on the rendering side, and libcairo (LGPL2.1/MPL1.1) on the gener-
ation side.

The main goal is to provide complete and high quality software to manage
PDF content. For all the reasons exposed in the GoalsAndMotivations webpage,
we really need free access to the PDF technology. We plan to appoint the GNU
PDF project as a FSF high priority project. We are also working to get funds
from governments in order to pay developers. Under of our point of view, it is a
quite urgent issue.

As you point out, there is existing software that may provide something like
that, but we decided to start a new project from scratch due to some requirements
we have in mind:

• completeness

• portability

• efficiency

• robustness regarding legal issues

We did a deep research to the existing free software packages implementing
the PDF file format. For one reason or another, we decided to no reuse those
programs.

Let me quickly explain what our reasons are.
Ghostscript is a marvelous piece of software. Its coverage of the postscript

specification is really good, and its capacity to run even in a toast machine is
impressive. But as you know (surely better than any other human being :)) the

CHAPTER 2. ENTERING GNU PDF 15

ghostscript codebase is also huge and quite complex. Note that I am not saying
it is too complex for the tasks it implement: as Peter Deusch says, to use the gs
allocators with GC in the C level is not a happy thing, but we dont know a better
way to do it. I agree with that. Ghostscript is complex just because it implement
complex things. And i consider that complexity level is very well managed in
ghostscript. Again, you are one of my hacker-heros :)

But the complexity associated with postscript interpretation is not needed for
PDF interpretation. We prefer to work in a lightweight PDF interpreter. As long
as i know (i may be wrong) similar reasons led the ghostscript people to launch
GhostPDF and the MuPDF+Fitz prototype.

We also had in mind other minor considerations for decide not to use ghostscript
for this task. The PDF interpreter distributed with ghostscript is written in
postscript. It is not easy to find hackers capable to (or willing to) write postscript.
Also, it is difficult for other applications to interact with ghostscript in order to,
for example, extract information from a PDF file. The libextractor maintainer
decided to use poppler for this reason (and still he is not very happy, since pop-
pler has some difficulties that I will address later). The GNU PDF library should
provide GNU (and free software in general) software a convenient access to the
Adobe technologies regarding PDF.

We also considered to use xpdf or the poppler library. Almost all free software
viewers supporting PDF are using that library, after all. It works and is actively
maintained. But we found enough arguments to not use it. First of all, there is the
portability issue. poppler is written in C++ and extensively uses the standard
template library. If it is difficult to write portable C code, to use C++ is to
call for portability problems. Someone may want to embed the gnu library in an
embedded device, for example. There is another reason against to use C++ for
the library: the vast majority of the GNU system is written in C, and one of the
goals of the library is to provide convenient PDF support to other GNU packages.

We are using a bored but we hope effective method to achieve completeness:
to design and implement in ”width” rather than in ”deep”. Before to think to
implement the lexer or the parser, for example, we want to have support for all
the filters (even the rarely used ones, and including the encryption ones), all the
structured PDF objects (including the PDF functions, all its types), etc. We
dont want to pass to the next chapter of the specification (in a figured way, you
know the PDF spec is not exacly linear) until we have complete support of the
previous ones. Under this point of view, the objective of the GNU PDF project
may differ enough to the objective of ghostscript and poppler to considerate a
new implementation. As we see it, the ghostscript goals are more oriented to
good postscript support rather than to good PDF support (it is a bigger and
difficult objective!). In a similar way, the objective of the poppler project seems
to be more visualization-oriented than to provide good interfaces for PDF editing.

Finally, we also directed our attention to MuPDF+Fitz. Again, we detected
some degree of divergence in objectives: the author of both mupdf and fitz seems
to be more interested in a superb graphics library implementation (Fitz) rather
than its interface with PDF (MuPDF). It is a wonderful task and i think he is
doing a very good work in adapting Fitz to support several distinct imaging models
(such as the Metro support). I would not be able to do such a good work.

CHAPTER 2. ENTERING GNU PDF 16

These arguments lead José E. Marchesi to create the GNU PDF project, and leaving the
maintaining tasks of the GNU gv and GNU ghostscript packages. The first working efforts
on designing an appropriate architecture for the GNU PDF Library began. It was decided
to take the same approach than the Adobe SDK with respect to layers: the library would
consist of the base layer, the object layer, the document layer and the page contents layer.
This would made the GNU PDF Library to provide similar services than the Adobe SDK did,
and would made easier for final users to modify their Adobe SDK depending applications to
use the GNU PDF Library facilities as a replacement.

Despite having a considerable delay of two years, the GNU PDF project keeps working
hard to bring a full and conformance-aware support to PDF technologies to the Free Software
community.

2.3 Joining GNU PDF

This section describes the process of joining the GNU PDF project. It can be read as a guide
for any volunteer interested in collaborating in GNU PDF, as well as a record of the steps
performed to do so in the context of this FDP.

Joining the GNU PDF project occurs basically in three mediums: the information for
newcomers page, the #pdf IRC channel at irc.freenode.net, and the pdf-devel mailing
list.

2.3.1 GNU PDF Information for Newcomers

The GNU PDF Information for Newcomers roadmap can be found in several places across
the Web, most of them under the Free Software Foundation [19]. The official one is located
in the GNU PDF website [35].

This page thanks the interest of any user visiting it, and lists ten basic tips with useful
information to get started:

1. Getting a copy of the sources guides the user to get a local copy of the development
branch.

2. Getting familiar with GNU Bazaar points the reader to bzr tutorials, which is the
version control tool used in the project.

3. Subscribing to the development mailing list encourages the volunteer to officially present
himself or herself to the rest of the GNU PDF community, and to allow the community
know how he or she can contribute.

4. Getting familiar with Savannah explains the GNU PDF project in this central point of
GNU software.

5. Getting familiar with the library suggests the user to take a look to the design of the
library and the source code.

6. Getting familiar with the GNU standards points to official GNU coding standards, which
are currently used for writing GNU PDF source code.

CHAPTER 2. ENTERING GNU PDF 17

7. Getting familiar with the coding conventions points to extra coding requirements of
GNU PDF.

8. Taking a task to work on invites the contributors to choose a first task to develop (see
section 2.6).

9. Signing papers gives instructions about licensing issues of the collaborations.

10. Sending patches for inclusion explains how patches are sent, reviewed and used to
update the development branch.

2.3.2 #pdf channel at freenode.net

Whilst this IRC channel is not listed in the GNU PDF Information for Newcomers (see 2.3.1),
it is a great place to interact with GNU PDF members.

Actually, users in #pdf do not only chat about GNU PDF developments, but also on gen-
eral programming, creative hacks, Free Software, PDF technologies, and so on. Additionally,
many users not directly interested in GNU PDF or free software enter the channel to ask
some low-level questions or hacks they need in their PDF files. As many members of the
GNU PDF community have a deep knowledge on how PDF works, most of these problems
can be solved.

Of course, #pdf is the central point for programming discussion regarding GNU PDF
tasks. Any contributor can always get advices, reviews or constructive criticism on his or her
code.

Usually, and this was the case for this FDP, contributors are first enroled through the
pdf-devel mailing list, and after that they enter the #pdf channel to have their first, more
relaxed conversations.

2.3.3 Entering the mailing list

Joining and presenting oneself the pdf-devel mailing list is the third step in the GNU PDF
Information for Newcomers, and also the official mechanism which volunteers use to make
the GNU PDF community know how they can contribute to the project.

The list is used for official communications, general discussion and issues about the GNU
PDF project itself, but rarely for extensively commenting hacks or programming (the IRC
channel is the place for this). The most important use of pdf-devel is sending and making
publicly available patches, and replying to these patches with reviews, comments or acceptance
notifications.

There also exists another list, pdf-tasks. All contributors should subscribe to it, but
never send messages to it, as it is set to automatically send reports from the task management
system when, for example, someone picks up a new task or updates its development status
(see section 2.5.5).

2.4 Licensing

The GNU PDF project, as the rest of GNU projects under the Free Software Foundation,
Inc., requires its contributing members to sign some papers.

CHAPTER 2. ENTERING GNU PDF 18

2.4.1 Copyright assignment

The copyright assignment is a necessary step for all contributors of a GNU project. Despite
the broad right of distribution conveyed by the GPL, enforcement of copyright is generally
not possible for distributors: only the copyright holder or someone having assignment of
the copyright can enforce the license. If there are multiple authors of a copyrighted work,
successful enforcement depends on having the cooperation of all authors.

In order to make sure that all FSF’s copyrights can meet the recordkeeping and other
requirements of registration, and in order to be able to enforce the GPL most effectively, FSF
requires that each author of code incorporated in FSF projects provide a copyright assignment
[18, 38].

This assignment is sent by postal mail by the FSF. The envelope and contents of the letter
are shown in figures A.1 and A.2, respectivelly, in appendix A. The copyright assignment is
a double-sided paper that contains all terms the contributor must agree (see figures A.3 and
A.4). Once signed, the letter was sent back to the FSF by postal mail to its headquarters in
Boston, MA, USA.

2.4.2 University disclaimer

There is a second type of paper that the FSF requires its project contributors to sign: a
disclaimer of any work-for-hire ownership claims by the programmer’s employer. This is a
guarantee for the FSF that the programmer’s employer transfers appropriatelly intellectual
rights so he or she can not claim for the contributed code of one of his or her employees. That
way FSF can be sure that all the code in FSF projects is free code, whose freedom we can
most effectively protect, and therefore on which other developers can completely rely [38].

In this FDP case, the FSF has also an adapted disclaimer for universities. As universities
may claim for rights on developments performed by its students or professors, this is a very
similar case to the employer / employee described above. Figures A.5 and A.6 in appendix
A show the contents of this disclaimer, which was appropriately filled and sent to the FSF.

2.5 Project methodology and organisation

This section consists of a collection of items and subjects that shall be considered by any
GNU PDF contributor. It describes some methodological and organisational issues regarding
the library architecture, source retrieval and GNU PDF installation on most systems, the
development branch directory, the patch and reviewing process and the task management
system.

2.5.1 Library architecture

The GNU PDF Library Architecture Guide [25] contains a description of the architecture
(both external and internal) of the GNU PDF Library.

The GNU PDF Library contains several layers, shown in figure 2.1.

• Base Layer. This layer implements basic functionals such as memory allocation, fixed-
point arithmetic, interpolation functions, geometry routines, character encoding and
access to the filesystem. The base layer is responsible for providing common system-
independent abstractions to other parts of the library.

CHAPTER 2. ENTERING GNU PDF 19

Figure 2.1: Layered architecture of the GNU PDF Library.

• Object Layer. This layer implements the concepts of PDF objects and PDF documents
as a structured hierarchy of objects. An API is provided to manipulate that structure
and the objects that are part of it. Since the object hierarchy can be quite complex a
garbage collection mechanism is provided to the client of the layer.

• Document Layer. This layer implements the concept of PDF documents as a col-
lection of pages, annotations, fonts, sounds, 3d artwork, discussion threads, forms, etc.
It is implemented on top of the object layer. An API is provided to manipulate those
abstractions.

• Page Layer. This layer implements several abstractions that represent the contents
of a page in a PDF document: text, lines, arcs, bitmaps, etc. This layer also provides
rasterized bitmaps with page contents, using some graphics library. An API is provided
to both read and write page contents.

Some remarks:

• Each layer is built using the API exported by the underlying layers.

• A layer is made up of one or more modules.

• A client application has access to all layers.

• Each layer export an API that gives access to the functionality it implement to clients.

• The terms procedure and function are used to mean the same thing.

Most developing effort is concentrated in the base layer. The base layer of the GNU PDF
Library provides system-independent access to several facilities used by the upper layers of
the library. The modules in this layer are quite generic, and are available to the user of the
library. Some modules within the base layer make use of the facilities implemented in other
modules within the base layer (such as allocation or error functions). A diagram showing its
components is shown in figure 2.2.

• Memory Allocation Module. This module provides system-independent memory
allocation/deallocation.

CHAPTER 2. ENTERING GNU PDF 20

Figure 2.2: Architecture of the Base Layer.

• Basic Types Module. This module provides a system-independent implementation
of basic data types such as signed and unsigned integers, constants, etc.

• Hash Module. This module provides an implementation of associative tables using
several hashing algorithms.

• List Module. This module provides an implementation of dynamic lists and vectors.

• Stream Module. This module provides access to a range of streams (including com-
pressed streams) used within PDF files. The streams are buffered and support filtering
for both read and write operations.

• Floating Point Arithmetic Module. This module provides system-independent
floating point real numbers and several related facilities such as matrix and points
manipulations, interpolation routines, real to string and string to real conversion and
rounding.

• Text Module. This module provides access to a text abstraction as an encoded se-
quence of characters. Several text encodings are supported and conversion functions to
change the encoding of a text are provided.

• Time Module. This module provides facilities to manipulate calendar dates, time
arithmetic and time spans.

• Filesystem Module. This module provides facilities to access filesystem objects (files,
directories, file permissions, etc) in a system-independent way.

• Error Module. This module provides facilities to manage error types, error signaling,
error descriptions, etc.

• Crypt Module. This module provides de/encryption and cryptographic hashing fa-
cilities.

• Tokeniser Module. This module implements a stream tokeniser to read in PDF tokens
from a base-level stream and a token writer that can write PDF tokens into a stream.

Some of these modules are going to be used in the implementation of the UUID module,
the specification of the conformance module, and the PDF object parser:

CHAPTER 2. ENTERING GNU PDF 21

• The UUID module may use resources of the Memory Allocation Module and the Basic
Types Module, whithin which it is located.

• The conformance module may be located in the base layer, using the Error module.

• The PDF object parser may use resources of the Memory Allocation Module, Basic
Types Module, Stream Module, Text Module, Filesystem Module, Error Module and
Tokeniser Module.

2.5.2 Sources retrieval and GNU PDF installation

Volunteers are free to download the main branch of the GNU PDF Library source code. To
do so, they can follow the little guide included in this section [47]. However, only project
maintainers have permissions to apply modifications on the main branch throught the patch
mechanism, as explained in section 2.5.4.

All GNU PDF library source is managed with the bazaar version control system, so the
first step is to install the bzr package. It can be installes from source, from a pre-compiled
package, or from a preferred repository. For the latter, and assuming a Debian-style system,
it can be installed by just typing on a terminal (with permissions):

apt-get install bzr

Answering yes to APT will install the packages and all dependencies needed. Now it is
time for retrieving the GNU PDF Library sources:

bzr branch bzr://bzr.sv.gnu.org/pdf/libgnupdf/trunk

Wait a while, and source will be downloaded to ./trunk. Step inside this directory:

cd trunk

The autogen.sh script will prepare the build, but it depends on the autoconf and
libtool packages, so after installing them the library can be bootstrapped:

apt-get install autoconf libtool

sh autogen.sh

After some messages from the libtool library the source is ready to configure, but usually
some dependencies are not fulfilled at this point: zlib, libgpg-error, libgcrypt, uuid-dev
and libcheck. Except libcheck, the rest of the required libraries are available in the Debian
repos (and usually in the rest of distributions):

apt-get install zlib1g-dev libgpg-error-dev libgcrypt11-dev uuid-dev

The GNU PDF library requires the SVN source of libcheck, a C unit test framework [7],
to ensure the latest version of this library. Obviously the subversion package is required,
and then sources retrieval, configure, compile and install can be performed (as root):

CHAPTER 2. ENTERING GNU PDF 22

apt-get install subversion

cd ~

svn co https://check.svn.sourceforge.net/svnroot/check check

cd check/trunk/

autoreconf -i

./configure

make

make install

At this point, all GNU PDF library requirements are met:

cd ~/trunk/

./configure

make

make install

This will install the GNU PDF library in the default location. In most cases, compiled
library objects can be found issuing:

ls /usr/local/lib

2.5.3 The development branch

The root directory of the development branch is depicted in figure 2.3.

• The root trunk/ directory contains all the library resources. Important files here are
the GNU Build System files (autogen.sh, which calls autoreconf, configure.ac, and
so on), the ChangeLog and some README files.

• The build-aux/ subdirectory contains several programs and utilities used to build the
library. These programs are not intended to be installed in the target machine. These
programs include a C source generator for the Unicode Character Database; files from
the pmccabe2html gnulib module providing the generation of cyclomatic complexity
reports in both mediawiki markup and html (see section 2.5.6); or a documentation
generation script.

• The doc/ subdirectory contains all the GNU PDF Library documentation, mainly in
the texinfo [37] format. The most important documents are the GNU PDF Library
Reference Manual [28], the GNU PDF Library Hackers Guide [27], and the GNU PDF
Library Architecture Guide [25].

• The lib/ subdirectory contains some low-level static libraries and headers.

• The m4/ subdirectory contains m4 macros used by autoconf.

• The prmgt/ subdirectory contains some useful scripts in Python and Emacs Lisp for
several purposes (for example, authors.el generates automatically the AUTHORS file of
the root directory).

CHAPTER 2. ENTERING GNU PDF 23

Figure 2.3: Source tree directory of the GNU PDF Library.

• The src/ subdirectory contains the source code of the GNU PDF Library. Some
files included are needed by autoconf, but the source code itself is distributed in
a subdirectory hierarchy. Each subdirectory corresponds to a layer of the library.
Inside each layer subdirectory, code and header files are organised with the syntax
layer/pdf-module-submodule.[h|c] (for example, base/pdf-types-uuid.h refers to
the UUID submodule, in the types module, in the base layer).

• The torture/ subdirectory is also known as the torture chamber. It contains the test
framework of the library. The architecture of the test framework, which for the GNU
PDF project is libcheck, can be found in chapter 3, section 3.6.1.

• The utils/ subdirectory contains some tools which make direct use of some part of the
library. For instance, pdf-filter.c exploits the filtered streams, or pdf-tokeniser.c
uses the tokeniser module to extract tokens from an input PDF file.

2.5.4 Iterations, patch proposals and review process

The GNU PDF project has an iterative, distributed and reviewed source updating system.
Iterative means that the whole library code is modified over and over again, improving its

CHAPTER 2. ENTERING GNU PDF 24

architecture, specification, design, implementation and documentation. Distributed means
that, though having a central repository for version control, the source code is distributed
across the network in all contributors’ hosts, who send improvements to the main branch.
Reviewed means that not all sent improvements are automatically applied; changes with
respect to the current branch are evaluated and discussed by the whole GNU PDF community
in the pdf-devel mailing list. The result of this discussion is either an approval (and then
the patch is applied), or a reject (with suggestions on how to correct or improve the code).
Only admins have permissions to write to the development branch.

This system has the advantage of improving the overall quality of source code, as it
empowers the Linus’ Law [49]. However, in a not very large community, which is the case for
the GNU PDF project, these mechanics slow the development cycle.

2.5.5 Tasks management

The GNU PDF project uses a task pool to manage the tasks of the development group.
Extensive documentation about the task pool dynamics can be found in the GNU PDF
Reference Manual [32]. In brief, the tasks in the pool follow the worflow depicted in figure
2.4.

Figure 2.4: Tasks workflow.

• TODO. The task is into the tasks pool but it not ready to be performed.

• NEXT. The task is into the tasks pool and it is ready to be performed by a developer.

• STARTED. The task has been started by a developer but it is not finished.

• DONE. The task is archived and succesfully performed.

• DISCARDED. The task is archived but it has been discarded.

Note that a task may also be assigned to someone or unassigned:

• TODO and unassigned. Dependency issues, no one in charge.

CHAPTER 2. ENTERING GNU PDF 25

• TODO and assigned. Dependency issues and someone showed interest.

• NEXT and unassigned. Can be started, nobody interested.

• NEXT and assigned. Someone is interested but can’t work on it for personal issues.

• STARTED and assigned. Someone is working on the task (no matter the time it
takes).

The tasks pool is implemented with the flyspray task manager (see figure 2.5). It is
installed in http://gnupdf.org/flyspray. As described below in section 2.6, the UUID
(Universal Unique Identifiers) module was the first task chosen to work on. To do so, status
of the task Development of the UUID module was changed from NEXT to STARTED in the
flyspray of the project, noticing that someone had began to work on it.

The rest of documentation regarding tasks management can be found in the GNU PDF
Reference Manual [32].

Figure 2.5: The flyspray task management system. Task #122 was changed to reflect that someone
had started its development.

2.5.6 Library quality

The GNU PDF Library has some tools to automatically evaluate the overall quality of the
library. These quality tests are encoded in scripts in the source directory, and are run period-
ically in the main project server. The most important reports are the Cyclomatic complexity
report, the API Consistency report, and the Unit Testing Report.

The Cyclomatic Complexity Report [26] (see figure 2.6) contains a list of all the functions
implemented so far in the library and its McCabe number [58], a direct metric that tells about
the cyclomatic complexity of the code module (i.e. the number of execution paths).

http://gnupdf.org/flyspray

CHAPTER 2. ENTERING GNU PDF 26

Figure 2.6: Cyclomatic Complexity Report.

The API Consistency Report [24] (see figure 2.7) contains the relation of documented
(specified) functions and the relation of implemented functions. Ideally all documented func-
tions should be implemented. Hence, it shows the gap between the library specification and
the library implementation. Additionally, the number of implemented tests for each function
is also shown.

Figure 2.7: API Consistency Report.

The Unit Testing Report [29] (see figure 2.8) contains the results of automatically running

CHAPTER 2. ENTERING GNU PDF 27

the unit tests for the library.

Figure 2.8: Unit Testing Report.

2.5.7 Tools

This section briefly describes the most important tools for any programmer contributing with
the GNU PDF Library.

GNU Bazaar [41], also known simply as bzr, is the version control system of the project.
All source branches, and all common associated operatins like commiting, updating, upgrading
or even generating patches, are managed with it. Newcomers are strongly encouraged to get
familiar with this tool before contributing.

The GNU Build System [20, 61], also known as autotools is a suite of programming
tools designed to assist in making source-code packages portable to many Unix-like systems.
Making a software program portable can be difficult. The C compiler could be different.
Some common C functions could be missing, have another name, be declared in a different
header and so on. This can be handled by enabling different pieces of code in sources using
preprocessor directives such as if, ifdef and others. But the user would then have to define
all this tuning for himself which is not easy as there are lots of systems with lots of variations.
The autotools are designed to solve this. Additional details can be found in chapter 3,
section 3.3.3.

The Emacs editor is not a must for GNU PDF hacking, but as happens with most of the
GNU system, many development tools and aids are highly focused on it. Morever, GNU and
GNU PDF coding standards are implemented almost by default in Emacs. GNU PDF has
lots of scripts written in Emacs Lisp that help the programmer in many daily tasks.

CHAPTER 2. ENTERING GNU PDF 28

2.6 The first task choice

On one hand, and as stated in the GNU PDF Library Hackers Guide [27], newcomers should
take a first NEXT task (see 2.5.5) to work on. On the other hand, this FDP collaboration
also needed a first task to contribute. However, the features of this first task were not
arbitrary. Moreover, it can be stated that the first task of the FDP had the following additional
requirements:

1. The primary goal was to learn how to collaborate and work with and for the GNU PDF
community. This corresponds with the first general goal of the FDP.

2. The first task should not be extensive in time, as other FDP major developments should
be performed after it, like conformance related tasks and a parser for PDF.

3. As a consequence of the two preceding requirements, the provided source code for the
first task should not be extensive in terms of lines of code or functionalities. The priority
was to learn the development methodology, the reviewing process, and the project’s
development tools.

4. The chosen task should include more stages other than implementation. Requirements
analysis, specification and design decisions were desirable facets to be encountered while
developing the first task, apart from implementation.

5. The task should allow to develop some testing stage of the developments performed, in
order to get familiar with the library testing framework.

After studying all options offered by the flyspray, it was decided to choose the task entitled
Development of the UUID module (see figure 2.5), as it fit well with all requirements. The
development of the UUID module is detailed in chapter 3.

Chapter 3

The UUID module

This chapter describes the development process of the UUID (Universally unique identifiers)
module. Reading of this chapter may be confusing if the reader does not keep in mind what
the main goals of the UUID module development are: to learn the development methodology
of GNU PDF, to assimilate the use of important tools of the project, such as the GNU
Build System, and to contribute with some source code. For these reasons, after a brief
introduction the chapter consists of detailing the iterations performed, rather than going
through the classical waterfall model stages. One of the goals of this chapter is to suggest to
the reader the incremental cycle implicitly used in GNU PDF. This cycle is later presented
in chapter 8.

3.1 Universally unique identifiers

A universally unique identifier (UUID) is an identifier standard used in software con-
struction, standardized by the Open Software Foundation (OSF) as part of the Distributed
Computing Environment (DCE) [70].

The aim of UUIDs is to enable distributed systems to uniquely identify information,
without requiring any central coordination. Thus, anyone can create an UUID and use it to
identify something (e.g. an instanciated struct or a row in a database) with a high confidence
that the same UUID will not be used by anyone for anything else again. Therefore, information
tagged with UUIDs can be merged in a single database without requiring to solve name
conflicts. A distributed application may generate data and store it in several locations; when
data needs to be merged at some intervals of time, UUID can then be used as the primary
key.

UUIDs are required in the GNU PDF Library to generate IDs for the PDF documents.
Additionaly, UUIDs shall be used in any occasion a module requires to uniquely identify
information.

In the context of the GNU PDF Library UUIDs are seen as basic data types. Hence, the
UUID module is in fact a submodule, a piece of the basic types module, which is located in
the base layer. This is shown in figure 3.1.

29

CHAPTER 3. THE UUID MODULE 30

Figure 3.1: A diagram of the base layer architecture. The base layer operates on top of the operating
system, and receives calls coming from other layers above it, and from client applications.
The UUID submodule is located in the basic types module.

3.1.1 Internal structure

Each UUID is a hexadecimal-coded ASCII sequence composed by the following fields, sepa-
rated by the ASCII hyphen-minus, 45 character, except between the VariantAndClockSeqHigh
and ClockSeqLow (see table 3.1[15])[28].

Field name Bytes Hex
dig-
its

Description

TimeLow 4 8 The low field of the times-
tamp

TimeMid 2 4 The middle field of the
timestamp

VersionAndTimeHigh 2 4 The high field of the times-
tamp multiplexed with the
version number

VariantAndClockSeqHigh 1 2 The high field of the clock
sequence multiplexed with
the variant

ClockSeqLow 1 2 The low field of the clock
sequence

Node 6 12 The spatially unique node
identifier

Table 3.1: The fields of a UUID, with corresponding sizes in octets and hexadecimal digits, and a
description of each.

To generate these fields, the following data must be retrieved from the host generating
the UUID:

• Timestamp. The timestamp is a 60-bit value, which is represented by Coordinated
Universal Time (UTC) as a count of 100 nanosecond intervals since 00:00:00.00, 15
October 1582 (the date of Gregorian reform to the Christian calendar).

• Clock sequence. The clock sequence is used to help avoid duplicates that could arise
when the clock is set backwards in time or if the node ID changes.

CHAPTER 3. THE UUID MODULE 31

• Node. The node field consists of an IEEE 802 MAC address, usually the host address.
For systems with multiple IEEE 802 addresses, any available one can be used.

Additional details can be found at RFC 4122 [15].

3.2 Iterative development

GNU PDF uses an iterative development methodology, as described previously in section 2.5.
Putting this into practice, the development process of this module was structured in a number
of short, quick and incremental iterations. Each iteration consists of phases. Phases involved
in a given iteration depend on what exactly needs to be improved with respect to previous
milestones.

Considering the review process involved it is difficult to previously plan a fixed number
of iterations. The eyes of the community (more exactly, the eyes of those subscribed in the
mailing list) recieve proposed changes from volunteers in form of patches, and freely critizise
them. Usually the same volunteer that sent a reviewed patch fixes it with suggestions of
the community, but this does not exclude more reviews. Moreover, the implementation of
new features or simply correcting mistakes can lead to new improvement suggestions, in form
of bad memory usage, unefficient code, unreadable code, non portable code, non thread safe
code, and so on. In the long term, progressive patches for a given task require less work to do,
which means that code improves its quality in the review process. This cycle ends when no
more suggestions are proposed, and the patch is applied to the official development branch.
Code applied this way can not be considered as final code in any way. Further reviews may
occur (e.g. someone writes a unit test that makes bugs arise; a module using submitted code
fails to work correctly because of an error in that code), and improvement suggestions can be
made at any further time.

In the UUID module case, four iterations were needed to get two approvals from the GNU
PDF community. The following subsections describe the work done in each one of these
iterations.

3.3 First iteration

The first iteration had the goal of producing a first patch proposal.

3.3.1 Requirements analysis

In this subsection the analysis of requirements for the development of the UUID module is pre-
sented. First, the sources for requirements, which can be defined as places were stakeholders
wrote critical requirements for this module, is described. Finally, as a result after the study
of these requirements sources, the complete list of requirements is presented, distinguishing
between functional and non-functional requirements.

Requirements sources

This section describes the sources for requirements regarding the UUID module. The very first
requirements for almost any task are located in the task description, which can be accessed

CHAPTER 3. THE UUID MODULE 32

by developers just clicking on that task in the Flyspray manager. The Flyspray manager was
previously described in section 2.5.5.

In the task description view several fields can be modified in order to reflect the current
condition of the task (e.g. changing its status or writing some comments). One particular
field gives some details: guidelines that the originator of the task wrote to help the task taker
to start with his or her work.

Figure 3.2: The Flyspray task management system. The details view is the starting point for study-
ing task requirements.

In the case of the UUID module development, these guidelines provided the contents
shown in figure 3.3.

As many other tasks in the Flyspray, these details usually point the reader to the GNU
PDF Reference Manual to get more information. This sets up the Reference Manual as
the second requirements source for analysis. So, apart from the Flyspray manager, the GNU
PDF Library Reference Manual [28] was studied for data types and functions that this module
should provide through the library API. Data types are shown in figure 3.4, and functions
are described in figures 3.5, 3.5 and 3.5.

Functional requirements

After studying requirements sources, the following functional requirements were found to be
needed in the UUID module.

• A UUID data type, holding the UUID data. This data type shall conform with the
directives of the GNU PDF Library Hackers Guide [27] regarding abstract data types
(ADT).

• An enumeration of UUID types. This enumeration shall list all kinds of UUIDs that
the library can generate.

• A UUID generation function. This function shall generate an UUID of the specified
type.

CHAPTER 3. THE UUID MODULE 33

The UUID module described in the ”Universal Unique Identifiers” in the Reference Manual
shall be implemented in the base layer.
The module shall provide the following data types:

pdf_uuid_t

enum pdf_uuid_type_e

And the following functions:

pdf_uuid_t pdf_uuid_generate (TYPE)

char *pdf_uuid_string (UUID)

bool pdf_uuid_equal_p (UUID1, UUID2)

Please find more details in gnupdf.texi. The code developed as part of this task would be
pretty general, so before working in any implementation it is worth to take into account:

• If there is an existing GPLv3-compatible implementation of the ITU X.667 in C, and
its convenience for us.

• Would be good to implement a basic uuid t type and associated functions in gnulib so
other projects could benefit.

Figure 3.3: Contents of the details field in task #122, UUID Module.

Data Type: pdf_uuid_t
Opaque type representing an Universally Unique Identifier.
Data Type: enum pdf_uuid_type_e

Type of an UUID:
PDF_UUID_TIME

Time-based UUID as defined by ITU X.667.
PDF_UUID_RANDOM

Random-based UUID as defined by ITU X.667.
PDF_UUID_NAME

Name-based UUID as defined by ITU X.667.

Figure 3.4: Required data types for the UUID Module.

• An ASCII representation function of a given UUID. This function shall generate a
string with an ASCII representation of the specified UUID.

• A UUIDs comparison function. This function shall compare two given UUIDs and
return if they are equal or not.

Non-funtional requirements

After studying requirements sources, the following non-functional requirements were found to
be needed in the UUID module.

• To be written in C

CHAPTER 3. THE UUID MODULE 34

Function: pdf_uuid_t
pdf_uuid_generate (enum pdf_uuid_type_e type)

Generate a new UUID of the specified type.
Parameters
type
The type of UUID to generate.
Returns
The generated UUID.
Usage example

pdf_uuid_t uuid;

/* Generate a name-based UUID. */

uuid = uuid_generate (PDF_UUID_NAME);

Figure 3.5: First required function for the UUID Module.

Function: const char * pdf_uuid_string (pdf_uuid_t uuid)

Return an ASCII string with the printed representation of uuid.
Parameters
uuid
A previously generated UUID.
Returns
A null-terminated buffer containing the printed representation of uuid.
Usage example

pdf_uuid_t uuid;

uuid = pdf_uuid_generate (PDF_UUID_TIME);

printf ("The generated UUID: %s\n",

pdf_uuid_string (uuid));

Figure 3.5: Second required function for the UUID Module.

CHAPTER 3. THE UUID MODULE 35

Function: pdf_bool_t pdf_uuid_equal_p (pdf_uuid_t uuid1,

pdf_uuid_t uuid2)

Determine if two given UUIDs are equal.
Parameters
uuid1
The first UUID to compare.
uuid2
The second UUID to compare.
Returns
A PDF boolean indicating whether both UUIDs are equal.
Usage example

pdf_uuid_t uuid1;

pdf_uuid_t uuid2;

uuid1 = pdf_uuid_generate (PDF_TIME);

uuid2 = pdf_uuid_generate (PDF_TIME);

if (pdf_uuid_equal_p (uuid1, uuid2))

{

/* Extremely unlikely! */

}

Figure 3.5: Third required function for the UUID Module.

CHAPTER 3. THE UUID MODULE 36

• To be ITU.667 compliant

• To be GPLv3 compatible

• If possible, to reuse an existing implementation meeting these requirements

3.3.2 Specification and Design

This subsection shows how the process of transforming requirements into functionalities and
behaviours was performed. Three separate parts are included: first, the search for an avaiable,
suitable and existing implementation for the UUID module; second, the API offered by the
module as a representation for functional requirements; and third, some design decisions that
were took after considering the two previous points.

Existing, suitable UUID implementations

The key non-functional requirement of this module was to find an existing implementation
of UUIDs suitable for the GNU PDF Library. Such an implementation could be used in the
GNU PDF Library’s UUID module, instead of one coded from scratch. This section explains
how external UUID libraries were found, analyzed and chosen, according with GNU PDF
Library requirements.

The flyspray task stated that these hypothetical implementations shall be

• written in C,

• ITU.667 compliant,

• and GPLv3 compatible.

There exist lots of UUID implementations for almost any programming language [70].
However, only the following two implementations written in pure C were found:

• libuuid, part of the e2fsprogs package.

• OSSP uuid, part of the OSSP project.

Source code of both software packages was retrieved (see figure 3.6), and a first study of
these sources performed.

apt-get source libossp-uuid16 libuuid1

Figure 3.6: Retrieval of source code for candidate UUID libraries. Commands issued in a Debian
GNU/Linux system, using the APT package and source manager to query Debian soft-
ware repositories.

This confirmed that the implementation language was C. Also, the licensing compatibility
was an issue: copyright and general licensing information included in sources file headers for
libuuid and OSSP uuid is shown in appendix B.

As neither these notes nor the project homepages [53, 42] provided reliable proof about the
licensing status of these packages, authors were contacted via e-mail. A copy of the e-mail sent

CHAPTER 3. THE UUID MODULE 37

to authors or maintainers of libuuid, Theodore Ts’o, and OSSP uuid, Ralf S. Engelschall, can
be read in figure 3.7. Theodore Ts’o is a very well known Linux kernel hacker, particularly for
his contributions to file systems, and primary developer and maintainer of e2fsprogs, which
includes libuuid. UUIDs were first developed in the context of e2fsprogs, a user space set
of utilities for maintaining ext2, ext3 and ext4 filesystems, and are used there to uniquely
identify filesystems and disk drives.

Dear Theodore,

I’m a free software developer and currently contributor to the

GNU PDFproject. The library needs an implementation of UUID,

and before coding the correspoing types and funcionalities

we’re looking for previous implementations meeting these three

requirements:

- To be written in C

- To be ITU X.667 compliant

- To be GPLv3 compliant

AFAIK libuuid meets the first, but does it meet the last two?

Thank you very much in advance,

Albert Mero~no

Figure 3.7: E-mail sent to Theodore Ts’o, asking for requirements suitability of the UUID imple-
mentation deployed with e2fsprogs. An analogous mail was sent to Ralf S. Engelschall
for the same reasons with respect to OSSP uuid.

As some days went by, only the e-mail sent to Theodore Ts’o got a reply, which is included
in figure 3.8.

The license compatibility issue with respect to libuuid was then solved: the library is
licensed under a BSD license (though originally it was under LGPLv2) compatible with GPLv3
developments, which is the case for the GNU PDF Library.

Ted’s mail also helped in the second requirement in the list: ITU X.667 compliance. The
ITU X.667 [55] norm was also studied and therefore compared with OSF/DCE specifica-
tion [16] and RFC 4122 [15]. This comparison was to ensure that libuuid compliance with
OSF/DCE was extensible to RFC 4122 and ITU X.667, which was the initial interest of GNU
PDF.

From an implementation point of view, OSSP uuid presented some disadvantages against
libuuid. The main problem with OSSP code is that it abuses object orientation, though being
written in C. A UUID, as shown in section 3.1.1, is just a 128-number that can be easily
reprented through an unsigned char[16] array. UUIDs are commonly attached to other
structures (e.g., e2fsprogs uses them to identify file systems), and it is desirable to inline the
UUID in the structure itself. OSP uuid returns a uuid * pointer after a new UUID has been
created, pointing to a dynamically allocated object, which holds much more information than
the ASCII characters conforming the UUID. If one requirement for the system using these

CHAPTER 3. THE UUID MODULE 38

My apologies for the delay in getting back to you. When I get

busy I don’t always read e-mail sent to the thunk.org e-mail

address regularly.

The uuid library is written to follow the OSF/DCE

specification, which was than used as the source material for

RFC 4122 and X.667. The two specifications are aligned, but

why anyone would pay $$$ for a fourth generation copy of X.667

from some national standards body, when you can get RFC 4122

for free download on the web, is a mystery to me.

The UUID library was originally released under the LGPLv2

license. It has now been released under a BSD license, to

allow Apple to use the library in Mac OS X. Hence the library

is compatible with GPLv3 code.

I would appreicate changes/improvements to the UUID library be

donated back using the currently-used BSD license, instead of

forked to be in the GPLv3-only universe, although the BSD

license certainly legally allows you to do this. I don’t

consider it a neighborly thing to do, but it’s certainly

legally permissible.

Best regards,

- Ted

Figure 3.8: E-mail received from Theodore Ts’o, in reply for the requirements questions pointed
above.

UUIDs is efficiency or scalability, working with thousands of those UUIDs makes the program
run slower, uses more memory and causes memory fragmentation. Finally, generation of new
UUIDs in OSP uuid involves 4 calls (uuid_create, uuid_make, uuid_export and destroy),
plus those necessary for the programmer to work with the UUID value. On the other hand,
in libuuid only one single call is needed to generate the UUID (uuid_generate) and one more
to get the ASCII representation (uuid_unparse).

pdf-devel, the mailing list of the GNU PDF Library development group, was reported
about this. José E. Marchesi, main developer and co-maintaner of the GNU PDF Library,
pointed that Ts’o’s library was enough for the project’s needs (see figure 3.9). Thus, both
licensing and standards compliance of e2fsprogs libuuid were found fully compatible with
GNU PDF Library requirements.

All arguments exposed in this section led to choose libuuid as the more appropriate and
most suitable UUID library to link with the GNU PDF Library.

CHAPTER 3. THE UUID MODULE 39

Hi Albert.

As for the standard compliance, he pointed that the uuid

library is written to follow the OSF/DCE specification,

which was used as source material for RFC 4122 and X.667.

AFAHK, 4122 and X.667 are aligned. I hadn’t got enough

time to check if the alignment is partial or total

between both specifications. I think it should be

performed before deciding if libuuid’s code is going to

be the official uuid module implementation or not.

Tso’s uuid library provides both UUID generation and parsing

routines. More than enough for our needs.

Regarding the license, libuuid was originally released

under LGPLv2, but currently it is under a BSD license to

allow Apple to use the library in MacOS X. So the library

is compatible with GPLv3. Ted would appreciate changes or

improvements made to libuuid to be donated back using the

currently BSD license (is that possible after adopting it

in a GPLv3 project?) instead of forking it in the

GPLv3-only universe. The BSD license legally allows us to

do that, but he doesn’t consider it "a neighborly thing

to do".

I don’t think that will be a problem. The simplest way to

go is to write a thin layer in pdf-uuid.[ch] and link with

libuuid. In case we need to extend the library (quite

unlikely) we can contribute the changes under the BSD

license.

Figure 3.9: E-mail reply from Jose E. Marchesi’s, pointing that the libuuid library met the require-
ments needed for the GNU PDF Library. Neither licensing nor standards compliance
were considered to be noticeable problems.

Design decisions

After deciding that libuuid whould implement the UUID module, some design decisions had
to be made. In particular, a study of libuuid had to be done before coding anything, in order
to decide how to map the existing UUID module API (see figure 3.10) with the libuuid API
(see figure 3.11).

As shown in figure 3.10, some extra functionalities supported in libuuid are not necessary,
at least in a first approach, in the implementation of the UUID module of the GNU PDF
Library. Moreover, the necessary functions to map into the existing UUID module API are
the following:

• int uuid_compare(const uuid_t uu1, const uuid_t uu2) in order to implement

CHAPTER 3. THE UUID MODULE 40

typedef unsigned char uuid_t[16];

...

/* clear.c */

void uuid_clear(uuid_t uu);

/* compare.c */

int uuid_compare(const uuid_t uu1, const uuid_t uu2);

/* copy.c */

void uuid_copy(uuid_t dst, const uuid_t src);

/* gen_uuid.c */

void uuid_generate(uuid_t out);

void uuid_generate_random(uuid_t out);

void uuid_generate_time(uuid_t out);

/* isnull.c */

int uuid_is_null(const uuid_t uu);

/* parse.c */

int uuid_parse(const char *in, uuid_t uu);

/* unparse.c */

void uuid_unparse(const uuid_t uu, char *out);

void uuid_unparse_lower(const uuid_t uu, char *out);

void uuid_unparse_upper(const uuid_t uu, char *out);

/* uuid_time.c */

time_t uuid_time(const uuid_t uu, struct timeval *ret_tv);

int uuid_type(const uuid_t uu);

int uuid_variant(const uuid_t uu);

Figure 3.10: Extract from util-linux-2.17.2/shlibs/uuid/src/uuid.h, which contains the libuuid API.
The comments point to the source files implementing the listed functions.

the comparison between two given UUIDs.

• void uuid_generate(uuid_t out), void uuid_generate_random(uuid_t out) and
void uuid_generate_time(uuid_t out) in order to implement the generation of name-
based and random-based UUIDs.

• void uuid_unparse(const uuid_t uu, char *out) in order to implement the func-
tion which returns the ASCII representation of a given UUID.

Hence, the mapping between libuuid API and the UUID module API was clear at this
point. This mapping is shown in table 3.2.

CHAPTER 3. THE UUID MODULE 41

typedef struct pdf_uuid_s *pdf_uuid_t;

/* UUID creation */

pdf_uuid_t pdf_uuid_generate (enum pdf_uuid_type_e type);

/* Printed ASCII representation of an UUID */

const char * pdf_uuid_string (pdf_uuid_t uuid);

/* Determine if two UUIDs are equal */

pdf_bool_t pdf_uuid_equal_p (pdf_uuid_t uuid1,

pdf_uuid_t uuid2);

Figure 3.11: First approach to an UUID module API. Note the ADT encapsulating the UUID, and
the three functions providing the required functionalities.

UUID module re-
source

libuuid resource Type Description

pdf_uuid_t uuid_t Data type The ADT provided
shall contain, at least,
all data used by libuuid
to represent UUIDs.

pdf_uuid_generate uuid_generate Function The function that
generates UUID uses
the generation methods
of libuuid.

uuid_generate_random

uuid_generate_time

pdf_uuid_string uuid_unparse Function The function that
provides the ASCII
representation of an
UUID uses the unparse
method of libuuid.

pdf_uuid_equal_p uuid_compare Function The function that com-
pares two given UUIDs
uses the comparison
function of libuuid.

Table 3.2: The final mapping between the API of libuuid and the temptative API to be offered by
the GNU PDF Library’s UUID module.

3.3.3 Implementation

Once the mapping between the libuuid and the UUID module APIs was clear, the implemen-
tation stage began. The first task to do was to introduce the dependency on libuuid in the
GNU Build System [61] (better known as Autotools and basically consisting of Autoconf,
Automake and Libtool [20]). Then, the coding of the UUID module was performed.

CHAPTER 3. THE UUID MODULE 42

Introducing dependency with libuuid

The GNU PDF Library, as well as most of the GNU software, uses the GNU Build System,
also known as Autotools, to make portable and self-configuring software.

A lot of documentation is available for developers about the GNU Build System ([10, 20,
21]). Briefly, it has evolved from the well known make tool, which uses the popular Makefile
files, to a complete dependecy and portability-aware build system including autoconf, which
generates the configure script according to libraries available on the user’s computer. The
configure script, in turn, generates appropriate Makefile files. A complete flow diagram of
the process is depicted in figure 3.12.

This flow is started in the GNU PDF Library source code directory with the autogen.sh
script, which calls autoconf, autheader, aclocal, automake, automake and libtoolize

where appropriate, in order to update generated configuration files (see autoreconf man
page with the man autoreconf command).

The libuuid dependency is introduced in the GNU PDF Library in two steps. First, the
GNU Build System is used to specify that the libuuid must be located in the user’s system
as a pre-requisite. Second, the compiler flags needed to find header files and shared libraries
in the system are indicated.

Checking for libraries before building The autoconf tool reads the contents of the
configure.ac file, placed in the source code root directory. This file contains all the checks
that the GNU Build System must perform (e.g. if required libraries are installed in the
system) at the time that the configure script is being executed. After these checks, the
configure script is generated according with the cheking results. The file configure.ac

organizes checkings in the following groups [10]:

1. Programs checks (programs currently installed in the system)

2. Libraries checks (libraries currently installed in the system)

3. Header files checks (header files currently available in the system)

4. Typedefs checks (data types definitions)

5. Structures checks (structures definitions)

6. Compiler’s behaviour checks

7. Library functions checks

8. System services checks

The interesting section here is, obviously, the libraries checks. The goal is to successfully
indicate to autoconf (through the config.ac file) that the configure script has to check if
libuuid is installed in the system. If it is, the configuration must end normally (i.e. generating
appropriate Makefile files); otherwise, if the configure script is not able to find the libuuid
library installed in the system, configure has to show a message to the user noticing so.
Hence, moving into the libraries checks section, the lines showed in figure 3.13 were added in
the configure.ac of the working branch.

CHAPTER 3. THE UUID MODULE 43

Figure 3.12: Flow diagram including configure, autoconf and automake, three tools in the GNU
Build System (image created by Stefan ”Polluks” Haubenthal).

These lines are almost self-explanatory. They are divided in two blocks: one specifying
the library check, and another telling to autoconf what to do if the library is not found.

In the first block, the AC_LIB_HAVE_LINKFLAGS macro [33] tells autoconf to look up the
libuuid installation in the default linker path (a system dependent list of directories, that
usually contains the /usr/lib directory).

In the second block, a variable containing the checking result is queried. If the library
was found, then nothing happens. Otherwise, the name of the library (libuuid) is appended
to a variable containing all the libraries that are missing in the system. This variable is later
used to show the corresponding error messages to the user (if any) during the execution of

CHAPTER 3. THE UUID MODULE 44

dnl libuuid

AC_LIB_HAVE_LINKFLAGS([uuid])

...

if test "x$HAVE_LIBUUID" != "xyes"; then

missing_libs="$missing_libs

libuuid"

fi

Figure 3.13: Lines added in configure.ac, requiring the system where the GNU PDF Library is being
built to have installed the libuuid library.

the configure script.

Specifying linker flags Once the build system has been warned about checking if libuuid
is present or not, there is still another task to do: guarantee that the compiler uses the
appropriate header files and linker flags when trying to build the GNU PDF Library (specially,
when trying to build the UUID module).

This can be indicated using the src/Makefile.am file of the build system. Variables
defined in this file are used to generate the appropriate compiler invocation. What is int-
eded here is that the build calls to gcc use the correct values for the options -I (e.g.
-I/usr/include/uuid/uuid.h) and -l (e.g. luuid), in order to make the compiler find
header files and shared libraries, respectivelly. The changes that were needed to achieve this
are shown in figure 3.14.

libgnupdf_la_LDFLAGS = $(top_builddir)/lib/libgnu.la \

$(LTLIBPTHREAD) $(LTLIBM) \

$(LTLIBUUID) $(LTLIBPTHREAD) $(LTLIBM) \

$(LTLIBJBIG2DEC) $(LTLIBJPEG) \

$(LTLIBCURL) $(LIBGCRYPT_LIBS) \

$(LTLIBGPG_ERROR) $(LTLIBGCRYPT) \

$(LTLIBCHECK) $(LTLIBICONV)

Figure 3.14: Lines added in src/Makefile.am, indicating the flags that have to be passed to the
compiler to consider shared libraries.

As can be seen in the third line, the libuuid flags were added at this point to get the GNU
Build System ready to work.

Additionally, some statements had to be added in src/Makefile.am to notice the GNU
Build System that the UUID module files had to be compiled with the rest of the library.
Moreover, the supplied API should be exported within the rest of the public API of the
library:

TYPES_MODULE_SOURCES = base/pdf-types.h \

base/pdf-types-buffer.c base/pdf-types-buffer.h \

base/pdf-types-pmon.h \

CHAPTER 3. THE UUID MODULE 45

base/pdf-types-uuid.c base/pdf-types-uuid.h

...

PUBLIC_HDRS = ...

base/pdf-types-uuid.h \

...

UUID Module coding

At this point, an updated branch of code with a GNU Build System linking with libuuid
was ready. The next step consisted of coding a thin layer between the GNU PDF Li-
brary and the libuuid library. This layer had to implement the required functionalities of
the UUID module, using calls to the libuuid API (provided functions and data types in
/usr/include/uuid/uuid.h) when necessary.

The UUID module consists of two files: src/base/pdf-types-uuid.h and src/base/pdf-
types-uuid.c. These names follow GNU PDF Library conventions. All source code files must
begin with the pdf- prefix, followed by the module where they belong (types- in this case,
because UUIDs are a subclass of basic types, like boolean or numeric) and finally the par-
ticular submodule (uuid). Source code files must be conveniently placed in the subdirectory
representing the layer where they belong (base/) in the source code hierarchy. The former
file contains the header (API), while the latter contains the implementation.

pdf-types-uuid.h There are two interesting blocks of code in the header: the definition of
data types, and the function headers (parameters, function names and return types).

According with functional requirements (see section 3.3.1), the UUID module has to pro-
vide two data types: an enumeration of all types of UUIDs that can be generated by the
library, and a data type holding the UUID itself.

The enumeration defines two types of UUID: PDF UUID TIME and PDF UUID RANDOM. The
former refers to time-based UUIDs, while the latter refers to random-based UUIDs. As
discussed in 3.3.1, this is not aligned with starting requirements, which stated that time-based,
random-based and name-based UUIDs were necessary. The first reason for not including the
name-based was that this type of UUIDs are not supported by libuuid. Before deciding to
implement name-based UUIDs (and where exactly, since the most reasonable option was to
improve libuuid out of the collaboration with GNU PDF, and then return back to GNU
PDF and link with the new functionality), the convenience of name-based UUIDs from the
requirements point of view was discussed in pdf-devel, as shown in figures 3.15 and 3.16.

The result of the discussion was to drop the name-based UUIDs requirement from the
functional requirements list, as the main use of the UUID module generation function would
be almost always on time-based UUIDs.

The other data type provided in this header is the pdf uuid t type, which in this first
iteration looked as shown in figure 3.17.

In this first version of the UUID data type, the defining struct contained the uuid t

data type defined in libuuid, the type that was used to generate it, and a buffer to hold an
ASCII representation. This struct, named pdf uuid s, must be kept away from the visibility
the user of the library, who does not need to know how this abstract data type (ADT) is
implemented. To achieve this opaqueness on data type definitions, the typedef statement

CHAPTER 3. THE UUID MODULE 46

Hi,

Regarding this, I have the linkage with Tso’s libuuid almost done in

base/pdf-types-uuid.[ch].

However, Tso’s libuuid does not provide generation of name-based

UUIDs, as required in doc/gnupdf.texi; it provides time-based and

random-based generation only. So, my question is: is the name-based

generation a must? If it is, I could implement it in libuuid and then

come back to libgnupdf to complete the linkage. If it is not, this

task is almost done :)

By the way, I’m feeling curious about the UUID module: where is it

going to be used?

Albert

Figure 3.15: This mail sent to pdf-devel exposed that libuuid lacked of a name-based UUIDs im-
plementation. If name-based were found to be necessary, a solution was proposed.

defines the pdf uuid t as a pointer to the pdf uuid s struct, thus hiding this last to the user
manipulating variables of type pdf uuid t [27]. In this case, the type definition involving a
pointer makes the ADT to be dynamically allocated in the heap.

Finally, the function headers were written according to the API previously defined in the
GNU PDF Library Reference Manual [28].

pdf-types-uuid.c This file covers the implementation of the three following functions:

• pdf uuid generate

• pdf uuid string

• pdf uuid equal p

Each function calls its equivalent in libuuid, making data types conversion to fit GNU
PDF requirements when necessary. Dynamic memory is also allocated where it is needed.
Some semantic mismatches (e.g. the returning types of the UUID comparison function in
libuuid and the UUID module) get aligned conveniently.

3.3.4 Testing

A tester program was written to check the behaviour of the library at this point. This program
had the following goals:

• To include the GNU PDF Library API and check its availability in the developing
system.

• To use data types and functions of this API.

CHAPTER 3. THE UUID MODULE 47

Hi Albert.

Regarding this, I have the linkage with Tso’s libuuid almost done in

base/pdf-types-uuid.[ch].

Great :)

However, Tso’s libuuid does not provide generation of name-based

UUIDs, as required in doc/gnupdf.texi; it provides time-based and

random-based generation only. So, my question is: is the name-based

generation a must? If it is, I could implement it in libuuid and then

come back to libgnupdf to complete the linkage. If it is not, this

task is almost done :)

We can live without the name-based UUIDs. We will be using time-based

UUIDs most the time, I guess.

Please send your branch with bzr send when you feel it is ready for

review.

By the way, I’m feeling curious about the UUID module: where is it

going to be used?

We will be using it to generate IDs for the PDF documents, as well as in

any occasion where we may need an unique identifier.

Thanks!

Figure 3.16: This mail was the response from the list about convenience of name-based UUIDs.
jemarch exposed that the main use of the UUID module would be generating time-
based UUIDs, so the implementation of name-based UUIDs was discarded at this point.

• To check if UUIDs were correctly generated.

• To check if UUIDs were correctly represented in the screen through its ASCII represen-
tation.

• To check if UUIDs could be compared between them.

The source code of this testing program can be found online [46]. All the goals were
achieved.

3.3.5 First patch

The first patch of the UUID module was submitted to the pdf-develmailing list for discussion
on 03/03/2011. A copy of the file patch-amp-2011-03-03.diff can be found online in
pdf-devel archives [30].

CHAPTER 3. THE UUID MODULE 48

/* UUID data type */

struct pdf_uuid_s

{

uuid_t uuid;

enum pdf_uuid_type_e type;

char ascii_rep[PDF_UUID_CHAR_LENGTH];

};

...

typedef struct pdf_uuid_s *pdf_uuid_t;

Figure 3.17: A first version of the UUID data type. The struct contains the uuid t data type
defined in libuuid, the type that was used to generate it, and a buffer to hold the ASCII
representation of it.

3.3.6 Review

After submitting the patch to the pdf-devel mailing list, some observations were made (see
figures 3.18 and 3.19).

Hi Albert.

Please find attached a proposed patch

bzr send -o ./patch-amp-2011-03-03

implementing the required UUID functionalities.

If the implementation is going to keep the pdf_uuid_s structure in the

heap then I think it would be better to change the name from

pdf_uuid_generate to pdf_uuid_new and to provide a pdf_uuid_destroy

function as well.

Apart from that, it looks good.

Figure 3.18: Comments on first UUID module patch. jemarch pointed that storing the pdf uuid t

type in the heap implies providing both a creation and a destruction function, in order
to allocate and free memory resources when dealing with UUIDs.

All these observations were taken into account to improve the UUID module implemen-
tation, and were also used as a starting point in the second development iteration.

3.4 Second iteration

The goal of this iteration was to improve the code sent in the first patch, focusing in:

• Reducing the UUID data type struct to just hold the UUID data.

CHAPTER 3. THE UUID MODULE 49

Regarding the pdf_uuid_t type, looking at the API of libuuid and the API

we want to export in pdf.h it looks like we don’t need to allocate space

in the heap at all. It would be better to just make pdf_uuid_t big

enough to hold uuid_t and use uuid_unparse to return the ascii

representation of the uuid.

Figure 3.19: Comments on first UUID module patch. The conclusion here is that there is no good
reason to store the UUID data type in the heap, since fields defined in the struct are
not strictly necessary. Storing only the UUID data and using the stack instead of the
heap may lead to less memory consumption.

• Storing the pdf uuid t in the stack, instead of doing so in the heap, to reduce memory
fragmentation.

Some theoretical approaches were studied for achieving these goals [54, 27]. GNU PDF
Library criteria regarding the use of the stack or the heap to store program objects (ADT
instance) is simple [27]:

• Use a pointer to a structure to hold the private data, and then a typedef that defines
a pointer to that structre (just as done in first submitted patch). This is indicated on
complex or big enough data types.

• Use a structure (not a pointer to it) to represent the ADT. This alternative is indicated
in the case where the private data of the ADT is small, allowing the developer to allocate
instances of the ADT in the stack (C structures are passed by value by default when
used as function parameters or return types) and thus avoiding fragmentation of the
heap.

As required by the reviewing process, the code of the UUID module could be improved
by just taking that second approach.

No major changes were considered to be necessary in requirements analysis nor specifi-
cation and design development stages. Hence, improvements were introduced by just going
straight ahead in the implementation phase.

3.4.1 Implementation

No additional changes were needed in the GNU Build System, as the libuuid library was
successfully linked with the GNU PDF Library in the previous iteration.

UUID Module coding

Improvements were made in both pdf-types-uuid.h and pdf-types-uuid.c files.

pdf-types-uuid.h The most significant improvements in the UUID module header were:

1. To reduce the pdf uuid t data type, making it just big enough to hold libuuid ’s uuid t

data type.

2. To change the storing of the pdf uuid t data type from the heap to the stack.

CHAPTER 3. THE UUID MODULE 50

As shown in figure 3.20, these were achieved by:

1. enum pdf uuid type e type and char ascii rep[PDF UUID CHAR LENGTH] fields re-
moval from the pdf uuid s struct definition.

2. Changing the typedef statement that defines the pdf uuid t type to alias pdf uuid s,
instead of holding a pointer to it.

struct pdf_uuid_s

{

uuid_t uuid;

};

...

typedef struct pdf_uuid_s pdf_uuid_t;

Figure 3.20: Second version of the UUID data type. The struct contains the uuid t data type
defined in libuuid only. The pdf uuid t data type just aliases pdf uuid s, instead of
making a pointer to it.

pdf-types-uuid.c Some changes in the UUID module implementation file were needed,
according to data type changes in the header.

First, since the pdf uuid t data type was no longer stored in the heap, there was no need
to allocate dynamic memory using pdf alloc, and thus this call was removed. The only field
of the structure was initialized through the calls to libuuid functions, and then a copy of the
struct was returned.

Second, the ASCII representation of the UUID was no longer stored in the pdf uuid t

data type. This meant that this string initialization could not be done in pdf uuid t anymore,
and thus the call to uuid unparse was removed from pdf uuid generate too.

Third, and according with new behaviour of pdf uuid generate, unparsing of the UUID
was passed to pdf uuid string, which is more reasonable since not all generated UUIDs
may require an ASCII representation. But this lead to a new problem: where should the
ASCII string (char ascii rep[PDF UUID CHAR LENGTH]) be stored now? The field inside the
pdf uuid t was not available anymore. Allocating static memory inside pdf uuid generate

should not work and, in fact, it did not: as being a local variable, its value is lost when the
execution goes outside the function’s scope.

Going deep inside this issue [52], three possible solutions were found to be capable of
solving the problem, with pros and cons:

1. Allocating dynamic memory for the string. This would easily solve the problem,
since a call to pdf alloc would return a pointer to a heap region (out of the execution
stack) big enough to hold the ASCII representation. This pointer could be returned to
the user, and would still be valid although the execution scope changed. However, the
heap is being used again, and hence memory fragmentation would increase using this
solution.

CHAPTER 3. THE UUID MODULE 51

2. Making the string static. This avoids the array to disappear when pdf uuid string

returns, so the poi nter is still valid by the time the caller uses it. Each time the function
is called, it re-uses the same array and returns the same pointer. This solution works
well, but it has some difficulties that will be discussed later.

3. Let the user allocate an static array big enough, and call pdf uuid string with it
as a parameter. This, obviously, would change the form of the pdf uuid string header
defined in the specification. It also requires the user to know the char array size to
allocate, which is something uncomfortable.

First and last options were discarded in this iteration. The first option, allocating dynamic
memory, was found again to increase memory fragmentation (the char array hold just 46 bytes,
which is a very little portion of data to use the heap). The last option had two consequences.
First, it required to change the specification’s function header, which was something avoided
as much as possible. Second, it implied the user to know how much memory is needed to
store an ASCII representation of a UUID, which was found unclear and error prone. All these
lead to choose the second option, making the char array static, and this was how finally it
was coded in the second proposal patch.

3.4.2 Testing

The same tools of the first iteration were used to check the improvements made in this one.
All functionalities of the UUID module were working successufully whith the new changes.

3.4.3 Second patch

The second patch of the UUID module was submitted to the pdf-devel mailing list for
discussion on 15/03/2011. A copy of the file patch-amp-2011-03-15.diff can be found
online in pdf-devel archives [30].

3.4.4 Review

With the usual procedure, the patch was reviewed by the GNU PDF developing community.
As expected, the decisions involving the ASCII storing mechanics recieved some observations
(see figure 3.21).

The two remaining choices regarding this issue (allocating dynamic memory, and making
the user to allocate previsouly a static char buffer) were exposed in reply. An interesting
discussion began in the pdf-devel mailing list and channel #pdf at irc.freenode.net,
mainly with users jemarch and aleksander m.

As jemarch pointed out, the main disadvantage of using the static modifier on the
ASCII buffer was that it made the call to pdf uuid string non-reentrant [67]. This means
that concurrent calls to pdf uuid string may overwrite the UUID ASCII data before the
programmer has the chance to use it. The typical example exposed was using simple inline
calls like these:

printf("The ASCII value of first UUID is %s,

while the value of the second is %s\n",

pdf_uuid_string (uuid1),

pdf_uuid_string (uuid2));

CHAPTER 3. THE UUID MODULE 52

Hi Albert.

Please find attached another patch with your suggested modifications

(pdf_uuid_t is no longer allocated in the heap).

Looks good.

Just one question. In the function pdf_uuid_string:

+const char *

+pdf_uuid_string (pdf_uuid_t uuid)

+{

+ static char ascii_rep[PDF_UUID_CHAR_LENGTH];

+

+ uuid_unparse (uuid.uuid, ascii_rep);

+

+ return ascii_rep;

+}

Is there a specific reason to use the static buffer ’ascii_rep’ instead

of allocating a new string? That makes pdf_uuid_string non-reentrant.

Figure 3.21: Comments on second UUID module patch. Using the static modifier to return always
the same array pointer had some problems too.

It is obvious that these inline calls are executed sequentially. The first call to the function
pdf uuid string writes in the static buffer the ASCII value of uuid1; then, the second
call does so for uuid2, overwriting the value previously written of uuid1, since the static

buffer is the same for all pdf uuid string calls. As these calls return always the same
memory address, the strings that printf outputs in stdout are exactly the same for both
UUIDs, and its value is the ASCII data of uuid2 (which wrote the static buffer for the last
time). This behaviour is contrary to what is expected by the programmer, and was considered
unacceptable.

3.5 Third iteration

The goal of this iteration was to change the design of the pdf uuid string function to fit
the reviewing of the pdf-devel mailing list. As stated above, the implementation of the
character array holding the ASCII representation of a UUID presented three options:

1. Store it allocating (via pdf allocate) heap space.

2. Store it in a static defined array.

3. Let the user declare a buffer in its working scope, and pass a reference to it as a
pdf uuid string parameter.

CHAPTER 3. THE UUID MODULE 53

First and second options were discarded by their cons: heap allocating causes memory
fragmentation (and its specially a bad option for a little –46 bytes– piece of data), while
static arrays cause the function to be non-reentrant (discussed above, see section 3.4.4).
These issues were considered unacceptable, and then the last option was the community
choice.

The third option has some consequences for the programmer using the GNU PDF Library
and the UUID module: in the first proposal the ASCII representation was stored internally
in a buffer inside the pdf uuid t data type; now it is a responsibility of the programmer to
initialize conveniently a buffer in its local scope and call pdf uuid string with a reference to
this buffer. Efficiency is the main advantage of this choice, since it requires less resources by
the GNU PDF Library. On the other hand, library users have now to initialize their ASCII
buffers appropriatelly, and then call pdf uuid string.

3.5.1 Implementation

As well as in the second iteration, no additional changes were needed in the GNU Build
System or the rest of the library configuration.

UUID Module coding

To change the implementation of the pdf uuid string and the buffer it uses, some improve-
ments had to be made in both pdf-types-uuid.h and pdf-types-uuid.c.

pdf-types-uuid.h Changes in the UUID module header were totally related to the function
pdf uuid string and the storing of the UUID ASCII buffer. Two issues had to be fixed here:
first, the function header should require extra parameters to specify a pointer to a previously
initialized buffer (see figure 3.22). Second, a private constant should define the minimum
length of such a buffer, to guarantee that the pointer passed to pdf uuid string is long
enough to hold an ASCII representation of a UUID (see figure 3.23).

/* Printed ASCII representation of an UUID */

pdf_char_t * pdf_uuid_string (pdf_uuid_t uuid,

pdf_char_t * buffer,

pdf_size_t buffer_size);

Figure 3.22: Detail of the extra parameters needed in pdf uuid string. First parameter was pre-
vioiusly included, and requires a UUID instance. Second parameter is a pointer to a
previously initialized buffer. Finally, third parameter requires the user to specify the
size of the buffer referenced in the second one.

#define PDF_UUID_SIZE 46

Figure 3.23: Detail of the UUID ASCII size constant statement. This is the recommended minimum
number of octets to hold an entire representation of a UUID [28].

It is important to note that the constant described in figure 3.23 is private, and thus it
is not provided to programmers through the API exported during the build process. Hence,

CHAPTER 3. THE UUID MODULE 54

the requirement to pass a buffer having a length greater or equal than this constant’s value
was conveniently described in the GNU PDF Library documentation file (gnupdf.texi).

All documentation contributions were also included in the submitted patch (available
online [30]).

pdf-types-uuid.c The implementation to achieve the goals for this iteration was quite
simple. First, the constant previously defined in the header pdf-types-uuid.h was used in
the very first lines of the function to verify if the passed buffer had enough length to hold a
UUID ASCII string. If it has not, then the NULL pointer is returned. Then, the pointer to the
buffer previously initialized by the user has to be passed to libuuid ’s uuid unparse to hold
the ASCII representation.

Some issues raised during the coding of this file. The most remarkable follow:

1. First modifications of the UUID module header presented an ambiguous parameter
specification regarding the buffer pointer that has to be passed to pdf uuid string.
This led to some pointer mess. Specifically, char array pointers were being passed to
pdf uuid string without pre-allocating space at all. This obviously caused segmenta-
tion faults when trying to get ASCII strings for UUIDs.

2. Since it was syntactically correct, some buffers were passed to pdf uuid string pre-
allocating less space than needed (i.e. less than 46 octets). This caused buffer overflows,
and thus stack corruptions. Since undefined behaviour happens when the stack is corr-
puted with a buffer overflow. The C language has no internal mechanisms to avoid buffer
overflow. What makes this sort of error difficult to debug is that it casuses undefined
behaviour. Undefined behavior means behavior, upon use of a nonportable or erroneous
program construct or of erroneous data, for which the International Standard imposes
no requirements. This means that possible undefined behavior ranges from ignoring
the situation completely with unpredictable results, to behaving during translation or
program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution
(with the issuance of a diagnostic message). This problem, then, was certainly difficult
to debug. Tools like Valgrind [8] and others [57] were used to determine what was going
wrong.

3. The returning type for the pdf uuid string function was first char. The community
asked to change this to pdf char t, since the library has its own data type for managing
characters (and the rest of basic data types typically provided by the language) to ensure
proper portability.

The first two issues were finally solved introducing a third parameter to the function
pdf uuid string, asking the caller to specify the exact size of the buffer indicated in the
second parameter. Proceeding this way, there was no possibility of overflowing this buffer:
if the user specifies a size less than the PDF UUID SIZE constant, then the NULL pointer is
returned. This way, when the parameter is invalid the result returned by the function is
invalid too. The user is required to read the requirements for the function and to initialize
the buffer appropriatelly if he wants to get a correct ASCII representation of his or her UUIDs.

CHAPTER 3. THE UUID MODULE 55

3.5.2 Testing

The testing program of previous patches was conveniently modified to fit with new function
headers. All functionalities continued to work properly, and new ones, such as the thread-safe
version of pdf uuid string, ran successfully.

3.5.3 Third patch

The third patch of the UUID module was submitted to the pdf-devel mailing list for dis-
cussion on 24/03/2011. A copy of the file patch-amp-2011-03-24.diff can be found online
in pdf-devel archives [30].

3.5.4 Review

The third patch passed the reviewing process, and was applied to the main branch of the GNU
PDF Library (see figure 3.24). This means that further updates and downloads of the library
source code will include the UUID module implementation, freely available to everyone who
needs to use it or wants to improve it.

Hi Albert.

Ok, issues fixed and some improvements added (now a pdf_char_t is

returned by pdf_uuid_string to allow inline calls; added a check for

the appropriate buffer size; improved pdf_uuid_generate &

pdf_uuid_compare code; updated gnupdf.texi)

Applied. Thanks for the patch.

By definition it is not easy to predict what a newly generated uuid will

be, but may be useful to have some simple tests running the generation

function and checking the structure of the printed representation.

Figure 3.24: Third patch acceptance notification from jemarch. The patch was applied to the main
branch of the GNU PDF Library, and thus making it freely available for everybody to
use and improve.

As the response remarks too, some unit tests integrated in the GNU PDF Library testing
mechanism may be useful, and would make the UUID module more consistent.

3.6 Fourth iteration

This iteration consisted of developing a series of unit tests for the UUID module within the
GNU PDF Library testing framework. The goals for this iteration were:

1. To learn how the GNU PDF Library testing infrastructure works.

2. To provide tests checking the functionalities provided by the UUID module.

CHAPTER 3. THE UUID MODULE 56

The following section explains how the GNU PDF Library testing infrastructure works,
and thus tries to achieve the first goal. Unit tests and test cases designed for this iteration
are then explained.

3.6.1 GNU PDF Library Testing Infrastructure

The GNU PDF Library Hackers Guide [27] explains how the testing environment for the
library works.

The development group is following a bottom-up testing strategy. The verification of the
library is performed in the following steps (see figure 3.25):

Figure 3.25: Library testing strategy. The GNU PDF Library is tested under several scopes.

• Unit testing is performed in order to verify the low-level modules of the library.

• Subsystem testing is performed in order to verify the combination of several subsys-
tems, i.e. to test each library layer.

• System testing is performed in order to verify the whole system. i.e. the GNU PDF
Library.

The library uses libcheck [7] to implement the testing infrastructure. A testing report is
automatically updated daily from the main branch, launching all implemented tests. This
report is available online [29].

Unit tests are organized as shown in figure 3.26. Test suites are used to collect unit tests
for a given module. In turn each test suite contain a collection of test cases. Each test case
identifies a function implemented in the module. Several tests can then be defined to test the
function capabilities.

As shown in figure 3.27, the unit tests are stored in the torture/unit/ directory.

CHAPTER 3. THE UUID MODULE 57

Figure 3.26: Unit testing architecture.

3.6.2 Testing

This section describes the tests written for each UUID module function. The source code of
all tests implemented is avaiable online in pdf-devel archives [30].

pdf-types-uuid-generate.c

This file contains tests against the pdf uuid generate function, which generates UUIDs for
the library. The goal is to generate some UUIDs in a unique test, since the generation cannot
fail in the library context. The parameter value cannot be invalid during execution, since it is
checked at compile time to have one of the allowed UUID types. In the worst case, it may seg-
fault for an external cause (such total memory consumption), in which case the kernel may kill
the process. In that chase, the libcheck library informs correctly about what caused the crash.

Test case: pdf uuid generate

1. pdf uuid generate 001

• Test: pdf uuid generate 001

• Description: Generate some UUIDs of supported types.

• Success condition: Generated UUIDs should be ok.

pdf-types-uuid-string.c

This file contains tests against the pdf uuid string function, which returns an ASCII rep-
resentation of a given UUID. The goal is to check if everything goes well in the following
environments:

• The external buffer holding the ASCII string is allocated in dynamic memory (heap)

CHAPTER 3. THE UUID MODULE 58

Figure 3.27: Unit testing sources.

• The external buffer holding the ASCII string is allocated in static memory (stack)

• The external buffer holding the ASCII string is very big

• The internal structure of the generated ASCII string meets the UUID representation
standard

The test case briefing follows.

Test case: pdf uuid string

1. pdf uuid string 001

• Test: pdf uuid string 001

• Description: Generate an UUID ascii representation in heap.

• Success condition: Generated UUID ascii should be ok.

2. pdf uuid string 002

CHAPTER 3. THE UUID MODULE 59

• Test: pdf uuid string 002

• Description: Generate an UUID ascii representation in stack.

• Success condition: Generated UUID ascii should be ok.

3. pdf uuid string 003

• Test: pdf uuid string 003

• Description: Generate an UUID ascii representation, buffer size greater than
required.

• Success condition: The buffer to store the UUID string is long enough. The
conversion should pass.

4. pdf uuid string 004

• Test: pdf uuid string 004

• Description: Cheks for appropriate structure of UUID ascii.

• Success condition: The ascii structure is 00000000-0000-0000-0000-000000000000,
where 0s match hexadecimal digits.

pdf-types-uuid-equal-p.c

This file contains tests against the pdf uuid equal p function, which compares two given
UUIDs and determines if they are equal or not. The goal is to generate a simple pair of tests
checking one of the most important UUID properties: if two nearly generated UUIDs collide
or not.

Test case: pdf uuid equal p

1. pdf uuid equal p 001

• Test: pdf uuid equal p 001

• Description: Checks if two time-based UUIDs are equal.

• Success condition: Both time-based UUIDs are different.

2. pdf uuid equal p 002

• Test: pdf uuid equal p 002

• Description: Checks if two random-based UUIDs are equal.

• Success condition: Both random-based UUIDs are different.

3.6.3 Testing environment execution

The build system allows to compile and execute only the desired tests (for example, one test
suite alone executing tests for a unique library module). Issuing the following command from
the directory source root:

$ make check MODULE=types

CHAPTER 3. THE UUID MODULE 60

Compiles and executes the test framework for the Basic Types module only, which makes
sense here because, at the implementation moment, the only tests performed in this module
were those belonging to the UUID submodule. The results were the following:

Running suite(s): types

100%: Checks: 7, Failures: 0, Errors: 0

PASS: runtests.sh

3.6.4 Fourth patch

The fourth patch of the UUID module was submitted to the pdf-devel mailing list for
discussion on 30/05/2011. A copy of the file patch-amp-2011-05-30.diff can be found
online in pdf-devel archives [30].

3.6.5 Review

The fourth patch passed the reviewing process on 19/06/2011. Provided tests are executed
automatically among the rest of the testing infrastructure during automatic reports [29].

Chapter 4

PDF standards requirements

One of the most important desired characteristics for the GNU PDF Library, as discussed in
chapter 2, is to be complete. Completeness means, in this project, supporting the full PDF
specifications and standards as published by Adobe and the ISO, respectivelly.

Conformance with official PDF specifications and standards is one of the main goals
of the GNU PDF project. This goal distinguishes the GNU PDF Library from the rest of
libraries and programs that bring PDF technology to the users (excepting those from Adobe).
These libraries and programs are not specificallly written to support these specifications and
standards; they go straight ahead to allow users to read and write PDF documents. Moreover,
the GNU PDF Library wants to be a certified library, becoming in the mid/long term a true
and free alternative to Adobe SDK.

The chapter is organized as follows. First, an introduction describes how PDF standards
are involved in several layers of the GNU PDF Library. Second, a glossary of important
concepts for this chapter is listed and explained. Third, an analysis of the set of all available
PDF standards is performed. Fourth, a comparison of the requirements between some of
these standards is described. And finally, the importance of a conformance module is argued,
and a conformance API consisting of submodules, data types and functions is proposed.

4.1 Introduction

Since 1993, Adobe Systems Inc. has released a number of specifications for the PDF format.
These specifications contain a set of requirements that define the format itself, and a deep
study of them (see section 4.4) shows that these requirements belong usually to one of the
following groups:

1. Syntactic requirements. These requirements describe the formal PDF language, thus
establishing implicitly concrete syntax rules (i.e. a PDF grammar). This allows a
criterion to say if a PDF file is valid or invalid, correct or incorrect, from a syntactic
point of view.

2. Semantic requirements. Though being syntactically correct (i.e. belonging to the
language recognized by the PDF grammar), a PDF file may contain some unacceptable
contents. For instance, a PDF objct may reference another PDF object which does
not exist in the document. Or a PDF stream object may include a compressed image,
without specifying encode/decode parameters appropriately.

61

CHAPTER 4. PDF STANDARDS REQUIREMENTS 62

3. Reader requirements. Programs that read PDF files may have additional requirements
on how they treat values or display page contents.

4. Writer requirements. Programs that write PDF files may have additional requirements
on how they create or update components of PDF files.

As shown, these requirements differ from those expected from, for instance, a programming
language. While some semantic errors may be comparable between PDF and programming
languages (an indirect reference to a non-existing PDF object is something similar to a null
pointer exception) a lot of semantic requirements are related to media (fonts, image codecs,
and so on).

Moreover, the PDF format is too extensive to many daily tasks. It includes lots of fea-
tures that most users rarely may need. This reason led the International Organization for
Standardization (ISO) to promote PDF standards that use a subset of the complete feature
set to achieve the most common goals. This PDF subsets are described in section 4.3.

The requirements gathered by these specifications and standards are decisive in the lexical,
syntactical and semantical analysis of PDF files. This means that a lexical processor (i.e. a
tokeniser), a syntactic analyser (i.e. a parser) and a semantic engine are subject to these
requirements contents.

Several documents concerning PDF specifications were previously studied in GNU PDF,
specially ISO 32000-1:2008 [2], to appropriately implement a number of modules of the base
layer. In addition, a tokeniser was already working when the development of this FDP
began. The study of standards, specifications and conformance had to be done before making
any effort on syntactic or semantic analysis of PDF files. Parsing PDF files was considered a
major milestone by the GNU PDF project.

4.2 Concept glossary

This chapter makes an effort to describe the PDF technology analyzing the current state of
the art in PDF specifications, standards and other documentation. Before going deep into
it, it has been considered necessary to present a list of concepts and terms that will appear
along the following sections.

Definition 1. Standard. The term standard is used in this document to refer to an official
and published document by the ISO.

Definition 2. Specification. Adobe has released over the years a number of documents
containing a full specification of the different base versions of PDF (from PDF 1.1 to PDF
1.7). This document refers to these documents as PDF specifications. ISO 32000-1:2008 [2]
is the only overlapping case between a standard and a specification. On one hand, Adobe has
its own specification document and, on the other hand, the ISO has released its own standard.
However, both documents are totally aligned.

Definition 3. Subset. As presented in section 4.3, the PDF specifications are restricted by
some standards to achieve specific goals (i.e. generating PDF for long term preservation).
The restrictions in these standards conform a PDF subset. PDF/A, PDF/X or PDF/E are
typical examples of these subsets. Usually there is not a one-on-one correspondence between a
subset and a standard: sometimes, more than one standard is used to define a single subset.
However, given a standard, it defines only one subset restricting only one PDF specification.

CHAPTER 4. PDF STANDARDS REQUIREMENTS 63

Definition 4. Conformance level. Alothough a standard refers to only one subset and
restricts only one PDF specification, it may define several conformance levels. For exam-
ple, ISO 19005-1:2005 restricts PDF 1.4 to define two conformance levels: PDF/A-1a and
PDF/A-1b. Some restrictions apply to both, while some others apply to only one of them.
Hence, it is not correct to say that a PDF file is PDF/A conformant; a PDF file can only be
confomant with one conformance level, and thus it should be said that the file is PDF/A-1a
or PDF/A-1b conformant.

Definition 5. Requirement. A requirement is a singular documented need of what a par-
ticular product or service should be or perform [68]. PDF requirements are described in
paragraphs, inside subsections and sections of standards and specifications.

Definition 6. Restriction. In this document, the term restriction is used in the scope of
PDF standards that reduce the whole set of PDF capabilities described in PDF specifications.
Hence, a restriction is a special type of requirement, that appears in PDF standards and helps
to define a PDF subset by disallowing or forbidding features present in the global specification.

Definition 7. Capability. This term is used in this document as a synonym for feature or
functionality. Capabilities describe precisely what a given PDF version or subset can do, like
displaying video on annotations or using JavaScript to validate forms.

4.3 PDF standards

The whole functionality set provided by the PDF format is contained in the PDF 1.7 specifica-
tion (ISO 32000-1:2008 [2]). However, some of these functionalities are not strictly necessary
in all real world scenarios. For example, PDF 1.7 specifies how a PDF file may contain movies,
sounds and other media; but these capabilities make no sense for, let’s say, a storekeeper who
wants to store all the invoices of his or her business in a digital format (this saves trees, energy,
and makes data more persistent!). Thus, availability of PDF features varies depending on the
purpose the PDF file exists for.

Specialized subsets of PDF gather those purpose-based specific requirements. Some of
them have been standardized, which means that an official published ISO standard describes
what the subset stands for and its peculiarities; some other, however, are still in a standard-
ization process.

Through years, many complete PDF specifications have been released, from 1.0 (1993)
to 1.7 (though not all of them have been standardized). On one hand, each subset of PDF
is based on a whole PDF specification (for example, PDF/A is based on PDF 1.4). On the
other hand, PDF 1.7, which is the most recent full standardized specification of PDF, includes
all of the functionality previously documented in PDF specifications for versions 1.0 through
1.6. Hence, PDF 1.7 (documented in ISO 32000-1:2008) is taken in this article as a basis to
compare all specialized subsets of PDF against it. This means that, despite of being based
on PDF 1.4, requirements of PDF/A are compared here with ISO 32000-1:2008 specification.

Note, additionally, that Adobe applies some extensions to ISO 32000-1:2008 which usually
are embraced in the name PDF 1.7. All references to PDF 1.7 in this article exclude these
extensions. Hence, note that all references to PDF 1.7 in this article refer exclusively to the
specification contained in ISO 32000-1:2008.

CHAPTER 4. PDF STANDARDS REQUIREMENTS 64

4.3.1 Standardized subsets of PDF

This subsection describes the current state of the art in PDF standardized subsets.

PDF/X

PDF/X (standardized 2001) stands for PDF for eXchange. It offers a specification of PDF
aimed at printing, graphic arts and prepress digital data[66].

PDF/X is formalized in ISO 15929 and ISO 15930. However, ISO 15929 was withdrawn in
2008 and is no longer an official standard for PDF/X. ISO 15930 defines different subtypes
or conformance levels for PDF/X. They are described in table 4.1[65].

Specific
subtype

Standard Features allowed Based
on
PDF

PDF/X-
1a:2001

ISO 15930-1:2001 Blind exchange in CMYK; Spot Col-
ors

1.4

PDF/X-2 ISO 15930-2 Never published N/A
PDF/X-
3:2002

ISO 15930-3:2002 CMYK; Spot Calibrated (managed)
RGB CIELAB, with ICC Profile

1.3

PDF/X-
1a:2003

ISO 15930-4:2003 Revision of PDF/X-1a:2001 1.4

PDF/X-2 ISO 15930-5 Extension of PDF/X-3; Allows OPI-
like data to be included

N/A

PDF/X-
3:2003

ISO 15930-6:2003 Revision of PDF/X-3:2002 1.4

PDF/X-4 ISO 15930-7:2008
and ISO 15930-
7:2010 (minor
corrections and
improvements)

Color-managed, CMYK, grayscale,
RGB, Spot color data supported;
Transparency; There is a second
level conformance (PDF/X-4p) if
ICC Profile is externally supplied

1.6

PDF/X-5 ISO 15930-8:2008
and ISO 15930-
8:2010 (minor
corrections and
improvements)

Conformance level PDF/X-5g (ex-
tension of PDF/X-4): enables use of
external graphical content; Confor-
mance level PDF/X-5pg (extension
of PDF/X-4p): enables use of exter-
nal graphical content in conjunction
with a reference to an external ICC
Profile Conformance level PDF/X-
5n (extension of PDF/X-4p): en-
ables externally supplied ICC Pro-
file to use a colorspace different than
grayscale, RGB or CMYK

1.6

Table 4.1: The ISO 15930 (PDF/X) series and conformance levels.

CHAPTER 4. PDF STANDARDS REQUIREMENTS 65

PDF/A

PDF/A (standardized 2005) stands for PDF for Archive. It offers a specification of PDF
aimed at long term preservation of documents.

PDF/A is formalized in ISO 19005 series [11]. ISO 19005 defines different subtypes or
levels of conformance for PDF/A. They are described in table 4.2.

Specific
subtype

Standard Features allowed Based
on
PDF

PDF/A-1 ISO 19005-1:2005 Conformance level PDF/A-1a: PDF
file must meet all requirements de-
scribed in ISO 19005 Conformance
level PDF/A-1b: PDF file must
meet all requirements described in
ISO 19005, excepting Unicode char-
acter maps requirements and logical
structure requirements

1.4

Table 4.2: The ISO 19005 (PDF/A) series and conformance levels.

PDF/E

PDF/E (standardized 2008) stands for PDF for Engineering. The standard defines a format
for the creation of documents used in engineering workflows. It is designed to be an open and
neutral exchange format for engineering and technical documentation [63, 1].

PDF/E is formalized in standard ISO 24517-1:2008 [12]. Key benefits of PDF/E include:

• Reduces requirements for expensive and proprietary software.

• Lower storage and exchange costs, with respect to paper.

• Trustworthy exchange across multiple applications and platforms.

• Self-contained.

• Cost-effective and accurate means of capturing markups.

• Developed and maintained by the PDF/E ISO committee.

PDF/VT

PDF/VT (standardized 2010) stands for PDF for exchange of Variable data and Transactional
printing. It defines the use of PDF as an exchange format optimized for Variable Data
Printing (VDP) and transactional printing [64]. VDP is a form of on-demand printing in
which elements such as text, graphics and images may be changed from one printed piece to
the next, without stopping or slowing down the printing process and using information from
a database or external files (i.e. dynamic contents).

PDF/VT is formalized in standard ISO 16612-2:2010 [13].

CHAPTER 4. PDF STANDARDS REQUIREMENTS 66

4.3.2 Non-standardized subsets of PDF

PDF/UA

PDF/UA stands for PDF for Universal Accessibility. The goal of the development of this
subset is to ensure accessibility for people that use assistive technology, such as screen readers
for users who are blind.

Although a standard does not exist yet for this subset, a draft is on the way (ISO/DIS
14289-1 [14]).

PDF/H

PDF/H stands for PDF for Healthcare. The goal of the development of this subset is to
determine a format or container for transfer and storage of health data.

PDF/H is not a standard or proposed standard, but only a best practices guide (BPG)
for use with existing standards and other technologies. PDF/H BPG is based on PDF 1.6
[66].

4.4 PDF/A vs PDF 1.4 requirements

This section describes the differences between ISO 19005-1:2005 [11] (from now, referred as
PDF/A as well), which describes the PDF/A-1a and PDF/A-1b conformance levels, and the
non-standardized document PDF Reference, Third edition (from now, referred as PDF 1.4 as
well), from Adobe, which describes the PDF 1.4 format, in terms of requirements alignment.

Constraints described in PDF/A restrict the overall capabilities offered by PDF 1.4, in or-
der to ensure that PDF/A compliant files contain features that are stricly needed for archiving
purposes only.

Having ISO 19005-1:2005 on one hand, and the PDF Reference Third Edition (PDF 1.4)
on the other, requirements alignment between both was studied. For doing so, the sectioning
of the first document was considered in first place. Then, for each requirement in a given
section, its location in the PDF Reference for PDF 1.4 was searched. Once found, both
requirement definitions were compared. As a result, it was stated if both requirements were
required, optional, recommended or any other alignment status. If it proceed, an extract of
the exact phrase or sentence producing this alignment status was copied.

The results of this comparison can be found in two places. First, as an appendix of this
report (see appendix C). And second, as a contribution article to the PDF Knowledge base.
The PDF Knowledge base is an effort of the GNU PDF project to produce free documentation
about the PDF format. The contributed article, which features a comparison table that
summarizes the work of this section, can be found online [5].

The following subsections are equivalent to those described in the ISO 19005-1:2005 doc-
ument [11]. In each subsection, a summary of the comparison work performed is presented,
with additional comments when necessary.

Note that only non-aligned requirements are depicted here. This should not happen
because PDF subset standards shall constraint whole PDF specifications (e.g. PDF/A vs PDF
1.4). This is not true for all requirements contained in PDF subset standards. Often, PDF
subset standards contain requirements that are totally aligned with the PDF specification;
sometimes, the difference is just a matter of semantics, as both requirements mean exactly the
same (e.g concepts such as end-of-line character and new line are confusingly merged). Thus,

CHAPTER 4. PDF STANDARDS REQUIREMENTS 67

PDF subset standards can not, at least formally, be considered as a set of pure restrictions,
since they contain both restrictions and redundant, repeated or obvious requirements. These
last are not discused in this report.

The following subsections contain briefings, descriptions and overall conclusions about the
comparsion performed between both sets of requirements. Please, for a more formal, complete
and traceable analysis see appendix C or visit the GNU PDF Knowledge base [5].

4.4.1 File structure

A PDF file has a well defined structure. Essentially, and without going deep into details,
it consists of a header, a body and a cross-reference table. The header is a simple comment
(or comments) with information about the PDF version or the encoding. The body contains
a (usually large) collection of all PDF objects in which the PDF file consists of. Finally,
the cross-reference table is a table with offset locations of each PDF object, and it allows to
quickly jump between them. However, PDF/A (and rarely any PDF subset) does not impose
too much restrictions on this structure, neither the internal tree structure of a document
(which relies on the body), and neither does it over PDF general syntax.

The only syntactic requirement for a PDF 1.4 compliant file to be a PDF/A compliant file
too, is to have a % character followed by at least four characters, each of whose encoded byte
values shall have a decimal value greater than 127. This is to ensure that conforming readers
will catch binary content. A lot of extra syntactic requirements are specified too in PDF/A,
but those are totally aligned with PDF 1.4 base requirements. Redundancy or overfitting
requirements is a very common situation in ISO standards that impose restrictions on a base
specification, which is the case.

However, PDF/A imposes several semantic requirements on PDF 1.4 files. For instance,
the LZWDecode filter is not permitted in neither PDF/A-1a or PDF/A-1b compliant files,
because LZW compression algorithm is subject to intellectual property constraints. But,
apart from this one, most of the semantic requirements of this section come from the essence
of PDF/A: archiving purposes. For example, a stream object dictionary can not contain
the F, FFilter or FDecodeParams keys. These keys are used to point to document content
external to the file. The explicit prohibition of these keys has the implicit effect of disallowing
external content that can create external dependencies and complicate preservation efforts.
Depending on external files goes against archiving, and thus pointers to external files are
disallowed in PDF/A conformant files.

4.4.2 Graphics

Dealing with graphics is always a large part in PDF specifications, and PDF/A restricts many
aspects of it. A number of extra requirements is there derived from the following statement: if
a user creates a PDF/A conformant file, he or she wants to ensure it for long time preservation.
Applying this to graphics, the requirement evolves into something like: if the document has
to be preserved for a long time, then colours, images and objects have to be specified in a way
that their future appearance (rendering) is as close as possible to their present appearance
(ISO 19005-1:2005 calls this a predictable rendering).

This implies several semantic and reader specific restricions. For example, the colour
characteristics of the device where general PDF 1.4 files are rendered are specified by means
of a concrete dictionary, called OutputIntent. This dictionary has to be a PDF/A Out-

CHAPTER 4. PDF STANDARDS REQUIREMENTS 68

putIntent, which is a PDF/A restricted OutputIntent that allows to represent colour spaces
in a device-independent manner (this can also be achieved using device-independent colour
spaces). This enables predictable colour rendering based on a colorimetric definition and
without reliance on assumptions or information external to the conforming file. It also pro-
vides a mechanism whereby a colorimetric definition can be associated with device-dependent
colour data.

Other restrictions apply to images. For instance, the Interpolate key must be false
if present, because reader interpolation may vary along implementations or time, and thus
render of the PDF/A file may differ from one reader to another.

Additionally, reference XObjects and PostScript XObjects are forbidden in PDF/A (they
can appear in PDF 1.4). The formers refer to arbitrary document content in external PDF
files, creating external dependencies that complicate preservation efforts. The latters contain
arbitrary executable PostScript code streams that have the potential to interfere with reliable
and predictable rendering.

4.4.3 Fonts

The intent of the requirements in this subsection is to ensure that future rendering of the
textual content of a conforming PDF/A file matches, on a glyph by glyph basis, the static
appearance of the file as originally created, and to allow the recovery of semantic properties
for each character of the textual content.

A font is represented in PDF as a dictionary specifying the type of font, its PostScript
name, its encoding, and information that can be used to provide a substitute when the font
program is not available. The font program itself must be embedded as a stream object in a
PDF/A file, with a solely expection.

All PDF/A conforming readers must use the embedded fonts, rather than other locally
resident, substituted or simulated fonts, for rendering. This guarantees that fonts will look
like the originals did.

4.4.4 Transparency

PDF 1.4 defines a transparency model. Under the transparent imaging model, all of the
objects on a page can potentially contribute to the result. Objects at a given point can be
thought of as forming a transparency stack (or just stack for short), arranged from bottom to
top in the order in which they are specified. The color of the page at each point is determined
by combining the colors of all enclosing objects in the stack according to compositing rules
defined by the transparency model. This is something similar to what is achieved with blending
functions in 3D graphic APIs (like OpenGL).

PDF/A forbids the use of transparency at all. All (semantic) requirements list keys and
values that are not allowed to appear in XObject or ExtGState dictionaries. The value
Transparency is forbidden for may keys, and possible alpha values, which usually indicate a
transparency factor in common colour spaces, are forced to have a value of 1.0.

Transparency may seriously affect further rendering of PDF/A compliant files. However,
other statically based techiques, like including pre-rendered data or flattened vector objects,
are permitted.

CHAPTER 4. PDF STANDARDS REQUIREMENTS 69

4.4.5 Annotations

An annotation associates an object such as a note, sound, or movie with a location on a
page of a PDF document, or provides a means of interacting with the user via the mouse and
keyboard. PDF includes a wide variety of standard annotation types.

Displaying the annotation contents (hold in the Contents key of the annotation dictio-
nary) is performed by the reader. PDF 1.4 defines a variety of contents that can be hold in
annotations, such text, movies or sounds. PDF/A disallows its usage, because support for
multmedia content is out of the scope of the standard.

Additionally, some flags described in PDF 1.4 that manage visibility of annotations are
restricted in PDF/A. The intention is to prevent the use of annotations that are hidden or
that are viewable but not printable.

4.4.6 Actions

Some PDF objects can specify an action for the viewer application to perform, such as
launching an application, playing a sound, or changing an annotation’s appearance state.
The most common usage of actions is jumping to a destination in the document, e.g. going
to a specific section from the table of contents, centering view in a page footer after clicking
a footnote reference, and so on. But actions can also be used, for instance, for launching a
web browser and load an URL that the user has selected in the document.

Since multimedia is not supported by PDF/A, the Launch, Sound, Movie, ResetForm,
ImportData and JavaScript actions are not permitted. Launch allows opening external appli-
cations. The ResetForm action changes the rendered appearance of a form. The ImportData
action imports form data from an external file. JavaScript actions permit an arbitrary
executable code that has the potential to interfere with reliable and predictable rendering.

The only supported named actions are NextPage, PrevPage, FirstPage, and LastPage,
and the appropriate associated behaviour for each must be performed by the conforming
reader.

4.4.7 Metadata

A PDF document may include general information such as the document’s title, author,
and creation and modification dates. Such global information about the document itself (as
opposed to its content or structure) is called metadata, and is intended to assist in cataloguing
and searching for documents in external databases. A document’s metadata may also be
added or changed by users or plug-in extensions.

Metadata is essential for effective management of a file throughout its life cycle. A
file depends on metadata for identification and description, as well as for describing ap-
propriate technical and administrative matters. As a result, writers of conforming files
may have to comply with various domain-specific metadata requirements defined external to
[ISO19005-1:2005]. These metadata are almost gathered in the XMP specification [59, 3].

4.4.8 Logical structure

ISO 19005-1:2005 establishes two levels of conformance: PDF/A Level A (PDF/A-1a) and
PDF/A Level B (PDF/A-1b). PDF/A-1a is even more restrictive than PDF/A-1b. Require-

CHAPTER 4. PDF STANDARDS REQUIREMENTS 70

ments in this subsection are applicable only for files meeting PDF/A Level A conformance.
For Level B conformance these requirements can be ignored.

The intent of the requirements in this subsection is to ensure the recovery of the textual
content of a conforming file as a sequence of words defined in the natural reading order of
the language in which they are written. Similarly, it ensures that the individual characters
of each word are recoverable in their natural reading order. Furthermore, these requirements
allow the recovery of higher-level semantic information concerning the logical structure of the
document.

4.4.9 Interactive Forms

An interactive form (sometimes referred to as an AcroForm) is a collection of fields for gath-
ering information interactively from the user. A PDF document may contain any number of
fields appearing on any combination of pages, all of which make up a single, global interactive
form spanning the entire document. Arbitrary subsets of these fields can be imported or
exported from the document.

The intent of the requirements of PDF/A with respect to interactive forms is to ensure
that there is no ambiguity about the rendering of form fields. Some related dictionary keys
are forbindden or forced to have a false value, but most important is the restriction that
every form field must have an appearance dictionary associated with the field’s data. Then,
a conforming reader must render the field according to the appearance dictionary, without
regard to the form data. This ensures the reliable rendering of the form.

4.5 A Conformance Module proposal

The main idea behind a formal comparison between all PDF standards and specifications is
making the GNU PDF Library completely standard-aware. However, this is a complex goal.
On one hand, the file format defined in Adobe documents or in ISO 32000-1:2008 [2] is very
extensive. On the other hand, many subsets have been defined in the past years, some are
still under development and, for sure, many more will come in the future, as shown in section
4.3. The GNU PDF Library has to provide a set of facilities to application programmers to
deal with these standards, subsets and specifications. These facilites must provide support for
writing or reading PDF files in a standard-aware manner, so standard requirements have to
be constantly checked in any operation that may potentially break the standard conformance.

Morever, it is very desirable to make the GNU PDF Library able to be easily configured
by users, enabling and disabling active PDF subsets, standards or specifications. Changing
the conformance context, indicating a conformance level to be checked, is a key feature to
provide to GNU PDF Library users.

For example, a library user may need to call a function to create a new PDF document.
That function should be aware of the base PDF version and subset, in order to generate
conformant PDF objects (and therefore a conformant PDF document and file). Application
users should be noticed about particular purposes of each standard, allowing them to choose
the one that better fits their needs.

The approach that the GNU PDF project is following pretends to build a data structure
holding all requirements (restrictions, capabilites) contained in these formal documents, spe-
cially specifications and standards. The table contributed to the GNU PDF Knowledge base
[5] is the first step towards this data structure. This data structure can be envisaged as a

CHAPTER 4. PDF STANDARDS REQUIREMENTS 71

two-dimensional array M , in which columns represent conformance levels, and rows represent
requirements. Given two indexes, i and j (0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1, where n is
the number of requirements supported, and m the number of conformance levels supported),
then the position M [i][j] holds the status required for the requirement i in the conformance
level j (for instance, a required value, or an optional value). This way, other modules of the
library, as well as application programmers, can query the library for the conformance status
of any requirement in any supported standard or subset.

The following subsection contains a proposal of a Conformance Module, which should be
located in the base layer. Any overlying tier of the library, or any external application built
on the top of it, may use its functions or data types to achieve the goals described above.
The submitted API is still under reviewing process by the GNU PDF community.

4.5.1 Conformance Module API

The Conformance Module offers operations and data types for configuring the Library in
order to ensure conformance with several PDF standards. From a chosen conformance level,
requirements that shall, should or shall not be met are given.

The Conformance Module consists of the following parts:

• Requirements Management

• Conformance Context Management

• Conformance-Requirements Mapping Management

Requirements Management

Requirements contained in the standards, ISOs, etc. supported by the Library are parametrized
within this module.

Data type: pdf req t

Opaque type representing a requirement.
This data type should contain information needed to uniquely identify a requirement,
provide a textual description of the requirement and classify the requirement in a
number of categories.

Data type: pdf req repo t

Opaque type representing a requirement repository.
This data type should contain data representing all the conformance requirements cur-
rently set up in the library. Methods for accessing these requirements should be also
provided.

CHAPTER 4. PDF STANDARDS REQUIREMENTS 72

Function: pdf req t pdf req new (pdf char t * text)

Create a new requirement with specified parameters.
Parameters
text : Textual description of the requirement.
Returns
The newly created requirement.
Usage example

pdf_char_t *desc = "The LZWDecode filter shall not be permitted.";

pdf_req_t req = pdf_req_new (desc);

Function: pdf req repo t pdf req repo new (void)

Create a new requirement repository.
Returns
The newly created requirement repository.
Usage example

pdf_req_repo_t rep = pdf_req_repo_new ();

Function: void pdf req add (pdf req repo t rep, pdf req t req)

Add the specified requirement into the given requirements repository.
Parameters
rep : Repository to add the requirement.
req : Requirement to be added.
Returns
Nothing.
Usage example

pdf_char_t *desc = "The LZWDecode filter shall not be permitted.";

pdf_req_t req = pdf_req_new (desc);

pdf_req_repo_t rep = pdf_req_repo_new ();

pdf_req_add (rep, req);

CHAPTER 4. PDF STANDARDS REQUIREMENTS 73

Function: void pdf req del (pdf req repo t rep, pdf req t req)

Remove the specified requirement from the requirements repository.
Parameters
rep : Repository to delete the requirement.
req : Requirement to be removed.
Returns
Nothing.
Usage example

pdf_req_t req;

pdf_req_repo_t rep = pdf_req_repo_new ();

/* ... req is added to rep ... */

pdf_req_del (rep, req);

Function: pdf char t * pdf req description (pdf req t req)

Obtain the textual description of a given requirement.
Parameters
req : Requirement from which to extract the description.
Returns
A null-terminated char array with the requirement description.
Usage example

pdf_req_t req;

printf("Requirement states: %s",

pdf_req_description (req));

Conformance Context Management

Conformance of PDF files managed by the Library can be enabled, disabled and configured
in order to allow appropriate checks to be performed.

Data type: enum pdf cfm lvl e

Enumeration of the supported PDF conformance levels:
PDF A 1a Conformance level PDF/A-1a, as defined by ISO 19005-1:2005.
PDF A 1b Conformance level PDF/A-1b, as defined by ISO 19005-1:2005.
PDF 1 4 Conformance level PDF 1.4, as defined by PDF Reference, Third Edition,
Adobe.

CHAPTER 4. PDF STANDARDS REQUIREMENTS 74

Function: void pdf cfm setcontext (pdf req repo t rep, pdf cfm lvl e

level, pdf bool t rec)

Set the conformance context. All operations to follow are affected by the currently set
context.
Parameters
rep : A requirement repository.
level : A valid pdf cfm lvl e value.
rec : Consider recommendations to be musts.
Returns
Nothing.
Usage example

pdf_req_repo_t rep = pdf_req_repo_new ();

/* ... add some requirements to rep ... */

pdf_cfm_setcontext (rep, PDF_A_1a, false);

void pdf_cfm_enable (void);

Function: void pdf cfm enable (void)

Enable conformance checking. This opeartion sets up all requirement values needed for
all conformance levels.
Returns
Nothing.
Usage example

pdf_cfm_enable ();

Function: void pdf cfm disable (void)

Disable conformance checking.
Returns
Nothing.
Usage example

pdf_cfm_disable ();

Conformance-Requirements Mapping Management

This submodule allows to perform a mapping between a conformance level and a specified
requirement. For a given pair consisting of a conformance level and a requirement, a value
is stored indicating if the requirement is a must, a should, etc. Convenience methods for
mapping sets of requirements into sets of conformance levels are provided as well.

CHAPTER 4. PDF STANDARDS REQUIREMENTS 75

Data type: enum pdf cfm stat e

Enumeration of the supported PDF requirements statuses:
PDF CFM MUST A requirement that must be satisfied in a given conformance level.
PDF CFM MANDATORY A requirement that should be satisfied in a given conformance
level. If it is not, the PDF file continues to be compliant.
PDF CFM RECOMMENDED A recommended requirement in a given conformance level. If
it is not satisfied, the PDF file is still compliant.

Function: void pdf cfm setvalue pair (pdf req repo t rep, pdf cfm lvl e

level, pdf req t req, pdf cfm stat e stat)

Map the specified conformance level with the supplied requirement with the stat value.
Parameters
rep : A requirement repository.
level : A valid conformance level pdf cfm lvl e value.
req : A requirement priviously added to repository.
stat : The status to assign to level req mapping.
Returns
Nothing.
Usage example

pdf_req_t req;

pdf_req_repo_t rep = pdf_req_repo_new ();

pdf_req_add (rep, req);

pdf_cfm_setvalue_pair (rep, PDF_A_1a, req, PDF_MUST);

Function: void pdf cfm setvalue level (pdf req repo t rep, pdf cfm lvl e

level, pdf cfm stat e * stat)

Map the specified conformance level with all requirements with the stat array values.
Parameters
rep : A requirement repository.
level : A valid conformance level pdf cfm lvl e value.
stat : An array of statuses to assign to all requirements of level.
Returns
Nothing.
Usage example

pdf_req_repo_t rep = pdf_req_repo_new ();

pdf_cfm_stat_e * stats = {PDF_CFM_MUST, PDF_CFM_SHOULD, ...};

pdf_cfm_setvalue_level (rep, PDF_A_1a, stats);

CHAPTER 4. PDF STANDARDS REQUIREMENTS 76

Function: void pdf cfm setvalue req (pdf req repo t rep, pdf req t req,

pdf cfm stat e * stat)

Map the specified requirement with all conformance levels with the stat value.
Parameters
rep : A requirement repository.
req : A requirement priviously added to repository.
stat : An array of statuses to assign to all conformance levels of req.
Returns
Nothing.
Usage example

pdf_req_t req;

pdf_req_repo_t rep = pdf_req_repo_new ();

pdf_cfm_stat_e * stats = {PDF_CFM_MUST, PDF_CFM_SHOULD, ...};

pdf_req_add (rep, req);

pdf_cfm_setvalue_req (rep, req, stats);

CHAPTER 4. PDF STANDARDS REQUIREMENTS 77

Function: bool pdf cfm check (pdf req repo t rep, pdf req t req,

pdf cfm stat e stat)

Check if the specified requirement has a stat status in the given requirement repository
or not.
Parameters
rep : A requirement repository.
req : A requirement priviously added to rep.
stat : A status to check.
Returns
PDF TRUE if req has a stat value in repo; PDF FALSE otherwise.
Usage example

pdf_char_t *desc = "The LZWDecode filter shall not be permitted.";

pdf_req_t req = pdf_req_new (desc);

pdf_req_repo_t rep = pdf_req_repo_new ();

/* Add the requirement to the repository */

pdf_req_add (rep, req);

/* Set the status of the requirement in the repo for a given conformance

level */

pdf_cfm_setvalue_pair (rep, PDF_A_1a, req, PDF_MUST);

/* Check */

if (pdf_cfm_check (rep, req, PDF_MUST)

{

/* Compress stream without LZW. */

}

Chapter 5

A PDF object parser proposal

A key feature of any library that manages a file format is to provide mechanisms to read
files in that format and process its contents. The most common example is a programming
language source code file: the tools that confom the compiler read an input stream, extract
tokens from it, perform parsing and check for possible compiling-time semantic errors. At
the beginning of this collaboration FDP, the GNU PDF Library did not have such a format-
validation process, though some tools –like filtered streams and a tokeniser– were already
working.

This chapter describes the process of building a PDF object parser for the GNU PDF
Library.

5.1 Introduction

A file format is a particular way that information is encoded for storage in a computer file
[60]. Moreover, it is a set of lexical, syntactic and semantic rules that must be met by the
data contained in that file.

Checking the correctness of data with respect to a given format can be a complex process.
Typically, computer programs are written in source code files in some programming language
(e.g. the GNU PDF Library is written in the C language). This source code must be read
and validated before doing specific processing. For instance, after lexical, syntactical and
semantic checks, a programmer that has written a program in the C language may want the
compiler to generate intermediate code in order to get an executable file; otherwise, a Java
programmer may want to generate Virtual Machine (VM) bytecode. These are the typical
phases needed from a compiler, shown at figure 5.1 (extracted from [4]).

However, file formats designed to contain data (instead of program instructions) rarely
need phases like code generation. Since the goal in these file formats is to appropriately rep-
resent some kind of data (images –JPEG or PNG–, hyerarchical structures –XML–, webpage
content –HTML–, or document containers –PDF–), after the lexical, syntactic and semantic
stages follows a stage were data structures neeeded to represent these data are generated.
Then, reader and writer programs use these data structures to represent the contents of files.

The PDF file format is well defined with respect to lexical components [2]. Moreover,
at the beginning of this collaboration the GNU PDF Library was already providing a fully
functional tokeniser module. This module, according to figure 5.1, is capable of providing
tokens, as the input stream is being read. Hence, the lexical analysis was being correctly

78

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 79

Figure 5.1: Phases of a compiler.

performed before this FDP entered the scene.
The next logical step was, then, the syntactic analysis. Developing a parser made sense at

this point, according with figure 5.1. Additionally, many users (not necessarily contributors)
were entering the pdf-devel mailing list asking if the GNU PDF Library was capable of PDF
parsing or not. Unfortunatelly, it was not.

A proposal for developing a PDF object parser was agreed with the GNU PDF community.
It is important to note that the library had (and still has) many parsing needs, not only related
with PDF objects parsing. The following list of needed parsers tries to clarify this, while it
helps to define too what a PDF object parser exactly is.

• There was a need for a PDF file parser. PDF files, as explained in chapter 4, consist
essentially of a header, a body (which contains all PDF objects conforming the docu-
ment), and a cross-reference table. Parsing a PDF file means, according with this, to
parse the header, parse the body, and finally parse the cross-reference table, though
not necessarily in that order. A sequential parsing of a PDF file is not the desired way
to proceed by the GNU PDF community, though many PDF libraries read PDF files
following a similar procedure. One of the main benefits of the PDF file format is that
any part of the document contained in a PDF file can be rendered without having to
load the entire file content. This is achieved combining the information of the cross-
reference table and the body: the former contains references (offsets) to quickly access
any object in the body (remember that the body is simply a collection of PDF objects).
All information needed to render a page is contained in a reduced set of PDF objects
of the body, quickly accessible through the offsets of the cross-reference table. This
suggests that the best parsing strategy implies parsing the cross-reference table first.
Then, PDF objects are parsed later, just when the reader needs them (not all of them;
only those needed to render requested pages). Parsing the file header is a trivial task,
out of the interest of this FDP. Additional information on basic PDF file reading can
be found at the GNU PDF Knowledge base [36].

• There was a need for a PDF object parser. Once the reader knows which PDF
objects are needed to render the current page or the document section requested, those
objects must be accessed and loaded. Moreover, syntax checking of PDF objects must
be done at this point, since invalid formatting may appear within them. The PDF object
parser must be capable to receive a piece of stream containing the PDF object. More
precisely, it receives the offset of that object specified in the cross-reference table, and
tries to process it, token by token. If these tokens meet the rules of a valid PDF object

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 80

grammar, then the syntactic check passes for that PDF object, and an appropriate data
structure representing that object is returned. Otherwise, a syntactic error is returned,
and some error recovery procedure is used to generate a valid data structure (the PDF
object that corresponds to that structure continues to be invalid). If the syntactic error
is not recoverable, an error is returned and the PDF object is not processed at all (i.e.
no data structure is generated for that object).

• There was a need for a PDF content streams parser. As explained below (see
section 5.2, there is one type of PDF objects that deserve special attention: stream
objects. Stream objects are basically sequences of bytes, and thus have the peculiarity
of store almost any kind of data. This includes very heterogeneus contents, from JPEG
images to PostScript fragments, JavaScript code, video, sound, XML metadata, and so
on. Once decoded, these contents may need specific parsing routines (i.e. JavaScript
code has to be validated by a JavaScript parser). Hence, the PDF content streams
parser is, in fact, a set of parsers making syntax checking for the vast typology of PDF
embedded media. Fortunately, most of these parsers already exist as free software, so
they can be linked when it becomes necessary.

These parsing activities were prioritized, in order to clarify its importance and urgency.
Moreover, some of these tasks have dependencies with other parts of the library that were
not developed enough when the collaboration began, and had to be consequently postponed.
The following list shows suitability issues for each needed parser.

• Regarding the PDF file parser, two issues were found. First, and most important, the
GNU PDF Library was not mature enough to develop the functionality of parsing an
entire PDF file. Moreover, providing cross-reference parsing could make the program-
mers think erronously that the library was at a development stage advanced enough to
parse PDF files. Second, offering PDF file parsing did not make sense since the base
layer was still focusing almost all development efforts, with some contributors beginning
to work in the object layer.

• Some pros and cons were found considering the PDF object parser developing. First,
it is a dependency to be fixed before developing a PDF file parser, since the PDF file
parser needs the PDF object parser to work properly (remember that parsing a PDF
file involves parsing PDF objects, the file header and the cross-reference table, though
not necessarily in that order). Second, it offered enough monolithic developing, from
the point of view that it does not require linking many external libraries. Third, a
considerable part of the work developed in chapter 4, specifically syntax rules in ISO
32000-1:2008 [2], could be very useful in a PDF object grammar definition. As the only
con, the PDF object parser relies on PDF content streams parsers, that had to be linked
in a next stage.

• Regarding the PDF content streams parser, two major issues were found. First,
most of the work needed to encode or decode stream contents was already implemented
in the base layer. Second, syntax checking of decoded stream contents could be as
easy as invoking specific,exteranl parsers from free libraries. This made this option less
attractive than the PDF object parser proposal.

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 81

According with all this, a PDF object parser was found to have major priority among
other parsing needs. Additionally, it may use many components developed in the base layer
specifically for PDF object parsing purposes (i.e. the tokeniser), which is an insteresting
issue to both understand and test library modules. Once implemented and tested, PDF file
parsing and stream content parsing may be easily developed and integrated as next steps, as
the library continues to rise in its stack, bottom-up schema.

A formal grammar specifying the rules defining the PDF object language is necessary
before developing a PDF object parser. Moreover, the formal grammar design stage has a
critical influence on the parser itself. On one hand, the grammar nature may decide the best
parsing strategy, and on the other hand, choosing a concrete parsing algorithm may require
modifications on the grammar to get it correctly adapted to algorithm’s needs [4, 6].

The term PDF language is going to be used in this chapter as a way to summarize the set
of all input strings that are valid with respect to official PDF specifications. That is, from a
formal language point of view, the language accepted by a PDF grammar that contains rules
defining the PDF objects format.

The chapter is organized as follows. First, a summary of the PDF objects that can
be found in any PDF file is presented. Second, the work on developing a grammar that
accepts the valid PDF language described in official specifications, and only such a language,
is described. Finally, the PDF object parser program and all neede stages for its development
are shown.

5.2 PDF objects

Previously, it has been shown that PDF files contain a body section. This body consists of a
set of PDF objects, which abstractly represent all elements that conform the PDF document.
This section enumerates and describes all kinds of PDF objects defined by PDF standards.
To understand better how these objects are accessed to form the PDF document, please see
the GNU PDF Knowledge base introduction about PDF files [36].

PDF includes eight basic types of objects: Boolean values, Integer and Real numbers,
Strings, Names, Arrays, Dictionaries, Streams, and the null object.

Objects may be labelled so that they can be referred to by other objects. A labelled object
is called an indirect object (see 5.2.9).

5.2.1 Boolean objects

Boolean objects represent the logical values of true and false. They appear in PDF files using
the keywords true and false.

5.2.2 Numeric objects

PDF provides two types of numeric objects: integer and real. Integer objects represent
mathematical integers. Real objects represent mathematical real numbers. The range and
precision of numbers may be limited by the internal representations used in the computer on
which the conforming reader is running.

An integer shall be written as one or more decimal digits optionally preceded by a sign.
The value shall be interpreted as a signed decimal integer and shall be converted to an integer
object.

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 82

A real value shall be written as one or more decimal digits with an optional sign and a
leading, trailing, or embedded decimal point. The value shall be interpreted as a real number
and shall be converted to a real object.

Examples

123 43445 +17 -98 0

34.5 -3.62 +123.6 4. -.002 0.0

5.2.3 String objects

A string object consists of a series of zero or more bytes. String objects are not integer objects,
but are stored in a more compact format.

String objects shall be written in one of the following two ways:

• As a sequence of literal characters enclosed in parentheses (). These are called Literal
Strings.

• As hexadecimal data enclosed in angle brackets < >. These are called Hexadecimal
Strings.

Examples

(Strings may contain balanced parentheses () and

special characters (* ! & } ^ % and so on) .)

< 4E6F762073686D6F7A206B6120706F702E >

5.2.4 Name objects

A name object is an atomic symbol uniquely defined by a sequence of any characters (8-bit
values) except null (character code 0). Uniquely defined means that any two name objects
made up of the same sequence of characters denote the same object. Atomic means that
a name has no internal structure; although it is defined by a sequence of characters, those
characters are not considered elements of the name.

When writing a name in a PDF file, a slash (/) shall be used to introduce a name. The
slash is not part of the name but is a prefix indicating that what follows is a sequence of
characters representing the name in the PDF file.

Examples

/Name1

/A;Name_With-Various***Characters?

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 83

5.2.5 Array objects

An array object is a one-dimensional collection of objects arranged sequentially. Unlike arrays
in many other computer languages, PDF arrays may be heterogeneous; that is, elements of
an array may be any combination of numbers, strings, dictionaries, or any other objects,
including other arrays. An array may have zero elements.

An array shall be written as a sequence of objects enclosed in square brackets ([]).

Examples

[549 3.14 false (Ralph) /SomeName]

5.2.6 Dictionary objects

A dictionary object is an associative table containing pairs of objects, known as the dictio-
nary’s entries. The first element of each entry is the key and the second element is the value.
The key shall be a name (unlike dictionary keys in PostScript, which may be objects of any
type). The value may be any kind of object, including another dictionary. A dictionary entry
whose value is null shall be treated the same as if the entry does not exist.

The entries in a dictionary represent an associative table and as such shall be unordered
even though an arbitrary order may be imposed upon them when written in a file. That
ordering shall be ignored.

Multiple entries in the same dictionary shall not have the same key. A dictionary shall be
written as a sequence of key-value pairs enclosed in double angle brackets (<< ... >>).

Examples

<< /Type /Example

/Subtype /DictionaryExample

/Version 0.01

/IntegerItem 12

/StringItem (a string)

/Subdictionary << /Item1 0.4

/Item2 true

/LastItem (not !)

/VeryLastItem (OK)

>>

>>

5.2.7 Stream objects

A stream object, like a string object, is a sequence of bytes. Furthermore, a stream may be
of unlimited length, whereas a string shall be subject to an implementation limit. For this
reason, objects with potentially large amounts of data, such as images and page descriptions,
shall be represented as streams.

A stream consists of a dictionary followed by zero or more bytes bracketed between the
keywords stream (followed by newline) and endstream:

dictionary

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 84

stream
... Zero or more bytes ...
endstream

All streams shall be indirect objects (see 5.2.9) and the stream dictionary shall be a direct
object. The keyword stream that follows the stream dictionary shall be followed by an end-of-
line marker. The sequence of bytes that make up a stream lie between the end-of-line marker
following the stream keyword and the endstream keyword; the stream dictionary specifies
the exact number of bytes. There should be an end-of-line marker after the data and before
endstream; this marker shall not be included in the stream length. There shall not be any
extra bytes, other than white space, between endstream and endobj.

Alternatively, beginning with PDF 1.2, the bytes may be contained in an external file,
in which case the stream dictionary specifies the file, and any bytes between stream and
endstream shall be ignored by a conforming reader.

Examples

<<

/Length 44

>>

stream

BT

70 50 TD

/F1 12 Tf

(Hello, world!) Tj

ET

endstream

endobj

5.2.8 Null object

The null object has a type and value that are unequal to those of any other object. There shall
be only one object of type null, denoted by the keyword null. An indirect object reference
(see 5.2.9) to a nonexistent object shall be treated the same as a null object. Specifying the
null object as the value of a dictionary entry (see 5.2.6) shall be equivalent to omitting the
entry entirely.

5.2.9 Indirect objects

Any object in a PDF file may be labelled as an indirect object. This gives the object a unique
object identifier by which other objects can refer to it (for example, as an element of an array
or as the value of a dictionary entry).

The object identifier shall consist of two parts:

• A positive integer object number. Indirect objects may be numbered sequentially within
a PDF file, but this is not required; object numbers may be assigned in any arbitrary
order.

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 85

• A non-negative integer generation number. In a newly created file, all indirect objects
shall have generation numbers of 0. Nonzero generation numbers may be introduced
when the file is later updated.

Together, the combination of an object number and a generation number shall uniquely
identify an indirect object.

The definition of an indirect object in a PDF file shall consist of its object number and
generation number (separated by white space), followed by the value of the object bracketed
between the keywords obj and endobj.

The object may be referred to from elsewhere in the file by an indirect reference. Such
indirect references shall consist of the object number, the generation number, and the keyword
R (with white space separating each part):

12 0 R

Examples Indirect object definition

12 0 obj

(Brillig)

endobj

Defines an indirect string object with an object number of 12, a generation number of 0,
and the value Brillig.

Indirect reference to this indirect object

12 0 R

5.3 A grammar for PDF objects

The PDF objects grammar proposed in this section accepts an input string S if and only if
S is a valid PDF object. Otherwise, the grammar does not accept S.

At this stage, the input string has been processed by the tokeniser module in the base
layer, performing the lexical analysis and splitting the input stream into tokens. Hence, the
input string S for the PDF object grammar consists of a sequence of tokens. All possible
tokens collected by the tokeniser are terminal symbols for the object grammar. Therefore, let
Σ be the following terminal symbols alphabet:

Σ = {TRUE,FALSE,STREAM,ENDSTREAM,NULL,OBJ,ENDOBJ,

R, INTEGER,REAL,STRING,NAME,DICT START,

DICT END,ARRAY START,ARRAY END,λ}

Table 5.1 shows the correspondence between the tokens (terminal symbols) of Σ and the
chunks of the input string S read by the tokeniser.

This token set is not arbitrary. Moreover, the GNU PDF Library had it defined and
processed by the tokeniser module before this collaboration began. The design criteria of this
lexical processing was:

• All token instances (pdf token t data type) hold a value (i.e. -3.14 for an integer
object) and a type (i.e. the integer type) for each token recognized in the input
stream.

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 86

Token Input string chunk

TRUE true

FALSE false

STREAM stream

ENDSTREAM endstream

NULL null

OBJ obj

ENDOBJ endobj

R R

INTEGER An integer number
REAL A real number

STRING A literal or hexadecimal string
NAME A name object

DICT START <<

DICT END >>

ARRAY START [

ARRAY END]

λ

Table 5.1: Correspondence between tokens of Σ and input string S chunks.

• Token types for integers, reals, strings (with no explicit distinction between literal
nor hexadecimal) and names correspond with their equivalent PDF object classes.

• There is a special type of tokens, keywords, that is created with the tokeniser recog-
nizes the keywords true, false, stream, endstream, null, obj, endobj and R. The
information about what specific keyword was recognized can be queried in the token
value (which holds the keyword value read from the input stream).

• Arrays and dictionaries require syntactic analysis to be accepted or refused, so the
only tokens recognized in the lexical stage are the dictionary and array start and end
delimiters (<<, >>, [,]).

• Other token types recognized by the tokeniser, such as comments and procedure start
and end delimiters, are omitted in PDF object parsing.

Two proposals for a PDF object grammar follow. A summarized version of these grammars
can be found in appendix D. Let G1 and G2 be BNF (Backus-Naur Form) grammars for the
first and second proposals, respectivelly.

5.3.1 First proposal, G1

On one hand, the first proposal makes G1 more readable and understandable; on the other
hand, G1 rules are unrolled and over redundant. Second proposal in subsection 5.3.2 shows
more compacted rules in G2.

The first rule of G1 defines and indirect object. Indirect objects are the form in which
objects are found in a PDF file. This is because a conforming reader only can access objects
defined in the cross-reference table, and those must be indirect objects. As stated in [2], the

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 87

definition of an indirect object in a PDF file shall consist of its object number and generation
number (separated by white space), followed by the value of the object bracketed between the
keywords obj and endobj. This leads to the rule defined in figure 5.2.

indirect object → INTEGER INTEGER OBJ (
(TRUE | FALSE)
| INTEGER (INTEGER R | λ)
| REAL

| STRING

| NAME

| NULL

| array object

| dictionary object (stream object | λ)
) ENDOBJ

Figure 5.2: Indirect object rule for G1.

Object and generation numbers are given by the first two integers. Following them,
the keyword obj represented by the OBJ token introduces the value of the object itself.
As the rule states, this object value shall be either a boolean object (TRUE and FALSE
tokens), an integer object (INTEGER token), an indirect reference (INTEGER, INTEGER
and R tokens), a real object (REAL token), a string object (STRING token), a name object
(NAME token, a null object (NULL token), an array object (array object rule), a dictionary
object (diciontary object rule), or a stream object (dictionary object and stream object rules).
Finally, a mandatory endobj keyword, represented with the ENDOBJ token, closes the
indirect object.

Indirect objects are the top level objects in the object grammar G1.
The second rule of G1 defines an array object. An array object is a one-dimensional

collection of objects arranged sequentially. Unlike arrays in many other computer languages,
PDF arrays may be heterogeneous; that is, an array’s elements may be any combination of
numbers, strings, dictionaries, or any other objects, including other arrays. An array may
have zero elements. An array shall be written as a sequence of objects enclosed in square
brackets[2]. This defines array objects as shown in figure 5.3.

array object → ARRAY START (array or dictionary value) ∗ ARRAY END

Figure 5.3: Array object rule for G1.

The left square bracket ([) represented with the ARRAY START token marks the be-
ginning of the array object. It may contain a list of zero or more array or dictionary value.
Finally, a right square bracket (]) (ARRAY END token) closes the array object. Candidate
values that may be enclosed in an array object (also in a dictionary object, as shown below)
are generated through the third rule of G1 (see figure 5.4.

One should note here that an array or dictionary value and the possible contents of an
indirect object are almost the same, though not exactly equal. In fact, the only difference
between candidate objects enveloped inside an indirect object (see figure 5.2) and objects gen-
erated by the rule array or dictionary value (see figure 5.4) is the suffix (stream object | λ)
that can optionally appear in the former.

Some important design details should be noted here:

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 88

array or dictionary value → (TRUE | FALSE)
| INTEGER (INTEGER R | λ)
| REAL

| STRING

| NAME

| NULL

| array object

| dictionary object

Figure 5.4: Array / dictionary value rule for G1.

1. The common options in both rules describe a set of simple, atomic objects (boolean
objects, integer objects and real objects, indirect references, string objects, name objects
and name objects), and two one-dimensional, collection data types (array objects and
dictionary objects). One may think about an independent rule gathering these types.
However, some problems arise with such a rule, mainly related with ambiguities. As
this can be seen as an improvement to G1, this issue is discussed in section 5.3.2.

2. Stream objects are always indirect objects, and thus they can not be grouped together
with the rest of (non-indirect) objects. Moreover, one must be sure that a call to rule
stream object must be performed always after a call to indirect object. Equivalently, this
is the same than assuring that any stream object node in any derivation tree must be a
child (or contained in a subtree) of an indirect object node.

3. Some ambiguities arise in the grammar when trying to define a stream object in a rule as
a dictionary object plus some other tokens, as doing this leads to several rules beginning
with the DICT START token.

4. Using a single rule grouping all kinds of objects pointed in the first rule of G1 (see
figure 5.2), and using this rule to define objects that can be contained in array objects
or diciontary objects leads to invalid derivation trees, as stream objects are not allowed
in these data types.

The fourth rule of G1 defines the syntax of dictionary objects (see figure 5.5). A dictionary
object is an associative table containing pairs of objects, known as the dictionary’s entries.
The first element of each entry is the key and the second element is the value. The key shall
be a name object. The value may be any kind of object, including another dictionary. A
dictionary may have zero entries. A dictionary shall be written as a sequence of key-value
pairs enclosed in double angle brackets (<< ... >>) [2].

dictionary object → DICT START (key value pair) ∗ DICT END

Figure 5.5: Dictionary object rule for G1.

The rule for a dictionary object describes the contents of the dictionary as a list of zero
or more elements provided by the key value pair rule, which is shown in figure 5.6.

A key value pair is defined as a name object followed by an array or dictionary value,
previously described in figure 5.4.

Finally, a stream object must be strictly called after a dictionary object [2]; this is ensured
by the first rule of G1 (see figure 5.2). The contents of a stream object are not parsed in

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 89

key value pair → NAME array or dictionary value

Figure 5.6: Key-value pair rule for G1.

the PDF object grammar. Content streams are usually filtered sequences of bytes that need
a special treatment; they are parsed later in the GNU PDF Library, more precisely in the
document and page layers of the library. They are pointed here in a symbolic way by the
content stream rule (see figure 5.7).

stream object → STREAM (content stream) ∗ ENDSTREAM

Figure 5.7: Stream object rule for G1.

5.3.2 Second proposal, G2

The first rule of G2 also defines an indirect object, the top-level object type found in a PDF
file body. However, types of objects that can be contained in an indirect object are specified
by means of a new rule that was not present in G1, named contained object. This first rule is
shown in figure 5.8.

indirect object → INTEGER INTEGER OBJ (contained object)ENDOBJ

Figure 5.8: Indirect object rule for G2.

Again, object and generation numbers are given by the first two integers. Following them,
the keyword obj introduces the value of the object itself. However, this time a variable
contained object is found in this place. Contained objects is a class of PDF objects that does
not belong to any official PDF specification; but defining it helps with dealing with other
types of objects and resolving ambiguities. A contained object (that is, an object that can be
contained between indirect object keyword delimiters) is defined as shown in figure 5.9.

contained object → atomic object

| array object

| dictionary object (stream object | λ)

Figure 5.9: Contained object rule for G2.

Hence, a contained object may be either:

• An atomic object, which is another dummy class for atomic objects,

• or an array object,

• or a dictionary object,

• or a construction which consists of a dictionary object and a stream object. This is
the syntax for stream objects, that shall be indirect objects with no exceptions [2] (this
means that a stream object appears as a contained object and nowhere else).

The rule for atomic objects is shown in figure 5.10, while the rules for array objects,
dictionary objects and stream objects are shown in figures 5.11, 5.13 and 5.15 respectivelly.

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 90

atomic object →
(TRUE | FALSE)
| INTEGER (INTEGER R | λ)
| REAL

| STRING

| NAME

| NULL

Figure 5.10: Atomic object rule for G2.

Atomic objects are essentially non-reductible objects (tokens) of classes boolean object,
integer object, indirect reference, real object, string object, name object and null object. The
reason for excluding array objects and dictionary objects of the atomic objects class is discussed
later.

array object → ARRAY START (array or dictionary value) ∗ ARRAY END

Figure 5.11: Array object rule for G2.

An array encloses a list of zero or more array or dictionary value. The rule presenting
these values is shown in figure 5.12.

array or dictionary value →
atomic object

| array object

| dictionary object

Figure 5.12: Array or dictionary value rule for G2.

At this point, the reasons for grouping atomic objects can be discussed. Observing rules
defining array objects, dictionary objects and indirect objects, one may realize that the types
of objects that can be contained within them are almost the same. In a more deep analysis,
objects that can be contained within array objects and objects that may conform values of
a key-value pair in dictionary objects are exactly the same: boolean objects, integer objects,
real objects, indirect references, string objects, name objects, null objects, array objects and
dictionary objects. For this reason a rule defining array or dictionary object is used.

However, objects to be contained inside indirect objects admit more options, because
the acceptance of stream objects, which can only be invoked here. Hence, it is true that
indirect objects admit all atomic objects plus array objects and dictionary objects, just like
the array or dictionary object rule does. But, additionally, indirect objects may contain, after
the dictionary object, a stream object construction.

This makes impossible to define a single class of objects containing atomic objects plus
dictionary objects. By doing it, many ambiguities arise: for example, two options beginning
with a dictionary object from two different rules may apply: one defining this atomic objects
plus dictionary objects hypothetical class, and one defining a dictionary object followed by a
stream object (in the indirect objects rule). This is the reason for excluding dictionary objects
from the atomic objects set. In fact, atomic objects contain the minimum set of objects that
may be invoked as values of array objects, dictionary objects, and indirect objects.

The rest of rules completing G2 are analogous to the rules defined in G1 for dictionary

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 91

objects (see figure 5.13), key-value pairs (see figure 5.14), and stream objects (see figure 5.15).

dictionary object → DICT START (key value pair) ∗ DICT END

Figure 5.13: Dictionary object rule for G2.

key value pair → NAME array or dictionary value

Figure 5.14: Key-value pair rule for G2.

stream object → STREAM (content stream) ∗ ENDSTREAM

Figure 5.15: Stream object rule for G2.

5.3.3 G1 and G2 pros and cons

Proposed PDF object grammars G1 and G2 can be compared in the following facets:

• Grouping of options, simplification and redundancy. It is clear to the reader
that grouping of options is more acurately performed in G2 than in G1. Actually, the
number of rules of G2 is greater than the number of rules of G1, which shows that more
steps of rule grouping have been done designing G2. That makes G2 also more readable,
but slightly more complex to compute than G1: derivation trees of G2 have an average
height greater than derivation trees of G1 for the same input string S. Considering this,
it can be stated that G1 is simpler than G2. However, G1 is also more redundant, since
the same tokens, token groups and choices are repeated over and over again through
the grammar.

• Number of rules. As a consequence of the previous point, the number of rules of G2

(8) is greater than the number of rules of G1 (6). This slightly lows the performance of
computing G2 against G1, but increases readability of G2 against G1.

• Ambiguity. Neither G1 nor G2 contain ambiguities. To check this, a prototypical
implementation was performed using the ANTLR Parser generator [43]. Output is
shown in appendix D.

• Equivalency. Both grammars G1 and G2 are equivallent, since they recognize exactly
the same language. Some Abstract Syntax Trees (AST) were generated by G1 and G2

prototypical parsers and were identical.

Regarding the number of rules, some additional and important remarks make sense
with respect to two key issues of a parser:

• Error recovery. Depending on the context, when a syntax error occurs some recovervy
strategies can be followed. For instance, some tokens can be skipped and thrown away
(this implies some data loss, which could affect document structure or rendering), or
some may be created artificially, in order to get a consistent and coherent parsing result.
Sometimes this is not possible; the parsing process has to be stopped then, and a report
must be warn the user about what went wrong.

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 92

• AST construction. The parsing output is an Abstract Syntax Tree, which specifies,
in a binary tree structure, the hierarchical representation of PDF objects parsed.

Increasing the number of rules or, more precisely, establishing rules in a logical and con-
sistent way, provides best results with both error recovery and AST construction. This is
specially true for specific parsing strategies, like LL parsing. As it will be shown later (see
section 5.4), the selected parsing strategy for the PDF object grammar is easily improved
when a higher number of grammar rules help to better read and understand the language
that it is defining. Rules help to logically find optimal code locations to insert error recovery
calls and AST construction calls.

These arguments lead to choose G2 as the PDF object grammar to be adapted and used
for the development of a PDF object parser.

5.4 Parser development

When developing parsers for programming languages, it is very common to use some parser-
generation tool that reads the language grammar (conveniently adapted for the case) and
generates the parser code automatically. However, the GNU PDF Library PDF object parser
is written from scratch, instead of using parser generators like GNU Bison [17], Yacc [40],
PCCTS [44] or ANTLR [43] (though this last was used for grammar design). The development
community took this decision after considering the following:

• Parser code should be optimal regarding resource consumption. This could not be
guaranteed using parser generators, which in order to be generic enough generate vast
source code files that can be reduced in size and memory usage.

• Parser code should be readable and easily improvable. Automatically generated code
does not allow this. On one hand, the way to modify the resulting source code is to
change the input file for the parser generator; this does not always provide the desired
options. On the other hand, if developers try to modify the automatically generated
source code, then a lot of adaptation work may have to be performed. These efforts
could be reduced if applied to a from-scratch approach.

• Parser code may be spread across the GNU PDF Library. This means that the parsing
tasks are not performed in a single step: as shown above, PDF object parsing goes in
some manner after PDF file parsing, and before streams content parsing.

These requirements depict parsing needs which have many peculiarities with respect to
simple or standard programming languages parsing. It also has to be noted that parser
generators are designed having in mind programming languages as their primary target. PDF,
as shown above, differs in many ways from a usual programming language, and thus it makes
sense to find some mismatches with parser generators.

This analysis lead to choose a from-scratch developing for the PDF object parser.

5.4.1 Lookahead

Lookahead establishes the maximum incoming tokens that a parser can use to decide which
rule it should use [62]. The term lookahead is abbreviated here as LA.

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 93

Normally, languages are developed trying to avoid situtations where more than one token
is needed to determine the next grammar rule to apply. The PDF language conforms with
this, excepting one case alone. In the case that follows, ambiguity regarding rule application
occurs if there is only one token of lookahead (that is, the current token being processed,
which is noted LA(0) here) available.

The ambiguity occurs while processing a sequence of integers, mainly during the validation
of the contents of an array object. Suppose the following PDF array object, which can be
easily found in PDF files as a value of a key-value pair in a dictionary, for instance:

[2 0 4 5 0 R 9]

The correct output that the parser should return here is ARRAY START , INTEGER,
INTEGER, INTEGER; then a match for the rule defining indirect references, which parses
the inseparable tokens INTEGER, INTEGER and the keyword R; then a final INTEGER,
and finally the ARRAY END token.

The problem here is that, with LA(0) alone, it is not possible to determine when to apply
the integer object matching rule, or the indirect reference matching rule, during the processing
of the array contents. Moreover, as both rules begin with an INTEGER token, the parser has
to choose the first specified (which has more priority). If the first rule in the array contents
definition is the one that matches integer objects (see 5.3.2), then the parser will process,
following always this rule, the integer tokens 2, 0, 4, 5 and 0 before returning an error when
receiving the R keyword, because does not exist any rule beginning with the R keyword in
the array contents definition. Moreover, there is no construct in PDF language beginning
with that keyword. Otherwise, if the first rule in the array contents definition is the one
that matches indirect references (see 5.3.2), the integer tokens 2 and 0 are processed before
returning an error when receiving the third integer, because the R keyword was expected to
match the indirect reference rule.

With this scenario, it is clear that it is not possible to determine the choice between indirect
reference or the integer object rules with a single LA(0) token for lookahead. Moreover, when
the parser reads the integer 5 it has to know that the rule to process it, just at this point, is
the indirect reference one instead of the integer object one. Note that adding one more token
to the lookahead, that is, the LA(1) token, is not enough: at this point the parser would
see that LA(0) = 5 and LA(1) = 0, which is clearly insufficient to know if these are either
independent integers or the beginning part of an indirect reference. It is clear that, in order
to make the parser know that these tokens are, in fact, the beginning part of an indirect
reference, an additional token in the lookahead is needed.

Hence, a parse window of three tokens is defined. With such a window, the parser can
correctly choose the appropriate rule (see figure 5.2). The remaining grammar rules are
decidable using LA(0) only in any given PDF context.

Additionally, the implementation of libpoppler [39], which features a PDF parser, was
consulted regarding the lookahead issue. It was verified that libpoppler’s parser also uses two
additional tokens for its lookahead.

5.4.2 Parsing strategy

Once a grammar for PDF objects has been specified, and the requirement of writing a parser
for it from scratch has been stated, a parsing algorithm can be written. However, there is a
number of distinct parsing strategies, each of them with its pros and cons.

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 94

Step LA(0) LA(1) LA(2) Rule Description

1 2 0 4 Integer object, because the
window only contains inte-
gers

The parser matches one in-
teger token with value 2.
The window advances.

2 0 4 5 Integer object, because the
window only contains inte-
gers

The parser matches one in-
teger token with value 0.
The window advances.

3 4 5 0 Integer object, because the
window only contains inte-
gers

The parser matches one in-
teger token with value 4.
The window advances.

4 5 0 R Indirect reference, because
there are integers in LA(0)
and LA(1), and the R key-
word in LA(2)

The parser matches the
first integer, it advances,
it matches the second, it
advances again, it matches
the keyword, and advances
one more time.

5 9 Integer object, because the
window contains and inte-
ger and the following to-
kens ending the array

The parser matches one in-
teger token with value 9.
The window advances.

Table 5.2: Parsing window example. The parser uses three tokens as a lookahead to decide which
grammar rule to apply.

Generic parsing algorithm

The generic parsing algorithm, also known as the Cocke-Younger-Kasami (CYK) algorithm,
runs in O(n3) time, where n is the length of the input string S [6, 4]. As it is known that there
exist algorithms with better performance, the use of the CYK schema for the PDF object
parser was discarded.

Bottom-up strategies

The most common schema for bottom-up parsing is LR(1) parsing. As a bottom-up strategy,
it builds the AST from the leaves to the root. It also follows a right-most derivation in back-
ward direction. This means that terminal symbols are converted to non-terminal (variables)
symbols, using the rules of the grammar, and grouping from right to left when more than one
choice is possible. This process is applied repeatedly to the S input string until the starting
symbol of the grammar is derived from it (otherwise, the syntax checking fails).

LR(1) parsing runs in O(n) time, where n is the length of the input string S. Though it is
slightly more powerful than LL(1) parsing [6] (see below), it is much less intuitive. Moreover,
it would require to use some LR parser-generator tool (e.g. GNU Bison or Yacc), since LR
strategy can not be easily written from scratch to adapt itself to a specific language. As
this does not fit with GNU PDF Library requirements, the use of LR(1) parsing was also
discarded.

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 95

Top-down strategies

This approach consists of basically two strategies: table-driven parsing and recursive descent
predictive parsing. As the former can be understood, more or less, as an iterative version of
the latter, the recursive approach is going to be used here for clarity reasons.

Recursive descent predictive parsing consists, mainly, of LL(1) parsing. These parsers
build the AST from the root to the leaves (top-down), and follow a left-most derivation in
forward direction. This means that, beginning from the starting symbol of the grammar, rules
are repeatedly applied until the input string S is matched, replacing non-terminal symbols
from left to right (if many of them are candidates for replacing). If S is entirely matched,
then the syntax check terminates successfully; otherwise it fails.

LL(1) parsing is a more intuitive approach, since has a strict methodology to convert the
grammar rules into running code for the parser. It also runs in O(n) time (n is the length of
S). However, when defining grammar rules, left-recursion (that is, rules that use themselves
for the definition in its more left side) cannot be used, and such grammars need left-factoring
(which means that two rules can not begin with common tokens).

However, the G2 grammar presented above conforms with these two conditions (see section
5.3.2), as it does not have left-recursion in its rules and it does not need left-factoring (as this
was previously done for readability and clarity reasons).

Note that LL(1) parsing is suitable for the G2 PDF object grammar defined. Although,
as it has been shown in section 5.4.1, the needed lookahead requires three tokens, it is still
a LL(1) grammar since the extra tokens in the parse window are only used for an isolated
situation only. Thus, performance is only slightly affected, occasionally, and the average
runtime of parsing is, in practice, as it was a pure LL(1) one.

5.4.3 Requirements

This subsection gahters the requirements for the GNU PDF object parser.

Goal

The goal is to develop a PDF object parser tool for the GNU PDF Library. The parser shall
not include the final AST structure, because it is being developed in parallel by other GNU
PDF contributors; but a prototype for it could be provided. The parser shall not include error
recovery routines, because they must be integrated in a later stage of the library development;
but hints in specific source code locations, suggesting strategies for recovering from errors,
could be provided to facilitate further improvements.

Functional requirements

The following is a list of functional requirements to be achieved by the parser utility:

• The parser utility shall provide PDF object parsing with a number of debugging options.

• The parser utility shall provide PDF object parsing with options for printing and out-
putting the parsing results.

• The parser utility shall provide a user help interface.

• The parser utility shall provide a quick usage reference.

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 96

Non-functional requirements

The following is a list of non-functional requirements to be achieved by the parser:

• The parser shall run in O(n) time (n equals the input stream length).

• The parser utility shall be written in C, conforming with GNU and GNU PDF coding
standards [21, 27].

• The parser shall be written from scratch, without directly using any output from a
parser-generation tool.

• The parser shall not be written to be directly submitted as a patch for the main develop-
ment branch of the GNU PDF Library. Moreover, hard work on integration with other
parts in development (specially pdf object t in the object layer) must be performed
before submitting parser code to the pdf-devel mailing list for reviewing. Getting the
parser ready for an official patch is out of the scope of this FDP.

• Source code must be well documented to facilitate improvements from other GNU PDF
contributors.

5.4.4 Specification

This section describes the specification stage for the GNU PDF object parser.

Usage

A brief description of the use cases available in the parser utility is presented in this section
through the available options of the PDF object parser utility. In this kind of program, a
usage guide like this makes more sense than a set of use case diagrams and workflows.

The PDF object recursive descendant parser must be compiled after using it (see section
2.5.2 in chapter 2):

$ gcc -lgnupdf rec-pred-parse.c -o rec-pred-parse

After doing this, it can be invoked without parameters to get a quick usage tips:

$./rec-pred-parse

Usage: ./rec-pred-parse [options...] input.pdf

Parsing can be achieved by just typing the input PDF file to be parsed. However, it is
also possible to check the rest of available options:

$./rec-pred-parse --help

GNU PDF Library PDF Object Parser v0.01

Usage: ./rec-pred-parse [options...] input.pdf

Available options:

-h,--help Show this help

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 97

--version Show version number

-v Verbose mode

-w,--win Show parsing window

-e Show gnupdf lib errors

This gives a better perspective of the options available. The more interesting are -v, -w
and -e. -v enables the verbose mode, and the user can read how functions corresponding
to grammar rules are entered and exited. -w or --win showsh the parsing window tokens
each time a token is matched. Finally, -e shows messages and errors sent by the rest of used
modules of the GNU PDF Library.

5.4.5 Design

This section summarizes the design decisions chosen to achieve the main goal and meet
functional and non-functional requirements.

Parsing window

The first issue considered was the parsing window. As discussed before (see section 5.4.1),
the needed parsing window consists of three tokens at a time: the usual token, and two
additional tokens to have a prevision on indirect references. The GNU PDF Library module
that provides tokens as the input stream is being read is the tokeniser module. This module
provides both a data type, pdf token reader t, and a function, pdf token read, that read
the input stream from its current position, return the next token (a pdf token t data type
instance) recognized, and wait at a new position for a new token request. With this in mind,
designing the parsing window required a single instance of the pdf token reader t data type.
This token reader reads the three first tokens of the input stream in its initialization, in order
to prepare the first valid parsing window. Four pdf token t instances are stored: three are
used to hold the parsing window contents, plus one extra token to allow the parsing window
to unget a token (step backwards).

Flags

The parser utility was also designed with some flags. These flags are used to control debug,
parse window output and library messaging. The user can specify the behavior of the parser
with respect these, using appropriate parameters in the parser utility invocation. With the
debug flag set on, information about function entrance and return is shown in stdout while
parsing. With the parse window output flag set on, the parsing window is written in stdout

while parsing. Finally, if the library messaging flag is on, the user reads also in stdout several
status messages from the underlying GNU PDF Library modules being used while the parsing
runs.

Parsing schema

Once the parsing strategy was chosen (see section 5.4.5), an adaptation of the LL(1) algorithm
had to be designed for the specific case of the PDF objects grammar (the G2 grammar).
Several theoretical sources were studied [6, 4].

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 98

Recursive predictive parsers, were the LL(1) algorithm belongs, consist of a set of mutually
recursive functions, where each function corresponds to a grammar rule. This means that
each rule in G2 is implemented in the parser with one function. In parser generators each rule
automatically generates the code of its own function. Here, this code is going to be written
by hand, and later improved as described in section 5.4.2, but the same rules of the generic
algorithm apply here.

These rules correspond with all possible EBNF expressions that can be found in the
right hand side of the each grammar rule (please see [6, 4] for nullable, first and follow sets
definition). These expressions may consist of:

1. A sequence of ORed expressions: e1|e2|...|en.

2. A sequence of concatenated expressions: e1e2...en.

3. A starred expression: e1∗.

4. A plused expression: e1+.

5. An optional expression: e1?.

6. A non-terminal: A.

7. A terminal: a.

The code to write for each expression is strict (i.e. the code to write for a starred expres-
sion, (e1)∗, is a while loop which condition depends on the current lookahead and the first
set of e1).

5.4.6 Implementation

This section describes the implementation work on the GNU PDF object parser proposal,
considering the information presented in previous sections.

rec-pred-parse.h

This is the PDF object parser header. It contains:

1. Included shared libraries and interfaces.

2. Variables and data types for the parser.

3. Headers of functions implementing the parser tool.

The only shared library being included is the GNU PDF Library, accessed by the pdf.h

interface available in the developing system after compiling and installing GNU PDF Library.
Variables and data types, and its usage description, are splitted into several groups:

• Stream variables. These instances are necessary to access the PDF file contents that the
user wants to be parsed. There is only one file to parse, but since three token readers
are needed to implement the parsing window, three different streams (on the same file)
have to be created.

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 99

• Token reader variable. This instance contains the true tokeniser work, that is, the
lexical processor that splits the characters inside the streams following the lexical rules
of defined tokens (see table 5.1).

• Token variables. Three of them store the current parsing window (LA(0), LA(1) and
LA(2), whilst the fourth holds the previous token before those three in the parsing
window, in order to allow the unget operation.

• Status variables. These instances contain statuses, updated as returning values of many
functions of the GNU PDF Library. Taking track of them makes debugging more
comfortable.

• A stream length variable. The parser needs to store the last value of a Length key found
on a stream dictionary. This is not a sctricly syntactic process (it is, in fact, more likely
to be on a semantic processor), but absolutely necessary to correctly process stream
contents. As described in section 5.2.7, stream contents can have an arbitrary length.
This stream contents, usually encoded (and thus consisting of binary data instead of
characters), can not be processed by the tokeniser module. Moreover, they have to be
sent to the object layer for later processing. As it will be shown later, since pdf obj t

data type is still under development, the current behavior is to skip stream contents.
However, skipping stream contents also requires to know the number of bytes to skip,
which is the value hold in this variable.

• Some flags variables. These flags control de behavior of running options like the verbose
mode, the output of the parsing window or showing library messages (usually error codes
and its corresponding descriptions).

• A version variable, containing the version number of the parser utility.

Functions are also splitted in functional groups as follows:

• Grammar rules functions that implement the parsing LL(1) algorithm itself:

– pdf objects

– indirect object

– contained object

– atomic object

– array object

– array or dictionary value

– dictionary object

– key value pair

– stream object

• Parsing window functions, that implement desired behavior in the parsing window
submodule:

– init parse window, which initializes the parsing window and makes it hold the
current input stream token (LA(0)), its next (LA(1)) and the next of its next
(LA(2)).

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 100

– MATCH, which is a convenience method required by the parser to effectively accept
a token.

– get token gets the next token in the input stream. It advances the parse window
one position.

– unget token steps backward one position in the input stream. The parse window
returns to the state it had before the last get token operation.

– print parse window prints the current tokens in the parse window in stdout.

• Several auxiliary functions that manage the shell interface menus, and deal with non-
PDF objects skipping.

rec-pred-parse.c

This file implements the PDF object parser.
After some shell interaction control, the main function initializes the streams and token

readers. After this, it calls init parse window to initialize the parse window, and calls the
first rule of the grammar through function pdf objects to begin the file contents process-
ing. This is done repeatedly until the end-of-file condition occurs. Finally, resources are
deallocated and the program terminates.

Functions are then recursivelly called as the input string is read and the grammar rules
process it throught the grammar rules functions. These are implemented stricly following the
seven rules of the LL(1) algorithm (see section 5.4.5). However, as some processing did not
match exactly the parsing algorithm, some remarks on modifications performed follow.

Storing stream length During the first attempts, storing the last stream length read was
tried to be avoided. Since the stream contents are delimited with the stream and endstream

keywords, it was originally suposed that this could be enough to skip the stream contents
without using the explicit stream length. However, these attempts failed, because in fact the
keyword endstream can appear inside the stream content. This means that this keyword
does not really work as a stream content delimiter. After this, read and usage of the stream
content length value was implemented as follows in the key value pair function / rule:

if (pdf_token_get_type (token) == PDF_TOKEN_NAME)

{

/* When processing a key-value pair, we must check if

* the current key is the /Length name. In that case,

* the corresponding value (hold in LA(1) before

* matching the key) must be saved to correctly process

* a probable following stream content. This is not a

* pure syntactic parsing step, but totally necessary.

*/

if (strcmp (pdf_token_get_name_data (token), "Length") == 0)

{

if (pdf_token_get_type (token_la2) == PDF_TOKEN_INTEGER)

{

printf("Syntax error: stream lengths specified by

indirect references are not supported.\n");

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 101

}

else

{

stream_length = pdf_token_get_integer_value (token_la1);

}

}

While reading a dictionary, the parser checks if a key named Length is present and, if
it is, stores its value. Note that a little trick involving LA(2) is used here. This is because
sometimes the length is not directly expressed as an integer object; instead of this, it is
pointed elsewhere with an indirect reference, which points to some other PDF object in the
file truly containing the integer object value for the length. Since this requires processing of
the cross-reference table, it is (for the moment) an unsupported feature.

Skipping non-PDF object contents The parser may find some non-PDF objects in the
PDF file specified by the user. In the worst case, all file contents may be non-PDF, and then
no parsing at all has to be performed. In this case, the function skip non pdf objects skips
all file contents that do not fit with valid G2 input:

if (debug_window) print_parse_window ();

while (pdf_token_get_type (token) != PDF_TOKEN_INTEGER

|| pdf_token_get_type (token_la1) != PDF_TOKEN_INTEGER

|| (pdf_token_get_type (token_la2) != PDF_TOKEN_KEYWORD

|| strcmp (pdf_token_get_keyword_data (token_la2),

"obj") != 0))

{

/* More objects can be contained in the trailer,

* header, etc. so we skip tokens until a new

* indirect object is inside the LA window */

stat = pdf_token_read (reader, 1, &token);

stat_la1 = pdf_token_read (reader_la1, 1, &token_la1);

stat_la2 = pdf_token_read (reader_la2, 1, &token_la2);

if (stat != PDF_OK || stat_la1 != PDF_OK || stat_la2 != PDF_OK)

{

if (debug_errors) {

pdf_perror (stat, NULL);

pdf_perror (stat_la1, NULL);

pdf_perror (stat_la2, NULL);

}

if (stat == PDF_EEOF || stat_la1 == PDF_EEOF

|| stat_la2 == PDF_EEOF)

{

break;

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 102

}

}

}

AST and error recovery calls As stated before, two important features of parsing are
only partially implemented: AST construction, and error recovery.

AST construction is the final result of the parsing. While the LL(1) parser checks the
syntactic structure of PDF objects in its input, it must generate a data structure representing
the PDF object hierarchy. For instance, an indirect object, which is typically the most general,
high level PDF object found in PDF files, may contain several nested PDF objects, like
dictionary objcets, containing array objects, containing more dictionary objects, and so on.
Actually, this hierarchy is the output artifact of the parsing process (see section 5.1).

During the development process of the PDF object parser, this data structure needed for
AST construction (the pdf obj t data type, and associated functions) was being developed
in parallel. When the parser development finished, it was still in an early state, and it was
decided to prototypically indicate in particular lines of the source code the exact calls that
should be performed to successfully generate this AST. As explained in section 5.3.3, the
higher and more consistent set of rules of G2 helped a lot to appropriately place these calls.

Error recovery is a key feature of parsing. Without error recovery, two non-desirable
situtations would arise in any parsing operation:

• When facing a parsing error, the parsing routine would return the point where the PDF
grammar was not matched, and it would terminate. Hence, no valid nor complete AST
would be produced, forcing the user to correct the syntax mistake and re-run the parser
again. This is specially undesirable for PDF final users, because usually they do not
know almost anything about the PDF format, neither about hacking PDF files. The
maximum number of errors should be recovered, even having consequences on PDF
rendering, before returning erroneus AST or syntax error messages to the user.

• When facing a parsing error, recoverable or not, the parser shall not stop. Moreover, it
should keep track of the bad syntax found, but shall go straight ahead and try to read
the rest of the PDF file.

Error recovery shall be implemented in the PDF object parser in a later and more mature
stage, when pdf obj t integration is successful.

5.4.7 Testing

During the development of the parser, some test files containing PDF objects were used.
These files followed an incremental approach; for instance, the first PDF file that was tried
to be parsed consisted simply of the following contents:

1 0 obj

(Hey)

endobj

The set of input tests that were used are the following (available online [46]):

1. test0 tests a PDF indirect object alone.

CHAPTER 5. A PDF OBJECT PARSER PROPOSAL 103

2. test1 tests several objects in a single file, covering:

• Direct objects: boolean, integer, literal strings, hexadecimal strings, name objects,
arrays and dictionaries.

• Indirect objects: tests direct objects nested inside indirect objects.

3. test2 tests real content from a PDF file. Thus, all objects are indirect objects, which
contain: comments, dictionaries, indirect references, indirect references with integers
inside arrays (which tests the LL(3) rule) and non-encoded stream objects.

4. stream.pdf, stream2.pdf and stream3.pdf test several indirect objects containing
encoded stream contents.

On the other side, complete and public PDF files were also successfully parsed. It has to
be noted that only PDF objects of those files were parsed, because the rest of the PDF file
contents is discarded with the skip non pdf objects function. Still non supported features,
as well as further work on PDF objects parsing, is detailed in chapter 8.

Chapter 6

Documentation

Many documentation and other community efforts in a number of mediums have been done
during the development of this FDP. This chapter describes these efforts.

The chapter is organized as follows. First, the documentation work performed in GNU
PDF contributions, mainly in source code and library manuals, is described. Second, articles
written to spread the GNU PDF initiative in blogs and social networks are presented. Third,
supplied documentation on free and public databases, like the GNU PDF wiki and Wikipedia,
is shown. Finally, other work involving helping the GNU PDF community is depicted.

6.1 Source code documentation

The most low-level doumentation written during the FDP has been contributed in the source
code files. GNU PDF Hacker’s guide [27] has valuable tips on code documentation, such file
header structure or function naming conventions.

Additionally, almost each step or non-trivial operation developed has its corresponding
explanation note in the source code.

Examples

/* At this point all token readers point to the

* ’endstream’ token. Since they have to be moved ahead

* like in the initial state, we call init_parse_window

* just like then.

*/

init_parse_window ();

/* Initialize LA(0), LA(1) and LA(2) token readers */

init_parse_window ();

6.2 gnupdf.texi

gnupdf.texi is a key file in the GNU PDF Library source code tree. It contains the GNU
PDF Library Reference Manual [28]. It is written in the texinfo format. Texinfo [37] is
a typesetting syntax used for generating documentation in both on-line and printed form

104

CHAPTER 6. DOCUMENTATION 105

(creating filetypes as dvi, html, pdf, etc., and its own hypertext format, info) with a single
source file. It is implemented by a computer program released as free and open source software
of the same name, created and made available by the GNU Project from the Free Software
Foundation [69].

The GNU PDF Reference Manual has been updated with some contributions, the most
important consisting of the API modifications performed as a result of developing the UUID
module (see chapter 3).

6.3 Portable Document Features: A GNU PDF developer’s

blog

When this FDP began, a blog was opened to track the development of contributions: Portable
Document Features, A GNU PDF developer’s blog [48]. The blog features articles
with information about the GNU PDF project, developments documented previously in this
report, and links to important news in the GNU and PDF worlds.

Since it was opened on October 2010, it has been visited 1,456 times, with an average of
6.45 visitors per day (see figure 6.1). These visits came mainly from Spain, United States,
Germany, Switzerland and India (see figure 6.2). Visits came mainly from planet.gnu.org

referrals, because some news and links were posted there just after the blog opened. Google,
linuxgnublog.org and Facebook also sent a high number of visitors. The most visited post
of all time is Install GNU PDF library from source [47], a tutorial guide for newcomers and
all interested users to install the GNU PDF Library easy and quick on their systems.

Figure 6.1: Visits to the Portable Document Features blog, from October 2010 to June 2011 (figure
provided by Google Analytics).

6.4 Social Networks

Some spreading work has been done also on social networks, specially on Twitter. Relevant
content and news for the GNU PDF project was tweeted under the gnupdf or pdf hashtags.
All readers of Portable Document Features can also tweet directly references to articles by
clicking on the corresponding button in the article page.

6.5 GNU PDF Knowledge Database

Besides the GNU PDF Library and the Juggler, the GNU PDF project also wants to provide
free documentation about PDF technology [31]. This documentation is generated in a wiki

CHAPTER 6. DOCUMENTATION 106

Figure 6.2: Visits to the Portable Document Features blog, from October 2010 to June 2011, with
respect to the visit origin (figure provided by Google Analytics).

style, and it is known as the GNU PDF Knowledge Database [23]. From the GNU PDF project
page [31]: As we develop the GNU PDF Library we are generating free documentation about
many parts of the PDF specification, the several existing PDF standards, PDF implementation
issues, etc. That documentation is available in this webpage and organized into the PDF
Knowledge Database.

Many contributions have been made to this database during the development of this FDP.
The most important are located under the article PDF standards comparison [5], which is a
good summary of all the work performed in chapter 4. This standards comparison initiative
has generated a remarkable interest: since April 2011, it has received 3,159 visitors (see
figure 6.3). This means that the development of free PDF technologies seems attractive
to the current PDF user community, which have been looking for years a free replacement
for Adobe SDK (that is, a certified PDF library that complains with official standards and
specifications).

Figure 6.3: Visitors to the GNU PDF Knowledge Database article PDF standards comparison, which
compares the requirements found in some of the current, most used PDF standards and
specifications.

6.6 Wikipedia contributions

Some contributions have been also made to Wikipedia [71], most of them in the PDF article
[66]. These contributions consisted of making some corrections, adding technology information
and improving language in explanations.

CHAPTER 6. DOCUMENTATION 107

6.7 IRC community

The development of this FDP has been performed always standing connected to the #pdf

channel at irc.freenode.net. This was an unvaluable experience regarding two key issues
of the Free Software movement: to help others, and to obtain help from others.

On one hand, obtaining help was almost always related to programming the GNU PDF
Library. Regarding this, the GNU PDF community has some priceless hackers that, as
contributors and volunteers, always have time to answer almost any programming, PDF, or
project management question. Without their help, this FDP (and surely neither the GNU
PDF project) could not be possible.

On the other hand, as a newcomer there are less oportunities to give help than to obtain
it; but, however, there was a few of them. It is common that final users, instead of contributor
programmers, enter the channel (or the mailing list) and ask some question regarding PDF.
Assistance to these final users has been provided during the development of the project.

Chapter 7

Budget and execution

This chapter describes the budget and the execution of the project, as well as some data and
graphics regarding the execution of the project.

7.1 Budget

This section describes the budget of the project.

7.1.1 Software costs

No software licensing costs can be attributed to the project. The entire project is developed
using Free Software only.

7.1.2 Hardware costs

Required hardware consists of a desktop computer, a laptop, and a DSL connection during
four months (see table 7.1).

Item Price (e) Units Cost (e)

Desktop computer 1,598.00 1 1,598.00
Laptop 525.00 1 525.00
Montly DSL subscription 49,95 4 199.80

Total 2,322.80

Table 7.1: Budget for hardware costs.

7.1.3 Staff costs

Required staff consists of a programmer (see table 7.2). Price is given in a programmer per
hour salary basis, whilst units regard the total number of hours planned for the project. As
shown in section 7.2, the total working hours of the project were 624.

7.1.4 Final cost

The total budget of the project is shown in table 7.3.

108

CHAPTER 7. BUDGET AND EXECUTION 109

Item Price (e) Units Cost (e)

Programmer 35 624 21,840.00

Total 21,840.00

Table 7.2: Budget for staff costs.

Item Cost (e))

Software 0
Hardware 2,322.80
Staff 21,840.00

Total 24,162.80

Table 7.3: Budget for the project.

7.2 Execution

This section describes how the planning, timing and scheduling was finally run during the
project.

The Gantt chart representing the execution of this FDP, including all project stages and
substages, is shown in figure 7.1.

Figure 7.1: Gantt chart of the project.

The project was organised in five work packages: the UUID module, the conformance
tasks, the development of the parser, the writing of this report, and documentation and
diffusion.

As explained in chapter 2, section 2.6, the UUID module was the first task of the project,
and thus it started at the same date of the project start. Once it was developed enough,
though not completed, conformance and parser tasks began. For this reason, conformance
and parser development had a dependency on the UUID being almost finished. The parser
development took some more time resources than the conformance tasks, and thus the final
stages of the parser were performed after finishing the conformance issues.

Each work package consisted of a number of subtasks, which are detailed below.

7.2.1 UUID module

The UUID module consists of four iterations, as shown in figure 7.2.

CHAPTER 7. BUDGET AND EXECUTION 110

Figure 7.2: Gantt chart of the UUID module.

Each iteration reviews the results of the previous one, improving these results through
the patch submitting and reviewing method (see chapter 2, section 2.5.4). However, critical
stages like requirements analysis were performed only on the first iteration. Additionally, the
first iteration also included specification, design, implementation and testing, and this overall
approach made it require more developing time than the rest.

After the third iteration, the UUID module was in a stage advanced enough to allow
starting the development of the conformance tasks and the parser. Later, the fourth iteration
completed the UUID module.

7.2.2 Conformance tasks

The conformance tasks consisted of two stages: the comparison between an available standard
(PDF/A, [11]) and an Adobe specification (PDF 1.4), and the specification of a new module
in the base layer of the library, the conformance module. The schedule for these tasks is
shown in figure 7.3.

Figure 7.3: Gantt chart of the conformance tasks.

7.2.3 Parser development

The parser development comprised five stages: requirements, specification, design, implemen-
tation, and test, as shown in figure 7.4.

1. Requirements. In this phase the requirements for the PDF object parser were anal-
ysed.

2. Specification. In this stage the API of the parser was constructed, as well as the
necessary data types, modules and functions were studied. The available options for

CHAPTER 7. BUDGET AND EXECUTION 111

Figure 7.4: Gantt chart of the parser development.

the user of the parser utility were also introduced in this stage.

3. Design. This subtask consisted of important decisions regarding the parsing strategy
or algorithm, some consequences of the specification phase, such as the availability of
several options for the parser tool user, and the design of the parse window.

4. Implementation. In this task the parser was coded according with decisions made in
the previous stages.

5. Test. Finally, the parser needed to be tested to check if valid output was being generated
when valid input was provided.

7.2.4 Report and documentation

The fourth and fifth work packages of the project comprised the writing of this report, and
the generation of documentation and diffusion articles to spread the GNU PDF initiative.
Figure 7.5 shows when these tasks were performed.

Figure 7.5: Gantt chart of report and documentation writing.

Documentation and diffusion efforts were done during the entire development of the col-
laboration. Report writing could only be done when all previous work packages (that is, the
UUID module, the conformance tasks and the parser developmnet) were completely done.

7.2.5 Overall

All working hours were properly documented during the FDP. As showing the complete
records would result in a huge table, a more graphical depiction is presented in figure 7.6.
The chart shows that the highest amount of time was dedicated in during April, May and
June 2011, because more area is enclosed under the line in these dates. Despite this, the

CHAPTER 7. BUDGET AND EXECUTION 112

project efforts began on August and September 2010. The average dediaction per day was
5.47 hours, which is almost one hour higher than planned. The lowest dedication day consisted
of 1 working hour, whilst the most intesive day consisted of 13 working hours. The count of
working days was 114. Data shown in table 7.4 depicts how these hours were spent.

Figure 7.6: Chart of working hours used during the FDP.

Task Hours

UUID module 109
Conformance tasks 99
Parser development 163
Report 148
Documentation 20
Meetings 40
Project management 45

Total 624

Table 7.4: Time spent by task.

Chapter 8

Conclusions

This chapter gathers the conclusions of the project, as well as some further work.

8.1 Goals achieving

Generals goals listed in chapter 1 have been achieved completely. The process of learning how
to collaborate, interact, contribute and work with and for the GNU PDF community has been
fully learned. While contributing in free software frictions may occur between volunteers,
because everyone loves writing free software and is contributing in an altruistic manner,
and implicitly wants his or her work to be recognized by peers. The hackers communities
behavior has been studied at great length [45]. However, the development of this FDP has
been successful in this sense too. All the GNU PDF commuinty is very kind, grateful and
willing to help others. No discussion went outside of its matter regarding the project work,
programming or anything else, though obviously disagreements about programming happened
sometimes. The GNU PDF community is a very comfortable place to work mainly thanks to
the efforts and the excitement of José E. Marchesi and Aleksander Morgado.

Contributing the GNU PDF Library with source code was also achieved. As the ChangeLog
of the library show nowadays, patchs sent by the author were successfully applied to the main
branch, providing improvements in the base layer source code, the documentation, and the
build system. However, much of the effort reported in this FDP has not been integrated (yet)
to the main branch. The reason is that the conformance module and the PDF object parser
were developed outside of the common framework of GNU PDF contributions (see chapter
1, section 1.2). This code is being currently reviewed and refactored to adapt it to the GNU
PDF tasks management.

The study of the PDF language, standards and specifications has been also successful.
At the beginning, dealing with the PDF mess was a difficult task to do. Even the GNU
PDF Knowledge Database [23] encouradged volunteers to read, study and understand how
and where PDF specifications, standards, subsets and others fit. This has been developed
extensively in chapter 4. The PDF language has been understood completely, as well as for-
matting PDF files and the logical structure of PDF documents. The importance of providing
a standard-compliant PDF library has been realised, performing the first steps on standard
comparison. A proposal for a compliance module API to achieve the GNU PDF goal of
providing standard-compliant facilities has been also given.

The community of GNU PDF developers, as well as general PDF users, has been helped

113

CHAPTER 8. CONCLUSIONS 114

during the development, mainly in the pdf-devel mailing list and #pdf@irc.freenode.net.
The GNU PDF initiative has been spread through Twitter, the project website [31], and the
blog of this FDP [48].

Regarding the specific goals, the UUID module has been provided and applied to the
main branch successfully. It took four iterations, as planned in chapter 7. The UUID did
not have a significant amount of code, but it does what is needed from it: provides time-
based and random-based UUID generation, ASCII representation, and UUID comparison.
As explained in chapter 3, implementation did not consist of coding these functionalities
from scratch; it consisted of linking an existing library, libuuid, which was already providing
these functionalities, to the GNU PDF Library, adapting the GNU Build System and writing
a layer that maps the GNU PDF Library API with the libuuid API. The development of
this module helped to better understand the organisation and methodology of GNU PDF, to
learn how to develop for a free software project, to apply coding conventions, and to discuss
solutions with the rest of the community.

The roadmap for making the GNU PDF Library fully standard compliant has been es-
tablished. In the second work package, three main goals were achieved:

1. A complete requirements comparison between PDF 1.4 and PDF/A (ISO 19005-1:2005
[11]) was performed (see appendix C).

2. Next, a formalisation of the mapping between conformace levels and requirements was
performed and published [5].

3. Finally, as an extension of previous items the API of a conformance module located in
the base layer was provided.

A PDF object parser was developed and brought to the community. This parser covers the
syntax analysis of any given PDF object with an adapted LL(1) algorithm and using an also
provided EBNF LL(1) grammar (excepting a single rule, which is LL(3)), written from scratch
directly meeting official ISO 32000-1:2008 [2] specifications. The PDF object parser runs in
O(n) time, where n equals the length of the input (the PDF object). The parser development
encountered many issues, such as the lookahead requirements that lead to extend the parsing
window, and the parallel developing of the required AST structure in the pdf obj t data
type. These and other issues are discused in the further work. Additional difficulties where
found while parsing PDF stream objects. In these kind of objects, binary data must be read
by the parser, just until the binary content ends with the keyword endstream. The issue was
that this keyword can appear inside the stream content itself, nullifying its feature of being
a delimiter. The solution is to use a property that must be specified in the dictionary of
all stream objects: the Length key. The value of this key is the total length of the stream,
measured in bytes. It is also the valid length for the stream that must be considered by
standard conformant readers. With the GNU PDF community support, it was decided to use
this value to process properly stream contents. The consequence of doing so is that it enters
the domain of the semantic processor: a syntax checker should never consider the values of
the tokens read to determine if the input is valid or not; only the arrangement of these tokens
should be relevant. However, the weak requirements on streams syntax forced this decision.

This last issue can be compared with the only LL(3) rule in the PDF objects grammar, in
the sense that both come directly from the PDF language definition. As explained in chapter
5, the lookahead must be extended to three tokens because the syntax of atomic objects make

CHAPTER 8. CONCLUSIONS 115

the decision between integer objects and indirect references ambiguous. This could be solved
changing the language itself, maybe introducing an extra keyword or delimiter to express an
indirect reference, and thus never confusing its first integer with an isolated integer object.
The same applies for stream contents, where a more strict syntax may not force the reader to
use the semantic property Length. Surely, these two issues have been identified in the past.
However, legacy compatibility with all versions of PDF, including old versions, makes very
difficult to modify the base language of PDF objects to correct these points.

Regarding the documentation work, all developments have been appropriately documented
during the project, specially in the GNU PDF Knowledge Database, the GNU PDF Reference
Manual, and Wikipedia [23, 28, 66].

8.2 Further work

There is still a lot of work to do in GNU PDF regarding semantic and syntax processing.
From a point of view, the proposal on the conformance module can be seen as a particular

stage of the overall semantic cheking. Though PDF object syntax is the same for all PDF
dialects (and, as a consequence of this, the provided grammar in chapter 5 is valid for any
given PDF specification or standard), the contents of these objects may be not. As it has
been shown in chapter 4, particular standards restrict values of PDF objects in some cases
(for instance, a stream dictionary shall not contain the F key in PDF/A). These are, in
fact, restrictions that the semantic processor must consider. And, as it has been shown [5],
restrictions depend on the conformance level that the user wants to apply to the PDF file.
Hence, a complete comparison of all requirements found in all PDF speficiations and standards
has to be included inside the GNU PDF Library, in order to make it completely standard and
specification aware. Regarding this, two major steps shall be done in the future:

1. To improve the provided conformance module API speficiation, with collaboration of
all the GNU PDF community. After this, the conformance module should be split in
several sub-modules, and the development cycle should begin creating corresponding
tasks in the flyspray manager.

2. To complete the table provided in the GNU PDF Knowledge Database [23]. This is a key
task to do to make the GNU PDF Library fully standards conformant. For the moment,
the comparison table compares successfully PDF/A with PDF 1.4. However, the rest
of studied specifications and standards shown in chapter 4 have still to be included.
This is a hard and arduous task, though very illustrative; everything about the PDF
language and dialects can be learnt from these documents. Additionally, this task may
be expensive: though being official and public, ISO standards have to be previously
bought to the organisation, usually at a high price. The Free Software Foundation is
specially involved in this, and despite being a slow process, it buys any standard that
the developers may need to bring freedom to software.

With a working conformance module, on one hand, and a complete table mapping re-
quirements and conformance levels, on the other hand, the GNU PDF Library will be surely
in its way to pass a further standard certification process.

The syntax process can be improved, too. For the moment, PDF objects can be syntac-
tically checked with the developed parser with some restrictions:

CHAPTER 8. CONCLUSIONS 116

1. No AST is returned as output, though the points where and how it should be generated
are commented. The AST structure depends on the pdf obj t data type, which is being
developed by another contributor in parallel and it is still not available.

2. The content of PDF stream objects is not being processed. The current behavior is skip-
ping those usually encoded (and octet represented) contents. The same previous reason
applies: the content of stream objects must be processed by pdf obj t functionalities,
still under development.

3. Processing the cross-reference table was out of the scope of the PDF object parser.
Hence, stream objects whose length is specified with an indirect reference (to another
PDF object) are not supported. This feature will be fixed when the PDF file parser
(which includes a cross-reference table processor) is developed, because a data type
holding the cross-reference table information will let the programmer access data of any
referenced PDF object.

4. Error recovering should be performed in a later stage, also when a more complete
representation of all the contents of a PDF file is available for the library programmers.

It is clear that these four issues constitute further work that must be developed in the
short term. Only two dependencies must be met: the completion of the tasks regarding
the pdf obj t data type, and the development of a PDF file parser (which also needs the
pdf obj t data type to be fully functional).

8.3 Closing remarks

Contributions made in the base layer through the development of the UUID module made the
contributor realise that free/open source software projects commonly use their own develop-
ment methodologies. The process of developing the UUID module arose an easy and effective
methodology that is depicted in figure 8.1. This cycle consists of four stages, beginning with
coding, which is performed by the contributor alone. When his or her contributions are
ready, they are packaged in a patch, which is sent to the community (in the GNU PDF case,
through the pdf-devel mailing list). Then, the community performs the review. This can
result in two different situations. In the first situation, the patch is refused by some reason.
The community discusses the patch contents, and provide tips, advices and improvements
to the contributor, in order to polish it. In this case, the subcycle starts again with a new
coding iteration, where the contributor tries to integrate all community (and his or her own)
suggestions. In the second situation, after the review the community accepts the patch, it is
applied to the main development branch, and its improvements are permanently available to
the rest of the community.

Despite the quick development of Agile Software Development [56], this iterative, incre-
mental approach differs from methodologies taught by Software Engineering until the last
recent years. Differences between classical Software Engineering (SE) methodologies and
Free/Open Source Software Development (FOSSD) methodologies have been largely discussed
[51], but also recently adopted [50] by SE practices.

It is difficult to evaluate which aspects of the project bore most fruit, but probably the
standards comparison (with an increasing visit count, see chapter 6), consisting of the API
proposal for a conformance module, and the PDF object parser brought the more interesting

CHAPTER 8. CONCLUSIONS 117

Figure 8.1: The GNU PDF contributing methodology. The horizontal axis contains contributor
activities, while the vertical axis contains community activities.

results. The applied methodology worked well, and helped to achieve all goals of the project.
However, some planned activities took less time to complete, and some others took more, and
thus the schedule had some mismatches between what was planned and how it was executed.
If the project had to start again, it should be necessary to assign more hours to the report
writing, and some time assigned to the development of the UUID module should be reduced.

Despite this, the project ended successfully from almost all points of view, achieving its
goals and, more important, contributing the GNU PDF project with key features such basic
types support, conformance awareness and syntax processing. However, there is still a lot of
work to do. And this work does not only point to semantic or syntactic processing. The GNU
PDF Library was created following the same architecture than the Adobe SDK, in an intent to
facilitate users transition from current privative conformant PDF tools, to a true free software
support for PDF technologies. This architecture is far from being complete and, though slow,
firm and consistent steps are being constantly done to achieve the GNU PDF main goals. In
the low term, the base layer (including the conformance support) and the object layer should
be fully functional. This will allow programmers to process the whole contents of PDF files,
storing them in appropriate data structures in memory, and processing them properly. In
the mid term, the most interesting layers from the external library programmer, as well as
the external applications using the GNU PDF Library, is to develop widely the document
and the page contents layers; that is, finishing the main work with the GNU PDF Library.
When this stage arrives, it will be possible to state that PDF technologies are supported
by Free Software; but not before. In this ideal situation, that will surely come, the whole
community will be able to adapt their programs and applications to a free, high-quality,
complete and portable PDF library, certified to be conformant with official PDF standards
and, consequently, providing the same functionalities the Adobe SDK does. This scenario sets
up the long term for the GNU PDF project, which plans to develop its own PDF suite, the
GNU Juggler. The GNU Juggler will be a full-fledged PDF viewer and editor making use
of the GNU PDF Library, providing final users, industries and governments with all standard

CHAPTER 8. CONCLUSIONS 118

PDF technology and functionalities.
Hence, in this hopefully near future the GNU PDF project would have helped users and

the whole society to be more free. For example, users would have the guarantee that the PDF
forms used by public administrations are being read and written with transparent, open, ac-
cessible, conformance-aware and high-quality software. Enthusiastic readers of eBooks would
have their devices operating with free software only, which ensures them to be using efficient,
well ported, standard compliant and freedom respectful software to read their favourite books.
The efforts of the Free Software community, as well as the excitement and altruism of GNU
PDF volunteers and contributors, are putting the GNU PDF project in the right way to bring
full freedom and conformance to PDF implementations to the computing world.

Bibliography

[1] Inc. Adobe Systems. Creating PDF/E-ready files. http://www.adobe.com/enterprise/
pdfs/pdf-eready-guide-ue.pdf, 2008. [Online; accessed 5-May-2011].

[2] Inc. Adobe Systems. Document management - Portable document format - Part 1: PDF
1.7. http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/

pdf/pdfs/PDF32000_2008.pdf, 2008. [Online; accessed 20-October-2010].

[3] Inc. Adobe Systems. Extensible Metadata Platform (xmp). http://www.adobe.com/

products/xmp/, 2011. [Online; accessed 21-June-2011].

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques,
and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[5] Inc. Albert Meroño Peñuela, Free Software Foundation. PDF standards comparison.
http://www.gnupdf.org/Standards_comparison, 2011. [Online; accessed 14-May-
2011].

[6] José Miguel Rivero Almeida. Syntactic analysis notes. Compilers, FIB-UPC. http://

www.lsi.upc.edu/~rivero/cl.html, 2011. [Online; accessed 11-May-2011].

[7] Fredrik Hugosson Arien Malec, Chris Pickett and Robert Lemmen. Check: A unit testing
framework for C. http://check.sourceforge.net/, 2011. [Online; accessed 16-June-
2011].

[8] Valgrind Developers. Valgrind. http://valgrind.org/, 2011. [Online; accessed 20-
March-2011].

[9] Facultat d’Informàtica de Barcelona. Degree subject curriculum. http://www.fib.

upc.edu/en/estudiar-enginyeria-informatica/grau.html, 2011. [Online; accessed
15-June-2011].

[10] Kurt Wall et al. Linux Programming Unleashed. Sams, Indianapolis, IN, USA, 2nd
edition, 2000.

[11] International Organization for Standardization. Document management. Electronic doc-
ument file format for long-term preservation. Part 1: Use of PDF 1.4 (PDF/A-1), 2005.

[12] International Organization for Standardization. Document management. Engineering
document format using PDF. Part 1: Use of PDF 1.6 (PDF/E-1), 2008.

[13] International Organization for Standardization. Graphic technology. Variable data ex-
change. Part 2: Using PDF/X-4 and PDF/X-5 (PDF/VT-1 and PDF/VT-2), 2010.

119

http://www.adobe.com/enterprise/pdfs/pdf-eready-guide-ue.pdf
http://www.adobe.com/enterprise/pdfs/pdf-eready-guide-ue.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf
http://www.adobe.com/products/xmp/
http://www.adobe.com/products/xmp/
http://www.gnupdf.org/Standards_comparison
http://www.lsi.upc.edu/~rivero/cl.html
http://www.lsi.upc.edu/~rivero/cl.html
http://check.sourceforge.net/
http://valgrind.org/
http://www.fib.upc.edu/en/estudiar-enginyeria-informatica/grau.html
http://www.fib.upc.edu/en/estudiar-enginyeria-informatica/grau.html

BIBLIOGRAPHY 120

[14] International Organization for Standardization. Document management applications.
Electronic document file format enhancement for accessibility. Part 1: Use of ISO 32000-
1 (PDF/UA-1), 2011.

[15] Internet Engineering Task Force. RFC 4122 - A Universally Unique IDentifier (UUID)
URN Namespace. http://www.ietf.org/rfc/rfc4122.txt, 2005. [Online; accessed
21-October-2010].

[16] Open Software Foundation. UUIDs and GUIDs. http://www.opengroup.org/dce/

info/draft-leach-uuids-guids-01.txt, 1998. [Online; accessed 21-October-2010].

[17] Inc. Free Software Foundation. Bison - GNU parser generator. http://www.gnu.org/

software/bison/, 2011. [Online; accessed 14-Apr-2011].

[18] Inc. Free Software Foundation. Copyright papers. http://www.gnu.org/prep/

maintain/html_node/Copyright-Papers.html, 2011. [Online; accessed 16-June-2011].

[19] Inc. Free Software Foundation. Free Software Foundation. http://www.fsf.org/, 2011.
[Online; accessed 15-June-2011].

[20] Inc. Free Software Foundation. The GNU Build System. http://www.gnu.org/s/

hello/manual/autoconf/The-GNU-Build-System.html, 2011. [Online; accessed 14-
May-2011].

[21] Inc. Free Software Foundation. GNU Coding Standards. http://www.gnu.org/prep/

standards/, 2011. [Online; accessed 15-May-2011].

[22] Inc. Free Software Foundation. GNU PDF Goals and Motivations. http://www.gnupdf.
org/Goals_and_Motivations, 2011. [Online; accessed 19-June-2011].

[23] Inc. Free Software Foundation. GNU PDF knowledge database. http://www.gnupdf.

org/Category:PDF, 2011.

[24] Inc. Free Software Foundation. GNU PDF Library API Consistency Report. http://

www.gnupdf.org/prmgt/apic.html, 2011. [Online; accessed 19-June-2011].

[25] Inc. Free Software Foundation. GNU PDF Library Architecture Guide. http://gnupdf.
org/manuals/gnupdf-arch-manual/gnupdf-arch.html, 2011. [Online; accessed 16-
June-2011].

[26] Inc. Free Software Foundation. GNU PDF Library Cyclomatic Complexity Report.
http://www.gnupdf.org/prmgt/cyclo.html, 2011. [Online; accessed 19-June-2011].

[27] Inc. Free Software Foundation. GNU PDF Library Hackers Guide. http://gnupdf.org/
manuals/gnupdf-hg-manual/gnupdf-hg.html, 2011. [Online; accessed 14-May-2011].

[28] Inc. Free Software Foundation. GNU PDF Library Reference Manual. http://gnupdf.
org/manuals/gnupdf-manual/gnupdf.html#UUIDs, 2011. [Online; accessed 14-May-
2011].

[29] Inc. Free Software Foundation. GNU PDF Library Unit Testing Report. http://www.

gnupdf.org/prmgt/ut.html, 2011. [Online; accessed 19-June-2011].

http://www.ietf.org/rfc/rfc4122.txt
http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/
http://www.gnu.org/prep/maintain/html_node/Copyright-Papers.html
http://www.gnu.org/prep/maintain/html_node/Copyright-Papers.html
http://www.fsf.org/
http://www.gnu.org/s/hello/manual/autoconf/The-GNU-Build-System.html
http://www.gnu.org/s/hello/manual/autoconf/The-GNU-Build-System.html
http://www.gnu.org/prep/standards/
http://www.gnu.org/prep/standards/
http://www.gnupdf.org/Goals_and_Motivations
http://www.gnupdf.org/Goals_and_Motivations
http://www.gnupdf.org/Category:PDF
http://www.gnupdf.org/Category:PDF
http://www.gnupdf.org/prmgt/apic.html
http://www.gnupdf.org/prmgt/apic.html
http://gnupdf.org/manuals/gnupdf-arch-manual/gnupdf-arch.html
http://gnupdf.org/manuals/gnupdf-arch-manual/gnupdf-arch.html
http://www.gnupdf.org/prmgt/cyclo.html
http://gnupdf.org/manuals/gnupdf-hg-manual/gnupdf-hg.html
http://gnupdf.org/manuals/gnupdf-hg-manual/gnupdf-hg.html
http://gnupdf.org/manuals/gnupdf-manual/gnupdf.html#UUIDs
http://gnupdf.org/manuals/gnupdf-manual/gnupdf.html#UUIDs
http://www.gnupdf.org/prmgt/ut.html
http://www.gnupdf.org/prmgt/ut.html

BIBLIOGRAPHY 121

[30] Inc. Free Software Foundation. GNU PDF pdf-devel mailing list archives. http://

lists.gnu.org/archive/html/pdf-devel/, 2011. [Online; accessed 21-June-2011].

[31] Inc. Free Software Foundation. GNU PDF project. http://www.gnupdf.org/Main_

Page, 2011. [Online; accessed 18-April-2011].

[32] Inc. Free Software Foundation. GNU PDF Tasks Management. http://

gnupdf.org/manuals/gnupdf-hg-manual/html_node/Tasks-management.html#

Tasks-management, 2011. [Online; accessed 17-June-2011].

[33] Inc. Free Software Foundation. The GNU Portability Library Reference Manual. http://
www.gnu.org/s/hello/manual/autoconf/The-GNU-Build-System.html, 2011. [On-
line; accessed 27-May-2011].

[34] Inc. Free Software Foundation. High Priority Free Software Projects. http://www.fsf.
org/campaigns/priority-projects/, 2011. [Online; accessed 20-September-2010].

[35] Inc. Free Software Foundation. Information for Newcomers. http://gnupdf.

org/manuals/gnupdf-hg-manual/html_node/Information-for-Newcomers.html#

Information-for-Newcomers, 2011. [Online; accessed 15-June-2011].

[36] Inc. Free Software Foundation. Introduction to PDF. http://www.gnupdf.org/

Introduction_to_PDF, 2011. [Online; accessed 14-May-2011].

[37] Inc. Free Software Foundation. Texinfo - The GNU Documentation System. http://

www.gnu.org/software/texinfo/, 2011. [Online; accessed 9-June-2011].

[38] Inc. Free Software Foundation. Why assign. http://www.gnu.org/licenses/

why-assign.html, 2011. [Online; accessed 16-June-2011].

[39] Freedesktop.org. Poppler. http://poppler.freedesktop.org/, 2011. [Online; accessed
9-June-2011].

[40] Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler. http://dinosaur.

compilertools.net/yacc/, 2011. [Online; accessed 14-Apr-2011].

[41] Canonical Ltd. Bazaar. http://bazaar.canonical.com/en/, 2011. [Online; accessed
17-June-2011].

[42] Unix Software Technologies Open Source Software Project. OSSP uuid. http://www.

ossp.org/pkg/lib/uuid/, 2011. [Online; accessed 20-March-2011].

[43] Terence Parr. The ANTLR Parser Generator. http://www.antlr.org/about.html,
2011. [Online; accessed 14-Apr-2011].

[44] Terence Parr. PCCTS 1.33. http://www.antlr2.org/pccts133.html, 2011. [Online;
accessed 14-Apr-2011].

[45] Linus Torvalds (Contributor) Pekka Himanen, Manuel Castells (Epilogue). The Hacker
Ethic and the Spirit of the Information Age. Random House, 2001.

[46] Albert Meroño Peñuela. Home page. http://www.albertmeronyo.com/, 2011. [Online;
accessed 21-June-2011].

http://lists.gnu.org/archive/html/pdf-devel/
http://lists.gnu.org/archive/html/pdf-devel/
http://www.gnupdf.org/Main_Page
http://www.gnupdf.org/Main_Page
http://gnupdf.org/manuals/gnupdf-hg-manual/html_node/Tasks-management.html#Tasks-management
http://gnupdf.org/manuals/gnupdf-hg-manual/html_node/Tasks-management.html#Tasks-management
http://gnupdf.org/manuals/gnupdf-hg-manual/html_node/Tasks-management.html#Tasks-management
http://www.gnu.org/s/hello/manual/autoconf/The-GNU-Build-System.html
http://www.gnu.org/s/hello/manual/autoconf/The-GNU-Build-System.html
http://www.fsf.org/campaigns/priority-projects/
http://www.fsf.org/campaigns/priority-projects/
http://gnupdf.org/manuals/gnupdf-hg-manual/html_node/Information-for-Newcomers.html#Information-for-Newcomers
http://gnupdf.org/manuals/gnupdf-hg-manual/html_node/Information-for-Newcomers.html#Information-for-Newcomers
http://gnupdf.org/manuals/gnupdf-hg-manual/html_node/Information-for-Newcomers.html#Information-for-Newcomers
http://www.gnupdf.org/Introduction_to_PDF
http://www.gnupdf.org/Introduction_to_PDF
http://www.gnu.org/software/texinfo/
http://www.gnu.org/software/texinfo/
http://www.gnu.org/licenses/why-assign.html
http://www.gnu.org/licenses/why-assign.html
http://poppler.freedesktop.org/
http://dinosaur.compilertools.net/yacc/
http://dinosaur.compilertools.net/yacc/
http://bazaar.canonical.com/en/
http://www.ossp.org/pkg/lib/uuid/
http://www.ossp.org/pkg/lib/uuid/
http://www.antlr.org/about.html
http://www.antlr2.org/pccts133.html
http://www.albertmeronyo.com/

BIBLIOGRAPHY 122

[47] Albert Meroño Peñuela. Install GNU PDF library from source. http://blog.

albertmeronyo.com/?p=19, 2011.

[48] Albert Meroño Peñuela. Portable Document Features, a GNU PDF developer’s blog.
http://blog.albertmeronyo.com/, 2011.

[49] Eric S. Raymond. The Cathedral and the Bazaar. http://www.catb.org/~esr/

writings/cathedral-bazaar/cathedral-bazaar/, 2011. [Online; accessed 17-June-
2011].

[50] Suzanne Robertson and James Robertson. Mastering the Requirements Process (2nd
Edition). Addison-Wesley Professional, 2006.

[51] Walt Scacchi. When Is Free/Open Source Software Development Faster, Beter, and
Cheaper than Software Engineering? http://www.ics.uci.edu/~wscacchi/Papers/

New/Scacchi-BookChapter.pdf, 2004. [Online; accessed 19-June-2011].

[52] Steve Summit. C Programming. http://c-faq.com/~scs/cclass/int/sx5.html,
1996-1999. [Online; accessed 12-May-2011].

[53] Theodore Ts’o. e2fsprogs. http://e2fsprogs.sourceforge.net/, 2011. [Online; ac-
cessed 20-March-2011].

[54] Jr. Allen B. Tucker and Robert E. Noonan. Programming Languages: Principles and
Paradigms. McGraw-Hill Higher Education, 1st edition, 2001.

[55] International Telecommunication Union. ITU X.667 - Generation and registration of
Universally Unique Identifiers (UUIDs) and their use as ASN.1 object identifier com-
ponents. http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf, 2004.
[Online; accessed 21-October-2010].

[56] Wikipedia. Agile software development — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Agile_software_development&

oldid=433418611, 2011. [Online; accessed 20-June-2011].

[57] Wikipedia. Buffer overflow. http://en.wikipedia.org/wiki/Buffer_overflow, 2011.
[Online; accessed 30-May-2011].

[58] Wikipedia. Cyclomatic complexity — Wikipedia, The Free Encyclopedia. http://

en.wikipedia.org/w/index.php?title=Cyclomatic_complexity&oldid=432737831,
2011. [Online; accessed 17-June-2011].

[59] Wikipedia. Extensible Metadata Platform — Wikipedia, The Free Ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Extensible_Metadata_

Platform&oldid=432523749, 2011. [Online; accessed 21-June-2011].

[60] Wikipedia. File format — Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/w/index.php?title=File_format&oldid=431357757, 2011. [Online; accessed 5-
June-2011].

[61] Wikipedia. GNU build system — Wikipedia, The Free Encyclopedia. http://

en.wikipedia.org/w/index.php?title=GNU_build_system&oldid=422097679, 2011.
[Online; accessed 22-May-2011].

http://blog.albertmeronyo.com/?p=19
http://blog.albertmeronyo.com/?p=19
http://blog.albertmeronyo.com/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-BookChapter.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-BookChapter.pdf
http://c-faq.com/~scs/cclass/int/sx5.html
http://e2fsprogs.sourceforge.net/
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf
http://en.wikipedia.org/w/index.php?title=Agile_software_development&oldid=433418611
http://en.wikipedia.org/w/index.php?title=Agile_software_development&oldid=433418611
http://en.wikipedia.org/wiki/Buffer_overflow
http://en.wikipedia.org/w/index.php?title=Cyclomatic_complexity&oldid=432737831
http://en.wikipedia.org/w/index.php?title=Cyclomatic_complexity&oldid=432737831
http://en.wikipedia.org/w/index.php?title=Extensible_Metadata_Platform&oldid=432523749
http://en.wikipedia.org/w/index.php?title=Extensible_Metadata_Platform&oldid=432523749
http://en.wikipedia.org/w/index.php?title=File_format&oldid=431357757
http://en.wikipedia.org/w/index.php?title=File_format&oldid=431357757
http://en.wikipedia.org/w/index.php?title=GNU_build_system&oldid=422097679
http://en.wikipedia.org/w/index.php?title=GNU_build_system&oldid=422097679

BIBLIOGRAPHY 123

[62] Wikipedia. Lookahead — Wikipedia, The Free Encyclopedia. http://en.wikipedia.

org/w/index.php?title=Lookahead&oldid=423190618, 2011. [Online; accessed 9-
June-2011].

[63] Wikipedia. PDF/E — Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/
w/index.php?title=PDF/E&oldid=414801439, 2011. [Online; accessed 5-May-2011].

[64] Wikipedia. PDF/VT — Wikipedia, The Free Encyclopedia. http://en.wikipedia.

org/w/index.php?title=PDF/VT&oldid=422625044, 2011. [Online; accessed 1-June-
2011].

[65] Wikipedia. PDF/X — Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/
w/index.php?title=PDF/X&oldid=427208474, 2011. [Online; accessed 5-May-2011].

[66] Wikipedia. Portable document format — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Portable_Document_Format&

oldid=427176991, 2011. [Online; accessed 5-May-2011].

[67] Wikipedia. Reentrant (computing) — Wikipedia, The Free Encyclopedia. http://

en.wikipedia.org/w/index.php?title=Reentrant_(computing)&oldid=427458204,
2011. [Online; accessed 30-May-2011].

[68] Wikipedia. Requirement — Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/w/index.php?title=Requirement&oldid=430638189, 2011. [Online; accessed 3-
June-2011].

[69] Wikipedia. Texinfo — Wikipedia, The Free Encyclopedia. http://en.wikipedia.

org/w/index.php?title=Texinfo&oldid=424910847, 2011. [Online; accessed 11-June-
2011].

[70] Wikipedia. Universally unique identifier — Wikipedia, The Free Ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Universally_unique_

identifier&oldid=422065783, 2011. [Online; accessed 3-April-2011].

[71] Wikipedia. Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Main_

Page, 2011.

http://en.wikipedia.org/w/index.php?title=Lookahead&oldid=423190618
http://en.wikipedia.org/w/index.php?title=Lookahead&oldid=423190618
http://en.wikipedia.org/w/index.php?title=PDF/E&oldid=414801439
http://en.wikipedia.org/w/index.php?title=PDF/E&oldid=414801439
http://en.wikipedia.org/w/index.php?title=PDF/VT&oldid=422625044
http://en.wikipedia.org/w/index.php?title=PDF/VT&oldid=422625044
http://en.wikipedia.org/w/index.php?title=PDF/X&oldid=427208474
http://en.wikipedia.org/w/index.php?title=PDF/X&oldid=427208474
http://en.wikipedia.org/w/index.php?title=Portable_Document_Format&oldid=427176991
http://en.wikipedia.org/w/index.php?title=Portable_Document_Format&oldid=427176991
http://en.wikipedia.org/w/index.php?title=Reentrant_(computing)&oldid=427458204
http://en.wikipedia.org/w/index.php?title=Reentrant_(computing)&oldid=427458204
http://en.wikipedia.org/w/index.php?title=Requirement&oldid=430638189
http://en.wikipedia.org/w/index.php?title=Requirement&oldid=430638189
http://en.wikipedia.org/w/index.php?title=Texinfo&oldid=424910847
http://en.wikipedia.org/w/index.php?title=Texinfo&oldid=424910847
http://en.wikipedia.org/w/index.php?title=Universally_unique_identifier&oldid=422065783
http://en.wikipedia.org/w/index.php?title=Universally_unique_identifier&oldid=422065783
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page

Appendix A

FSF licensing

The FSF requires some papers to be signed by contributors of GNU projects. This appendix
gathers pictures and reproductions of these documents.

Figure A.1: Envelope of the FSF copyright assignment letter.

124

APPENDIX A. FSF LICENSING 125

Figure A.2: Contents of the FSF copyright assignment letter (sticker included!).

APPENDIX A. FSF LICENSING 126

Figure A.3: FSF copyright assignment (1/2).

APPENDIX A. FSF LICENSING 127

Figure A.4: FSF copyright assignment (2/2).

APPENDIX A. FSF LICENSING 128

DISCLAIMER OF RIGHTS BY A COLLEGE OR UNIVERSITY

We agree that software and other authored works of the ’Released

Category’ (defined below), made by _________________________, a

student or graduate student at this school, prior to the date of this

document, and for _____ years thereafter, are freely assignable by

said student to Free Software Foundation (FSF) for distribution and

sharing under its free software policies. We disclaim any status as

the author or owner of such works; we do not consider them as works

made for hire for us.

The Released Category comprises

(a) changes and enhancements to software already (as of the time such

change or enhancement is made) freely circulating under stated terms

permitting public redistribution, whether in the public domain, or

under the FSF’s GNU General Public License, or under the FSF’s GNU

Lesser General Public License (a.k.a. the GNU Library General Public

License), or under other such terms; and

(b) operating system components for operating systems providing

substantially the same functionality as portions of UNIX, BSD,

Microsoft Windows, or other popular operating systems.

The Released Category excludes ______________________ [if ’none’,

please so state; thank you--FSF].

Figure A.5: FSF university disclaimer (1/2).

APPENDIX A. FSF LICENSING 129

We affirm that we will do nothing in the future to undermine this

release. If we have or acquire hereafter any proprietary interest

(including, without limitation, any patent or copyright interest)

dominating the works, or the programs to which these works constitute

changes and enhancements, or use of those programs, then the Free Software

Foundation and the general public will be permanently and irrevocably

licensed to use, in these works and in the programs they enhance,

without royalty or limitation, the subject matter of the dominating the

works, or the programs to which these works constitute changes and

enhancements, or use of those programs, then the Free Software

Foundation and the general public will be permanently and irrevocably

licensed to use, in these works and in the programs they enhance,

without royalty or limitation, the subject matter of the dominating

interest.

We make no warranty as to the quality of the material or as to

the presence or absence of rights therein of any other party, and we

do not purport to disclaim, release or grant any rights other than our

own.

Given as a sealed instrument this ___ day of ______, 20__.

signed:___________________________,

___________________________, (PLEASE PRINT YOUR NAME)

___________________________ (title) of

___________________________ (name of institution),

Figure A.6: FSF university disclaimer (2/2).

Appendix B

Licensing notes of UUID libraries

B.1 libbuid in e2fsprogs

/*

* gen_uuid.c --- generate a DCE-compatible uuid

*

* Copyright (C) 1996, 1997, 1998, 1999 Theodore Ts’o.

*

* %Begin-Header%

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, and the entire permission notice in its entirety,

* including the disclaimer of warranties.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. The name of the author may not be used to endorse or promote

* products derived from this software without specific prior

* written permission.

*

* THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF

* WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE

* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

* USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH

* DAMAGE.

130

APPENDIX B. LICENSING NOTES OF UUID LIBRARIES 131

* %End-Header%

*/

B.2 OSSP uuid

/*

** OSSP uuid - Universally Unique Identifier

** Copyright (c) 2004-2008 Ralf S. Engelschall <rse@engelschall.com>

** Copyright (c) 2004-2008 The OSSP Project <http://www.ossp.org/>

**

** This file is part of OSSP uuid, a library for the generation

** of UUIDs which can found at http://www.ossp.org/pkg/lib/uuid/

**

** Permission to use, copy, modify, and distribute this software for

** any purpose with or without fee is hereby granted, provided that

** the above copyright notice and this permission notice appear in all

** copies.

**

** THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND ANY EXPRESSED OR IMPLIED

** WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

** IN NO EVENT SHALL THE AUTHORS AND COPYRIGHT HOLDERS AND THEIR

** CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

** USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

** OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

** OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

** SUCH DAMAGE.

**

** uuid.c: library API implementation

*/

Appendix C

PDF/A vs PDF 1.4 requirements

This appendix describes the differences between ISO 19005-1:2005 (from now, refered as
PDF/A as well), which describes the PDF/A-1a and PDF/A-1b conformance levels, and the
non-standardized document PDF Reference, Third edition (from now, refered as PDF 1.4 as
well), from Adobe, which describes the PDF 1.4 format, in terms of requirements alignment.

Constraints described in PDF/A restrict the overall capabilities offered by PDF 1.4, in or-
der to ensure that PDF/A compliant files contain features that are stricly needed for archiving
purposes only.

The following subsections are equivalent to those described in the ISO 19005-1:2005 doc-
ument. For each subsection, requirements are uniquely identified by a requirement identifier,
which follows the format

[document-reference section paragraph]

where:

• document-reference is a reference for the document that contains the requirement
description (e.g. ISO 19005-1:2005).

• section is a reference for the section in document-reference that contains the require-
ment description (e.g. 6.1.3).

• paragraph is a list of comma-separated numbers that identify the paragraphs in section
that contain the requirement description (e.g. 1).

For instance, the following requirement for file trailer dictionary

The file trailer dictionary shall contain the ID keyword.

is uniquely identified with requirement identifier [ISO19005-1:2005 6.1.3 1].
Note that only non-aligned requirements are shown here. This should not happen because

PDF subset standards shall constraint whole PDF specifications (e.g. PDF/A vs PDF 1.4).
This is not true for all requirements contained in PDF subset standards. Often, PDF subset
standards contain requirements that are totally aligned with the PDF specification; some-
times, the difference is just a matter of semantics, as both requirements mean exactly the
same (e.g concepts such as end-of-line character and new line are confusingly merged). Thus,
PDF subset standards can not, at least formally, be considered as a set of pure restrictions,
since they contain both restrictions and redundant, repeated or obvious requirements. These
last are not discused in this report.

132

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 133

C.1 File structure

• [ISO19005-1:2005 6.1.2 2] The file header line shall be immediately followed by a
comment consisting of a % character followed by at least four characters, each of whose
encoded byte values shall have a decimal value greater than 127.

Non-conformance. [AdobePDF1.4 3.4.1 8] says that is recommended, but not re-
quired: it is recommended that the header line be immediately followed by a comment
line containing at least four binary characters—that is, characters whose codes are 128
or greater.

• [ISO19005-1:2005 6.1.3 1,2] The file trailer dictionary shall contain the ID key-
word. If linearized, the ID keyword shall be present in both the first page trailer and the
last trailer dictionaries and the value of both instances of the keyword shall be identical.

Non-conformance. [AdobePDF1.4 3.4.4 4] says this keyword is optional (and only
available from PDF 1.1), but not required.

• [ISO19005-1:2005 6.1.3 1,3] The keyword Encrypt shall not be used in the trailer
dictionary (encryption and password-protected access permissions disallowed).

Non-conformance. [AdobePDF1.4 3.4.4 4] says this is required only if document is
encrypted (and only available from PDF 1.1).

• [ISO19005-1:2005 6.1.7 4] A stream object dictionary shall not contain the F, FFil-
ter, or FDecodeParams keys.
Non-conformance. [AdobePDF1.4 3.2.7 12] says these keys are optional (and only
availabe from PDF 1.2), hence a stream object dictionary may contain them.

• [ISO19005-1:2005 6.1.10 1] The LZWDecode filter shall not be permitted.

Non-conformance. [AdobePDF1.4 3.3.3 1] allows the use of this filter.

• [ISO19005-1:2005 6.1.11 1] A file specification dictionary shall not contain the EF
key.

Non-conformance. [AdobePDF1.4 3.10.2 1] allows the use of this key (from PDF
1.3); it is required only if key RF is present.

• [ISO19005-1:2005 6.1.11 1] A file’s name dictionary shall not contain the Embed-
dedFiles key.

Non-conformance. [AdobePDF1.4 3.6.3 2] says this key is optional (and only avail-
able from PDF 1.4).

• [ISO19005-1:2005 6.1.11 1] The document catalog dictionary shall not contain a
key with the name OCProperties.

Non-conformance. [AdobePDF1.5 3.6.1 2] says this key is optional (from PDF 1.5),

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 134

and required if a document contains optional content. Thus, this requirement is aligned
with PDF 1.4, but not with PDF 1.5.

C.2 Graphics

• [ISO19005-1:2005 6.2.2 1,2] If a file references Output Intent dictionaries in its
OutputIntents array (catalog), they must have GTS PDFA1 as the value for the S
key, and a valid ICC profile stream as the value for the DestOutputProfile key. If a
file’s OutputIntents array contains more than one entry, then all entries shall have as
the value of the DestOutputProfile key the same indirect object.

Non-conformance. [AdobePDF1.4 9.10.4 4] says only PDF PDFX is recognised as
a valid value for the S key; DestOutputProfile is not always required.

• [ISO19005-1:2005 6.2.3.2 2]A conforming reader shall not use theAlternate colour
space specified in an ICC profile stream dictionary.

Non-conformnance. [AdobePDF1.4 4.5.4 47] says that using the Alternate key is
optional.

• [ISO19005-1:2005 6.2.3.3 1] A conforming file may use either the DeviceRGB or
DeviceCMYK colour space but shall not use both.

Non-conformance. [AdobePDF1.4] does not restrict this.

• [ISO19005-1:2005 6.2.3.3 1] If an uncalibrated colour space is used in a file then
that file shall contain a PDF/A-1 OutputIntent.

Non-conformance. [AdobePDF1.4] does not restrict this.

• [ISO19005-1:2005 6.2.3.3 1]DeviceRGBmay be used only if the file has a PDF/A-
1 OutputIntent that uses an RGB colour space. DeviceCMYK may be used only if
the file has a PDF/A-1 OutputIntent that uses a CMYK colour space.

Non-conformance. Though [AdobePDF1.4] specifies conversion methods, it does not
specify conditions of applyability are not.

• [ISO19005-1:2005 6.2.3.3 2,3]When rendering a DeviceGray colour specification
in a file whose OutputIntent is an RGB profile, a conforming reader shall convert the
DeviceGray colour specification to RGB by the method described in PDF Reference
(PDF 1.4). When rendering a DeviceGray colour specification in a file whose Out-
putIntent is a CMYK profile, a conforming reader shall convert the DeviceGray
colour specification to DeviceCMYK by the method described in PDF Reference
(PDF 1.4).

Non-conformance. [AdobePDF1.4] does not restrict this.

• [ISO19005-1:2005 6.2.3.3 4]When rendering colours specified in a device-dependent
colour space a conforming reader shall use the file’s PDF/A-1 OutputIntent dictionary

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 135

as the source colour space.

Non-conformance. [AdobePDF1.4] does not restrict this.

• [ISO19005-1:2005 6.2.3.4 1,2] When a conforming reader renders colour spaces
based on DeviceN or Separation colour spaces, and if the named colourants in the
colour space are all from the list Cyan, Magenta, Yellow, Black, the file has an Out-
putIntent, and that OutputIntent is a CMYK profile, then the colourants shall be
treated as components of the colour space specified by the PDF/A-1 OutputIntent dic-
tionary, and the alternate colour space shall not be used.

Non-conformance. [AdobePDF1.4] does not restrict this.

• [ISO19005-1:2005 6.2.3.4 1,3] When a conforming reader renders colour spaces
based on DeviceN or Separation colour spaces, if the output device does not support
the Separation colour space or DeviceN colourants, then the Alternate colour space
shall be used.

Non-conformance. [AdobePDF1.4] does not restrict this.

• [ISO19005-1:2005 6.2.3.4 4] The Alternate colour space of a Separation or De-
viceN colour space shall obey all restrictions on colour spaces (restrictions indicated in
[ISO19005-1:2005 6.2.3.2 2], and [ISO19005-1:2005 6.2.3.3 1],
[ISO19005-1:2005 6.2.3.3 1], [ISO19005-1:2005 6.2.3.3 2,3] and
[ISO19005-1:2005 6.2.3.3 4]).

Non-conformance. [AdobePDF1.4] does not restrict this.

• [ISO19005-1:2005 6.2.4 1] An Image dictionary shall not contain the Alternates
key or the OPI key.

Non-conformance. [AdobePDF1.4 4.8.4 3] allows an Image dictionary to contain
these keys, since they are optional (since PDF 1.3 and PDF 1.2 respectively).

• [ISO19005-1:2005 6.2.4 2] If an Image dictionary contains the Interpolate key, its
value shall be false.

Non-conformance. [AdobePDF1.4 4.8.4 3] allows an Image dictionary to contain
these keys, since they are optional (since PDF 1.3 and PDF 1.2 respectively).

• [ISO19005-1:2005 6.2.4 3] If the Intent key is used in an Image dictionary, then its
values shall be one of RelativeColorimetric, AbsoluteColorimetric, Perceptual or Satu-
ration.

Non-conformance. [AdobePDF1.4 4.5.4] allows extensions to this set: Note, how-
ever, that the exact set of rendering intents supported may vary from one output device
to another; a particular device may not support all possible intents, or may support
additional ones beyond those listed in the table.

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 136

• [ISO19005-1:2005 6.2.5 1,2,3,4] A form XObject shall not contain the OPI key,
the Subtype2 key with a value of PS, or the PS key.

Non-conformance. [AdobePDF1.4 4.9.1 2] says that the OPI key is optional, al-
though keys Subtype2 and PS are not allowed.

• [ISO19005-1:2005 6.2.6 1] A conforming file shall not contain any reference XOb-
jects.

Non-conformance. [AdobePDF1.4 4.9.3] allows reference XObjects.

• [ISO19005-1:2005 6.2.7 1] A conforming file shall not contain any PostScript XOb-
jects.

Non-conformance. [AdobePDF1.4 4.10] allows PostScript XObjects.

• [ISO19005-1:2005 6.2.8 1,2] An ExtGState dictionary shall not contain the TR
key. An ExtGState dictionary shall not contain the TR2 key with a value other than
Default. A conforming reader may ignore any instance of the HT key in an ExtGState
dictionary. The values of the RI key, if used in an ExtGState dictionary, shall be one
of RelativeColorimetric, AbsoluteColorimetric, Perceptual or Saturation.

Non-conformance. [AdobePDF1.4 4.3.4 4] specifies that these keys are optional in
all cases. The TR2 key may have other values than Default. The HT value may not
be ignored by a conforming reader.

• [ISO19005-1:2005 6.2.9 1] Where a rendering intent is specified, its value shall be
one of the four values RelativeColorimetric, AbsoluteColorimetric, Perceptual or Satu-
ration.

Non-conformance. [AdobePDF1.4 4.5.4] allows extensions to this set: Note, how-
ever, that the exact set of rendering intents supported may vary from one output device
to another; a particular device may not support all possible intents, or may support
additional ones beyond those listed in the table.

• [ISO19005-1:2005 6.2.10 1] A content stream shall not contain any operators not
defined in [AdobePDF1.4] even if such operators are bracketed by the BX/EX com-
patibility operators.

Non-conformance. [AdobePDF1.4 3.7.1 12] allows compatibility operators BX/EX
to be used.

• [ISO19005-1:2005 6.2.10 2] When using the ri operator in a content stream, the
intent operand shall be on of RelativaColorimetric, AbsoluteColorimetric, Perceptual or
Saturation.

Non-conformance. [AdobePDF1.4 4.5.4] allows extensions to this set: Note, how-
ever, that the exact set of rendering intents supported may vary from one output device

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 137

to another; a particular device may not support all possible intents, or may support
additional ones beyond those listed in the table.

C.3 Fonts

• [ISO19005-1:2005 6.3.3.1 1] For any given composite (Type 0) font referenced within
a conforming file, the Registry and Ordering strings of the CIDSystemInfo entries of
CIDFont and CMap dictionaries for that font shall be identical, unless the value of
the CMap dictionary UserCMap key is Identity-H or Identity-V.

Non-conformance. [AdobePDF1.4 5.6.2 4] specifies that this requirement should be
met for proper behavior, but it is not required: For proper behavior, the CIDSystem-
Info entry of a CMap should be compatible with that of the CIDFont or CIDFonts with
which it is used. If they are incompatible, the effects produced will be unpredictable.

• [ISO19005-1:2005 6.3.3.1 1] For all Type 2 CIDFonts, the CIDFont dictionary
shall contain a CIDToGIDMap entry that shall be a stream mapping from CIDs to
glyph indices or the name Identity.

Non-conformance. [AdobePDF1.4 5.6.3 3] specifies that this entry is optional, but
not required.

• [ISO19005-1:2005 6.3.3.1 1]All CMaps used within a conforming file, except Identity-
H and Identity-V, shall be embedded in that file. For those CMaps that are embedded,
the integer value of the WMode entry in the CMap dictionary shall be identical to the
WMode value in the embedded CMap stream.

Non-conformance. [AdobePDF1.4 5.6.4] is not completely aligned with this. Ex-
ceptions of embedded CMaps are for character encodings that are not predefined, rather
than particular Identity-H and Identity-V CMaps. TheWMode entry of the CMap di-
ciontary is optional, not required. Additionally, bothWMode values (CMap dictionary
and embedded CMap stream) should (and not shall) be identical.

• [ISO19005-1:2005 6.3.4 1,2,3,4,5,6] The font programs for all fonts used within
a conforming file shall be embedded within that file, except when the fonts are used
exclusively with text rendering mode 3. A font is considered to be used if any of its
glyphs are referenced in any of the following contexts: a) the Contents stream of a page
object; b) the stream of a Form XObject; c) the appearance stream of an annotation,
including form fields; d) the content stream of a Type 3 font glyph; e) the stream of a
tiling pattern.

Non-conformance. [AdobePDF1.4 5.8] does not restrict this.

• [ISO19005-1:2005 6.3.4 7] Only fonts that are legally embeddable in a file for un-
limited, universal rendering shall be used.

Non-conformance. [AdobePDF1.4 5.8 2] does not require an unlimited nor univer-
sal rendering for the font program. Additionally, it states that not embeddable fonts

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 138

should not (not shall not) be used: One of the conditions may be that the font program
cannot be embedded, in which case it should not be incorporated into a PDF file.

• [ISO19005-1:2005 6.3.4 8] All conforming readers shall use the embedded fonts,
rather than other locally resident, substituted or simulated fonts, for rendering.

Non-conformance. [AdobePDF1.4 5.8] does not restrict this.

• [ISO19005-1:2005 6.3.5 1] Type 0 CIDFont and Type 1 and TrueType font subsets
may be used if the embedded font programs define all appropriate glyphs.

Non-conformance. [AdobePDF1.4 5.5.3] does not restrict this.

• [ISO19005-1:2005 6.3.5 2] For all Type 1 font subsets referenced within a conform-
ing file, the font descriptor dictionary shall include a CharSet string listing the char-
acter names defined in the font subset.

Non-conformance. [AdobePDF1.4 5.7 3] says that the CharSet entry is optional.

• [ISO19005-1:2005 6.3.5 3] For all CIDFont subsets referenced within a conform-
ing file, the font descriptor dictionary shall include a CIDSet stream identifying which
CIDs are present in the embedded CIDFont file.

Non-conformance. [AdobePDF1.4 5.7.2 7] says that the CIDSet stream is optional.

• [ISO19005-1:2005 6.3.6 1] For every font embedded in a conforming file, the glyph
width information stored in the Widths entry of the font dictionary and in the embed-
ded font program shall be consistent.

Non-conformance. [AdobePDF1.4 5.5.1 4] only requires this for Type 1 fonts, but
not for every embedded font in the file.

• [ISO19005-1:2005 6.3.7 1] All non-symbolic TrueType fonts shall specify MacRo-
manEncoding or WinAnsiEncoding as the value of the Encoding entry in the font
dictionary. All symbolic TrueType fonts shall not specify an Encoding entry in the
font dictionary, and their font programs’ “cmap” tables shall contain exactly one en-
coding.

Non-conformance. [AdobePDF1.4 5.5.5] suggests this only as a guideline.

• [ISO19005-1:2005 6.3.8 2,3,4,5]1 The font dictionary shall include a ToUnicode
entry whose value is a CMap stream object that maps character codes to Unicode
values, unless the font meets any of the following three conditions: a) fonts that use
the predefined encodings MacRomanEncoding, MacExpertEncoding or WinAn-
siEncoding, or that use the predefined Identity-H or Identity-V CMaps; b) Type
1 fonts whose character names are taken from the Adobe standard Latin character set
or the set of named characters in the Symbol font; c) Type 0 fonts whose descendant
CIDFont uses theAdobe-GB1, Adobe-CNS1, Adobe-Japan1 or Adobe-Korea1

1This requirement is applicable only for files meeting Level A conformance (PDF/A-1a).

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 139

character collections.

Non-conformance. [AdobePDF1.4] does not restrict this.

C.4 Transparency

• [ISO19005-1:2005 6.4 1] If an SMask key appears in an ExtGState or XObject
dictionary, its value shall be None.

Non-conformance. [AdobePDF1.4] Does not restrict this.

• [ISO19005-1:2005 6.4 2] A Group object with an S key with a value of Trans-
parency shall not be included in a form XObject.

Non-conformance. [AdobePDF1.4] Does not restrict this.

• [ISO19005-1:2005 6.4 3,4] If the BM key is present in an ExtGState object, its
value shall be Normal or Compatible.

Non-conformance. [AdobePDF1.4] Does not restrict this.

• [ISO19005-1:2005 6.4 3,5] If the CA key is present in an ExtGState object, its
value shall be 1.0.

Non-conformance. [AdobePDF1.4] Does not restrict this.

• [ISO19005-1:2005 6.4 3,6] If the ca key is present in an ExtGState object, its
value shall be 1.0.

Non-conformance. [AdobePDF1.4] does not restrict this.

C.5 Annotations

• [ISO19005-1:2005 6.5.1 1] Conforming interactive readers shall provide a mecha-
nism to display the values of the Contents key of annotation dictionaries.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.5.2 1] Annotation types not defined in PDF Reference shall not
be permitted. Additionally, the FileAttachment, Sound and Movie types shall not
be permitted.

Non-conformance. [AdobePDF1.4 8.4.5 1] states that plug-in extensions may add
new annotation types, and further standard types may be added in the future. None
of these extensions are supported by [ISO19005-1:2005]. Additionally, requirement
[AdobePDF1.4 8.4.5 2] allows the FileAttachment, Sound and Movie annotation
types.

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 140

• [ISO19005-1:2005 6.5.3 1] An annotation dictionary shall not contain the CA key
with a value other than 1.0.

Non-conformance. [AdobePDF1.4 8.4.1 2] does not restrict this.

• [ISO19005-1:2005 6.5.3 2] An annotation dictionary shall contain the F key. The
F key’s Print flag bit shall be set to 1 and its Hidden, Invisible and NoView flag
bits shall be set to 0.

Non-conformance. [AdobePDF1.4 8.4.1 2] states that the F key is optional. The
flag bits values are not restricted.

• [ISO19005-1:2005 6.5.3 3] Text annotations should2 set the NoZoom and NoRo-
tate flag bits of the F key to 1.

Non-conformance. [AdobePDF1.4 8.4.2 2] is less restrictive regarding this require-
ment.

• [ISO19005-1:2005 6.5.3 5] An annotation dictionary shall not contain the C array
or the IC array unless the colour space of the DestOutputProfile in the PDF/A-1
OutputIntent dictionary is RGB.

Non-conformance. [AdobePDF1.4 8.4.1 2] states that these entries are optional and
do not depend on the colour space of the DestOutputProfile in the OutputIntent
dictionary.

• [ISO19005-1:2005 6.5.3 7] If an annotation dictionary contains the AP key, the ap-
pearance dictionary that it defines as its value shall contain only the N key, whose value
shall be a stream defining the appearance of the annotation.

Non-conformance. [AdobePDF1.4 8.4.4 11] Appearance dictionaries may have ad-
ditional optional keys.

C.6 Actions

• [ISO19005-1:2005 6.6.1 1] The Launch, Sound, Movie, ResetForm, Import-
Data and JavaScript actions shall not be permitted.

Non-conformance. [AdobePDF1.4 8.5] allows all of these actions.

• [ISO19005-1:2005 6.6.1 1] Deprecated set-state and no-op actions shall not be
permitted.

2This requirement is not a must, but a recommendation. A note explains it: NoZoom and NoRotate

flags are permitted, which allows the use of annotation types that have the same behaviour as the commonly-

used text annotation type. By definition, text annotations exhibit the NoZoom and NoRotate behaviour even

if the flags are not set; explicitly setting these flags removes any potential ambiguity between the annotation

dictionary settings and reader behaviour.

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 141

Non-conformance. [AdobePDF1.4 8.5.3 3] states that these actions are obsolete and
its use is no longer recommended. However, it does not restrict its use in PDF docu-
ments.

• [ISO19005-1:2005 6.6.1 1]Named actions other thanNextPage, PrevPage, First-
Page, and LastPage shall not be permitted.

Non-conformance. [AdobePDF1.4 8.5.3] states that additional named actions may
be supported by viewer applications: Viewer applications may support additional, non-
standard named actions, but any document using them will not be portable. If the viewer
encounters a named action that is inappropriate for a viewing platform, or if the viewer
does not recognize the name, it should take no action.

• [ISO19005-1:2005 6.6.1 2] Interactive form fields shall not perform actions of any
type.

Non-conformance. [AdobePDF1.4 8.6.4] defines and allows the use of form fields ac-
tions.

• [ISO19005-1:2005 6.6.2 1] A Widget annotation dictionary or Field dictionary shall
not include an AA entry for an additional-actions dictionary. The document catalog
dictionary shall not include an AA entry for an additional-actions dictionary.

Non-conformance. [AdobePDF1.4] states the the use of the AA entry in these three
dictionaries is optional.

• [ISO19005-1:2005 6.6.3 1] Conforming interactive readers shall provide a mecha-
nism to display the F and D keys of a GoToR action dictionary, the URI key of a
URI action dictionary, and the F key of a SubmitForm action dictionary.

Non-conformance. This is an addition to the rendering behaviour described in spec-
ification [AdobePDF1.4].

C.7 Metadata

A PDF document may include general information such as the document’s title, author,
and creation and modification dates. Such global information about the document itself (as
opposed to its content or structure) is called metadata, and is intended to assist in cataloguing
and searching for documents in external databases. A document’s metadata may also be
added or changed by users or plug-in extensions.

Metadata is essential for effective management of a file throughout its life cycle. A
file depends on metadata for identification and description, as well as for describing ap-
propriate technical and administrative matters. As a result, writers of conforming files
may have to comply with various domain-specific metadata requirements defined external
to [ISO19005-1:2005].

• [ISO19005-1:2005 6.7.2 1] The document catalog dictionary of a conforming file
shall contain the Metadata key. The metadata stream that forms the value of that key

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 142

shall conform to XMP Specification. All metadata properties embedded in a file shall
be in XMP form except for document information dictionary entries that have no XMP
analogues. Properties specified in XMP form shall use the predefined schemas defined in
XMP Specification 4 or extension schemas that comply with XMP Specification 4 and
requirement [ISO19005-1:2005 6.7.8]. Metadata object stream dictionaries shall not
contain the Filter key.

Non-conformance. [AdobePDF1.4 3.6.1 2] states that the Metadata entry is op-
tional.

• [ISO19005-1:2005 6.7.3] If a document information dictionary appears within a con-
forming file, then all of its entries that have analogous properties in predefined XMP
schemas shall also be embedded in the file in XMP form. Both values shall be equivalent.
These entries are Title (dc:title), Author (dc:creator), Subject (dc:subject), Key-
words (pdf:keywords), Creator (xmp:CreatorTool), Producer (pdf:Producer), Cre-
ationDate (xmp:CreateDate) and ModDate (xmp:ModifyDate). If the dc:creator
property is present in XMP metadata then it shall be represented by an ordered Text
array of length one whose single entry shall consist of one or more names. Equivalence
between Author and dc:creator, shall be on a character-by-character basis, independent
of encoding, comparing the numeric ISO/IEC 10646-1 code points for the characters.
Date properties are formatted as a variable-length sequence of temporal components
ranging in granularity: year, month, day, hour, minute, second. For properties that
map between the PDF date type and the XMP Date type value equivalence shall be on
a component-by-component basis, relative to Coordinated Universal Time (UTC).

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.7.4] All XMP schemas should define the normalization rules
that are applicable for their properties. For all metadata properties defined in schemas
that do provide normalization rules, the property values shall be entered, saved and
retained in the normalized fashion defined by those schemas.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.7.5] The bytes and the encoding attributes shall not be used
in the header of an XMP packet.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.7.6] A conforming file should3 have one or more metadata prop-
erties to characterize, categorize and otherwise identify the file (e.g. with UUID).
Identifiers may be included through use of the xmp:Identifier property; use of the
xmpMM:DocumentID, xmpMM:VersionID and xmpMM:RenditionClass prop-
erties; or use of properties from an extension schema. If a conforming file is changed in
any way then the changing identifier part of the file trailer dictionary ID key should be
modified accordingly.

3This requirement is not a must, but a recommendation.

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 143

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.7.7] In order to describe all high-level user actions taken to cre-
ate, transform or otherwise instantiate a conforming file, each of those actions should4

be recorded in the xmpMM:History property. For each action that is recorded: a)
the action, parameters and when fields shall be specified; b) the softwareAgent
field should be specified; c) the instanceID field shall not be specified.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.7.8] All extension schemas used in a conforming file shall have
their descriptions embedded within that file in the metadata stream. These descrip-
tions shall be specified using the PDF/A extension schema description schema defined
in [ISO19005-1:2005].

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.7.9] All content of all XMP packets shall be well-formed as de-
fined by XML 1.0, 2.1, and RDF/XML Syntax Specification.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.7.10] For all embedded Type 0, Type 1, or TrueType font pro-
grams, the embedded font file stream dictionary should5 include a Metadata entry
whose value is an XMP metadata stream. The following XMP metadata elements
should be supplied: xmp:Title, giving the value of the FontName key from the font’s
font descriptor dictionary; xmpRights:Copyright, giving the copyright statement;
xmpRights:Marked, with the Boolean value true; xmpRights:Owner, giving the
legal owner of the font; xmpRights:UsageTerms, giving a statement of the licensing
terms under which the font is being used.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.7.11] The PDF/A version and conformance level of a file shall
be specified using the PDF/A Identification extension schema defined in requirement
[ISO19005-1:2005 6.7.11].

Non-conformance. [AdobePDF1.4] does not require this.

C.8 Logical structure

Requirements in this subsection are applicable only for files meeting PDF/A Level A confor-
mance. For Level B conformance these requirements can be ignored.

The intent of the requirements in this subsection is to ensure the recovery of the textual
content of a conforming file as a sequence of words defined in the natural reading order of

4This requirement is not a must, but a recommendation.
5This requirement is not a must, but a recommendation.

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 144

the language in which they are written. Similarly, it ensures that the individual characters
of each word are recoverable in their natural reading order. Furthermore, these requirements
allow the recovery of higher-level semantic information concerning the logical structure of the
document.

• [ISO19005-1:2005 6.8.2.1 1] A Level A conforming file shall meet all of the require-
ments set forth for Tagged PDF in [AdobePDF1.4].

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.8.2.2 1] The document catalog dictionary shall include aMark-
Info dictionary whose sole entry, Marked, shall have a value of true.

Non-conformance. [AdobePDF1.4 9.7.1 2] states that this entry is optional, but not
mandatory. Its value may be true or false.

• [ISO19005-1:2005 6.8.3.1 1] Pagination features such as running heads or page
numbers, cosmetic layout features such as footnote rules or background screens, and
production aids such as cut marks and colour bars should6 be specified as pagination,
layout, and page artifacts, respectively.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.8.3.2 1,2] For languages and script systems that normally use
space characters to indicate word breaks, the following additional restriction shall apply:
within show strings, word breaks shall be explicitly indicated by the presence of one or
more space characters between all of the individual words in the show string. If a word
ends at a show string boundary, one or more space characters shall be inserted at the
end of the show string. Note that a single word may span two or more show strings;
word breaks are indicated only by the explicit presence of one or more space characters,
not by the boundaries of a show string. For the purposes of indicating word breaks,
a sequence of two or more consecutive space characters is semantically equivalent to a
single spacing character.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.8.3.3 1,2] The logical structure of the conforming file shall be
described by a structure hierarchy rooted in the StructTreeRoot entry of the docu-
ment catalog dictionary. Each structure element dictionary in the structure hierarchy
shall have a Type entry with the name value of StructElem.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.8.3.4 1,2] The definition of block-level structuring elements
should7 follow the strongly structured paradigm in [AdobePDF1.4 9.7.4]. All non-
standard structure types shall be mapped to the nearest functionally equivalent stan-
dard type, in the role map dictionary of the structure tree root. This mapping may

6This requirement is not a must, but a recommendation.
7This requirement is not a must, but a recommendation.

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 145

be indirect; within the role map a non-standard type can map directly to another non-
standard type, but eventually the mapping must terminate at a standard type.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.8.4 1,2] The default natural language for all text in a file
should8 be specified by the Lang entry in the document catalog dictionary. All textual
content within a file which differs from the default language should be indicated by use
of a Lang property attached to a marked-content sequence, or by a Lang entry in a
structure element dictionary.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.8.4 3] If the Lang entry is present in the document catalog dic-
tionary or in a structure element dictionary or property list, its value shall be a language
identifier.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.8.4 4] All text strings encoded in Unicode whose language is
not the default natural language for the file or not the natural language defined by
the innermost enclosing structure element or marked-content sequence should9 indicate
their language using the internal escape sequence.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.8.5 1] All structure elements whose content does not have a
natural predetermined textual analogue should10 supply an alternate text description
using the Alt entry in the structure element dictionary.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.8.6 1] For annotation types that do not display text, the Con-
tents key of an annotation dictionary should11 be specified with an alternative descrip-
tion of the annotation’s contents in human-readable form.

Non-conformance. [AdobePDF1.4] does not require this.

• [ISO19005-1:2005 6.8.7 1] All textual structure elements that are represented in a
non-standard manner should12 supply replacement text using the ActualText entry in
the structure element dictionary.

Non-conformance. [AdobePDF1.4] does not require this.

8This requirement is not a must, but a recommendation.
9This requirement is not a must, but a recommendation.

10This requirement is not a must, but a recommendation.
11This requirement is not a must, but a recommendation.
12This requirement is not a must, but a recommendation.

APPENDIX C. PDF/A VS PDF 1.4 REQUIREMENTS 146

• [ISO19005-1:2005 6.8.8 1] All instances of abbreviations and acronyms in textual
content should13 be placed in a marked-content sequence with a Span tag whose E
property provides a textual expansion of the abbreviation or acronym.

Non-conformance. [AdobePDF1.4] does not require this.

C.9 Interactive Forms

• [ISO19005-1:2005 6.9 2] A conforming reader shall not use form fields to change the
rendered representation of the page or the content of the file at any time. A Widget
annotation dictionary or Field dictionary shall not contain the A or AA keys.

Non-conformance. [AdobePDF1.4 8.6.2 2] states that these entries are all optional.

• [ISO19005-1:2005 6.9 3] The NeedAppearances flag of the interactive form dic-
tionary shall either not be present or shall be false.

Non-conformance. [AdobePDF1.4 8.6.2 2] states that this entry is optional, and its
values may be both true or false.

• [ISO19005-1:2005 6.9 4] Every form field shall have an appearance dictionary asso-
ciated with the field’s data. A conforming reader shall render the field according to the
appearance dictionary without regard to the form data.

Non-conformance. [AdobePDF1.4 8.6] does not restrict this.

13This requirement is not a must, but a recommendation.

Appendix D

ANTLR prototypes

This appendix shows the corresponding ANTLR parser generator input in EBNF for the
grammars G1 and G2.

D.1 EBNF grammars

D.1.1 G1

#lexclass START

#token PDF_TOKEN_TRUE "true"

#token PDF_TOKEN_FALSE "false"

#token PDF_TOKEN_STREAM "stream"

#token PDF_TOKEN_ENDSTREAM "endstream"

#token PDF_TOKEN_NULL "null"

#token PDF_TOKEN_OBJ "obj"

#token PDF_TOKEN_ENDOBJ "endobj"

#token PDF_TOKEN_R "R"

#token PDF_TOKEN_OPERATOR "[a-zA-Z][a-zA-Z]"

#token PDF_TOKEN_INTEGER "[0-9]+"

#token PDF_TOKEN_REAL "([0-9]+\.[0-9]*)|(\.[0-9]+)"

#token PDF_TOKEN_STRING "\(([a-zA-Z0-9\ \-\,\!])*\)|

<([a-zA-Z0-9][a-zA-Z0-9])*>"

#token PDF_TOKEN_NAME "/[a-zA-Z0-9\-\.*]*"

#token PDF_TOKEN_COMMENT "%[a-zA-Z0-9\ \-]*" << zzskip();>>

#token PDF_TOKEN_DICT_START "\<\<"

#token PDF_TOKEN_DICT_END "\>\>"

#token PDF_TOKEN_ARRAY_START "\["

#token PDF_TOKEN_ARRAY_END "\]"

#token PDF_TOKEN_PROC_START "\{"

#token PDF_TOKEN_PROC_END "\}"

#token SPACE "[\ \n\t]" << zzskip();>>

pdf_objects

: (indirect_object)*

;

147

APPENDIX D. ANTLR PROTOTYPES 148

indirect_object

: PDF_TOKEN_INTEGER PDF_TOKEN_INTEGER PDF_TOKEN_OBJ^

(

(PDF_TOKEN_TRUE | PDF_TOKEN_FALSE)

| PDF_TOKEN_INTEGER (PDF_TOKEN_INTEGER PDF_TOKEN_R^ |)

| PDF TOKEN_REAL

| PDF_TOKEN_STRING

| PDF_TOKEN_NAME

| PDF_TOKEN_NULL

| array_object

| dictionary_object (stream_object |)

) PDF_TOKEN_ENDOBJ!

;

array_object

: PDF_TOKEN_ARRAY_START^ (array_or_dictionary_value)*

PDF_TOKEN_ARRAY_END!

;

array_or_dictionary_value

: (PDF_TOKEN_TRUE^ | PDF_TOKEN_FALSE^)

| PDF_TOKEN_INTEGER (PDF_TOKEN_INTEGER PDF_TOKEN_R^ |)

| PDF_TOKEN_REAL

| PDF_TOKEN_STRING^

| PDF_TOKEN_NAME^

| PDF_TOKEN_NULL^

| array_object

| dictionary_object

;

dictionary_object

: PDF_TOKEN_DICT_START^ (key_value_pair)* PDF_TOKEN_DICT_END!

;

key_value_pair

: PDF_TOKEN_NAME^ (array_or_dictionary_value)

;

stream_object

: PDF_TOKEN_STREAM^ (PDF_TOKEN_OPERATOR)* PDF_TOKEN_ENDSTREAM! ;

D.1.2 G2

#lexclass START

#token PDF_TOKEN_TRUE "true"

#token PDF_TOKEN_FALSE "false"

APPENDIX D. ANTLR PROTOTYPES 149

#token PDF_TOKEN_STREAM "stream"

#token PDF_TOKEN_ENDSTREAM "endstream"

#token PDF_TOKEN_NULL "null"

#token PDF_TOKEN_OBJ "obj"

#token PDF_TOKEN_ENDOBJ "endobj"

#token PDF_TOKEN_R "R"

#token PDF_TOKEN_OPERATOR "[a-zA-Z][a-zA-Z]"

#token PDF_TOKEN_INTEGER "[0-9]+"

#token PDF_TOKEN_REAL "([0-9]+\.[0-9]*)|(\.[0-9]+)"

#token PDF_TOKEN_STRING "\(([a-zA-Z0-9\ \-\,\!])*\)|

<([a-zA-Z0-9][a-zA-Z0-9])*>"

#token PDF_TOKEN_NAME "/[a-zA-Z0-9\-\.*]*"

#token PDF_TOKEN_COMMENT "%[a-zA-Z0-9\ \-]*" << zzskip();>>

#token PDF_TOKEN_DICT_START "\<\<"

#token PDF_TOKEN_DICT_END "\>\>"

#token PDF_TOKEN_ARRAY_START "\["

#token PDF_TOKEN_ARRAY_END "\]"

#token PDF_TOKEN_PROC_START "\{"

#token PDF_TOKEN_PROC_END "\}"

#token SPACE "[\ \n\t]" << zzskip();>>

pdf_objects

: (indirect_object)*

;

indirect_object

: PDF_TOKEN_INTEGER PDF_TOKEN_INTEGER PDF_TOKEN_OBJ^ (contained_object)

PDF_TOKEN_ENDOBJ!

;

contained_object

: atomic_object

| array_object

| dictionary_object (stream_object |)

;

atomic_object

: (PDF_TOKEN_TRUE | PDF_TOKEN_FALSE)

| PDF_TOKEN_INTEGER (PDF_TOKEN_INTEGER PDF_TOKEN_R^ |)

| PDF_TOKEN_REAL

| PDF_TOKEN_STRING

| PDF_TOKEN_NAME

| PDF_TOKEN_NULL

;

array_object

: PDF_TOKEN_ARRAY_START^ (array_or_dictionary_value)*

APPENDIX D. ANTLR PROTOTYPES 150

PDF_TOKEN_ARRAY_END

;

array_or_dictionary_value

: atomic_object

| array_object

| dictionary_object

;

dictionary_object

: PDF_TOKEN_DICT_START^ (key_value_pair)* PDF_TOKEN_DICT_END!

;

key_value_pair

: PDF_TOKEN_NAME^ (array_or_dictionary_value)

;

stream_object

: PDF_TOKEN_STREAM^ (PDF_TOKEN_OPERATOR)* PDF_TOKEN_ENDSTREAM! ;

	Introduction
	Motivation
	Project overview
	Goals
	General goals
	Specific goals

	Report organisation

	Entering GNU PDF
	Introduction
	Brief history of GNU PDF
	Joining GNU PDF
	GNU PDF Information for Newcomers
	#pdf channel at freenode.net
	Entering the mailing list

	Licensing
	Copyright assignment
	University disclaimer

	Project methodology and organisation
	Library architecture
	Sources retrieval and GNU PDF installation
	The development branch
	Iterations, patch proposals and review process
	Tasks management
	Library quality
	Tools

	The first task choice

	The UUID module
	Universally unique identifiers
	Internal structure

	Iterative development
	First iteration
	Requirements analysis
	Requirements sources
	Functional requirements
	Non-funtional requirements

	Specification and Design
	Existing, suitable UUID implementations
	Design decisions

	Implementation
	Introducing dependency with libuuid
	UUID Module coding

	Testing
	First patch
	Review

	Second iteration
	Implementation
	UUID Module coding

	Testing
	Second patch
	Review

	Third iteration
	Implementation
	UUID Module coding

	Testing
	Third patch
	Review

	Fourth iteration
	GNU PDF Library Testing Infrastructure
	Testing
	pdf-types-uuid-generate.c
	pdf-types-uuid-string.c
	pdf-types-uuid-equal-p.c

	Testing environment execution
	Fourth patch
	Review

	PDF standards requirements
	Introduction
	Concept glossary
	PDF standards
	Standardized subsets of PDF
	PDF/X
	PDF/A
	PDF/E
	PDF/VT

	Non-standardized subsets of PDF
	PDF/UA
	PDF/H

	PDF/A vs PDF 1.4 requirements
	File structure
	Graphics
	Fonts
	Transparency
	Annotations
	Actions
	Metadata
	Logical structure
	Interactive Forms

	A Conformance Module proposal
	Conformance Module API
	Requirements Management
	Conformance Context Management
	Conformance-Requirements Mapping Management

	A PDF object parser proposal
	Introduction
	PDF objects
	Boolean objects
	Numeric objects
	String objects
	Name objects
	Array objects
	Dictionary objects
	Stream objects
	Null object
	Indirect objects

	A grammar for PDF objects
	First proposal, G1
	Second proposal, G2
	G1 and G2 pros and cons

	Parser development
	Lookahead
	Parsing strategy
	Generic parsing algorithm
	Bottom-up strategies
	Top-down strategies

	Requirements
	Goal
	Functional requirements
	Non-functional requirements

	Specification
	Usage

	Design
	Parsing window
	Flags
	Parsing schema

	Implementation
	rec-pred-parse.h
	rec-pred-parse.c

	Testing

	Documentation
	Source code documentation
	gnupdf.texi
	A GNU PDF developer's blog
	Social Networks
	GNU PDF Knowledge Database
	Wikipedia contributions
	IRC community

	Budget and execution
	Budget
	Software costs
	Hardware costs
	Staff costs
	Final cost

	Execution
	UUID module
	Conformance tasks
	Parser development
	Report and documentation
	Overall

	Conclusions
	Goals achieving
	Further work
	Closing remarks

	FSF licensing
	Licensing notes of UUID libraries
	libbuid in e2fsprogs
	OSSP uuid

	PDF/A vs PDF 1.4 requirements
	File structure
	Graphics
	Fonts
	Transparency
	Annotations
	Actions
	Metadata
	Logical structure
	Interactive Forms

	ANTLR prototypes
	EBNF grammars
	G1
	G2

